IT City Research Online
UNIVEREIST%(]OggLfNDON

City, University of London Institutional Repository

Citation: Spanoudakis, G., Kloukinas, C. & Androutsopoulos, K. (2008). Dynamic
verification and control of mobile peer-to-peer systems. Paper presented at the 3rd
International Conference on Internet Monitoring and Protection, 29 Jun - 5 Jul 2008,
Bucharest, Romania.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/2889/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Dynamic Verification and Control of Mobile Peer-to-Peer Systems

George Spanoudakis, Christos Kloukinas and Kellgrantsopoulos
Department of Computing,
City University,
London,
United Kingdom,
{G.Spanoudakis, C.Kloukinas}@soi.city.ac.uk, kelth@u@googlemail.com

Abstract of mobile devices equipped with technologies sueh a
WiFi and GPRS.

The development of dependable mobile P2P systems However, despite the benefits that arise from the
is an inherently challenging task since such system decentralised and dynamic nature of mobile P2P
may operate in largely uncontrolled environments an Systems, these very characteristics are also pssimg
may engage new peers or lose existing ones withousignificant challenges for their dependability and
any form of centralised control. In these Security. As individual peers may enter or leave a
circumstances, dependability and security can be mobile P2P system at will and without notice, the
enhanced through the runtime monitoring (a.k.a. availability of peers and the services that theferof
dynamic verification) of the compliance of the egst ~ cannot be taken for granted. Peer availability misyp
behaviour against specific dependability and seguri Pe affected by the limited power and computational
properties and the execution of control in casesneh ~ capacity of mobile devices, the availability of
properties are violated. In this paper we present a connectivity in different locations, and the usage
framework for the dynamic verification and contol ~ Patterns of individual mobile peers.
mobile P2P systems, which uses peer-specific [N such circumstances, ensuring that P2P
monitoring policies to specify application-level @applications have been developed using sound seftwa
properties. The deployment of this framework for engineering practices and incorporate a set ofcbasi
monitoring system behaviour adds an extra layer of Security mechanisms is not sufficient for guarainge
security and dependability checking, which is security and dependability. Therefore, the presema
independent from checks performed directly by the Of these properties by mobile P2P systems neells to
P2P system that is being monitored. Thus, it métkes dynamically verified through monitoring at runtime.
system more fault-tolerant and enables event laggin Dynamic verification complements system testing and

that could be used for further analysis and preieemt Static verification, as none of the latter techeisjcan
of attacks. guarantee the correctness of system behaviour at

runtime, either because it is difficult to foreseed
check all the possible conditions that may aris¢han
real operational context of a system (system tgkstin
) ensure that the models used for static verification
Starting from the same types of peer-to-peer (Pzp)preserved by system implementations.

applications that have been dominant in d.esktop Several dynamic verification techniques have been
pIatfprms (e.g.. |n§tant messaging, voice over 6P fde developed (e.g. [2l[8][11][13][21]), providing
sharing applications), mobile P2P systems are mechanisms to capture events from software sysé¢ms

:cncregsm(i;ly covEnng g c wu(jje Czi:pectrum of runtime and check whether these events satisfyifapec
unctionalities such as B an €-commerce properties, which are typically expressed in some

applications, and mobile game engines. This tendenc temporal logic language. However, as they focus

gz?:)ue toh_some key benerf:tS_ of the (Ij_ecgntrallsambn mainly on computing platforms where resource starci
incl dz?lrc |te(;:tureds 0\|/er tbe.,-l{r centra |sle C.Oljl?:.ﬂpar is not a significant constraint and systems that raot
Including reduced vulnerability to single-pointltaes as dynamic and uncontrollable as mobile P2P systems

and higher scalability [1]. The emergence of mobile these techniques do not address adequately sones iss
P2P applications has been enabled by the proliderat q a y

1. Introduction

which are essential for the dynamic verification of
mobile P2P systems, namely:
run-time in order to enable the activation of
monitoring activities,

monitors, in order not to drain the computational
and power resources of mobile devices,
the secure emission of events from mobile P2P
systems required for monitoring, and
the dynamic execution of actions to prevent or
rectify detected violations of the monitored
properties during the execution of peer
applications.
In this paper, we present a dynamic verification
framework for mobile P2P systems (shortly referied
as “DVF” in the rest of the paper) that addresbesé
issues and constitutes the first such frameworlchvhi
to the best of our knowledge, is available on aiteob
computing platform. The use of DVF for monitoring
and controlling mobile P2P systems behaviour adds a
extra layer of checking security and dependabiligt
is independent from any checks performed by thespee

themselves. Thus, DVF makes mobile P2P systems

more fault-tolerant and enables logging of evertiv
could be used for further diagnostic analysis and
prevention of future attacks.

Central to the approach that underpins DVF is the
use ofpeer-specifienonitoringpolicies These policies
specify application level propertieghat need to be
monitored, concerning a peer itself or its collatiors
in a network, using a language based on Event Calcu
[19], the actions that should be taken when the
monitored properties are violated, and gegmissions
that a peer gives to its collaborators regarding th
monitoring and control of its own activities.
Furthermore, the DVF supports the negotiation and
activation of monitoring policies between mobileepe
and the collection and transmission of events from
mobile peers for the monitoring of these policidts.
also offers control capabilities that enable readito
identified violations of the monitored properties.

The rest of this paper is structured as follows. In
Section 2, we present the architecture fF. In
Section 3 we introduce the language for specifying
DVF policies. In Sections 4 and 5, we present the
negotiation and control capabilities of DVF. In Sec
6, we give an overview of the implementation of DVF
and in Section 7 we discuss related work. Finatly,
Section 8, we conclude and outline our plans fturf
work.

the dynamic negotiation between mobile peers at

the need to have a monitoring service that is not
deployed on the same machine as the peers that i

2. Architecture of the
Verification Framewor k

Dynamic

The main characteristic of DVF is that it decouples
monitoring from event capturing and control, asgign
responsibility for the latter two activities to indiual
beers and responsibility for the former activity to
external monitors. Furthermore, the verification
framework deploys an event notification infrastrwet
supporting the transmission of events from peethéo
monitors and the results of the monitoring prodess
the opposite direction. As shown in Figure 1, théFD
consists of three basic componentstonitoring-
Enabled PeergMEPSs), monitors and event brokers
(EBr). These components are described below.

2.1 Monitoring enabled peers

Monitoring enabled peers are peers that incorporate
a peer verification controllefPVC). A PVC collects
events during the operation of a peer and publishes
them to event brokers, so that they can be digeibto
appropriate monitors. A PVC has also responsibility
for receiving notifications of the results of the
monitoring process and taking control actions om th
individual peer as required by these results (e.g.,
dropping messages exchanged between a peer and its
collaborators). As shown in Figure 2, a PVC is
provided as part of the basic runtime infrastruetiimat
enables the formation of peer networks (e.g. peer
registration, authentication and discovery) and the
communication between the individual peers in them.
Thus, when a peer application is built using this
infrastructure, it automatically incorporates a R\AC
PVC internally consists of eontroller, apolicy parser
and anegotiation manager

The PVC controller intercepts all the incoming and
outgoing messages, which are exchanged between its
host peer and other peers, and publishes thesagesss
in the form of encrypted events to the event braier
the DVF, according to itevent exposition rule§ hese
are determined dynamically through theonitoring
policy of the host peer itself and agreements that it may
have made with other peers regarding the exposition
its own events. After sending a message to an event
broker, the controller may block it until it rece a
notification that the message does not violate raitey
or permit its transmission and wait for the
asynchronous notification of monitoring results.
Subsequently, when it receives the monitoring tesul
that relate to the message, the PVC controllerieppl
the actions required by the active monitoring peic

Monitor

| Monitor |

MEP

MEP
application

MEP
application
—S PVC

4— inter-peer messages
———> monitoring results

___________ PVC

application

MEP
application
PVC

uthentication Service

Figure 1. Architecture of DVF

obile Peer A

/M

P2P Application

=

nessages

4 ;PZP Runtime Infrastructure
1

messages

| Peer M Exct

Module |

1 |Authentication
! |Module

Encryption
Module

'p\',E"@Es?a'gés"":""'f"'

| Controller

\ 4

EBr

{

Negotiation
Manager

lconditionis

y'y

)
tnotiﬁ. tion:

_ Policy
policy Parser
repository +

1

Monitoring Policy /

Figure 2. Peer verification controllers

The policy parserof the PVC is responsible for
parsing the monitoring policy of the host peer and
creating a repository with information about thedy
of events that should be intercepted, the propertie
against which the intercepted events should bekekec
and the actions that should be taken if the prageert
are violated (see Section 3). The policy also idetu
information about the events that the PVC may egpos
to other peers and the events that it should reédumes

these peers in return.

Finally, the negotiation managers the component
of the PVC that enables it to negotiate with exérn
peers for the reception and exposition of everasdhe
necessary for checking the active monitoring peicit
each side. The negotiation process is driven by theg,awork is not
monitoring policies of the involved peers as welaxp
in sections 3 and 4. It should also be noted that t
pre-assembled

PVC comes

with the

communication infrastructure and signed off so ihat
cannot be circumvented or tampered with.
2.2 Monitors

The monitors are the components of DVF that carry
out property checks by analysing the peer events at
runtime. The DVF may employ more than one monitor,
each having responsibility for different nodes qfeser
network. A monitor is appointed to check specific
properties by the PVC of an individual peer and can
reside either on the peer itself or on an extedpaice.
The latter possibility is necessary for the pravisbf
monitoring services to peers running on devices tha
cannot themselves support monitoring due to their
limited resources, such as smart phones and PDAs.

Following its appointment by the PVC of a peer, a
monitor subscribes to an event broker of DVF, ideor
to receive the events needed for checking the ptiepe
assigned to it and notifies property violationsthe
event broker so that the interested PVCs will be
informed about them.

The monitor is a reasoning engine that checks
whether the Event Calculus formulae that specify th
required properties inside a monitoring policy are
satisfied by the events which are generated byé&es
PVCs at runtime and other events that can be dkrive
from them. The derivation of events is based on
deductive reasoning, performed by the reasoning
engine itself. A detailed account of the algorithtimst
underpin the operation of monitors is beyond thapsc
of this paper and may be found in [16].

2.3 Event brokers

The event broker (EBr) in DVF offers the
infrastructure needed for transmitting events freers
to monitors and monitoring results from monitors to
peers. The event broker manages the subscriptons t
the “channels” between publishers of messages and
their respective subscribers. The use of the publis
subscribe event reporting infrastructure in DVF pee
the verification framework separate from the actual
P2P service, allowing the Ilatter to operate
independently and adopt any overlay topology and
mode of service provision that it needs. Thus,RRB€
service developer is given freedom to design the
service, without having to take into account the
specifics of the monitoring framework which opegate
in its own overlay. At the same time, the monitgrin
“tied” to the service, allowingri@us
different services to be monitored, without modityi

the system to suit each one separately. Furtherriwe
r

use of the publish-subscribe architecture allows-y/ logical form of the rule RuleFormuld, the peers that
work well in an environment where peers come and gothe ruleapplies to(i.e., the peers against which the rule
quickly and unpredictably, and does not overloagl th should be monitored), a setagsumptionsanda set of
peer communication infrastructure with message actionsthat define the ways in whidbVF should react
transmissions required for monitoring. when the rule is violated.

The security of communications in publish- Formulae are defined in Event Calculus (EC [19]), a
subscribe architectures can be ensured as demexdstra first-order temporal logic language which can bedus
in [18][22]. To preserve confidentiality in DVF, éh for representing and reasoning abewentsand their
EBr manipulates encrypted publications, without effects over time. An event in EC is an occurrettee
having access to their actual contents. This iseael takes place at a specific instance of time (e.g.,
through the use of secret tokens acting as aliaste invocation of a system operation, reception or alicip
actual information exchanged, giving the EBr enough of a message) and may have an effect. The effdcts o
information to manage subscription and publication events in EC are representedfluents i.e., conditions
messages without knowing what a token refers te (se which may change over time. A fluent may, for

Section 4 for more details). example, specify a condition indicating that a pess
received a message or that following the receipa of
Policy policy_name message an internal variable of a peer has bedo aet
[Rule Rulel D StringRuleFormula <formula> specific value. EC fluents are initiated or terntéthby
Assumptions an event. Event occurrences are represented by the
[Assumptionl D String predicateHappens(e,f;/(t3,t,)). This predicate denotes
AssumptionFor mula <formula>]* that the instantaneous evenbccurs at a time poirit
AppliesT o <peer-list-type>* within the time range/(t;,t;). The range boundaries
[Action <action-type>]* can be specified by either time constants or aetiun
1+ expressions over the time variables of other petd&
[EventExposition <event_exposition_type>]* The initiation or termination of a flueritdue to the
Timeout Duration fdropi|forward] occurrence of an evemt at timet is denoted by the
Lifetime [until Date |per manent] predicates Initiates(e,f,t) and Terminates(e,f.f)

respectively. Two additional predicates, namely

Figure 3. Monitoring policy specification Initially(f) andHoldsAt(f,tymay also be used to denote

language that a fluentf holds at the start of the execution of a
system and thdtholds at time, respectively.
. L . Fluents use the formelation(Object, ..., Objec)
3. Specification of monitoring policies and events are restricted in our EC-based policy

language to exchanges of messages between peers. A
The operation of a PVC at runtime is driven by the message can invoke an operation in a peer or return
monitoring policy of its host peer. Policies are results following the execution of an operationefs
specified according to the language shown in Figure are specified using the following generic form:

(an XML implementation of this language is desatibe event(_id, _sender, _receiver, _sig, _source)

in [15]). A policy contains: (i) one or moreules In this form:

specifying the properties that should be monitoaéd « _id is the unique identifier of the event

runtime, (ii) the types of events that the PVClisveed = senderis the identifier of the peer that sends the
to expose to other peers at runtime for their nooiniy message.

needs if requestecEyentExpositionelements), (ii)) a _receiveris the identifier of the peer that receives
timeoutvalue determining the maximum time that an the message.
event can be blocked whilst a PVC waits for = _sigis the signature of the operation or the type of

monitoring results, and (iv) difetime value which the message that the event refers to.

determines for how long the policy will be valid. = _sourceis the identifier of the peer from which the
event was captured.

31 Specification of policy rules Examples of rules specified according to the policy

language of DVF are shown in Figure 4. For example,

The specification of a rule in a monitoring policy Rulé_1should be monitored against the peer that owns
consists of an identifier that uniquely identiftee rule ~ the policy, as the keyworselfin its AppliesToclause
within the policy RulelD), a formula that defines the denotes. The rule checks Whet_her after the peesd’ras
a message of typeauthorise requesting the

authorisation of i by an external peerB, it will
receive a message of typathorisation signifying the

types: drop actions, violation notification actiprsd
negotiation actions.

authorisation of i from _B, within t, time units.
Essentially,Rule_1monitors the (bounded) availability
of peer_B which provides authorisation services and
the communication channel between it and the hog
peer.

Assumptions in policies express how the state of
P2P system is affected by the events that occunglur
its operation. These effects are expressed by faenu
that indicate the initialisation and terminationfloents
by different events. Whilst monitoring the rulebgt
monitor uses the assumptions to deduce the stétus
fluents, i.e. whether or not a fluent holds at gipalar
instance of time. For exampl&ule_2 of Figure 4
checks cases where an external peer (i.e.,_peirthe
rule) sends aequestmessage to the current peer for 4
piece of information i (e.g., a file). In such cases, the
rule demands that the external peérmust have been
authenticated at the recipient before the request
received. The authentication ofA at _selfis denoted
by HoldsAt(authenticated(_A, _self), . t)Rule_2s
assumptionAl is used at runtime to establish whether
the fluentauthenticated(_A, _selfjolds at the time of
the receipt of the request fronB or, equivalently, if
_A has been authenticated atelf at this time.
According toAl, the fluentauthenticated(_A, _self$
initiated (i.e., becomes true) when a messag
confirming the authenticity of A is received by the
peer self following a request for the authentication of
_A to an external authority (peer) _B. The
authentication request is represented by the eve
e(_elD1, self, B, authenticate(_A), _self)in the
formula Al and the response to it by the even
e(_elD2, _B, self, authentication(_A), _self).

During monitoring, the fluentauthenticated(_A,
_self)) is obtained by deduction froAl and the EC
axioms. More specifically, when the events thahifjg
the dispatch of the authentication request mesande
the response to it occur, the predicate
Initiates(e(_elD2, B, _self, authentication(_Aglfs

A AppliesTo _self

nhAssumptionFormula

N

authenticated(_A,self), t2)}s derived from Al by

Policy policy-1

Rule RulelD Rule_1

RuleFormula

Happens(e(_elD1, _self, _B, authorise(_i), _self), t1, R(t1,t1))

—=Happens(e(_elD2, _B, _self, authorisation(_i), _self),t2,
R(t1,t1+tu)))

—

Action notify(_elD1, _self, _B)

Rule RulelD Rule_2
RuleFormula
Happens(e(_elD1, _A, _self, request(_i), _self), t, R(t,t))
= HoldsAt(authenticated(_A, self), t)
OAssumptions
AssumptionID Al
AssumptionFormula
Happens(e(_elD2, _self, _B, authenticate(_A), _self), t1,
R(t1,t1))
OHappens(e(_elD3, _B, _self, authentication(_A), _self), t2,
R(t1,t2))
= Initiates(e(_elD3, _B, _self, authentication(_A), _self),
authenticated(_A,self), t2))
AppliesTo _self, Peer-role-A
Actions drop(_elD1, _self)

Rule RulelD Rule_3

RuleFormula

Happens(e(_elD1, _A, _self, request(_i), _self), t1, R(t1,t1))

0-01. Happens(e(_elD2, _A, _self, request(_i), _self), t2,
R(t2,t1))

= HoldsAt(negotiated(_self, _A), t)

Assumptions

AssumptionID Al

Happens(e(_elD1, _self, _self, start_neg(_A), _self), t1,
R(t1,t1))

OHappens(e(_elD2, _A, _self, confirm_neg(_A), _self), t2,
R(t1,t2))

e Initiates(e(_elD2, _A, _self, confirm_neg(_A),_self),
negotiated(_self,_A), t2))

AppliesTo self

Actions negotiate(_elD1, _A)

Rule RulelD Rule_4

RuleFormula

Happens(e(_elD1, _self, _A, dispatch(_i), _self), t1, R(t1,t1))
= HoldsAt(negotiated(_self,_A), t)

Assumptions {}

AppliesTo self

Actions drop(_elD1)

EventExposition
Timeout 1000 drop
Lifetime permanent

deduction. After the initialisation of this fluent, the
predicate HoldsAt(authenticated(_A, self), Ban be
derived using an axiom of EC which states thatarit
will hold at any time point after it is initiatedinless
there has been an event terminating it in between.
3.2 Specification of actions

DVF policies also specify the control actions that
should be executed by the PVC, following rule

Figure 4. Policy example

Drop actions prevent the dispatch of the peer
message that has caused the violation of a rutbeto
peer that is the intended recipient of the mesaades
specified asdrop(eventlD, peerlR ..., peerlDR),
where eventID is the identifier of the event that is
involved in the violation of the rule, amkerlD,, ...,
peerlD, the peers to be notified of the dropped

violations. These actions can be of three different MeSSage.

Violation notification actions can be taken in case

information, the PVC of MEP will construct a

where the event that has caused the violation dhoul condition listof the following form (1) and send it to

not be dropped but a notification of the violation

should be send to certain peers and are specified a(ev-type

notify(eventID, peerlR ..., peerlR).

Finally, negotiation actions can be taken in cases (e

where the violation of a rule by an event shouiiggter
the negotiation process between peers and ardisgeci
as negotiate(eventlD, peerl) where peerID is the
identifier of the peer with whom the negotiationshu
take place.

As Figure 4 shows, in the caseRiile_1the action
that should be taken isotify(_elD1, self, _B)This
action causes the PVC of the peer _self to send
notification message to the peers _self and B, t
inform them that the event _elD1 has violakde 1
When violations ofRule_2 occur, the drop action
drop(_elD2, _selfshould be executed. This will result
in the notification of the violation oRule_2to _self
but as the drop action specifies no other recipieft
the notification, the peer _A, which had requestenh
_i causing the violation, will not be informed dfet

MEP, for approval.
@

((rule 1, (action 11, ..., @ction

1),
)

n, (action nt, ..., @ction

(i=1,...k)

An elementi in this list denotes the type of the events
of MEP, that will be required (i.eev-typ¢), the rules
against which events of this type will be checkedieq
,...., fulep) and the actions that should be taken if one
of these rules is violated (e.@gtiony, ..., action_ for
rule;). After receiving the condition list, the PVC of

3MEP, will check it against the event exposition list of

its own policy. If the exposition list allows it ccept
the conditions sent by MEPit will update its internal
active policy, so as to send the agreed eventsBEB;M
Continuing with our previous example, suppose that
the role of MER is Peer-role-A Based on this, MEP
will need to monitor whether the operation of ME®
compliant with Rule_2 From this rule, it can then

drop of the message. Of course, the absence ofonstruct the following condition list and sendtat
notifications should be used with care, as peerg ma MEP; for negotiation:

end up waiting for a response indefinitely.

4. Negotiation

A peer MER starts the negotiation process with
another peer MEPwhen it needs events of MER
monitor its own policy. The negotiation process
between two peers can also be triggered by foritiag
PVC of a peer to take a negotiation action, folluyvi
the violation of a rule in its monitoring policyuéh a
rule will typically require that when MEPreceives
some particular message from another peer MEP
should negotiate with MERhe exposition of events
from it unless it has already done so.

For example, if MEP has the policy specified in
Figure 4, then according f®Rule_3when it receives a
request(_i) message from a peer MEPthe fluent
negotiated(MEE, MEP,) must hold, indicating that a
successful negotiation between ME&d MER has
already taken place. If that is not the cd®ele_3will
be violated and the PVC of MERmvill execute the
actionnegotiate(_elD1, MER as specified by the rule.
This action will trigger the negotiation processvizen
the PVCs of MEPand MERB.

[(e(_elD1, _A, MEP2, request(_i), MEP2),
(Rule_2, (drop(_elD1, MEP2))),

(e(_elD2, MEP2, _B, authenticate(_A), MEP2),
(Rule_2, (),

(e(_elD3, _B, MEP2, authentication(_A), MEP2),
(Rule_2,)]

The three event types in the above list are exddact
from Rule_2 after replacing_self with MEP, as the
latter peer will become the subject of the monitgrof
Rule_2in this case. Assuming that the event exposition
list in the monitoring policy of MEPis
EventExposition

(request(_i),[peer-role-B],

[notify(request(_i), _self)])
(authenticate(_X),[peer-role-B],[])
(authentication(_X),[peer-role-B],[])

the latter peer will not accept the condition gt
MEP;, as the actions that should be applied for
violations caused brequest(_i)events are not included
in its permissible actions for this type of everithus,
the negotiation will fail. However, if the action
drop(_elD1, MEP2)was in the permissible action list
for request(_i)then the negotiation would have been
completed successfully.

When the PVC of MEP starts the negotiation
process, it sends a messatgt _neg(MEB) to its peer

At the start of the negotiation process, the PVC of to indicate this and, if the negotiation process is

MEP; will identify the rules that apply to the role of
peer MER and from these rules it will subsequently
identify the events that it will need from MER order

completed successfully, it sends the message
confirm_neg(MER. These messages are also sent to
the monitor, whiclirom assumptiorAl of Rule_3will

to check these rules and the actions that should beestablish the fluentegotiated(MER, MEP,). Thus, the

executed if the rules are violated. Using

this next time that MERPsends arequest(_i)message to

MEP; the fluent will hold and there will be no need to
start the negotiation process again.

After the conditions are accepted in the negotmatio
process, MEPwill need to establish two confidential
communication channels that will allow the PVC of
MEP, to send the events required for monitoring to the
monitor of MER and the monitor to notify the results
of the monitoring process back to ME&hd MER. In

and establishing the event and notification repgrti
channels is shown in Figure 5.

This protocol is implemented by the PVCs of the
peers which are involved in the negotiation. In the
following, we explain the protocol in referenceduor
previous example where the peer MERquested
specific types of events for monitoring from MEP

The execution of the protocol starts after MEP

DVF these communication channels are establishedagrees to provide the types of events requested by

through the event broker.

(1) MEP ;1 = MEP: T @), T ml)
(2) MEP ; = EBr: adviM, T i), 1)
MEP, - EBr: adv(MEP ,, T (i), t)
(3) MEP ; €« MEP;: HT e(@), T meli)
(4) MEP , = EBr: SUB(MEP 5, T m(i), t)
MEP; - EBr: SUB(MEP 1, T i), 1),
sub(M, T (i), t)
(5) MEP ;M € EBr: HM, T () 1),
HM, T (), 1)

MEP;,MEP,<EBr: H(MEP ,, T (i), t),

HMEP 5, T w(i), 1)

(6) MEP ; €« M: HHM, T w(i), 1),
HM, T (), 1))
MEP, & MEP;: HH(MEP 5, T o), 1),
HMEP 2, T m(i), 1))
(7) MEP { > M: T @), T wl)
seed (i), seed me(i)
(8) MEP ; €« M: H(Key ¢, Key mr)
(9) MEP ; > MEP;: seed (i), seed me(i)
(10)MEP ; € MEP;: H(Key e, Key m)
(11)MEP 1 > MEP.: reportToEBr()

Figure 5. Protocol of establishing event and
results notification channels?

DVF assumes that event brokers are not trusted
entities and therefore they should be able to maiiagy
subscriptions and publications of events and
monitoring results without having access to their
contents. To achieve this, the events and mongorin
results are encrypted and the necessary keys éor th
decryption of this information are generated owglte
event broker and are not made available to it. The
event broker gets only tokens that identify the
notification channels and enable it to distribuke t

MEP;. At this point MER will need to coordinate the
process of creating the two necessary channelskatw
MEP,’s PVC and the monitor M through EBr. Thus,
after MER receives a notification of the acceptance of
its condition list from MER, it creates unique tokens to
reference MEPRs event channel T((@)) and the
monitoring results channet (@)) and forwards them
to MEPR, (step (1)). It also sends an advertisement
message to EBr, indicating that the monitor M will
publish monitoring results referenced by the token
Tw() (step (2)). MEPR also sends an advertisement
message to EBr, indicating that it will publish eige
referenced by the tokemr() (step (2)), and
acknowledges the receipt of the tokens to ME&Rp
(3))%. Following this, MER asks EBr to subscribe to
the results that will be published by the monitstep
(4)). In parallel, after receiving the acknowledgsrn
of the receipt of the tokens by MERMEP, sends a
message to EBr to subscribe M to the events that wi
be published by MEfand itself to the result channel of
M. Following the acknowledgement of the created
subscriptions from EBr (step (5)), and from MEd
M (step (6)), MER forwards two seeds, which are
necessary for the local creation of symmetric
encryption/decryption session keys for the evertt an
results channel, to MEPand M (steps (7) and (9)).
These keys are related to the tokens (and as &utfe
specific events that have been negotiated) and,
therefore, cannot be used to decrypt any otherreian
MEP, and M use the same symmetric key
generation function as MEB generat&ey. andKey
from the two pairs of token-seeds.(§seed (i))
and (.()seed ()), respectively.This function is

encrypted messages to _the appropriate SUbSCriberSprovided by the basic runtime infrastructure within
Tokens essentially provide aliases to the actualWhich the PVCs of MEPand MER are embedded (see

information exchanged, giving the event broker
sufficient information for managing subscriptionsda
routing publications, without knowing what a token
refers to or being able to deduce the actual typgbeo
transmitted messages or other information front e
protocol for creating the tokens and decryptionskey

L If two or more steps have the same number in thopol,
the order of their execution is not important.

[11]) and is also implemented by the monitors &FD
The process of establishing confidential channsls i

2
The acknowledgement messages sent during the texecu

of protocol contain the hash value of the pararsetéthe
message they acknowledge and are denoted by
H(message). This enables the verification of message
integrity. The hash function H that is used is jded by

the peer infrastructure that embeds PVC.

concluded successfully only when M and MEP 5. Control

acknowledge to MEfthe key creation (steps (8) and

(10)), through the hash value of the keys. MEP The application of control actions in DVF is the
matches the hash values of the acknowledgemerits wit responsibility of thePVC controllerand is driven by:

the hash value of the keys that it has createdlyomad (a) the active monitoring policy that exists ineepand

it concludes that the process has completed) the agreements that the peer may have made with
SUCCGSSfU"y Only if a match is found. At the eridhis external peers after negotiation (|f any)_ As we
process, only MER MEP, and M possess the keys that discussed in Section 3, the monitoring policy qfeer

can be used to encrypt and decrypt the contertiseof may define some control actions for each of thesrtb
event and monitoring results channels. Thus, EBrpe monitored. Each of these actions must refer to a
cannot read the contents of the “channels” specific event within the rule that it applies to.the
corresponding to these tokens, despite knowing theponcy of Figure 4, for instance, the drop action
tokens that will enable it to forward publicatiots specified for Rule_3 refers to the event
subscribers. The channel establishment process i%(_e|D2’_se|f,_A, request(i), _selfin the rule
aborted if at any point MEPdoes not receive the formula® and, therefore, it can be applied only to
acknowledgements that it expects within a pre- ryuntime events that match this event in the formula
specified time period. This protocol follows the@pess Based on the specification of the actions, thecgoli
for creating cryptographic keys in the Secure St&cke parser creates an action list for the differentetypf
Layer (SSL) protocol [10] and ensures that the Bven events that have been identified in a policy. The

notification infrastructure is engaged at runtinmea
flexible but secure manner.

Event Generation(m Peer Message)
i_time = current_time()
Create an event e(m) for m
timeout = ActivePolicy(e(m)).timeout
timeleft = timeout.duration
e(m).D rues ={R| R O ActivePolicy(e(m)).Rules
0 Ca.a 0O ActivePolicy(e(m).Actions
0 (a = drop-action) Oarule =R}
e(m).ND rues = ActivePolicy(e(m)).Rules - D Rules
If e(m).D rues = O then
If e(m).ND Rryes % O
Send e(m) to Brokers(Type(e(m)).List)
Send m to its destinations
return
Endl f

Send e(m) to Brokers(Type(e(m)).List)
Wi | e e(m).NoViolation Oe(m).D rues # O Do
/Iwait for notifications
wt = i_time + timeleft — current_time()
I f (rcv(e(m).chan,NewN,wt) =
I f (timeout.action = forward)
send m to its destinations
return
Endl f
R = NewN.rule
If R Oe(m).D grues O NewN.violation Then
DA = DropActions(R)
Apply(DA)
e(m).NoViolation = False
Endl f
EndWi | e

Ti neout) Then

I f e(m).NoViolation
send m to its destinations
End Controller

Figure 6. Event generation algorithm

elements of this list have the same form as (1)
indicating the rules against which events of aipalidr
type should be checked and the actions that shmauld
applied if a violation of these rules is causedtiy
events. This list constitutes the internalctive
monitoring policyof the peer and is updated through
condition negotiations with other peers. The PVC
implements control as specified by the algoritlewent
generationand notification handlingwhich are shown
in Figure 6 and Figure 7, respectively.

As shown in Figurés, the PVC controller constructs
a new event for each message it catches and firds t
set of rules that need to be checked for the eapdt
have at least one drop action defined fomi{). If
this set is empty, then the controller transmitsalient
to the event broker without waiting for any monigy
results as these can be handled asynchronously. If,
however, there are rules with drop actions, then th
controller must ensure that all these rules hawenbe
satisfied before allowing the message to be tratesni
to its destination. Thus, it waits to receive riogfions
(NewN for this event. If a timeout occurs first and the
timeout action of the policy is to forward the mesps,
then this is done and the controller returns imautediy.
Otherwise, if a violation of a rule with a drop iactfor
the event is notified, the controller drops thergwend
stops waiting for any further notifications of mtwring
results for the event as these can again be hamhgled
the notification handling process of the PVC in an
asynchronous mode.

The notification handling process of the PVC is
specified in Figure 7. Upon the reception of a new

3 Because it refers to the identifieelD2

monitoring result, the corresponding event and aute 7. Rdated Work
found. If the notification reports a violation, thehe

handler examines whether the rule has drop actions The work presented in this paper is related to two

associated with it and, if so, it forwards the ficdtion proad strands of research, namely runtime veriticat

to the controller. If this has been the last ncdifion and security of P2P systems.

result for the particular rUle, then the rule isnowed Work in the former strand has the same goa| as the
from the drop-action set of the event, so as teas# framework that we have presented in this papertHee

the controller once this drops to the empty setaly, verification of system properties by monitoring etee

the handler performs whatever non-drop actions havewhich are generated during the operation of théesys
been associated with the violated rule. This strand includes approaches focusing on prigsert

expressed in terms of low level program events
focusing mainly on Java programs (e.g.

Not i fi cati onHandl i ng(NewN: nonitorNotif)
e(m) = NewN.event; R = NewN.rule

I f NewN.Violation Then [3][4][6][13][14]) and approaches which focus on
If (R De(m).D rues) systems based on web-services (e.g. [11][17][21]).
snd(e(m).chan, NewN) None of these approaches, however, focuses explicit

I f (NewN is last notification for R

e(M).D rues = €(M).D rues - {R} on mobile P2P systems and provides a framework that
apply(NonDropActions(R)) can support effectively the verification of suclstgyns
End! f o by including mechanisms for: (a) generating events
End Resul tNotificationHandl er from such systems without having to change theaileco
Figure 7. Notification handling algorithm (b) negotiating monitoring conditions between peers

order to activate monitoring when a P2P system
. evolves with the admission and departure of peard,
6. Implementation (c) applying control actions in response to certgjres
of violations. Thus, the framework presented irs thi
DVF has been implemented in Java. More paper is novel in addressing exactly these aspects.
specifically, the monitor and the event broker have Work in the second area focuses mainly on aspects
been implemented in JSE v1.5 using the SIENA eventrelated to P2P system security rather than dynamic
notification service [5]. The PVC has two verification, including reputation schemes [7][20],
implementations: one that is based on JSE v1.5aand admission control schemes [23][9], techniques fatad
version for embedded devices developed on JME-CDCexchange encryption [24], and decentralised key
1.0 and tested on Sony Ericsson’s P990i (both management [25]. It should be noted that the resilt
simulated and real ones). Both PVCs have beenthe verification activity performed by the DVF cdul
integrated with a peer communication framework that pe used to generate and update peer reputationysati
has been developed within the EU project PEPERS andaiso, through the specification and monitoring of
provides basic peer discovery, management andadequate monitoring rules, the DVF could be used to
message passing as well as peer authenticatiorenforce admission control policies.
management [12].
The DVF can be used by P2P applications that useg Conclusions
the PEPERS peer communication framework

seamlg§§ly. More specifically, to deploy. the In this paper, we presented a framework that we
capabilities of DVF, developers need to write @ pave developed to enable the dynamic verificatibn o
monitoring policy, that drives the verification ity mobile P2P systems. This framework supports:

during the operation of a P2P application, and g®v . ihe specification of monitoring policies to

information about EBr and the monitor(s) that m@ b determineapplication level propertieshat should
used at runtime as part of a DVF configuration. file be monitored in different peers at runtime,
However, there is no need to add any extra code tos theautomatic negotiatiometween peers at run-time
their application, unless they want to notify ersds in order to enable the activation of monitoring,

of the monitoring results. In such cases, develper = theemission of eventgquired for monitoring from
should include code that reacts to the notification peers to the monitors that perform the checks,
messages which are sent by PVCs to peers after rule the runtime monitoringof the properties identified
violations. in the policies, and
= the dynamic execution of actiorthat need to be
taken following the detection of property violatson

The main characteristic of this framework is that i
performs dynamic verification based on policiest tha
the owners of individual peers in a P2P system can
define. These policies specify properties to be
monitored against the operations of not only the
specific peer for which the policy is defined blgca
other peers that may interact with it dynamicalyaa
application level. Policies also specify the actidhat
should be executed when the monitored properties ar
violated, and the events that a peer is allowestrii to
other peers interacting with it if the latter watat
monitor further properties against its behaviouhnisT
framework has been implemented and tested with
hybrid systems of both mobile and non-mobile peers
and the performance of the monitors deployed by DVF
has been evaluated in elsewhere (see [21]).

Currently, we are working on the transfer of pdrt o
a monitor's/EBR'’s state to other monitors/EBRs, whe
a peer (or group of peers) moves from one
neighbourhood to another. We are also investigating
the possibility of extending DVF with a monitor
discovery service in which monitors would be trelate
as a special type of peers that could be discovere
dynamically using relevant P2P protocols.

9. Acknowledgements

This work has been supported by the Framework 6
European research project PEPERS (www.pepers.org).

10. References

[1] Androutsellis-Theotokis, S., Spinellis, D., 2004, A
survey of peer-to-peer content distribution tecbgs.
ACM Computing Surveys, 36(4):335-371

[2] Barringer, H., et al. 2004, Rule-Based Runtime
Verification, In Proc. of 8 Int. Conf. on Verification, Model
Checking, and Abstract Interpretation

[3] Brorkens, M. and Mdller, M. 2002a, Dynamic event
generation for runtime checking using the JDI, tad? of the
Federated Logic Conference Satellite Workshops;tEiric
Notes in Theoretical Computer Science, 70 (4)

[4] Brorkens, M. and Mbller, M. 2002b, Jassda trace
assertions, runtime checking the dynamic of Jaegnams,

In Proc of Inter. Conf. on Testing of Communicating
Systems, Berlin, Germany, 39-48

[5] Carzaniga, A., Rosenblum, D. S., Wolf, A. L., 2000,
Achieving scalability and expressiveness in anrirgescale
event notification service, In Proc. of the ™M CM
Symposium on Principles of Distributed Computing

[6] Chen, F. and Ro, G. 2007. Mop: an efficient and
generic runtime verification framework. In Proc.thg 22°
ACM SIGPLAN Conference on Object Oriented
Programming Systems and Applications, 569-588

[7] Damiani E. et al., A reputation-based approach for

10

choosing reliable resources in peer-to-peer netsya2R02.
Proc. of 9th ACM Conf. on Computer and communigagio
security, 207 — 216
D'Amorim, M., Havelund, K., 2005, Event-based

runtime verification of Java programs, In Proc. 3 Int.
Workshop on Dynamic Analysis (WODA'05)
[91 Fenkam, P. Dustdar, S. Kirda, E. Reif, G. Gdll,
2002. Towards an access control system for molgitr-o-
peer collaborative environmentWET ICE 2002 — Int.
Workshops on Enabling Technologies: Infrastructtioe
Collaborative Enterprises
[10] Freier, A. O., Karlton, P., Kocher, P. C., 1996.eTh
SSL Protocol Version 3.0, Internet draft, availaldé
http://wp.netscape.com/eng/ssl3/draft302.txt
[11] Ghezzi C., Guinea S., 2007, Runtime Monitoring in
Service Oriented Architectures, Trest and Analysis of Web
Services(eds) Baresi L. & di Nitto E., Springer, 237-264.
[12] Groce, V. et al. 2007. Framework and Security
Verification Tools, Deliverable D6, PEPERS, FP6-269
[13] Havelund, K., Reu, G., 2004, An Overview of the
Runtime Verification Tool Java PathExplorer, Formal
Methods Syst. Des. 24: 189-215
[14] Kim, M., Kannan, S., Lee, l.,, Sokolsky, O. and
Viswanathan, M., 2001, Java-mac: a run-time asseréavol

r Java programs, In Electronic Notes in Theoadtic

0
cIComputer Science, 55. Elsevier Science Publishers

[15] Koulouris, T., Tsigritis, T., and Spanoudakis, G.,
2006, Dynamic Verification Support Framework, Deligble
D4, PEPERS Project, IST-2004-026901

[16] Mahbub K., 2006. Runtime monitoring of service
based systems, PhD, Dep. of Computing, City Uniters

[17] Pistore M, Traverso, P., 2007, Assumption Based
Composition and Monitoring of Web Services, Tast and
Analysis of Web Servicegeds) Baresi L. & di Nitto E.,
Springer Verlang, 307-335.

[18] Raiciu C., Rosenblum, D. S., 2006, Enabling
Confidentiality in Content-Based Publish/Subscribe
Infrastructures, In Proc. of IEEE Securecomm ‘06

[19] Shanahan, M.P., 1999, The Event Calculus Explained,
in Artificial Intelligence Today, LNAI 1600:409-430

[20] Song, S., Hwang, K., Zhou, R., and Kwok, Y., 2005.
Trusted P2P Transactions with Fuzzy Reputation
Aggregation. IEEE Internet Computing, 9(6):24-34.

[21] Mahbub K., Spanoudakis G., 2007. Monitoring WS-
Agreements: An Event Calculus Based Approach,Tést
and Analysis of Web Servicdeds) Baresi L. & di Nitto E.,
Springer Verlang, 265-306.

[22] Srivatsa, M., Liu, L., 2005, Securing Publish-
Subscribe Overlay Services With EventGuard, In Pudc
12" ACM Conf. on Computer and Communication Security
[23] Saxena N., Tsudik G., Yi J.H., 2003. Admission
control in Peer-to-Peer: design and performancéuatian,

18t ACM W. on Sec. of ad hoc and sensor networks, I1TR}-
[24] Xiaolin, Catania, B. Kian-Lee T., 2003. Securing
your data in agent-based P2P systems3" Int. Conf. on
Database Systems for Advanced Applications, 55- 62

[25] Law, Y.W., Corin, R., Etalle, S. and Hartel, P.030

A Formally Verified Decentralized Key Management
Architecture for Wireless Sensor Networks, Personal
Wireless Communications, LNCS 2775: 27-39

