

City, University of London Institutional Repository

Citation: Kloukinas, C., Spanoudakis, G. & Mahbub, K (2008). Estimating Event Lifetimes

for Distributed Runtime Verification. Paper presented at the 20th International Conference
on Software Engineering and Knowledge Engineering, 1 - 3 Jul 2008, Redwood City, CA,
US.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/2890/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Estimating Event Lifetimes for Distributed Runtime Verification

Christos Kloukinas, George Spanoudakis, Khaled Mahbub
Department of Computing, The City University, London, EC1V 0HB, UK

{C.Kloukinas, G.Spanoudakis, K.Mahbub}@soi.city.ac.uk
Abstract

Runtime system verification has been proposed as a form
of dynamic verification of software systems which can be
applied in settings where complete static verification or
exhaustive system testing is not practical. Runtime
verification checks properties against runtime events
generated during the operation of a system. Current
approaches to runtime verification assume that runtime
events are time-stamped by a single clock and, thus, can
be totally ordered. They also assume that events are
received by the reasoning engine in the same order as
they have been produced. These assumptions are
apparently true only in systems with a single clock. In this
paper, we present the extension of a framework for
runtime verification which can monitor distributed
systems, in which events are produced by different
components, each having its own clock.

1. INTRODUCTION
Runtime (or dynamic) system verification has been

proposed as a complementary approach to static system
verification and testing, which can enhance confidence in
the correctness of system operations by monitoring and
identifying violations of required system properties during
the normal system operation [3][6][10]. Runtime
verification is needed due to the inability to guarantee the
completeness of system models that have been used for
static analysis and the preservation of these models by
system implementations. It is also useful as it is difficult to
foresee all the different circumstances that may arise
during the operation of a system and therefore guarantee
that the assumptions, under which its correctness can be
statically proved, hold at runtime.

Typically, platforms for runtime verification (e.g. [6]
[9][11][20]) provide support for specifying formally the
properties of a system that should be verified at runtime,
identifying the events that should be available in order to
assess if certain properties are satisfied, capturing these
events at runtime, and checking for violations of the
required properties.

The main limitation of existing runtime verification
platforms is that they assume that the systems to be
monitored consist of components running on a single
machine. In such cases, the events of the system that is
being monitored are: (i) time stamped by a single clock,
(ii) totally ordered, and (iii) received by the monitor in the
same order as they are generated by the system that is
being monitored.

Whilst valid in the case of centralised systems, these
assumptions do not necessarily hold in cases of distributed
systems with components running on different platforms.
In such systems, runtime events may come from
distributed components operating with different time
clocks. Furthermore, distributed system components may
have different types of connections with the monitor and,
therefore, generate events which arrive at the monitor with
different communication delays and possibly in an order
that is not the same as the order of their generation.

Thus, in order to check properties involving events
from distributed components, a monitor would have to
overcome two problems: (i) to synchronise the clocks of
the various event sources, so that the timestamps of the
different events can be ordered and compared to each
other, and (ii) to establish until when a particular event
needs to be stored, so that it can reason about the system
properties in a sound way or, equivalently, to compute the
required monitoring lifetime of each event.

Consider, for instance, the case of monitoring the
availability of the communication channel between two
components C1 and C2 of a system by ensuring that the
dispatch of a request R from C1 (Event-1) will always be
followed by the receipt of R by C2 (Event-2) within a
specific time period. In this case, Event-2 may arrive at
the monitor before Event-1 due to different
communication delays in the relevant channels. Thus,
when the monitor receives Event-2 it will have to decide
for how long it should wait for Event-1 and wait for this
event before dropping Event-2 or otherwise it may report
a false violation of the availability of the communication
channel between C1 and C2. This would happen in cases
where, after dropping Event-2, the monitor receives an
Event-1 corresponding to it.

In this paper, we present an extension of a dynamic
verification framework described in [20] which addresses
these problems. The original framework monitors systems
against properties expressed in Event Calculus (EC) [19]
and was initially developed to support monitoring based
on events which are generated by a single source. The
extension of the framework that we present in this paper
enables it to monitor systems in which events are
generated by distributed sources having different clocks
and communication channels to the monitor.

The rest of the paper is organised as follows. In Section
2, we provide an overview of our monitoring framework
and the language that it uses to specify monitoring
properties. In Section 3, we propose a solution for

computing the lifetime of events that the framework
receives from distributed sources and show how these
lifetimes are used during monitoring. In Section 4, we
give an overview of related work and, finally, in Section 5
we summarise our work and outline directions for further
research.

2. MONITORING FRAMEWORK
2.1. Overview

As shown in Figure 1, the dynamic verification
framework that we have extended consists of a monitoring
manager, a monitor, a Network Time Protocol (NTP)
server, and communicates with different event collectors
attached to the components of the system that is being
monitored.

The monitoring manager has responsibility for
initiating, coordinating and reporting the results of the
monitoring process. Once it receives a request for
monitoring a specific set of properties, the manager
checks whether it is possible to monitor them and, if it is,
it sends the properties to be checked to the monitor, and
starts listening to events which are generated by different
types of external event collectors. These events are
received via TCP/IP sockets and sent to the monitor.

After receiving events from the manager, the monitor
checks whether they violate any of the properties given to
it. The monitor is a generic engine for checking violations
of EC formulas against a given set of runtime events.
During monitoring, it also takes into account information
about the state of a system that it derives from runtime
events using a special type of EC formulas called
assumptions (see Section 2.2). When a violation of a
property is detected, the monitor records it in a deviation
database which is polled regularly by the monitoring
manager to retrieve detected deviations.

Figure 1 : Verification framework

The framework assumes that the components of the
systems to be monitored have associated event collectors
that can capture events during their operation and send

them to the monitor. When a collector captures a runtime
event, it wraps it into an envelope with additional
information including the source of the event (i.e., the
component where it was captured) and a timestamp
indicating when the event was captured at the component.

To enable the synchronisation of event timestamps, the
framework incorporates components that realise the
Network Time Protocol [17] (i.e., a protocol based on the
clock synchronisation scheme described in [12]). The
implementation of this protocol allows event collectors to
compute the difference of their clocks with the clock of
the monitor at regular intervals. This difference is used to
transform timestamps taken according to the clock of each
collector into timestamps that express time in terms of the
monitor’s clock. This is achieved by implementing an
NTP client at each event collector and an NTP server at
the machine that hosts the monitor, as shown in Figure 1.
The NTP clients call the NTP server at regular intervals to
synchronise their clocks with the clock of the server. The
use of NTP can synchronise distributed clocks at a very
high level of accuracy since recent versions of NTP
(version 4) use a resolution of less than one nanosecond.

2.2 Specification of Properties

As indicated in Section 1, in our runtime monitoring
framework the properties to be monitored are expressed in
a language based on Event Calculus (EC) [19]. EC is a
first-order temporal logic language which can be used for
representing and reasoning about events and their effects
over time. An event in EC is an occurrence that takes
place at a specific instance of time (e.g., invocation of a
system operation, receipt or dispatch of a message) and
may have an effect. The effects of events are represented
by fluents. Fluents are conditions which may change over
time (e.g. a condition indicating that a system has received
a message) and are initiated and/or terminated by events.

The occurrence of an event in EC is represented by the
predicate Happens(e,t,ℜ(lb,ub)). This predicate denotes
that an instantaneous event e occurs at some time t within
the time range ℜ(lb,ub) (i.e., lb ≤ t ≤ ub) . The boundaries
lb and ub that define time ranges are specified as linear
expressions over time variables of Happens predicates in
an EC formula of the form:

lb = l0 + l 1 t1 + l 2 t2 + … + ln tn

ub = u0 + u1 t1 + u2 t2 + … + un tn

Given our focus on runtime system monitoring, the
events we consider represent invocations of system
operations, responses from such operations, or exchanges
of messages between different system components. Thus,
events have the following structure which captures the
information required for monitoring such system
interactions without affecting the overall expressiveness of
the framework with respect to standard EC:

event(_id, _sender, _receiver, _status, _sig, _source)

Event

Collector1

NTP
Client

NTP Client

Monitoring Manager

Monitor

NTP Server C
O
M
P
O
N
E
N
T
A

Deviation DB

Verification framework

COMPONENT B

Event Collector2

In this structure:
� _id is a unique identifier of the event
� _sender is the identifier of the system component that

sends the message represented by the event
� _receiver is the identifier of the system component that

receives the message represented by the event
� _status is the processing status of an event (i.e.

whether or not its processing has started when the
monitor receives it)

� _sig is the signature of the dispatched message or the
operation invocation/response represented by the
event, comprising the operation name and its
arguments/result.

� _source is the identifier of the component where the
event was captured.
 Fluents are defined as relations between objects of the

form rel(O1, …, On) where rel is the name of a relation
which associates the n objects O1, …, and On. The
initiation or termination of a fluent f due to the occurrence
of an event e at time t is denoted in EC by the predicates
Initiates(e,f,t) and Terminates(e,f,t), respectively. An EC
formula may also use the predicates Initially(f) and
HoldsAt(f,t) to denote that a fluent f holds at the start of
the execution of a system and at time t, respectively.

The rules to be monitored at runtime are specified in
terms of the above predicates and have the general form
body ⇒ head. The meaning of a rule is that if its body
evaluates to true, its head must also evaluate to true. The
Happens predicates in a rule which have no constraints for
their lower and upper time boundaries are what we call
“unconstrained” predicates. During the monitoring
process, rules are activated by events that can be unified
with the unconstrained Happens predicates in them. When
this unification is possible, the monitor generates a rule
instance to represent the partially unified rule and keeps
this instance active until all the other predicates in it have
been successfully unified with events and fluents of
appropriate types or it is deduced that no further
unifications are possible. In the latter case, the rule
instance is deleted. When a rule instance is fully unified,
the monitor checks if the particular instantiation that it
expresses is satisfied.

An example of a rule that can be expressed in the EC
language of our framework is given by the formula below:

Rule 1: ∀ _eID1,_C1,_C3:String; t1:Time
Happens (e(_eID1,_C3,_C1, REQ, authorise(),
_C3),t1,ℜ(t1,t1)) ⇒ ∃ _eID2:String ; t2:Time
Happens (e(_eID2,_C3,_C1, REQ, authorise(),
_C1),t2,ℜ(t1+1,t1+10))

This rule states that when an event e(_eID1,_C3,_C1,
REQ, authorise(), _C3),t1,ℜ(t1,t1)) representing a call of
the operation authorise() in a component _C1 by a
component _C3 is dispatched, it must be followed by an
event e(_eID2, _C3, _C1, RES, authorise(), _C1)

represening the receipt of the call by _C1 in no more than
10 time units after the dispatch of call. Thus, Rule 1
expresses a bounded availability property for the
communication channel between the component _C3 and
other components of the system (_C1) since it requires
that the requests generated by _C3 are transmitted within a
bounded time period.

The unconstrained predicate in this rule is the
predicate Happens(e1

C3, t1,ℜ(t1,t1))1, since the lower and
upper bounds of its time variable are defined without any
references to other time variables in the rule. Thus, at
runtime, new instances of Rule 1 will be generated as soon
as an event that can be unified with this predicate is
received. Each of these rule instances will remain alive
until it is fully unified or until no further unification of an
event representing the receipt of a response of the call
dispatched by _C3 in the rule instance is possible.

Note that, as in the above example, our framework
requires all the constrained predicates in a rule to have
time variables with constrained upper bounds. This is to
ensure that rules can be verified. For example, if the
Happens predicate for e2

C1 in the head of Rule 1 did not
have an upper bound, then its absence would never cause
the monitor to flag the rule as violated, since the monitor
would always wait for some e2

C1 event at some point in
the future.

3. COMPUTING LIFETIME OF EVENTS
As we discussed in Section 1, the problem that arises

with the use of events which are generated by distributed
sources is two-fold: firstly we need to synchronise the
clocks of the different event sources so that the
timestamps of the events that they generate can be
comparable to each other and secondly we need to know
until when we need to store a particular event in order to
be able to reason about the system state and check rules.
The clock synchronisation that is performed through the
use of the Network Time Protocol (NTP) by our
framework solves the first problem but not the second.

To appreciate the second problem, consider Rule 1,
assuming without loss of generality that _C3 and _C1
denote both the source of the event and the clock of the
source system component where the event was captured.
As the occurrence of events of type e1

C3 in Rule 1 is
unconstrained, events of this type can instantiate the rule
during monitoring. Unlike them, events of type e2

C1 are
temporally constrained by e1

C3 events in the rule and
cannot, therefore, create new instances of the rule; they
can only be unified with existing rule instances.

1 e1

C3 is an abbreviated reference to the event e(_eID1,_C3,_C1, REQ,
authorise(), _C3), in which the subscript denotes to the event ID and
the superscript to the event source. Such abbreviated references are
used in the rest of the paper in all cases where other event variables
are not important.

Thus, if the monitor receives an event of type e2
C1, in

addition to unifying it with all the current instances of
Rule 1, it must keep it until there is no possibility to
receive an e1

C3 event that could be correlated with e2
C1

through Rule 1. This is necessary since if e2
C1 is dropped

and later the monitor receives an e1
C3 event with an earlier

timestamp than e2
C1, it would report a false violation of

Rule 1. The possibility of e1
C3 and e2

C1 events arriving at
the monitor in the opposite order of their occurrence
arises due to different (and dynamically changing)
communication delays in the channels that connect C1 and
C3 with the monitor or even attacks in these channels that
can cause the loss of events. Whilst keeping events of type
e2

C1 in this case is necessary for the soundness of the
monitoring results, the monitor must also ensure that it
keeps these events only for the maximum time that is
necessary for the soundness of the results. This is because
if the monitor keeps them longer the size of its event store
will increase monotonically with a deteriorating effect on
both the space and time required for monitoring. The
maximum time point until when events e2

C1 would need to
be kept by the monitor, in this example, can be established
by finding the maximum value of the time variable t1 of
e1

C3 events that satisfies the constraints: (1) t1 ≤ t2−1 and
(2) t2 ≤ t1+10.

In general, for a rule with n+1 Happens predicates,
there will be 2n+1 such inequalities to solve. This is
because one of the rule predicates is unconstrained (the
one firing the rule), the remaining Happens predicates
contribute two inequalities each, and we need an extra
equality to establish the exact value for the time variable
of the event in question (t2 in our previous example with
the e2

C1 events).
Figure 2 shows the algorithm for computing the

lifetimes of an event. According to this algorithm, when
an event e occurs, the set R(e) of rules which have
predicates that can be unified with the event e is
determined (this set includes rules that have event types
which are the same as the type of e or supertypes of it).
The set R(e) will include rules that may specify time
constraints for the event that cannot be fully evaluated yet.
Subsequently, the constraints of each rule in R(e) are
identified and expanded with an equality expressing that
the time variable of the predicate of the rule that has been
unified with e is equal to the timestamp of e (step 2.a).
Given the time constraint set that results from this process,
the algorithm computes the maximum possible value for
each of the time variables of the rule using the Simplex
method [8] (step 2.b.i). Subsequently, it groups the
different time variables according to the clock of the event
source they are related to (step 3), and generates a set of
all the conditions (Lifetime(e)) for computing the upper
bound of the lifetime of e (step 4). A condition in
Lifetime(e) states that e won’t be needed after the last
event that is seen from a channel which is relevant to e has

a timestamp (last_observed(cj)) that is greater than the
maximum possible value of the time variables grouped in
this channel’s group (see condition last_observed(cj)>
maxti∈Gj(max(ti))). The reason for using the timestamp of
the last event that has been observed from a clock in the
evaluation of the Lifetime(e) conditions is because events
are communicated to the monitor through TCP/IP sockets
which guarantee a FIFO transmission within the same
component (clock)-monitor channel. The conditions in
Lifetime(e) determine the lifetime of e since when their
conjuction becomes true, the lifetime of e will expire.

Compute_Lifetime(e):

1. R(e) = { r | r has a predicate p that can be unified with e}

2. Forall r ∈ R(e) do

a. CNr= {time constraints of r} ∪ {time variable of
predicate p that matches e = timestamp of e}

b. Forall ti ∈ CNr do

i. Find max(ti) given CNr

3. Group the time variables ti into as many groups Gj as the
different event sources (clocks) cj in R(e)

4. Lifetime(e) = ∪j ((last_observed(cj) > maxti∈Gj(max(ti))))

Figure 2: Computing the lifetime of an event – I

In our previous example, if Rule 1 is the only rule that
is being monitored and an event of type e2

C1 is observed at
t2=10, step 1 will produce the set R(e2

C1) = {Rule-1}, step
2.a will produce CNr = {t1 ≤ t2−1, t2 ≤ t1 + 10, t2 = 10},
step 2.b.i will produce the solutions max(t1)=9 and
max(t2)=10 by finding the maximum value of t1 for which
the constraints in CNr are satisfied, and step 3 will
produce two groups of time variables {t1} and {t2}, for the
two clocks C1 and C3, respectively. Finally, in step 4, the
lifetime constraint set for e2

C1 will be established as:
Lifetime(e2

C1) = {(last_observed(C1)>10),
(last_observed(C3) > 9)}.

It should be noted that our algorithm uses the Simplex
method, which has exponential complexity O(2n) (for a
problem with n variables [8]), to find the maximum time
of a time variable in step 2.b.i., although there are
algorithms with polynomial compexity (the worst case
complexity of Karmarkar’s algorithm [1], for example, is
O(n3.5)). This is because for small numbers of variables, as
the ones normally appearing in monitoring rules (n ≤ 10),
Simplex has better performance. Furthermore, the
algorithm of Figure 2 computes the maximum value of a
time variable for each rule separately, rather than
combining them into a single larger problem. This is
because the individual rule problems can be solved
independently and a larger set of rules would take more
time to solve due to the additional time variables (in
general 2n + 2m < 2n+m for n,m ≥ 2). Due to this approach,
once the individual rule systems have been solved, the
different time variables that are associated with events

coming from the same clock need to be grouped together,
as done in step 3 of the algorithm.

Note that at this step, the algorithm of Figure 2
assumes that the clocks/sources of the events in the rules
are fully specified when a rule is matched with an
incoming event. In the example of Rule 1 this is the case,
since the sender of an event e2

C1 (i.e. C3) is also the source
of events e1

C3. Thus, when Rule 1 is matched with an e2
C1

event, the identity of C3 becomes known. However, there
might be cases where the exact source of events that could
potentially be matched with a rule is not known after the
rule is matched with arrived events. Consider, for
instance, the following rule:
Rule 2:

∀ _eID1, _eID2, _U: String; _C1,
_C3: Terminal; _C2: Component; t1, t2:Time

 Happens (e(_eID1,_C1,_C2, REQ, login(_U,_C1),
_C1),t1,ℜ(t1,t1)) ∧

 Happens (e(_eID2,_C3,_C2, REQ, login(_U,_C3),
_C3),t2,ℜ(t1,t2)) ∧ _C1 ≠_C3 ⇒ ∃ _eID3: String; t3:Time

 Happens (e(_eID3,_C1,_C2, REQ-A, logout(_X,_C1),
_C1),t3,ℜ(t1+1,t2-1))

This rule requires that if a user _U logs in to a system
_C2 from a terminal _C1 and later he/she logs in again
from a different terminal _C3, he/she must have logged
out from the former terminal before the second login. The
rule effectively monitors cases where users are logged in
from different terminals at the same time. When an event
e(_eID2,_C3,_C2, REQ, login(_U,_C3), _C3) (or e2

C3 in
our abbreviated form) arrives at the monitor, its lifetime
will need to be estimated in reference to the maximum
possible values of time variables t1 and t3. In this case,
however, the algorithm of Figure 2 does not work, since at
step 3 it is not known which other terminals the user of
e2

C3 may be using or, equivalently, which source clocks
should be associated with the time variables t1 and t3.

Compute_Lifetime(e):
1. R(e) = { r | r has a predicate p which unifies with e}

2. Forall r ∈ R(e) do

a. CNr= {time constraints of r} ∪ { time variable of
predicate p that matches e = timestamp of e}

b. Forall ti ∈ CNr do

i. Find max(ti) given CNr

3. Group the time variables ti into as many group types TGu
as the different types of event sources cu in R(e)

4. Forall group types g ∈ TGu do

c. Forall the known sources j of type g do

i. Create a group Gj and assign copies of the time
variables of g to it

5. Lifetime(e) = ∪j {(last_observed(cj) > maxti∈Gj(max(ti)))}

Figure 3: Computing the lifetime of an event – II

To deal with such cases, we use an extension of the
algorithm, shown in Figure 3. The extended algorithm

initially groups time variables into groups corresponding
to the types of the event sources that are associated with
them in the rules. Then, for each of the source type
groups, it finds all the sources of the particular type that
are known to the system, creates different groups for them
and assigns copies of the time variables of each source
type to each of the source groups that were generated from
the type. Thus, if it is known that the system that is being
monitored with Rule 2 has 3 terminals, the algorithm of
Figure 3 will create different variable groups for each of
these terminals and assign copies of the time variables t1
and t2 to each of these groups.

Having computed the Lifetime(e) constraint set, upon
the arrival of an event e at runtime we use it to compute a
vector with the maximum time values for e with respect to
the different clocks related to it. For the ongoing example
of Rule 1, the vector of e2

C1 would be < 10, 9 >. The event
and its vector are then stored in the database of the
monitor. Also, when a new event arrives at it, the monitor
checks if the lifetime of some other events which depend
on the clock of the new event has expired. The above
process is shown in Figure 4.

1. Observe an event e

2. Update the global vector of observed clock values

3. Lifetime(e) = Compute_Lifetime(e)

4. Store e in the DB with its vector of different clock limits

5. Remove events from the DB if their clock limits have been
exceeded

Figure 4: Using event lifetimes

4. RELATED WORK
Forms of dynamic verification have been developed

and investigated in the context of program verification,
safety critical, and service centric systems.

In program verification, research has focused on the
development of programming platforms with generic
monitoring capabilities, including support for generating
program events at runtime (e.g. jMonitor [11]),
embedding specifications of monitorable properties into
programs and producing code that can verify these
properties during program execution (e.g. monitoring-
oriented programming [4] and [6]). There is also work
focusing on runtime verification of requirements
specifications [7]. However, metric time is not considered
in [4], [6], [7] or [11]. Runtime monitoring methods have
also been applied to autonomous safety critical systems
[16], as the testing of such systems is difficult and
resource consuming. In service-centric systems, dynamic
verification has focused on monitoring service level
agreements (SLAs) [2][20]. In safety critical systems,
early monitoring methods focused on detecting timing
failures and guaranteeing system responsiveness [9][15].
Though [15] supports timing constraints, it does not
support distributed monitoring. The distributed

monitoring of [9] on the other hand does not support
fluents or general expressions for time and does not
clarify how the bound of the size of the event histories is
decided. Event correlation has also been considered in
[18] where event observers are produced as transducer
automata recognizing and rewriting the input events.
Compared to our framework, the approach in [18] does
not support fluents or metric time.

The extension of the framework in [20] with the
capabilities described in this paper makes it possible to
verify complex properties, based on events captured from
distributed sources, thus, exceeding the capabilities of
other approaches.

5. CONCLUSIONS
In this paper we have presented extensions of the

monitoring framework described in [20] that render it
applicable to multi-clock distributed systems. Our
extensions address two of the problems of distributed
systems monitoring: (1) the need for synchronizing the
clocks of different event sources so that the events they
emit can be correlated, and (2) the estimation of the
lifetime of events within the monitor in order to ensure
that unknown transmission delays of other events that may
need to be correlated with them will not affect the
monitoring process. To address the first of these
problems, we have incorporated an implementation of the
NTP protocol in our framework. To address the second
problem, we compute the maximum lifetime of an event
by identifying, the constraints between the time variable
of the event and time variables of other events that co-
exist with it in rules and solving these constraints to find
the maximum possible lifetime for the event using the
Simplex method (see [12] for full details).

One possible optimisation of our solution is to
statically solve all the linear constraint systems at
initialisation, so as to only need to instantiate the specific
values of the different timestamps associated with a new
event and its related rules when the event arrives, instead
of solving the corresponding linear system each time. This
would require a symbolic solution of the linear constraints
system instead of the more straightforward numerical
solution which we currently employ. For this reason we
have decided against the symbolic solution in the current
implementation, and intend to examine this option once
we have gained more experience with the behaviour of the
current implementation in a distributed setting.

6. ACKNOWLEDGEMENTS
This work has been funded by the European integrated
research project Serenity (FP6-IST-2006-27587).

7. REFERENCES
[1] Adler I, et al. "An Implementation of Karmarkar's

Algorithm for Linear Programming". Mathematical
Programming, 44: 297–335, 1989.

[2] Ghezzi C., Guinea S., Runtime Monitoring in Service
Oriented Architectures, In Test and Analysis of Web
Services, (eds) Baresi L. & di Nitto E., Springer, 237-264,
2007.

[3] Barringer, H., Goldberg, A., Havelund, K., Sen, K. “Rule-
Based Runtime Verification”, 5th International Conference
on Verification, Model Checking, and Abstract
Interpretation (VMCAI’04), 2004.

[4] Chen, F., Rosu, G. “Towards Monitoring-Oriented
Programming: A Paradigm Combining Specification and
Implementation”. In Electronic Notes in Theoretical
Computer Science, 89(2), 2003.

[5] Clarke, E.M., Grumberg, O., Peled, D. “Model Checking”.
MIT Press 1999

[6] D'Amorim, M., Havelund, K. “Event-based runtime
verification of Java programs”, Proc. of 3rd Int. Workshop
on Dynamic Analysis, 2005.

[7] Feather M. S., Fickas S., Van Lamsweerde A., Ponsard C.
“Reconciling System Requirements and Runtime
Behaviour”, Proc. of the 9th Int. Workshop on Software
Specification & Design, 1998.

[8] Gale D. “Linear programming and the simplex method”.
Notices of the AMS, 54(3):364–369, Mar. 2007.

[9] Jahanian, F., Rajkumar , R., Raju, S. C. V. “Runtime
Monitoring of Timing Constraints in Distributed Real-Time
Systems”. Real-Time Systems 7(3):247-273, Nov. 1994

[10] Havelund, K., Roşu, G. “An Overview of the Runtime
Verification Tool Java PathExplorer”, In Formal Methods
in System Design, 24(2):189-215, 2004.

[11] Karaoman, M., Freeman J. “jMonitor: Java runtime event
specification and monitoring library”. Proc. of 4th
Workshop on Run-time Verification, 2004.

[12] Mahbub K., Spanoudakis G., Kloukinas C., “V2 of
dynamic validation prototype”. Deliverable A4.D3.3,
SERENITY Project, http://www.serenity-forum.org.

[13] Marzullo K., Owicki S. “Maintaining the time in a
distributed system”. ACM SIGOPS Operating Systems
Review, 19(3):44–54, July 1985.

[14] Mills D. L. “Network time protocol (version 3)”. RFC
1305c, Network Working Group, Internet Engineering Task
Force (IETF), 1992.
http://www.ietf.org/rfc/rfc1305.txt?number=1305.

[15] Mok, A. K., Liu, G. “Efficient run-time monitoring of
timing constraints”. In Real-Time Technology and
Applications Symposium, 1997

[16] Nelson, S., Pecheur, C. “V&V for advanced systems at
NASA”, TASK NO: 10 TA-5.3.3 (WBS 1.4.4.5.3),
prepared for Northrop Grumman Corp,2002

[17] NTP, www.ntp.org
[18] Sanchez, C., Sankaranarayanan, S., Sipma, H., Zhang, T.,

Dill, D., Manna, Z. “Event Correlation: Language and
Semantics”, Proc. of Embedded Software (EMSOFT),
LNCS 2855: 323-339, Oct. 2003

[19] Shanahan M. P. “The event calculus explained”. In
Artificial Intelligence Today, Lecture Notes in Artificial
Intelligence, 1600:409–430, 1999.

[20] Spanoudakis G., Mahbub K.. “Non intrusive monitoring of
service based systems”. International Journal of
Cooperative Information Systems, 15(3):325–358, 2006.

