IT City Research Online
UNIVEREIST%(]OggLfNDON

City, University of London Institutional Repository

Citation: Kloukinas, C., Spanoudakis, G. & Mahbub, K (2008). Estimating Event Lifetimes
for Distributed Runtime Verification. Paper presented at the 20th International Conference
on Software Engineering and Knowledge Engineering, 1 - 3 Jul 2008, Redwood City, CA,
us.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/2890/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Estimating Event Lifetimesfor Distributed Runtime Verification

Christos Kloukinas, George Spanoudakis, Khaled Mahb
Department of Computing, The City University, LamdéC1V OHB, UK
{C.Kloukinas, G.Spanoudakis, K.Mahbub}@soi.cityuc.

Abstract
Runtime system verification has been proposed fasna
of dynamic verification of software systems whiah be
applied in settings where complete static verifmator
exhaustive system testing is not practical.
verification checks properties against runtime dsen

Whilst valid in the case of centralised systemsséh
assumptions do not necessarily hold in cases tfluised
systems with components running on different platfo
In such systems, runtime events may come from

Runtime distributed components operating with different dim

clocks. Furthermore, distributed system componerdy

generated during the operation of a system. Current have different types of connections with the manénd,

approaches to runtime verification assume that imat
events are time-stamped by a single clock and, tars

be totally ordered. They also assume that evené ar
received by the reasoning engine in the same oader

therefore, generate events which arrive at the tmowiith
different communication delays and possibly in adeo
that is not the same as the order of their germerati

Thus, in order to check properties involving events

they have been produced_ These assumptions arérom distributed Components, a monitor would hawe t

apparently true only in systems with a single cldnkhis

overcome two problems: (i) to synchronise the cfook

paper, we present the extension of a framework forthe various event sources, so that the timestampbeo

runtime verification which can monitor distributed

different events can be ordered and compared th eac

Systems' in which events are produced by diﬁerentother, and (||) to establish until when a parti(l:LHBlent

components, each having its own clock.

1. INTRODUCTION

Runtime (or dynamic) system verification has been
proposed as a complementary approach to statiemsyst
verification and testing, which can enhance comfidein
the correctness of system operations by monitoand
identifying violations of required system propestidguring
the normal system operation [3][6][10]. Runtime
verification is needed due to the inability to cargtee the
completeness of system models that have been ased f
static analysis and the preservation of these rsoldgl
system implementations. It is also useful as dliffscult to
foresee all the different circumstances that maigear
during the operation of a system and therefore aiae
that the assumptions, under which its correctnasshe
statically proved, hold at runtime.

Typically, platforms for runtime verification (e.§6]
[9][11][20]) provide support for specifying formglithe
properties of a system that should be verifieduatime,
identifying the events that should be availabl@ider to
assess if certain properties are satisfied, camutese
events at runtime, and checking for violations bé t
required properties.

The main limitation of existing runtime verificatio
platforms is that they assume that the systemseto b

monitored consist of components running on a single

machine. In such cases, the events of the systamigh
being monitored are: (i) time stamped by a sindtelc

(i) totally ordered, and (iii) received by the nitmm in the
same order as they are generated by the systemisthat
being monitored.

needs to be stored, so that it can reason abouytem
properties in a sound way or, equivalently, to cataghe
required monitoring lifetime of each event.

Consider, for instance, the case of monitoring the
availability of the communication channel betweero t
components C1 and C2 of a system by ensuring fieat t
dispatch of a request R from CBvent-1 will always be
followed by the receipt of R by CZEyent-3 within a
specific time period. In this casEyvent-2may arrive at
the monitor before Event-1 due to different
communication delays in the relevant channels. Thus
when the monitor receivasvent-2it will have to decide
for how long it should wait foEvent-1and wait for this
event before droppingvent-2or otherwise it may report
a false violation of the availability of the comnicetion
channel between C1 and C2. This would happen iescas
where, after droppindgvent-2 the monitor receives an
Event-1corresponding to it.

In this paper, we present an extension of a dynamic
verification framework described in [20] which addses
these problems. The original framework monitordeays
against properties expressed in Event Calculus (EQ])
and was initially developed to support monitorirgséd
on events which are generated by a single sourbe. T
extension of the framework that we present in gaper
enables it to monitor systems in which events are
generated by distributed sources having differéotks
and communication channels to the monitor.

The rest of the paper is organised as follows.dctiSn
2, we provide an overview of our monitoring framekvo
and the language that it uses to specify monitoring
properties. In Section 3, we propose a solution for

computing the lifetime of events that the framework them to the monitor. When a collector capturesrdime
receives from distributed sources and show howethes event, it wraps it into an envelope with additional

lifetimes are used during monitoring. In Sectionwk information including the source of the event (ithe
give an overview of related work and, finally, iecdion 5 component where it was captured) and a timestamp
we summarise our work and outline directions fatfer indicating when the event was captured at the cowpo
research. To enable the synchronisation of event timestaities,
framework incorporates components that realise the

2. MONITORING FRAMEWORK Network Time P_rotpco[ll?] (ie., a prot(_)col b_ased on the

. clock synchronisation scheme described in [12])e Th
2.1. Overview implementation of this protocol allows event coltes to

As shown in Figure 1, the dynamic verification compute the difference of their clocks with theckieof
framework that we have extended consists wibaitoring the monitor at regular intervals. This differenseused to

manager,a monitor, a Network Time Protocol (NTP) transform timestamps taken according to the cldaach
server and communicates with different event coI_I_ectors collector into timestamps that express time in teafithe
attached to the components of the system thatisgbe monitor's clock. This is achieved by implementing a
monitored. NTP clientat each event collector and BiTP serverat
__The monitoring manager has responsibility for the machine that hosts the monitor, as shown inrgig.
initiating, coordinating and reporting the resuisthe The NTP clients call the NTP server at regularrirs to
monitoring process. Once it receives a request forsynchronise their clocks with the clock of the senThe
monitoring a specific set of properties, the manage ;se of NTP can synchronise distributed clocks aery
checks whether it is possible to monitor them ainidis, high level of accuracy since recent versions of NTP

it sends the properties to be checked to the morafud (version 4) use a resolution of less than one renwsl.
starts listening to events which are generateditigrent

types of external event collectors. These events ar
received via TCP/IP sockets and sent to the manitor 2.2 Specification of Properties

After receiving events from the manager, thenitor As indicated in Section 1, in our runtime monitg'in
checks whether they violate any of the propertiesrgto ~ framework the properties to be monitored are exgereésn
it. The monitor is a generic engine for checkinglaiions @ language based on Event Calculus (EC) [19]. E€ is
of EC formulas against a given set of runtime ewent first-order temporal logic language which can bedufor
During monitoring, it also takes into account imftion ~ representing and reasoning abeuentsand their effects
about the state of a system that it derives frontime over time. An event in EC is an occurrence thaesak
events using a special type of EC formulas called Place at a specific instance of time (e.g., inviocabf a
assumptions(see Section 2.2). When a violation of a System operation, receipt or dispatch of a message)
property is detected, the monitor records it idexiation =~ may have an effect. The effects of events are septed

databasewhich is polled regularly by the monitoring by fluents Fluents are conditions which may change over
manager to retrieve detected deviations. time (e.g. a condition indicating that a systemitee®ived

a message) and are initiated and/or terminated/ényts.

Monitoring Manager an EC formula of the form:

\ Ib:|0+|1t1+|2t2+...+|ntn
Verification framework ub = tp+ Uty + Uptr+ ... + Uty
Given our focus on runtime system monitoring, the
. events we consider represent invocations of system

Event Collectorz NTP Client : ;

operations, responses from such operations, oraeges
of messages between different system components, Th
Figure 1 : Verification framework events have the following structure which captuttes

The f K that th ts of th information required for monitoring such system
€ framework assumes that the components ol €4 ctions without affecting the overall expressiess of
systems to be monitored have associaeeht collectors

:) X the framework with respect to standard EC:
that can capture events during their operation sem) ,)
event(_id, _sender, _receiver, _status, _sig, c®ur

A 4

c S The occurrence of an event in EC is representdtidy

o] CE”"e”t ANTP erve predicateHappens(e,t,/(Ib,ub)). This predicate denotes
M| Collectors | b | Monitor | that an instantaneous evenbccurs at some timewithin

g) the time range€7/(Ib,ub) (i.e., Ib< t < ub) . The boundaries
N|—e . Ib andub that define time ranges are specified as linear
E(l client expressions over time variables ld@ppenspredicates in

N

T

A

COMPONENT B

In this structure:

_id is a unique identifier of the event

_senderis the identifier of the system component that
sends the message represented by the event
_receiveris the identifier of the system component that
receives the message represented by the event
_status is the processing status of an event (i.e.

represening the receipt of the call b1 in no more than
10 time units after the dispatch of call. Thiule 1
expresses a bounded availability property for the
communication channel between the componé&® and
other components of the systemC() since it requires
that the requests generated I3 are transmitted within a
bounded time period.

whether or not its processing has started when the The unconstrained predicate in this rule is the

monitor receives it)

operation
event, comprising
arguments/result.
_sourceis the identifier of the component where the
event was captured.

Fluents are defined as relations between objddtseo
form rel(Oy, ..., Q) whererel is the name of a relation
which associates the@ objects O;, ..., and O,. The
initiation or termination of a fluerftdue to the occurrence
of an evene at timet is denoted in EC by the predicates
Initiates(e,f,t) and Terminates(e,f,t)respectively. An EC
formula may also use the predicatéstially(f) and
HoldsAt(f,t)to denote that a flueritholds at the start of
the execution of a system and at tigpxespectively.

The rules to be monitored at runtime are specified
terms of the above predicates and have the geforal
body = head The meaning of a rule is that if its body
evaluates to true, its head must also evaluataué The
Happensredicates in a rule which have no constraints for
their lower and upper time boundaries are what alé c
“unconstrained” predicates. During the monitoring
process, rules are activated by events that cambied
with the unconstrainedappenspredicates in them. When
this unification is possible, the monitor generatesule
instance to represent the partially unified rule &eeps
this instance active until all the other predicateg& have
been successfully unified with events and fluenfs o
appropriate types or it is deduced that no further
unifications are possible. In the latter case, thée
instance is deleted. When a rule instance is futiified,
the monitor checks if the particular instantiatithat it
expresses is satisfied.

An example of a rule that can be expressed in the E
language of our framework is given by the formuséol:

invocation/response

the operation name and its

Rule 1: O _elD1, C1,_C3:String; t1:Time
Happens (e(_elD1,_C3,_C1, REQ, authorise(),
_C3),t1,0(t1,t1)) = O_elD2:String ; t2:Time
Happens (e(_elD2,_C3,_C1, REQ, authorise(),
_C1),t2,0(t1+1,t1+10))

This rule states that when an evefitelD1, C3, C1,
REQ, authorise(), _C3),t1j(t1,t1)) representing a call of
the operationauthorise() in a component_ C1 by a
component C3 is dispatched, it must be followed by an
event e(_elD2, _C3, _C1, RES, authorise(), _C1)

predicateHappens(¢”®, t1,7/(t1,t1)), sincethe lower and

_sigis the signature of the dispatched message or theupper bounds of its time variable are defined witheny
represented by thereferences to other time variables in the rdibus, at

runtime, new instances &fule 1will be generated as soon
as an event that can be unified with this predidate
received. Each of these rule instances will rensive
until it is fully unified or until no further uniéation of an
event representing the receipt of a response ofc#ie
dispatched by C3in the rule instances possible.

Note that, as in the above example, our framework
requires all the constrained predicates in a ralddve
time variables with constrained upper bounds. Thito
ensure that rules can be verified. For examplethéf
Happenspredicate for £ in the head oRule 1did not
have an upper bound, then its absence would nexesec
the monitor to flag the rule as violated, since thenitor
would always wait for some,& event at some point in
the future.

3. COMPUTING LIFETIME OF EVENTS

As we discussed in Section 1, the problem thaesaris
with the use of events which are generated byibliged
sources is two-fold: firstly we need to synchronibe
clocks of the different event sources so that the
timestamps of the events that they generate can be
comparable to each other and secondly we needdw kn
until when we need to store a particular eventroheo to
be able to reason about the system state and chissk
The clock synchronisation that is performed throtig
use of the Network Time Protocol (NTP) by our
framework solves the first problem but not the seco

To appreciate the second problem, consi@ate 1
assuming without loss of generality tha€3 and _C1
denote both the source of the event and the cléc¢keo
source system component where the event was cdpture
As the occurrence of events of typeein Rule 1is
unconstrained, events of this type can instanttagerule
during monitoring. Unlike them, events of typseare
temporally constrained by,€ events in the rule and
cannot, therefore, create new instances of the they
can only be unified with existing rule instances.

1 &,°% is an abbreviated reference to the exsnelD1, C3, C1, REQ,
authorise(), _C3)in which the subscript denotes to the event IB an
the superscript to the event source. Such abbeeliegferences are
used in the rest of the paper in all cases whéreravent variables
are not important.

Thus, if the monitor receives an event of typ€,dn
addition to unifying it with all the current instees of
Rule 1 it must keep it until there is no possibility to
receive an £° event that could be correlated withe
throughRule 1 This is necessary since i&is dropped
and later the monitor receives afi’@vent with an earlier
timestamp than &, it would report a false violation of
Rule 1 The possibility of € and ¢! events arriving at
the monitor in the opposite order of their occuceen
arises due to different (and dynamically changing)
communication delays in the channels that connean@
C; with the monitor or even attacks in these chantiels

a timestamp l@st_observed(}) that is greater than the
maximum possible value of the time variables grauime
this channel's group (see conditidast_observed(y>
max; 5 (max(t))). The reason for using the timestamp of
the last event that has been observed from a dlotke
evaluation of the.ifetime(e)conditions is because events
are communicated to the monitor through TCP/IP etsck
which guaranteea FIFO transmission within the same
component (clock)-monitor channel. The conditions i
Lifetime(e) determine the lifetime of e since when their
conjuction becomes true, the lifetimeeoivill expire.

can cause the loss of events. Whilst keeping ewd#rype
et in this case is necessary for the soundness of th
monitoring results, the monitor must also ensusa ih
keeps these events only for the maximum time that i
necessary for the soundness of the results. Thisdause

if the monitor keeps them longer the size of itsré\store
will increase monotonically with a deterioratingest on
both the space and time required for monitoringe Th
maximum time point until when events ewould need to
be kept by the monitor, in this example, can beldsthed
by finding the maximum value of the time variableaf

Compute_Lifetime(e):
€ 1. R(e) ={r| r has a predicate p that can be unified with e}
2. Forallr Z7R(e) do
a. CN= {time constraints of r} O {time variable of
predicate p that matches e = timestamp of e}
b. Forall ti ZCN;, do
i. Find max(t) given CN;
3. Group the time variables t; into as many groups G; as the
different event sources (clocks) cjin R(e)
4. Lifetime(e) = Zj ((last_observed(c;) > max;ce;(Mmax(ti))))

e.“ events that satisfies the constraints:t(1¥ t2-1 and
(2)t2 st1+10.

In general, for a rule witm+1 Happenspredicates,
there will be 2n+1 such inequalities to solve. This is
because one of the rule predicates is unconstrgithed
one firing the rule), the remainingappenspredicates
contribute two inequalities each, and we need amaex
equality to establish the exact value for the tiwaeable
of the event in question (t2 in our previous exkEmpth
the ¢“*events).

Figure 2 shows the algorithm for computing the
lifetimes of an event. According to this algorithmhen
an evente occurs, the seR(e) of rules which have
predicates that can be unified with the eventis
determined (this set includes rules that have etygres
which are the same as the typeeodr supertypes of it).
The setR(e) will include rules that may specify time
constraints for the event that cannot be fully eatdd yet.
Subsequently, the constraints of each ruleRi@) are
identified and expanded with an equality expressirag
the time variable of the predicate of the rule tiad been
unified with e is equal to the timestamp ef(step 2.a).
Given the time constraint set that results frora fhrocess,
the algorithm computes the maximum possible vatue f
each of the time variables of the rule using Simplex
method [8] (step 2.b.i). Subsequently, it groupe th
different time variables according to the clocklwd event
source they are related to (step 3), and genesases of
all the conditions Lifetime(e) for computing the upper
bound of the lifetime ofe (step 4). A condition in
Lifetime(e) states thate won't be needed after the last
event that is seen from a channel which is relei@ahas

Figure 2: Computing the lifetime of an event — |

In our previous example, Rule 1lis the only rule that
is being monitored and an event of typE' és observed at
t2=10, step 1 will produce the $te“") = {Rule-1}, step
2.a will produceCN, = {t1 <t2-1, t2<tl + 10, t2 = 10}
step 2.b.i will produce the solutionsiax(tl)=9 and
max(t2)=10by finding the maximum value of t1 for which
the constraints INCN, are satisfied, and step 3 will
produce two groups of time variablg$} and{t2}, for the
two clocks G and G, respectively. Finally, in step 4, the
lifetime constraint set for,&" will be established as:
Lifetime(e“?) = {(last_observed(C1)>10),
(last_observed(C3) > 9)}.

It should be noted that our algorithm uses the &rp
method, which has exponential complex®2") (for a
problem withn variables [8]), to find the maximum time
of a time variable in step 2.b., although there are
algorithms with polynomial compexity (the worst eas
complexity of Karmarkar’s algorithm [1], for exaneplis
O(n*9). This is because for small numbers of varialdss,
the ones normally appearing in monitoring rules(0),
Simplex has better performance. Furthermore, the
algorithm of Figure 2 computes the maximum valuea of
time variable for each rule separately, rather than
combining them into a single larger problem. Thés i
because the individual rule problems can be solved
independently and a larger set of rules would talcze
time to solve due to the additional time variab(es
general” + 2™ < 2™™ for n,m > 2). Due to this approach,
once the individual rule systems have been soltesl,
different time variables that are associated witlengs

coming from the same clock need to be grouped heget
as done in step 3 of the algorithm.

Note that at this step, the algorithm of Figure 2
assumes that the clocks/sources of the eventsinutas
are fully specified when a rule is matched with an
incoming event. In the example Riule 1this is the case,
since the sender of an evesit'di.e. C3) is also the source
of events ¢°. Thus, wherRule 1is matched with an,&"
event, the identity of C3 becomes known. HoweJsere
might be cases where the exact source of evertsdhi
potentially be matched with a rule is not knowreathe
rule is matched with arrived events. Consider,
instance, the following rule:

Rule 2:
0 _elD1, _elD2, _U: String; _C1,
_C3: Terminal; _C2: Component; t1, t2:Time
Happens (e(_elD1, C1, C2, REQ, login(_U,_C1),
_C1),t1,0(t1,t1)) O
Happens (e(_elD2, C3,_C2, REQ, login(_U,_C3),
_C3),t2,0(t1,t2)) O _C1 #_C3 = 0_elD3: String; t3:Time
Happens (e(_elD3,_C1,_C2, REQ-A, logout(_X,_C1),
_C1),t3,0(t1+1,t2-1))

for

This rule requires that if a uselJ logs in to a system
_C2from a terminal_C1 and later he/she logs in again
from a different terminal C3 he/she must have logged
out from the former terminal before the secondrodihe
rule effectively monitors cases where users argddgn
from different terminals at the same time. Whereaant
e(_elD2, C3, C2, REQ, login(_U, C3), CRr &“*in
our abbreviated form) arrives at the monitor, ifstime
will need to be estimated in reference to the maxim
possible values of time variablés andt3. In this case,
however, the algorithm of Figure 2 does not woit¢e at
step 3 it is not known which other terminals therusf
e,°* may be using or, equivalently, which source clocks
should be associated with the time variableandt3.

Compute_Lifetime(e):
1. R(e) ={r|rhas a predicate p which unifies with e}
2. Forall r Z7R(e) do

a. CN,= {time constraints of r} O { time variable of
predicate p that matches e = timestamp of e}

b. Forall ti ZCN, do
i. Find max(t) given CN;

Group the time variables t; into as many group types TG,
as the different types of event sources ¢, in R(e)

Forall group types g /TG, do
c. Forall the known sources j of type g do

i. Create a group G;j and assign copies of the time
variables of g to it

5. Lifetime(e) = £j{(last_observed(c;) > maxyg;(max(t)))}

Figure 3: Computing the lifetime of an event — II

initially groups time variables into groups corresging
to the types of the event sources that are assdcisith
them in the rules. Then, for each of the sourcee typ
groups, it finds all the sources of the particuigre that
are known to the system, creates different groapshem
and assigns copies of the time variables of eacinceo
type to each of the source groups that were gestefedm
the type. Thus, if it is known that the system tisabeing
monitored withRule 2has 3 terminals, the algorithm of
Figure 3 will create different variable groups fach of
these terminals and assign copies of the time iasal
andt2 to each of these groups.

Having computed théifetime(e)constraint set, upon
the arrival of an everd at runtime we use tb compute a
vector with the maximum time values fewith respect to
the different clocks related to it. For the ongog@mple
of Rule 1 the vector of £* would be < 10, 9 >. The event
and its vector are then stored in the databasehef t
monitor. Also, when a new event arrives at it, tenitor
checks if the lifetime of some other events whiepehd
on the clock of the new event has expired. The abov
process is shown in Figure 4.

1. Observe an evente

Update the global vector of observed clock values
Lifetime(e) = Compute_Lifetime(e)

Store e in the DB with its vector of different clock limits
Remove events from the DB if their clock limits have been
exceeded

Figure 4: Using event lifetimes

a e

4. RELATED WORK

Forms of dynamic verification have been developed
and investigated in the context of program verifaa
safety critical, and service centric systems.

In program verification, research has focused an th
development of programming platforms with generic
monitoring capabilities, including support for gesténg
program events at runtime (e.g. jMonitor [11]),
embedding specifications of monitorable properii@s
programs and producing code that can verify these
properties during program execution (e.g. moniprin
oriented programming [4] and [6]). There is alsorkwvo
focusing on runtime verification of requirements
specifications [7]. However, metric time is not sarered
in [4], [6], [7] or [11]. Runtime monitoring methschave
also been applied to autonomous safety criticalesys
[16], as the testing of such systems is difficufida
resource consuming. In service-centric systemsamhja
verification has focused on monitoringervice level
agreements(SLAs) [2][20]. In safety critical systems,
early monitoring methods focused on detecting tgmin

To deal with such cases, we use an extension of thedfailures and guaranteeing system responsivenefk5]9]

algorithm, shown in Figure 3. The extended algarith

Though [15] supports timing constraints, it doest no
support distributed monitoring. The distributed

monitoring of [9] on the other hand does not suppor [2] Ghezzi C., Guinea S., Runtime Monitoring in Service
fluents or general expressions for time and does no Oriented Architectures, In Test and Analysis of Web
clarify how the bound of the size of the eventdrisss is Services, (eds) Baresi L. & di Nitto E., Spring287-264,

; ; P 2007.
decided. Event correlation has also been considared [3] Barringer, H., Goldberg, A., Havelund, K., Sen.‘Rule-
[18] where event observers are produced as tramsduc

. N . Based Runtime Verification”,'s International Conference
automata recognizing and rewriting the input events on Verification, Model Checking, and Abstract

Compared to our framework, the approach in [18]sdoe Interpretation (VMCAI'04), 2004.

not support fluents or metric time. [4] Chen, F. Rosu, G. “Towards Monitoring-Oriented
The extension of the framework in [20] with the Programming: A Paradigm Combining Specification and

capabilities described in this paper makes it fdssio Implementation”. In Electronic Notes in Theoretical

verify complex properties, based on events capttnad Computer Science, 89(2), 2003.

distributed sources, thus, exceeding the capasiliof [5] Clarke, EIM., Grumberg, O., Peled, D. "Model Checki

MIT Press 1999
other approaches. [6] D'Amorim, M., Havelund, K. “Event-based runtime

verification of Java programs”, Proc. of 3nt. Workshop
5. CONCLUSIONS on Dynamic Analysis, 2005.
In this paper we have presented extensions of thel?] Feather M. S, Fickas S., Van Lamsweerde A., PdnSar
monitoring framework described in [20] that render Reconciling System Requirements and Runtime
. . . Behaviour”, Proc. of the " Int. Workshop on Software
applicable to multi-clock distributed systems. Our

. o Specification & Design, 1998.
extensions address two of the problems of disteitbut [8] Gale D. “Linear programming and the simplex method”

systems monitoring: (1) the need for synchronizihg Notices of the AMS, 54(3):364-369, Mar. 2007.

clocks of different event sources so that the eémy [9] Jahanian, F., Rajkumar , R., Raju, S. C. V. “Rustim
emit can be correlated, and (2) the estimation hef t Monitoring of Timing Constraints in Distributed R€éme
lifetime of events within the monitor in order tmseire Systems”. Real-Time Systems 7(3):247-273, Nov. 1994
that unknown transmission delays of other evertsritay ~ [10] Havelund, K., Reu, G. “An Overview of the Runtime
need to be correlated with them will not affect the Verification Tool Java PathExplorer”, In Formal Mets

in System Design, 24(2):189-215, 2004.

monitoring process. To address the first of these [11] Karaoman, M., Freeman J. “Monitor: Java runtimerey

problems, we have incorporated an implementatiothef specification and monitoring library”. Proc. of "4
NTP protocol in our framework. To address the sdcon Workshop on Run-time Verification, 2004.
problem, we compute the maximum lifetime of an éven [12] Mahbub K., Spanoudakis G., Kloukinas C., “V2 of

by identifying, the constraints between the timeiatzle dynamic validation prototype”. Deliverable A4.D3.3,
of the event and time variables of other eventat to- SERENITY Project, http://www.serenity-forum.org.

exist with it in rules and solving these constrsitd find [13] Marzullo K., Owicki S. “Maintaining the time in a
the maximum possible lifetime for the event usihg t distributed system”. ACM SIGOPS Operating Systems

Review, 19(3):44-54, July 1985.
[14] Mills D. L. “Network time protocol (version 3)". RE
1305c¢, Network Working Group, Internet Engineeriragk

Simplex method (see [12] for full details).
One possible optimisation of our solution is to
statically solve all the linear constraint systerat

RN ; . o Force (IETF), 1992.
initialisation, so as to only need to instantidte specific http://www.ietf.org/rfc/rfc1305. txt?number=1305.

values of the different timestamps associated withew [15] Mok, A. K., Liu, G. “Efficient run-time monitoringof
event and its related rules when the event arrinstgad timing constraints”. In Real-Time Technology and
of solving the corresponding linear system eacle tifthis Applications Symposiurt997

would require a symbolic solution of the linear straints [16] Nelson, S., Pecheur, C. “V&V for advanced systems a
system instead of the more straightforward numekrica NASA", TASK NO: 10 TA-5.3.3 (WBS 1.4.4.5.3),
solution which we currently employ. For this reasee prepared for Northrop Grumman Corp,2002

have decided against the symbolic solution in tineent [17] NTP, www.ntp.org

. [18] Sanchez, C., Sankaranarayanan, S., Sipma, H., Zfiang
implementation, and intend to examine this optioceo Dill, D., Manna, Z. “Event Correlation: Language dan

we have gained more experience with the behavibtireo Semantics”, Proc. of Embedded Software (EMSOFT),
current implementation in a distributed setting. LNCS 2855: 323-339, Oct. 2003
6. ACKNOWLEDGEMENTS [19] Shanahan M. P. *“The event calculus explained”. In

Artificial Intelligence Today, Lecture Notes in AKitial

This work hz_;ls been fl_mded by the European integrate Intelligence, 1600:409-430, 1999.
research project Serenity (FP6-1ST-2006-27587). [20] Spanoudakis G., Mahbub K.. “Non intrusive monitgriof
7. REFERENCES service based systems”. International Journal of

[1] Adler I, et al. "An Implementation of Karmarkar's Cooperative Information Systems, 15(3):325-358.6200

Algorithm for Linear Programming”. Mathematical
Programming 44: 297-335, 1989.

