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Abstract 

Runtime system verification has been proposed as a form 
of dynamic verification of software systems which can be 
applied in settings where complete static verification or 
exhaustive system testing is not practical. Runtime 
verification checks properties against runtime events 
generated during the operation of a system. Current 
approaches to runtime verification assume that runtime 
events are time-stamped by a single clock and, thus, can 
be totally ordered. They also assume that events are 
received by the reasoning engine in the same order as 
they have been produced. These assumptions are 
apparently true only in systems with a single clock. In this 
paper, we present the extension of a framework for 
runtime verification which can monitor distributed 
systems, in which events are produced by different 
components, each having its own clock.  
 

1. INTRODUCTION 
Runtime (or dynamic) system verification has been 

proposed as a complementary approach to static system 
verification and testing, which can enhance confidence in 
the correctness of system operations by monitoring and 
identifying violations of required system properties during 
the normal system operation [3][6][10]. Runtime 
verification is needed due to the inability to guarantee the 
completeness of system models that have been used for 
static analysis and the preservation of these models by 
system implementations. It is also useful as it is difficult to 
foresee all the different circumstances that may arise 
during the operation of a system and therefore guarantee 
that the assumptions, under which its correctness can be 
statically proved, hold at runtime. 

Typically, platforms for runtime verification (e.g. [6] 
[9][11][20]) provide support for specifying formally the 
properties of a system that should be verified at runtime, 
identifying the events that should be available in order to 
assess if certain properties are satisfied, capturing these 
events at runtime, and checking for violations of the 
required properties. 

The main limitation of existing runtime verification 
platforms is that they assume that the systems to be 
monitored consist of components running on a single 
machine. In such cases, the events of the system that is 
being monitored are: (i) time stamped by a single clock, 
(ii) totally ordered, and (iii) received by the monitor in the 
same order as they are generated by the system that is 
being monitored. 

Whilst valid in the case of centralised systems, these 
assumptions do not necessarily hold in cases of distributed 
systems with components running on different platforms. 
In such systems, runtime events may come from 
distributed components operating with different time 
clocks. Furthermore, distributed system components may 
have different types of connections with the monitor and, 
therefore, generate events which arrive at the monitor with 
different communication delays and possibly in an order 
that is not the same as the order of their generation. 

Thus, in order to check properties involving events 
from distributed components, a monitor would have to 
overcome two problems: (i) to synchronise the clocks of 
the various event sources, so that the timestamps of the 
different events can be ordered and compared to each 
other, and (ii) to establish until when a particular event 
needs to be stored, so that it can reason about the system 
properties in a sound way or, equivalently, to compute the 
required monitoring lifetime of each event. 

Consider, for instance, the case of monitoring the 
availability of the communication channel between two 
components C1 and C2 of a system by ensuring that the 
dispatch of a request  R from C1 (Event-1) will always be 
followed by the receipt of R by C2 (Event-2) within a 
specific time period. In this case, Event-2 may arrive at 
the monitor before Event-1 due to different 
communication delays in the relevant channels. Thus, 
when the monitor receives Event-2 it will have to decide 
for how long it should wait for Event-1 and wait for this 
event before dropping Event-2 or otherwise it may report 
a false violation of the availability of the communication 
channel between C1 and C2. This would happen in cases 
where, after dropping Event-2, the monitor receives an 
Event-1 corresponding to it. 

In this paper, we present an extension of a dynamic 
verification framework described in [20] which addresses 
these problems. The original framework monitors systems 
against properties expressed in Event Calculus (EC) [19] 
and was initially developed to support monitoring based 
on events which are generated by a single source. The 
extension of the framework that we present in this paper 
enables it to monitor systems in which events are 
generated by distributed sources having different clocks 
and communication channels to the monitor. 

The rest of the paper is organised as follows. In Section 
2, we provide an overview of our monitoring framework 
and the language that it uses to specify monitoring 
properties. In Section 3, we propose a solution for 



 

computing the lifetime of events that the framework 
receives from distributed sources and show how these 
lifetimes are used during monitoring. In Section 4, we 
give an overview of related work and, finally, in Section 5 
we summarise our work and outline directions for further 
research. 

 

2. MONITORING FRAMEWORK 
2.1. Overview 

As shown in Figure 1, the dynamic verification 
framework that we have extended consists of a monitoring 
manager, a monitor, a Network Time Protocol (NTP) 
server, and communicates with different event collectors 
attached to the components of the system that is being 
monitored. 

The monitoring manager has responsibility for 
initiating, coordinating and reporting the results of the 
monitoring process. Once it receives a request for 
monitoring a specific set of properties, the manager 
checks whether it is possible to monitor them and, if it is, 
it sends the properties to be checked to the monitor, and 
starts listening to events which are generated by different 
types of external event collectors. These events are 
received via TCP/IP sockets and sent to the monitor.  

After receiving events from the manager, the monitor 
checks whether they violate any of the properties given to 
it. The monitor is a generic engine for checking violations 
of EC formulas against a given set of runtime events. 
During monitoring, it also takes into account information 
about the state of a system that it derives from runtime 
events using a special type of EC formulas called 
assumptions (see Section 2.2). When a violation of a 
property is detected, the monitor records it in a deviation 
database which is polled regularly by the monitoring 
manager to retrieve detected deviations. 

 
Figure 1 : Verification framework 

The framework assumes that the components of the 
systems to be monitored have associated event collectors 
that can capture events during their operation and send 

them to the monitor. When a collector captures a runtime 
event, it wraps it into an envelope with additional 
information including the source of the event (i.e., the 
component where it was captured) and a timestamp 
indicating when the event was captured at the component.  

To enable the synchronisation of event timestamps, the 
framework incorporates components that realise the 
Network Time Protocol [17] (i.e., a protocol based on the 
clock synchronisation scheme described in [12]). The 
implementation of this protocol allows event collectors to 
compute the difference of their clocks with the clock of 
the monitor at regular intervals. This difference is used to 
transform timestamps taken according to the clock of each 
collector into timestamps that express time in terms of the 
monitor’s clock. This is achieved by implementing an 
NTP client at each event collector and an NTP server at 
the machine that hosts the monitor, as shown in Figure 1. 
The NTP clients call the NTP server at regular intervals to 
synchronise their clocks with the clock of the server. The 
use of NTP can synchronise distributed clocks at a very 
high level of accuracy since recent versions of NTP 
(version 4) use a resolution of less than one nanosecond.  

 
2.2 Specification of Properties 

As indicated in Section 1, in our runtime monitoring 
framework the properties to be monitored are expressed in 
a language based on Event Calculus (EC) [19]. EC is a 
first-order temporal logic language which can be used for 
representing and reasoning about events and their effects 
over time. An event in EC is an occurrence that takes 
place at a specific instance of time (e.g., invocation of a 
system operation, receipt or dispatch of a message) and 
may have an effect. The effects of events are represented 
by fluents. Fluents are conditions which may change over 
time (e.g. a condition indicating that a system has received 
a message) and are initiated and/or terminated by events.  

The occurrence of an event in EC is represented by the 
predicate Happens(e,t,ℜ(lb,ub)). This predicate denotes 
that an instantaneous event e occurs at some time t within 
the time range ℜ(lb,ub) (i.e., lb ≤ t ≤ ub) . The boundaries 
lb and ub that define time ranges are specified as linear 
expressions over time variables of Happens predicates in 
an EC formula of the form: 

lb = l0 + l 1 t1 + l 2 t2 + … + ln  tn 

ub = u0 + u1 t1 + u2 t2 + … + un tn 

Given our focus on runtime system monitoring, the 
events we consider represent invocations of system 
operations, responses from such operations, or exchanges 
of messages between different system components. Thus, 
events have the following structure which captures the 
information required for monitoring such system  
interactions without affecting the overall expressiveness of 
the framework with respect to standard EC: 

event(_id, _sender, _receiver, _status, _sig, _source)  
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In this structure: 
� _id is a unique identifier of the event 
� _sender is the identifier of the system component that 

sends the message represented by the event 
� _receiver is the identifier of the system component that 

receives the message represented by the event 
� _status is the processing status of an event (i.e. 

whether or not its processing has started when the 
monitor receives it) 

� _sig is the signature of the dispatched message or the 
operation invocation/response represented by the 
event, comprising the operation name and its 
arguments/result. 

� _source is the identifier of the component where the 
event was captured.  
 Fluents are defined as relations between objects of the 

form rel(O1, …, On) where rel is the name of a relation 
which associates the n objects O1, …, and On. The 
initiation or termination of a fluent f due to the occurrence 
of an event e at time t is denoted in EC by the predicates 
Initiates(e,f,t) and Terminates(e,f,t), respectively. An EC 
formula may also use the predicates Initially(f)  and 
HoldsAt(f,t) to denote that a fluent f holds at the start of 
the execution of a system and at time t, respectively.  

The rules to be monitored at runtime are specified in 
terms of the above predicates and have the general form 
body ⇒ head. The meaning of a rule is that if its body 
evaluates to true, its head must also evaluate to true. The 
Happens predicates in a rule which have no constraints for 
their lower and upper time boundaries are what we call 
“unconstrained” predicates. During the monitoring 
process, rules are activated by events that can be unified 
with the unconstrained Happens predicates in them. When 
this unification is possible, the monitor generates a rule 
instance to represent the partially unified rule and keeps 
this instance active until all the other predicates in it have 
been successfully unified with events and fluents of 
appropriate types or it is deduced that no further 
unifications are possible. In the latter case, the rule 
instance is deleted. When a rule instance is fully unified, 
the monitor checks if the particular instantiation that it 
expresses is satisfied.  

An example of a rule that can be expressed in the EC 
language of our framework is given by the formula below: 

Rule 1: ∀ _eID1,_C1,_C3:String; t1:Time 
Happens (e(_eID1,_C3,_C1, REQ, authorise(), 
_C3),t1,ℜ(t1,t1))  ⇒ ∃ _eID2:String ; t2:Time 
Happens (e(_eID2,_C3,_C1, REQ, authorise(), 
_C1),t2,ℜ(t1+1,t1+10)) 

This rule states that when an event e(_eID1,_C3,_C1, 
REQ, authorise(), _C3),t1,ℜ(t1,t1)) representing a call of 
the operation authorise() in a component _C1 by a 
component _C3 is dispatched, it must be followed by an 
event  e(_eID2, _C3, _C1, RES, authorise(), _C1) 

represening the receipt of the call by _C1 in no more than 
10 time units after the dispatch of call. Thus, Rule 1 
expresses a bounded availability property for the 
communication channel between the component _C3 and 
other components of the system (_C1) since it requires 
that the requests generated by _C3 are transmitted within a 
bounded time period.  

The unconstrained predicate in this rule is the 
predicate Happens(e1

C3, t1,ℜ(t1,t1))1, since the lower and 
upper bounds of its time variable are defined without any 
references to other time variables in the rule. Thus, at 
runtime, new instances of Rule 1 will be generated as soon 
as an event that can be unified with this predicate is 
received. Each of these rule instances will remain alive 
until it is fully unified or until no further unification of an 
event representing the receipt of a response of the call 
dispatched by _C3 in the rule instance is possible. 

Note that, as in the above example, our framework 
requires all the constrained predicates in a rule to have 
time variables with constrained upper bounds. This is to 
ensure that rules can be verified. For example, if the 
Happens predicate for e2

C1 in the head of Rule 1 did not 
have an upper bound, then its absence would never cause 
the monitor to flag the rule as violated, since the monitor 
would always wait for some e2

C1 event at some point in 
the future. 

3. COMPUTING LIFETIME OF EVENTS  
As we discussed in Section 1, the problem that arises 

with the use of events which are generated by distributed 
sources is two-fold: firstly we need to synchronise the 
clocks of the different event sources so that the 
timestamps of the events that they generate can be 
comparable to each other and secondly we need to know 
until when we need to store a particular event in order to 
be able to reason about the system state and check rules. 
The clock synchronisation that is performed through the 
use of the Network Time Protocol (NTP) by our 
framework solves the first problem but not the second. 

To appreciate the second problem, consider Rule 1, 
assuming without loss of generality that _C3 and _C1 
denote both the source of the event and the clock of the 
source system component where the event was captured. 
As the occurrence of events of type e1

C3 in Rule 1 is 
unconstrained, events of this type can instantiate the rule 
during monitoring. Unlike them, events of type e2

C1 are 
temporally constrained by e1

C3 events in the rule and 
cannot, therefore, create new instances of the rule; they 
can only be unified with existing rule instances. 

                                                 
1 e1

C3 is an abbreviated reference to the event e(_eID1,_C3,_C1, REQ, 
authorise(), _C3), in which the subscript denotes to the event ID and 
the superscript to the event source. Such abbreviated references are 
used in the rest of the paper in all cases where other event variables 
are not important. 



 

Thus, if the monitor receives an event of type e2
C1, in 

addition to unifying it with all the current instances of  
Rule 1, it must keep it until there is no possibility to 
receive an e1

C3 event that could be correlated with e2
C1 

through Rule 1. This is necessary since if e2
C1 is dropped 

and later the monitor receives an e1
C3 event with an earlier 

timestamp than e2
C1, it would report a false violation of 

Rule 1. The possibility of e1
C3 and e2

C1 events arriving at 
the monitor in the opposite order of their occurrence 
arises due to different (and dynamically changing) 
communication delays in the channels that connect C1 and 
C3 with the monitor or even attacks in these channels that 
can cause the loss of events. Whilst keeping events of type 
e2

C1 in this case is necessary for the soundness of the 
monitoring results, the monitor must also ensure that it 
keeps these events only for the maximum time that is 
necessary for the soundness of the results. This is because 
if the monitor keeps them longer the size of its event store 
will increase monotonically with a deteriorating effect on 
both the space and time required for monitoring. The 
maximum time point until when events e2

C1 would need to 
be kept by the monitor, in this example, can be established 
by finding the maximum value of the time variable t1 of 
e1

C3 events that satisfies the constraints: (1) t1 ≤ t2−1 and 
(2) t2 ≤ t1+10. 

In general, for a rule with n+1 Happens predicates, 
there will be 2n+1 such inequalities to solve. This is 
because one of the rule predicates is unconstrained (the 
one firing the rule), the remaining Happens predicates 
contribute two inequalities each, and we need an extra 
equality to establish the exact value for the time variable 
of the event in question  (t2 in our previous example with 
the e2

C1 events).  
Figure 2 shows the algorithm for computing the 

lifetimes of an event. According to this algorithm, when 
an event e occurs, the set R(e) of rules which have 
predicates that can be unified with the event e is 
determined (this set includes rules that have event types 
which are the same as the type of e or supertypes of it). 
The set R(e) will include rules that may specify time 
constraints for the event that cannot be fully evaluated yet. 
Subsequently, the constraints of each rule in R(e) are 
identified and expanded with an equality expressing that 
the time variable of the predicate of the rule that has been 
unified with e is equal to the timestamp of e (step 2.a). 
Given the time constraint set that results from this process, 
the algorithm computes the maximum possible value for 
each of the time variables of the rule using the Simplex 
method [8] (step 2.b.i). Subsequently, it groups the 
different time variables according to the clock of the event 
source they are related to (step 3), and generates a set of 
all the conditions (Lifetime(e)) for computing the upper 
bound of the lifetime of e (step 4). A condition in 
Lifetime(e) states that e won’t be needed after the last 
event that is seen from a channel which is relevant to e has 

a timestamp (last_observed(cj)) that is greater than the 
maximum possible value of the time variables grouped in 
this channel’s group (see condition last_observed(cj)> 
maxti∈Gj(max(ti))). The reason for using the timestamp of 
the last event that has been observed from a clock in the 
evaluation of the Lifetime(e) conditions is because events 
are communicated to the monitor through TCP/IP sockets 
which guarantee a FIFO transmission within the same 
component (clock)-monitor channel. The conditions in 
Lifetime(e) determine the lifetime of e since when their 
conjuction becomes true, the lifetime of e will expire. 

 
Compute_Lifetime(e): 

1. R(e) = { r | r has a predicate p that can be unified with e} 

2. Forall r ∈ R(e) do 

a. CNr= {time constraints of r} ∪ {time variable of 
predicate p that matches e = timestamp of e} 

b. Forall ti ∈ CNr  do 

i. Find max(ti) given CNr 

3. Group the time variables ti into as many groups Gj as the 
different event sources (clocks)  cj in R(e) 

4. Lifetime(e) = ∪j ((last_observed(cj) > maxti∈Gj(max(ti)))) 

Figure 2: Computing the lifetime of an event – I 

In our previous example, if Rule 1 is the only rule that 
is being monitored and an event of type e2

C1 is observed at 
t2=10,  step 1 will produce the set R(e2

C1) = {Rule-1}, step 
2.a will produce CNr = {t1 ≤ t2−1, t2 ≤ t1 + 10, t2 = 10}, 
step 2.b.i will produce the solutions max(t1)=9 and 
max(t2)=10 by finding the maximum value of t1 for which 
the constraints in CNr are satisfied, and step 3 will 
produce two groups of time variables {t1} and {t2}, for the 
two clocks C1 and C3, respectively. Finally, in step 4, the 
lifetime constraint set for e2

C1 will be established as: 
Lifetime(e2

C1) = {(last_observed(C1)>10), 
(last_observed(C3) > 9)}. 

It should be noted that our algorithm uses the Simplex 
method, which has exponential complexity O(2n) (for a 
problem with n variables [8]), to find the maximum time 
of a time variable in  step 2.b.i., although there are 
algorithms with polynomial compexity (the worst case 
complexity of Karmarkar’s algorithm [1], for example, is 
O(n3.5)). This is because for small numbers of variables, as 
the ones normally appearing in monitoring rules (n ≤ 10), 
Simplex has better performance. Furthermore, the 
algorithm of Figure 2 computes the maximum value of a 
time variable for each rule separately, rather than 
combining them into a single larger problem. This is 
because the individual rule problems can be solved 
independently and a larger set of rules would take more 
time to solve due to the additional time variables (in 
general 2n + 2m < 2n+m for n,m ≥ 2). Due to this approach, 
once the individual rule systems have been solved, the 
different time variables that are associated with events 



 

coming from the same clock need to be grouped together, 
as done in step 3 of the algorithm. 

Note that at this step, the algorithm of Figure 2 
assumes that the clocks/sources of the events in the rules 
are fully specified when a rule is matched with an 
incoming event. In the example of Rule 1 this is the case, 
since the sender of an event e2

C1 (i.e. C3) is also the source 
of events e1

C3. Thus, when Rule 1 is matched with an e2
C1 

event, the identity of C3 becomes known. However, there 
might be cases where the exact source of events that could 
potentially be matched with a rule is not known after the 
rule is matched with arrived events. Consider, for 
instance, the following rule: 
Rule 2:  

∀ _eID1, _eID2, _U: String; _C1, 
_C3: Terminal; _C2: Component; t1, t2:Time 

 Happens (e(_eID1,_C1,_C2, REQ, login(_U,_C1), 
_C1),t1,ℜ(t1,t1)) ∧ 

 Happens (e(_eID2,_C3,_C2, REQ, login(_U,_C3), 
_C3),t2,ℜ(t1,t2)) ∧ _C1 ≠_C3 ⇒ ∃ _eID3: String; t3:Time 

 Happens (e(_eID3,_C1,_C2, REQ-A, logout(_X,_C1), 
_C1),t3,ℜ(t1+1,t2-1)) 

This rule requires that if a user _U logs in to a system 
_C2 from a terminal _C1 and later he/she logs in again 
from a different terminal _C3, he/she must have logged 
out from the former terminal before the second login. The 
rule effectively monitors cases where users are logged in 
from different terminals at the same time. When an event 
e(_eID2,_C3,_C2, REQ, login(_U,_C3), _C3) (or e2

C3 in 
our abbreviated form) arrives at the monitor, its lifetime 
will need to be estimated in reference to the maximum 
possible values of time variables t1 and t3. In this case, 
however, the algorithm of Figure 2 does not work, since at 
step 3 it is not known which other terminals the user of 
e2

C3 may be using or, equivalently, which source clocks 
should be associated with the time variables t1 and t3. 

 
Compute_Lifetime(e): 
1. R(e) = { r | r has a predicate p which unifies with e} 

2. Forall r ∈ R(e) do 

a. CNr= {time constraints of r} ∪ { time variable of 
predicate p that matches e = timestamp of e} 

b. Forall ti ∈ CNr  do 

i. Find max(ti) given CNr 

3. Group the time variables ti into as many group types TGu 
as the different types of event sources cu in R(e) 

4. Forall group types g ∈ TGu do 

c. Forall the known sources j of type g do 

i. Create a group Gj and assign copies of the time 
variables of g to it 

5. Lifetime(e) = ∪j {(last_observed(cj) > maxti∈Gj(max(ti)))} 

Figure 3: Computing the lifetime of an event – II 

To deal with such cases, we use an extension of the 
algorithm, shown in Figure 3. The extended algorithm 

initially groups time variables into groups corresponding 
to the types of the event sources that are associated with 
them in the rules. Then, for each of the source type 
groups, it finds all the sources of the particular type that 
are known to the system, creates different groups for them 
and assigns copies of the time variables of each source 
type to each of the source groups that were generated from 
the type. Thus, if it is known that the system that is being 
monitored with Rule 2 has 3 terminals, the algorithm of 
Figure 3 will create different variable groups for each of 
these terminals and assign copies of the time variables t1 
and t2 to each of these groups.   

Having computed the Lifetime(e) constraint set, upon 
the arrival of an event e at runtime we use it to compute a 
vector with the maximum time values for e with respect to 
the different clocks related to it. For the ongoing example 
of Rule 1, the vector of e2

C1 would be < 10, 9 >. The event 
and its vector are then stored in the database of the 
monitor. Also, when a new event arrives at it, the monitor 
checks if the lifetime of some other events which depend 
on the clock of the new event has expired. The above 
process is shown in Figure 4. 

1. Observe an event e 

2. Update the global vector of observed clock values 

3. Lifetime(e) = Compute_Lifetime(e) 

4. Store e in the DB with its vector of different clock limits 

5. Remove events from the DB if their clock limits have been 
exceeded 

Figure 4: Using event lifetimes 
 

4. RELATED WORK 
Forms of dynamic verification have been developed 

and investigated in the context of program verification, 
safety critical, and service centric systems.  

In program verification, research has focused on the 
development of programming platforms with generic 
monitoring capabilities, including support for generating 
program events at runtime (e.g. jMonitor [11]), 
embedding specifications of monitorable properties into 
programs and producing code that can verify these 
properties during program execution (e.g. monitoring-
oriented programming [4] and [6]). There is also work 
focusing on runtime verification of requirements 
specifications [7]. However, metric time is not considered 
in [4], [6], [7] or [11]. Runtime monitoring methods have 
also been applied to autonomous safety critical systems 
[16], as the testing of such systems is difficult and 
resource consuming. In service-centric systems, dynamic 
verification has focused on monitoring service level 
agreements (SLAs) [2][20]. In safety critical systems, 
early monitoring methods focused on detecting timing 
failures and guaranteeing system responsiveness [9][15]. 
Though [15] supports timing constraints, it does not 
support distributed monitoring. The distributed 



 

monitoring of [9] on the other hand does not support 
fluents or general expressions for time and does not 
clarify how the bound of the size of the event histories is 
decided. Event correlation has also been considered in 
[18] where event observers are produced as transducer 
automata recognizing and rewriting the input events. 
Compared to our framework, the approach in [18] does 
not support fluents or metric time.   

The extension of the framework in [20] with the 
capabilities described in this paper makes it possible to 
verify complex properties, based on events captured from 
distributed sources, thus, exceeding the capabilities of 
other approaches.  
 

5. CONCLUSIONS 
In this paper we have presented extensions of the 

monitoring framework described in [20] that render it 
applicable to multi-clock distributed systems. Our 
extensions address two of the problems of distributed 
systems monitoring: (1) the need for synchronizing the 
clocks of different event sources so that the events they 
emit can be correlated, and (2) the estimation of the 
lifetime of events within the monitor in order to ensure 
that unknown transmission delays of other events that may 
need to be correlated with them will not affect the 
monitoring process. To address the first of these 
problems, we have incorporated an implementation of the 
NTP protocol in our framework. To address the second 
problem, we compute the maximum lifetime of an event 
by identifying, the constraints between the time variable 
of the event and time variables of other events  that co-
exist with it in rules and solving these constraints to find 
the maximum possible lifetime for the event using the 
Simplex method (see [12] for full details).  

One possible optimisation of our solution is to 
statically solve all the linear constraint systems at 
initialisation, so as to only need to instantiate the specific 
values of the different timestamps associated with a new 
event and its related rules when the event arrives, instead 
of solving the corresponding linear system each time. This 
would require a symbolic solution of the linear constraints 
system instead of the more straightforward numerical 
solution which we currently employ. For this reason we 
have decided against the symbolic solution in the current 
implementation, and intend to examine this option once 
we have gained more experience with the behaviour of the 
current implementation in a distributed setting. 
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