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Abstract. We present a formal framework for decomposing agent interaction
protocols to the roles their participants should play. The framework allows an
Authority Agent that knows a protocol to compute the protocol’s roles so that it
can allocate them to interested parties. We show how the Authority Agent can use
the role descriptions to identify problems with the protocol and repair it on the
fly, to ensure that participants will be able to implement their role requirements
without compromising the protocol’s interactions. Our representation of agent in-
teraction protocols is a game-based one and the decomposition of a game proto-
col into its constituent roles is based upon the branching bisimulation equivalence
reduction of the game. The work extends our previous work on using games to
admit agents in an artificial society by checking their competence according to
the society rules. The applicability of the overall approach is illustrated by show-
ing how to decompose the NetBill protocol into its roles. We also show how to
automatically repair the interactions of a protocol that cannot be implemented in
its original form.

1 Introduction

This paper considers a basic problem which arises when multi-agent systems (MAS) are
allowed to admit new agents and, as such, need to provide these with the descriptions of
the protocols within which they will be engaged. The problem is that in highly dynamic,
reconfigurable and evolving systems, the protocols cannot be assumed to be correct. The
protocols may have design errors in them to start with or the errors may appear due to
their composition [1]. The type of errors that are usually explored are deadlocks and the
possibility of a protocol to never exit a loop (liveness). However, there is another type of
error which can render a deadlock-free, live protocol to be unusable in practice, because
it is not implementable. The paper therefore examines this category of problematic
protocols, starting with a formal framework for describing protocols and roles and then
providing an algorithm to both identify non-implementable protocols and repair them
at run-time, thus offering participants correct, implementable role specifications.

1.1 Motivation & Background

One of the emerging paradigms for designing and implementing complex systems is
Service-Oriented Computing (SOC), which views systems as collections of services [2].
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These services are specified at a rather high level, close to the business needs of the users
of the services and they can be composed to form more complex services. The compo-
sition of services does not occur only at design time - instead it is required that SOC
systems are fault-tolerant to service outages by being able to identify and compose with
new compatible services by different providers at run-time. This run-time composition
can even require the dynamic adaptation of the new services which are composed with
a running system, so as to ensure that these conform to the system requirements, just
as is done (at design-time) in [3, 4]. Such highly dynamic, reconfigurable systems with
high-level goals are excellent candidates for being implemented as open multi-agent
systems - decentralised and highly distributed systems that consist of a large number of
loosely coupled autonomous agents. These agents will be pro-actively seeking ways to
achieve their goals, through collaboration with agents that offer services of use to them.

Artificial Societies & Competence. As previously discussed in [5, 6], artificial agent
societies are one possible way of organising and enacting the various services in a way
which meets a system’s requirements. These societies are composed of autonomous
computational entities and their existence and function is governed by a set of proto-
cols that determine the permissible interactions between member, as well as applicant,
agents. An agent will have to become a member of a society before using the services
offered in the society. Societies can be classified into open ones, where any agent can
join and leave without restrictions of any kind, and closed ones, where the member-
ship of the society is static and predefined. A third alternative, which matches better the
needs of SOC systems is semi-open societies, where new members can join but only if
they go through an application process [7], whereupon their abilities will be assessed by
a society’s member, called the Authority Agent (AA) [5]. The AA has a rather difficult
problem to solve. The societal agents and protocols are most likely not designed and
developed by the same person, they are implemented in different languages and based
on different architectures. The AA cannot know the internal reasoning processes of the
agents either, as for example in the case of BDI agents [8]. Consequently, it can rely
only on its knowledge of the societal interaction protocols [9] in order to represent agent
interactions and assess the ability of an applicant agent to join the society. In doing so,
the AA needs to ask the applicant about its capabilities, i.e., what actions it is capable
of doing, but not any information about when it is performing that action or under what
conditions, and then decide whether the agent is competent to participate in the societal
protocols, given these capabilities. Different definitions of competence exist [10, 11];
in our previous work [5] we have considered that competence means that it is in theory
possible for the applicant to traverse all the paths of a protocol and reach all terminating
states.

Protocol Representation. The representation of agent interaction protocols has been
the subject of extensive research in MAS, with numerous approaches [12–14] applied
to such diverse practical application areas as Semantic Web, Ambient Intelligence and
Complex Systems [15]. In previous work [16], we have viewed interaction protocols
as games, to not only acknowledge the fact that agents may be thinking strategically to
achieve their goals but, also, to propose games as a metaphor for agents to communicate
and coordinate their actions. This game-based representation of protocols has been used
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in [10] to address the assessment of an agent’s competency to join a society [6], based
on the skills that the agent says it can provide. Then, in [5], we showed how to check
the competency of an applicant agent, using a representation framework which allows
testing the reachability of a game protocol’s final states, based on action languages such
as the event [17] and situation [18] calculi.

Protocol Repair & Role Derivation. However, checking whether an agent is competent
is only one aspect of the problem. As aforementioned, the AA must first of all check
that protocols are indeed correct, before it can check an applicant’s competence for
these. If the protocols are not correct then there are cases where the AA can repair them
at run-time. Assuming that protocols are implementable and the applicant is competent
for these, the AA will need to provide it with the description of the protocols. One
possibility is for the applicant to receive the full protocol(s); that is all interactions with
all other agents, no matter whether the agent is involved in these interactions. This,
however, has a number of practical disadvantages:

1. the description of the whole protocol may be too large;
2. parts of the whole protocol may be irrelevant to the new agent, as they will be

describing interactions of other agents;
3. for certain protocols it may be undesirable for all agents to know the whole protocol

(e.g. for security reasons), so agents must work on a need-to-know basis.

As such, it is desirable that the AA can break down a protocol into its constituent
roles and provide each agent with the descriptions of the roles that the agent is assuming.
As such the agent uses fewer resources for representing the protocols it is engaging in,
has no superfluous information of irrelevant interactions to slow down its reasoning and
operates on a “need-to-know” basis.

1.2 Paper Structure

The paper is organised as follows. The next section presents a variation of the well-know
NetBill [19] protocol, which will be used as a running example. Then, section 3 defines
our formal framework for representing game protocols and game roles based on labelled
transition systems (LTS), while section 4 presents our method for deriving independent
role descriptions from a game protocol. In section 5 we discuss the case of protocols
which are not implementable and present a method which can be used by the AA to
repair these automatically at run-time and thus enable the society to continue using
these protocols. Finally, we conclude in section 6 with a summary of our contributions
and a discussion of related and future work.

2 A Variant of the NetBill Protocol

The ideas presented herein will be illustrated through a variation of the NetBill [19, 20]
protocol. In the original protocol, there are three roles - customer (c), merchant (m) and
gateway (g) - and eight overall steps for a customer to purchase goods from a merchant
and the merchant to process payment through NetBill’s gateway. These are depicted in
Fig. 1 and are as follows:
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Fig. 1. A variant of the NetBill protocol

– The customer requests a quote for some digital goods from a merchant - see the
transition (0, (c, rq, {m}), 8), i.e., from state 0 to state 8, labelled as (c, rq, {m}).

– The merchant provides a quote to the customer - (8, (m, pq, {c}), 7).
– The customer accepts the quote made by the merchant - (7, (c, oa, {m}), 6).
– The merchant delivers the goods encrypted with a key K - (6, (m, dg, {c}), 1).
– The customer signs an Electronic Purchase Order (EPO) with the merchant - (1,

(c, sepo, {m}), 2).
– The merchant signs the signed Electronic Purchase Order and sends it to the NetBill

gateway - (2, (m, ssepo, {g}), 3).
– The NetBill gateway checks the information on the EPO, transfers the money and

sends the merchant a receipt - (3, (g, sr, {m}),4).
– Finally, the merchant sends the customer the key needed to decrypt the goods he

purchased - (4, (m, dgk, {c}), 5).

For presentation purposes we have changed the original NetBill protocol to one with
branching, assuming that there will be interactions that will require these extensions
from a business point of view:

– The merchant can now make a price quote directly - (0, (m, pq, {c}), 7); e.g., for a
promotional offer.

– The merchant could select to deliver the goods as its first move - (0, (m, dg, {c}),
1); e.g., when the customer has good credit.

– The customer might accept the merchant’s quote directly - (0,(c, oa, {m}), 6); as-
suming the merchant is trusted.

– On reception of a quote request, the merchant can make the quote and ship the
goods directly without waiting for a formal acceptance of the quote - (8, (m, dg, {c}),
1); assuming a trusted customer.

3 Game Protocols as Labelled-Transition Systems

The LTS-based formal model of game protocols presented herein follows closely the
situation-calculus model of [5], where a protocol describes a set of roles which inter-
act through message-passing. The game describes the particular situations where each
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message is applicable, as well as what are its effects on the state of the game. A game
protocol (PG) is defined as a tuple < P , R, S , s0 , F , α, M , V , ε >, where the com-
ponents are as follows. P is the protocol’s name and the R component is the set of
agent roles, which participate in the protocol. S is the set of protocol states and s0 is
the initial state of the protocol, while F is the set of final states of the protocol, with
s0 ∈ S and F ⊆ S . Then, α are the labels of the actions that are known in the protocol,
that is, all possible messages which can be exchanged by any two agents at any time in
the protocol. The relation M = R × α× (2R \ ∅) describes the game moves, i.e., asso-
ciates the available actions with the role which can perform them, as well as, the roles
which will be the recipients of that action, assuming that an action can be performed on
multiple recipients. Finally, the relation V = S ×M defines the valid moves for a role
according to the state that the protocol is in, while the relation ε = V × S defines the
effects of the valid moves, i.e., the transition relation of the LTS.

The formal representation of the NetBill protocol of Fig. 1 will be the tuple

<NetBill, R, S , s0 , F , α, M , V , ε >,

where:
P = NetBill
R = {c,m, g}
S = {0, 1, 2, 3, · · · , 8}
F = {5}
α = {rq, pq, oa, dg, sepo, ssepo, sr, dgk}

M = {(c, rq, {m}), · · · , (m, dgk, {c})}
V = {(0, (c, rq, {m})), · · · , (7, (m, dgk, {c}))}
ε = {(0, (c, rq, {m}), 8), · · · , (4, (m, dgk, {c}), 5)}

3.1 Modelling Roles of Game Protocols

Since the AA needs to represent the roles of a game and reason about them, we present
herein a formal model of a game protocol which is built around the notion of roles and
show how this is linked with the previous model of a game protocol. In a role-oriented
model, a game protocol is assumed to be a set of roles, PR = {RR}. The descriptions of
the roles are effectively projecting the components of the game protocol onto their spe-
cific role, so a role is specified as a tuple < N,RR,SR, s0 R,FR, αR,M R,V R, εR >.
The component RR represents the set of roles that the role N will be interacting with
during the course of the protocol, either as initiators of actions or as recipients of these.
Then SR are the states of the role, of which s0 R and FR are its initial and terminat-
ing states respectively. The actions known to the role are αR and the known moves
M R = {{N} × αR × (2RR \ ∅)} ∪ {(RR \ {N})× αR × has role(N, 2RR

)}, where
has role(N, 2RR

) are all the subsets of RR containing N , specifies whether an ac-
tion can be performed by the role itself (and by which other roles it can be received)
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or whether it can be performed by some other role and received by the role in ques-
tion (possibly among others). The validity of moves according to the role’s state is de-
scribed through V R = SR ×M R and the effects of these moves are described through
εR = V R × SR.

3.2 From Roles back to Game Protocols

Given the roles of a protocol, a game protocol can re easily reconstructed as follows,
effectively following the synchronous composition of the role automata. The set of agent
roles is the union of all the rolesets of the different roles. A game’s state will be the
combination of the states of its roles, a game’s initial state will be the state where all
the roles are in their initial state and a game will be terminated when all its roles have
terminated. That is, any combination of terminating states of roles will be a terminating
state of the game protocol. The available actions in a game will be the union of all the
available actions to the roles and the same will hold for the game moves. The valid
moves of the game, V , will be those where all roles involved in a move find themselves
at a role state where that move is valid. That is, if a role wants to perform an action,
all its recipients should be in a local state where that action is valid, i.e., we consider
that same-labelled transitions in the role LTS’s are synchronised. Finally, the effects of
a valid move are computed by considering the effects of this move on all participating
roles where it is a valid move, while the state of the other roles remains unchanged.
More precisely, we have:

R =
⋃

r∈{RR} RR
r S =

∏
r∈{RR} SR

r

s0 =
∏

r∈{RR} s0r F = {s : ∀r ∈
{
R

R
}
.sr ∈ FR

r }
α =

⋃
r∈{RR} αR

r M =
⋃

r∈{RR} M R
r

V = {(s,m) : s ∈ S ,m ∈ M ∧ ∀r ∈
{
R

R
}
.m ∈ M R

r ⇒ (sr,m) ∈ V R
r }

ε =
{
(s1,m, s2) : (s1,m) ∈ V ∧ ∀r ∈

{
R

R
}
.(

(s1r ,m) ∈ V R
r ⇒ (s1r ,m, s2r ) ∈ εR

r

)
∨

(
(s1r ,m) /∈ V R

r ⇒ s2r = s1r

)}
4 Deriving Roles of Game Protocols

As aforementioned in the introduction, the goal in deriving a role description from a
game protocol is to remove all agent interactions which are of no interest to the spe-
cific role. These are the interactions that are neither initiated by the role itself nor are
they received by it. Given the structure of our game protocol model, these messages
can be easily identified and replaced with the invisible action τ . Actions labelled with τ
in an LTS are considered to be unobservable ones and therefore other automata cannot
observe them, i.e., synchronise with them. While by doing so we manage to remove
unnecessary (or confidential) information, we still have not reduced the overall game
protocol size. The game’s states will in general be representing all the possible order-
ings of the different messages (including the invisible ones) which can be exchanged.
In order to obtain a minimal role description we need, therefore, to minimise this au-
tomaton and obtain one which is behaviourally equivalent as far as the specific role is
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concerned. This kind of required equivalence points to the use of a bisimulation equiv-
alence reduction [21]. Such a reduction will produce an automaton which is bisimilar
to the original one depicting the game protocol, that is, whatever traces one automaton
can produce, the other can produce as well and vice-versa. The branching bisimulation
equivalence (bbe) has been chosen among the different types of bisimulation equiva-
lences, since it only removes invisible τ actions when doing so would not change the
branching structure of the LTS. As will be shown later, this is crucial for the society’s
AA to be able to recognise unimplementable protocols, since a role’s implementability
depends exactly on its branching structure, i.e., the choices that the role can make. The
bbe reduction can be easily performed on an LTS with the ltsmin tool of µCRL2 [22].

Fig. 2. Branching bisimulation results for the roles of the NetBill protocol

The results obtained by applying the bbe reduction to the NetBill protocol, are
shown in Fig. 2. As expected, the role LTS of the merchant (BM) is not different from
the original protocol, since the merchant is involved in all interactions of NetBill. How-
ever, it is immediately evident that the results for the customer (BC) and, especially, the
gateway (BG) are smaller than the original protocol and do not contain any redundant
information for their respective roles. When these automata are composed together they
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Table 1. Deriving role attributes from a bisimulated automaton for the role

1 / / r - role name, rg - role protocol, g - game protocol
2 c o m p u t e r o l e a t t r i b u t e s ( r , rg , g ) {
3 r o l e s e t = s t a t e s = a c t i o n s = moves = v a l i d = e f f e c t s = ∅ ;
4 f o r e a c h ( t r i n rg . t r a n s i t i o n s ) {
5 m = t r . move ; a = m. a c t i o n ;
6 s n d r = m. s e n d e r ; r c v r s = m. r e c e i v e r s ;
7 s = t r . s t a r t S t a t e ; f = t r . f i n a l S t a t e ;
8 r o l e s e t = r o l e s e t ∪ { s n d r } ∪ r c v r s ;
9 a c t i o n s = a c t i o n s ∪ {a } ;

10 moves = moves ∪ {m} ;
11 v a l i d = v a l i d ∪ { ( s , m) } ;
12 e f f e c t s = e f f e c t s ∪ { ( s , m, f ) } ;
13 }
14 f o r e a c h ( s i n rg . s t a t e s )
15 s t a t e s = s t a t e s ∪ { s } ;
16 i n i t i a l = e q u i v a l e n c e c l a s s ( g . i n i t i a l S t a t e , rg ) ;
17 f o r e a c h ( s i n g . F i n a l S t a t e s )
18 f i n a l s += e q u i v a l e n c e c l a s s ( s , rg ) ;
19 re turn ( <r , r o l e s e t , s t a t e s , i n i t i a l , f i n a l s ,
20 a c t i o n s , moves , v a l i d , e f f e c t s > ) ;
21 }

will produce the original NetBill protocol. Indeed, since the merchant’s automaton is
exactly the same with NetBill, the merchant will be participating in all interactions, thus
constraining the overall sequence of actions.

Given the original NetBill game protocol and the automata shown in Fig. 2, we can
directly obtain the role components of section 3.1, by following the algorithm shown
in Table 1. The algorithm in Table 1 derives role components, such as states, roleset,
moves, etc., directly from the automaton produced by the bbe reduction. It needs only
examine the game protocol alongside the bbe one in order to derive the initial and final
states of the role. These are the states which belong to the bbe class of the initial and
final states of the game protocol respectively (lines 16 and 17–18). Considering the
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gateway (BG), its role components are:
Role name = g

RR = {m, g}
SR = {0, 1, 2}
s0 R = 0
FR = {2}
αR = {ssepo, sr}

M R = {(m, ssepo, {g}), (g, sr, {m})}
V R = {(0, (m, ssepo, {g})), (1, (g, sr, {m}))}
εR = {(0, (m, ssepo, {g}), 1), (1, (g, sr, {m}), 2)}

5 Repairing Problematic Game Protocols

The NetBill game protocol has been easily transformed into roles because it is a well
designed protocol. However, it cannot be guaranteed that all protocols will be equally
well designed. In fact, some may contain design errors from the beginning, while others
may introduce errors as they are composed together in a society, even though they are
well-designed themselves [1]. Indeed, it is a well known fact from process algebras that
while safety properties are preserved under composition of processes, liveness proper-
ties are not necessarily so. So when composing two protocols which have some safety
and liveness properties, their composition will have the same safety properties but it is
not certain that it will have the same liveness properties - deadlocks, for example, can
very easily appear due to the composition.

The errors targeted by this work, however, are beyond the classic deadlocks/liveness
properties violations. Herein the interest lies in discovering the cases which make it
structurally impossible for an agent to implement its role automaton, even though the
protocol does not have a deadlock. This will occur when the agent is been asked to
implement a branch in the role automaton, where at least one of the transitions is an
invisible transition. What is been asked of the agent then is to take a decision without
it having full knowledge of the situation. These cases are exactly the ones that the
bbe reduction will not remove, unlike other reductions like the τ∗a. The AA will be
able to quickly identify these problematic protocols by examining the result of the bbe
reduction. If there is an unobservable τ transition somewhere then the game protocol is
not implementable and it should be repaired.

Fig. 3 shows one example of such an unimplementable protocol, while Fig. 4 shows
the results of the bbe reduction for its different roles. As Fig. 4 shows, while the role
Y (BY) is easily implementable, the roles Z and W (BZ and BW respectively) are not
implementable at all. This is due to the fact that they both need to decide what their
first action should be but that choice depends on the type of move that role X had
performed before, a move that they cannot observe. As such, the AA needs to repair
these problematic protocols and does so, by executing the algorithm of Table 2. Therein,
it once again performs the bbe reduction but now it executes the algorithm of Table 3
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Fig. 3. A non-implementable game protocol

Fig. 4. The bbe reduced role LTS’s for the unimplementable protocol of Fig. 3

to repair the game protocol when it identifies a transition in the result labelled with τ .
It then iterates again, performing the bbe reduction on the corrected version and it only
starts computing the attributes of the role when all τ transitions have been eliminated.

The repair algorithm of Table 3 starts at a state in the role protocol which has τ
transitions. It uses the bbe classes to find out the states in the original game protocol
which correspond to the starting state of these τ transitions. Then, for each of these
states in the game protocol, it adds the current role among the receivers of the moves for
all the moves which did not involve it previously. So, in the case of the game protocol
of Fig. 3 and the role Z, it would replace the transition (0, (x,actx1,y), 3) with the
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Table 2. Deriving role automata from a game protocol

1 / / r - role name, g - game protocol
2 d e r i v e r o l e ( r , g ) {
3 ng = g ;
4 f o r e a c h ( t r i n ng . t r a n s i t i o n s ) {
5 i f ( r /∈ { t r . s e n d e r } ∪ r e . r e c e i v e r s )
6 t r . l a b e l = t a u ;
7 }
8 do {
9 p r o b l e m a t i c p r o t o c o l = f a l s e ;

10 n g r = b r a n c h i n g b i s i m u l a t i o n ( ng ) ;
11 f o r e a c h ( t r i n n g r . t r a n s i t i o n s ) {
12 i f ( t a u == t r . l a b e l ) {
13 ng = r e p a i r ( ng , t r . i n i t i a l S t a t e , r ) ;
14 p r o b l e m a t i c p r o t o c o l = t rue ;
15 }
16 }
17 } whi le ( ! p r o b l e m a t i c p r o t o c o l ) ;
18 re turn c o m p u t e r o l e a t t r i b u t e s ( r , ng r , g ) ;
19 }

Table 3. Repairing a game protocol

1 / / Legend: All variables refering to the Game Protocol start with GP,
2 / / while all variables refering to the role protocol start with RP
3 r e p a i r (GP , RP badS ta t e , G P r o l e ) {
4 S t a t e s [ ] G P c l a s s = e q u i v a l e n c e c l a s s ( R P b a d s t a t e , GP ) ;
5 / / Add role in the receivers of the moves of these states
6 f o r e a c h ( G P s t a t e i n G P c l a s s ) {
7 f o r e a c h ( G P t r a n from G P s t a t e . t r a n s i t i o n s ) {
8 Move GP m= G P t r a n . move ;
9 Role GP sender = GP m . s e n d e r ;

10 R o l e s e t G P r e c e i v e r s n e w = GP m . r e c e i v e r s ∪ G P r o l e ;
11 G P t r a n . move = Move ( GP sender , GP m , G P r e c e i v e r s n e w ) ;
12 }
13 }
14 }

transition (0, (x,actx1,{y,z}), 3). It would also replace the transition (0, (x,actx2,y), 1)
with the transition (0, (x,actx2,{y,z}), 1). By doing so, it would give Z full information
about the situation in which it is being asked to take a decision. Of course this would not
completely repair the protocol, since role W would still be required to take a decision
whether it should end the protocol or to wait for move (z, actz1, w) based on knowledge
it does not posses. So in order to completely repair the protocol, AA would again need
to add w to the receivers of the moves in the transitions (0, (x,actx1,{y,z}), 3) and (0,
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(x,actx2,{y,z}), 1). The fully repaired protocol is shown in Fig. 5 and its bbe reduced
role descriptions are shown in Fig. 6.

Fig. 5. The repaired protocol of Fig. 3

Fig. 6. The bbe reduced role LTS’s for the repaired protocol of Fig. 5

Increasing Security. It should be noted that if the messages of the invisible actions
are to be kept secret then they can be replaced with new, random strings so as not to
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divulge their contents or the role which is supposed to perform them (here that is X).
An extra (trusted) participant could even be added, so that the new moves are performed
by it instead of the original role. So, instead of adding the move (0, (x,actx1,{y,z}), 3)
we could add the moves (0, (x, act1,{y, trusted}), 5) and (5, (trusted, random1, z), 3),
where trusted is the name of the new trusted participating role and random1 a random
but unique action whose purpose is just to let role z know what its state should be.

6 Conclusions and Future Work

In this paper we have presented a formal framework for games which we have used to
represent interaction protocols of multi-agent systems. We have shown how this frame-
work can be viewed from a role-oriented viewpoint, by formally representing a role of
a game and showing how a game description is obtained from its roles. Then we have
shown how the Authority Agent of a society can use bisimulation equivalence reduc-
tion in order, first, to decide if the protocol can be broken down into its constituent
roles and, then, to derive individual role descriptions for a particular game so that it can
distribute these to the applicant agents. By doing so we achieve a better usage of agent
resources, since they do not need to store the full game protocol, while at the same time
allowing for security constraints as well, since participating agents are now working on
a need-to-know basis only.

We have also shown how the Authority Agent of a semi-open society can identify
problematic games, in which agents are been called to act on information they lack. In
these cases we have developed a method for repairing the game with the inclusion of
the minimum extra information needed, thus removing one hurdle in the interaction of
agents.

Our formal framework of game protocols and role descriptions has been influ-
enced by the situation calculus model of our previous work [5], as well as by the
classic model of finite state automata (< Σ, Q, q0, F, ∆ : Q × Σ × Q > - actions,
states, initial state, final states, transition relation) and that of an Alternating Transi-
tion System (ATS) [23], where actions are labelled by the agent which performs them
(< Π, Σ, Q, π : Q → 2Π , δ : Q×Σ → 22Q

> - propositions, agents,states, labelling
of states with propositions, agent transition function).

Our work on the derivation of role descriptions from game protocols has close sim-
ilarities with the work of Desai et al. [24] where they also derive role skeletons from
protocol specifications. However there is no consideration there of the case of problem-
atic protocols we have identified. The authors of [24] have identified the basic problem
and consider the protocols which contain non-local choices as “non-enactable”, which
are exactly the protocols we call non-implementable. However, they treat these as im-
possible to occur in a real setting because they assume that the protocol designers will
be following a set of rules to check for this kind of problem before trying to use a proto-
col. We believe that this is a big dependability problem for multi-agent systems where
protocols of different designers are being used at the same time, since the fault of a
single designer can compromise the whole system. In our approach we take what we
believe to be a more realistic and cautious stance on this problem, accepting the fact
that there might be some problematic protocols introduced into the system and using
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a rather simple method to repair them on-line, thus allowing the multi-agent system to
continue its operation unaffected by them.

Future work includes investigating the formal properties of the proposed framework
to report on deriving roles and sub-roles from complex games composed of sub-games.
We believe this is an interesting direction that will be found useful in many practical
applications such as e-business protocols of the kind described by languages such as
BPEL [25].
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