

City, University of London Institutional Repository

Citation: Kloukinas, C. (2005). Thunderstriking constraints with JUPITER. Paper

presented at the Third ACM and IEEE International Conference on Formal Methods and
Models for Co-Design (MEMOCODE '05), 11 - 14 Jul 2005. doi:
10.1109/MEMCOD.2005.1487917

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/2894/

Link to published version: https://doi.org/10.1109/MEMCOD.2005.1487917

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Thunderstriking Constraints with JUPITER

Christos Kloukinas
City University

Department of Computing
Northampton Sq., London EC1V 0HB, U.K.
C.Kloukinas(at)soi.city.ac.uk

Abstract

We present JUPITER, a tool for analysing multi-
constrained systems. JUPITER was built to explore three
basic ideas. First, how to use controller synthesis so as
to find the exact conditions under which a particular con-
straint will be satisfied. Second, how to successively refine
the models used for the controller synthesis so as to obtain a
series of more easily understandable and more robust con-
trollers. Last but not least, how to structure & explain the
synthesised controllers and provide hints to designers for
further optimisations through the use of Machine Learning
techniques.

Thus, JUPITER can help in the design and analysis of
multi-constraint systems through the automatic synthesis of
control logic for certain of the constraints and the aid it
provides to designers for discovering further optimisations.

The controllers it synthesises can be easily implemented
on top of a standard real-time OS [7, 6].

Keywords: controller synthesis, refinement methodology,
machine learning.

1. Introduction

The complexity of the systems we are called to build is
increasing each day and so does the number of properties
we desire to guarantee: functional, real-time, performance,
response jitter, memory, energy consumption, QoS, depend-
ability, etc. Unfortunately, we are still lacking the tools and
methodologies which will allow us to ease the design and
development of such systems. The obvious solution to this
profusion of constraints is to attack each one in turn, refin-
ing our models successively. Indeed, it is evident that one
cannot attack all the constraints at once, since the resulting
search space is enormous. As we will see later on, treating
each constraint in its turn also helps better understand them
and build better systems.

In this paper we present JUPITER, a tool for aiding en-
gineers of embedded systems to analyse and meet the con-

straints of their systems. We mainly deal with safety prop-
erties, not liveness ones. Indeed, in the setting of real-time
embedded systems for which JUPITER was developed, one
is not usually asking that an event will be “eventually” an-
swered but rather that it will be answered in a particular
time frame. JUPITER was developed so as to explore three
basic ideas:

• Controller Synthesis [11, 1] : Simply trying to ver-
ify some property is not enough; indeed, more often
than not we know beforehand that the property will
not hold in general, especially for non-functional prop-
erties (e.g., hard real-time deadlines). Using controller
synthesis, we instead try to find the conditions we must
fulfil in order for the property to become true for the
system, e.g., in the case of hard real-time deadlines,
find a scheduling of tasks.

• Refinement Methodology [7, 6] : The refinement
methodology we propose is based on the usual wish
to consider easier properties first, gradually enriching
the system model so as to prove more difficult ones.
In this way, we increase our chances of being able to
attack realistically sized problems, at the expense of
slightly over-constraining the system, a small price to
pay usually.

More importantly, our methodology aims at aiding en-
gineers break down the analysis of a system, so as to
understand better its behaviour and the conditions un-
der which each particular requirement can be met.

• Analysis of Results using Machine Learning [5] :
Probably the most innovative1 part of JUPITER, it
stems from our realisation that practitioners will need
to understand the multiple controllers we synthesise
using our refinement methodology. This is a direct
consequence of their need to validate the final con-
troller, as well as, to study how other, more compli-

1Or just bizarre according to some. . .

cated constraints could be introduced to the system,
how the system could be further optimised, etc.

The rest of the paper is structured as follows: we first
present the design of the controller synthesiser of JUPITER
and the improvements we introduced from earlier versions
of it [7, 6]. Then we present the refinement methodology we
are using and, following that, we show how JUPITER helps
in the analysis of the synthesised controllers. We then move
to a concrete example, showing how one can use JUPITER to
control and analyse a particular system. Finally, we finish
with the conclusions and the work which will need to be
done in the future.

2. Controller Synthesis

Generally speaking, controller synthesis [11] can be
thought of as a natural next step to model-checking. Just
as in model-checking, we need to build the state space and
find the bad states (i.e., where the desirable properties do
not hold). Once the model-checking part has completed,
we need to backtrack from the bad states, until we can find
a set of states from whence we can render the bad states
unreachable by disabling certain system actions. For exam-
ple, when trying to assure deadlock-freedom, we need to
find the set of states where, if we disable the execution of
certain tasks, the system can no longer reach a deadlocked
state.

Apart from the backtracking part, the basic difference
with model checking lies in the fact that now the ac-
tions/transitions of the various automata modelling the sys-
tem are divided into two sets: the set of controllable tran-
sitions and the set of uncontrollable transitions. Thus, the
foremost decision to make when desiring to apply controller
synthesis is to decide which are the controllable actions in
the system. There are different possibilities: one can con-
trol only the election of the currently executing task (e.g.,
run task X when at state Y) or also control the duration of
its execution (e.g., run task X when at state Y for a duration
not longer than Z seconds). Other variables we can control
is the exact time when we will elect some ready task for
execution (e.g., delaying it on purpose so as to minimise re-
sponse jitter), the specific processor which should execute
a task in a multi-processor system, the current energy con-
sumption if so permitted by the underlying hardware (e.g.,
by underclocking/undervolting the processor), etc.

Just like model-checking, controller synthesis can be
performed in a symbolic manner (e.g., using BDD’s [3] for
representing the states in the state space), in an on-the-fly
manner [9], in a forwards/backwards manner, etc. Given
that we are interested in a multitude of constraints, we need
to search for the maximal controller of our system’s model,
so as not to over-constrain ourselves. In this way, we can

then still have our options open for controlling other aspects
of the system. Therefore, it does not suffice to find just one
cyclic behaviour which stays in a set of safe states. Take
for example the real-time controllers derived through the
classic rate-monotonic analysis [8]. These impose a fixed
priority on the tasks and thus make it extremely difficult to
examine further constraints for performance, jitter, etc. 2

Currently, JUPITER has a hard-coded definition of what
constitutes a controllable action: the election of a system
task/automaton for execution. The controller synthesis is
then performed as described above; the full state space
is constructed first, using an explicit state representation.
Then the synthesis phase starts, backtracking from the bad
states until it finds the set of frontier states, which separate
the set of safe states from the set of unsafe states [7, 6].
This set of frontier states, along with the constraints im-
posed on each state in it, is our (maximal) controller. The
models that JUPITER works with have a structure inherited
from the fact that it was initially meant to analyse real-time
Java programs [6]. So it assumes that there is an automa-
ton for each of the concurrently executing system tasks, one
automaton for modelling the environment (firing alarms &
keeping track of time by advancing the discrete-time clocks)
and another automaton which models the system scheduler.
The actions of the scheduler are controllable, while the ac-
tions of the other automata are uncontrollable. The sched-
uler becomes enabled when one of the application automata
try to enter a monitor on a shared resource or when an alarm
is fired. It then calculates the set of ready tasks and those
among them which it considers as safe to execute, so as to
pick a safe task for execution non-deterministically (it as-
sumes a uni-processor system). Starting initially with the
set of safe tasks equal to the set of ready ones, JUPITER
uses the synthesised constraints to successively strengthen
its (current state based) definition of safe tasks until all bad
states become unreachable.

We can think of our synthesised controller as a table-
driven/rule-based scheduler; the table index/if-part of the
rule is the current state and the table content/then-part of
the rule is the set of tasks/automata which must not be
elected to run at the particular state so as to keep the sys-
tem safe. We can also see the resulting controller as a de-
scription/explanation of all the undesirable behaviours of
the system. Being maximal, the controller will delay dis-
abling some action (task execution) as much as possible,
thus coming as close as possible to the root of an unde-
sirable system behaviour. This means that we can use the
controller as a succinct description of the numerous (of-
ten infinite) counterexample traces produced by a normal
model-checker, which highlights the cause of an undesir-
able behaviour.

2Rate-monotonic analysis does, however, have the advantage of being
an extremely simple and fast analysis method.

Equally important to the characterisation of con-
trollable/uncontrollable actions is the characterisation of
observable/unobservable state variables from the con-
troller’s/scheduler’s point of view. We partially support this
in JUPITER by assuming that the only observable system
variables are the ones describing the current states of the
automata (i.e., what in a program would be the current pro-
gram counter) plus the current value of the system clocks.
These latter are discrete-time stopwatches [4], chosen for
their ability to model preemptive scheduling of tasks. Thus,
the controller is unable to observe the rest of the system
variables; in fact, as we shall see later, we also examine the
case where the controller cannot observe the values of the
system clocks either, so as to examine whether we can con-
struct a time-independent controller.

Compressing Periodic Clocks. A simple optimisation
for timed models is the compression of all the periodic
clocks, ci. When all of the periodic clocks start at time in-
stance 0, then we can replace them with a single periodic
clock c taking values in the interval [0,P), where P is the
hyper-period of the system. The hyper-period of the system
is defined as the least common multiplier of the periods, Pi,
of the periodic tasks, P = lcmi(Pi). This is because at time
instance P the periodic clocks we are representing using the
single clock c will have reached for the first time the same
configuration they had at time instance 0.

Compressing Periodic Clocks with Phases. Initially [7,
6] we refrained from dealing with periodic clocks having
non-zero phases, asking for all application tasks to start at
time instance 0. We discovered however that dealing with
this case is not as difficult as we initially believed. So
now JUPITER also compresses the periodic clocks whose
phase/start time, Si, is non-zero. Let us now assume that the
periodic clocks ci take values in the intervals [0,Si +Pi) with
Si being the phase/start time of the clock. This effectively
means that our single periodic clock will be taking values
in the interval: [0,S+P), where S = maxi(Si). Indeed, time
instance S is the first time all the periodic clocks we are
compressing will have entered their periodic behaviour, and
this configuration will be repeated every P time units. That
is, whatever was their phase at time S, it will be exactly the
same P time units later on.

This compression means that instead of having to use
∑idlog2(Si +Pi)e bits to represent all the periodic clocks of
a system state, we need only use dlog2(P+S)e bits, a reduc-
tion which can help a lot as the number of states increases
(especially in the case where we allow task preemption).

To keep the models simple, we introduce macros for the
original periodic clocks, ci, which are now defined as:

ci =
{

c when c < Si
(c−Si) mod Pi when c ≥ Si

(1)

The system clock c itself “advances” using the following
tick function, thus ensuring that once it has taken the value
S it will forever remain in the interval [S,S +P):

tick(c) =
{

c+1 when c < S
[(c+1−S) mod P]+S when c ≥ S (2)

State Reduction. The most important optimisation how-
ever over its previous versions [7, 6] is how JUPITER de-
creases the number of states which must be saved in mem-
ory. Currently, JUPITER computes for each controllable
state (i.e., a state where there’s at least one controllable ac-
tion enabled) its controllable future. That is, for each pos-
sible action α it explores all the uncontrollable states which
can be reached from the current controllable state, until it
finds these controllable states which are reachable through
only uncontrollable states. It then discards all the interme-
diate uncontrollable states and keeps just the reachable con-
trollable states, thus constructing a hyper-graph. So, when
taking an action α from a controllable state sC

i to an un-
controllable state sU

j we will eventually reach a set of con-
trollable states {k = 1 . . .n : sC

ik
}, where the system sched-

uler becomes enabled anew or some bad state is reached
(we consider these as controllable states by definition). By
the very nature of the models, where application tasks ei-
ther compute for a finite duration or ask for resources by
attempting to enter a monitor, a controllable (or bad state)
is bound to be reached eventually from any uncontrollable
state. So, instead of storing all the states, we discard state sU

j
and all its uncontrollable successors, keeping just the fact
that sC

i
α−→ {k = 1 . . .n : sC

ik
}. By defining all bad states to

be controllable, this optimisation is safe, since the states
which we remove do not have any repercussion on our abil-
ity to control/observe the system state, nor do they modify
its branching structure. This is because in our models, the
controller/scheduler does not permit any other task to ex-
ecute when it is taking an action; this is similar to an OS
kernel inhibiting interrupts while scheduling. Thus, each
state in the state space will have only one kind of actions,
either controllable or uncontrollable, making our reduction
safe to apply.

Unlike the branching bisimulation equivalence [10] we
were using in our previous work [7, 6], which needed to
construct the full state space before reducing it, this optimi-
sation (dismissal of all intermediate uncontrollable states)
can be applied in an on-the-fly manner and thus lead to a
substantial reduction of the memory needs for exploring the
state space. Indeed, now we only have to store the current
“window” of uncontrollable state-space, which we discard
as soon as we have covered it completely, instead of keep-
ing it until the end. This is of particular importance for
the case where we are examining the timed model of the
system, since then the uncontrollable states can be a quite

lengthy series of time steps/ticks, which can quickly cause
a state space explosion if we do not discard them. It also
helps in the synthesis phase, since now we only consider
the controllable states when backtracking.

Using these optimisations, JUPITER can be used to syn-
thesise controllers for any kind of real-time uni-processor
systems, where actions have a duration described us-
ing minimum and maximum execution durations, e.g.,

si
α;wα∈[Bα,Wα]−−−−−−−−→ s j, where α is an action, wα a stopwatch

measuring the pure execution duration of action α and Bα

(Wα) the best (resp. worst) case execution duration of action
α. References [7, 6] describe our modelling of multi-task,
preemptive real-time systems in more detail.

3. Refinement Methodology

As aforementioned, the refinement methodology we are
using with JUPITER attempts to construct a series of con-
trollers, each one able to guarantee one more of the many
system requirements. This methodology is not used solely
for being able to attack more realistically sized systems; it is
also a software engineering attempt to break down the anal-
ysis of a system in order to better understand its behaviour
and the conditions under which the various systems require-
ments are met.

3.1. Deadlock-Freedom

The order in which we consider these requirements in
our methodology depends on both their difficulty and cer-
tain, more practical, engineering concerns. The first re-
quirement we try to guarantee by synthesising a controller
for it is deadlock-freedom. We do this using an untimed
model of the system, i.e., one where actions have an unspec-
ified duration. We only try to guarantee other requirements,
such as meeting deadlines, once we have managed to syn-
thesise a controller for deadlock-freedom and we have used
it to constrain our system.

The first reason for following this approach is be-
cause untimed models are in general much easier to anal-
yse than timed ones. In addition, the synthesised con-
troller for deadlock-freedom helps us in the analysis of the
timed model of the system by constraining it into the non-
deadlocked states. At the same time, it is also a sensible
engineering approach to try to remove all deadlocks for
all possible time durations of the various system actions.
This is because, the durations of the system actions is in
many cases nothing more than simple guesstimates. They
can thus hide potential deadlocks which will resurface later
on. Even, however, in the case where action durations are
safely bounded by their declared best and worst values, they
are not constant over the system’s life-time. Indeed, it may

well be the case that hardware or software components of
the system will be replaced in the future, thus changing the
timing relations. This may possibly unmask dormant dead-
locks which were so far avoided only by chance, because of
the particular initial action durations. Trying to debug such
a problem can be daunting; for critical systems such a situ-
ation is simply unacceptable due to the great danger/cost it
implies.

3.2. Guaranteeing Deadlines

Once our system has been rendered deadlock-free, our
methodology examines how it is possible to guarantee dead-
lines in a timed model of this constrained system, under the
hypothesis that task actions cannot be preempted. The non-
preemptive execution model hypothesis helps us to examine
a reduced state space first for the timed model, since it re-
moves all the cases where the execution of a task action is
suspended so as to handle an action of some other task. Dis-
allowing preemption of actions effectively transforms our
stopwatches back to discrete timed automata [2].

Once we can safely control the system under the hy-
pothesis that tasks are never preempted when performing
some computation, then we can use the constraints obtained
during this step to reduce even further the state space that
we have to construct and analyse, when we do allow tasks
to be preempted. We should note here that there are cer-
tain systems where the execution model is by nature non-
preemptive (e.g., network messages cannot be “preempted”
by other messages - at least not without a big cost). In these
systems, it makes no sense to examine the preemptive exe-
cution model.

We should also note here that we cannot safely control
all systems when we do not allow tasks to be preempted.
This means that for these systems we will not obtain any
control constraints and, therefore, will be obliged to exam-
ine the larger, unconstrained state space of the timed model,
which corresponds to a (deadlock-free) preemptive execu-
tion model. Even in such a case, where we find that the
system cannot be safely controlled under a non-preemptive
execution model, we can nevertheless obtain some useful
information about the system. Indeed, such a failure means
that the system is overloaded and/or that there are excep-
tionally small deadlines (compared to the duration of the
computations). In such a case, the coontroller synthesis
method will provide us with the tasks which miss their
deadlines under a non-preemptive execution model, as well
as, with traces showing what other tasks caused them to
miss their deadlines, which could help us in devising a
partially preemptive model, where some tasks can be pre-
empted, while others cannot. Another possibility to remedy
our inability to synthesise a controller for a non-preemptive
execution model is to break up computations, thus manually

introducing explicit preemption points in the application.

Meeting Deadlines under Preemption. Having already
constrained the system for staying deadlock-free and meet-
ing the deadlines under a non-preemptive execution model,
we are in a better position to explore the conditions under
which the system can meet deadlines under a preemptive ex-
ecution model. If non-preemption proved indeed to be con-
trollable, then so will preemption; in the worst case the syn-
thesised controller will have to re-impose non-preemption.

The benefits of being able to support a preemptive ex-
ecution model are quite obvious; we can better utilise re-
sources and increase our chances for meeting further con-
straints (e.g., performance, jitter, etc.).

3.3. Quality of Service

Quality of Service (QoS) effectively introduces levels
of service quality paired to resource needs. When the re-
sources are available, the system is able to offer certain lev-
els of QoS and guarantee that it will meet them.

Each particular QoS level effectively introduces a new
system. Action durations change (e.g., the processor now
uses more energy thus speeding up its execution) and so
do deadlines (e.g., we may now wish for shorter/longer re-
sponse times). This means that the real-time analysis of
the system must be done separately for each different QoS
level. If deadlines do not change, then we can analyse all
QoS levels together by enlarging the action duration inter-
vals to cover both the fastest and the slowest QoS. However,
this will over-constrain the system, imposing constraints on
certain QoS levels which are only needed at others.

3.4. Other Constraints

As shown in our previous work [7, 6], once we have syn-
thesised a controller for real-time deadlines, we can inves-
tigate whether we can synthesise a time-independent con-
troller, that is, a controller which does not observe any sys-
tem clocks. This will help make the implementation of the
controller faster and simpler, since we will no longer have to
use clocks in the final system (at least for the controller). It
will usually also decrease the size of the controller because
the controller synthesiser will now be forced to synthesise
more coarse constraints. The analysis technique described
in the following section will show more ways one can opti-
mise a synthesised controller.

The constraints we have so far described have stayed
within the well studied properties of deadlock-freedom and
real-time requirements. Other constraints, such as control-
ling energy consumption (either to minimise it or to stabilise
it for security reasons) or memory consumption, have not

yet been studied as much and we need to gain more experi-
ence with them.

Nevertheless, it seems logical to try to analyse the mem-
ory usage patterns first and control the system tasks in or-
der to minimise the total memory needed (e.g., by giving
priority to tasks which will free memory over those which
will allocate even more). Having constrained the system
using all these rules, then we can try to analyse energy con-
sumption by first taking into account only the energy con-
sumption of the processor. Once this step is performed and
a controller has been synthesised for it, one can refine the
model even further, introducing the energy consumption of
the memory units as well.

The resulting controller/scheduler stack (where each
stack layer is responsible for a specific property) need not be
deterministic. As we showed in [7] we can add further lay-
ers to this stack to render our scheduler deterministic by ex-
plicitly giving precedence to certain tasks over others, when
all of them are safe.

4. Analysis of Controllers

As aforementioned, through controller synthesis and our
refinement methodology, JUPITER will construct a stack of
controllers. Each one of them will be guaranteeing a par-
ticular constraint: deadlock-freedom, deadlines under non-
preemption, deadlines under preemption, etc. Even though
this separation of control logic helps in better understand-
ing both the control conditions and the system itself, syn-
thesised controllers are usually difficult to study, just like
any other computer generated piece of code (e.g., YACC
parsers). This is a grave problem because, most often than
not, engineers need to go further: either validate the final
controller or study it to figure out how they could meet even
more constraints (e.g., performance, distribution, etc.). In
both cases, understanding the controller is of paramount
importance.

In their present form, the synthesised controllers lack
two basic properties which render them difficult to under-
stand: structure and importance of the control conditions.
As aforementioned, the synthesised controllers’ form is a
set of rules on the current state vector (the observable part
of it) with associated actions to perform/avoid. A much bet-
ter way to present these controllers is by turning them into
decision trees [5]. This structures the set of rules together,
showing which state variables are more important for the
purposes of controlling the system and which are not.

One can think of this process as an attempt to sum-
marise/compress the information present in the controllers.
This is different to using a BDD representation; there we’re
effectively obtaining a canonical representation, not a min-
imum one. Indeed, the problem of obtaining a small BDD
lies in choosing a proper variable ordering. The fact that

W0

W1

W2

W3

W4

W5

W6

U0

U1

U2

U3

U5

U4

U6

(U6_Relock)

Val.monitorEnter
R0

R1

R2

R3

R4

R5

R6

R7

[2,3] Val.write

Late.monitorEnter

[1,1] Late := false

Late.notify

Late.monitorExit

Val.monitorExit

notified

Val_fresh

! Val_fresh

notified \/ timedout

Writer Refresher

Late.monitorEnter

[1,1] Late := true

Late.timed_wait(13)

Val.monitorEnter

[1,1] Val_fresh := ! Late

Val.notify

Val.monitorExit

Late.monitorExit

User

Val.monitorEnter

while(!Val_fresh)

Val.wait

Val.monitorEnter

[2,2] local := Val.read

Val.monitorExit

[5,6] compute(local)

wait_for_period(20)

Val holds the latest value
produced by the Writer &
the User is notified by the
Refresher (through Late) if
Val is fresh enough for use

Figure 1. A simple R-T system

BDD’s impose the same ordering throughout the whole
structure makes it difficult to obtain the smallest descrip-
tion possible and in any case BDD’s give us very little, if
any, information concerning the importance of system vari-
ables. We can instead use Machine Learning methods for
inducing a decision tree out of a set of pre-classified exam-
ples, so as to extract a succinct description of the example
set, as proposed in [5]. Indeed, our setting matches the de-
cision tree induction methods perfectly. Our example set is
the (controllable) state space itself. Through the controllers
each state is effectively classified as safe or unsafe for some
action. Thus, we can induce a decision tree form of the con-
trollers to characterise the states as unsafe/safe.

Unlike the usual application of Machine Learning meth-
ods, we have a great advantage: full coverage of the state
space. Thus the trees we are inducing are by definition
100% accurate, a near impossible situation in the Ma-
chine Learning domain, where example sets used for induc-
tion/training cover only a part of the state space, contain
measurement errors, etc. This means that we can change
certain aspects of the Machine Learning algorithms which
were introduced because of the underlying uncertainty in

the quality of the training examples [5]. In this way, we can
take full advantage of the fact that we cover the full state
space and that all our data are accurate.

Just like BDD’s, the decision tree induction algorithm we
use will remove unneeded variables from the decision tree,
showing us just the ones which really matter for the control-
lability of the system. Unlike BDD’s, however, the decision
tree induction algorithm will also offer an order of signifi-
cance of these variables, helping us understand which sys-
tem variables are more important. For example, when using
this approach to structure the synthesised controller against
deadlocks, this ordering will give us such information as
which task is most important for another task to avoid dead-
lock, highlight task interdependencies which can aid in find-
ing good task partitioning to multi-processors, etc. [5].

5. Example

In this section we will demonstrate the use of JUPITER
in practise through an example, see Figure 1. Our example
consists of a very simple system composed of three tasks:

an aperiodic task (Writer) which continually reads some
sensor and writes its value into a shared variable (Val),
a periodic task (User) which uses this value to perform
some task and a third aperiodic task (Refresher) which
attempts to ensure that values used by the User task have
been produced in the last 13 time units. The three tasks use
monitors and condition variables to synchronise and com-
municate, as in Java programs. Certain actions are prefixed
with an interval, e.g., “[2, 3] Val.write” which de-
scribes the minimum and maximum execution time this
action may take. Initially, all actions are assumed to be
safe, so the scheduler simply chooses non-deterministically
among the application tasks which are ready to execute.

Writer-Is-Unsafe :=
(and (= Writer |W0|)

(= Refresher |R3|))

Refresher-Is-Unsafe :=
(and (= Refresher |R2_Relock|)

(or (= Writer |W1|)
(= Writer |W2|)))

Figure 2. Controller against deadlocks

If we analyse this system, we will discover that there
is the possibility of a deadlock between the Writer and
Refresher tasks. To solve this deadlock, JUPITER syn-
thesises a controller which effectively removes 12 control-
lable transitions from the state-space. The decision tree
form of this controller is the one shown in Figure 2. Indeed,
it is easy to see that if we allow the Writer to execute
at position W0 when the Refresher is at R3 the system
will deadlock, since Refresher has already entered the
monitor of Late and will subsequently need to enter Val’s
monitor, while Writer after executing the W0 −→ W1 ac-
tion will have entered Val’s monitor and will then attempt
to enter Late’s monitor. The constraint on Refresher is
also easy to understand. It says that whenever Refresher
is at position R2_Relock, which is the internal position
between R2 and R3 where the task has been notified (or
timedout) and tries to reenter the monitor, we should not
allow it to execute (and reenter the monitor of Late) if
the Writer is already at position W0 or W1. Note how
we have constructed the decision trees in a way which al-
lows one to look at the system’s controllability from each
task’s point-of-view. The tree of the Writer imposes the
Writer’s current position as the most important attribute;
see [5] for a lengthier discussion on this. Given that, the
tree induction algorithm then finds that the position of the
Refresher task is the most important variable, for con-
trolling Writer. For the tree of the Refresher we have
the opposite order, showing that Writer’s position is the
most important information for Refresher’s safety. This
close interdependence between Writer and Refresher

which is highlighted by the decision-tree form of the con-
troller can be a good reason to deploy both these tasks on the
same processor and the User in another one, if we decide
to distribute the system’s tasks.

Using this synthesised controller for avoiding deadlocks,
by adding its constraints to the function which characterises
ready tasks as safe, we can then analyse the system with
respect to its deadlines. Examining first the case where the
tasks cannot be preempted, we synthesise a controller which
forbids 64 transitions in the system, see Figures 4 and 5. If
we examine them we will see that the most constrained task
now is Writer, since it looses precedence from both the
User and the Refresher at many control points. Note
also how the variable ordering differs in the sub-trees. The
first part of Writer’s constraints (for position W0) ensures
that the User will have precedence in the use of their mu-
tually shared resource (Val) and the processor so as not to
miss its deadline. The second part (for position W2) ensures
that Writer will allow Refresher to advance enough
so that it can capture Writer’s forthcoming signal (and
subsequently signal User itself so that User can use the
new value of the sensor). Looking at Refresher’s con-
straints we see that it also needs to examine User’s po-
sition so that it does not delay it, either by taking resource
Late when the User also wants it (position U6_Relock)
or by using the processor when the User needs it too (at
positions U1 and U5 - note also the value of User’s clock
there). The constraints imposed on User effectively cause
it to release the processor when the Writer is about to no-
tify Refresher (and there is enough time left until the
next deadline). In summary, the synthesised scheduler im-
poses an order User>Refresher and User>Writer
when the User is about to miss its deadline and an order
Refresher > Writer when the User is safe and the
Refresher needs to receive Writer’s signal .

Strengthening the characterisation of safe tasks with the
new constraints, we then examine the case where task pre-
emption is allowed. Interestingly enough, the synthesised
controller for the non-preemptive execution model manages
to keep the system safe even in the case where tasks can be
preempted. More interesting still, is the final controller we
synthesise to test whether we can meet deadlines without
observing the system’s clocks, see Figure 3. In order to
synthesise this controller we apply to the system the previ-
ous ones, making sure to remove any references they were
making to the clocks, both periodic or stopwatches. So, if
one of the previous controllers had a constraint of the form
(X ∧Clocki > 3) we need to transform it to (X). Looking at
the resulting controller, we can see that it effectively gives
priority to the User over the Refresher so that the for-
mer does not miss its deadline, and also gives priority to the
Refresher over the Writer so that the Refresher
can reach its timed_wait() primitive used to measure

Table 1. Performance Statistics for the system of Figure 1
Model Space Construction States (c/u) Max u per c Trans. (c/u) Synthesis
deadlocks .5 sec / 3.0 MB 551 / 3612 18 571 / 4173 .04 sec / 378 KB
non-preemption 10.6 sec / 53.6 MB 2747 / 27962 30 2837 / 28895 1.51 sec / 5.7 MB
preemption 4.5 sec / 19.6 MB 1435 / 13312 30 1470 / 13826 —
time independence 1.4 sec / 4.7 MB 481 / 3867 41 495 / 3990 .02 sec / 185 KB

Table 2. Performance Statistics for a larger system (2 periodic & 2 aperiodic tasks)
Model Space Construction States (c/u) Max u per c Trans. (c/u) Synthesis
deadlocks 26.5 sec / 295.3 MB 6002 / 76098 28 6292 / 86665 —
non-preemption 92.5 sec / 341.9 MB 7699 / 130923 48 7760 / 142398 7.39 sec / 5.1 MB
preemption 65.7 sec / 241.7 MB 6197 / 95757 48 6239 / 104333 —
time independence 62.7 sec / 241.3 MB 5947 / 91304 48 5989 / 99554 —

the age of the latest value produced. This is not too difficult
to explain - the User is the only task with a deadline, so it
needs a higher priority. At the same time, the User cannot
advance unless the Refresher notifies it, which shows
why we need to give the latter priority over the Writer.

Writer-Unsafe-When-Not-Observing-Clocks :=
(and (= Writer |W1|)

(or (= Refresher |R0|)
(= Refresher |R7|)))

Refresher-Unsafe-When-Not-Observing-Clocks :=
(and (= Refresher |R1|)

(= User |U5|)
(= Writer |W2|))

Figure 3. Time-independent controller for
deadlines

Table 1 gives certain performance data for this exam-
ple. We can see that the number of controllable states (c)
is around 15% of that of uncontrollable states (u) and that
the ratio of controllable to uncontrollable transitions is sim-
ilar. This shows not only the great savings in space we gain
by our state reduction method but also the savings in time
for the synthesis itself, since now the synthesis need not ex-
amine the uncontrollable states at all. Indeed, we can see
that the maximum number of uncontrollable states in the
window of a controllable state is rather high, going from
18 to 41. If we increase the duration of computations or
the accuracy of our clocks (e.g., counting milliseconds in-
stead of seconds, etc.) then this number will increase even
more and we will be able to perform a finer grain analysis
at a small cost, since we only keep one such window each
time. Table 2 shows the same set of data for a larger system,
comprising of 2 periodic and 2 aperiodic tasks. This system
has no deadlocks and the controller synthesised for the non-

preemptive execution model can also keep the system safe
in a preemptive execution model, and does so even if we
do not allow it to observe the system clocks. We can see
that there the ratio of controllable to uncontrollable states is
even better; the former are not more than 7% of the latter.
This is also shown in the increase of the maximum num-
ber of uncontrollable states belonging to the window of a
controllable state.

6. Conclusions & Future Work

JUPITER is based on previous work [7, 6] on schedul-
ing approached as a controller-synthesis problem [11, 1]. It
has allowed us to further explore three basic ideas: appli-
cation of controller synthesis in practise, successive model
refinement and, last but not least, use of Machine Learning
techniques so as to structure and explain synthesised con-
trollers [5]. We believe that the initial results we have ob-
tained show the potential of our approach. They have also
shown us other routes to explore, for example how we could
use the decision tree form of the controllers to choose other
system variables to observe or further understand and opti-
mise a system (see [5] for further details on this).

JUPITER is still in the early development stage. We are
currently examining various extensions, such as the ability
to perform the synthesis in an on-the-fly manner during the
state-space exploration [9]. This will allow us to not exam-
ine the whole state-space (unless it is safe), since we will be
constraining the system while constructing the state-space
itself. Another extension we want to introduce is directed
synthesis. The idea behind it is to examine first those un-
explored states which are more probable to lead to a bad
state, thus allowing us to synthesise constraints earlier on
in the exploration of the system. We are also examining
such ameliorations as supporting functions (i.e., introduc-
ing execution stacks in the state vector), dynamic creation

User-Misses-Deadlines :=
(and (= User |U5|)

(= Writer |W2|)
(= Refresher |R2|)

(or (and (= User_Periodic_Clock 14)
(= Refresher_Stopwatch 4))

(and (<= 17 User_Periodic_Clock) (<= User_Periodic_Clock 18)
(or (= Refresher_Stopwatch 2)

(= Refresher_Stopwatch 4)))))

Refresher-Misses-Deadlines :=
(or (and (= Refresher |R0|)

(or (and (= User |U1|)
(or (and (= Writer |W0|)

(= User_Periodic_Clock 11))
(and (= Writer |W2|)

(= User_Periodic_Clock 10))
(and (= Writer |W6|)

(= User_Periodic_Clock 11))))
(and (= User |U5|)

(or (and (= Writer |W0|)
(= User_Periodic_Clock 13))

(and (= Writer |W2|)
(= User_Periodic_Clock 13))

(and (= Writer |W6|)
(= User_Periodic_Clock 13))))

(and (= User |U6_Relock|)
(or (and (= Writer |W0|)

(= User_Periodic_Clock 11))
(and (= Writer |W6|)

(= User_Periodic_Clock 11))))))
(and (= Refresher |R3|) (or (= User |U1|)

(= User |U5|)
(= User |U6_Relock|))))

Figure 4. Controller for deadlines, non-preemptive execution, part I

of objects and system tasks, or user-definable controllable
actions and controller-observable variables, which will ease
the use of JUPITER in practise and allow it to be used in the
analysis of more systems. Finally, we wish to eventually ex-
tend JUPITER with even more models and refinement steps,
so as to be able to synthesise controllers for the memory us-
age of a system, its energy consumption, etc. This is a result
of our wish to use JUPITER for modelling and analysing em-
bedded systems, where engineers need to meet a multitude
of different non-functional requirements.

Acknowledgements. The author would like to thank the
anonymous reviewers for their suggestions on improving
the presentation of this paper.

References

[1] K. Altisen, G. Gößler, and J. Sifakis. Scheduler modeling
based on the controller synthesis paradigm. Real-Time Sys-

tems, 23(1):55–84, July 2002.
[2] R. Alur and D. L. Dill. A theory of timed automata. Theo-

retical Computer Science, 126(2):183–235, Apr. 1994.
[3] R. E. Bryant. Graph-based algorithms for Boolean func-

tion manipulation. IEEE Trans. on Comp., C-35(8):677–
691, Aug. 1986.

[4] F. Cassez and K. G. Larsen. The impressive power of stop-
watches. In Proc. of CONCUR 2000, LNCS 1877, pages
138–152, 2000.

[5] C. Kloukinas. Data-mining synthesised schedulers for hard
real-time systems. In ASE-2004, pages 14–23. IEEE Com-
puter Society Press, Sept. 2004.

[6] C. Kloukinas, C. Nakhli, and S. Yovine. A methodology
and tool support for generating scheduled native code for
real-time Java applications. In EMSOFT’03, LNCS 2855,
pages 274–289, Oct. 2003.

[7] C. Kloukinas and S. Yovine. Synthesis of safe, QoS ex-
tendible, application specific schedulers for heterogeneous
real-time systems. In ECRTS’03, pages 287–294. IEEE
Computer Society Press, July 2003.

Writer-Misses-Deadlines :=
(or (and (= Writer |W0|)

(or (and (= User |U1|)
(or (and (= Refresher |R0|)

(<= 8 User_Periodic_Clock) (<= User_Periodic_Clock 11))
(and (= Refresher |R2|)

(<= 8 User_Periodic_Clock) (<= User_Periodic_Clock 11))
(and (= Refresher |R2_Relock|)

(<= 7 User_Periodic_Clock) (<= User_Periodic_Clock 11))
(and (= Refresher |R7|)

(<= 8 User_Periodic_Clock) (<= User_Periodic_Clock 11))))
(and (= User |U5|)

(or (and (= Refresher |R0|)
(<= 11 User_Periodic_Clock) (<= User_Periodic_Clock 13))

(and (= Refresher |R2|)
(<= 11 User_Periodic_Clock) (<= User_Periodic_Clock 13))

(and (= Refresher |R2_Relock|)
(<= 11 User_Periodic_Clock) (<= User_Periodic_Clock 13))

(and (= Refresher |R7|)
(<= 11 User_Periodic_Clock) (<= User_Periodic_Clock 13))))

(and (= User |U6|)
(= Refresher |R2_Relock|)

(<= 7 User_Periodic_Clock) (<= User_Periodic_Clock 10))
(and (= User |U6_Relock|)

(or (and (= Refresher |R0|)
(<= 8 User_Periodic_Clock) (<= User_Periodic_Clock 11))

(and (= Refresher |R2|)
(<= 9 User_Periodic_Clock) (<= User_Periodic_Clock 11))

(and (= Refresher |R2_Relock|))
(and (= Refresher |R7|)

(<= 8 User_Periodic_Clock) (<= User_Periodic_Clock 11))))))
(and (= Writer |W2|)

(or (and (= Refresher |R0|)
(or (and (= User |U1|)

(<= 5 User_Periodic_Clock) (<= User_Periodic_Clock 8))
(and (= User |U5|)

(= User_Periodic_Clock 13))
(and (= User |U6|)

(<= 5 User_Periodic_Clock) (<= User_Periodic_Clock 8))))
(and (= Refresher |R2|)

(or (and (= User |U1|)
(<= 5 User_Periodic_Clock) (<= User_Periodic_Clock 8))

(and (= User |U5|)
(= User_Periodic_Clock 13))

(and (= User |U6|)
(<= 5 User_Periodic_Clock) (<= User_Periodic_Clock 8))))

(and (= Refresher |R2_Relock|)
(= User |U5|)

(= User_Periodic_Clock 13)))))

Figure 5. Controller for deadlines, non-preemptive execution, part II

[8] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. JACM,
20(1):46–61, Jan. 1973.

[9] S. Tripakis and K. Altisen. On-the-fly controller synthesis
for discrete and dense-time systems. In FM’99, volume 1708
of LNCS, Toulouse, France, Sept. 1999. Springer-Verlag.

[10] R. J. van Glabbeek and W. P. Weijland. Branching time and
abstraction in bisimulation semantics. JACM, 43(3), 1996.

[11] W. M. Wonham and P. J. Ramadge. On the supremal con-
trollable sublanguage of a given language. SIAM Journal of
Control and Optimization, 25(3):637–659, May 1987.

	. Introduction
	. Controller Synthesis
	. Refinement Methodology
	. Deadlock-Freedom
	. Guaranteeing Deadlines
	. Quality of Service
	. Other Constraints

	. Analysis of Controllers
	. Example
	. Conclusions & Future Work

