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 6 
Abstract 7 

The present work examines the rim fragmentation of a millimeter-sized methyl-ethyl-ketone (MEK) 8 

droplet imposed by the impact of different millijoule nanosecond laser beams that correspond to 9 

droplet propulsion velocity values between 1.76 m/s and 5.09 m/s. The numerical investigation is 10 

conducted within a physically consistent and computationally efficient multiscale framework, using 11 

the Σ-Υ two-fluid model with dynamic local topology detection. Overall, the macroscopic droplet 12 

expansion and the obtained deforming shape show good agreement with the experimental 13 

observations. The influence of the laser beam energy on the droplet deformation and the evolution 14 

of the detached fragments from the rim is demonstrated. The physical mechanisms that determine 15 

the droplet expansion, including the expansion velocity and expansion rate, along with the effect of 16 

the surrounding air flow on the detached fragments, are addressed. Despite the visualization 17 

limitations inside the polydisperse cloud of fragments in the experimental results at higher laser 18 

energy, the evolution of fragments during the fragmentation process is quantified for the first time, 19 

and size distributions are obtained within the multiscale framework.  20 

Keywords: laser impact, droplet fragmentation, rim breakup, two-fluid model, multiscale model 21 

1. Introduction 22 

The droplet response to a laser-pulse impact is a polyparametric phenomenon, which remains of 23 

primary significance in varied state-of-the-art applications of both industrial and medical interest, 24 

including, among others, the extreme ultra-violent (EUV) light emission in lithography 25 

machines [1], [2], [3], [4], the micromachining in the fabrication of photonic devices [5], [6], [7] and 26 

the laser ablation of biological tissues [8], [9], [10], [11]. The absorption of the laser energy by the 27 

liquid droplet results in rapid and explosive phase-change phenomena, such as cavitation [12], [13], 28 

vaporization [14], [15], [16], and plasma formation [17], [18], observed in both transparent and liquid 29 

metal droplets. As a consequence of the developed droplet dynamics after the laser-pulse impact, the 30 

droplet moves, deforms, and fragments into different patterns, dependent on the intensity of the 31 

applied laser beam energy and the material of the liquid droplet. 32 

Several experimental studies in the literature investigate the laser-imposed fragmentation of a liquid 33 

droplet under different experimental configurations, which as a result, lead to different post-impact 34 

mechanisms. In the early literature, Kafalas & Herrmann [14] and Kafalas & Ferdinand [15] examined 35 

the explosive vaporization of single micron-sized water droplets imposed by a pulsed CO2 laser with 36 

an energy of approximately 0.5 J per pulse. Later, Pinnick et al. [19] extended the explosive 37 

vaporisation study for different liquids, e.g. for ethanol and diesel droplets, and observed similar 38 

fragmentation patterns with the water experiments for a pulsed CO2 laser and comparable energy. 39 

Similar explosive response was also observed for micron-sized liquid metal droplets in the experiments 40 

of Basko et al. [20] and Grigoryev et al. [21]; in this case, the picosecond laser pulse results in the 41 

development of plasma state inside the droplet, while the development and propagation of a GPa 42 

pressure pulse inside the droplet triggers the subsequent violent fragmentation. More recently, 43 

Gonzalez Avila & Ohl [12] and Zeng et al. [22] studied a different explosive fragmentation mode, which 44 
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is developing as an outward widespread jetting from the droplet surface. Specifically, the laser impact 45 

onto a millimetre-sized water droplet with a cavitation bubble in the centre imposes a laser-induced 46 

cavitation and bubble oscillations that penetrate the droplet surface; different fragmentation regimes 47 

were identified based on the dynamic pressure and the energy of the expanding bubble. In an attempt 48 

to control the deposition of the laser energy inside the droplet, Klein et al. [23], [24], [25] proposed 49 

the use of opaque liquid droplets, which restrict the energy absorption in a thin superficial layer on 50 

the illuminated side of the droplet. Specifically, Acid-Red-1 and Oil-Red-O solutions were utilized for 51 

water and methyl-ethyl-ketone (MEK) droplets, respectively, in order to investigate the droplet 52 

response to a broad range of laser energy between 1 mJ and 420 mJ. Additionally, the similarities 53 

between the physical principles that govern the laser-induced droplet fragmentation and the 54 

fragmentation due to the mechanical impact of a droplet onto a solid surface [26] were highlighted; 55 

the impulsive acceleration of the droplet due to the laser impact can be correlated with the impulsive 56 

deceleration of the droplet when impacting the solid. Recently, Rao et al. [27] demonstrated the 57 

influence of the laser focus and energy on the resulting fragmentation of an array of micron-sized 58 

water and diesel droplets and identified a new butterfly type fragmentation pattern. Overall, the 59 

available experimental studies in the literature provide a thorough analysis of the droplet dynamics 60 

and the physical mechanisms that govern the subsequent fragmentation. However, due to the 61 

multiscale character of the fragmentation process, very few quantitative data are available regarding 62 

the produced fragments, for instance in the high resolution experimental visualizations of Klein et 63 

al. [25] and Rao et al. [27], which mainly concern moderate fragmentation regimes. 64 

The hydrodynamics response of a liquid droplet to a laser-pulse impact is driven by the imposed recoil 65 

pressure on the droplet surface, as discussed in previous analytical and numerical studies in the 66 

literature. Specifically, the smooth particle hydrodynamics (SPH) method is commonly adopted for the 67 

investigation of liquid tin droplets, which are subject to high energy picosecond laser beams. As 68 

depicted in the works of Grigoryev et al. [21] and Koukouvinis et al. [28], the SPH method can 69 

accurately predict the recoil pressure establishment and propagation inside the droplet, shortly after 70 

the laser-pulse impact, the formation of dominant cavitation regions, and the early-time explosive 71 

fragmentation, using a given particles population. Concerning the commonly utilized Eulerian 72 

methods in droplet fragmentation simulations due to mechanical impact [29], [30], [31], Zeng et 73 

al. [22] employed the Volume of Fluids (VOF) method to study the cavitation-induced liquid jetting of 74 

a water droplet with a gas bubble in the centre at initial conditions, impacted by a millijoule laser 75 

pulse. The coherent droplet interface and the formation of multiple outward liquid jets were 76 

accurately captured with the sharp interface method; however, the small-scaled fragments remain 77 

unresolved with the VOF method, which can result in significant loss of information in more violent 78 

fragmentation regimes with dominant polydisperse fragments. Gelderblom et al. [32] proposed the 79 

boundary integral (BI) method for the simulation of the laser-induced droplet deformation. The BI 80 

simulations precisely capture the droplet lateral and width deformation under different conditions; 81 

nevertheless, the effects of the surrounding air and the subsequent fragmentation of the elongated 82 

liquid sheet were excluded from the numerical modelling. Additionally, Gelderblom et al. [32] and 83 

Reijers et al. [33] presented an analytical solution for the developed flow fields inside the droplet, 84 

during the early-times of the droplet response to the laser-pulse impact. The analytical studies 85 

provided a further insight into the obtained recoil pressure and the resulting droplet dynamics that 86 

finally initiate the droplet deformation; however, the analysis is restricted to the early times, before 87 

the droplet deformation becomes significant.  88 

Following the numerical challenges imposed by the unrevealed laser-induced droplet fragmentation 89 

mechanisms, there is a gap in the up-to-date literature regarding a comprehensive numerical analysis 90 

that can capture both the early-time droplet dynamics, evolving shortly after the laser-pulse impact 91 
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and the later-time droplet fragmentation with consideration of all the produced multiscale fragments. 92 

The present study proposes the multiscale two-fluid approach, as developed by Nykteri et al. [34], in 93 

order to investigate the multiscale character of the later-time droplet fragmentation. The numerical 94 

methodology has been previously validated against droplet fragmentation cases, driven by the high-95 

speed mechanical impact on a solid surface [34]. In the present numerical simulations, the multiscale 96 

two-fluid approach employs a sharp interface method for the deforming and laterally expanding liquid 97 

droplet and a physically consistent sub-grid scale modelling for the produced small-scaled fragments, 98 

due to the rim breakup. The novelty of the conducted simulations lies on the thorough quantitative 99 

analysis of both the early-time and the later-time droplet dynamics with a viable computational cost. 100 

Specifically, significant information regarding the liquid droplet expansion into an elongated liquid 101 

sheet is revealed, including the droplet radial expansion velocity and the effect of the surrounding air. 102 

Additionally, the influence of the applied laser beam energy is demonstrated and shows good 103 

agreement with both the experimental observations of Klein et al. [25] and theory. Finally, for the first 104 

time in the up-to-date literature, an overview of the evolution of the produced fragments’ population 105 

is presented. The fragments dynamics, including the development of a cloud of fragments in the 106 

course of the fragmentation process and the interaction between the detached fragments and the 107 

surrounding air under the impact of different beams, are highlighted and sizes distributions are 108 

obtained. 109 

In section 2 are presented all the details of the numerical configuration for the conducted laser-110 

induced droplet fragmentation simulations, including the problem formulation as described in the 111 

experimental studies of Klein et al. [23], [24], [25], the early-time dynamics simulations, the governing 112 

equations of the multiscale two-fluid approach and the later-time dynamics simulations set-up. 113 

Following, in section 3 the numerical investigations for the rim fragmentation of a liquid droplet, 114 

imposed by different intensity laser beams are discussed. The numerical results are compared with 115 

the experimental observations of Klein et al. [25] for the same examined conditions. Finally, the major 116 

conclusions are summarized in section 4. 117 

2. Numerical modelling 118 

The fragmentation of a millimetre-sized methyl-ethyl-ketone (MEK) droplet imposed by the impact of 119 

a millijoule nanosecond laser pulse is investigated in the present study using numerical simulations. 120 

The MEK droplet with an initial radius of R0 = 0.9 mm, density ρ = 805 kg/m³, kinematic viscosity                 121 

ν = 0.53×10¯6 m2/s and surface tension γ = 0.025 N/m lies in a nitrogen environment at ambient 122 

conditions (p = 1 atm, T = 20o C). The laser-induced droplet dynamics concern two main stages, namely 123 

the early-time droplet response to the laser pulse and the later-time droplet deformation and 124 

fragmentation. The early-time droplet dynamics are discussed in §2.1 based on the experimental 125 

investigations of Klein et al. [23], [24], [25] and a physically consistent numerical modelling is 126 

presented in §2.2, following the analytical model of Gelderblom et al. [32]; the obtained pressure and 127 

velocity fields inside the droplet are subsequently utilized for the initialization of the conducted 128 

numerical simulations that capture the later-time phenomena. The numerical simulations of the later-129 

time droplet deformation and fragmentation are performed using the multiscale two-fluid approach, 130 

presented in §2.3. Details of the simulation set-up are summarized in §2.4. 131 

2.1. Problem formulation 132 

The numerical modelling of the laser-induced droplet fragmentation is based on the problem 133 

formulation and the fundamental principles of the early- and later-time droplet dynamics, as 134 

introduced in the experimental studies of Klein et al. [23], [24], [25] and illustrated in Figure 1.  135 
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The early-time droplet dynamics in Figure 1(i-ii) are characterized by the millijoule nanosecond laser 136 

pulse impact onto the droplet that results to local boiling on the superficial layer with thickness                137 

δ << R0 and the emission of a very small vapour mass in the surrounding air. The resulting recoil 138 

pressure on the droplet surface accelerates the droplet, until it finally reaches a constant propulsion 139 

velocity U, as expressed in the momentum conservation below: 140 

𝑚𝑢 = 𝜌𝑅0
3𝑈   (1) 141 

where m is the vaporized liquid mass on the superficial layer, u the velocity of the expelled vapour 142 

mass, ρ the liquid density, R0 the initial droplet radius and U the droplet propulsion velocity.  143 

The primary parameter that determines the laser-induced droplet fragmentation, by establishing the 144 

propulsion velocity and thus, the expansion rate of the droplet, is the Weber number of the propelled 145 

droplet, defined as: 146 

𝑊𝑒 =
𝜌R0𝑈2

𝛾
             (2) 147 

where ρ is the liquid density, R0 the initial droplet radius, U the droplet propulsion velocity and γ the 148 

liquid surface tension. 149 

During the later-time droplet dynamics in Figure 1(iii-iv), the deformation of the droplet surface 150 

dominates on the inertial timescale, defined as 𝜏𝑖 = R0 𝑈⁄ , until eventually the droplet lateral 151 

expansion is restricted by the surface tension and the extended fragmentation on the capillary 152 

timescale, calculated as 𝜏𝑐 = √𝜌𝑅0
3 𝛾⁄ . 153 

2.2. Early-time dynamics and initial fields 154 

The distinct separation of timescales in the laser-induced droplet fragmentation problem allows to 155 

isolate the modelling of the early-time droplet dynamics from the later-time droplet deformation and 156 

fragmentation without introducing physical or numerical restrictions. Following this observation, 157 

Gelderblom et al. [32] provided a unified analytical model for all early-time phenomena, starting from 158 

the laser-pulse impact onto the droplet for a duration τp, until the droplet propulsion with constant 159 

velocity on time τe, illustrated in Figure 1(i-ii). The model concerns a pressure pulse with magnitude pe 160 

applied on the droplet surface for a duration τe. Accordingly, the absolute impulse scale peτe imposes 161 

the droplet propulsion. The momentum conservation at time τe is expressed, as follows: 162 

∫ ∫  𝑝𝑒𝑒𝑧 ∙ 𝑑𝐴
𝐴

𝑑𝑡
𝜏𝑒

0
=  

4

3
𝜋𝜌𝑅0

3𝑈          (3) 163 

where τe is the vapour expulsion time, A the droplet surface area, pe the magnitude of the pressure 164 

pulse, ρ the liquid density, R0 the initial droplet radius, U the droplet propulsion velocity. 165 

As derived from the assumptions of Gelderblom et al. [32] for an inviscid, irrotational and 166 

incompressible flow, the pressure field inside the droplet at time τe is obtained from the solution of 167 

the Laplace equation: 168 

∆𝑝∗ = 0                (4) 169 

for the non-dimensional pressure field 𝑝∗ = 𝑝/𝑝𝑒. Subsequently, the velocity field inside the droplet 170 

at time τe is calculated from the momentum equation, as: 171 

𝑢 = −
𝜏𝑒

𝜌
𝛻𝑝             (5) 172 
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while the non-dimensional velocity field is obtained as 𝑢∗ = 𝜌𝑅0𝑢/𝑝𝑒𝜏𝑒. 173 

The pressure boundary condition of equation (4) refers to the original pressure pulse that is applied 174 

on the droplet surface and considers the dependence of the pulse shape on the angle θ, such that:  175 

𝑝∗(𝑟 = 1, 𝜃) = 𝑓(𝜃)            (6) 176 

where the pulse f(θ) is proportional to the actual laser pulse that impacts onto the droplet surface in 177 

the conducted experiments of Klein et al. [23], [24], [25]. Therefore, Gelderblom et al. [32] suggested 178 

a Gaussian-shaped pressure pulse to remain consistent with the typically used Gaussian laser-beam 179 

profiles in the experiments. The Gaussian-shaped pressure pulse is formulated as: 180 

𝑓(𝜃) = 𝑐𝑒
− 

𝜃2

2𝜎2             (7) 181 

where σ is the pulse width and 𝑐 =
2√2

𝜎𝜋
3
2𝑒−2𝜎2

(2𝑒𝑟𝑓𝑖[√2𝜎]−𝑒𝑟𝑓𝑖[
𝑖𝜋+2𝜎2

√2𝜎
]−𝑒𝑟𝑓𝑖[

−𝑖𝜋+2𝜎2

√2𝜎
])

. In the experiments 182 

of Klein et al. [23], a laser-beam profile with σ = π/6 is used; then, c = 0.825. 183 

In the present numerical study, the previously presented analytical model for the early-time droplet 184 

dynamics is adapted so as to be incorporated in the CFD framework. Specifically, the MEK droplet is 185 

simulated as a 5o spherical wedge with one cell thickness in the azimuthal direction, using 186 

pimpleFoam, a transient incompressible solver in OpenFOAM®. As suggested in the analytical model, 187 

for times t ≤ τe, a pressure pulse is applied on the surface of the initially stagnant MEK droplet at 188 

ambient conditions. Correspondingly, the pressure pulse is set as the pressure boundary condition on 189 

the spherical wedge domain, given in dimensional form as: 190 

𝑝(𝜃) =  𝑝𝑒𝑓(𝜃) +  𝑝𝑎𝑡𝑚           (8) 191 

Details of the numerical configuration for the simulation of the early-time droplet dynamics are 192 

illustrated in Figure 2(i). 193 

At time t = τe, the established pressure and velocity fields inside the droplet are calculated from the 194 

numerical simulations, as illustrated qualitatively in Figure 2(ii). Later, the obtained flow fields are 195 

utilized for the initialization of the droplet in the conducted numerical simulations that initiate at time 196 

t > τe and capture the later-time phenomena, as demonstrated in §2.4. 197 

2.3. Later-time dynamics and numerical method  198 

The later-time phenomena, illustrated in Figure 1(iii-iv), are governed by the deformation of the 199 

droplet into an elongated liquid sheet and the subsequent fragmentation of the droplet rim. The 200 

detached fragments form a polydisperse cloud of secondary droplets with diameters at least two 201 

orders of magnitude smaller than the initial droplet. Therefore, in the course of the phenomenon, a 202 

flow field with dominant multiscale structures is developed, which imposes additional complexities in 203 

a full-scale and computationally efficient numerical analysis.  204 

In the present numerical study, the Σ-Y two-fluid model with dynamic local topology detection, 205 

introduced in the previous work of the authors [34], is utilized for the laser-induced droplet rim 206 

fragmentation simulations. The previously developed multiscale two-fluid approach provides a 207 

physically consistent and numerically stable multiscale framework for the investigation of all the scales 208 

involved in the laser-induced droplet fragmentation problem with a viable computational cost. A 209 

fundamental principle of the multiscale framework is the detection of different flow regimes based 210 

on advanced on-the-fly topological criteria and the application of the appropriate modelling approach 211 

for the local interfaces based on the dimensions of the underlying structures. In particular, the 212 
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interface of the expanding but still coherent liquid sheet is fully resolved using the VOF sharp interface 213 

method [35], [36]. On the contrary, the produced fragments, which are smaller than the local mesh 214 

resolution, are modelled within a diffuse interface approach. In this case, an additional transport 215 

equation for the interface surface area density Σ [37], [38] is incorporated to model the unresolved 216 

sub-grid scale phenomena and provides an estimation for the dimensions of the unresolved sub-grid 217 

scale droplets. 218 

The multiscale two-fluid approach has been implemented in OpenFOAM® with further developments 219 

on the twoPhaseEulerFoam solver in order to introduce all the additional features of the multiscale 220 

framework, as described in detail in [34]. Τhe numerical model consists of the same set of governing 221 

equations under both formulations, namely the sharp and the diffuse interface approach, with specific 222 

source terms to be activated and deactivated depending on the currently operating formulation of the 223 

solver, as summarized below. 224 

Two-fluid model governing equations 225 

The volume averaged conservation equations [39] governing the balance of mass, momentum and 226 

energy for each continuum and inter-penetrating fluid phase k are: 227 

𝜕

𝜕𝑡
(𝑎𝑘𝜌𝑘) + 𝛻 ∙ (𝑎𝑘𝜌𝑘𝑢𝑘) = 0         (9) 228 

𝜕

𝜕𝑡
(𝑎𝑘𝜌𝑘𝑢𝑘) + 𝛻 ∙ (𝑎𝑘𝜌𝑘𝑢𝑘𝑢𝑘) = −𝑎𝑘𝛻𝑝 + 𝛻 ∙ (𝑎𝑘𝝉𝑘

𝑒𝑓𝑓
) + 𝑎𝑘𝜌𝑘𝑔 + ∑ 𝑀𝑘𝑛

2   
𝑛=1
𝑛≠𝑘

     (10) 229 

𝜕

𝜕𝑡
[𝑎𝑘𝜌𝑘(𝑒𝑘 + 𝑘𝑘)] + 𝛻 ∙ [𝑎𝑘𝜌𝑘(𝑒𝑘 + 𝑘𝑘)𝑢𝑘] = −𝛻 ∙ (𝑎𝑘𝒒𝑘

𝑒𝑓𝑓
) − [

𝜕𝑎𝑘

𝜕𝑡
𝑝 + 𝛻 ∙ (𝑎𝑘𝑢𝑘𝑝)] + 𝑎𝑘𝜌𝑘𝑔 ∙ 𝑢𝑘 + ∑ 𝐸𝑘𝑛

2   
𝑛=1
𝑛≠𝑘

  (11) 230 

where αk is the volume fraction, ρk the density, uk the velocity, ek the specific internal energy, kk the 231 

specific kinetic energy fields for each phase, p is the pressure field shared by both the liquid and 232 

gaseous phases and g the acceleration of gravity. Viscous and turbulence effects are introduced with 233 

the effective stress tensor 𝛕k
eff, which accounts for the molecular viscosity and the Reynolds stress 234 

tensor based on Boussinesq’s hypothesis [40] and the effective heat flux vector 𝐪k
eff, which 235 

corresponds to the laminar and turbulent thermal diffusivity. Mkn represents the forces acting on the 236 

dispersed phase, depending on local topology; the surface tension force [41] is implemented under 237 

the sharp interface approach, while the aerodynamic drag force [42] is implemented under the diffuse 238 

interface approach. Ekn demonstrates the heat transfer between the liquid and gaseous phases, 239 

irrespectively of the flow region.  240 

Σ-Υ model transport equations 241 

The transport equation for the liquid volume fraction in a compressible two-phase flow is given by: 242 

𝜕𝑎𝑙

𝜕𝑡
+ 𝛻 ∙ (𝑎𝑙𝑢𝑚) + 𝑣𝑡𝑜𝑝𝑜[𝛻 ∙ (𝑎𝑙(1 − 𝑎𝑙)𝑢𝑐)] = 𝑎𝑙𝑎𝑔 (

𝜓𝑔

𝜌𝑔
−

𝜓𝑙

𝜌𝑙
)

𝐷𝑝

𝐷𝑡
+ 𝑎𝑙𝛻 ∙ 𝑢𝑚 − (1 − 𝑣𝑡𝑜𝑝𝑜)𝑅𝑎𝑙

   (12) 243 

where um is the velocity field of the liquid and gaseous mixture and ψl, ψg are the liquid and gaseous 244 

compressibility fields, respectively. νtopo distinguishes the two different interface approaches by taking 245 

either the 0 or 1 value under a diffuse or sharp interface formulation, respectively. Interface sharpness 246 

is imposed by the artificial compression velocity uc. Additional modifications in the governing 247 

equations for coupling the VOF method with the two-fluid framework are presented in detail in [34]. 248 

Finally, the term Ral
 accounts for the liquid dispersion induced by turbulent velocity fluctuations, which 249 

are important in dispersed flows and smaller scales [43], [44]. 250 
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The transport equation for the liquid gas interface surface area density Σ [38] is given by: 251 

𝜕𝛴′

𝜕𝑡
+ 𝛻(𝛴′𝑢𝑚) = (1 − 𝑣𝑡𝑜𝑝𝑜) [−𝑅𝛴 + 𝐶𝑆𝐺𝑆

𝛴

𝜏𝑆𝐺𝑆
(1 −

𝛴

𝛴𝑆𝐺𝑆
∗ )]      (13) 252 

where the simultaneous existence of liquid and gas on the interface implies the presence of a 253 

minimum interface surface area density, such as Σ = Σ′ + Σmin, as shown by Chesnel et al. [45]. The 254 

term RΣ represents the interface surface area diffusion due to turbulent velocity fluctuations [44]. The 255 

sub-grid scale source term, namely the term SSGS = CSGS
Σ

τSGS
(1 −

Σ

ΣSGS
∗ ), accounts for all the 256 

unresolved physical mechanisms which are responsible for the local interface formation. The SSGS term 257 

is a function of the constant adjustable parameter CSGS, the characteristic timescale τSGS and the 258 

critical interface surface area density ΣSGS
∗  at an equilibrium state between interface production and 259 

destruction. Each modelled sub-grid scale mechanism has either a positive or a negative contribution 260 

on the overall SSGS term calculation. Specifically, a positive SSGS term value corresponds to an increase 261 

of the local interface surface area and physically correlates with the evolution of the underlying sub-262 

grid scale droplets into smaller diameters, while a negative SSGS term value describes a decrease of the 263 

local interface surface area due to the creation of sub-grid scale droplets with larger diameters.  264 

In the present simulations of the laser-induced droplet fragmentation, the sub-grid scale modelling is 265 

implemented for the small-scale fragments detached from the droplet rim with sizes below the local 266 

mesh resolution. The evolution of the droplet sizes inside the produced cloud of fragments depends 267 

on the aerodynamic conditions of the surrounding air and on the sub-grid scale droplet interactions 268 

within the cloud. Therefore, the sub-grid scale mechanisms that are considered for the local interface 269 

formation are the effects of turbulence, the sub-grid scale droplet collision and coalescence, and the 270 

secondary breakup. The appropriate closure relations for each mechanism are based on models that 271 

are validated in the literature for similar flow conditions; the implemented sub-grid scale models and 272 

their limitations are discussed in detail in [46]. 273 

The diameter of a sub-grid scale fragment dΣ is calculated as the equivalent diameter of a spherical 274 

particle which has the same volume to surface area ratio as the examined computational cell, 275 

proposed by Chesnel et al. [45] as: 276 

𝑑𝛴 =
6𝑎𝑙(1−𝑎𝑙)

𝛴
                           (14) 277 

where αl represents the liquid volume fraction and Σ the total liquid gas interface surface area density, 278 

as calculated in equation (13). 279 

Flow topology detection algorithm 280 

The flow topology detection algorithm is implemented based on general and case-independent 281 

topological criteria that can be applicable in any flow field governed by multiscale structures, as 282 

described in detail in [34]. For the present simulations of the laser-induced droplet fragmentation, the 283 

algorithm identifies instantaneous topological changes in the region around the droplet rim, where all 284 

the smaller-scaled structures are observed as a result of the rim breakup. Based on the sizes of the 285 

produced fragments, the algorithm evaluates and applies the most appropriate numerical 286 

formulation, namely an interface capturing approach for the sufficiently large structures or a sub-grid 287 

scale modelling for the unresolved fragments.   288 

2.4. Later-time simulation initialization and set-up 289 
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The numerical simulations of the later-time droplet deformation and fragmentation initiate at time     290 

t > τe with ambient atmospheric conditions, while the flow field inside the droplet is initialized based 291 

on the modelling of the early-time phenomena in §2.2. The computational domain consists of a 5o 292 

wedge geometry with one cell thickness in the azimuthal direction and a mesh with a resolution of 293 

200 cells per original droplet diameter around the area of interest is applied. Details of the initial 294 

configuration for the simulations of the later-time phenomena are illustrated in Figure 2(iii). Different 295 

Weber numbers in the range of 90 to 750 are examined with corresponding droplet propulsion 296 

velocities between 1.76 m/s and 5.09 m/s. The simulation results are compared with the experimental 297 

observations of Klein et al. [25] for the same Weber numbers.  298 

Regarding the numerical simulation set-up, the spatial discretization is based on second-order 299 

accurate discretization schemes. Time stepping is performed adaptively during the simulation to 300 

respect the selected limit for the convective Courant–Friedrichs–Lewy (CFL) condition of 0.2. The 301 

thermodynamic closure of the system is achieved by implementing the stiffened gas equation of state, 302 

proposed by Ivings et al. [47], for the liquid phase and the ideal gas equation of the state for the 303 

gaseous phase. Concerning the turbulence modelling, an LES approximation is implemented with the 304 

one-equation SGS model of Lahey [48]. However, the utilized computational domain imposes 305 

limitations regarding the accurate capturing of the turbulent state, which corresponds to fully 3D-306 

developed phenomena. The simulations are initialized without turbulence in the flow field, since the 307 

droplet acceleration at early-times involves low velocities and Reynolds numbers around 103. 308 

Therefore, in the absence of developed turbulence at the initial conditions, the LES approximation can 309 

be applied in the present geometry of one cell thickness in the azimuthal direction without significant 310 

modelling restrictions.  311 

A crucial parameter for an accurate simulation of the later-time droplet deformation and 312 

fragmentation is the initialization of the pressure and velocity fields inside the droplet at time t = τe, 313 

as obtained from the early-time simulations of §2.2. For a given Weber number, the droplet propulsion 314 

velocity is obtained from equation (2) and subsequently, the absolute impulse scale peτe can be 315 

calculated from equation (3), as introduced by Gelderblom et al. [32]: 316 

 𝑝𝑒𝜏𝑒 =  
𝜌𝑅0𝑈

3
           (15) 317 

As shown in equation (15), different combinations of recoil pressure pe and vapour expulsion time τe 318 

values determine different initialization sets (pe, τe) for the same propulsion velocity U. Two conditions 319 

should apply for a valid expulsion time τe obtained for a known propulsion velocity; first, 𝜏𝑒 ≫ 𝜏𝑝 so 320 

that compressibility effects inside the droplet will not be significant and thus, the modelling 321 

assumption of an incompressible flow will not be violated and second, 𝜏𝑒 ≪ 𝜏𝑖 so that the applied 322 

pressure pulse will not have a macroscopic influence on the droplet spherical shape and thus, the 323 

droplet will not deform yet.  324 

In Appendix A, it is validated that similarly with the analytical solution of Gelderblom et al. [32], the 325 

droplet deformation obtained from the proposed later-time simulations is dependent only on the 326 

absolute impulse scale and not on the individual pe, τe values selected for a given propulsion velocity. 327 

3. Results and discussion 328 

The laser-induced rim fragmentation for a MEK droplet at We = 330 is presented in Figures 3 and 4, 329 

comparing the simulation results with the experimental observations of Klein et al. [25]. Following the 330 

impact of the millijoule nanosecond laser pulse, the droplet has evolved into a thin liquid sheet 331 

surrounded by a cloud of fragments at time 0.056 τc in Figure 3(i). Subsequently, the liquid sheet 332 

expands further in the lateral direction and at the same time, the observed rim breakup enhances the 333 
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fragments cloud with polydisperse droplets of various diameters. The expanding liquid sheet is 334 

captured by the sharp interface formulation of the multiscale framework, while the detached 335 

fragments are subject to the sub-grid scale modelling, as illustrated in Figure 3(ii). Within the cloud of 336 

fragments, droplets with diameters between 0.09 μm and 9 μm are detected; the upper limit is 337 

correlated with the smallest structures that can be resolved with the sharp interface method for a 338 

local mesh resolution of 200 cells per initial diameter and the lower limit corresponds to the spatial 339 

resolution of the utilized camera in the experiments. Overall, the numerically captured expanding 340 

sheet follows the deforming shape and the curvature observed in the experiments, while the modelled 341 

fragments are detected close to the liquid sheet during the early stages of fragmentation and move 342 

further backwards at later times. Moreover, the radial dependence of the sheet thickness, which is 343 

demonstrated in the experimental results in front view in Figure 4(i), is well predicted by the numerical 344 

simulations. Specifically, the maximum thickness is found in the center of the liquid sheet and the 345 

minimum thickness is observed close to the rim. In consistence with the experimental observations of 346 

Klein et al. [25], the rim is captured as a slightly thicker border, as observed in the numerical results in 347 

Figure 3(ii). At later times, a more uniform thickness is predicted along the expanding sheet length, as 348 

displayed qualitatively in the liquid sheet isosurfaces in Figure 3(ii) and extracted from the indicative 349 

calculations of the local thickness in Figure 4(ii). Additional simulations are conducted using the VOF 350 

solver in OpenFOAM® with the same initialization of the problem. The VOF method results, presented 351 

in Figures 3(iii) and 4(iii), show a good agreement with the respective results obtained with the 352 

multiscale two-fluid approach, regarding the capturing of the liquid sheet deformation; nevertheless, 353 

the VOF method excludes the sub-grid scale information for the produced fragments.   354 

Focusing on the predictions of the multiscale two-fluid approach in Figures 3 and 4, at time 0.056 τc, 355 

which corresponds to the inertial time τi with dominant droplet deformation, the numerical results 356 

meet the experimental observations and accurately predict the macroscopic liquid sheet expansion. 357 

At the same time, a cloud of fragments, that recirculate behind the expanding sheet, is captured, with 358 

the largest droplets observed close to the rim.  359 

Later, at time 0.112 τc, the liquid sheet thickness is reduced to about 7% of the initial droplet diameter. 360 

The numerical results satisfactorily follow the deforming shape of the thin liquid sheet and the lateral 361 

expansion, while smaller fragments are captured downstream. However, an early sheet breakup is 362 

observed close to the rim, where the local thickness of the liquid sheet is considerably reduced; a 363 

sheet breakup is not noticed in the experimental results at that time. Due to the axisymmetric 364 

geometry used in the numerical simulations the liquid sheet fragments detach in the form of 365 

concentric rings that move outwards, as illustrated in the 3D reconstructed numerical results in 366 

Figures 3(ii) and 4(ii). The multiscale two-fluid approach predicts a similar early sheet breakup even 367 

with a finer mesh of a 250 cells per initial droplet diameter in Figure 4(ii). In the VOF method results 368 

in Figure 4(iii), the early sheet breakup is still present but developed in a smaller extent. The more 369 

pronounced early sheet breakup in the results of the multiscale model compared to the VOF results is 370 

related to the modelling of slip velocity effects; the relative velocity between the very thin liquid sheet 371 

and the surrounding air locally exceeds the value of 20 m/s around the rim, i.e., approximately 6 times 372 

higher than the droplet propulsion velocity, and thus, enhances the local sheet breakup. Overall, the 373 

early sheet breakup is a numerical limitation that originates from the utilized moderate mesh 374 

resolution which is found to be insufficient to accurately capture the significantly reduced sheet 375 

thickness around the rim at 0.112 τc. However, the implementation of a very fine uniform mesh will 376 

violate the fundamental principles of the multiscale two-fluid approach for computationally efficient 377 

simulations, i.e., the multiscale framework is based on a moderate uniform mesh resolution that 378 

accurately captures the large-scale structures and a sub-grid scale modelling for the unresolved small-379 

scale structures. Alternatively, the proposed multiscale framework should be extended to couple an 380 
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adaptive mesh refinement (AMR) algorithm with the sharp interface formulation. The AMR algorithm 381 

would be able to resolve flow structures in the segregated flow regime that require significantly high 382 

resolution, such as the expanding liquid sheet, without an effect on the sub-grid scale modelling 383 

formulation of the numerical model; this development is beyond the scope of our first numerical study 384 

on the laser-induced droplet fragmentation problem.  385 

Following, at time 0.227 τc, the aforementioned numerical limitations are observed even more 386 

pronounced due to the significantly reduced thickness of the expanding liquid sheet. The length of the 387 

numerically captured coherent sheet is limited, while a trace of radial fragments follows the shape of 388 

the coherent elongated sheet, which is shown in the experimental visualizations. The successive 389 

detachment of radial fragments from the sheet rim is a numerical artefact, which is previously 390 

recognized in the BI simulations of Gelderblom et al. [32] during advanced stages of the fragmentation 391 

process. At the same time, the experimental results demonstrate the nucleation of holes on the liquid 392 

sheet as the major fragmentation mechanism. As illustrated in Figure 4(i), the first holes are already 393 

detected along the rim at 0.227 τc and thus, the assumption for an axisymmetric flow field is disrupted.  394 

Considering that the present study is the first attempt in the literature to provide numerical 395 

simulations for the laser-induced droplet fragmentation, the comparison between the experimental 396 

and numerical results in Figures 3 and 4 is introduced as an investigation of the numerical capabilities 397 

of the proposed multiscale two-fluid approach. Overall, the observed numerical limitations, namely 398 

the early sheet breakup and the loss of axisymmetry, arise only during advanced stages of the droplet 399 

fragmentation process. Therefore, the numerical simulations presented later in this study focus on 400 

the droplet deformation and rim fragmentation before the numerical limitations become significant. 401 

Specifically, for the examined droplets and expansion rates, the numerical simulations are terminated 402 

at a selected final time that corresponds to the development of a liquid sheet with thickness 403 

approximately 10% of the initial droplet diameter on the central line; this is an acceptable limit before 404 

the early breakup and the loss of axisymmetry dominate. The validity of the utilized mesh resolution 405 

and geometry to accurately capture the underlying physical phenomena upon the laser-induced 406 

droplet deformation and fragmentation until the selected final time is discussed in Appendix B. 407 

The fast jetting, which is shown in the experimental results in Figure 3 to initiate from the center of 408 

the deforming droplet, is a result of the laser-matter interaction, as previously discussed in Klein et 409 

al. [25] and Reijers et al. [33]. The millijoule nanosecond laser pulse applied onto the droplet surface 410 

results to strong shock waves and potential cavitation spots inside the droplet that can give rise to 411 

bubbles collapse, interfacial instabilities and finally, a fast jetting moving forward with a velocity larger 412 

than the propulsion velocity of the droplet. The absence of the fast jetting from the numerical results 413 

is not a limitation of the proposed numerical method but a result of the implemented modelling for 414 

the early-time droplet dynamics. Specifically, the present modelling approach of the early-time 415 

dynamics does not account for the real laser pulse applied on the droplet for a duration τp. Instead, it 416 

provides a unified modelling solution for both early-time dynamics phenomena, namely, the laser 417 

pulse impact and the resulting droplet propulsion, using a pressure pulse pe and a duration τe which 418 

are introduced for modelling purposes and do not correspond to the real laser intensity and duration. 419 

Alternatively, the fast jetting can be captured by avoiding the present modelling of the early-time 420 

phenomena and applying the real laser pulse onto the droplet surface for the real impact duration τp. 421 

In this case, a compressible numerical model with advanced high-order numerical schemes should be 422 

implemented to capture the intense compressibility effects inside the droplet and thus, the 423 

incompressibility assumption for the early-time droplet dynamics will be no longer valid. However, 424 

considering the very small liquid mass injected, the investigation of the fast-jetting phenomenon 425 

remains beyond the scope of this study.   426 
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The effect of the Weber number on the MEK droplet deformation and fragmentation is examined in 427 

Figures 5-8 for Weber number values of 90, 170, 330, and 750 and the same width deformations, 428 

corresponding to a liquid sheet with thickness 50%, 20% and 10% of the initial droplet diameter. Since 429 

the Weber number reflects the droplet expansion rate, which is set by the droplet propulsion, the 430 

examined width deformations are observed at very different times for each case. Already at the initial 431 

conditions, the strong impact of the Weber number is pronounced, resulting to significantly increased 432 

initial pressure and velocity magnitudes at higher Weber numbers. Specifically, for We = 90 in Figure 433 

5, the initial pressure and velocity fields inside the droplet, as calculated from the early-time 434 

simulations in order to reach a propulsion velocity of 1.76 m/s, have a maximum value of 4.4 bar and 435 

10 m/s, respectively. On the contrary, at We = 750 in Figure 8, the stronger pressure pulse, applied on 436 

the droplet during the early-time simulations for a propulsion velocity of 5.09 m/s, imposes initial 437 

pressure and velocity fields with the same profile but significantly increased maximum values up to 438 

50.1 bar and 31 m/s, respectively.  439 

Focusing on the early times of the droplet deformation at We = 750, due to the strong initial pressure 440 

kick, the formation of a low-pressure region inside the droplet is observed, which is related to the 441 

creation of cavitation bubbles. As highlighted in Figure 8 at 0.01 τc, the developed low-pressure region 442 

is significantly small compared to the total mass of the deforming droplet and thus, it does not affect 443 

the macroscopic droplet expansion. Therefore, a cavitation model has not been implemented in the 444 

multiscale framework for the examined conditions. Instead, a very small volume fraction of air of the 445 

order of 10−6, which corresponds to a typical nucleation volume fraction [49], is introduced in the 446 

initial droplet volume fraction. Under this assumption, the small gaseous volumes inside the droplet 447 

will expand after the significant pressure drop, causing expansion similar to those that would occur 448 

with cavitation. Subsequently, when the low-pressure region reaches the backside of the propelled 449 

droplet interface, the gaseous volumes collapse. Due to the minor breakup on the local interface, very 450 

few nanoscale droplets are captured by the numerical model at 0.035 τc; these droplets do not 451 

significantly influence the total fragments’ population. 452 

In the course of the laser-induced droplet deformation, the atmospheric pressure inside the droplet 453 

is rapidly recovered in a few microseconds and a pressure distribution close to atmospheric conditions 454 

is stabilized, before significant deformation is observed. Therefore, the droplet expansion is primarily 455 

governed by the radial component of the velocity usheet(y), which shows maximum values on the 456 

expanding rim. More specifically, at early stages, until a liquid sheet with thickness 0.5d0 is developed 457 

in Figures 5-8, the droplet deformation is the major phenomenon, while only a few droplets are 458 

detached from the rim. During these times, usheet(y) induces the dominant liquid sheet radial expansion 459 

with the maximum values on the rim to be approximately two times higher than the droplet 460 

propulsion velocity in each examined case. At later stages, when the liquid sheet thickness is reduced 461 

further than 50%, the rim fragmentation becomes significant and hence, the droplet radial expansion 462 

is restricted. As a result, usheet(y) gradually decreases over time; indicatively, usheet(y) maximum values 463 

on the rim are decreased by approximately 17% and 11% between a liquid sheet with thickness 0.5d0 464 

and 0.2d0 at We = 90 and We = 750, respectively. At the final time, when a liquid sheet with thickness 465 

0.1d0 is formed, the fragmentation rate is reduced and less fragments are detached, as observed more 466 

evidently at lower Weber numbers in Figures 5 and 6. Accordingly, the moderate fragmentation 467 

observed does not have a significant effect on the thin liquid sheet radial expansion and usheet(y) 468 

maximum values on the rim remain almost unchanged compared to earlier times. 469 

Overall, the numerical results in Figures 5-8 demonstrate that an increasing Weber number imposes 470 

a faster deformation of the initial spherical droplet into an elongated liquid sheet and an earlier 471 

breakup of the rim. Additionally, the effect of the Weber number on the shape of the deforming liquid 472 
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sheet concerning both the lateral expansion and the radial distribution of the thickness is highlighted. 473 

Specifically, during the early stages of deformation, the droplet shows an almost identical shape in the 474 

four examined cases for the same thickness reduction by 50%; the examined deformation is observed 475 

at different times for each case in accordance with the Weber number dependent expansion rates. 476 

However, at later times, when already a thin liquid sheet is formed, a higher Weber number leads to 477 

an increased lateral expansion and thus, a more uniform thickness distribution for the same width 478 

deformation on the central line. Indicatively, for a liquid sheet with thickness 0.2d0, the lateral sheet 479 

expansion is increased by approximately 7% at We = 330 and by 13% at We = 750, compared to the 480 

predicted expansion at We = 90 for the same thickness. 481 

Alongside the liquid sheet lateral expansion, the rim fragmentation becomes significant over time, as 482 

observed in Figures 5-8. For a liquid sheet with thickness 0.5d0 the first micro-scaled fragments are 483 

detached from the rim, while at later times, when the liquid sheet thickness is reduced to 0.2d0, the 484 

dominance of the rim fragmentation is pronounced with an extended cloud of fragments to be 485 

developed in each examined Weber number case. On average, the largest fragments with diameters 486 

above 1 μm are detected close to the rim and the smallest scales are observed at the edges of the 487 

polydisperse cloud. On the contrary, at the final time, the fragmentation process is weakened. Then, 488 

a significantly limited cloud of fragments is observed at lower Weber numbers in Figures 5 and 6, while 489 

at higher Weber numbers in Figures 7 and 8, the cloud of fragments remains extended but on average 490 

less and smaller-scaled fragments below 3 μm are detached. During the evolution of the rim 491 

fragmentation, the newly formed fragments are detached from the rim with radial velocities 492 

ufragments(y), comparable with the radial velocity of the rim usheet(y) at the time of breakup, as also 493 

observed in the experimental study of Klein et al. [25]. Afterwards, the fragments are subject to a 494 

recirculation behind the liquid sheet, driven by the moving vortex that is created as a result of the 495 

interaction between the propelled and expanding liquid sheet and the surrounding air. For a liquid 496 

sheet with thickness 0.2d0, the developed flow vorticity is found to be intense in all cases illustrated 497 

in Figure 5-8, with local air velocity values more than two times higher than the fragments’ velocities. 498 

During later stages, the flow vorticity is becoming less significant; however, it still influences the 499 

increasing cloud of fragments at higher Weber numbers, as shown at 0.089 τc and 0.062 τc in Figures 500 

7 and 8, respectively. 501 

A quantitative comparison between the experimental observations of Klein et al. [25], the analytical 502 

model of Villermaux & Bossa [50] and the simulation results using the VOF method and the multiscale 503 

two-fluid approach is presented in Figure 9, examining the droplet radial expansion under the Weber 504 

numbers examined before. In the numerical simulations, the droplet expansion is considered, until a 505 

thin liquid sheet with maximum thickness 10% of the initial droplet diameter is formed. On the whole, 506 

the numerical results capture the strong dependence of the droplet expansion rate on the Weber 507 

number and satisfactorily follow the experimental observations. A better agreement between the 508 

numerical and the experimental results is obtained at the later stages of the droplet expansion 509 

process, as similarly observed for the analytical solution. However, in contrast with the analytical 510 

model [50], the conducted numerical simulations can accurately capture all stages of the droplet 511 

deformation from a flattened back side to an elongated liquid sheet; thus, the small deviation between 512 

the numerical and experimental results at early times is not a limitation of the numerical model. 513 

Similarly, in the study of Gelderblom et al. [32], the BI simulation results of a water droplet radial 514 

expansion slightly deviate from the experimental observations especially at early times. Considering 515 

that the BI simulations use the same early-time initialization of the laser-induced droplet 516 

fragmentation problem as the present numerical study, the small delay of the droplet radial expansion 517 

at early times can be related to the early-time simulations and the lack of the impulsive effect of the 518 

laser-matter interaction in the modelling of early-time dynamics. With respect to the capability of the 519 
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numerical methods to accurately capture the overall droplet deformation and radial expansion over 520 

time, the VOF method results precisely follow the predictions of both the analytical model and the 521 

experiments during the advanced stages of droplet expansion, while the multiscale two-fluid approach 522 

results capture the phenomenon with on average a small delay of maximum 5% compared to the 523 

calculations with the VOF method. The slightly delayed expansion, observed with the two different 524 

numerical methods, can be related to the sub-grid scale modelling, which is performed within the 525 

multiscale two-fluid approach and accounts for the produced fragments due to the rim breakup. 526 

Under the multiscale framework, a part of the deformation energy that would be utilized for the 527 

droplet radial expansion is now employed for the development of fragments. However, as depicted in 528 

Figure 10, the volume concentration of the modelled fragments over the total volume of the liquid 529 

phase increases significantly at higher Weber numbers. Thus, the production of fragments is not 530 

negligible in the course of the droplet expansion and the resulting rim fragmentation. At lower Weber 531 

numbers, the concentration of fragments relatively stabilizes during the rim fragmentation evolution, 532 

while with an increasing Weber number, the fragments population is continuously enhanced over time 533 

and even exceeds 40% of the total liquid volume at the later stages of rim fragmentation for the 534 

highest examined Weber number of 750. 535 

An overview of the evolution of the produced fragments inside the polydisperse cloud is depicted in 536 

Figure 11, where the volume concentration of three classes of fragments with diameters dΣ > 1 μm, 537 

0.5 μm < dΣ < 1 μm and 0.09 μm < dΣ < 0.5 μm is presented for a MEK droplet at We = 90, 170, 330, 538 

750 over the total volume of the dispersed region. Upon the initiation of the laser-induced droplet rim 539 

fragmentation, only large-scaled fragments of the first class above 1 μm are detected for each 540 

examined Weber number case; these correspond to the first detached fragments from the rim. 541 

Subsequently, more fragments are detached from the rim that enhance the fragments population, 542 

while at the same time, the previously formed fragments interact with each other and develop further 543 

inside the polydisperse cloud. The modelled sub-grid scale fragment interactions, namely the flow 544 

turbulence, the droplet collision and coalescence and the secondary breakup effects, are driven by 545 

the developed flow vorticity. Specifically, the moving vortex, which is forming behind the expanding 546 

liquid sheet, enhances the local mixing and the slip effects between the newly formed micro-scaled 547 

fragments of the first class and the surrounding air and leads to further breakup of the fragments 548 

inside the cloud. On average, fragments of the second and third class with diameters below 1 μm are 549 

not directly detached from the rim and are created at a second stage due to the droplet interactions 550 

inside the cloud.    551 

During later stages, when a liquid sheet with thickness 0.2d0 is formed, the rim fragmentation process 552 

is fully developed, and an extended cloud of fragments is created downstream, as previously 553 

illustrated in Figures 5-8. Then, the effect of the Weber number on the rim fragmentation rate and 554 

the produced fragments population is pronounced. Specifically, for a liquid sheet with thickness 0.2d0 555 

at We = 90 in Figure 11(i), the population of large-scaled fragments of the first class is significantly 556 

decreased which can be related to the stabilization of the fragmentation mechanism and the reduction 557 

of newly formed fragments, as shown in Figure 10. Instead, smaller-scaled fragments become 558 

dominant, since the existing fragments inside the cloud are subject to further breakup driven by the 559 

intense flow vorticity. On the contrary, for a liquid sheet with thickness 0.2d0 and higher Weber 560 

numbers in Figures 11(ii-iv), the first class of fragments remains dominant, following the positive 561 

fragmentation rate and the continuous enhancement of the dispersed cloud with newly formed 562 

fragments, as depicted in Figure 10. At the same time, smaller scales become significant as a result of 563 

the fragments interactions within the recirculating cloud; at We = 170 the third class of fragments is 564 

more noticeable, while at We = 330 and We = 750 the population of fragments below 1 μm is more 565 

balanced. Therefore, as observed for the examined cases, with increasing Weber number, the 566 
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intensity of the rim fragmentation mechanism is also increased and dominates over the fragments’ 567 

interactions and breakup imposed by the developed flow vorticity.  568 

During advanced stages of the rim fragmentation process for a liquid sheet with thickness around 569 

0.1d0, the fragmentation rate weakens over time, even at higher Weber number cases of values 330 570 

and 750, as depicted in Figure 10. This is reflected in a less violent rim fragmentation and the creation 571 

of less and smaller newly formed fragments, as previously discussed in Figures 5-8. Consequently, 572 

smaller-scaled fragments below 1 μm gradually dominate the fragments population and become even 573 

more significant at lower Weber numbers. Eventually, at the final time of the examined rim 574 

fragmentation, the predominant presence of the small-scaled fragments of the second and third class, 575 

i.e., fragments below 1 μm, is highlighted in the probability density functions (PDF) of the fragment 576 

sizes in Figure 12. The fragments sizes follow an exponential decrease in all Weber number cases, as 577 

indicatively plotted against the PDFs in Figure 12, with the largest captured fragments to be 578 

approximately 3 μm. At lower Weber numbers in Figures 12(i) and 12(ii), nearly 80% of the total 579 

fragments population consists of fragments below 1 μm; the pronounced dominance of small-scaled 580 

fragments comes in agreement with the previous observations of a limited number of newly formed 581 

fragments, as depicted in the stabilized volume concentration of the dispersed cloud in Figure 10. On 582 

the contrary, at higher Weber numbers in Figures 12(iii) and 12(iv), fragments below 1 μm remain 583 

dominant in the population by 60%; however, the significant presence of larger-scaled fragments 584 

indicates that despite the attenuation of the fragmentation mechanism, the rim breakup continues to 585 

play a major role. Finally, a mesh convergence investigation for the calculated fragment populations 586 

is presented in Appendix C. 587 

 588 

Figure 1 Separation of timescales in the laser-induced droplet rim fragmentation problem. (i) A nanosecond laser pulse 589 
impacts onto the left side of the dyed droplet. (ii) The vaporized liquid mass on the superficial layer is ejected backwards. As 590 
a result, the droplet accelerates until it reaches a constant propulsion velocity U on the vapour expulsion time τe. (iii) The 591 
droplet propels and deforms on the inertial time τi. (iv) The surface tension and the extended fragmentation restrict the 592 
droplet lateral expansion on the capillary time τc. 593 
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 594 

Figure 2 Problem configuration and simulation set-up. (i) For t < τe, the axisymmetric pressure pulse p(θ) is applied on the 595 
droplet surface. (ii) At t = τe, the initial pressure and velocity fields inside the droplet are obtained. (iii) The initial fields are 596 
mapped into the wedge geometry. For t > τe, the droplet fragmentation is simulated using the multiscale two-fluid approach. 597 
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 598 

Figure 3 Laser-induced droplet rim fragmentation at We = 330. (i) Comparison between the experimental visualizations of 599 
Klein et al. [25] in sideview and the isoline of the liquid volume fraction at 10-3, obtained with the multiscale two-fluid 600 
approach. (ii) 3D reconstructed results in sideview and 30o angle, using the multiscale two-fluid approach. The expanding 601 
liquid sheet is captured by the sharp interface formulation (in grey the isosurface for liquid volume fraction at 0.5) and the 602 
detached fragments are captured by the diffuse interface formulation (in red the isosurface for fragments larger than           603 
0.09 μm). Zoomed-in view for the dimensions of the produced fragments after the rim breakup. (iii) 3D reconstructed results 604 
in sideview and 30o angle, using the VOF method. Isosurface of the liquid volume faction at 0.5.  605 
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 606 

Figure 4 Laser-induced droplet rim fragmentation at We = 330. (i) Experimental visualizations of Klein et al. [25] in front view. 607 
(ii) 3D reconstructed results in front view, using the multiscale two-fluid approach. The expanding liquid sheet, captured by 608 
the sharp interface formulation, is illustrated as the isosurface of the liquid volume faction at 0.5 with a mesh resolution of 609 
200 (left) and 250 (right) cells per initial droplet diameter. (iii) 3D reconstructed results in front view, using the VOF method. 610 
Isosurface of the liquid volume faction at 0.5 with a mesh resolution of 200 cells per initial droplet diameter. The red circle 611 
defines the borders of the liquid sheet rim in the experimental results. The calculated thickness of the thin liquid sheet on 612 
the central line (in purple) and on the initial droplet radius (in yellow) is illustrated on the simulation results. 613 
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 614 

Figure 5 Laser-induced droplet rim fragmentation at We = 90. Initial pressure and velocity fields inside the droplet, obtained 615 
for propulsion velocity U = 1.76m/s and vapour expulsion time τe = 1 μs. Liquid sheet expansion velocity in the lateral 616 
direction, radial velocity (top) and dimensions (bottom) of the detached fragments for three time-instances that correspond 617 
to a liquid sheet with thickness 50%, 20% and 10% of the initial droplet diameter. The air velocity field around the rim and 618 
the developed vortex are depicted on the side panels. The minimum captured thickness is illustrated at time 0.172 τc. 619 

 620 

Figure 6 Laser-induced droplet rim fragmentation at We = 170. Initial pressure and velocity fields inside the droplet, obtained 621 
for propulsion velocity U = 2.42 m/s and vapour expulsion time τe = 0.5 μs. Liquid sheet expansion velocity in the lateral 622 
direction, radial velocity (top) and dimensions (bottom) of the detached fragments for three time-instances that correspond 623 
to a liquid sheet with thickness 50%, 20% and 10% of the initial droplet diameter The air velocity field around the rim and 624 
the developed vortex are depicted on the side panels. The minimum captured thickness is illustrated at time 0.124 τc. 625 
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 626 

Figure 7 Laser-induced droplet rim fragmentation at We =  330. Initial pressure and velocity fields inside the droplet, obtained 627 
for propulsion velocity U = 3.37m/s and vapour expulsion time τe = 0.3 μs. Liquid sheet expansion velocity in the lateral 628 
direction, radial velocity (top) and dimensions (bottom) of the detached fragments for three time-instances that correspond 629 
to a liquid sheet with thickness 50%, 20% and 10% of the initial droplet diameter. The air velocity field around the rim and 630 
the developed vortex are depicted on the side panels. The minimum captured thickness is illustrated at time 0.089 τc. 631 

 632 

Figure 8 Laser-induced droplet rim fragmentation at We = 750. Initial pressure and velocity fields inside the droplet, obtained 633 
for propulsion velocity U = 5.09 m/s and vapour expulsion time τe = 0.2 μs. Liquid sheet expansion velocity in the lateral 634 
direction, radial velocity (top) and dimensions (bottom) of the detached fragments for three time-instances that correspond 635 
to a liquid sheet with thickness 50%, 20% and 10% of the initial droplet diameter. The air velocity field around the rim and 636 
the developed vortex are depicted on the side panels. The minimum captured thickness is illustrated at time 0.062 τc. The 637 
arrows point to the minor low-pressure region and the very few created droplets after collapse. 638 
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 639 

Figure 9 Expansion of the liquid sheet radius, as a result of the laser-induced droplet deformation at We = 90, 170, 330, 750. 640 
Comparisons between the experimental observations of Klein et al. [25], the analytical model of Villermaux & Bossa [50] and 641 
the simulation results using the VOF method and the multiscale two-fluid approach until a liquid sheet with thickness 10% 642 
of the initial droplet diameter is formed. 643 

 644 

Figure 10 Volume concentration of the dispersed region over the total volume of the liquid phase for the laser-induced 645 
droplet fragmentation at We = 90, 170, 330, 750. 646 

 647 

Figure 11 Volume concentration of three classes of fragments with diameters dΣ > 1 μm (1st class), 0.5 μm < dΣ < 1 μm (2nd 648 
class) and 0.09 μm < dΣ < 0.5 μm (3rd class) at We = 90, 170, 330, 750 over the total volume of the dispersed region. The 649 
vertical lines correspond to liquid sheet with thickness 20% and 10% of the initial droplet diameter. 650 
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 651 

Figure 12 Probability density functions (PDF) of the fragment sizes at We = 90, 170, 330, 750 at the final time for a liquid 652 
sheet with thickness 10% of the initial droplet diameter. Zoomed-in view for the PDFs of the first class of fragments with 653 
diameters dΣ > 1 μm. An exponential distribution is indicatively plotted against the PDF in each case. 654 

4. Conclusion 655 

The laser-induced droplet rim fragmentation for a millimetre-sized MEK droplet has been investigated 656 

in the present numerical study, examining a range of Weber numbers between 90 and 750 for the 657 

propelled droplet. The problem is characterized by the early-time droplet dynamics, imposed by the 658 

millijoule nanosecond laser-pulse impact and the subsequent response of the droplet until it reaches 659 

a constant propulsion velocity, and the later-time droplet dynamics, governed by the droplet 660 

deformation into an elongated liquid sheet and the resulting rim breakup. The early-time droplet 661 

dynamics were simulated within the CFD framework based on the analytical model of  Gelderblom et 662 

al. [32] and the developed flow fields inside the droplet were obtained. Subsequently, the later-time 663 

droplet dynamics were simulated using the multiscale two-fluid approach, which allowed for the 664 

consideration of all the scales involved with a viable computational cost. Specifically, the radial 665 

expansion of the developed liquid sheet was resolved by the local mesh resolution, using the VOF 666 

sharp interface method, while the produced fragments due to the rim breakup were modelled under 667 

the diffuse interface approach with consideration of the significant sub-grid scale phenomena inside 668 

the cloud of fragments. The simulation results showed a good agreement with the experimental 669 

observations of Klein et al. [25] with respect to the shape and the expansion of the elongated liquid 670 

sheet and the development of a polydisperse cloud of fragments, until a selected final time before the 671 

numerical limitations and the nucleation of holes on the liquid sheet surface become significant. 672 

The numerical simulations demonstrated the influence of the laser beam energy on the initial flow 673 

fields inside the droplet and the subsequent droplet deformation and rim fragmentation; the present 674 

observations have a general interest for different droplets and conditions but the same droplet Weber 675 

number. Specifically, with increasing Weber numbers, a higher expansion rate, a more uniform liquid 676 

sheet thickness and a more extended cloud of fragments at the later stages of fragmentation was 677 

captured. Quantitative information for the radial velocity fields, which are responsible for the droplet 678 

expansion, were provided, showing maximum values on the rim. Additionally, during the liquid sheet 679 

expansion, the formation of a moving vortex behind the rim was identified, as a result of the 680 

interaction between the expanding liquid sheet and the surrounding air; thus, the vortical flow creates 681 

a recirculation region for the produced fragments. Finally, an overview of the evolution of the 682 

fragments’ population, during the droplet rim fragmentation and the sizes distributions at the final 683 

time of the phenomenon were presented. Overall, larger-scale fragments were detached from the rim 684 

at the early stages of fragmentation, while smaller fragments below 1 μm dominated at the later 685 

stages, as a result of the further breakup of the secondary droplets inside the cloud and the 686 
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attenuation of the fragmentation mechanism over time. However, with increasing Weber number, 687 

droplets above 1 μm remain significant even at the final times. 688 

Further development of the proposed multiscale two-fluid approach to incorporate an AMR algorithm 689 

and phase-change phenomena, namely, a cavitation and vaporisation model, will provide a valuable 690 

numerical model to investigate a broader range of unsteady fragmentation problems and obtain an 691 

insight into the sizes of the produced fragments that is not easily accessible from the experimental 692 

observations. Examples of fragmentation cases of interest in the literature to date include the violent 693 

laser-induced droplet fragmentation in biofuels [51] and screen printing inks [52], the explosive 694 

droplet fragmentation [22] and the surface jet breakup [53] by laser-induced cavitation bubbles and 695 

the breakup of laser-induced jets in needle-free medical injections [54], among others.  696 
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Appendix A. Later-time simulations initialization and effect on droplet deformation rate 704 

The absolute impulse scale peτe defines the later-time droplet dynamics and the resulting droplet 705 

deformation for a given propulsion velocity. However, as shown in equation (15), for a specified 706 

impulse scale peτe, different initialization sets (pe, τe) can be derived and equivalently used for the 707 

initialization of the later-time simulations at t = τe. In Figure 13, the droplet radial expansion and width 708 

reduction is demonstrated for the examined MEK droplet at Weber numbers 90, 170, 330, and 750, 709 

using three different initialization sets for each Weber number. Overall, the droplet deformation rate 710 

remains almost unaffected by the different initialization sets of the same problem, similarly with the 711 

previous observations of Gelderblom et al. [32].  712 

 713 

Figure 13 Evolution of the laser-induced droplet deformation at We = 90, 170, 330, and 750. (i) Droplet radius expansion and 714 
(ii) droplet width reduction for three different initialization sets, namely same impulse scale peτe but different individual pe, 715 
τe values, for each examined propulsion velocity and until a liquid sheet with thickness 10% of the initial droplet diameter is 716 
formed. 717 
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Appendix B. Validity of numerical model: mesh resolution and geometry 718 

The capability of the proposed multiscale two-fluid approach to accurately capture the laser-induced 719 

droplet deformation and rim fragmentation until the selected final time of the numerical simulations 720 

is discussed below; the selected final time corresponds to the development of a liquid sheet with 721 

thickness 10% of the initial droplet diameter on the central line. The investigation focuses on the two 722 

major aspects that can raise limitations in the conducted simulations, namely the convergence of the 723 

numerical solution and the accuracy of the axisymmetric assumption. 724 

1. Mesh convergence investigation 725 

The droplet response to the laser pulse impact is related to three main macroscopic physical 726 

phenomena, the droplet propulsion, deformation, and fragmentation. Each phenomenon is 727 

investigated below with respect to the convergence of the numerical solution for a MEK droplet at We 728 

= 90, 170, 330, and 750 using three different mesh resolution of 150, 200 and 250 cells per initial 729 

droplet diameter until the selected final time of the numerical simulations.  730 

• The center-of-mass properties in the axial direction in Figure 14 depict the droplet propulsion. 731 

Both the axial position and the axial velocity of the center-of-mass are accurately captured by all 732 

the applied mesh resolutions. The small decrease of the axial center-of-mass velocity over time 733 

is observed more rapid with an increasing Weber number due to the effect of the surrounding air 734 

that becomes more significant at higher propulsion velocities, i.e., the center-of-mass velocity is 735 

reduced by approximately 10% and 13% at the final time for We = 90 and 750, respectively.  736 

 737 

• The droplet radial and axial deformation is illustrated in Figure 15; the measurements of the 738 

droplet radial expansion converge with an increasing mesh resolution, while a very good 739 

agreement is demonstrated for the measurements of the droplet axial deformation irrespectively 740 

of the utilized mesh.  741 

 742 

• The evolution of the rim fragmentation is investigated in Figure 16, illustrating the volume 743 

concentration of the dispersed phase over the total volume of the liquid phase for different 744 

Weber numbers and mesh resolutions, as obtained within the Eulerian-Eulerian framework of 745 

the multiscale two-fluid approach; namely, the fragments volume over time is calculated based 746 

on the liquid volume fraction and not on the absolute volume of the detached fragments. As a 747 

result, even though the absolute number of fragments is continuously increasing over time, very 748 

dilute liquid regions within the cloud of fragments that correspond to significantly low liquid 749 

volume fractions and equivalent fragment diameters below 0.09 μm are excluded. This 750 

phenomenon is more pronounced at low Weber numbers 90 and 170; here, the fragmentation 751 

rate attenuates at the later stages and significantly less large-scale fragments are detached from 752 

the rim which is depicted as a non-monotonous concentration of fragments in Figure 16. Overall, 753 

the concentration of dispersed fragments captured within the multiscale framework converges 754 

towards the solution obtained with the finest mesh, concerning the initiation of the rim breakup 755 

and the progressive detachment of fragments over time. Specifically, at Weber numbers 330 and 756 

750, the intermediate mesh results with a resolution of 200 cells/d0 are found to approach more 757 

closely the finest mesh solution during the later stages of fragmentation compared to the lower 758 

Weber number cases with values 90 and 170. However, at lower Weber numbers, the rim 759 

fragmentation is less violent, and the concentration of fragments relatively stabilizes over time. 760 

As a result, the deviation between the results for a resolution of 200 and 250 cells/d0 is mainly 761 

enhanced by new fragments below 1 μm. Thus, it is safe to conclude that the calculated 762 
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concentrations of fragments using the multiscale two-fluid approach satisfactorily converge in all 763 

examined conditions.  764 

 765 

Figure 14 Centre-of-mass properties for a MEK droplet at We = 90, 170, 330, and 750. (i) Position and (ii) velocity of the 766 
centre-of-mass in the axial direction. Mesh convergence investigation using three different mesh resolutions of 150, 200 and 767 
250 cells per initial droplet diameter. 768 

 769 

Figure 15 Evolution of the laser-induced deformation for a MEK droplet at We = 90, 170, 330, and 750. (i) Droplet radius 770 
expansion and (ii) droplet width reduction. Mesh convergence investigation using three different mesh resolutions of 150, 771 
200 and 250 cells per initial droplet diameter. 772 

 773 
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Figure 16 Evolution of the laser-induced rim fragmentation for a MEK droplet at We = 90, 170, 330, and 750. Volume 774 
concentration of the dispersed phase over the total volume of the liquid phase. Mesh convergence investigation using three 775 
different mesh resolutions of 150, 200 and 250 cells per initial droplet diameter.  776 

2. Axisymmetric modelling assumption 777 

An axisymmetric geometry is commonly adopted in numerical simulations of droplet fragmentation 778 

cases, as an acceptable compromise between a satisfactory representation of the developed physics 779 

and a viable computational cost. Various examples of axisymmetric simulations using a ~5o wedge 780 

geometry can be found in the literature, such as the explosive fragmentation imposed by a laser-781 

induced cavitation in the study of Zeng et al. [22] and the droplet fragmentation due to mechanical 782 

impact onto a solid surface with moderate [55], [56] and high impact velocities [31], [34].  783 

The laser-induced droplet fragmentation, examined here, is an unsteady fragmentation process, 784 

characterized by two fragmentation modes, namely, the rim and the sheet fragmentation, as 785 

identified by Klein et al. [25]. The present numerical study focuses on the investigation of the rim 786 

fragmentation, simulated until a selected final time before the sheet fragmentation begins. During the 787 

rim fragmentation, perturbations with a characteristic wave number form along the rim and evolve 788 

into fragments, i.e., ligaments or droplets. The fastest-growing wave number upon the unsteady rim 789 

fragmentation for liquids of small viscosity is introduced by Wang et al. [57], as follows: 790 

𝑘𝑚𝑎𝑥
∗ = √

1

2+
6√2

𝑅�̃�

           (16) 791 

where 𝑘𝑚𝑎𝑥
∗  is non-dimensionalized by the rim diameter b, such that 𝑘𝑚𝑎𝑥

∗ = 𝑘𝑚𝑎𝑥/(𝑏 2⁄ ). 𝑅�̃� is the 792 

local rim Reynolds number which is calculated, as follows: 793 

𝑅�̃� = 0.2𝑂ℎ−5
4⁄ 𝑅𝑒−1

4⁄                        (17) 794 

where 𝑂ℎ = 𝜇/√𝜌𝛾𝑑0 and 𝑅𝑒 = 𝑈𝑑0/𝑣 are the Ohnesorge and Reynolds numbers, respectively, for 795 

the properties of the initial droplet before fragmentation, i.e., d0 is the initial droplet diameter, U the 796 

propulsion velocity, μ the dynamic viscosity, ρ the density, γ the surface tension and v the kinematic 797 

viscosity. 798 

For the examined MEK droplet at Weber numbers 90, 170, 330, and 750, the fastest-growing wave 799 

number obtained from equation (16) is 𝑘𝑚𝑎𝑥 ≅ 0.33𝑏 in dimensional form. Considering the 5o wedge 800 

geometry used and the progressive radial expansion of the droplet, the critical point to examine if the 801 

developed wave numbers fit in the utilized wedge geometry is during the initiation of the rim 802 

fragmentation process. At this moment for each examined case, the droplet radius is expanded by 803 

𝑅 ≅ 1.5𝑅0, the azimuthal dimension of the wedge around the rim is 𝑧𝑚𝑖𝑛 ≅ 10−4𝑚 and the rim 804 

diameter is 𝑏 ≅ 10−4𝑚. As a result, even during the initiation of the rim fragmentation process, the 805 

fastest-growing wave number can fit in the 5o wedge geometry, since 𝑘𝑚𝑎𝑥 ≅ 0.33 × 10−4 < 𝑧𝑚𝑖𝑛. 806 

Overall, the axisymmetric 5o wedge geometry is an acceptable modelling compromise in the 807 

conducted simulations without supressing the developed wave numbers and thus, influencing the 808 

results.  809 

On the contrary, the simulation of the Rayleigh-Taylor instability-driven sheet fragmentation would 810 

require not only a 3D geometry but also a significantly high resolution around the extremely thin liquid 811 

sheet in order to accurately resolve the non-axisymmetric hole nucleation. In practice, this numerical 812 

investigation would mean a computationally expensive Direct Numerical Simulation (DNS). However, 813 

a computationally efficient simulation within the developed multiscale framework would be possible 814 
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with a further development of the proposed numerical model so as to couple an adaptive mesh 815 

refinement (AMR) algorithm with the sharp interface formulation. Then, the AMR algorithm would 816 

provide high resolution around the expanding but still coherent liquid sheet, sufficient to resolve the 817 

resulting hole nucleation and at the same time, operate independently of the sub-grid scale modelling 818 

for the produced micro-scale fragments. This new model development is beyond the scope of the 819 

present study, our first numerical study on the laser-induced droplet fragmentation problem and is 820 

part of the ongoing research.  821 

Appendix C. Droplet size distributions: mesh convergence investigation 822 

The diameter of a sub-grid scale fragment is calculated within the multiscale two-fluid approach in 823 

equation (14) as the equivalent diameter of a spherical particle which has the same volume to surface 824 

area ratio as the examined computational cell. Therefore, the fragment diameter is a function of the 825 

local calculated interface surface area density and the computational cell volume. In practice, for the 826 

same examined computational volume, a very coarse mesh will predict a single large droplet, while a 827 

finer mesh will capture the same volume with multiple computational cells and thus, will predict a 828 

group of smaller droplets, one in each cell. As a result, a coarser mesh enhances the calculation of 829 

larger diameters, while in a finer mesh smaller diameters will dominate. Following this modelling 830 

limitation, a moderate mesh resolution is the safest balance to obtain the most accurate 831 

representation of the physics and restrict the mesh-related overestimation of larger or smaller 832 

droplets.  833 

Considering the inevitable modelling effect of the mesh resolution on the droplet size calculations, the 834 

interest of a mesh convergence investigation does not lie in the individual diameter values at a specific 835 

time. Instead, the overall evolution of the fragments’ population over time, examining how specific 836 

classes of diameters develop upon the rim fragmentation process, is here the most significant. In 837 

Figure 17, the volume concentration of three classes of fragments, same as in Figure 11, with 838 

diameters dΣ > 1 μm, 0.5 μm < dΣ < 1 μm and 0.09 μm < dΣ < 0.5 μm is illustrated for a MEK droplet at 839 

We = 90, 170, 330, and 750 over the total volume of the dispersed region, using three different mesh 840 

resolutions.  841 

For the highest droplet propulsion velocities with corresponding Weber number values of 330 and 842 

750, the concentration of droplets over time follows the same tendency in the three presented classes 843 

of fragments in Figure 17, irrespectively of the mesh resolution used. As expected, the largest 844 

fragments of the first class are found to be more significant with the coarsest mesh of 150 cells/d0 845 

even during the later stages of rim fragmentation, while the smaller fragments of the second and third 846 

class are more pronounced with the finest mesh of 250 cells/d0. For We = 330, the droplet size 847 

distribution of Figure 12 is obtained at the final time 0.089 τc, when the maximum observed deviation 848 

between the moderate and the finest mesh results is found for the concentration of the first class of 849 

fragments and is approximately 15%. For We = 750, the droplet size distribution of Figure 12 is 850 

obtained at 0.062 τc with the concentration of the first class of fragments to differ by less than 10% 851 

between the mesh of 200 and 250 cells/d0 Overall, the observed small deviations between the 852 

calculated concentrations of different classes of fragments for Weber number values of 330 and 750 853 

do not violate the overall capturing of the phenomenon.  854 

Focusing on the lower propulsion velocities with Weber number values of 90 and 170 and the first 855 

class of fragments in Figure 17(i), the concentration of the largest droplets class is reduced significantly 856 

earlier with the finest mesh of 250 cells/d0. As previously shown in Figure 16, after 0.06 τc, the overall 857 

concentration of fragments relatively stabilizes; thus, at this time, the fragmentation process 858 

decelerates, and less newly formed fragments are detached from the rim. As a result, the developed 859 
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cloud of fragments is not as varied as previously and mainly consists of droplets around 1 μm, instead 860 

of a group of large droplets well above 1 μm close to the rim that break down into smaller droplets 861 

downstream. In this case, the effect of the mesh resolution on the droplet size calculations around 1 862 

μm is pronounced; the mesh of 150 cells/d0 overestimates the first class of droplets, while the mesh 863 

of 250 cells/d0 underestimates their presence in the cloud of fragments. However, for the time 864 

instances that the droplet size distributions of Figure 12 are obtained, the moderate mesh resolution 865 

results satisfactorily converge towards the finest mesh solution; for We = 90, the maximum deviation 866 

is less than 4% for the second class of fragments, while for We = 170, the maximum deviation is  867 

observed for the third class of fragments and a difference of 18%. 868 

 869 

Figure 17 Volume concentration of three classes of fragments for a MEK droplet at We = 90, 170, 330, and 750 over the total 870 
volume of the dispersed region, using three different mesh resolutions of 150, 200 and 250 cells per initial droplet diameter.  871 
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