lT City Research Online
UNIVEREI;;{ ]OSFgLfNDON

City, University of London Institutional Repository

Citation: Kloukinas, C. (2004). Data-Mining Synthesised Schedulers for Hard Real-Time

Systems. Paper presented at the 19th International Conference on Automated Software
Engineering, 24 Sep 2004, Linz, Austria. doi: 10.1109/ASE.2004.10002

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/2895/

Link to published version: https://doi.org/10.1109/ASE.2004.10002

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.




City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk



http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Data-Mining Synthesised Schedulers for Hard Real-Time Systems

Christos Kloukinas

VERIMAG, CentreEquation, 2 avenue de Vignate, 3861@f@iks, France
http://www-verimag.imag.fr/PEOPLE/Christos.Kloukinas
E-mail: Christos.Kloukinas @ imag.fr

Abstract real-time systems - that scheduler synthes[g]. The ba-
sic idea behind it is that one will model the system with-

The analysis of hard real-time systems, traditionally per- out performing any of the model “normalisations” needed
formed using RMA/PCP or simulation, is nowadays also by RMA/PCP, just as is done in the case of system simula-
studied as a scheduler synthesis problem, where one aution. However, instead of simulating the system, one uses
tomatically constructs a scheduler which can guarantee automated tools for examining the entire state space of this
avoidance of deadlock and deadline-miss system statesmodel and synthesise a scheduler for it which gaar-
Even though this approach has the potential for a finer con- antee that all deadlock and deadline-miss states will
trol of a hard real-time system, using fewer resources and pe unreachable from now on. Of course the computa-
easily adapting to further quality aspects (memory/energy tional cost of performing scheduler synthesis is a lot higher
consumption, jitter minimisatiorgtc), synthesised sched- than that of the RMA/PCP analysis. This is somewhat off-
ulers are usually extremely large and difficult to understand. set by the fact that scheduler synthesis, unlike RMA/PCP,
Their big size is a consequence of their inherent precision, can be applied to any kind of system and that, unlike simu-
since they attempt to describe exactly the frontier among thelation (itself a computationally expensive method), sched-
safe and unsafe system states. It nevertheless hinders theiijler synthesisan prove (better yetender) systems cor-
application in practise, since it is extremely difficult to val- rect Another incentive for using scheduler synthesis is that
idate them or to use them for better understanding the be-the models used with it are usually more detailed than the
haviour of the system. ones used for RMA/PCP, which means that systems de-

In this paper we show how one can adapt data-mining clared to be unschedulable by RMA/PCP due to their model
techniques to decrease the size of a synthesised schedul&ver-approximations may well be proved to be schedula-
and force its inherent structure to appear, thus giving the ble when using synthesis. So, by imposing the RMA/PCP
system designer a wealth of additional information for un- policy upon the system model, one could well use sched-
derstanding and optimising the scheduler and the underly- uler synthesis as a more expensive but also more accurate
ing system. We present, in particular, how it can be used for method to perform RMA/PCP schedulability analysis. Fi-
obtaining hints for a good task distribution to different pro- nally, unlike RMA/PCP which imposes a static set of
cessing units, for optimising the scheduler itself (sometimestask priorities that are difficult to combine with sched-
even removing it altogether in a safe manner) and obtain- uling policies for extra qualities, synthesis can produce
ing both per-task and per-system views of the schedulabilityschedulers which are easier to combine with quality sched-
of the system. uling policies of this sort. This is because synthesis

Keywords : Software engineering, data-mining, hard imposes the minimum set of constraints upon the sys-
real-time systems, schedulability analysis, scheduler syn-tem for rendering it safe and, thus, leaves many choices,
thesis, decision-tree induction. among which we can choose those which best opti-
mise the behaviour of the system with respect to further
qualities (memory/energy consumption, jitter minimisa-
tion, etc).

1. Introduction

The ongoing advances of the model-checking com-
munity have made possible a third possibility to Rate  |n order to evaluate the practical usefulness of the sched-
Monotonic Analysis (RMA) [[6]/Priority Ceiling Proto-  uler synthesis method, we have investigated its application
col (PCP) [9] and simulation for the analysis of hard to real-time Java programmef, 4] obtaining promising
results concerning its applicability. We investigated in par-
*  Funded by the Grenoble Network Initiative. ticular a synthesis methodologly! [5] for obtaining sched-



http://www-verimag.imag.fr/PEOPLE/Christos.Kloukinas

uling constraints which can be directly linked t@) dif- vide acanonicalrepresentation which allows for fast com-
ferent safety propertie®(g, deadlock avoidance, respect putations with predicates. It is well known that what plays
of deadlines) andii) underlying assumptions concerning a crucial role in obtaining a small BDD is the choice of
the system execution modet.€, non-preemptive execu- the variable ordering along the diagram. BDDs do not of-
tion versus preemptive execution)(@r) different assump-  fer any substantial help in this respect and the fact that
tions about the scheduler itse#., ability to observe the  they impose &ingle variable orderingacross all the deci-
system clocks or lack of it). Our aim was to obtain sched- sion tree branches sometimes makes it difficult to obtain a
ulers which are easier to understand and analyse in practisesmall decision tree.

than what one would normally obtain when applying sched-  In our context, where we do not need to perform any
uler synthesis. At the same time, this methodology has thefurther computations with our scheduling constraints and
advantage of decreasing the problem of state space explowhere we would also like their final representation to be
sion, since it is based on examining successive refinementgasily readable by humanse can obtain a much better rep-
of the system model, thus paying the cost of extra accu-resentation by usinmachine-learningechniques fodata-
racy only when this is absolutely necessary and beneficial.mining Indeed, there exist data-mining methods such as
The schedulers thus synthesised are a set of predicates o3 [[7] which can produce a small representation of our
the current system state, each declaring a system thread techeduling constraints as a decision tree, uifugmation-

be safe to execute or not. theory heuristicgor choosing the order of variables at each

Nevertheless, these schedulers still suffer from a num-sub-tree. This last feature allows data-mining methods to
ber of problems, which hinder their practical use. First of Produce a decision tree which is more useful touman
all, they tend to be big, since we had refrained from any highlighting the system variables which anere important
sort of optimisation on the predicates. In fact, synthesised?@t different stages of the system’s execution, at least as far as
schedulers are by nature considerably bigger than the sethe schedulability of the system is concerned. As usual with
of static priorities the RMA/PCP analysis produces, since 8Pplying data-mining techniques, we will havestiapt the
this approach attempts to construct an exact description ofoasic data-mining algorithm to our particular domaim
the frontier among the safe and unsafe system states. Thi@rder to reap the most benefits out of it.
precision allows for an easier control of the system, hope- In the following we present the basic idea behind sched-
fully using fewer resources, and for an easier considera-uler synthesis and the scheduler we synthesise for a simple
tion of further quality aspects of the system during sched- case study. We then show how one can adapt ID3 to better
uling [5].However, their big size is particularly problem- structure synthesised scheduler constraints and analyse/op-
atic in the case of embedded systems, where we have strintimise a real-time system.
gent memory constraints. In addition to memory, the big

size of our schedulers has also repercussions upon its exs Synthesising Scheduler Constraints
ecution time, which we would like to render as small as

possible; indeed, in our models we make the assumption  The pasic idea behind scheduler synthesis for safety

that the scheduler executes “instantli8, that its execu-  properties é.g, deadlock freedom, guaranteeing deadlines)

tion time is negligible when cqmpared to that of the system g o explore the complete state space graph of the system
sub-tasks. Another problem with the schedulers we synthe-,q find the states where the system scheduler must not al-
sise is that they are completely unstructured. That is, for |, some application tasks to execute, in order to be able to

each system task we synthesise a long predicate, as a digyaranteethat the system will avoid undesired states later
junction of the conjunctions which characterise each unsafe, .g, states where the system is deadlocked, or misses

state for this task,e., the states where the scheduler should some deadline). If at some state the scheduler is left with

not allow this task to execute so as to keep the whole system,, safe choice. we add it to the set of bad states. so that
in the set of states where the safety properties can be guarye can avoid it as well (otherwise, the scheduler itself may

anteed. This form makes it extremely difficult for a human .5 ,se the system to deadlock). The scheduler takes its de-
to understand the scheduling constraint that should be im-¢isions pased on a set of observation variables, which form
posed upon a system task, thus rendering the validation Ofits model of the current state of the system. In our setting,
the scheduler problematic. At the same time, it does not al-heqe variables are the programme counters of the applica-
low the designer to obtain any kind of reasonable feedbackjon, tasks and the global clock of the system. Note, that in
concerning the behaviour of the system, which could help o+ models the scheduler is not allowed to exert control to
in seeding further system optimisations. the system at all states|[5]. It can only control the applica-
When referring to minimisation of some predi- tion at states where the application attempts to lock (or un-
cate, one may naturally think dfinary decision diagrams lock) some resource, or when an application task becomes
(BDDs) [2]. Nevertheless, BDDs’ primary role is to pro- ready to execute after some alarm has expieed, (@ new



Writer Refresher User

WO |  Value.monitorEnter | _R(l Fresh.monitorEnter Value.monitorEnter ﬂ
c I ! Value_fresh I3
W1 | [2,3] Value_write R1| [1,1]Fresh_fresh=false | Y2| value wait ¢ while(Value_fresh) | U1
¢ ‘ notified ¢ Value_fresh
w2 Fresh.monitorEnter| R2 | Fresh.timed_wait(13) f [2,2] local:=Value_read | y3
G = {C notified V' timedout / i
W3 | [1,1] Fresh_fresh:=true ]:;3 Value.monitorEnter /,’/ Value.monitorExit us
v i 1°
wa Fresh.notify a R4 |[1,1] Value_fresh:=Fresh_fresh [5,6] compute(local) Us
¢ I '
w5 Fresh.monitorExit RS Value.nofity / wait for_period(20) v
Te i e
wé Value.monitorExit R Value.monitorExit
c 1©
R7 Fresh.monitorExit
e

(Each computation is annotated with its execution duration interval. Synchronisation is done using monitors and
communication using condition variables. The dotted arrows show the correspondence of notifications to wait actions.
Controllable transitions are annotated with &”. )
Figure 1. Control-flow graphs of a small real-time database system’s tasks

4

"Ro"] rotified \ 2" Lo
" . | |Fresh, mommrExn——{ Fresh.waitForNotif F‘—V——{ Fresh.monitorEnter 4 — VaIue.monitorExilH Value.waitForNotif if Value.monitorEnter]
R2 | Fresh.timed_wait(13) | e ' ¢ U2 | Valuewait — '
— (R2_Unlock) (R2_Wait)  timedout  (R2_Relock) ) i (U2_Unlock) (U2_Wait) ! (U2_Relock)
(atomic) ' ‘ \(atomic) '

(Since the internal state$ Unlock & X Wait are atomic, we consider them as a single state, andduserefer to them,
in contrast toX_Relock . So, itisR2, R2_.Relock & U2, U2_Relock respectively.)
Figure 2. The behaviour of the timed _wait & wait primitives

task period has been signalled, or the task has timed-ou2.1. Case Study: A Simple R-T DB

while waiting for some notification). This effectively means

that the programme counters of the tasks need not refer to Figure[1 gives an example of an abstract control-flow
real programme instructions; they can instead be abstrac raph of a simple real-time database system consist-
locations of these programmes signifying the start (respec—ing of three tasks. In this system, tiériter  task is pro-
tively end) of some block of'non—controllable actions. For ducing a series of values.g, by reading some sensor) and
example, a mutually exclusive block of code can be de- yhe Refresher  task is ensuring that the values the peri-
scribed with three abstract positions: one modelling the de-yqic User task is using are fresh enougte., have been
mand of the mutually exclusive access to the blagk,the  proguced sometime during the last 13ms time frame. Syn-

lock or the action of entering a monitor), another modelling -hronisation among the system tasks is achieved through
the execution inside the mutually exclusive block and a fi- the use of monitors using primitivesionitorEnter

nal one, modelling the end of the blodle(, the unlock ac-  5ngmonitorExit  , which basically lock/unlock the mu-
tion, or the monitor exit one). In our model, tasks can be {ay associated with the object they are called with.

in either one of three basic stat¢docked ready & exe-  communication among tasks is done through condi-
cuting Tasks which areeadycan either besafeto execute  jon variables, using primitiveswait , timed _wait

or not. Note here that theafetask predicatés not defined  noify  andnotifyAll (not used in our example). Fi-
upon all system states nally, thewait _for _period primitive blocks a task until

its next period, which is given as an argument. In the ex-



IS_UNSAFE(Writer):=
((User=U0)

\V ((User=U2)

\/ ((User=U2_Relock)

\/ ((User=U5)

V ((User=U6)

A (Refresher=R3)
A\ (Refresher=R3)
A (Refresher=R3)
A (Refresher=R3)
A\ (Refresher=R3)

A (Writer=W0))
A (Writer=WO0))
A (Writer=WO0))
A (Writer=W0))
A (Writer=WO0))

IS_UNSAFE(Refresher):=
((User=U0)

V ((User=U0)

V ((User=U2)

\V ((User=U2)

\/ ((User=U2_Relock)

\/ ((User=U2_Relock)

A (Refresher=R2_Relock)
A\ (Refresher=R2_Relock)
A (Refresher=R2_Relock)
A\ (Refresher=R2_Relock)
N\ (Refresher=R2_Relock)
A (Refresher=R2_Relock)

A (Writer=W1))
A (Writer=W2))
A (Writer=W2))
A (Writer=W1))
A (Writer=W1))
A (Writer=W2))

V ((User=U5) A\ (Refresher=R2_Relock) A (Writer=W1))
\V ((User=U5) A (Refresher=R2_Relock) A (Writer=W2))
V ((User=Us6) A\ (Refresher=R2_Relock) A (Writer=W1))
\V ((User=Ue6) A (Refresher=R2_Relock) A (Writer=W2))

Table 1. Scheduler against deadlocks

ample of Figur¢]L, th&ser is the only periodic task, with
a period of 20ms. Figurg] 2 shows how thait prim-
itive functions internally - it is in fact two states, the
first of which atomically exits the monitor and blocks
the thread waiting for a notification, while the sec-
ond one {e,R2_Relock or U2 Relock ) is the state

(a) Writer-Unsafe decision-tree

Attribute: Writer [Gain-Ratio : 0.080892585]
--> WO

Attribute: Refresher [Gain-Ratio : 0.3615773]
--> R3 Class is: Writer-Unsafe

(b) Refresher-Unsafe decision-tree

Attribute: Refresher [Gain-Ratio : 0.103661135]
--> R2_Relock

Attribute: Writer [Gain-Ratio : 0.50555944]

+> W1 Class is: Refresher-Unsafe

--> W2 Class is: Refresher-Unsafe
Table 2. Structured deadlock-free scheduler

straints in such a manner can greatly help when their num-
ber increases. Indeed, for the case where we are trying to
guarantee the deadlines of the tasks under a non-preemptive
execution modeli(e., thatUser never misses its period),

we synthesise 61 constraints in total, while the decision-tree
structured constraints are only 9

3. Inducing Schedulers with ID3

where the thread has been notified and thus wakes up and at-

tempts to re-enter the monitor. In the following, we will
use the location of thevait primitive (i.e., R2, U2) to re-

fer to the first atomic state where the task blocks, using
the same location with the suffixRelock (i.e, R2.-
Relock , U2 Relock ) to refer to the state where the task
attempts to re-enter the monitor once notified.

Table[] shows the synthesised constraints for avoiding

deadlocks in this system. Even though there are only a few

constraints in this case, the problem is still obvious. One
cannot easily identify which variables play the major role
in establishing that a certain task will deadlock if allowed
to execute, nor is it easy to extract any further information
about the inter-dependencies of the tasks. Consider, how
ever, the reformulation of the above constraints in Thble 2
Immediately it becomes obvious that, as far aswhéer

is concerned, the problem arises when it finds itself at the
WoOlocation (where it wants to lock objedtalue and will
subsequently ask to lock objeEtesh ), in states where
the Refresher is at theR3 location (where it has al-
ready acquiredrresh and will next try to lockValue ).
Similarly, theRefresher is unsafe to execute at location
R2_Relock (where it tries to acquire the objeEtesh ),
when theWriter is at locationsWlor W2(where it has
already locked the objecdtalue ). Indeed, this situation
will lead to a deadlock, since thRefresher  will sub-
sequently ask for obje&talue while theWriter  will ask

for objectFresh . It is also clearly evident that thdser

task has no effect on either thi¢riter  or theRefresher

tasks being safe or not. Structuring the synthesised con-

Let us start with a brief introduction of Ross Quinlan’s
ID3 data-mining algorithm [7]. The basic idea for structur-
ing the scheduler constraints as a decision tree, is that we
can consider theontrollable statesn the state-space graph
of the system as a set of classified examples, where the class
of a state is exactly the set of currently safe tasks. Given this
and a representation of each state as the vector of the val-
ues of theobservablesystem variables, we can use the-
down induction of decision trees (TDID&lgorithm ID3 so
as to extract the underlying structure of our scheduler con-
straints. ID3 performs greedy heuristisearch on the set
of possible variable observations, having as a goal the min-
imisation of the height of the final decision tree. The skele-
ton of the ID3 tree-induction algorithnas adapted to our
domain is shown in Figur¢|3 (adaptations are typeset us-
ing anitalic bold face). Faced with a set of training exam-
ples {.e., controllable states), we select the attribute which
maximises thegain ratio, defined as the ratio of thafor-
mation gainover theinformation valueof an attribute. The
main idea behind this heuristic is to try to maximise the
mutual entropy of the attribute and class random variables,
correcting for the fact that many-valued attributes will have
a higher mutual entropy than few-valued ones. The defini-
tions of these information-theory metrics are shown in equa-
tions[ 115, wher€' is the ensemble of classe$the ensem-
ble of the value® of an attribute, and{ (X) the entropy of

1 There are 45 for the Writer, 14 for the Refresher and 2 for the User.
The respective trees have 11, 7 & 1 leaves, for a total of 19 constraints.



1 Adapted-ID3(examples, attributes, attribute  _observation  _costs )

2 Let

3 C-C := COMPOSED class of examples /I M-C := Majority class of examples
4 In

s If all examples in class C Then

6 return a leaf labelled as C

7 Else If no more attributes Then

8 return a leaf labelled as Cc-C /I ..labelled as M-C

9 Else

10 Select an attribute, A, for the root, among the least cost attributes

1 For each possible value v . of A

12 examples ; := subset of examples having value v i for A

13 Add a branch for the test A=v i

14 If examples ; is empty Then

15 create a leaf labelled as SAFE // ..labelled as M-C

16 Else

17 new subtree := Adapted-ID3(examples i, attributes - {A}, attribute_observation_costs)

(Adaptations are shown using dalic bold font; original code has been commented out. )
Figure 3. Adapted ID3 algorithm

an ensembleX (i.e., the average Shannon information con- outliers since it aims to increase the overall classification

tent of an outcome), see Quinlan [7] for more details. accuracy of the final decision-tree. In our case, these exam-
Gain_Ratio(4, E) = Info_Gain(4, E) /Info_Value(A, E) (1) ples/states are simply a set of unsafe/safe states which the
Info_Value(A, E) = H(A) 2 scheduler cannot distinguish in its system abstraction, not
Info_Gain(A, E) = Info(E) — Exp_Info(4, E) (3) noise due to some badly performed experiment/measure.
Info(E) = H(C) 4) Since we aim forsafety instead of maximising the over-
Exp_Info(4, E) = —H(A) + H(C, A) ) all classification accuracyye must always err on the con-
servative sidethus label the leaf with the composed class
3.1. Applying ID3 on Scheduler Constraints (i.e., unsafe).

o _ _ Then, at ling¢ Ib of Figure] 3 we do not have to label a leaf

Having introduced the ID3 basics, let us now describe lacking examples with the most common class of its par-
how it can be adapted for structuring and mining our synthe- ent node, but can simply label it SAFE. Here again, ID3
sised scheduler constraints. As aforementioned, the trainintggssymed that the examples were missing because our exper-
examples we have are the states at which the scheduler ignents/imeasurements failed to cover the state space. Lack-
called to exert control. Our attributes are the PC vector of jng any domain knowledge, it makes sense to assign the leaf
the tasks and the value of the global system clock, sincethe majority class of its parent node. However, in our do-
these are the system variables we allow our scheduler to 0bmain, missing examples represent the case where we do not
serve. The classes of the examples/states belong to the sefave any control state whose attributes have these values,
describing which tasks are safe. Given our specific data do-j e_ it is an unreachable state of the system (or one where
main, we caradapt the basic ID3 algorithreo that it uses  the task is not ready and thus its safety is not defined). Since
our knowledge of the domain and thus produces better re-ye do not want to over-constraint the system, we explicitly
sults. assign to this leaf th8AFE class, knowing that our deci-
sion will not have any impact on the schedulability of the
system.

Attributes with an InfaValue (see equatidn 2) equal to
zero are not considered by our tree induction algorithm,
h since a zero value means that there is only one value for
this attribute in the examples, so this attribute is adequately
characterised by the attributes which have been observed
higher in the decision-tree branch we are currently examin-

3.1.1. Adapting ID3 First, we can use the fact that our
classes are nindependents is generally assumed, but can
be composedThe composed class of two examples having
different classes is the most conservative of the tveg (he
task-unsafe one). So, when the ID3 algorithm is faced witl
a set of examples of different classes which it cannot clas-
sify for lack of further observation attributes (ling 8 of Fig-
ure[3), then we can take tllempositiorof these classes as
the label of the tree leaf, instead of the most common class"9:

in the current example set. ID3 would have chosen the most3.1.2. Continuous VariablesIn order to produce trees
common class because it considers the other examples awhich are easier to understand, we have also changed the



treatment of continuous attributes, that is, the system clock.tree. In this case, we will have™ classe$| For exam-

So, instead of treating each clock value as a distinct one,ple, for the system of Figufé 1, the classes wouldAle _-

we transform them into those intervals which correspond Safe, Writer ~ _Unsafe, Refresher  _Unsafe, User _-

to an unsafe task. This value to interval transformation is Unsafe, Writer ~ _Refresher _Unsafe, Writer -

performed in the following manner. For each task we com- User _Unsafe, Refresher  _User Unsafe, Writer  _-

pute the list of examples/states for which the task is un- Refresher _User _Unsafe }. The “parallel” decision-tree
safe, sort the examples according to the values of the clockform of the scheduler obtained for the example of Figure 1
and then construct intervals of the sorted values. For ex-is shown in Tablg]3. According to this decision-tree, the sys-
ample, if for task T the clock values at the set of exam- tem task which seems to be most problematic for the sys-
ples/states for which this task is unsafe f0e3, 4,6, 7,8}, tem’s schedulability is th&\Vriter . It is also clear that
then we construct the intervels, 0], [3, 4], [6, 8]. Then, we  theUser never causes the system to move towards an un-
combine the intervals constructed for each task, in ordersafe (here deadlocked) state, since its programme counter
to obtain those intervals which can best characterise alldoes not even appear in the tree.

the unsafe tasks. So, if we had another taSkvfiose un- In both cases, as we have already seen, we set the clock
safe interval wag4, 5], the combined intervals would be attributes to have the highest cost, so as to observe them
[0,0], 3, 3], [4,4], [5, 5], [6, 8], where we have broken up the last. In this way, the attribute order of trees will start with
[3,4] and the[4, 5] intervals, since at 3 only the first task is the PCs of the tasks and, thus, we will obtain an order of
unsafe, at 5 only the second task is unsafe, while at 4 bothimportancefor the tasks of the system, with respect to our
of them are unsafe. This greatly reduces both the depth andhbility to schedule the system safely. The task whose be-
the breadth of the induced trees, since we avoid performinghaviour has the highest effect on system schedulability will
consecutive tests/splits on specific midpoint values (which be placed first, the next one secomdk, and this will be

is one way of handling continuous attributes, see [8]) or doneseparatelyfor each branch of the decision tree.

splitting into as many sub-trees as possible clock values.

3.1.3. Variable Observation CostsFinally, we have in-  3.3. Preprocessing of the Training Examples
troducedobservation costfor each variable but we do not

treat them as weights, which is the usual way of using them,  Preprocessing of the training examples is another way
i.e,, only as guidelines which can be ignored sometimes. In-we can introduce our knowledge of the particular domain,
stead, we always choose the next attribute to observe amongor obtaining better decision trees. In the case of the binary
the set of attributes having the smallest cost, sed Tihe 10 ofclass trees, the preprocessing consists of removing from the
Figure[3. This allows us to postpone the observation of theexample set all these examples which correspond to states
clock attribute, since this has a much larger observation costwhere the respective task is not ready, since in these states
than the programme counters of the different tasks. Indeedthe safety of the task is undefined (remember that a task
in [5] we explicitly aimed for obtaining time-independent needs to be ready to be characterised as safe or unsafe).
schedulers, exactly because of the high cost of observingThis allows ID3 to use them in its convenience, as either
the system and task execution clocks and the great decreasgafe or unsafe examples, depending on which characterisa-
of the scheduler size thus obtained. In addition, variable ob-tion will help it construct a smaller tree. For example, the
servation costs allow us to induce trees where we frave  tree forWriter  in Table[2 was obtained by considering
posedthe choice of the first attribute. In this way, we can that themissingexamplesiVQ R3, {U1,U3,U4} are all un-
choose a particular programme counter as the top attributesafe, even though in these statister  is blocked (since

and obtain a tree which gives us/@w of the system’s be- User has the lock on objectalue which is needed by

haviour according to that particular task the Writer ). To see why, imagine having chosen the at-
tributes/valuesVriter /WOandRefresher /R3. At that
3.2. Types of Decision Trees point, since we have removed all examples/states where

Writer  is blocked, all remaining states belong to the
Having set the framework, we now examine the two ba- Writer _Unsafe Class, and the value of attributéser

sic ways we can use our adapted ID3 algorithm. First, does not offer any further increase in the classification pre-
we can induce separate decision trees for each task, efcision ofthe decision-tree. Thus, ID3 will choose to directly
fectively computing the predicate§S_UNSAFE(T}), construct a leaf labelled a#/riter _Unsafe , executing
for all i < N, where N is the number of tasks. In this line[d of Figurg 3.
case, we would use binary class¢Safe, Unsafe }
for all tasks. The second alternative is to induce a de-; n reality, there will be2N+! classes, since we also have the IDLE
cision tree for all tasks at the same time, that is, com- task in timed models of the system and the scheduler needs to decide
putein parallel the safe/unsafe bit-vector with one decision ~ at each control point whether idiing is safe or not.




Attribute: Writer [Gain-Ratio : 0.16776516]

+> WO

[\

| Attribute: Refresher [Gain-Ratio : 0.3319911]

| -> R3 Class is: Writer-Unsafe (Refresher & User are Safe)
+-> W1

[\

| Attribute: Refresher [Gain-Ratio : 0.5633241]

| --> R2_Relock Class is: Refresher-Unsafe (Writer & User are Safe)
--> W2

Attribute: Refresher [Gain-Ratio : 0.38146517]
--> R2_Relock Class is: Refresher-Unsafe (Writer & User are Safe)

Table 3. Scheduler against deadlocks, structured as a “parallel” decision tree

3.3.1. Preprocessing Examples for “Parallel” Trees ing unit, whileUser could be placed in another one. They
Unfortunately, we cannot do the same kind of preprocess-can also be used fdighlighting potential design problems
ing for the tree with th@™v classes, which attempts to com- Imagine, for example, the case where a highly critical task
pute in parallel theV different safety predicates. Thisis be- is strongly dependent on a low criticality task; it is evident
cause a state may well contain some tasks which are nothat we would like to re-design the system so as to decrease
ready (so their safety is undefined) and some tasks whichsuch a dependency or avoid it altogether.
are unsafe. Removing these states from the training ex- Another observation we can make by examining in Ta-
amples could make us take a wrong decision where theble[4 the (partial) decision-tree of the scheduler against
scheduler considers certain unsafe tasks as safe to exedeadline-misses in a non-preemptive model, is that the most
cute, with possibly catastrophic consequences. Thereforejmportant task is theRefresher , not theUser as we
in this case the preprocessing of the examples is per-might have expected. Indeed, this is logical since it is the
formed in the following manner. For each example we use Refresher  which in the end will allow theJser to ad-
the N binary-class trees to classify it as either safe or un- vance from waiting for a fresh sensor value. We also see that
safe for each task and then use the composition of thesevhen theJser , theRefresher and thewriter all com-
classifications as its global class. This allows us to clas- pete for the same resourdee(, Value ) at locationdR7, WO
sify certain states where a task is blocked as a state whereandUO or U2_Relock , then the scheduler givésser the
this task is safe, while other blocked states are classi-priority, so that it does not miss its deadline.
fied as unsafe for that task. This different treatment of
non-ready tasks helps in obtaining a smalé¥-classes
“parallel” tree, than we would have obtained if we consid-
ered all non-ready tasks to always be either s'afe. or unsafe. By data-mining the synthesised scheduler, we ef-
Therefore, the binary-class trees help us in finding a con-feciively get asuccinct view of all the counterexam-
v_enlent charactensgﬂon for non-ready tasks, whose classp|es for the property we want to guarantekighlight-
(i.e, safety) is undefined. ing just the first states where the system execution went
wrong. Tablg B, for example summarises all the system ex-
4. System Analysis & Optimisation ecution counterexample traces reaching a deadlock state in
our case study, that is the counterexamples we would ob-
The N binary-class decision trees allow us to look at tain from a model-checker if checking our system for
the system from th&iew-pointof the particular taski.e., deadlock-freedom. Tabld 3 tells us that the root of the er-
find out, for each of its possible locations, what is the roneous behaviour in these counterexample traces is the
task that has thhighest effecbn its execution being safe states where the system finds itself in one of the con-
or not. This knowledge can help the designer fatobng figurations (x, WQx*,R3, %), (x,W1x, R2Relock ,x),
inter-dependencies among tasksd thus construct sets of (x, W2 x, R2. Relock , x). In this manner, it clearly speci-
strongly dependent task§hese task sets can then be used fies the tasks which initiate an erroneous behaviour, show-
for selecting distribution of tasks to processing unisy, ing us where we should focus our attention, as well as,
placing dependent tasks together on the same processinffom what moment/state on the erroneous behaviour starts.
unit in order to avoid an increased inter-processor commu-Therefore, unlike current practise, we do not have to simu-
nication for their synchronisation. For example, by exam- late and study the execution of the system at all the states of
ining the trees in Tablg]2 we can see thititer and a counterexample trace leading to the problem.This is a par-
Refresher are strongly dependent upon each other and ticularly interesting feature when the erroneous behaviour
thus it might be better to place them on the same processnheeds a great number of steps before it becomes possi-

4.1. Counterexample Analysis



bleﬂ It also allows us to “group” all the counterexample case where we do not allow this scheduler to observe cer-
traces one can obtain, into a small set of thet prob- tain system variables, for example the clocks. This way, we
lematic states. By keeping just the variables which are can obtain @amaller morerobust time-independergched-
important in the decision tree, data-mining also al- uler, which is alsceasierto implement andasterto exe-
lows us to identify and subsequently ignore the tasks cute (no need to use timeetc), seel[5]. However, if we re-
which are not really part of the problem when exam- move the clock observations from the synthesised scheduler
ining a counterexample (as is the case for Weer in constraints we may introduce new deadlock/deadline-miss
our example). Thus, the combination of scheduler syn- states in the system, which means that we have to do again
thesis and data-mining can also be used to more easthe synthesis, using the new, pruned constraints as our ini-
ily understandthe results of a model-checker. Instead tial scheduler, so as to be sure that the system remains safe.
of model-checking against a property and examin-  Now, however, that we have available the “parallel” deci-
ing all the different counterexample traces trying to figure sion tree description of the scheduler constraints, we can
out when & why things started going wrong, one can syn- substantially simplify this step.

thesise a scheduler which guarantegsand use this Indeed, it suffices to examine the composition of the
synthesised scheduler as a starting point for understandelasses labelling the leafs which are reachable from the sub-
ing the reasons for whiclp does not hold in the sys- trees corresponding to the clock attribute in the “parallel”

tem. decision tree. If the composed class assigns at least one ap-
plication task to the safe class, then we safely prunehe
4.2. Optimising Scheduler Implementation tree at that point and replace all the sub-tree starting from

the observation on the clock by a leaf labelled with the com-

Obtaining N decision trees can also be useful for the posed class, without needing to validate the new, pruned
implementatiorof the synthesised scheduler. Normally, we scheduler. As an example, let us consider a case where
implement the scheduler as a large function (containing thewhen testing on the global clock, we obtain 3 leaves with
“parallel” decision tree), which the application tasks call classesWriter _Refresher _Unsafe , Refresher -
at their control points to compute the next task to execute.Unsafe , andWriter _Unsafe . The composed class be-
Now, we can implement it asmall, embeddedode at the ing Writer _Refresher _Unsafe , we can substitute the
control points of each task, effectively copying there the test on the global clock and the subsequent 3 leaves, with
sub-tree for the particular task position, as extracted froma single leaf labelled a#/riter _Refresher _Unsafe ,
that task’s “personal” decision tree. An evident optimisa- i.e., allow only theUser task to execute (even though
tion we can do with thiglistributedscheduler is at the con-  the Writer  and theRefresher  tasks could have being
trol points where we know that a task is safe to execute; safely executed for certain values of the global clock).
there we can remove the scheduling code altogether, effec- In this manner, we can see if we need to do the synthe-
tively giving it priority over other tasks. In our case study, Sis again. Apparently, this is only needed if at some point
the only point in thewriter where we would need to ask the composed class turns out to A# _Unsafe . Note
our synthesised scheduler the permission to proceed so athat when the composed class of some attribute’s sub-tree is
to avoid deadlocks is th@v/0Olocation and the only ones All _Unsafe it doesn’t mean that pruning will render the
whereRefresher  should ask for permission are tirRS system non-schedulable. This is because, it is possible that
andR2_Relock ones. This means that we can avoid the we can synthesise further scheduling constraints for the sys-
scheduling decisions for deadlock avoidance at the loca-tem, or that we have already rendered the newly problem-
tions W2 W5 W6 RO, R6, R7, U0, U2_Relock andU4. atic states unreachable, as a side-effect of our having pruned
That is, we can remove 9 out of the 12 control points of our this attribute away at some other node of the tree.
system, since there we do not need to execute any partic- We can continue applying this decision-tree pruning un-
ular synchronisation protocol — the simple action of lock- til we obtain a decision-tree/scheduler which is as small as
ing/unlocking the mutex which is performed at these loca- we want. Since the decision tree has placed the least im-

tions suffices to keep the system deadlock-free. portant variables last, we have a clear indication of which
variables should be candidates for pruning - we always start
5. Pruning Decision Trees pruning from the leaves, moving towards the root of the tree.

Once we have synthesised a scheduler for safely con-5 1. Pitfall: Pruning & Blocked Tasks
trolling the system, we might be interested in exploring the

We should note here that our argument holds only if
3 One can imagine “watchpointing” a counterexample simulation, in- while synthesising the scheduler we had allowed the sys-
stead of manually stepping over each state. tem to idle even at states where there existed safe tasks to



execute. In the opposite case, the pruned decision tree of the (a) Original sub-tree
scheduler may well forbid certain tasks to execute once Hagyie: Refresher [Gain-Ratio : 0.1261203]

reach a certain location, because we are essentially forg-

ing them to idle and this may not be safe. In this case, one

must make sure that the tree ensures tasks’ liveness. Thaf!" o Wrier [Gan-Rato - 0.085499726]

is, at each leaf the tasks which are classified as unsafe do _ o

not contain all theeadytasks which have been used for de- Atiibute: User [Gain-Ratlo - 0.17595403]

ciding upon the class of the current state, thus ensuring that I \oo o

some task will execute and change the current state. Let us I i\.tg'biﬁte[% ?lgtfal‘ccl?af:s [ia”\]/v??e"rirzef?eighzesfggsife
consider an example. If we synthesise a scheduler to avoid : *+->in [8,10] Class is: Writer-Unsafe

. . . --> in [11 , 11] Class is: Writer_Refresher-Unsafe
deadline-misses for our case study under a non-preemptive -> U2_Relock
execution model and always execute one of the safe tasks

. - . ) Attribute: Global_Clock [Gain-Ratio : 1.0]
(i.e, idling is allowed only when we have no safe choice), +>in [8 , 10] Class is: Writer-Unsafe

. . . . --> in [11 , 11] Class is: Writer_Refresher-Unsafe
the decision tree of the scheduler constraints will contain (b) Pruned sub-tree

the sub-tree shown in Talfle 4(a). The pruned decision §ihe: Refresner [Gain-Rato - 0.1261203]
tree shown in Table 4(p) is evidently correct, because once

T . . -> R7
User changes location we will leave this sub-tree and thus,
allow Writer ~ & Refresher  to execute again. If, how-  Atibute: Writer [Gain-Ratio : 0.085499726]
ever, we prune even furthee.¢, remove the observation

of User s location, see Table 4{c)) then this sub-tree will Attribute: User [Gain-Ralio : 0.17595403)

R ) +> U0 Class is: Writer_Refresher-Unsafe
forceRefresher andWriter to stop executing for ever, > U2_Relock Class is: Writer_Refresher-Unsafe
once they reach their respective locati®¥sandWQ which (c) Excessively pruned sub-tree

will eventually causdJser itself to miss its deadline. Thatute: Refresher [Gain-Ratio : 0.1261203]

difference between the two cases is thatinj4(b) the setat
tasks classified as unsgfé/riter , Refresher }isatrue \ Attribute: Witer [Gain-Ratio : 0.085499726]

subset of the set akadytasks used for the classification -> wo Class is: Writer_Refresher-Unsafe
{Refresher ,Writer ,User }, while in[4(c]) this is no Table 4. Sub-tree against deadline-misses

longer the case. If we had allowed the system to idle even
when there are other safe choices, then the scheduler (&
therefore its corresponding decision tree) would have also
included the situations under which it is not safe to idle
and, in that case, pruningldser as was done in TabJe 4{c)
would have resulted in aidll _Unsafe class.

where we do allow computations to be preempted, we in-
troduce more states and thus new training examples which
were not taken into account during the decision tree induc-
tion. These are the states where a task has preempted an-
) - other one. If we use the pruned decision tree form of
5.2. Tree Pruning and Schedulability the constraints in the intermediate steps of the synthe-
sis process, then we may loose accuracy in the latter
steps. This is because in the latter steps we introduce ex-

dtuc'qotn %rocesi_wnlé)pt!mlse the Irepre;? ntatlo_nb(Tf the E.OT{ tra states in the state space and thus extra training examples,
straints by making decisions only on the variables which | ..o\ oo 0o ioble before.

can indeed change the class of a task and selecting them )

in an order which reflects their importance for the system’s  However, this loss of accuracy cannot lead us to declare
schedulability. For example, this allowed us to minimise the thatthereis no possible scheduler for a system, when indeed
15 constraints used for deadlock-freedom in our case studynere is one. This is due to the fact that if we were able to
to just 3, and the 61 constraints used for respecting deagSchedule a more constrained system with the pruned sched-
lines under a non-preemptive execution model, tojuﬁ 19 uler, then we will also be able to eventually schedule thg
Note, however, that the set of the important variables for less constrained system as well. In the worst case, we will

the class of tasks is computed with respect to the currently”eed to synthesise constraints which re-impose the initial
available training set. constrained system mode,g, non-preemption. The only

problem which we may have is to not be able to meet ad-
5.2.1. When to Prune?When we move from a con- gitional quality aspects of the system, because our pruned
strained systeme.g, one where the system uses a gcheduler has over-constrained the state space and, there-
non-preemptive execution model, to a less constrained onefore, has also over-constrained its choices. For this reason, it
may be beneficial to use the induced decision-trees at each
4 Constraints and respective trees not shown due to lack of space. synthesis stepnly for analysing the resulting synthesised

As we have seen in the previous discussion, the tree in-




scheduler Once we have performed the synthesis for the  We have also shown how ttecrease the number of con-
most refined model of our system and the additional quality straintsneeded to implement a safe scheduler by carefully
aspects we wish to meet, we can use the decision-trees fopruning the decision-tree, so as to obtascheduler which
implementing the scheduler as well, without fear of over- is smaller and faster to execute
constraining the system. Finally, we showed how &afe scheduler can be dis-
During analysis, we could use more “aggressive” prun- tributed through the different tasksd bedirectly embed-
ing algorithms, like ID3’s successor C4/5 [8]. C@@ses ded in their codgpossiblyeliminating altogether the sched-
the gain-ratio attribute selection criterion as we do but uling protocol where this is not needeak a further optimi-
prunes the induced tree in a way which, even though notsation.
safe for our domain, can nevertheless help to better high- The only other work we are aware of where data-mining
light the major problematic situations. (indeed ID3) was used in a model-checking context is the
work of Edmund Clarkeet al. [3]. There, the authors used
. ID3 for discovering the model variables which could bet-
6. Conclusions ter dissociate a number of concrete states belonging to the
same abstract state, in order to check whether a counterex-
In [5] we presented a methodology for perform- ample obtained in an abstracted system is also present in the
ing scheduler synthesis for hard real-time systems, whichmore concrete one or whether it is a spurious one, caused by
allows a designer to obtain fine-grain scheduling con- g coarse abstraction. However, this is the first time that data

straints corresponding to different safety properties).(  mining has been applied in a scheduler synthesis context, to
deadlock or deadline-miss avoidance), different underly- the pest of our knowledge.

ing assumptions concerning the system execution mode
(e.g, non-preemptive execution versus preemptive execu-
tion) or different assumptions about the schedukepg,(
ability to observe the system clocks or lack of it). In this pa-
per, we have presented a method, based on a classic M
chine Learning algorithm for data-mining (ID3|[7]), which

allows to extract the underlying structure of the sched- [1] K. Altisen, G. GdRler, and J. Sifakis. Scheduler modeling

uler constraints synthesised with our methodology. Since” ~ oqaq on the controller synthesis paradigReal-Time Sys-
these synthesised constraints are usually too numer-  (ems 23(1):55-84, July 2002.

ous and unstructured, their reformulation is imperative for [2] R. E. Bryant. Graph-based algorithms for Boolean function

being able to understand and validate them. manipulation|EEE Trans. on CompC-35(8):677—691, Aug.
We have shown how one can adapt ID3 to the task of 1986.

structuring synthesised schedulers for safety properties and3] E. Clarke, A. Gupta, J. Kukula, and O. Strichman. SAT based

how one can use it to look at the controllability of the abstraction-refinement using ILP and machine learning tech-

systemfrom the viewpoint of each tasbomprising it, as niques. INCAV0Z LNCS 2404, pages 265-279, July 2002.

vell s, a goba,system-wid v allows to. 1 & KPuwnes © Ml e Youne A enncone

more easily identify the t_a.sks which have lhlgh_est im- Java azzlicatior?s. IEMS%FT’O:S LNCS 2855, pages 274—

pact upon the controllability of the systeto which the 289. Oct. 2003.

designer should focu; his attention,' as well as, ide.n.tify [5] C. P’(Ioukinas and S. Yovine. Synthesis of safe, QoS ex-

undesired dependencies between critical and non-critical  * yengiple, application specific schedulers for heterogeneous

tasks Another information we can more easily derive from real-time systems. IECRTS'03pages 287-294. [EEE Com-

the decision-tree form of the synthesised schedulers is the  puter Society Press, July 2003.

classes of strongly interdependent tasksiich would be  [6] C. L. Liu and J. W. Layland. Scheduling algorithms for

good candidates for being mapped to the same process- multiprogramming in a hard-real-time environmertACM,

ing unit, if the system is distributed. In addition to this 20(1):46-61, Jan. 1973.

kind of information, we showed how Synthesised sched- [7] J. R. Quinlan. Induction of decision treédachine Learning

ulers (especially in their succinct decision-tree form) canbe ~ 1(1):81-106, 1986.

used forexplaining the (usually too numerous) counterex- [8] J- R. Quinlan.C4.5: Programs for Machine Learningseries

amples of a model-checketirectly pinpointing the (usu- in Machine Learning. Morgan Kaufmann, 1993.

ally much fewer) states where the problematic behaviours[®] - Sha, R Rajkumar, and J. P. Lehoczky. Priority inheritance
become possible. protocols: An approach to real-time synchronizatidEEE

Trans. on Comp.C-39(9):1175-1185, Sept. 1990.

IAcknowledgements The implementation of the adapted
tree induction method (ID3) presented herein was based on
code written by Raymond Joseph Moon{ﬂay

aIi'eeferences

5 See J48 inhttp://www.cs.waikato.ac.nz/"ml/weka/ 6 Original code: www.cs.utexas.edu/users/ml/ml-progs html.


http://www.cs.waikato.ac.nz/~ml/weka/
http://www.cs.utexas.edu/users/ml/ml-progs.html

	Introduction 
	Synthesising Scheduler Constraints 
	Case Study: A Simple R-T DB

	Inducing Schedulers with ID3
	Applying ID3 on Scheduler Constraints 
	Adapting ID3
	Continuous Variables
	Variable Observation Costs

	Types of Decision Trees 
	Preprocessing of the Training Examples 
	Preprocessing Examples for ``Parallel'' Trees


	System Analysis & Optimisation 
	Counterexample Analysis
	Optimising Scheduler Implementation

	Pruning Decision Trees 
	Pitfall: Pruning & Blocked Tasks
	Tree Pruning and Schedulability 
	When to Prune?


	Conclusions 
	Acknowledgements


