

City, University of London Institutional Repository

Citation: Kloukinas, C. (2004). Data-Mining Synthesised Schedulers for Hard Real-Time

Systems. Paper presented at the 19th International Conference on Automated Software
Engineering, 24 Sep 2004, Linz, Austria. doi: 10.1109/ASE.2004.10002

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/2895/

Link to published version: https://doi.org/10.1109/ASE.2004.10002

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Data-Mining Synthesised Schedulers for Hard Real-Time Systems

Christos Kloukinas∗

VERIMAG, CentreÉquation, 2 avenue de Vignate, 38610 Gières, France
http://www-verimag.imag.fr/PEOPLE/Christos.Kloukinas

E-mail:Christos.Kloukinas @ imag.fr

Abstract

The analysis of hard real-time systems, traditionally per-
formed using RMA/PCP or simulation, is nowadays also
studied as a scheduler synthesis problem, where one au-
tomatically constructs a scheduler which can guarantee
avoidance of deadlock and deadline-miss system states.
Even though this approach has the potential for a finer con-
trol of a hard real-time system, using fewer resources and
easily adapting to further quality aspects (memory/energy
consumption, jitter minimisation,etc.), synthesised sched-
ulers are usually extremely large and difficult to understand.
Their big size is a consequence of their inherent precision,
since they attempt to describe exactly the frontier among the
safe and unsafe system states. It nevertheless hinders their
application in practise, since it is extremely difficult to val-
idate them or to use them for better understanding the be-
haviour of the system.

In this paper we show how one can adapt data-mining
techniques to decrease the size of a synthesised scheduler
and force its inherent structure to appear, thus giving the
system designer a wealth of additional information for un-
derstanding and optimising the scheduler and the underly-
ing system. We present, in particular, how it can be used for
obtaining hints for a good task distribution to different pro-
cessing units, for optimising the scheduler itself (sometimes
even removing it altogether in a safe manner) and obtain-
ing both per-task and per-system views of the schedulability
of the system.

Keywords : Software engineering, data-mining, hard
real-time systems, schedulability analysis, scheduler syn-
thesis, decision-tree induction.

1. Introduction

The ongoing advances of the model-checking com-
munity have made possible a third possibility to Rate
Monotonic Analysis (RMA) [6]/Priority Ceiling Proto-
col (PCP) [9] and simulation for the analysis of hard

∗ Funded by the Grenoble Network Initiative.

real-time systems - that ofscheduler synthesis[1]. The ba-
sic idea behind it is that one will model the system with-
out performing any of the model “normalisations” needed
by RMA/PCP, just as is done in the case of system simula-
tion. However, instead of simulating the system, one uses
automated tools for examining the entire state space of this
model and synthesise a scheduler for it which canguar-
antee that all deadlock and deadline-miss states will
be unreachable from now on. Of course the computa-
tional cost of performing scheduler synthesis is a lot higher
than that of the RMA/PCP analysis. This is somewhat off-
set by the fact that scheduler synthesis, unlike RMA/PCP,
can be applied to any kind of system and that, unlike simu-
lation (itself a computationally expensive method), sched-
uler synthesiscan prove (better yet,render) systems cor-
rect. Another incentive for using scheduler synthesis is that
the models used with it are usually more detailed than the
ones used for RMA/PCP, which means that systems de-
clared to be unschedulable by RMA/PCP due to their model
over-approximations may well be proved to be schedula-
ble when using synthesis. So, by imposing the RMA/PCP
policy upon the system model, one could well use sched-
uler synthesis as a more expensive but also more accurate
method to perform RMA/PCP schedulability analysis. Fi-
nally, unlike RMA/PCP which imposes a static set of
task priorities that are difficult to combine with sched-
uling policies for extra qualities, synthesis can produce
schedulers which are easier to combine with quality sched-
uling policies of this sort. This is because synthesis
imposes the minimum set of constraints upon the sys-
tem for rendering it safe and, thus, leaves many choices,
among which we can choose those which best opti-
mise the behaviour of the system with respect to further
qualities (memory/energy consumption, jitter minimisa-
tion, etc.).

In order to evaluate the practical usefulness of the sched-
uler synthesis method, we have investigated its application
to real-time Java programmes[5, 4] obtaining promising
results concerning its applicability. We investigated in par-
ticular a synthesis methodology [5] for obtaining sched-

http://www-verimag.imag.fr/PEOPLE/Christos.Kloukinas

uling constraints which can be directly linked to:(i) dif-
ferent safety properties (e.g., deadlock avoidance, respect
of deadlines) and(ii) underlying assumptions concerning
the system execution model (e.g., non-preemptive execu-
tion versus preemptive execution) or(iii) different assump-
tions about the scheduler itself (e.g., ability to observe the
system clocks or lack of it). Our aim was to obtain sched-
ulers which are easier to understand and analyse in practise,
than what one would normally obtain when applying sched-
uler synthesis. At the same time, this methodology has the
advantage of decreasing the problem of state space explo-
sion, since it is based on examining successive refinements
of the system model, thus paying the cost of extra accu-
racy only when this is absolutely necessary and beneficial.
The schedulers thus synthesised are a set of predicates on
the current system state, each declaring a system thread to
be safe to execute or not.

Nevertheless, these schedulers still suffer from a num-
ber of problems, which hinder their practical use. First of
all, they tend to be big, since we had refrained from any
sort of optimisation on the predicates. In fact, synthesised
schedulers are by nature considerably bigger than the set
of static priorities the RMA/PCP analysis produces, since
this approach attempts to construct an exact description of
the frontier among the safe and unsafe system states. This
precision allows for an easier control of the system, hope-
fully using fewer resources, and for an easier considera-
tion of further quality aspects of the system during sched-
uling [5].However, their big size is particularly problem-
atic in the case of embedded systems, where we have strin-
gent memory constraints. In addition to memory, the big
size of our schedulers has also repercussions upon its ex-
ecution time, which we would like to render as small as
possible; indeed, in our models we make the assumption
that the scheduler executes “instantly”,i.e., that its execu-
tion time is negligible when compared to that of the system
sub-tasks. Another problem with the schedulers we synthe-
sise is that they are completely unstructured. That is, for
each system task we synthesise a long predicate, as a dis-
junction of the conjunctions which characterise each unsafe
state for this task,i.e., the states where the scheduler should
not allow this task to execute so as to keep the whole system
in the set of states where the safety properties can be guar-
anteed. This form makes it extremely difficult for a human
to understand the scheduling constraint that should be im-
posed upon a system task, thus rendering the validation of
the scheduler problematic. At the same time, it does not al-
low the designer to obtain any kind of reasonable feedback
concerning the behaviour of the system, which could help
in seeding further system optimisations.

When referring to minimisation of some predi-
cate, one may naturally think ofbinary decision diagrams
(BDDs) [2]. Nevertheless, BDDs’ primary role is to pro-

vide acanonicalrepresentation which allows for fast com-
putations with predicates. It is well known that what plays
a crucial role in obtaining a small BDD is the choice of
the variable ordering along the diagram. BDDs do not of-
fer any substantial help in this respect and the fact that
they impose asingle variable orderingacross all the deci-
sion tree branches sometimes makes it difficult to obtain a
small decision tree.

In our context, where we do not need to perform any
further computations with our scheduling constraints and
where we would also like their final representation to be
easily readable by humans, we can obtain a much better rep-
resentation by usingmachine-learningtechniques fordata-
mining. Indeed, there exist data-mining methods such as
ID3 [7] which can produce a small representation of our
scheduling constraints as a decision tree, usinginformation-
theory heuristicsfor choosing the order of variables at each
sub-tree. This last feature allows data-mining methods to
produce a decision tree which is more useful to ahuman,
highlighting the system variables which aremore important
at different stages of the system’s execution, at least as far as
the schedulability of the system is concerned. As usual with
applying data-mining techniques, we will have toadapt the
basic data-mining algorithm to our particular domain, in
order to reap the most benefits out of it.

In the following we present the basic idea behind sched-
uler synthesis and the scheduler we synthesise for a simple
case study. We then show how one can adapt ID3 to better
structure synthesised scheduler constraints and analyse/op-
timise a real-time system.

2. Synthesising Scheduler Constraints

The basic idea behind scheduler synthesis for safety
properties (e.g., deadlock freedom, guaranteeing deadlines)
is to explore the complete state space graph of the system
and find the states where the system scheduler must not al-
low some application tasks to execute, in order to be able to
guaranteethat the system will avoid undesired states later
on (e.g., states where the system is deadlocked, or misses
some deadline). If at some state the scheduler is left with
no safe choice, we add it to the set of bad states, so that
we can avoid it as well (otherwise, the scheduler itself may
cause the system to deadlock). The scheduler takes its de-
cisions based on a set of observation variables, which form
its model of the current state of the system. In our setting,
these variables are the programme counters of the applica-
tion tasks and the global clock of the system. Note, that in
our models the scheduler is not allowed to exert control to
the system at all states [5]. It can only control the applica-
tion at states where the application attempts to lock (or un-
lock) some resource, or when an application task becomes
ready to execute after some alarm has expired (e.g., a new

[1,1] Fresh_fresh:=true

Value.monitorExit

Fresh.monitorExit

[2,3] Value_write

Fresh.notify

Fresh.monitorEnter

Value.monitorEnter

W6

W5

W4

W3

W2

W1

W0

while(!Value_fresh)

Value.monitorEnter

[2,2] local:=Value_read

Value.monitorExit

[5,6] compute(local)

wait_for_period(20) U6

U0

U1

U3

U4

U5

U2 Value.wait

[1,1] Value_fresh:=Fresh_fresh

Fresh.monitorEnter

[1,1] Fresh_fresh:=false

Value.monitorEnter

Value.notify

Value.monitorExit

Fresh.monitorExit

R0

R7

Fresh.timed_wait(13)

R6

R5

R4

R3

R2

R1

C

C

C

C

C

C

C

C

C

C

C

C

C

Writer

notified

! Value_fresh

Value_fresh

UserRefresher

notified \/ timedout

(Each computation is annotated with its execution duration interval. Synchronisation is done using monitors and
communication using condition variables. The dotted arrows show the correspondence of notifications to wait actions.

Controllable transitions are annotated with a ”C”.)
Figure 1. Control-flow graphs of a small real-time database system’s tasks

Fresh.monitorEnter

(R2_Relock)
Fresh.timed_wait(13)R2

(R2_Unlock)

Fresh.waitForNotif

(R2_Wait)

Fresh.monitorExit
"R2"

Value.monitorEnter

(U2_Relock)
Value.waitU2

(U2_Unlock) (U2_Wait)

Value.waitForNotifValue.monitorExit
"U2"

timedout

notified
\/=

(atomic)

notified=
(atomic)

(Since the internal statesX Unlock & X Wait are atomic, we consider them as a single state, and useX to refer to them,
in contrast toX Relock . So, it isR2, R2 Relock & U2, U2 Relock respectively.)

Figure 2. The behaviour of the timed wait & wait primitives

task period has been signalled, or the task has timed-out
while waiting for some notification). This effectively means
that the programme counters of the tasks need not refer to
real programme instructions; they can instead be abstract
locations of these programmes signifying the start (respec-
tively end) of some block of non-controllable actions. For
example, a mutually exclusive block of code can be de-
scribed with three abstract positions: one modelling the de-
mand of the mutually exclusive access to the block (i.e., the
lock or the action of entering a monitor), another modelling
the execution inside the mutually exclusive block and a fi-
nal one, modelling the end of the block (i.e., the unlock ac-
tion, or the monitor exit one). In our model, tasks can be
in either one of three basic states:blocked, ready & exe-
cuting. Tasks which arereadycan either besafeto execute
or not. Note here that thesafetask predicateis not defined
upon all system states.

2.1. Case Study: A Simple R-T DB

Figure 1 gives an example of an abstract control-flow
graph of a simple real-time database system consist-
ing of three tasks. In this system, theWriter task is pro-
ducing a series of values (e.g., by reading some sensor) and
the Refresher task is ensuring that the values the peri-
odic User task is using are fresh enough,i.e., have been
produced sometime during the last 13ms time frame. Syn-
chronisation among the system tasks is achieved through
the use of monitors, using primitivesmonitorEnter
andmonitorExit , which basically lock/unlock the mu-
tex associated with the object they are called with.
Communication among tasks is done through condi-
tion variables, using primitiveswait , timed wait ,
notify andnotifyAll (not used in our example). Fi-
nally, thewait for period primitive blocks a task until
its next period, which is given as an argument. In the ex-

IS_UNSAFE(Writer):=
((User=U0)

∧
(Refresher=R3)

∧
(Writer=W0))∨

((User=U2)
∧

(Refresher=R3)
∧

(Writer=W0))∨
((User=U2_Relock)

∧
(Refresher=R3)

∧
(Writer=W0))∨

((User=U5)
∧

(Refresher=R3)
∧

(Writer=W0))∨
((User=U6)

∧
(Refresher=R3)

∧
(Writer=W0))

IS_UNSAFE(Refresher):=
((User=U0)

∧
(Refresher=R2_Relock)

∧
(Writer=W1))∨

((User=U0)
∧

(Refresher=R2_Relock)
∧

(Writer=W2))∨
((User=U2)

∧
(Refresher=R2_Relock)

∧
(Writer=W2))∨

((User=U2)
∧

(Refresher=R2_Relock)
∧

(Writer=W1))∨
((User=U2_Relock)

∧
(Refresher=R2_Relock)

∧
(Writer=W1))∨

((User=U2_Relock)
∧

(Refresher=R2_Relock)
∧

(Writer=W2))∨
((User=U5)

∧
(Refresher=R2_Relock)

∧
(Writer=W1))∨

((User=U5)
∧

(Refresher=R2_Relock)
∧

(Writer=W2))∨
((User=U6)

∧
(Refresher=R2_Relock)

∧
(Writer=W1))∨

((User=U6)
∧

(Refresher=R2_Relock)
∧

(Writer=W2))

Table 1. Scheduler against deadlocks

ample of Figure 1, theUser is the only periodic task, with
a period of 20ms. Figure 2 shows how thewait prim-
itive functions internally - it is in fact two states, the
first of which atomically exits the monitor and blocks
the thread waiting for a notification, while the sec-
ond one (i.e.,R2 Relock or U2 Relock) is the state
where the thread has been notified and thus wakes up and at-
tempts to re-enter the monitor. In the following, we will
use the location of thewait primitive (i.e., R2, U2) to re-
fer to the first atomic state where the task blocks, using
the same location with the suffixRelock (i.e., R2 -
Relock , U2 Relock) to refer to the state where the task
attempts to re-enter the monitor once notified.

Table 1 shows the synthesised constraints for avoiding
deadlocks in this system. Even though there are only a few
constraints in this case, the problem is still obvious. One
cannot easily identify which variables play the major role
in establishing that a certain task will deadlock if allowed
to execute, nor is it easy to extract any further information
about the inter-dependencies of the tasks. Consider, how-
ever, the reformulation of the above constraints in Table 2.
Immediately it becomes obvious that, as far as theWriter
is concerned, the problem arises when it finds itself at the
W0location (where it wants to lock objectValue and will
subsequently ask to lock objectFresh), in states where
the Refresher is at theR3 location (where it has al-
ready acquiredFresh and will next try to lockValue).
Similarly, theRefresher is unsafe to execute at location
R2_Relock (where it tries to acquire the objectFresh),
when theWriter is at locationsW1or W2(where it has
already locked the objectValue). Indeed, this situation
will lead to a deadlock, since theRefresher will sub-
sequently ask for objectValue while theWriter will ask
for objectFresh . It is also clearly evident that theUser
task has no effect on either theWriter or theRefresher
tasks being safe or not. Structuring the synthesised con-

(a) Writer-Unsafe decision-tree
Attribute: Writer [Gain-Ratio : 0.080892585]
--> W0

\
Attribute: Refresher [Gain-Ratio : 0.3615773]
--> R3 Class is: Writer-Unsafe

(b) Refresher-Unsafe decision-tree
Attribute: Refresher [Gain-Ratio : 0.103661135]
--> R2_Relock

\
Attribute: Writer [Gain-Ratio : 0.50555944]
+-> W1 Class is: Refresher-Unsafe
--> W2 Class is: Refresher-Unsafe

Table 2. Structured deadlock-free scheduler

straints in such a manner can greatly help when their num-
ber increases. Indeed, for the case where we are trying to
guarantee the deadlines of the tasks under a non-preemptive
execution model (i.e., that User never misses its period),
we synthesise 61 constraints in total, while the decision-tree
structured constraints are only 191.

3. Inducing Schedulers with ID3

Let us start with a brief introduction of Ross Quinlan’s
ID3 data-mining algorithm [7]. The basic idea for structur-
ing the scheduler constraints as a decision tree, is that we
can consider thecontrollable statesin the state-space graph
of the system as a set of classified examples, where the class
of a state is exactly the set of currently safe tasks. Given this
and a representation of each state as the vector of the val-
ues of theobservablesystem variables, we can use thetop-
down induction of decision trees (TDIDT)algorithm ID3 so
as to extract the underlying structure of our scheduler con-
straints. ID3 performs agreedy heuristicsearch on the set
of possible variable observations, having as a goal the min-
imisation of the height of the final decision tree. The skele-
ton of the ID3 tree-induction algorithm,as adapted to our
domain, is shown in Figure 3 (adaptations are typeset us-
ing an italic bold face). Faced with a set of training exam-
ples (i.e., controllable states), we select the attribute which
maximises thegain ratio, defined as the ratio of theinfor-
mation gainover theinformation valueof an attribute. The
main idea behind this heuristic is to try to maximise the
mutual entropy of the attribute and class random variables,
correcting for the fact that many-valued attributes will have
a higher mutual entropy than few-valued ones. The defini-
tions of these information-theory metrics are shown in equa-
tions 1–5, whereC is the ensemble of classes,A the ensem-
ble of the valuesv of an attribute, andH(X) the entropy of

1 There are 45 for the Writer, 14 for the Refresher and 2 for the User.
The respective trees have 11, 7 & 1 leaves, for a total of 19 constraints.

1 Adapted-ID3(examples, attributes, attribute observation costs)
2 Let
3 C-C := COMPOSED class of examples // M-C := Majority class of examples
4 In
5 If all examples in class C Then
6 return a leaf labelled as C
7 Else If no more attributes Then
8 return a leaf labelled as C-C // ...labelled as M-C
9 Else

10 Select an attribute, A, for the root, among the least cost attributes
11 For each possible value v i of A
12 examples i := subset of examples having value v i for A
13 Add a branch for the test A=v i

14 If examples i is empty Then
15 create a leaf labelled as SAFE // ...labelled as M-C
16 Else
17 new subtree := Adapted-ID3(examples i, attributes - {A}, attribute_observation_costs)

(Adaptations are shown using anitalic bold font; original code has been commented out.)

Figure 3. Adapted ID3 algorithm

an ensembleX (i.e., the average Shannon information con-
tent of an outcome), see Quinlan [7] for more details.
Gain Ratio(A,E) = Info Gain(A,E)/Info Value(A,E) (1)
Info Value(A,E) = H(A) (2)
Info Gain(A,E) = Info(E)− Exp Info(A,E) (3)

Info(E) = H(C) (4)
Exp Info(A,E) =−H(A) + H(C,A) (5)

3.1. Applying ID3 on Scheduler Constraints

Having introduced the ID3 basics, let us now describe
how it can be adapted for structuring and mining our synthe-
sised scheduler constraints. As aforementioned, the training
examples we have are the states at which the scheduler is
called to exert control. Our attributes are the PC vector of
the tasks and the value of the global system clock, since
these are the system variables we allow our scheduler to ob-
serve. The classes of the examples/states belong to the set
describing which tasks are safe. Given our specific data do-
main, we canadapt the basic ID3 algorithmso that it uses
our knowledge of the domain and thus produces better re-
sults.

3.1.1. Adapting ID3 First, we can use the fact that our
classes are notindependent, as is generally assumed, but can
becomposed. The composed class of two examples having
different classes is the most conservative of the two (i.e., the
task-unsafe one). So, when the ID3 algorithm is faced with
a set of examples of different classes which it cannot clas-
sify for lack of further observation attributes (line 8 of Fig-
ure 3), then we can take thecompositionof these classes as
the label of the tree leaf, instead of the most common class
in the current example set. ID3 would have chosen the most
common class because it considers the other examples as

outliers, since it aims to increase the overall classification
accuracy of the final decision-tree. In our case, these exam-
ples/states are simply a set of unsafe/safe states which the
scheduler cannot distinguish in its system abstraction, not
noise due to some badly performed experiment/measure.
Since we aim forsafety, instead of maximising the over-
all classification accuracy,we must always err on the con-
servative side, thus label the leaf with the composed class
(i.e., unsafe).

Then, at line 15 of Figure 3 we do not have to label a leaf
lacking examples with the most common class of its par-
ent node, but can simply label it asSAFE. Here again, ID3
assumed that the examples were missing because our exper-
iments/measurements failed to cover the state space. Lack-
ing any domain knowledge, it makes sense to assign the leaf
the majority class of its parent node. However, in our do-
main, missing examples represent the case where we do not
have any control state whose attributes have these values,
i.e., it is an unreachable state of the system (or one where
the task is not ready and thus its safety is not defined). Since
we do not want to over-constraint the system, we explicitly
assign to this leaf theSAFE class, knowing that our deci-
sion will not have any impact on the schedulability of the
system.

Attributes with an InfoValue (see equation 2) equal to
zero are not considered by our tree induction algorithm,
since a zero value means that there is only one value for
this attribute in the examples, so this attribute is adequately
characterised by the attributes which have been observed
higher in the decision-tree branch we are currently examin-
ing.

3.1.2. Continuous VariablesIn order to produce trees
which are easier to understand, we have also changed the

treatment of continuous attributes, that is, the system clock.
So, instead of treating each clock value as a distinct one,
we transform them into those intervals which correspond
to an unsafe task. This value to interval transformation is
performed in the following manner. For each task we com-
pute the list of examples/states for which the task is un-
safe, sort the examples according to the values of the clock
and then construct intervals of the sorted values. For ex-
ample, if for task T the clock values at the set of exam-
ples/states for which this task is unsafe are{0, 3, 4, 6, 7, 8},
then we construct the intervals[0, 0], [3, 4], [6, 8]. Then, we
combine the intervals constructed for each task, in order
to obtain those intervals which can best characterise all
the unsafe tasks. So, if we had another task T′ whose un-
safe interval was[4, 5], the combined intervals would be
[0, 0], [3, 3], [4, 4], [5, 5], [6, 8], where we have broken up the
[3, 4] and the[4, 5] intervals, since at 3 only the first task is
unsafe, at 5 only the second task is unsafe, while at 4 both
of them are unsafe. This greatly reduces both the depth and
the breadth of the induced trees, since we avoid performing
consecutive tests/splits on specific midpoint values (which
is one way of handling continuous attributes, see [8]) or
splitting into as many sub-trees as possible clock values.

3.1.3. Variable Observation CostsFinally, we have in-
troducedobservation costsfor each variable but we do not
treat them as weights, which is the usual way of using them,
i.e., only as guidelines which can be ignored sometimes. In-
stead, we always choose the next attribute to observe among
the set of attributes having the smallest cost, see line 10 of
Figure 3. This allows us to postpone the observation of the
clock attribute, since this has a much larger observation cost
than the programme counters of the different tasks. Indeed,
in [5] we explicitly aimed for obtaining time-independent
schedulers, exactly because of the high cost of observing
the system and task execution clocks and the great decrease
of the scheduler size thus obtained. In addition, variable ob-
servation costs allow us to induce trees where we haveim-
posedthe choice of the first attribute. In this way, we can
choose a particular programme counter as the top attribute
and obtain a tree which gives us aview of the system’s be-
haviour according to that particular task.

3.2. Types of Decision Trees

Having set the framework, we now examine the two ba-
sic ways we can use our adapted ID3 algorithm. First,
we can induce separate decision trees for each task, ef-
fectively computing the predicatesIS UNSAFE(Ti),
for all i ≤ N , whereN is the number of tasks. In this
case, we would use binary classes{Safe, Unsafe }
for all tasks. The second alternative is to induce a de-
cision tree for all tasks at the same time, that is, com-
putein parallel the safe/unsafe bit-vector with one decision

tree. In this case, we will have2N classes2. For exam-
ple, for the system of Figure 1, the classes would be{All -

Safe, Writer Unsafe, Refresher Unsafe, User -

Unsafe, Writer Refresher Unsafe, Writer -

User Unsafe, Refresher User Unsafe, Writer -

Refresher User Unsafe }. The “parallel” decision-tree
form of the scheduler obtained for the example of Figure 1
is shown in Table 3. According to this decision-tree, the sys-
tem task which seems to be most problematic for the sys-
tem’s schedulability is theWriter . It is also clear that
theUser never causes the system to move towards an un-
safe (here deadlocked) state, since its programme counter
does not even appear in the tree.

In both cases, as we have already seen, we set the clock
attributes to have the highest cost, so as to observe them
last. In this way, the attribute order of trees will start with
the PCs of the tasks and, thus, we will obtain an order of
importancefor the tasks of the system, with respect to our
ability to schedule the system safely. The task whose be-
haviour has the highest effect on system schedulability will
be placed first, the next one second,etc., and this will be
doneseparatelyfor each branch of the decision tree.

3.3. Preprocessing of the Training Examples

Preprocessing of the training examples is another way
we can introduce our knowledge of the particular domain,
for obtaining better decision trees. In the case of the binary
class trees, the preprocessing consists of removing from the
example set all these examples which correspond to states
where the respective task is not ready, since in these states
the safety of the task is undefined (remember that a task
needs to be ready to be characterised as safe or unsafe).
This allows ID3 to use them in its convenience, as either
safe or unsafe examples, depending on which characterisa-
tion will help it construct a smaller tree. For example, the
tree for Writer in Table 2 was obtained by considering
that themissingexamplesW0, R3, {U1,U3,U4} are all un-
safe, even though in these statesWriter is blocked (since
User has the lock on objectValue which is needed by
the Writer). To see why, imagine having chosen the at-
tributes/valuesWriter /W0andRefresher /R3. At that
point, since we have removed all examples/states where
Writer is blocked, all remaining states belong to the
Writer Unsafe class, and the value of attributeUser
does not offer any further increase in the classification pre-
cision of the decision-tree. Thus, ID3 will choose to directly
construct a leaf labelled asWriter Unsafe , executing
line 6 of Figure 3.

2 In reality, there will be2N+1 classes, since we also have the IDLE
task in timed models of the system and the scheduler needs to decide
at each control point whether idling is safe or not.

Attribute: Writer [Gain-Ratio : 0.16776516]
+-> W0
| \
| Attribute: Refresher [Gain-Ratio : 0.3319911]
| --> R3 Class is: Writer-Unsafe (Refresher & User are Safe)
+-> W1
| \
| Attribute: Refresher [Gain-Ratio : 0.5633241]
| --> R2_Relock Class is: Refresher-Unsafe (Writer & User are Safe)
--> W2

\
Attribute: Refresher [Gain-Ratio : 0.38146517]
--> R2_Relock Class is: Refresher-Unsafe (Writer & User are Safe)

Table 3. Scheduler against deadlocks, structured as a “parallel” decision tree

3.3.1. Preprocessing Examples for “Parallel” Trees
Unfortunately, we cannot do the same kind of preprocess-
ing for the tree with the2N classes, which attempts to com-
pute in parallel theN different safety predicates. This is be-
cause a state may well contain some tasks which are not
ready (so their safety is undefined) and some tasks which
are unsafe. Removing these states from the training ex-
amples could make us take a wrong decision where the
scheduler considers certain unsafe tasks as safe to exe-
cute, with possibly catastrophic consequences. Therefore,
in this case the preprocessing of the examples is per-
formed in the following manner. For each example we use
the N binary-class trees to classify it as either safe or un-
safe for each task and then use the composition of these
classifications as its global class. This allows us to clas-
sify certain states where a task is blocked as a state where
this task is safe, while other blocked states are classi-
fied as unsafe for that task. This different treatment of
non-ready tasks helps in obtaining a smaller2N -classes
“parallel” tree, than we would have obtained if we consid-
ered all non-ready tasks to always be either safe or unsafe.
Therefore, the binary-class trees help us in finding a con-
venient characterisation for non-ready tasks, whose class
(i.e., safety) is undefined.

4. System Analysis & Optimisation

The N binary-class decision trees allow us to look at
the system from theview-pointof the particular task,i.e.,
find out, for each of its possible locations, what is the
task that has thehighest effecton its execution being safe
or not. This knowledge can help the designer findstrong
inter-dependencies among tasksand thus construct sets of
strongly dependent tasks. These task sets can then be used
for selecting distribution of tasks to processing units, e.g.,
placing dependent tasks together on the same processing
unit in order to avoid an increased inter-processor commu-
nication for their synchronisation. For example, by exam-
ining the trees in Table 2 we can see thatWriter and
Refresher are strongly dependent upon each other and
thus it might be better to place them on the same process-

ing unit, whileUser could be placed in another one. They
can also be used forhighlighting potential design problems.
Imagine, for example, the case where a highly critical task
is strongly dependent on a low criticality task; it is evident
that we would like to re-design the system so as to decrease
such a dependency or avoid it altogether.

Another observation we can make by examining in Ta-
ble 4 the (partial) decision-tree of the scheduler against
deadline-misses in a non-preemptive model, is that the most
important task is theRefresher , not theUser as we
might have expected. Indeed, this is logical since it is the
Refresher which in the end will allow theUser to ad-
vance from waiting for a fresh sensor value. We also see that
when theUser , theRefresher and theWriter all com-
pete for the same resource (i.e., Value) at locationsR7, W0
andU0 or U2_Relock , then the scheduler givesUser the
priority, so that it does not miss its deadline.

4.1. Counterexample Analysis

By data-mining the synthesised scheduler, we ef-
fectively get a succinct view of all the counterexam-
ples for the property we want to guarantee, highlight-
ing just the first states where the system execution went
wrong. Table 3, for example summarises all the system ex-
ecution counterexample traces reaching a deadlock state in
our case study, that is the counterexamples we would ob-
tain from a model-checker if checking our system for
deadlock-freedom. Table 3 tells us that the root of the er-
roneous behaviour in these counterexample traces is the
states where the system finds itself in one of the con-
figurations (∗, W0, ∗, R3, ∗), (∗, W1, ∗, R2 Relock , ∗),
(∗, W2, ∗, R2 Relock , ∗). In this manner, it clearly speci-
fies the tasks which initiate an erroneous behaviour, show-
ing us where we should focus our attention, as well as,
from what moment/state on the erroneous behaviour starts.
Therefore, unlike current practise, we do not have to simu-
late and study the execution of the system at all the states of
a counterexample trace leading to the problem.This is a par-
ticularly interesting feature when the erroneous behaviour
needs a great number of steps before it becomes possi-

ble 3. It also allows us to “group” all the counterexample
traces one can obtain, into a small set of theroot prob-
lematic states. By keeping just the variables which are
important in the decision tree, data-mining also al-
lows us to identify and subsequently ignore the tasks
which are not really part of the problem when exam-
ining a counterexample (as is the case for theUser in
our example). Thus, the combination of scheduler syn-
thesis and data-mining can also be used to more eas-
ily understand the results of a model-checker. Instead
of model-checking against a propertyφ and examin-
ing all the different counterexample traces trying to figure
out when & why things started going wrong, one can syn-
thesise a scheduler which guaranteesφ and use this
synthesised scheduler as a starting point for understand-
ing the reasons for whichφ does not hold in the sys-
tem.

4.2. Optimising Scheduler Implementation

ObtainingN decision trees can also be useful for the
implementationof the synthesised scheduler. Normally, we
implement the scheduler as a large function (containing the
“parallel” decision tree), which the application tasks call
at their control points to compute the next task to execute.
Now, we can implement it assmall, embeddedcode at the
control points of each task, effectively copying there the
sub-tree for the particular task position, as extracted from
that task’s “personal” decision tree. An evident optimisa-
tion we can do with thisdistributedscheduler is at the con-
trol points where we know that a task is safe to execute;
there we can remove the scheduling code altogether, effec-
tively giving it priority over other tasks. In our case study,
the only point in theWriter where we would need to ask
our synthesised scheduler the permission to proceed so as
to avoid deadlocks is theW0 location and the only ones
whereRefresher should ask for permission are theR3
andR2_Relock ones. This means that we can avoid the
scheduling decisions for deadlock avoidance at the loca-
tions W2, W5, W6, R0, R6, R7, U0, U2_Relock andU4.
That is, we can remove 9 out of the 12 control points of our
system, since there we do not need to execute any partic-
ular synchronisation protocol – the simple action of lock-
ing/unlocking the mutex which is performed at these loca-
tions suffices to keep the system deadlock-free.

5. Pruning Decision Trees

Once we have synthesised a scheduler for safely con-
trolling the system, we might be interested in exploring the

3 One can imagine “watchpointing” a counterexample simulation, in-
stead of manually stepping over each state.

case where we do not allow this scheduler to observe cer-
tain system variables, for example the clocks. This way, we
can obtain asmaller, morerobust, time-independentsched-
uler, which is alsoeasier to implement andfaster to exe-
cute (no need to use timers,etc.), see [5]. However, if we re-
move the clock observations from the synthesised scheduler
constraints we may introduce new deadlock/deadline-miss
states in the system, which means that we have to do again
the synthesis, using the new, pruned constraints as our ini-
tial scheduler, so as to be sure that the system remains safe.
Now, however, that we have available the “parallel” deci-
sion tree description of the scheduler constraints, we can
substantially simplify this step.

Indeed, it suffices to examine the composition of the
classes labelling the leafs which are reachable from the sub-
trees corresponding to the clock attribute in the “parallel”
decision tree. If the composed class assigns at least one ap-
plication task to the safe class, then we cansafely prunethe
tree at that point and replace all the sub-tree starting from
the observation on the clock by a leaf labelled with the com-
posed class, without needing to validate the new, pruned
scheduler. As an example, let us consider a case where
when testing on the global clock, we obtain 3 leaves with
classesWriter Refresher Unsafe , Refresher -
Unsafe , andWriter Unsafe . The composed class be-
ing Writer Refresher Unsafe , we can substitute the
test on the global clock and the subsequent 3 leaves, with
a single leaf labelled asWriter Refresher Unsafe ,
i.e., allow only the User task to execute (even though
the Writer and theRefresher tasks could have being
safely executed for certain values of the global clock).

In this manner, we can see if we need to do the synthe-
sis again. Apparently, this is only needed if at some point
the composed class turns out to beAll Unsafe . Note
that when the composed class of some attribute’s sub-tree is
All Unsafe it doesn’t mean that pruning will render the
system non-schedulable. This is because, it is possible that
we can synthesise further scheduling constraints for the sys-
tem, or that we have already rendered the newly problem-
atic states unreachable, as a side-effect of our having pruned
this attribute away at some other node of the tree.

We can continue applying this decision-tree pruning un-
til we obtain a decision-tree/scheduler which is as small as
we want. Since the decision tree has placed the least im-
portant variables last, we have a clear indication of which
variables should be candidates for pruning - we always start
pruning from the leaves, moving towards the root of the tree.

5.1. Pitfall: Pruning & Blocked Tasks

We should note here that our argument holds only if
while synthesising the scheduler we had allowed the sys-
tem to idle even at states where there existed safe tasks to

execute. In the opposite case, the pruned decision tree of the
scheduler may well forbid certain tasks to execute once they
reach a certain location, because we are essentially forc-
ing them to idle and this may not be safe. In this case, one
must make sure that the tree ensures tasks’ liveness. That
is, at each leaf the tasks which are classified as unsafe do
not contain all thereadytasks which have been used for de-
ciding upon the class of the current state, thus ensuring that
some task will execute and change the current state. Let us
consider an example. If we synthesise a scheduler to avoid
deadline-misses for our case study under a non-preemptive
execution model and always execute one of the safe tasks
(i.e., idling is allowed only when we have no safe choice),
the decision tree of the scheduler constraints will contain
the sub-tree shown in Table 4(a). The pruned decision sub-
tree shown in Table 4(b) is evidently correct, because once
User changes location we will leave this sub-tree and thus
allow Writer & Refresher to execute again. If, how-
ever, we prune even further (e.g., remove the observation
of User ’s location, see Table 4(c)) then this sub-tree will
forceRefresher andWriter to stop executing for ever,
once they reach their respective locationsR7 andW0, which
will eventually causeUser itself to miss its deadline. The
difference between the two cases is that in 4(b) the set of
tasks classified as unsafe{Writer , Refresher } is a true
subset of the set ofready tasks used for the classification
{Refresher , Writer , User }, while in 4(c) this is no
longer the case. If we had allowed the system to idle even
when there are other safe choices, then the scheduler (&
therefore its corresponding decision tree) would have also
included the situations under which it is not safe to idle
and, in that case, pruning atUser as was done in Table 4(c)
would have resulted in anAll Unsafe class.

5.2. Tree Pruning and Schedulability

As we have seen in the previous discussion, the tree in-
duction process will optimise the representation of the con-
straints by making decisions only on the variables which
can indeed change the class of a task and selecting them
in an order which reflects their importance for the system’s
schedulability. For example, this allowed us to minimise the
15 constraints used for deadlock-freedom in our case study
to just 3, and the 61 constraints used for respecting dead-
lines under a non-preemptive execution model, to just 194.
Note, however, that the set of the important variables for
the class of tasks is computed with respect to the currently
available training set.

5.2.1. When to Prune?When we move from a con-
strained system,e.g., one where the system uses a
non-preemptive execution model, to a less constrained one,

4 Constraints and respective trees not shown due to lack of space.

(a) Original sub-tree
Attribute: Refresher [Gain-Ratio : 0.1261203]
......
--> R7

\
Attribute: Writer [Gain-Ratio : 0.085499726]
--> W0

\
Attribute: User [Gain-Ratio : 0.17595403]
+-> U0
| \
| Attribute: Global_Clock [Gain-Ratio : 0.89254934]
| +-> in [7 , 7] Class is: Writer_Refresher-Unsafe
| +-> in [8 , 10] Class is: Writer-Unsafe
| --> in [11 , 11] Class is: Writer_Refresher-Unsafe
--> U2_Relock

\
Attribute: Global_Clock [Gain-Ratio : 1.0]
+-> in [8 , 10] Class is: Writer-Unsafe
--> in [11 , 11] Class is: Writer_Refresher-Unsafe

(b) Pruned sub-tree
Attribute: Refresher [Gain-Ratio : 0.1261203]
......
--> R7

\
Attribute: Writer [Gain-Ratio : 0.085499726]
--> W0

\
Attribute: User [Gain-Ratio : 0.17595403]
+-> U0 Class is: Writer_Refresher-Unsafe
--> U2_Relock Class is: Writer_Refresher-Unsafe

(c) Excessively pruned sub-tree
Attribute: Refresher [Gain-Ratio : 0.1261203]
......
--> R7

\
Attribute: Writer [Gain-Ratio : 0.085499726]
--> W0 Class is: Writer_Refresher-Unsafe

Table 4. Sub-tree against deadline-misses

where we do allow computations to be preempted, we in-
troduce more states and thus new training examples which
were not taken into account during the decision tree induc-
tion. These are the states where a task has preempted an-
other one. If we use the pruned decision tree form of
the constraints in the intermediate steps of the synthe-
sis process, then we may loose accuracy in the latter
steps. This is because in the latter steps we introduce ex-
tra states in the state space and thus extra training examples,
which were not available before.

However, this loss of accuracy cannot lead us to declare
that there is no possible scheduler for a system, when indeed
there is one. This is due to the fact that if we were able to
schedule a more constrained system with the pruned sched-
uler, then we will also be able to eventually schedule the
less constrained system as well. In the worst case, we will
need to synthesise constraints which re-impose the initial
constrained system model,e.g., non-preemption. The only
problem which we may have is to not be able to meet ad-
ditional quality aspects of the system, because our pruned
scheduler has over-constrained the state space and, there-
fore, has also over-constrained its choices. For this reason, it
may be beneficial to use the induced decision-trees at each
synthesis steponly for analysing the resulting synthesised

scheduler. Once we have performed the synthesis for the
most refined model of our system and the additional quality
aspects we wish to meet, we can use the decision-trees for
implementing the scheduler as well, without fear of over-
constraining the system.

During analysis, we could use more “aggressive” prun-
ing algorithms, like ID3’s successor C4.5 [8]. C4.55 uses
the gain-ratio attribute selection criterion as we do but
prunes the induced tree in a way which, even though not
safe for our domain, can nevertheless help to better high-
light the major problematic situations.

6. Conclusions

In [5] we presented a methodology for perform-
ing scheduler synthesis for hard real-time systems, which
allows a designer to obtain fine-grain scheduling con-
straints corresponding to different safety properties (e.g.,
deadlock or deadline-miss avoidance), different underly-
ing assumptions concerning the system execution model
(e.g., non-preemptive execution versus preemptive execu-
tion) or different assumptions about the scheduler (e.g.,
ability to observe the system clocks or lack of it). In this pa-
per, we have presented a method, based on a classic Ma-
chine Learning algorithm for data-mining (ID3 [7]), which
allows to extract the underlying structure of the sched-
uler constraints synthesised with our methodology. Since
these synthesised constraints are usually too numer-
ous and unstructured, their reformulation is imperative for
being able to understand and validate them.

We have shown how one can adapt ID3 to the task of
structuring synthesised schedulers for safety properties and
how one can use it to look at the controllability of the
systemfrom the viewpoint of each taskcomprising it, as
well as, from a global, system-wide view. This allows to
more easily identify the tasks which have thehighest im-
pact upon the controllability of the system, to which the
designer should focus his attention, as well as, identify
undesired dependencies between critical and non-critical
tasks. Another information we can more easily derive from
the decision-tree form of the synthesised schedulers is the
classes of strongly interdependent tasks, which would be
good candidates for being mapped to the same process-
ing unit, if the system is distributed. In addition to this
kind of information, we showed how synthesised sched-
ulers (especially in their succinct decision-tree form) can be
used forexplaining the (usually too numerous) counterex-
amples of a model-checker, directly pinpointing the (usu-
ally much fewer) states where the problematic behaviours
become possible.

5 See J48 in:http://www.cs.waikato.ac.nz/˜ml/weka/

We have also shown how todecrease the number of con-
straintsneeded to implement a safe scheduler by carefully
pruning the decision-tree, so as to obtain ascheduler which
is smaller and faster to execute.

Finally, we showed how asafe scheduler can be dis-
tributed through the different tasksand bedirectly embed-
ded in their code, possiblyeliminating altogether the sched-
uling protocol where this is not needed, as a further optimi-
sation.

The only other work we are aware of where data-mining
(indeed ID3) was used in a model-checking context is the
work of Edmund Clarkeet al. [3]. There, the authors used
ID3 for discovering the model variables which could bet-
ter dissociate a number of concrete states belonging to the
same abstract state, in order to check whether a counterex-
ample obtained in an abstracted system is also present in the
more concrete one or whether it is a spurious one, caused by
a coarse abstraction. However, this is the first time that data
mining has been applied in a scheduler synthesis context, to
the best of our knowledge.

Acknowledgements: The implementation of the adapted
tree induction method (ID3) presented herein was based on
code written by Raymond Joseph Mooney6.

References

[1] K. Altisen, G. Gößler, and J. Sifakis. Scheduler modeling
based on the controller synthesis paradigm.Real-Time Sys-
tems, 23(1):55–84, July 2002.

[2] R. E. Bryant. Graph-based algorithms for Boolean function
manipulation.IEEE Trans. on Comp., C-35(8):677–691, Aug.
1986.

[3] E. Clarke, A. Gupta, J. Kukula, and O. Strichman. SAT based
abstraction-refinement using ILP and machine learning tech-
niques. InCAV02, LNCS 2404, pages 265–279, July 2002.

[4] C. Kloukinas, C. Nakhli, and S. Yovine. A methodology and
tool support for generating scheduled native code for real-time
Java applications. InEMSOFT’03, LNCS 2855, pages 274–
289, Oct. 2003.

[5] C. Kloukinas and S. Yovine. Synthesis of safe, QoS ex-
tendible, application specific schedulers for heterogeneous
real-time systems. InECRTS’03, pages 287–294. IEEE Com-
puter Society Press, July 2003.

[6] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment.JACM,
20(1):46–61, Jan. 1973.

[7] J. R. Quinlan. Induction of decision trees.Machine Learning,
1(1):81–106, 1986.

[8] J. R. Quinlan.C4.5: Programs for Machine Learning. Series
in Machine Learning. Morgan Kaufmann, 1993.

[9] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization.IEEE
Trans. on Comp., C-39(9):1175–1185, Sept. 1990.

6 Original code: www.cs.utexas.edu/users/ml/ml-progs.html.

http://www.cs.waikato.ac.nz/~ml/weka/
http://www.cs.utexas.edu/users/ml/ml-progs.html

	Introduction
	Synthesising Scheduler Constraints
	Case Study: A Simple R-T DB

	Inducing Schedulers with ID3
	Applying ID3 on Scheduler Constraints
	Adapting ID3
	Continuous Variables
	Variable Observation Costs

	Types of Decision Trees
	Preprocessing of the Training Examples
	Preprocessing Examples for ``Parallel'' Trees

	System Analysis & Optimisation
	Counterexample Analysis
	Optimising Scheduler Implementation

	Pruning Decision Trees
	Pitfall: Pruning & Blocked Tasks
	Tree Pruning and Schedulability
	When to Prune?

	Conclusions
	Acknowledgements

