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Abstract

In this paper I consider how best to incorporate compositional data (shares of a whole
which can be represented as points on a simplex) together with noncompositional data as
covariates in a linear regression. The standard method for incorporating compositional data
in regressions is to omit one share to overcome the problem of singularity. I demonstrate
that doing so ignores the compositional nature of the data and the resulting models are
not objects in a vector space, which in turn reduces their usefulness. In terms of Aitchison
geometry—the only geometry that can generate a vector space on a simplex—I show how
this method also grossly distorts the relationship between points in the compositional data
set. Futhermore, the regression coefficients that result are not permutation invariant, so
unless there is an obvious baseline category to be omitted with which the other variables in
the composition ought naturally to be compared, this approach gives researchers latitude to
choose the permutation of the model that supports a particular hypothesis or appears most
convincing in terms of p-values. The alternatives in this paper build on work by Aitchison
(1982, 1986) on additive logarithmic ratio (ALR) transformations and Egozcue et al. (2003)
on isometric logarithmic ratio (ILR) transformations. Transforming the compositional data
using ALRs generates regressions that are permutation invariant and hyperplanes in a vec-
tor space. However, ALRs translate the points in the simplex into coordinates relative to
an oblique basis, so the angles and distances between the data points remain somewhat
distorted—though this distortion is inversely related to the number of shares in the compo-
sition. By contrast, ILRs eliminate the distortion by translating the points into coordinates
relative to an orthogonal basis. However, the resulting regressions are no longer permu-
tation invariant and are difficult to interpret. To overcome these shortcomings, Hron et
al. (2012) suggest using ILRs, but combining the coefficient estimates across all the different
permutations to produce one statistical model. I demonstrate that estimating a separate
regression for each permutation is unnecessary—estimating either a single regression using
ALR coordinates or a constrained regression and then multiplying the resulting regression
coefficients and standard errors associated with the compositional variables by a simple
factor is sufficient. Though log-ratios incorporate more information about the nature of
compositional data as coordinates in a simplex, I demonstrate that it does not exacerbate
the inherent multicollinearity present in compositional datasets. Throughout, I use eco-
nomic growth regressions with compositional data on ten religious categories, similar to
Barro and McCleary (2003) and McCleary and Barro (2006), to demonstrate and contrast
all these different approaches.
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1 Introduction

Empirical models in economics and other social sciences often incorporate compositional data—

variables that together constitute shares of a whole and can be represented as points on a

simplex.1 Linear regression models usually include an intercept term, meaning that a matrix of

explanatory variables which includes compositional data is perfectly multicollinear—a subset

of variables can be expressed as a linear combination of the others. To ensure the matrix has

full column rank it is common in empirical work to omit one variable within the composition.

There are several problems with this approach. First, though the underlying statistical

model is unaltered, the estimated coefficients and associated standard deviations that corre-

spond to the remaining compositional variables are not permutation invariant, and can change

a great deal depending on which variable is chosen for omission. Hence, unless there is a base-

line category against which the other shares should naturally be compared, researchers are free

to choose whichever permutation generates the most desired or persuasive-looking results. Sec-

ond, regression analysis typically involves analysing data that can be expressed as coordinates

in Euclidean space. Indeed, the squared errors whose sum is being minimised are Euclidean

distances. Integrating compositional data means including coordinates in a different space—

simplex space—for which Euclidean geometry is inappropriate. The regression models estimated

in the usual manner are not objects in vector space, and the standard manner in which they

are interpreted is inappropriate. When measured using Aitchison (1982, 1986) geometry, which

does generate a vector space on a simplex, the manner in which Euclidean geometry distorts

the relationship between the coordinates is readily apparent.

To address these problems, I present a new method for estimating regressions with composi-

tional data using isometric logarithmic ratio (ILR) transformations, first developed by Egozcue

et al. (2003). My analysis focuses on models where not all the explanatory variable are composi-

tional. The resulting regression is permutation invariant and ensures that the subset of variables

which are compositional enter the regression as coordinates of a vector space with an orthonor-

mal basis. Throughout I present the methods used to estimate models in the language of matrix

transformations and projections familiar to economists. This allows me to demonstrate the close

relationship between constrained regression, additive log-ratios (ALR) developed by Aitchison

(1986) and ILRs. ILRs incorporate more information about the underlying nature of the data,

yet as I demonstrate, this does not exacerbate the inherent multicollinearity of compositional

data.

To demonstrate the practical implications of using compositional and noncompositional

data together, Section 2 introduces a simple cross-country economic growth regression as first

developed by Barro (1991) and Mankiw et al. (1992). These types of models often incorpo-

rate a variety of variables associated with neoclassical growth theory, each of which can be

expressed as coordinates on the real line, alongside additional variables that may be composi-

1. Sets of dichotomous variables such as seasonal dummies represent special cases where the points are re-

stricted to the vertices of the simplex.
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tional, representing aggregate expenditure shares or demographic attributes of the population

in the different countries in the sample. This paper follows Barro and McCleary (2003) and

McCleary and Barro (2006) and includes shares of each country’s population that adhere to

different religious denominations.

In Section 3, I demonstrate that at a fundamental level, the basic statistical properties of a

regression that incorporates raw compositional data are permutation invariant—i.e., changing

the component within the composition that is omitted has no effect on either the error terms

of the regression or the properties of the coefficients corresponding to the covariates outside

the composition. Yet these coefficients can only be interpreted in reference to the omitted

baseline variable. That may be defensible if there is a natural baseline category. For example,

when including in a growth regression the population shares that obtain primary, secondary,

or tertiary education alongside those with no education at all, it might seem sensible to omit

that last category and treat it as a baseline. In the present context, when we include in our

example the religious composition of the population, any baseline religion we might choose will

have little justification (Barro and McCleary (2003) and McCleary and Barro (2006) choose

Catholics as the omitted category).

There is an extensive literature on a range of problems associated with statistical analysis

across many disciplines, particularly regarding power, bias and p-hacking (in the context of

economics see Brodeur et al. (2016) and Ioannidis et al. (2017)). I demonstrate that if a

regression includes compositional data, these problems are compounded by the way the sizes

and signs of coefficients, and associated p-values, can change depending on which variable is

omitted.

Moreover, even if there is a natural category to omit, this approach still creates a number

of problems. As I demonstrate in Section 4, interpretation of the resulting regression model is

undermined by the fact that the application of standard Euclidean geometry to coordinates in a

simplex does not generate a vector space. Furthermore, the distances and angles between these

coordinates, when measured using the more appropriate Aitchison geometry (Figure 1b), will

appear distorted if treated as coordinates with respect to a canonical basis using the Euclidean

geometry (Figure 1a). This is especially salient as the relationship between the two distance

measures is not monotonic (see Figure 1c).

In Section 5, I demonstrate how models can be made permutation invariant by first trans-

forming the compositional portion of the data using additive logarithmic ratios developed by

Aitchison and Shen (1980) and Aitchison (1982, 1986). As demonstrated by Aitchison and

Bacon-Shone (1984), the resulting model can also be interpreted as a constrained regression.

Once transformed, the compositional data are also coordinates in a vector space, though with an

oblique basis, so some distortion of angles and distance remains. To correct this I demonstrate

in Section 6 that it is very simple to translate the coefficients and standard errors from additive

logarithmic ratio (ALR) transformations to the ILRs developed by Egozcue et al. (2003). In Sec-

tion 8 I demonstrate that using log-ratios does not exacerbate the problem of multicollinearity,

which is inherent to any set of compositional data. Section 9 concludes.
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Unlike ALRs, regressions that use ILRs are not permutation invariant, however Hron et

al. (2012) demonstrate how to combine the different permutations into a single model. The

methodology presented in Section 6 extends their work in several ways. First, unlike in geo-

physics, where compositional data is often analysed in isolation using log-ratios, in social sciences

(or medicine) we often have compositional data alongside noncompositional data. Hence, the

compositional data in the models I consider are not the only independent variables but a subset

of a larger dataset that has noncompositional components as well.2 Therefore, I characterise

all our results in terms of the two different parts of the partitioned matrix which encompass

both compositional and noncompositional data. Second, the method for estimating the model

in Hron et al. (2012) requires obtaining the coefficient and standard error corresponding to the

log deviation of one variable in the compositional data set, with the respect to the geometric

mean of all the others, one at a time. This requires first transforming the data into a particular

set of pivot log-ratios, then estimating the regression, and then generating a new set of pivot

log-ratios and estimating the regression again for each variable. By contrast, I demonstrate a

simple relationship between ALR and ILR transformations which means a model with the latter

can be obtained by simply multiplying the coefficients and standard errors from the former by

a small scale factor, which only varies by the number of components in the composition.

There is a long-running debate about the relative merits of using ALR and ILR. Critics

of the ILR approach, particularly Aitchison (2008), Greenacre et al. (2021) and Greenacre et

al. (2022), argue that isometry is not critically important, the results can be hard to interpret,

and the method for calculating them is cumbersome. In this application, I demonstrate how the

last consideration is not relevant for the case of linear regression. Indeed the two yield similar

results, particularly if the number of variables in the composition is large.

2 The Problem of Linear Regression and Compositional Data

Consider the following specification of the cross-country growth regression adopted from Mankiw

et al. (1992):

γh = g − η lnA + η ln yh,0 −
ηα

1 − α
ln sK,h +

ηα

1 − α
ln (ph + g + δ) + πΩh + εh, (1)

where for each country h ∈ {1, .., n}: γh represents per-capita output growth, yh,0 the initial

level of per-capita output, sK,h the share of output devoted to the accumulation of physical

capital, and ph the rate of population growth. α, g, A and δ represent factor shares of physical

capital, the rate of change in total factor productivity, the level of labour augmenting tech-

nological progress, and the rate of depreciation. These parameter are all assumed the same

across the sample of countries, as is the value of η, which the theory posits to be negative, and

which measures the rate of convergence. Finally, Ωh represents an extra vector of additional

2. Chen et al. (2017) considers the case where all the variables, dependent and independent are compositional.
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(a) Euclidean Distances

(b) Aitchison Distances

(c) Euclidean/Aitchison Distances

Figure 1: The left hand plots measure distances from the Barycentre {1
3 ,

1
3 ,

1
3} in a three-part

composition for 0 < z i < z and 0 < z using a) the standard Euclidean distance measure, b)

the Aitchison distance measure in Appendix A.1, and c) the ratio of Euclidean to Aitchison

distances. The right-hand plots are the projections on a flat surface where z1 + z2 + z3 = z

matches the notion of closure and generates the ternary diagrams of the simplex.
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covariates, as for example in Sala-i-Martin (1997), or controls to capture further cross-country

heterogeneity.

Suppose all, or some, of the additional variables represented by Ωh are compositional, so

that they represent shares that sum to a constant. This naturally arises if, for example, one

wants to know how growth might be related to the age composition of the population, the

shares of the population with different levels of educational attainment, the shares who speak

particular languages, or a country’s religious composition. If we define all the right-hand side

variables, along with a column of ones that generate the intercept term, and at least one set

of compositional variables as X, then clearly we cannot estimate (1), as X does not have full

column rank and therefore X′X is not invertible.

Instead we partition the covariate matrix in two, X=(N,C), where N is an n ×K matrix

that incorporates the variables associated with the Solow model and any variables in Ωh that

are not compositional, and C is an n × (D + 1) matrix where the last column is the vector in,

that generates the constant term in the regression, and the other D columns are any of the

covariates in X that together are represented as n points on D − 1 unit simplex:

SD = {[c1, c2, ..., cD] , ci > 0,
D

∑
i=1

ci = 1} . (2)

This means that the rank of matrix C is less than D+1 as in each row the entries in the first

D columns sum to one and equal the ones in column D+1. To overcome this problem we could

remove the last column in C, and estimate the regression without the intercept term. However,

forcing the regression hyperplane through the origin is inappropriate for most applications. For

the case of the economic growth equation (1), it would mean imposing the restriction that

the rate of change in total factor productivity is (globally) zero. Instead, the most common

practice is to remove one of the compositional covariates, with the idea that the missing share

is “absorbed by the constant.”

Define the (D + 1) ×D matrix:

QD,d =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Id−1,d−1

0D−d+2,D−d+1

0d,D−d+1 ID−d+1,D−d+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then the n×D matrix C∖d = CQD,d is the matrix C with the d ∈ {1, ...,D + 1} column removed

and C∖D+1 = CQD,D+1 represents the coordinates in the simplex (2).

Now the equation can be estimated as:

y = NβN∖d +C∖dβC∖d + ε∖d, (3)

where y is an n × 1 vector of growth rates for the n different countries in the sample, β∖d the

length D vector of coefficients associated with the compositional data after the dth column has
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been removed along with the intercept term, and ε∖d is the vector of error terms. The term

βN∖d represents the length K vector of coefficients that correspond to the noncompositional

data when the equation is estimated with the dth column removed from C. Note that the special

case d =D + 1 will generate a regression without an intercept.

Define the projection matrices PN ≡ N (N′N)−1
N′ and PC∖d ≡ C∖d (C′

∖dC∖d)
−1

C′
∖d.

Furthermore define the n × (K +D) partitioned matrix which contains both the variables

in N and the variables in C∖d: X∖d = [N⋮ C∖d] and the corresponding projection matrix

PX∖d ≡ X∖d (X′
∖dX∖d)

−1
X′
∖d.

We solve the normal equations associated with (3) for the vector of coefficients and corre-

sponding variances:

[ βN∖d
βC∖d

] = [ (N′ (In −PC∖d)N)−1
N′ (I −PC∖d)y

(C′
∖d (In −PNN)C∖d)

−1
C′
∖d (I −PN)y

] (4)

[ Var (βN∖d)
Var (βC∖d)

] = 1

n −K
[ ε′∖dε∖d (N

′ (In −PC∖d)N)−1

ε′∖dε∖d (C
′
∖d (In −PN)C∖d)

−1 ] (5)

where In is an n × n identity matrix and the error term is:

ε∖d = (In −PX∖d)y. (6)

A number of studies follow the procedure outlined above, where the compositional data

represented by C∖d include educational attainment: (Petrakis and Stamatakis (2002)), age

structure: (Lindh (1999)), shares of GDP or government spending: (Devarajan et al. (1996),

Voigt et al. (2015), Bose et al. (2007), Cavallo and Daude (2011), and Voigt et al. (2015)),

languages spoken: (Hall and Jones (1999) and Rodrik et al. (2004)), and ancestory: (Putterman

and Weil (2010)). In the next two sections, I examine some of the deficiencies of this approach,

before exploring alternative methods that use log-ratios. Throughout, I employ as an example

a cross-country regression that captures the main features of the Solow growth model in 1,

augmented with data that divides each country’s population according to religious affiliation

as in Barro (1996), Sala-i-Martin (1997), Hall and Jones (1999), Barro and McCleary (2003),

Sala-i-Martin et al. (2004), Noland (2005), and McCleary and Barro (2006).

3 A Lack of Permutation Invariance

It might seem that every permutation of (3) generates a completely different model in (4)–(6).

In fact, it is more appropriate to think of each permutation as generating a different perspective

of the same statistical model. Most attributes will remain unchanged, but some will differ as

we change the direction from which it is viewed.

Define the D ×D matrix for d ≠ f :

Ld,f = { AdSd+1SdSd−1...Sf−1 for all d < f
Ad−1Sd−1Sd−2...Sf+1 for all d > f

7



where:

Ai = [ Ii−1

0D−i−1,i−1

−iD−1

1
0i,D−i
ID−i

] ,

Sj =

⎡⎢⎢⎢⎢⎢⎢⎣

Ij−1 0j−1,2 0j−1,D−j−1

02,j−1
0 1
1 0

02,D−j−1

0D−j−1,j−1 0D−j−1,2 ID−j−1

⎤⎥⎥⎥⎥⎥⎥⎦

,

where im a column vector of ones of length m, and 0m,n an m × n matrix of zeros.

Postmultiplying any C∖d by Ai replaces the remaining ith column in that matrix with the

ith column in the complete matrix C, and postmultipling the result by the permutation matrix

Sj exchanges the the j and j-1 columns in the new matrix. Hence for all d, f ∈ {1, ...,D} where

d ≠ f : C∖d = C∖fLd,f , C2∖f = C∖dLf,d and Ld,f=(Lf,d)
−1

.

Lemma 1. The projection matrices associated with the matrices C and X, as well as the

error terms, are all permutation invariant. Hence PC∖d=PC∖f=PC , PX∖d=PX∖f=PX and

ε∖d=ε∖f=ε for all d, f ∈ {1, ...,D}.

Proof.

PC∖d = C∖d (C′
∖dC∖d)

−1
C′
∖d

= C∖fLd,f ((C∖fLd,f)′ C∖fLd,f)
−1 (C∖fLd,f)′

= C∖fLd,fL−1
d,f (C′

∖fC∖f)
−1 (L′

d,f)
−1

L′
d,fC′

∖f

= C∖f (C′
∖fC∖f)

−1
C′
∖f = PC∖f = PC

PX∖d = X∖d (X′
∖dX∖d)

−1
X′
∖d

= PN + (In −PN)C∖d {[(In −PN)C∖d]′ (In −PN)C∖d}
−1[(In −PN)C∖d]′

= PN + (In −PN)C∖fLd,f {[(In −PN)C∖fLd,f ]′ (In −PN)C∖fLd,f}
−1

L′
d,fC′

∖f(In −PN)′

= PN + (In −PN)C∖fLd,f (Ld,f)−1 {[(In −PN)C∖d]′ (In −PN)C∖f}
−1 (L′

d,f)
−1

L′
d,fC′

∖f (In −PN)′

= PN + (In −PN)C∖f {[(In −PN)C∖f ]′ (In −PN)C∖f}
−1[(In −PN)C∖f ]′

= X∖f (X′
∖fX∖f) −1X

′
∖f = PX∖f = PX

Replacing PX∖d with PX in (6): ε∖d=ε∖f=ε.

Theorem 1. The estimated coefficients and variances associated with the non-compositional

data N in (3) are permutation invariant: βN∖d = βN∖f = βN and Var (βN∖d)=Var (βN∖f)=Var (βN)
for all d, f ∈ {1, ...,D}.

Proof. Follows directly from (4) and (15) and Lemma 1.

In the context of a cross-country growth model, all the estimated coefficients and t-statistics

for the covariates associated with the Solow model (but not the intercept term) along with any

other noncompositional covariates are invariant to which compositional variable is omitted from

the regression.

Theorem 2. The R2 and F -test for the regression are invariant to which compositional variable

is omitted from the regression.
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Proof. From Lemma 1 the error terms are permutation invariant:

R2 = 1 − ε′ε

y′ (In − in (i′nin)
−1 i′n)y

and:

F [K +D,n −K −D + 1] = R2/ (K +D)
(1 −R2) / (n −K −D + 1)

Theorem 3. The F-test for joint hypothesis that for any choice d ∈ {1, ...,D} , βC∖d = 0 is

permutation invariant.

Proof. F [D + 1, n −K −D + 1]

=
ε′ (In −PN)C∖d (C′

∖d (In −PN)C∖d)−1 C′
∖d (In −PN)ε/ (D + 1)

ε′ (In −PX)ε/ (n −K −D + 1)

=
ε′ (In −PN)C∖fLd,f (L′

d,fC′
∖f (In −PN)C∖fLd,f)

−1
L′
d,fC′

∖f (In −PN)ε/ (D + 1)
ε′ (In −PX)ε/ (n −K −D + 1)

=
ε′ (In −PN)C∖fLd,f (Ld,f)−1 (C′

∖f (In −PN)C∖f)
−1 (L′

d,f)
−1

L′
d,fC′

∖f (In −PN)ε/ (D + 1)
ε′ (In −PX)ε/ (n −K −D + 1)

=
ε′ (In −PN)C∖f (C′

∖f (In −PN)C∖f)
−1

C′
∖f (In −PN)ε/ (D + 1)

ε′ (In −PX)ε/ (n −K −D + 1)

The implication of Theorems 1 through 3 is that the choice of which particular share to omit,

among the set of compositional variables, has no bearing on many features of the model, at

least as they relate to the coefficients associated with the noncompositional data and the overall

goodness of fit. Moreover, Theorem 1 tells us that the explanatory power of the compositional

variables as a set is not altered by which D−1 of the D variables we choose to include. However,

the same cannot be said for the coefficients associated with the compositional data themselves,

or the intercept term.

Theorem 4. The estimated coefficients and variances associated with the compositional data

C are generally not permutation invariant. Specifically, βC∖d = Lf,dβC∖f and Var (βC∖d) =
Lf,dVar (βC∖f)L′

f,d

Proof. The permutation invariance of βN and ε together with equation (3) implies C∖dβC∖d =
C∖fβC∖f . Premultiplying both sides by C′

∖d and solving for βC∖d:

βC∖d = (C′
∖dC∖d)

−1
C′
∖dC∖fβC∖f

= (C′
∖dC∖d)

−1
C′
∖dC∖dLf,dβC∖f

= Lf,dβC∖f

Similarly:

Var (βC∖d) = 1

n −K
ε′ε (C′

2∖d (In −PN)C∖d)
−1

= 1

n −K
ε′ε (L′

d,fC
′
∖f (In −PN)C∖fLd,f)

−1

= L−1
d,fVar (βC∖f) (L′

d,f)
−1

9



and since L−1
d,f = Lf,d ∶

Var (βC∖d) = Lf,dVar (βC∖f)L′
f,d

To understand the implications of the above, define for i < d [i > d], βiC∖d as element i [i− 1]

in βC∖d corresponding in each case to variable i ≠ d in C. For any i ≠ d:

{βiC∖d,Var (βiC∖d)} =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{βiC∖f − β
d
C∖f ,Var (βiC∖f − β

d
C∖f)} , i ≠ f,D + 1

{−βdC∖f ,Var (βdC∖f)} , i = f
{βD+1

C∖f + β
d
C∖f ,Var (βD+1

C∖f + β
d
C∖f)} , i =D + 1

(7)

Neither the estimated coefficients βC∖d or the variances Var (βC∖d) corresponding to the

different variables in C are permutation invariant. As the different variables in C are not free

to vary independently, the best way to interpret each element in the vector of coefficients βC∖d

in (4) is that each measures the effect of an increase in the value of the corresponding variable

in C∖d in relation to the excluded dth variable.

In many applications, there may indeed be a particular component in C that one would nat-

urally choose to exclude. For example, when analysing the effect of education on growth using

data that measures the share of the population with different levels of educational attainment,

it seems natural to exclude the share of people with no education and treat that as the baseline

category as in Petrakis and Stamatakis (2002).

In other cases the choice of a baseline category to omit is not obvious. Lindh (1999) investi-

gates the relationship between growth and the shares of the population that belong to different

age cohorts, with children under 15 as the omitted category. Lindh and Malmberg (2009) also

omit the share of children, but use logarithms of the remaining shares to reduce collinearity. De-

varajan et al. (1996) and Bose et al. (2007) examine the relationship between growth and shares

of disaggregated public expenditure. The omitted category changes depending on which subset

of shares is included in the different specifications. Voigt et al. (2015) include two variables in

their regressions, investment (public and private) and government consumption, as shares of

GDP. Hence, private consumption expenditure as a share of GDP is the omitted category. Hall

and Jones (1999) and Rodrik et al. (2004) both include shares of the population that are native

English speakers or, separately, any of four other major European languages (French, German,

Portuguese, or Spanish), leaving the share of the population speaking a language other than

these five as the omitted category. Putterman and Weil (2010) regress log GDP per capita on

eleven ancestral regions, with sub-Saharan Africa as the omitted category.

Barro (1996) uses a seven-religion breakdown of world religions to examine the impact of

religion on democracy. After choosing the fraction of Catholics as the omitted variable, he

finds that only the fraction of Hindus has a significant (positive) effect on democracy. Sala-i-

Martin (1997) and Sala-i-Martin et al. (2004) test the robustness of a large set of regressors

as explanatory variables in a growth regression, including Barro’s breakdown of religions. The

fraction of the population practicing Confucianism, Buddhism, and Islam are all significant

10



and positive, while Protestantism and Catholicism are significant and negative. Hall and Jones

(1999) estimate the impact of four religions, Catholicism, Hinduism, Islam and Protestantism,

measured again as population shares on output per worker. Only the variables associated with

Catholicism and Islam are statistically significant.

Noland (2005) considers the effect of seven categories of religious affiliation (Catholicism,

Protestantism, Orthodox Christianity, Islam, Judaism, Hinduism, and Buddhism) on total fac-

tor productivity and economic growth, and finds a statistically significant effect for Catholi-

cism, Protestantism and Judaism on the latter. As he states, other religions and the category

of nonreligious “are omitted from the regression (i.e., are absorbed in the constant) and are

the standard against which the included major world religions are judged.” Similarly, both

Barro and McCleary (2003) and McCleary and Barro (2006) consider the effect of eight re-

ligious categories—Catholicism, Protestantism, Orthodox Christianity, Islam, Judaism, Hin-

duism, Eastern religions (including Buddhism), and other religions—on both religious practice

and growth. Barro and McCleary (2003) find statistically significant negative coefficients for

economic growth associated with Hinduism, Islam, Orthodox Christianity, and Protestantism,

and McCleary and Barro (2006) for shares of adherents to Islam and Protestantism. As in

each case Catholicism is the excluded category, they state clearly that “each coefficient should

be interpreted as the relationship with the indicated religion share, measured relative to the

Catholic share” McCleary and Barro (2006)).

While these later papers are careful to state that the coefficients can only be interpreted in

relation to the excluded category and any forecast generated by (3) is permutation invariant,

this does not solve the problem of how to interpret their statistical significance. Theorem 4

shows that we can use the coefficient values associated with a regression that excludes category

d, βC∖d, to derive the coefficient values associated with a regression that excludes category f ,

βC∖f . However the variances of the corresponding coefficients alone, the diagonal components

of Var (βC∖d)—all that is usually reported in empirical research—is insufficient to derive the

diagonal components of Var (βC∖f).3

Theorem 3 states that regardless of which category is omitted, the overall statistical signif-

icance of the remaining categories as a group is unaltered. Nonetheless, while two permutation

may include the same category i, and from (7)
βi
C∖d

Var(βi
C∖d
) =

βi
C∖f−βd

C∖f

Var(βi
C∖f

−βd
C∖f
)
, these do not equal

βi
C∖f

Var(βi
C∖f
)
. Hence the t-statistics and p-values for the same category i can differ greatly across

the different permutations. This leaves a researcher the freedom to choose the permutation

that appears most convincing, one that perhaps yields the most p-values that cross a desired

threshold of significance, or maximises the number of “stars”, in a manner analogous to someone

engaged in p-hacking as described in Brodeur et al. (2016).

To demonstrate just how different the model may appear depending on which category is

excluded, I combine data on output, savings rates and population from the IMF with data on

3. Since Var (βi
C∖f − β

d
C∖f) does not generally equal Var (βi

C∖f)-Var (βd
C∖f), to derive the associated variances

of these coefficients requires the full variance covariance matrix of the coefficients.
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religious affiliation from the World Religion Project (WRP) database (Maoz and Henderson

(2013)). The dependent variable is the log difference in per-capita purchasing power parity

gross domestic product between the years 2001 and 2020. The explanatory variables associated

with the Solow growth model, the logarithm of per-capita GDP (PPP) in the year 2001, and

both the average rate of savings and rate of population growth between 2001 and 2020 corre-

spond to the matrix N.4 I consolidate the different religious affiliations in the WRP database

into D=10 religious categories in the following order: Catholicism, Protestantism, Orthodox

Christianity, Other Christian Denominations, Islam, Judiasm, Buddhism, Hinduism, Eastern

Religions (Confucianism, Shintoism and Taoism), and a last category of Other which includes

those not in the previous nine categories (including Sikhism, Zoroastrianism, Bahaism, Jainism,

Animism and the non-religious), each measured as a share of the population in each country.

These shares, along with a column of ones, correspond to matrix C. The ten columns in Table

1 each present one of the D = 10 different permutations of the regression, as each religious

category is successively excluded.

The results in the first three rows of Table 1 are consonant with the standard predictions

of conditional convergence of the Solow growth model; the coefficient on log GDP in levels is

negative—implying conditional convergence—as are the coefficients on savings and population

growth, all at a statistically significant p-level below 0.01. Moreover, as Theorems 1 and 2

imply, as each successive religious category is excluded, the coefficient estimates and standard

errors associated with the noncompositional data in each of the estimated equations, along with

the R2, remain identical.

Column 1 of Table 1 excludes the Catholic share of the population. Column 2 reinstates

the share of Catholics but excludes Protestants, and so forth. In accordance with Theorem 4,

the coefficients for each religious category in any particular column d in Table 1 are identical

to the values of the coefficients in the row corresponding to the dth religious category, with

the sign inverted, along with the same standard deviation. So though in Table 1 there are

D × (D − 1)=90 estimated coefficients associated with the D = 10 different religious categories,

along with their corresponding standard errors, the half on one side of the diagonal of excluded

categories is the mirror, inverted-sign image of the other half. Though the coefficients, and

particulary the pattern of statistical significance, may appear very different, each permutation

represents a different representation of the same underlying statistical model.

4. Following Mankiw et al. (1992), we assume the annualised value is g + δ = 0.05. As the dependent variable

is not annualised, we multiply this by twenty—we add 1 to the change in population between 2001 and 2020,

corresponding to the term in (1).
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Yet given that only one permutation is usually chosen to be reported, that choice can have

profoundly different implications on how the results are likely to be interpreted. In column 1, the

coefficient for the share of Orthodox Christians, relative to the excluded category of Catholics,

in not statistically significant, but in column 2 it is significant, at the 5% level, relative to the

excluded category of Protestants. The share of Other Christians is only statistically significant

(at the 10% level) in column 7, when the Buddhist category is omitted.

Moreover, a comparison of columns 6 or 9 with 7 produces a startling contrast. The Jewish

and Hindu shares are not statistically significant in any of the regressions. This helps explain

why in columns 6 and 9, when, respectively, Jews or Hindus are excluded, the other religious

categories have no statistically significant relationship with economic growth, when compared

to the omitted Jewish category. By Theorem 3, the joint hypothesis test on all the different

religious categories is permutation invariant and each yields the same value of F (9,151)=2.43,

corresponding to a p-value of 0.013.5 Yet someone reading an empirical study that reports the

permutations in columns 6 or 9 alone might well conclude that including the shares of religious

categories is of marginal value in explaining cross-country differences in growth rates, and that

the particular coefficient estimates for the share of adherents of each religion, can be safely

ignored.

By contrast, the share of Buddhists in seven of the ten columns in Table 1 are positive

and statistically significant. That is why in column 7, when the Buddhist share is the omitted

category, the coefficients for all the remaining categories, aside from the share of Jews and

Hindus, are negative and significant at the 10% level or less. The coefficient for Other Eastern

Religions is -1.212 and is statistically significant at the 5% level (p-value of 0.048), so a change

in the share of these adherents relative to the share of Buddhists could potentially account

for a sizable difference in growth rates. Similarly, the coefficients for the shares of Catholics,

Protestants and Muslims vary in size between -0.555 and -0.730 but are statistically significant

at p-levels of 0.001 or lower.

Looking at Table 1 as a whole, one might conclude that between the years 2001 and 2020,

ceteris paribus, countries with higher shares of Buddhists enjoyed higher economic growth.

While overall, growth was lower in countries with a higher share of Christians, this was less so

for the Orthodox relative to other Christian denominations. Furthermore the share of Jews in

the population seems completely unrelated to growth—even when Buddhists are the excluded

category—and nothing conclusive can be said about the remaining categories. To avoid these

problems we might adopt an alternative strategy and experiment with including some number

less than D − 1 of the categories. But which, and how many? The total number of possible

regressions expands from merely D to equal 2D − 2 different possibilities, which for D=10 is

1022 possible regressions to choose from.

The larger point remains. It is hard to point to one particular category that can serve as

a natural choice for a baseline case, and the column with the most “stars” will inevitably look

5. Including the religious categories raises the adjusted R2 from 0.429 to 0.469.
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the most convincing. Excluding the eight “stars” associated with the Solow model, and the

intercept term, the number of “stars” associated with compositional data varies widely from

zero in the case of columns 6 and 9, where Jews or Hindus are the omitted category, to fourteen

across the nine categories that remain, when Buddhists are excluded. Finally, the intercept

term changes with every permutation and sometimes, as in the case of the growth regression

in (3), the constant term does convey useful information—for example if we wish to isolate the

value of the level of technology, A.

In some contexts, one might choose to include the compositional dataset to serve merely as

a control. Permutation invariance matters less if knowing the values of the different coefficients

themselves is not perceived to be important. If that is the case, and the intercept term does not

convey useful information, the standard approach might seem appropriate. In the next section

we consider more reasons for adopting an alternative based on logarithmic ratios.

4 Vector Spaces, Distorted Distances and Angles

The common practice of excluding one share in a composition to circumvent the singularity

problem, and then including the remaining variables as raw shares, creates more problems

than the lack of permutation invariance described in Section 3. Doing so means we treat

compositional data as if they are real coordinates relative to a canonical basis to which we

can apply the usual Euclidean geometry. Unfortunately, applying standard Euclidean measures

of distance and angle to points in a simplex generates a distorted relationship between the

coordinates. Furthermore, these are not points in a vector space and so, particularly if they

fall near the edges of the simplex, can be easily misused to generate incorrect or misleading

counterfactual experiments.

Suppose for argument’s sake we thought that the link between economic growth and the

share of adherents of the various religious categories as represented by the vector of coefficients

βC∖d from (3) in Table 1 implies not merely a statistical correlation, but captures some causal

relationship as well. Given the strong evidence of a positive relationship between the share of

Buddhists in our sample and economic growth, we might then ask how much economic growth

might change overall if the number of Buddhists in every country increased or decreased by one

unit, perhaps offset by changes in the share of Muslims. In 103 of the 164 countries in our sample,

the share of Buddhists is zero.6 In sixty countries the share of Buddhists falls between zero and

6. Albania, Algeria, Andorra, Antigua and Barbuda, Armenia, Austria, Azerbaijan, Bahamas, Bahrain, Be-

larus, Benin, Bosnia and Herzegovina, Bulgaria, Burkina Faso, Burundi, Cameroon, Cape Verde, Central African

Republic, Colombia, Comoros, Congo, Croatia, Cuba, Cyprus, Czech Republic, Djibouti, Dominica, Dominican

Republic, Egypt, El Salvador, Equatorial Guinea, Eritrea, Ethiopia, Fiji, Gabon, Gambia, Georgia, Ghana,

Greece, Grenada, Guatemala, Guinea-Bissau, Guyana, Haiti, Honduras, Hungary, Iran, Iraq, Israel, Jordan,

Kazakstan, Kenya, Kosovo, Kuwait, Kyrgyzstan, Lesotho, Liberia, Libya, Lithuania, Luxembourg, Macedo-

nia, Malawi, Mali, Malta, Marshall Islands, Mauritania, Mexico, Moldova, Monaco, Morocco, Namibia, Nauru,

Nicaragua, Niger, Poland, Romania, Russia, Rwanda, Saint Kitts and Nevis, Saint Vincent and the Grenadines,

Saint Lucia, San Marino, Sao Tome and Principe, Saudi Arabia, Serbia and Montenegro, Sierra Leone, Slovakia,
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half of one percent.7 In Afghanistan and Somalia, Muslims constitute more than 99.5% of the

population, and in 45 of our sample of 164 countries, less than half of one percent.8 What is the

meaning of a counterfactual that posits the impact associated with raising the share of Muslims

and lowering the share of Buddhists by the same amount, if the resulting share of Muslims in

Afghanistan and Somalia rises above 100% and the share of Buddhists below zero? How would

we interpret the effect of raising the share of Muslims, Buddhists or Catholics and decreasing

the shares of Hindus, Jews or Orthodox Christians if the database records that there are no

adherents of the latter three religions in 42 countries? And note that in this application, we are

not in fact asserting that the relationship between the dependent variable and the explanatory

compositional variables is necessarily a causal one. For applications in which the relationship is

explicitly causal, this problem greatly limits the usefulness of a regression formulated this way.

Confidence intervals, associated with compositional data can also fall outside the simplex.

The underlying issue is that the familiar Euclidean geometry applied to a simplex does not

generate a vector space and ordinary operations such as adding two vectors in the simplex, as

if they were Cartesian coordinates, or multiplying one vector by a scalar, can yield coordinates

that fall outside the simplex. To overcome these limitations, Aitchison (1986) developed the

concepts of perturbation and powering (as defined in Appendix A.1), which respectively take

the place of vector addition and scalar multiplication. Billheimer et al. (2001) demonstrates

that these two concepts are sufficient to make the simplex a vector space (the point where

all shares are equal is the barycentre). By adding the Aitchison inner product and norm in

Appendix A.1 the simplex is also turned into a Hilbert space (a complete, inner product space).

Aitchison distances and angles follow directly from these.

To visualise the implications of using Aitchison geometry, we amalgamate our ten reli-

gious categories into three broader categories by combining Catholics, Protestants, Orthodox

Christians and Other Christians into a single Christian category, and then combining all the

remaining religions, save Islam, together into the expanded category of Other Religions, so that

it now encompasses everyone who is not Muslim or Christian. The composition of amalgamated

religious shares for each of the 164 countries in our dataset are plotted on the two dimensional

ternary diagram in Figure 2.

Slovenia, Somalia, Sudan, Suriname, Swaziland, Sweden, Syria, Togo, Trinidad and Tobago, Tunisia, Turkey,

Tuvalu, Uruguay, Uzbekistan, Yemen, Zimbabwe.

7. Afghanistan, Angola, Argentina, Barbados, Belgium, Belize, Bolivia, Botswana, Brazil, Chad, Chile, Costa

Rica, Cote d’Ivoire, Democratic Republic of Congo, Denmark, East Timor, Ecuador, Estonia, Finland, Germany,

Guinea, Iceland, Ireland, Italy, Jamaica, Kiribati, Latvia, Liechtenstein, Madagascar, Maldives, Mauritius, Mon-

tenegro, Mozambique, Nigeria, Norway, Oman, Pakistan, Panama, Papua New Guinea, Paraguay, Peru, Philip-

pines, Samoa, Senegal, Seychelles, Solomon Islands, South Africa, Spain, Switzerland, Tajikistan, Tanzania,

Tonga, Turkmenistan, Uganda, Ukraine, United Arab Emirates, United Kingdom, Vanuatu, Venezuela, Zambia.

8. Antigua and Barbuda, Armenia, Belarus, Belize, Bolivia, Brazil ,Chile, Colombia, Costa Rica, Czech Re-

public, Dominica, Dominican Republic, Ecuador, El Salvador, Estonia, Finland, Grenada, Guatemala, Haiti,

Honduras, Hungary, Jamaica, Japan, Korea, Latvia, Lesotho, Lithuania, Mexico, Namibia, Nicaragua, Panama,

Paraguay, Peru, Poland, Romania, Slovak Republic, Solomon Islands, St. Kitts and Nevis, St. Lucia, St. Vincent

and the Grenadines, Taiwan, The Bahamas, Uruguay, Venezuela, Vietnam.
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The orthogonal basis of the ternary diagram is represented by the straight dashed line that

connects the vertex for the expanded category of Other Religions, with a point on the edge

midway between Christian and Muslim, and the dashed curve that connects the vertices for

Christians and Muslims. The latter is in fact a straight line when generated using Aitchison

geometry or plotted on the surface of Figure 1b, it only appears curved on the two dimensional

projection of that surface in Figure 2.

We choose three sets of four coordinates in Figure 2 and connect them with straight lines

to generate three polygons. As with the orthogonal basis, the straight lines connecting the

coordinates appear curved on the two dimensional surface. These edges between the vertices

are nearly perpendicular, and so the polygons are nearly rectangular.9 Estimating (3) with

just the shares of Christians and Muslims is akin to treating the compositional data as the

coordinates we see in Figure 3. Translating the orthogonal basis that connects the two vertices

in Figure 2 to this Cartesian graph results in a curve, not a straight line. The lines connecting

the polygons in Figure 2 are curved as well. Even if we draw conventional straight lines between

the vertices, the resulting quadrilateral shapes are not rectangular or even parallelograms—this

simple “naive” transformation from SD to RD−1 distorts both angles and distances.

One final issue relates to how much comparing coordinates in terms of their Euclidean

distance offers an appropriate insight into how they truly differ. For example, according to the

WRP database, the Muslim share of Italy’s population in 2010 was just over 1%, whereas in

neighboring France it was 8%, having risen from only half of one percent in 1960. That difference

of seven percent is identical to the difference between the Muslim share of the population in

Oman, 90%, and Jordan, 97%. Yet, it is hard to see these as equivalent. The eight fold

difference between France and Italy reflects the former’s much longer and wider colonial presence

throughout the Middle East and North Africa. By comparison, when comparing two countries

with an overwhelming Muslim majority, the salience of the additional 7% Muslim share in

Jordan is less meaningful. Similarly, in the last few decades, the share of Protestants has grown

rapidly in many (historically Catholic) Latin American countries, most notably in the largest,

Brazil, where they now constitute 27% of the population. The experience is similar in Colombia,

though the growth has not been nearly as rapid; Protestants there constitute 15% as of 2010.

By contrast, this has not been the experience in neighboring Ecuador, where Protestants make

up only 2% of the population. For centuries, Lutheran Protestantism was the state religion in

all five Scandinavian countries. In 2010, Protestants comprised 81% of the population in both

Denmark and Norway and 68% in Sweden, the same difference in shares as between Brazil and

9. The angles associated with the vertices in the polygon in green are Chad: 89.86○ (0.499π), Nigeria: 90.19○

(0.501π), Zambia: 90.96○ (0.505π), Eswatini: 88.99○ (0.494π). The ratio of the area of the polygon to the area

of the minimum bounding rectangle is 0.9950. The angles associated with the vertices in the polygon in red are

Portugal: 92.66○ (0.515π), Ireland: 87.30○ (0.485π), Bosnia: 89.86○ (0.499π), Lebanon: 90.17○ (0.501π). The

ratio of the area of the polygon to the area of the minimum bounding rectangle is 0.9944. The angles associated

with the vertices in the polygon in blue are Togo: 89.18○ (0.495π), Korea: 89.40○ (0.497π), Lithuania: 90.50○

(0.503π), Rwanda: 90.92○ (0.505π). The ratio of the area of the polygon to the area of the minimum bounding

rectangle is 0.9924.
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EswatiniEswatini

ChadChad

NigeriaNigeria

ZambiaZambia

LebanonLebanon

PortugalPortugal

IrelandIreland

BosniaBosnia

RwandaRwanda

TogoTogo

KoreaKorea

LithuaniaLithuania

Other Muslim

Christian

Figure 2: Ternary diagram for three part religious composition for the 164 countries in the

dataset. Dashed curves represent the basis for ILR coordinates and dotted curves the basis for

ALR coordinates. Curves in Blue, Green and Red represent the sides of rectangles in terms of

Aitchison geometry.

Colombia, and nearly the same as between Colombia and Ecuador. Again, it is hard to see these

differences as equivalent:the Protestant share of Brazil’s population is more than thirteen times

larger than Ecuador’s. Yet the coefficients in Table 1 are estimated in a way that implicitly

assumes they are.

Inner products and distances associated with Aitchison geometry rely on logarithmic dif-

ferences, which mitigate many of these issues. In the next sections, I demonstrate how using

logarithmic ratios can turn compositional data into coordinates in a vector space, which can

then be incorporated into regressions that are permutation invariant.

5 Additive Logarithmic Ratios

One way forward is to use a logarithmic transformation to translate the points in the simplex

SD in (2) to Euclidean space RD. Before doing so we must first replace any zeros in CQD+1
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EswatiniEswatini

ChadChad

NigeriaNigeria

ZambiaZambia

LebanonLebanon
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LithuaniaLithuania
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Muslim0.0
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0.6

0.8

1.0
Christian

Figure 3: “Naive” transformation of the three part composition in Figure 2 to a canonical basis.

The omitted category is Other Religions—the higher the share of adherents of religions other

than Christianity and Islam in the population, the closer it is to the origin of the plot.

with small numbers and adjust the remaining data so that it sums to one.10 Define the natural

logarithm of all the elements in the matrix of compositional data CQD+1, along with a column

10. Following Aitchison (1986), p.269, I set the Z zero components for each observation equal to δ(Z + 1)(D −

Z)/D2 and the positive elements are reduced by δZ(Z + 1)/D2. Setting δ equal to 1.0 × 10−5 ensures that the

fraction of the population measured as zero are replaced by values of between 1.0 × 10−6 and 3.0 × 10−6, in the

latter case, no more than 3 per million people. Since the lowest nonzero fraction in the dataset is 100 per million

and D = 10, this procedure reduces those observations by 2 per million if Z = 1, and 9 per million if Z = 9. This

is to avoid logarithms of zero, but is also consistent with Cromwell’s Rule as stated by the Bayesian statistician

Dennis Lindley (1985), p. 104: “So leave a little probability for the moon being made of green cheese; it can

be as small as 1 in a million, but have it there since otherwise an army of astronauts returning with samples of

the said cheese will leave you unmoved. . . So never believe in anything absolutely, leave some room for doubt: as

Oliver Cromwell told the Church of Scotland, ‘I beseech you, in the bowels of Christ, think it possible you may

be mistaken’.”
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of ones, as Č = [ln (ci,j)i=1,...,D;j=1,...,n ⋮ in]. Though all the shares are represented in Č we can

regress y on N and Č:

y = Nβ̌N + Čβ̌C + ε̌. (8)

The values of β̌C are elasticities, and since all the categories are included, permutation

invariance is no longer an issue. However, unless we restrict the parameter estimates (see below),

there is a conceptual problem in interpreting how the D coefficients of β̌C associated with the

shares affect the dependent variable. While changing the units from fractions to percentages

does not change the corresponding coefficient estimates, the value of the constant term does

change. More importantly, there is nothing to distinguish Č from a set of noncompositional

values and no corresponding restriction on the values of β̌C .11

To overcome this problem Aitchison (1982) suggests replacing Č with an n ×D − 1 matrix

of additive log-ratios (ALRs), the logarithmic differences between any D − 1 of the first D

components in C and the missing dth component cd:

[č1 − čd, č2 − čd, ...., čd−1 − čd, čd+1 − čd, ...., čD − čd]

= [log (c1 ⊘ cd) , log (c2 ⊘ cd) , ...., log (cd−1 ⊘ cd) , log (cd+1 ⊘ cd) , ...., log (cD ⊘ cd)] (9)

where ⊘ represents Hadamard division and the logarithm is taken for each element in the vector,

translating the points in the simplex SD in (2) to the Euclidean space RD−1.

Taking the exponentials of each component in the canonical basis and then normalising so

that each vector sums to one (applying the closure operator C as in Appendix A.1), we generate

the D ×D matrix W whose D columns w1, ...,wD are the elements:

wi,j =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e
e+D−1 i = j

1
e+D−1 i ≠ j

(10)

Then, in terms of Aitchison geometry, the matrix of compositional data can be expressed as:

CQD+1 = [(č1,i ⊙w1)⊕ (č2,i ⊙w2)⊕ ...⊕ (čD,i ⊙wD)]

= [((č1,i−čd,i)⊙w1)⊕((č2,i−čd,i)⊙w2)⊕...⊕((čd−1,i−čd,i)⊙wd−1)⊕((čd+1,i−čd,i)⊙wd+1)

⊕ ...⊕ ((čD,i − čd,i)⊙wD)], i = 1, ..., n (11)

where ⊕ represents powering (as defined in Appendix A.1)—the equivalent in Aitchison ge-

ometry of scalar multiplication. The second equality means that the set of D − 1 vectors

[w1,w2, ...,wd−1,

wd+1, ...,wD] are a basis for the additive log-ratios (9). For the case of D=3, the two basis

vectors are represented by the dotted lines in the ternary diagram in Figure 2.

11. Estimating (8), the sum of the coefficients associated with the ten religious categories is 0.0331.
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The dependent variable in the regression is not necessarily compositional, and we are con-

cerned with models that include both compositional and noncompostional explanatory variables.

To make this more applicable to econometric applications and compatible with Section 3, we can

transform the compositional data into ALRs using matrices so that the regression is expressed

in a way that is compatible with conventional Euclidean geometry.

Define the D ×D − 1 and D + 1 ×D matrices:

Fd =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Id−1,d−1 0d−1,D−d−1

−i′D−1

0D−d,d−1 ID−d,D−d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F̃d =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fd 0D,1

01,D 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

The transpose F′
d is analogous to the matrix F in Aitchison (1986) where it generates additive

log-ratios by premultiplying the log compositional data alone, i.e.: (ČQD+1). The added row

and column in F̃′
d accommodate the all-ones vector in Č that generates the intercept term.

Postmultiplying Č by F̄d generates an n ×D matrix C̃/d = ČF̃d, where each column is the log

deviation of the remaining i ≠ d columns from the dth variable, and the last column is a D+1

all-ones vector.12 Augmenting the regression with ALR coordinates first suggested by Aitchison

and Bacon-Shone (1984) to include noncompositional covariates, we can now regress:

y = Nβ̃N/d + C̃/dβ̃C/d + ε̃/d, d ∈ {1, ...,D}. (13)

How then do the D possible permutations of (13) differ? Define the D ×D matrix:

Md,f = { KdSd+1SdSd−1...Sf−1 for all d < f
Kd−1Sd−1Sd−2...Sf+1 for all d > f

where:

Kj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ij−1,j−1 0j−1,D−j−1 ,

−i′D−1 0

0D−j−1,j−1 ID−j−1,D−j−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Postmultiplying any C̃/d by Kj transforms the log deviations with respect to variable d,

into log deviations with respect to variable j, and postmultipling the result by the permutation

matrix Sj , exchanges the j and j-1 columns in the new matrix. Hence for all d, f ∈ {1, ...,D}
where d ≠ f : C̃/d = C̃/fMd,f , C̃/f = C̃/dMf,d and Md,f=(Mf,d)

−1
. Define two projection

matrices P̃C/d = C̃/d (C̃′
/dC̃/d)

−1
C̃′
/d and P̃X/d = X̃/d (X̃′

/dX̃/d)
−1

X̃′
/d where X̃/d = [N ⋮ C̃/d].

Lemma 2. The projection matrices P̃C/d and P̃X/d, as well as the error terms ε̃/d in (13) are

all permutation invariant. Hence P̃C/d=P̃C/f=P̃C , P̃X/d=P̃X/f=P̃X and ε̃/d=ε̃/f=ε̃ for all

d, f ∈ {1, ...,D}.

12. In Section 3 we use the subscript ∖d to designate the dth variable or column omitted from the data matrix

and its associated coefficients, and in Sections 5-8 we use the subscript /d to designate log deviations from the

dth variable.
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Proof.

P̃C/d = C̃/d (C̃′
/dC̃/d)

−1
C̃′
/d

= C̃/fMd,f ((C̃/fMd,f)
′
C̃/fMd,f)

−1
(C̃/fMd,f)

′

= C̃/fMd,fM−1
d,f (C̃′

/f C̃/f)
−1

(M′
d,f)

−1
M′

d,f C̃′
/f

= C̃/f (C̃′
/f C̃/f)

−1
C̃′
/f = P̃C/f = P̃C

P̃X/d = X̃/d (X̃′
/dX̃/d)

−1
X̃′
/d

= PN + (In −PN) C̃/d {[(In −PN) C̃/d]
′
(In −PN) C̃/d}

−1
[(In −PN) C̃/d]

′

= PN + (In −PN) C̃/fMd,f {[(In −PN) C̃/fMd,f ]
′
(In −PN) C̃/fMd,f}

−1
M′

d,f C̃′
/f(In −PN)′

= PN + (In −PN) C̃/fMd,f (Md,f)−1 {[(In −PN) C̃/d]
′
(In −PN) C̃/f}

−1
(M′

d,f)
−1

M′
d,f C̃′

/f (In −PN)′

= PN + (In −PN) C̃/f {[(In −PN) C̃/f ]
′
(In −PN) C̃/f}

−1
[(In −PN) C̃/f ]

′

= X̃/f (X̃′
/fX̃/f)

−1
X̃′
/f = P̃X/f = P̃X

Finally the error terms are:

ε̃ = (In − P̃X)y.

From Lemma 2 we can generate the log-ratio analogue to Theorems 1–3.

Theorem 5. The estimated coefficients and variances associated with the non-compositional

data N in (13) are permutation invariant: β̃N/d = β̃N/f=β̃N , Var (β̃N/d)=Var (β̃N/f)=Var (β̃N)
for all d, f ∈ {1, ...,D}. Furthermore, the R2 and F -test for the regression (13) are invariant

to which compositional variable is omitted from the regression, and the F-test for the joint

hypothesis that for any choice d ∈ {1, ...,D} , the vector β̃C/d = 0 is also permutation invariant.

Proof. Follows directly from Lemma 2 and the arguments in the proofs of Theorems 1-3.

The coefficients in (13) can be written as:

[ β̃N
β̃C/d

] =
⎡⎢⎢⎢⎢⎣

(N′ (In − P̃C)N)−1
N′ (In − P̃C)y

(C̃′
/d (In −PN) C̃/d)

−1
C̃′
/d (In −PN)y

⎤⎥⎥⎥⎥⎦
(14)

and their variances are:

[ Var (β̃N)
Var (β̃C/d)

] = 1

n −K

⎡⎢⎢⎢⎢⎣

ε̃′ε̃ (N′ (In − P̃C)N)−1

ε̃′ε̃ (C̃′
/d (In −PN) C̃/d)

−1

⎤⎥⎥⎥⎥⎦
(15)

Theorem 6. The estimated coefficients and variances associated with the compositional data

that are common to both C̃/d and C̃/f in (13) are identical.

Proof. Follows the same logic as the proof in Theorem 4 and M−1
f,d = Md,f since:

β̃C/d = Md,f β̃C/f ,
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and:

Var (β̃C/d) = Md,fVar (β̃C/f)M′
d,f .

The salient factor in Md,f is the matrix Kd (or Kd−1), analogous to Ad in Section 3. Unlike

Ad, Kd is an identity matrix for all but row d (or d − 1).

So in contrast to Theorem 4 in Section 3, not only are β̃N and its associated variance,

permutation invariant, but so are all the coefficients that correspond to the noncompositional

variables, along with the intercept.

The values of the coefficients across the different permutations can be summarised by:

{β̃iC/d,Var (β̃iC/d)} =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{β̃iC/f ,Var (β̃iC/f)} , i ≠ f, i =D + 1

{− ∑
∀j≠i,j≠D+1

β̃j
C/f , ∑

∀j≠i,j≠D+1
∑

∀k≠i,k≠D+1
Cov (β̃j

C/f , β̃
k
C/f)} , i = f, i ≠D + 1

(16)

Furthermore not only are the coefficient values for all the common elements between β̃C/d

and β̃C/f , f ≠ d, identical, but the f th element of β̃C/d equals the sum of all the values of β̃C/f

multiplied by -1. Therefore a hypothetical sum of the elasticities associated with all D possible

elements of Č is by construction, equal to zero. Furthermore, all the common diagonal terms

between Var (β̃C/f) and Var (β̃C/d) are identical. The missing variance for the coefficient of

the f variable, chosen as a basis in β̃C/f , is equal to the sum of all the elements of Var (β̃C/d).

Hence all of the coefficient values and corresponding variances can be found by estimating a

restricted version of (8):

min
β̌N ,β̌C

(y −Nβ̌N − Čβ̌C)
′ (y −Nβ̌N − Čβ̌C) (17)

s.t.:

r′ [ β̌N
β̌C

] = 0

where r =
⎡⎢⎢⎢⎢⎣

0K,1
iD
0

⎤⎥⎥⎥⎥⎦
. It then follows that β̌N=β̃N and Qdβ̌C=β̃C/d for all d ∈ {1, ...,D}.

A note of caution. The vectors of coefficients βC∖d, β̃C/d and β̌C can be interpreted as

the marginal impact of each element in the vector of compositional data, either relative to

an omitted category in (3), the log difference with respect to a baseline category in (13), or

the log of the elements themselves in (17). As explained in Section 4, using (3) to predict

how changing the composition for a particular observation in the sample, or indeed all of

them, by a non-infinitesimal amount alters the value of the corresponding dependent variable

may be invalid, if elements in the resulting composition fall outside the simplex. Given the

nonlinearity of a logarithmic transformation, this problem is potentially even more acute if

we attempt to perform a counterfactual analysis using the constrained regression (17), and

change all D variables simultaneously, but fail to ensure that all the new coordinates remain in

the simplex. By contrast, there are no restrictions on performing counterfactual experiments
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involving changes to all D − 1 log differences in (13). The resultant compositions implied by

these changes will always correspond to coordinates within the simplex.

As discussed in Section 3, the variances of the coefficients associated with any permutation d

in Table 1 cannot be inferred without either estimating each permutation of (3), or having access

to all the elements of the matrix Var (βC∖d). When using additive log-ratios, two permutations

suffice to generate all the information we typically need. To see this, we present in Table 2

the different permutations of the Barro growth equation, using log-ratios of the compositional

data as in (13). Each column represents a different permutation, where the missing religious

category is no longer an excluded variable, but one that is employed as a basis by which the

others are divided. Hence, in column (1), where the category not listed is Catholic, the coefficient

associated with Protestants is no longer the raw population share, but rather the elasticity that

relates to the logarithm of the ratio of Protestants to Catholics, and the subsequent coefficient

associated with Orthodox is the elasticity that relates to the logarithm of the ratio of Orthodox

Christians to Catholics.

As in Table 1, the estimates of (13) in Table 2, in accordance with Theorem 5, demonstrate

the permutation invariance of the coefficients and variances associated with the noncomposi-

tional variables that relate to the Solow growth model. Unlike Table 1, in Table 2, as Theorem

6 indicates, the coefficients for the compositional data—i.e, the shares of religious adherence in

each country—are the same as well, regardless of which religious category (the missing term on

the diagonal) is chosen as the baseline against which the other categories are log differenced.

That invariance applies to the intercept terms as well. Given that the intercept relates to

underlying parameters associated with the Solow growth model in (1), this is another useful

attribute of this methodology. Only the measure of multicollinearity, mean VIF, differs across

the different columns (more on this in Section 8). By estimating the model using log-ratios, we

eliminate any ambiguity about the association between the individual shares and the dependent

variable.

The results in Table 2 reveal a much less ambiguous pattern than in Table 1—the shares

of the population that adhere to two religions, Orthodox Christianity and Buddhism, are as-

sociated at a statistically significant 1% level with higher rates of growth in the years between

2001 to 2020. The category of Other Religions is associated with lower rates of growth, but

only at the 10% significance level. The coefficients associated with the compositional covariates

are not statistically significant. There are hints of this pattern in Table 1—in the permutations

in columns (1), (2) and (5) the coefficient for the share of Buddhists in the population is sta-

tistically significant at the 1% level, as of course are the corresponding categories of Catholics,

Protestants and Muslims in column (7), with the Buddhist category omitted. For Orthodox

Christianity, the pattern in Table 1 is weaker—only significant relative to Protestants (at the

5% level) and relative to Buddhists (at the 10% level).
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Working in log differences of shares rather than changes in shares might seem cumber-

some. However, the benefits of permutation invariance can more than compensate for any

awkwardness. Take as an example Singapore, one of the more religiously diverse countries in

our sample, where the seven main religious categories are: Buddhism, 0.33; Other, 0.186; Islam,

0.142; Eastern Religions, 0.108; Catholicism, 0.07; Protestantism, 0.065; Hinduism, 0.05; and

Other Christian, 0.046. The log differences between the largest group, adherents of Buddhism

and the number of people in the other categories are as follows: Other Religions, 0.573; Islam,

0.843; Eastern Religions, 1.117; Catholicism 1.551; Protestantism, 1.625; Hinduism, 1.887; and

Other Christian, 1.97. The log difference in per-capita GDP between 2001 and 2020 implies

Singapore’s population enjoyed an annualised economic growth rate that averaged 4.05%. The

coefficient corresponding to the Buddhism category of 0.027 means that in a hypothetical coun-

try, identical to Singapore in every other way, but where the number of Buddhists relative to any

of the other categories is greater by the same log difference of 0.1, we would expect to observe

an annualised growth rate during that period of 4.32 instead. By contrast, working in shares

as in Section 3 means that a similar question regarding a change in the number of Buddhists in

the population must be addressed relative to each religious category independently, according

to each specific coefficient whose statistical significance varies widely.

It is impossible to assert a priori whether log-ratios yield regressions that better fit the

data. There is indeed a marginal improvement in our baseline example—in Table 2, the value

of R2 is 0.526, which is marginally higher than the value of 0.509 in Table 1. The F -test on

the significance of the religious covariates is F (9,151)=3.13 (p-value 0.002) for the former and

F (9,151)=2.43 (p-value 0.013) in the latter. However, suppose we return to the World Religion

Project (Maoz and Henderson (2013)) and slightly change the way we aggregate the different

sects into ten different religious categories by amalgamating Orthodox Christians and Other

Christians into one category, but separating Muslims into two categories, Sunni Muslims and

non Sunni Muslims. The value of R2 is 0.500 in Table 9 (Appendix B) where additive log-

ratios are used, but 0.509 in Table 8 (Appendix B), where the regression uses the compositional

data and omits one of the variables. Similarly, the F -test on the significance of the religious

covariates is F (9,151)=2.09 (p-value 0.034) in the former and F (9,151)=2.44 (p-value 0.013)

in the latter.

At the same time, in the Shapley-Owen decomposition in Table 3, the Owen value for the

religious category is only 0.122 when the model is estimated using additive log-ratios for our

baseline religious categories, but 0.168 when raw shares are used. Instead, the inclusion of

log-ratios for the religious categories raises the Owen values for the noncompositional variables

associated with the Solow model, particularly for the level of GDP growth in 2001. This pattern

is almost identical when we use our alternative aggregation of religious categories.

To illustrate this for the baseline aggregates, Figure 4a plots the orthogonal components of

growth and the log level of GDP against each other. The slope of the regression line between

the two corresponds to the coefficient for the log level of GDP, associated with both the test

for convergence and estimates of its speed, in Tables 1 and 2 (in Appendix B, Figures 9a and
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Original Composition Alternative Composition

Excluded Variable Additive Log-Ratio Excluded Variable Additive Log-Ratio
Owen Owen Owen Owen

Variables Values Percent Values Percent Values Percent Values Percent

GDP (2001) 0.168 33.10% 0.214 40.75% 0.160 31.52% 0.197 39.36%
Pop. Growth 0.161 31.61% 0.175 33.31% 0.169 33.29% 0.172 34.36%
Savings 0.012 2.27% 0.015 2.83% 0.011 2.20% 0.012 2.37%
Religion 0.168 33.02% 0.122 23.12% 0.168 33.00% 0.119 23.92%

Total 0.509 100% 0.526 100% 0.509 100% 0.500 100%

Table 3: Shapley-Owen decomposition.

10a correspond to the other two variables, population growth and savings). Using additive log-

ratios for the religious categories generates a slightly steeper slope and a narrower confidence

interval. Figures 4b and 4c show how the orthogonal components shift and the kernel density

estimates of their distributions change when we switch from the estimates using the raw data

to additive log-ratios. The differences are subtle, but there appear to be fewer outliers when

log-ratios are employed, which is consistent with the results in Table 3.

Can we detect any systematic differences between the squared error terms for the h ∈
{1, ...,N} observations ε̃2

h and ε2
h, where εh ∈ ε, from (3) and where ε̃h ∈ ε̃ from (13)? Us-

ing the baseline composition, it is hard to see differences that pertain to particular regions

in the map in Figure 5. In Table 4, we regress the difference between the two squared error

terms on three indices that pertain specifically to the distribution of religious categores: (1)

the maximum share of a religion—in effect how close a particular observation is to an edge of

the simplex; (2) similarly, a Herfindahl index of religious concentration; and (3) the Aitchison

distance of a country’s religious composition to the geometric mean of religious compositions

across all the different countries:

ε̃2
h − ε

2
h = φ0 + φ1Maximum Shareh + φ2Hefindahlh + φ3Aitchisonh + uh. (18)

There is no significant relationship between the three different indices and the differences in the

squared error terms for either composition. Whether goodness of fit improve, or deteriorates

does not appear, in our example, to be influenced by the distribution of the coordinates in the

simplex.

6 From Additive Log-Ratios to Isometric Log-Ratios

The two key benefits to estimating regressions, that include compositional covariates using

ALRs are permutation invariance and the fact that the estimated coefficients are associated with

coordinates in a vector space. There is another benefit: namely when we compare angles and
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Original Composition Alternative Composition

(1) (2) (3) (4) (1) (2) (3) (4)
Maximum −0.019 0.128 −0.013 −0.073
Share (0.020) (0.101) (0.020) (0.097)

Herfindahl −0.023 −0.141 −0.010 0.059
Index (0.019) (0.093) (0.019) (0.094)

Aitchison −0.000 0.000 −0.000 −0.000
Distance (0.002) (0.002) (0.002) (0.002)

Constant 0.010 0.010 −0.002 −0.014 0.010 0.007 0.006 0.019
(0.014) (0.011) (0.018) (0.024) (0.014) (0.011) (0.017) (0.023)

Observations 164 164 164 164 164 164 164 164
R2 0.005 0.009 0.000 0.020 0.003 0.002 0.000 0.005
Adjusted R2 −0.001 0.003 −0.006 0.002 −0.003 −0.004 −0.006 −0.013

Table 4: Estimation results for (18).

distances using Aitchison geometry, the ALR transforms the rectangles in Figure 2 to the paral-

lelograms in Figure 6—the coordinates with respect to the basis [w1,w2, ...,wd−1,wd+1, ...,wD]
in (5) are not as distorted as they are when the composition, with one component omitted, is

treated as if they were coordinates in Euclidean space, as in Figure 3. Yet these basis vectors are

neither normal or orthogonal. The Aitchison norm for any of the i = 1, ...,D−1 is ∣∣wi∣∣a=
√

D−1
D ,

and the Aitchison inner product between any two i, j vectors is ⟨wi,wj⟩a=−1/D. Hence the

angle between the vectors (in radians) is arccos( 1
1−D). Since the ALR transformation from the

simplex SD to Euclidean space RD−1 generates coordinates with respect to an oblique basis,

some distortions of the distances and angles between the coordinates in the regression remain—

distortions that are inversely related to the value of D. In Figure 2 where D=3, the angles

between the basis vectors are equal to 2π
3 or 120○.13

In some applications a better solution is available. One can transform the data to Euclidean

space RD as log deviations from a geometric mean or centred log-ratios (CLR) by postmulti-

plying X̌CQD+1 by the matrix 1
D ID −HD (where HD is a D ×D unit matrix of ones), which

generates for each point in the simplex:

⎛
⎜⎜⎜⎜⎜
⎝

ln
c1

D

√
D

∏
i=1
ci

, ln
c2

D

√
D

∏
i=1
ci

, ...., ln
cD

D

√
D

∏
i=1
ci

⎞
⎟⎟⎟⎟⎟
⎠

, c1, ..., cD ∈ c. (19)

However as each row represented by (19) sums to zero, this transformation does not resolve the

13. In Figure 6 the angles associated with the vertices in the polygon in green are Chad: 115.64○ (0.642π),

Nigeria: 64.41○ (0.358π), Zambia: 116.36○ (0.646π), Eswatini: 63.58○ (0.353π). The angles associated with the

vertices in the polygon in red are Portugal: 64.57○ (0.359π), Ireland: 115.40○ (0.641π), Bosnia: 62.56○ (0.348π),

Lebanon: 117.48○ (0.653π). The angles associated with the vertices in the polygon in blue are Togo: 119.20○

(0.662π), Korea: 59.63○ (0.331π), Lithuania: 120.28○ (0.668π), Rwanda: 60.89○ (0.338π).
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Figure 5: The deeper a country is shaded red, the more the squared errors ε2 from the regression

with an omitted category (3) exceeds the squared errors ε̃2 from the additive log-ratio (13).

Conversely the deeper a country is shaded blue, the more the squared errors ε̃2 from the additive

log-ratio (13) exceeds the squared errors ε2 from the regression with an omitted category (3).

Countries shaded grey were omitted for lack of data during the sample period.

problem of linear dependence and is therefore unsuitable for linear regression.

What is needed for estimating regressions is a transformation that generates coordinates with

respect to an orthonormal basis that are linearly independent. Egozcue et al. (2003) suggest

taking the Aitchison inner product between the points on the simplex and any orthonormal

basis e on the simplex, which transforms the data into a length D − 1 vector of isometric log-

ratios (ILR). This is the equivalent to postmultiplying ČQD+1 by the transpose of a (D − 1) ×
D contrast matrix U, where the D − 1 rows are the centered log-ratios (19) of the chosen

orthonormal basis e. Transposing U, the D − 1 columns in U′ form a basis in a D − 1 subspace

where each of the D elements, the “balances,” sum to zero. Egozcue et al. (2003) show that

post multiplying an ALR composition by F+ (the Moore Penrose generalised inverse of F from

(5)) generates a CLR, and postmultiplying that by U′ generates an ILR composition.14

Extending this to accommodate the vector of ones in C̃ that generate the intercept term,

we can convert additive log-ratios to a generic set of isometric log-ratios by postmultiplying C̃/d

by the D ×D matrix F̄dŪ
′ where:

F̄d =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F+
d

1/D 1/D ...1/D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

14. See Proposition 4 in Egozcue et al. (2003).
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Figure 6: ALR transformation for the three-part composition in Figure 2.

and Ū is a generic contrast matrix U, appended with a row vector of ones, iD. Note that each

coordinate in C̃/dF̄d is the sum of the CLR and the constant term 1/D.

What orthonormal basis is appropriate for multiple regression? Adopting a version of the

sequential binary partition method in Pawlowsky-Glahn et al. (2015):

U1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
√

1
2

√
1
2 0 ... ... ... 0

−1
2

√
2
3 −1

2

√
2
3

√
2
3 0 ... ... 0

−1
3

√
3
4 −1

3

√
3
4 −1

3

√
3
4

√
3
4 0 ... 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
⋮ ⋮ ⋮ ⋮ ⋱ 0

− 1
D−1

√
D−1
D − 1

D−1

√
D−1
D − 1

D−1

√
D−1
D − 1

D−1

√
D−1
D ... ...

√
D−1
D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

which generates a set of balances with these coordinates:

c̄li/1 =
√

i − 1

i
ln

⎡⎢⎢⎢⎢⎢⎣
cli

⎛
⎝

i−1

∏
j=1

clj
⎞
⎠

1
i−1

⎤⎥⎥⎥⎥⎥⎦
, i = 2, ....,D; l = 1, ..., n, (22)

also known as pivot log-ratios.15 For each observation l, the first term in (22), represented by the

vector c̄l2/1 (where the term /1 in the subscript refers to the orthonormal basis U1), represents

15. See Greenacre (2018) for an alternative matrix transformation that generates pivot log-ratios.
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Figure 7: ILR transformation for the three-part composition in Figure 2.

the log difference between cl2 and cl1, the second term, c̄l1,3, the log difference between cl3 and

the geometric mean of cl2 and cl1, and each subsequent term the log deviation of cli from the

geometric mean of cl1 through cli−1. The last remaining term is potentially the most interesting

and useful: c̄l1,D, which represents the log deviation of clD from the geometric mean of all the

preceding D − 1 variables. Contrasting the three sets of points that form rectangles in Figure 6

with Figure 7 illustrates how the shift from ALR to ILR means the transformed compositional

data are not only coordinates in a vector space, but are now coordinates with respect to an

orthogonal basis.

The regression we estimate has the compositional data included as isometric log-ratios:

y = Nβ̄N/1 + C̄/1β̄C/1 + ε̄/1, (23)

where C̄/1 = F̄dŪ
′
1. This can now be generalized to generate additional permutations.

Define the D ×D exchange matrix JD, where each element is defined as:

ji,k = { 1, k =D − i + 1
0, k ≠D − i + 1

,
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which is the mirror image of the identity matrix ID. We can now extend (21) to incorporate

D different permutations of the contrast matrix U1, where Uh refers to (21) with column h

exchanged with column 1 and column D exchanged with column D − h + 1. If D is an even

number:

Uh={ U1JDS1...ShJDS1...Sh, 1 ≤ h ≤D/2
U1JDS1...Sh−1JDS1...Sh, D/2 + 1 ≤ h ≤D;

(24)

and if D is odd:

Uh=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

U1JDS1...ShJDS1...Sh, 1 ≤ h < (D + 1) /2
U1JDS1...ShJDS1...Sh−1, h = (D + 1) /2
U1JDS1...Sh−1JDS1...Sh, (D + 1) /2 < h ≤D.

(25)

As before, we define the augmented contrast matrix Ūh as the matrix Uh with the addition of

a last row vector of ones.

Define the matrix Gd,h ≡ F̄dŪ
′
h, h = 1, ...,D. The symmetry of the CLR means that

C̃/dF̄d = C̃/f F̄f for all d, f ∈ {1, ...,D}. Hence, we can generate a matrix of isometric log-4ratios

C̄/h, associated with an augmented contrast matrix Ūh, from any set of additive log-ratios

so that C̄/h = C̃/dGd,h = C̃/fGf,h.16 We can estimate h = 1, ...,D different versions of the

regression:

y = Nβ̄N/h + C̄/hβ̄C/h + ε̄/h. (26)

Defining the matrix X̄/h = [N ⋮ C̄/h], consider the properties of the projection matrices

associated with (26) for the different permutations h ∈ {1, ...,D}.

Lemma 3. The projection matrices associated with the ILR coordinates are permuation invari-

ant and equal to the projection matrices associated with the ALR coordinates so that P̄C/h=P̃C

and P̄X/h=P̃X for all ∈ {1, ...,D}.

Proof.

P̄C/h = C̄/h (C̄′
/hC̄/h)

−1
C̄′
/h

= C̃/dGd,h (G′
d,hC̃′

/dC̃/dGd,h)
−1

G′
d,hC̃′

/d

= C̃/dGdG
−1
d,h (C̃′

/dC̃/d)
−1

(G′
d,h)

−1
G′

d,hC̃′
/d

= C̃/d (C̃′
/dC̃/d)

−1
C̃′
/d = P̃C

P̄X/h = X̄/h (X̄′
/hX̄/h)

−1
X̄′
/h

= PN + (In −PN) C̄/h {[(In −PN) C̄/h]
′ (In −PN) C̄/h}

−1
[(In −PN) C̄/h]

′

= PN + (In −PN) C̃/dGd,h {[(In −PN) C̃/dGd,h]
′
(In −PN) C̃/dGd,h}

−1
G′

d,hC̃′
/d (In −PN)′

= PN + (In −PN) C̃/dGd,h (Gd,h)−1 {[(In −PN) C̃/d]
′
(In − P̃1) C̃/d}

−1
(G′

d,h)
−1

G′
d,hC̃′

/d (In −PN)′

= PN + (In −PN) C̃/d {[(In −PN) C̃/d]
′
(In −PN) C̃/d}

−1
[(In −PN) C̃/d]

′

= X̃/d (X̃′
/dX̃/d)

−1
X̃′
/d = P̃X/d = P̃X

16. Note that each row of C̃/d represents the D−1 log deviations of the d /∈ {1, ...,D} shares with respect to dth

share and C̄/h the log deviations of the h /∈ {1, ...,D} shares with respect to the cascading geometric means that

all have one element, the hth share, in common. If h = d, the first column in C̄/d always equals the first column

in C̃/d, divided by
√

2.
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From Lemma 3 we can derive the values of the estimated coefficients and their associated

variances:

[ β̄N
β̄C/h

] =
⎡⎢⎢⎢⎢⎣

(N′ (In − P̃C)N)−1
N′ (In − P̃C)y

G−1
d,h (C̃

′
/d (In −PN) C̃/d)

−1
C̃′
/d (In −PN)y

⎤⎥⎥⎥⎥⎦
(27)

Var (β̄C/h) = 1

n −K
ε̃′ε̃ (C̄′

∖d (In −PN) C̄∖d)
−1

= 1

n −K
ε̃′ε̃ (G′

d,hC̄
′
∖f (In −PN) C̄∖fGd,h)

−1

= G−1
d,hVar (β̃C/d) (G′

d,h)
−1

(28)

Theorem 7. The estimated coefficients, variances, and residuals associated with the non-

compositional data N in the regression using ILR coordinates (23), are all permutation invariant

and identical to those in the regression using ALR coordinates (13): β̄N = β̃N , Var (β̄N)=Var (β̃N)
and ε̄ = ε̃. Hence, the R2 and F -test for the regression (26) and the F -test for the joint hypoth-

esis for the compositional variables β̄N = 0 are also equal to those in (13).

Proof. Follows directly from Lemma 3, (27) and (28).

There are several options for using ILR coordinates in a regression. One option is to simply

choose one permutation of (26). However, interpreting the regression is cumbersome, and, aside

from the coefficient associated with the log difference between one variable and all the others,

not very intuitive. Given that one implication of Theorem 7 is that the coefficients associated

with the noncompositional data ε̄ and the error terms ε̄ do not change in the transition from

ALR to ILR coordinates, the only value in using the latter is when the compositional data are

included in the regression not merely as controls or instruments.

One way to generate a model which can provide coefficients on the compositional data that

are more intuitive is to follow Hron et al. (2012) and estimate D different permutations of

(26), where in each regression the log deviation of a different variable against all the remaining

variables in the dataset is changed. We can then build a statistical model using only those last

coefficients.

As I demonstrate below, there is a simpler way to incorporate ILR transformations into

a regression and generate the estimates of these D coefficients and associated variances, but

by implementing the method in Hron et al. (2012), we produce the results in Table 5 that

create a pattern most easily compared with Tables 1 and 2. In accordance with Theorem 7,

the estimates of the coefficients that correspond to the noncompositional data in Table 5 (the

log level of GDP in 2001, the savings rate and population growth), along with the constant in

the last row, are not only invariant across the different columns but identical to the estimates

using the ALR transformation in Table 2.
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In column (1) the coefficient on the second category, Protestants, represents the elasticity

with respect to the log deviation between the share of Protestants and the first category, the

share of Catholics. The coefficient on the third category, the Orthodox Christians, is the

elasticity of the log deviation between the share of Orthodox Christians and the geometric

mean of Protestants and Catholics. The coefficient on the fourth, Other Christians is the

elasticity of the log deviation between that category and the geometric mean of Protestants,

Catholics and Orthodox Christians. This pattern continues to the last religious category: Other

Religions. That coefficient, highlighted in bold, is the elasticity with respect to the remaining

categories and the one we retain for our statistical model. Note that in each entry in column

(1) there is a log deviation of the named category with respect to a geometric mean that always

includes the first category, Catholics.

In column (2) the coefficient for Hindus, highlighted in bold, corresponds to the log deviation

between that category and the geometric mean of all the others. The category Other Religions,

is the log deviation between that category and the geometric mean and the eight remaining

categories, and the other coefficients follow the same pattern as in column (1), except that it is

now the Protestant category, rather than the Catholic, that always appears in every geometric

mean. In each subsequent column the coefficients that correspond to the log deviation between

that category and all of the nine remaining categories are in ascending order, culminating in

column (10) where the coefficient for Catholics, highlighted in bold, represents that category

relative to all nine remaining categories. The missing categories along the diagonal in each

column are the ones that feature in every geometric mean. There are other ways to generate

the D = 10 regressions we want, but as mentioned above, this is the pattern that most closely

matches the permutations in Tables 1 and 2.

As in Table 2, in Table 5 only the Buddhist and Orthodox Christian categories, in columns

(4) and (8) respectively, are statistically significant. Indeed, closer inspection reveals that along

the diagonal in bold in Table 5 the coefficients and standard errors are slightly larger than the

corresponding estimates in Table 2 by the same fixed factor. To see why, consider the different
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elements that constitute the inverse of the matrix G1,h the components of which take the form:

⟨G−1
1,h⟩i,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j < h − 1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i ≤ j − 1√
(j+1)j

i = j + 1
√

j
j+1

i > j + 1 0

j = h − 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

i < h −
√

j+1
j

i ≥ h −
√

j
j+1

h ≤ j <D

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

i < j 0

i = j
√

j+1
j

j < i <D 1√
(j+1)j

i =D 0

j =D { i <D 0
i =D 1

(29)

In Appendix A.2 there are three examples of what (29) looks like, for the cases G−1
1,1 in (33),

G−1
1,D−1 in (34) and G−1

1,D in (35). In each, the salient part of is the D − 1 row. If h < D as

in (33) and (34), all the entries are zero except for the one that corresponds to ⟨G−1
1,h⟩D−1,D−1

,

which equals
√

D+1
D . Multiplying this row by the coefficients for the ALR estimation β̃C/d yields

√
D+1
D β̃DC/d. If h =D as in (35), then the last entry is still zero, but all the other entries in that

row equal −
√

D+1
D , which when multiplied by β̃C/D yields −

√
D+1
D ∑

D−1
d=1 β̃dC/D. Since the entire

set of ALR coefficients sums to zero, this too equals
√

D+1
D β̃DC/d. Hence, having estimated the

model using additive log-ratios as in (13) for any possible value of d, the last ILR coefficient,

β̄C/D, which captures the impact of the log deviation of x̄C/D from the geometric mean of all

the other D − 1 variables, can be easily derived as β̄C/D=
√

D+1
D β̃C/D. Furthermore, this result

holds when the compositional variables are reordered, or can be generalised from G−1
1,d to G−1

h,d

to cover all the other variables. If h ≠D−d+1, all the elements in the D−1 row are equal to zero

except the one in the D−h+1 column, which is equal to
√

D+1
D . Where h =D−d+1 the first D−1

entries are equal to −
√

D+1
D and the last to zero. By the same logic, the variance, Var (β̄C/h), in

(28) equals Var (β̃C/d) in (15), multiplied by D+1
D . Hence the t-statistics associated with all the

coefficients in the model using ILR coordinates are identical to those using ALR coordinates.

What does all this mean? Aitchison (1988) advocated using additive log-ratios over isometric

log-ratios on the grounds of simplicity of interpretation and calculation, an argument reiterated

by Greenacre et al. (2021) and Greenacre et al. (2022). While this concern is possibly valid for

other applications, this is not the case for the case of multiple regression examined here, even

if only a subset of the variables are compositional. Simply put, it is not necessary to transform

the D composite variables into D sets of pivot log-ratios and estimate each permutation of

the model separately, as in Table 5 or Hron et al. (2012). Estimating two permutations of

equation (13)—any two columns in Table 2 will suffice—or the constrained regression (17)

once, as described in Section 5, and then inflating both the coefficients and standard errors
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associated with the composition variables by the simple factor
√

D+1
D , is sufficient to convert the

regressions with ALR coordinates in Aitchison and Bacon-Shone (1984), into those that would

result from converting the data to D sets of pivot log-ratios and estimating each separately to

obtain the coefficients in bold in Table 5. As in Section 5, counterfactual experiments are best

conducted using log differentials as in (26) and not in terms of logs themselves (as in (17)), to

ensure that the compositions remain within the simplex. Either way, the resulting statistical

model is permutation invariant and the estimated coefficients are associated with data that are

coordinates with respect to an orthogonal basis—the remaining distortions that ALR does not

eliminate are removed.

7 Expressing ILR Coefficients as Coordinates in the Simplex

Using additive log-ratios in an estimation requires a change in how we use and interpret regres-

sions with compositional data. The regression coefficients are elasticities and so shifts in the

composition are in terms of percentages of fractions (or percentages), rather than the fractions

(percentages) themselves, relative to the share chosen as a base. Any one of the permutations

of the ILR regression (26) is bound to be less intuitive than ALR, which is why building a

model where each coefficient is the elasticity of a share relative to the geometric mean of all the

other shares is probably more useful. In Section 6 we demonstrate that it is not necessary to

follow Hron et al. (2012) and estimate D different regressions; it is sufficient to estimate (17)

and multiply the coefficients and standard errors corresponding to the compositional variables

by
√

D+1
D .

Nonetheless, calculating one permutation of (26) is still potentially useful. Extending Van

den Boogaart and Tolosana-Delgado (2013), we can restate the coefficients associated with

the compositional data as coordinates in the simplex. This yields an alternative expression

analogous to (26):

y = Nβ̃N + β̄D+1 + ⟨C∖D+1, b̄C⟩a + ε̄ (30)

where β̄D+1 is the same constant term and b̄C = exp[β̄C/hŪh]/(i′ exp[β̄C/hŪh]) is a point in the

simplex whose Aitchison product with each point in the dataset C∖D+1 yields the same values

as the Cartesian product C̄/hβ̄C/h. The isometry between C∖D+1 and C̄/h means that this is

the same for all values of h. For the case of h = 1, the D coordinates for regression associated

with Ū′
1 can be calculated using the formula:

b̄jC =
√
j − 1√
j

β̄j
C/1 −

D

∑
i=j+1

β̄iC/1√
i − 1

√
i

(31)

.

The results for our example yield a point b̄C in the simplex whose coordinates are: Catholic:

0.0997; Protestant: 0.0998; Orthodox: 0.102; Other Christian: 0.1001; Muslim: 0.0991; Jew-

ish: 0.1001; Buddhist: 0.1027; Hindu: 0.0998; Other Eastern Religions: 0.0993; Other Reli-

gions: 0.0973. Note that these are best understood in relation to the barycentre in the simplex
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{0.1,0.1, ....,0.1}. Expressing the coefficients that measure the impact of the compositional data

on the dependent variable as a vector inside the simplex itself can provide additional intuition

as long as one remembers that the Aitchison product between that vector and the data behaves

differently. For example, where the coefficients in Table 2 are negative the coordinates here

are below 0.1 and where positive above, but this need not always be the case even for what is

effectively the same model. Suppose the dependent variable, the rate of growth, is multiplied

by 100 and expressed as percentages; the values of all the coefficients in (30) scale up by 100

as well. However, the coordinates of b̄C (power) scale further away from 0.1 within the simplex

according to Aitchison, not Euclidean geometry:

exp[λ × β̄C/hŪh]/(i′ exp[λ × β̄C/hŪh]) = ((b̄1C)λ, (b̄2C)λ, ..., (b̄DC )λ). (32)

Setting λ=100, the new coordinates are Catholic: 0.0266; Protestant: 0.0307; Orthodox: 0.2602;

Other Christian: 0.0395; Muslim: 0.0147; Jewish: 0.0425; Buddhist: 0.5363; Hindu: 0.0181;

Other Eastern Religions: 0.0292; Other Religions: 0.0023.

In Table 5, the coefficients for Other Christian and Jewish are positive, but when λ=100,

their associated coordinates in the nine dimensional unit simplex now both fall below 0.1. Note

that owing to the nonlinearity and nonmonotonicity of (31), we cannot use it to translate

the confidence intervals for each coefficient in (23) into confidence intervals in the simplex.

Pawlowsky-Glahn et al. (2015) demonstrate, for the case of D = 3, how to draw an ellipse that

corresponds to a confidence region for the data inside the ternary diagram. Using the variance-

covariance matrix from (23), one could do the same for the vector of the coefficients expressed

as a vector in the simplex, and even extend this to a three dimensional ellipsoid when D = 4.

Higher-dimension hyperellipsoids that correspond to confidence regions for any D > 4 also exist,

but cannot be visualised.

8 Multicollinearity

Incorporating compositional data in regressions as log-ratios, rather than as raw shares, means

we introduce extra information into the model—the data are not unrelated points in Euclidean

space, but rather coordinates in a simplex. In this section we consider whether the additional

information introduced by these procedures, risks making the estimates of the coefficients related

to the compositional data less precise, by exacerbating the problem of multicollinearity that

results from the intrinsic correlation between the shares in any set of compositional variables.

Ordinary sets of explanatory variables in a regression, of the type that can be described as

coordinates in Euclidean space, can be correlated to a degree that complicates estimation. With

data that are points in a simplex, this problem is obviously more acute. Omitting one variable

from C∖D+1 or transforming the data into logs or log-ratios makes it possible to overcome the

perfect linear relationship between the variables and incorporate the compositional data into a

regression. However, none of these procedures can suppress the inherent correlation between

the variables.

39



To see this, consider a generic set of D compositional variables, each distributed according

to a symmetric Dirichlet function {z1,z2, ...,zD} ∼ D (α). The probability density function is

Γ(Dα)
Γ(α)D

D

∏
i=1

zα−1
i , where

D

∑
i=1

zi = iD and the special case of α = 1 represents the uniform distribution.

The expected value and variance of each variable are E(zi) = 1
D and Var(zi) = (D−1)

D(1+Dα) ; the

covariance between two variables i ≠ j is Cov(zi,zj) = − 1
D2(1+Dα) . This means that whether

or not there is a strong correlation between the different categories in a given composition,

the compositional nature itself imposes an underlying pairwise correlation between any two

variables: Corr(zi,zj) = − 1
D(D−1) .

By contrast, the expected value and variance of any set of D − 1 log-ratios applied to the

same set of compositional variables is E(log (zi ⊘ zd)) = 0 and Var(log (zi ⊘ zd)) = 2ϕ (α), where

the logarithm is again with respect to each element in the vector and ϕ (α) = ∂2 ln Γ(α)
∂2α

is the

trigamma function. The covariance between two log-ratios i ≠ j ≠ d is Cov(log (zi ⊘ zd) , log (zi ⊘ zd)) =
ϕ (α). Whereas the pairwise correlation between any two variables in the compositional dataset

is negative and its absolute magnitude diminishes rapidly as the overall number of variables

grows larger, the correlation between any pair of log-ratios of these variables is positive and

fixed at Corr(log (zi ⊘ zd) , log (zi ⊘ zd)) = 1
2 . Does this mean that the cost of switching to

log-ratios is to introduce a higher degree of multicollinearity? The answer is no.

To see why, it is best to consider the main measure used to quantify multicollinearity in

regression, the variance inflation factor (VIF).17 Assume each vector zi is length n and define

the n × (D + 1) matrix Z ={z1,z2, ...,zD, in} and the n ×D matrix Z∖d = ZQD,d which is the

matrix Z with the d ∈ {1, ...,D + 1} column removed. Further define Z∖d,i=Z∖dQD−1∖i, i ≠ d as

the matrix Z with both columns d and i removed. Solving the normal equations

Z′
∖d∖iZ∖d∖iβ

z
∖d∖i = Z′

∖d∖izi

where

Z′
∖d∖iZ∖d∖i =

n

D (1 +Dα)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + α α α ⋯ α 1 +Dα
α 1 + α α ⋯ α 1 +Dα
α α ⋱ ⋮ ⋮
⋮ ⋮ ⋱ α ⋮
α α ⋯ α 1 + α 1 +Dα

1 +Dα ⋯ ⋯ ⋯ 1 +Dα D (1 +Dα)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

Z′
∖d∖izi =

n

D (1 +Dα)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 +Dα)
α
α
⋮
⋮
α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
17. What is notable in the estimates that use ALR and ILR in Tables 2 and 5 is that they are not permutation

invariant, though particularly the latter varies a great deal less than the measures of VIF in Table 1. Still, though

in some permutations in Table 1 the value of the VIF is very high, some are lower than for the corresponding

log-ratios.
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yields the vector of D − 1 coefficients βz∖d∖i = [1
2 ,−

1
2 ,−

1
2 , ...,−

1
2
], and the coefficient of determi-

nation of the regression of a each vector zi on the matrix Z∖d,i is:

R2
d,i =

βz′∖d∖iZ
′
∖d∖iZ∖d∖iβ

z
∖d∖i − nE (zi)2

z′izi − nE (zi)2
= D − 2

2 (D − 1)
.

Hence the VIF=1/ (1 −R2
d,i), for a hypothetical regression with the matrix of compositional

data Z∖d as the only explanatory variables, is equal to 2D−1
D .

Similarly the matrix Z̃/d∖i is the matrix Z̃/d of additive log-ratios with respect to zd, and a

last column of ones with the i ≠ d column removed. Solving the normal equations:

Z̃′
/d∖iZ̃/d∖iβ̃

z
/d∖i = Z̃′

/d∖iz̃i

where

Z̃′
/d∖iZ̃/d∖i = n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2ϕ (α) ϕ (α) ⋯ ⋯ ϕ (α) 0
ϕ (α) 2ϕ (α) ⋯ ⋯ ϕ (α) 0
⋮ ⋮ ⋱ ⋮ ⋮
⋮ ⋮ ⋯ ⋱ ⋮ ⋮

ϕ (α) ϕ (α) ⋯ ⋯ 2ϕ (α) 0
0 ⋯ ⋯ ⋯ 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

Z̃′
/d∖iz̃i = n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
ϕ (α)
ϕ (α)
⋮
⋮

ϕ (α)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
yields the vector of D − 1 coefficients β̃z′/d∖i = [0,1,1, ...,1]. Though the matrices appear very

different, the corresponding coefficient of determination is the same:

R̃2
d,i =

β̃z′/d∖iZ̃
′
/d∖iZ̃/d∖iβ̃

z
/d∖i − nE (z̃i)2

z̃′iz̃i − nE (z̃i)2
= D − 2

2 (D − 1)
.

Though the pair-wise correlations between the additive log-ratio vectors are much greater, the

VIF is once again equal to 2D−1
D . This means that switching to log-ratios, whether ALR or

ILR (for which the results above would be identical), does not in itself systematically introduce

more multicollinearity into the estimation.

9 Conclusion

Two dimensional representations of a three-dimensional object can look very different, depend-

ing on the angle at which the object is painted or photographed. If we were to analogize Table

1 to a film set, column (7)—where all but two of the religious categories are at minimum statis-

tically significant at the 10% level, with three at the 1% level—would be the view the director

would wish to be captured by the camera. Columns (6) and (9), where none of the religious

categories appear significant, would be the very same film set, but viewed from the direction

of the backlot. The latitude to choose which share in a compositional data set to omit allows
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researchers to “reach for the stars,” in a way that can subtly exaggerate the significance of

the findings. Moreover, treating compositional data as though they represent vectors in Eu-

clidean space means ignoring the fact that they are actually points in a simplex. The resulting

regression may be presented as a hyperplane in a vector space, but it is not.

In this paper I offer several ways to incorporate compositional data alongside noncompo-

sitional covariates, as they often appear together in applied work. All of these are based on

using log-ratios as first introduced by John Aitchison in the 1980’s (Aitchison (1982, 1986))

and further extend the subsequent work done by others, particularly Egozcue et al. (2003) and

Hron et al. (2012). The simplest to implement is ALR and this can be extended to a contrained

regression in logarithms of the shares. Using ILRs ensures that not only does the data enter the

regression as coordinates in a vector space, but that these are coordinates with respect to an

orthogonal basis. Finally, I demonstrate that it is a simple way to translate a regression that

uses ALR’s into one where all the coefficients that relate to compositions are log-ratios with

respect to the geometric means of all the remaining variables. The properties of ALR apply

equally to this symmetric version of a regression with ILR coordinates. The choice between the

two is not necessarily dispositive, the former are easier to describe and explain, the latter benefit

from being coordinates with respect to a more appropriate, orthogonal basis. For a composition

with a sufficiently large numbers of shares, the choice is somewhat moot—the t-statistics are

identical and the coefficients and standard errors themselves differ by less than ten per cent for

a composition with six or more parts.

There are a small number of papers in the economics literature that incorporate some

version of log-ratios—Fry et al. (1996) use log-ratios to examine household budgeting, Jackson

and Khaled (2017) to analyse labour force statistics, and Kynčlová et al. (2015) integrates ILR

in a vector autoregression. While the examples here all relate to econometric growth regressions,

particularly those developed by Barro and McCleary (2003) and McCleary and Barro (2006),

the emphasis throughout is not on explaining economic growth, or how it relates to population

shares of religious adherents, but to demonstrate the broader usefulness of these methods within

empirical economics and beyond so that they may be adopted more widely and perhaps further

refined.
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A Appendix: Further Results

A.1 Aitchison Geometry

Barycentre: [ 1
D ,

1
D , ....,

1
D
]

Closure: C (z) = [ z1
∑D

i=1 zi
, z2
∑D

i=1 zi
, ...., zD

∑D
i=1 zi

]

Perturbation (in place of addition): x⊕ y =C (x1y1, x2y2, ..., xDyD)

Powering (in place of multiplication): α⊙ x =C (xα1 , xα2 , ..., xαD)

Aitchison Inner Product: ⟨x,y⟩a =
1

2D ∑
D
i=1∑Dj=1 [ln

xi
xj

ln yi
yj

]

Aitchison Norm: ∣∣x∣∣a =
√

1
2D ∑

D
i=1∑Dj=1 [ln

xi
xj

]
2

Aitchison Distance: da (x,y) =
√

1
2D ∑

D
i=1∑Dj=1 [ln

xi
xj
− ln yi

yj
]
2

Angle between x and y: arccos
⟨x,y⟩a
∣∣x∣∣a∣∣y∣∣a

A.2 ILR Inverse Matrices

G−1
1,1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
2
1

√
1
2

√
1
2

√
1
2

√
1
2

... ... ...
√

1
2

0

0
√

3
2

√
2 × 3

√
2 × 3

√
2 × 3 ... ... ...

√
2 × 3 0

0 0
√

4
3

√
3 × 4

√
3 × 4 ... ... ...

√
3 × 4 0

⋮ ⋮ ⋱ ⋱ ⋮ ⋮
⋮ ⋮ ⋱ ⋱ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ... ⋮ ⋮
⋮ ⋮ ⋮ ⋮ 0

√
D−1
D−2

√
(D − 1) (D − 2)

√
(D − 1) (D − 2) ⋮

0 0 0 0 ... ... 0
√

D
D−1

√
D (D − 1) ⋮

0 0 0 0 ... ... ... 0
√

D+1
D

0

0 0 0 0 ... ... ... 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(33)

G−1
1,D−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
√

1
2

√
1
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−1√
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⋮ ⋮ ⋮ ⋮ ⋱ ... ... ... ⋮
−1√
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√
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−
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−
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−
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−
√

D
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0 0 0 0 ... ... 0
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(34)

46
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B Appendix: Further Figures and Tables
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