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Abstract

When designing complex systems that provide multiple
non-functional properties, it is usual to try to reuse (and
finally compose) simpler existing designs, which deal with
each of these properties in solitude. This paper describes
a method for automatically and quickly identifying all the
different ways one can compose such designs, with the aid
of a model checker.

Keywords: architectural composition, architecture trans-
formation, architecture discovery, architectural debugging.

1. Introduction

Complex software systems need to provide multiple non-
functional properties such as security, reliability, persis-
tency,etc.. When designing and building them, it is only
logical to try to reuse existing proven designs/solutions for
each one of the requested properties [20]. In this way, one
can gain both in completion time for a first version of the
system and, more importantly, in maintenance efforts later
on, since reusable components and general solutions for a
particular property tend to be a lot more stable, and errors
in them are found and corrected sooner than those built ex-
plicitly for a particular system.

This, in particular, is the reason for the growing interest
in component based software engineering[4, 8, 29] and in
middlewaresolutions [18, 22, 25, 26, 30, 31, 36]. Currently
there exists quite a large set of reusable components, often
referred to as middleware in the setting of distributed sys-
tems, and an equally large set ofarchitectural/design pat-
terns, i.e., of architectures that use such reusable compo-
nents in order to provide a particular property to an applica-
tion.

Since no architectural pattern can be expected to provide
all the different kinds of properties a real system requires,

the designer must either create a new pattern from scratch or
try to reuse existing ones and to compose them. Given the
costs in developing a completely new pattern and compo-
nents, and the benefits of reuse, it is only regrettable that de-
signers have no available methods and tools for easing their
task of composing different architectural patterns. Cur-
rently, one has to investigate different combinations of so-
lutions,e.g., security solution i with reliability solutionj ,
in order to find the ones that can best cooperate with each
other. In addition, one has to explore the different ways
of combining/composing a set ofparticular designs, since
there is more than a single way to compose architectures,
when these are indeed composable. This multitude of dif-
ferent ways to compose two patterns is due to the fact that
middleware/reusable components have general enough in-
terfaces, to allow for their reuse in as many different settings
as possible. Thus, designers cannot sufficiently constrain
the space of possible solutions by taking into account only
the interfaces of the various components; not to mention
the insufficiency of interfaces to communicate the correct
ways one can use a component, see for example [5,15]. To
make things worse, even after having found a set of solu-
tions that can indeed cooperate, one has to continue inves-
tigating combinations of other existing solutions as well, so
as to find the set that optimizes other requirements, such as
system throughput, cost of obtaining the required compo-
nents, cost of training in-house developers at using them,
etc..

It becomes apparent that the designer is faced with a
large number of different cases to be explored and assessed.
The fact that currently no aid exists forces one to investi-
gate very few of these cases. So, designers just try to make
an educated guess of what a “good enough” solution would
be. However, as is already well known from other areas,
such as that of program optimization, solutions that at first
seem as fast/small/“good” enough are not necessarily so
and, even worse, they sometimes are found to have none
of these properties when put under close scrutiny. There-
fore, if one wants to obtain a truly good solution, the dif-



ferent possible solutions should be thoroughly investigated,
in order to avoid common fallacies that lead to sub-optimal
solutions.

In the following, we present a method for discovering
all the possiblearchitectural configurationswith which dif-
ferent architectural patterns can be composed,i.e., identify
the particular bindings between the inputs and outputs of
the components of a system, that allow the system to of-
fer the properties of all the patterns used. Thus, we show
how one can identify sets of existing solutions that can be
used together, as well as, all the allowable patterns of use
(configurations) for each particular set.

This method can also be used by the designer of a new
architectural pattern or reusable component/middleware so-
lution, to search for incompatibilities and insufficiencies
by trying to compose with other already existing patterns.
Thus, problems of architectural mismatch [15] can be iden-
tified and corrected early on in the design phase and the
development of the specific components can later be based
upon more mature models than usual. Since such architec-
tural mismatches are the hardest ones to solve when build-
ing a system out of reusable components, we believe that
this method can help ease (and increase) the application of
component based software engineering.

The paper is divided into the following sections: Sec-
tion 2 presents the proposed method for composing archi-
tectural patterns, Section 3 shows how it can be applied in
a more concrete setting, Section 4 discusses some of the
issues arising, while Section 5 makes a comparison with
related work. Finally, we present our conclusions in Sec-
tion 6.

2. A method for composing architectural pat-
terns

When composing two architectural patterns, we have the
following information available:

� thegenericcomponents,i.e., those that a designer can
substitute with components from the application that
will make direct use of the pattern. In the patterns
themselves, their behavior is left largely unspecified,
usually acting just as sources and sinks of data.

� Thespecificcomponents,i.e., those specified in detail
and which correspond to the reusable part of the pat-
tern.

� The architectural configuration, i.e., the bindings of
input and output ports of the various components.

In order to maximize reuse, we refrain from altering ei-
ther kind of components. Thus, the only part of the archi-
tectures that we can modify is their configurations,i.e., try

different bindings among the components to obtain a new
pattern. This leads to a combinatorial algorithm: if there
areN components in total, with each one having one in-
put and one output port, then we would obtainN ! different
patterns.

To guide us through this huge number of possible cases,
we use the initial configurations as sources of constraints.
That is, we only want to construct patterns where by re-
moving all the components of the second pattern one would
obtain the first pattern and vice versa. Thus the data-flows
of the original architectures are preserved,i.e., if a com-
ponentA was directly sending a message to a component
B in one of them, then such a communication link would
also exist in the resulting compositions, possibly with some
components of the other architecture being in the middle.

The patterns obtained in this manner do not necessarily
provide the property the designer wishes to obtain. There-
fore, one must still verify each one independently to find
the ones that are indeed useful. The above can be easily au-
tomated with the use of amodel checker. These are tools
that can deal with vast search spaces and, in contrast to the-
orem provers, they can be used without requiring much user
intervention/guidance. Their primary use is to identifyer-
rors in a model,i.e., to expose series of events that can lead
the modeled system in an undesired state, such as deadlock,
message loss, out-of-order message reception,etc.. The un-
desired behavior/states are symbolically described by the
user using some variant of Temporal Logic, such as a linear-
time logic (Linear Temporal Logic - LTL) or a branching-
time logic (Computational Tree Logic - CTL), see [10] for a
comparison of them and [7] for more about model checking.

2.1. Composing with a modeling language

In order to automate the composition process, one has
to change the models of the components so that they fol-
low a certain set of rules. First, components should com-
municate through channels that they receive as arguments
at run-time and are not hard-coded into their models, so
that it is possible to change them at run-time while trying
different configurations. These configurations are created
by a new component, hereafter called theBinder; Table
1 shows the code for binding in a random manner. The
code in Table 1 stores in the arrayInputs a permutation
of the indexes to thechannels array. Then, we assume
a specific ordering of the architectural elements (compo-
nents/connectors),e.g., that elementA is element No. 1,
B is No. 2, etc. �. We also assume an ordering of the
input and output ports,i.e., channels, of each element, so
that we can refer to the ports of elementA as input ports
I [1 � � �n], and to those ofB asI [(n+1) � � � (n+m)] (respec-
tively for their output portsO[1 � � � k] andO[(k + 1) � � � l]),

�This ordering can be chosen randomly.



Table 1. Random binding of input and output ports in PROMELA

1 byte Inputs[CHANNELS] ;
2 chan channels[CHANNELS];
3 active proctype Binder()
4 {
5 int i, target, UnCh, r ;
6 bit channel_bound[CHANNELS]; /* Is channels[i] bound or not? */
7 run random_generator() ; /* Start the random number generator. */
8 i = 1 ; UnCh = CHANNELS ; /* UnCh holds the number of remaining unbound channels. */
9 do

10 :: (i <= CHANNELS) ->
11 /* Choose a random number between 1 and UnCh (inclusive). */
12 random_gen ! UnCh ; /* Send the generator the upper limit. */
13 random_gen ? r ; /* Receive a random number in [1,UnCh]. */
14 target = 0 ; /* Find the r-th unbounded channel. */
15 do
16 :: (target <= CHANNELS) ->
17 if
18 :: (! channel_bound[target]) ->
19 if
20 :: (r > 1) -> r--
21 :: else -> break /* Found it. */
22 fi
23 :: else -> skip
24 fi ;
25 target++
26 :: else -> break
27 od ;
28 if /* Ensure that r is indeed 1... */
29 :: ( 1 == r) -> skip
30 :: else -> block_here()
31 fi ;
32 /* Input on port i, will be received from channel target; we mark it as bound. */
33 Inputs[i] = target ; channel_bound[target] = 1 ; printf("Inputs[%d] = %d\n", i, target) ;
34 UnCh-- ; /* We now have one less unbound channel. */
35 i++ ;
36 :: else -> break
37 od ;
38 ...
39 }

wheren;m (respectivelyk; l) are the number of input (re-
spectively output) ports ofA andB. Using these arrays,
an element can then access its ports using the expres-
sion channels[ O[elementid]] for its output ports and
channels[Inputs[ I [elementid]]] for its input ones.
In other words, theith output port is always theith chan-
nel, while theith input port is chosen in a non-deterministic
wayy. Finally, after having completed the assignments of
channels to input and output ports, theBinderproceeds with
spawning the processes that correspond to the architectural
elements, to verify the requested property.

As aforementioned, however, the number of configu-
rations thus created isN !. Therefore, it is evident that
we must constrain the possible combinations at this stage.
Unfortunately, the modeling language of SPIN, PROMELA,
does not allow us to easily express the full set of constraints
we need. Therefore, we use a weaker set of constraints at
this stage: when choosing among channels for an input port,
we only consider channels corresponding to output ports of
components that belong to the other architecture, or of com-
ponents that weredirectly sending data to that input port in
the initial architecture. The changes needed in the code of

yThe interested reader can find out more by visitinghtml://
www-rocq.inria.fr/˜kloukina/Code/Spin/ .

theBinder for this are minimal; it suffices to add an array
of booleans, channel_constrained[CHANNELS] ,
which we use right after line 10 in Table 1 to mark, for the
current input port, those output ports which are allowed to
bind to it. We subsequently use it in line 18 to constrain
the choice of channels, by changing the condition to
(! channel_bound[target]) && ! channel_
constrained[target] . Then, for enforcing the full
constraints arising from the data-flows in the initial con-
figurations, each component should add to messages it is
sending, its signature,i.e., a value identifying the particular
component. It should also check that the signatures in the
messages it is receiving are those of the components that
“preceded” it in its initial architectural pattern and only
those. In this way, if a component receives a message
that has not passed through all the components that were
supposed to treat it in its initial architecture, or that has
passed from some component(s) that should not have
treated it yet, then the signatures will be incorrect and so
we can dismiss this as an invalid composition of the two
configurations.

Finally, when composing architectural patternsArch1
with Arch2 (Arch1 � Arch2), we must take into consid-
eration the cases where a component inArch1 hasmultiple



outputs and thus multiple paths are formed after it. Then
it may be the case that, for the composition to work, one
needs to introduce components fromArch2 in more than
one of these paths, so that the property provided by the sec-
ond pattern holds for all of them. To be able to do so we
calculate thedegree of multiplicity(�(�)) of Arch1, i.e.,
the sum of the number of outgoing connections, over the
components ofArch1 that have multiple outgoing connec-
tions, or 1 if all components have a single outgoing connec-
tion. Then, we provide the model checker with the compo-
nents ofArch1 and�(Arch1) copies of the components of
Arch2. This allows us to have enough components of the
second architecture available for placing them at the differ-
ent paths. These copies are handled specially by theBinder,
in the sense that they are the only ones allowed to receive
input from themselves, effectively removing them from the
rest of the system when they are not really needed.

When executing the model, theBinder will randomly
pick a configuration and then start the rest of the compo-
nents. When it starts a component it passes to it as argu-
ments the channels from which it will receive input and
those to which it will send output.

By asking a model checker to verify that the property
requirednever holds, i.e., :E:bound ^ 
A(bound ^�p)
wherep is the property we want our system to provide, we
can force it to report to us the exact configurations (if any)
for which it does indeed hold, that is, find a path (E) where,
after (
) havingboundthe components,p always holds (�)
for all paths (A).

From the above discussion, it is evident that we are as-
suming an order among the architectures to be composed.
This order is given by the user and is needed for two rea-
sons: first, for knowing whether to consider�(Arch1)
copies ofArch2 or vice-versa and, secondly and most im-
portantly, for knowing that we will be using the generic
components ofArch1 and not those ofArch2. This latter
information is needed since we are constraining the bind-
ings of the generic components as well, just as we are doing
for the specific ones.

3. Experiment

In this section we describe how one can apply the com-
position method on two particular architectural patterns.
These were chosen because of their relevance to middle-
ware architectures. The first pattern provides secure com-
munication between a client and a server by using pairs of
encoders/decoders (hereafter referred to asEncode-Decode
- see Fig. 1(a)). It is a classic example of a middleware
architecture, effectively implementing a network stack just
like a CORBA ORB does. The second architectural pat-
tern provides reliability for an application server and a com-
munication medium by replicating them and introducing a

component that forks (multicasts) the client’s requests to
the server replicas over an unreliable medium and a com-
ponent that merges the replicas’ replies and returns a re-
sult to the client (hereafter referred to asFork-Merge- see
Fig. 1(b)). Even though this one deviates from the clas-
sic network stack paradigm, it is of particular importance
to distributed systems, since their complexity is partially
due to the possibility of communication/component faults.
Additionally, it is a pattern whose configuration contains
components with multiple outputs and thus allows us to test
our method with a pattern whose degree of multiplicity is
greater than one.

In the case of Fork-Merge, only Fork has multiple outgo-
ing connections, so�(Fork-Merge) = N , i.e., the number
of the Fork component’s outgoing connections. In Encode-
Decode no component has multiple outgoing connections,
so its degree of multiplicity is equal to1.

Both patterns were validated with respect to the property
that all messages sent by the client are eventually received
(and in the correct order) by the server (or at least by one
of them in the case of Fork-Merge). This non-lossy, FIFO
receipt of messages has different meanings for each one of
the architectures; for Encode-Decode it means that the en-
coding of messages works correctly, while for Fork-Merge
that the system is fault-tolerant (up to a certain number of
faults).

The property that we want the composed patterns to pro-
vide is the conjunction of the two initial properties. Even
though the wording of the property remains the same, its
meaning now is that the system will be both secure (at
some parts of it) and fault-tolerant (at some parts of it).
To simplify the property and the model, we removed the
clients and the servers altogether and replaced them with
Env source andEnv sink . The former provides a data
stream to test the pattern against and the latter consumes
the data stream at the end and checks the signatures of the
messages to assure that all components of both architec-
tural patterns have been used. This is the same as if we
had left the clients and servers in the model and consid-
ered theEnv source andEnv sink processes as non-
obstructive observers right after the client and right after the
last component. Thus, the property becomes that all mes-
sages sent fromEnv source will be eventually received
(and in the correct order) byEnv sink . For this kind of
property it suffices that messages can take three distinct val-
ues [2, 39], which allows us to validate the model without
suffering from state explosion due to the infinitely possi-
ble values a message may take. So given the three different
message typeswhite, redandblue, the propertyp is:

�(sent red ) �received red)
^ :(:received redU received blue)

(1)

where the first part demands no losses of messages and the
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Figure 1. Two software architectural patterns

second demands that blue messages are received after red
ones which is the FIFO order, since they are emitted in that
order.

The model checker we are using is SPIN [16, 17, 35]
which was specifically developed for the verification of
asynchronous models, as are the middleware architectures
we are interested in; it is freely available and attracts interest
from a large group of researchers. The particular features of
SPIN that make it interesting for our method is its support
of channels, its ability to reportall the errors in a model and
not just the first one, as well as the resemblance of its mod-
eling language, PROMELA, to a programming language.

SPIN is used by providing a model of the system in
PROMELA, as well as a formula in LTL that codifies er-
roneous behaviors of the system. Then it checks that the
different behaviors/traces the model can produce do not be-
long to the erroneous ones.

Table 2 shows the model of the reliable FIFO connec-
tor component of the Encode-Decode architecture as it was
used in this experiment. Lines 8–13 show the passing of in-
put/output channels at run-time to the component and lines
20–31 and 33–38 the checking of signatures.

Both orderings for the composition of the architectures
were considered in the experiment,i.e., Fork-Merge�
Encode-Decode as well as Encode-Decode� Fork-Merge.

Each composition was done in two phases. In the first,
we used theBindercomponent to identify all different con-
figurations of the available components and in the second
we verified each one of those with respect top (see prop-
erty (1)) to obtain the solutions. The reason for which we
did not verify the models against:E:bound^
A(bound^
�p) but did a two step verification, is that SPIN does not
support branching-time temporal formulæ. If we had tried
to verify them against: �(:bound ^ 
(bound ^ �p)),
then SPIN would have reported all the different traces for
whichp always holds for each configuration, which are in-

finitely many. Note, however, that a method was proposed
in [38] for allowing SPIN to verify CTL* formulæ, which is
a superset of both LTL and CTL.

In the first phase, we obtained 90 different configura-
tions for Fork-Merge� Encode-Decode, down from12! =
479001600 z which we would get ifBinder did not use
constraints. For Encode-Decode� Fork-Merge the initial
9! = 362880 x configurations were reduced to just 28 in the
first phase.

For the second phase, we remarked that while SPIN man-
aged to reveal problems in configurations that are invalid
quite quickly (usually in less than 3 seconds), it needed
about 3 hours to validate the correct ones. Therefore, we
first run SPIN on each of the configurations with a timeout
of 1 minute and then collected the cases that had not fin-
ished and verified them all together, which thanks to SPIN’s
partial-order reduction took about the same time.

The 90 different configurations for Fork-Merge�
Encode-Decode were obtained in less than 4 seconds. Us-
ing the 1 minute timeout, we retrieved 5 cases in 21 minutes
which we subsequently verified in 3 hours and 10 minutes.
The 28 configurations for Encode-Decode� Fork-Merge
were obtained in less than 6 seconds. Then, we retrieved
4 cases in 8.5 minutes and verified them in 2 hours and 48
minutes. Thus, the time for obtaining 9 different solutions
was 29.5 minutes and another 5 hours and 58 minutes were
needed to fully verify them.

Some of the obtained solutions are shown in Fig. 2.
Components of Encode-Decode are drawn using boxes,
those of Fork-Merge using ellipses andEnv source and
Env sink using trapeziums. TheEncode 2 and De-

zWe haveEnv source , Env sink , N Encoders,N Decoders,N
reliable Connectors, 2 lossy Connectors, Fork and Merge, for a total of 12
components, whenN = 2 as was the case in this experiment.

xWe haveEnv source , Env sink , an Encoder, a Decoder, a reliable
Connector, 2 lossy Connectors, Fork and Merge, for a total of 9 compo-
nents.



Table 2. A reliable FIFO connector modeled in Promela

1 /* Reliable / FIFO / No duplicates / No spurious messages connector. */
2 proctype ConnectorR(byte id)
3 {
4 Msg cR_current_message ;
5 byte MyInChannel ;
6 byte MyOutChannel ;
7
8 /* Use your id to assign the input and output channels.
9 Note: the Inputs/inputs/outputs arrays have been properly set up by the Binder. */

10 d_step {
11 MyInChannel = Inputs[inputs[id]] ;
12 MyOutChannel = outputs[id] ;
13 } ;
14
15 do
16 :: true -> /* Repeat this forever. */
17 d_step {
18 channels[MyInChannel] ? cR_current_message ; /* Receive a message. */
19
20 #ifdef WITH_SIGNATURES
21 /* Check the message’s signature. */
22 if
23 :: ( cR_current_message.ed_encoded_p[0] /* Must be signed by Encode. */
24 && !cR_current_message.ed_CR_p [0] /* Must *not* be signed by me. */
25 && !cR_current_message.ed_decoded_p[0]) -> /* Must *not* be signed by Decode. */
26 cR_current_message.ed_CR_p[0] = 1 /* OK, I’m signing it. */
27 :: else -> /* Incorrect signatures... */
28 printf("MSC: ConnectorR[%d]: I’m blocking\n", id) ;
29 block_p = 1 /* Force an error later on. */
30 fi ;
31 #endif
32 } ;
33 #ifdef WITH_SIGNATURES
34 if
35 :: block_p -> assert(0) /* Signal the error here and stop. */
36 :: else -> skip
37 fi ;
38 #endif
39
40 channels[MyOutChannel] ! cR_current_message /* Send a message. */
41 od
42 }

code 2 components in Fig. 2(b) are shown short-wired
because they are not really supposed to be used by the ar-
chitecture; these are the second copies of theEncode and
Decode components due to Fork-Merge’s degree of multi-
plicity which throughout the experiment was assumed to be
2.

We should note here that for larger architectural patterns
than the two used in this experiment, a model checker may
be unable to cover all the candidate configurations in phase
one of this method. One solution to this problem is to add
additional pseudo-constraints for some components. That
is, assume that componentci cannot receive input from
componentscj ; ck and in subsequent runs change these con-
straints,i.e., allow it to receive input fromcj ; ck but disal-
low it to receive input fromcl; cm, where allj; k; l;m are
different.

4. Discussion

The configurations obtained from the first phase could
be diminished even further, if we could use the whole ini-
tial connection graphs to constrain the configurations ob-
tained, by insisting that a component has before it in a path

all the components it had in its initial architecture and in
the correct order. However, this is not easy to program us-
ing PROMELA. That is why we chose to use a weaker set
of constraints, which allow the creation of some completely
strange and obviously wrong configurations,e.g., see Fig. 3.

In parallel to this work, we are working on a method
which uses the initial connection graphs to create the differ-
ent configurations that are then verified with SPIN [21], thus
removing SPIN from phase one of this architectural iden-
tification method. By using all the structural information
contained in the initial configurations, we are trying to cre-
ate candidate configurations that already adhere to all of the
constraints discussed so far. This would allow us to remove
the current first phase and to dispense with the imposed con-
straints altogether, those of the first phase evidently, as well
as those in the form of signatures. Thus the state space of
the models would be reduced and the verification of the can-
didate configurations with respect to the required property
would be sped up even further.

When trying to compose two different architectures, one
may stumble upon the problem of having the two architec-
tures expressed at very different abstraction levels, possibly
using more than one abstraction techniques. Then, there is
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Figure 2. Two of the solutions for Fork-Merge
� Encode-Decode

also the question of how to merge the different data struc-
tures used by the initial architectures to obtain data struc-
tures that can be used by a combined architecture.

In this experiment, both architectures used the same ab-
straction technique to map the possibly infinite values of a
message to just three distinct values, which made it possible
to easily verify the FIFO reception of data without suffering
from state explosion.

As far as the data structures are concerned, we were able
to just glue them together, thus having messages where one
part of them was processed only from components of the
Encode-Decode architecture, while the other was processed
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Decode_2
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Lossy Connector_1 Lossy Connector_2

Figure 3. One of the (wrong) configurations
obtained from phase one

by Fork-Merge’s components. This was the reason (plus
the rather na¨ıve model of Merge) why we obtained solu-
tions like the one shown in Fig. 2(b) where Merge (and the
fictitious Servers before it) are assumed to be processing en-
coded messages (the decoding of these is done just after the
merging of the Servers’ replies). Even though the validity
of such a solution can be defended theoretically, see for ex-
ample [1] for a discussion of processing encoded data, it is
something rarely expected to be seen in practice and a sign
that the model(s) of some component(s) does not closely
reflect reality.

It is therefore quite possible that one would have to do a
considerable amount of work in order to bring both initial
architectures at the same level of abstraction before com-
posing them. The resulting state space might, however, be
substantially big for a tool to check it all; automatic model
abstraction [6, 14, 33, 37] and/or model slicing [27] may
prove to be quite helpful in that case.

However, in the case of middleware architectures such
as those proposed by the CORBA Services [30,31], we ex-
pect the models of the different architectures to be using a
rather common set of abstractions, making them easier to
compose. In fact, we believe that the (possible FIFO) even-
tual reception of data suffices as a validation property for
most of the middleware architectural patterns. Indeed, in the
aforementioned experiment, Fork-Merge used this property
to express that the pattern provided reliable communication,
while Encode-Decode used the same property for express-
ing secure communication.

We believe that for particular domains, such as middle-
ware services, it is possible to define a single kind of mes-



sage types and a small set of properties one should verify,
thus causing the models of the components of these patterns
to be at equivalent abstraction levels.

Finally, we should mention that this method could also
be used for creating more reusable architectures. This can
be achieved by trying to compose an architecture with exist-
ing, more or less standard, architectures. Then, by studying
the possible solutions obtained and even more importantly,
the expected but not obtained solutions, one can identify
the particular points of the architecture that caused these in-
compatibilities and correct the architecture early on in the
design phase, before even having started to implement its
components. This way one can avoid unpleasant surprises
having to do with incompatible components and communi-
cation protocols. In the example mentioned, one would thus
be incited to rework the models of the components so as to
disallow results such as the one shown in Fig. 2(b).

5. Related work

To the best of our knowledge, the computation of com-
posite configurations has not been examined in the past.
Related work is mainly concerned with the composition of
software systems at the specification level, hence leaving
few opportunities for automating the process. The work that
is the most related to ours is [28]. There, two complemen-
tary kinds of composition were identified:verticalandhor-
izontal. The former relates to the top-down refinement pro-
cess. Horizontal composition is used to compose instances
of architectures to form one large composite architecture.
It is handled by the developer on a case-by-case basis ac-
cording to a simple syntactic criterion,e.g., the composed
architectures can share only components.

From the perspective of identifying a middleware con-
figuration meeting application requirements, vertical com-
position serves refining those requirements into a concrete
middleware configuration. This is the approach that is actu-
ally used in the Aster project [3] for promotingdesignand
software reuseby allowing the systematic construction of
customized middleware systems that are shown to match an
application’s nonfunctional requirements. However, verti-
cal composition falls short when applications require dif-
ferent types of non-functional properties, as already sug-
gested by the case-by-case approach to horizontal composi-
tion proposed by Moriconiet al..

In the work appertained to software development pro-
cesses, one finds multiplearchitectural viewsof software
systems, each one addressing a concern of one of the var-
ious stake-holders (e.g., end-users, managers, developers).
In this direction, we find the work of [23] that introduces
the “4+1” views of a software system architecture. The
four system views (logical, process, development and phys-
ical) are then loosely linked together through use-case sce-

narios (i.e., the “+1” view). Multiple-view descriptions of
a software system were also considered in [12, 13]. This
area of research work relates to ours in that it is concerned
with the decomposition of the system’s software specifica-
tion in terms of various architectural views. However, the
architectural views we consider are at a higher level of de-
sign, and all relate to the middleware architectural styles un-
derlying the execution of distributed applications. Specifi-
cally, the software system “views” we focus on prescribe the
middleware configurations to be used for enforcing given
types of non-functional properties, which is to be composed
with similar “views”. In general, our work is complemen-
tary to the above references in that it offers methods and
tools for helping the designer in reusing existing middle-
ware platforms for the design of a software system com-
plying with the architectural views that are set up during
the design phase and that integrates non-functional consid-
erations (e.g., the process and physical views in the “4+1”
views approach).

Composing components offering various properties (or
features) has also been investigated in [40] for the specific
case of telecommunication applications, where components
can be assembled according to thepipe-and-filterarchitec-
tural style. Even though features are usually self-contained
and independent from the others, inconsistencies do arise
and these are left to be resolved by the developer. Our
context, however, is broader and cannot be reduced to sim-
ple horizontal compositions chaining middleware configu-
rations. In fact, pipe and filter compositions rarely appear
to be middleware compositions of much interest.

Finally, we should mention [24] where the authors dis-
cuss theunification of architectural fragments. In contrast
to our method, they are able to unify similar components be-
tween different architectures, even when these are partially
defined. However, in the kind of patterns we are consider-
ing, i.e., fully described reusable-specific components plus
partially defined generic components (called real compo-
nents/placeholders respectively in that work), it is unclear
whether they can obtain similar results,i.e., different inter-
weavings of the components of the two architectures.

6. Conclusions

Designing complex systems demands the use of many
kinds of architectural patterns in order to provide the multi-
ple non-functional properties these systems require. These
different architectural patterns cannot be used in isolation
but must be composed together and collaborate.

In this paper we have presented a method that constructs
all possible combinations of two (or more) architectures,
given the models of their components. Results can be ob-
tained quite quickly, when the models are in the same level
of abstraction. For example, we showed how one can apply



it to automatically obtain all possible compositions of two
architectures in less than 30 minutes.

In addition, it can be used to early debug and guide the
architecture development process of highly reusable com-
ponent solutions that are to be used along with already ex-
isting middleware solutions.

We are currently working on substituting the process of
identifying candidate solutions (which we later on verify to
ascertain that they indeed provide the requested properties)
by a graph-based algorithm that fully utilizes the structural
information of the architectures that we want to compose,
i.e., their configurations, so that we can substitute the rather
naı̈ve combinatorial method used now. That would highly
reduce the cases passed on to verification and speed up the
verification itself since now we could dispense with the sig-
natures on the messages currently needed to discard cases.
It would also highlight some cases where the models of the
components do not allow a certain utilization, even though
it is meaningful from a structural point of view, which may
sometimes be a reason to revise the models themselves.
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