IT City Research Online
UNIVEREIST%(]OggLfNDON

City, University of London Institutional Repository

Citation: zarras, A., Issarny, V., Kloukinas, C. & Nguyen, V. (2001). Towards a Base UML
Profile for Architecture Description. Paper presented at the 1st ICSE Workshop on
Describing Software Architecture with UML, held in conjunction with the 23rd International
Conference on Software Engineering (ICSE-2001), 15 May 2001, Toronto, Canada.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/2899/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Towardsa Base UML Profilefor Architecture Description*®

Apostolos Zarras, Valérie I ssarny, Christos Kloukinas, Viet Khoi Nguyen
INRIA Rocquencourt
Domaine de Voluceau, BP 105, 78 153 Le Chesnay Cédex, France
{Apostolos.Zarras, Valerie.Issarny, Christos.Kloukinas, knguyen}@inria.fr

ABSTRACT

This paper discusses a base UML profile for architecture de-
scription as supported by existing Architecture Description
Languages (ADLS). The profile may be extended so as to en-
able architecture modeling both as expressed in conventional
ADLS and according to existing runtime infrastructures (e.g.,
system based on middleware architectures).

1 INTRODUCTION

Architectural description of a software system is now rec-
ognized as a sound practice towards assisting the system’s
design, analysis and construction as well as for coping with
the system’s deployment and evolution. It is further argued
that architectural description should not be based on a single
notation but instead rely on a number of Architecture De-
scription Languages (ADL) according to the system’s views
that need be characterized [4]. However, one issue that re-
mains and that is being examined by a number of people
is whether the notations underpinning the definition of an
ADL should be based on object modeling notations or not.
In the latter case, the ADL, qualified as conventional, is a
declarative language that is either based on an IbL (Inter-
face Definition Language) with adequate extensions so as
to assist the construction phase, or on existing formal no-
tations that come along with methods and tools for mechan-
ical analyses [6]. There has been a number of studies on
the mapping of architectural models as expressed in con-
ventional ADLS, into object notations. Two approaches are
considered: (i) describing architectures using the object no-
tations asis [7, 5], (ii) extending the object notations so as
to explicitly distinguish the key architectural elements from
object-oriented notations. The latter approach has been ad-
dressed in [10], which examines the mapping into UmML of
two specific ADLSs (i.e., Wright [1] and C2 [11]). A broader
perspective is undertaken in [2], which studies various al-
ternatives to modeling architectures using UML, both as is

*This work has been partially funded by the IST DSoS Project IST-1999-

11585 (http://www.newcastle.research.ec.org/dsos/index.html).

and through extension. The conclusion that arises from these
proposals is that there is no consensus on the best practice to
modeling architectures, leaving open the relevance of using
object notations and the mapping of conventional ADLS to
these notations when they are to be used.

From a pragmatic standpoint, architecture description as ad-
dressed in conventional ADLs would have a greater impact
if it was coupled with object notations. This would pro-
mote the exploitation of architecture description notations by
software engineers, would enable the use of available com-
mercial tools for assisting architecture-oriented software de-
velopment, and would support software development in a
unified environment from the architecting of the system to
the implementation of its composing elements. In addition,
a major advance brought by conventional ADLs lies in en-
abling the practical exploitation of formal methods for rea-
soning about the behavior of large software systems, hence
promoting system robustness. However, there is still a long
way to go before formal notations get used by a majority
of software engineers. This will be easier to achieve if for-
mal notations were offered in a conventional software devel-
opment environment, possibly in their simplest form. This
position paper proposes a base UML profile for character-
izing architectural elements, which may be extended so as
to allow the exploitation of the rich set of both architecture
models as expressed by conventional AbpLs, and available
infrastructures for software development (e.g., middleware
infrastructures). This effort relates to the definition of archi-
tecture meta-languages (e.g., ACME [3], AML [12]) where
we are proposing the core generic notations for architecture
description in a UML setting. The next section character-
izes the base architectural elements that need be modeled
and serves defining the corresponding base UML profile in
Section 3. Sections 4 and 5 then sketch extensions of the
proposed UML elements, so as to enable the exploitation of
existing supports for software system development from ar-
chitecting to implementation. Finally, Section 6 summarizes
our contribution and discusses our ongoing and future work.

2 BASE ARCHITECTURAL ELEMENTS

A primary benefit of software architecture description comes
from the focus on the system’s structure and resulting ab-
straction of implementation details. Hence, this enables

defining tractable system models, which may further be pro-
cessed for mechanizing parts of the design, analysis, con-
struction or deployment phases. In addition, this eases deal-
ing with the evolution of the software system by enabling
reasoning about the impact of changes to the system’s struc-
ture as well as devising runtime support for handling such
changes dynamically. Basically, software architecture de-
scription lies in the following notions:

e Component: This abstracts a unit of computation or
storage of the system. A component may have a number
of interfaces (sometimes called ports) that specify how
the component interacts with its environment by either
offering or requiring operations.

e Connector: This models an interaction protocol among
components. Connectors range from simple interaction
protocols (e.g., message passing) to complex ones (e.g.,
a middleware architecture). A connector may define in-
terfaces (sometimes called role) that specify the proto-
col’s participants.

e Configuration: This defines a system model at the ar-
chitectural level through the specification of embedded
component and connector types, and the assembly of
component instances via connector instances at their re-
spective interfacing points. Although not supported by
all the ADLs, the definition of configurations may be hi-
erarchical in that both components and connectors may
be refined into configurations as the system develop-
ment progresses. We qualify as composite such com-
ponents and connectors.

Conventional ADLs differ in the notations they offer to
specify the above architectural elements [6]. They may
be roughly subdivided into two categories depending on
whether they aim at assisting the system’s analysis or con-
struction. In the former case, the notations allow specifying
behavioral views of the system regarding either functional
or extra-functional properties of the system, while in the lat-
ter case, the notations are oriented towards generating glu-
ing code. Notice further that there is no clear consensus on
whether connectors should be first class elements or not since
system modeling regarding interaction patterns may be ad-
dressed at the components’ interfaces, and the realization of
complex connectors may be specified using components. We
consider that both approaches are relevant, which we capture
through the notions of abstract and concrete connectors.

3 BASE UML PROFILE

There are two basic approaches to defining base architectural
elements in UML: (i) mapping the elements onto UML el-
ements, (ii) defining corresponding extensions to the UML
meta-model. We undertake the second approach because
architectural notions are distinct from object-oriented ones.
This further enables sound transition from architecture-based
design to object-oriented design at an elaborated stage of the
software development!. The issue that must be addressed

LFor instance, an architectural component abstracts the realization of a

is then identifying for each base architectural element, the
UML modeling element that best matches it and that need be
extended.

Component: As discussed in the literature, various UML
modeling elements may be extended to characterize an archi-
tecture component (i.e., Class, Component, Package, Sub-
system). We define the ADLComponent stereotype as being
an extension of the Subsystem element. A subsystem is de-
fined as “a grouping of model elements, of which some con-
stitute a specification of the behavior offered by the other
contained elements” [8], which in particular adds specifica-
tion elements to the definition of the Package element. The
UML Component element was not considered as it specif-
ically corresponds to an executable software module. The
Class element is often considered as the basis for defining
architectural components. However, this is a less flexible so-
lution in that it does not directly support the specification of
composite architectural elements, which would require pro-
viding both the class definition and associated class diagram,
and hence a package integrating them. Considering further
that the definition of architectural components is to come
along with behavioral specification, this naturally leads to
adopt a stereotype based on the Subsystem element. We
get the following definition for the ADLComponent stereo-
type whose distinctive feature relates to the specification of
a number of provided and required interfaces:

ADLComponent:
self.baseClass = Subsystem and
self.extendedElement.Instantiable = true and
self.extendedElement.requirement->collect(d:Dependency |
d.client = self and d.supplier.ocllsKindOf(Interface)
)->size >=0 and
self.extendedElement.Interface >= 0

Abstract Connector: An abstract connector is simply a con-
nection element among architectural components. Hence, it
is defined as a stereotype based on the Association element:

ADLConnector:
self.baseClass = Association and
self.extendedElement.allConnection->forall(
ae, ae":AssociationEnd |
ae.taggedValue->exists(tv:-TaggedValue |
tv.name = “role” and
tv.value.ocllsKindOf(Set(Interface)) and
tv.value->size >= 2 and
tv.value->forall(i: Interface |
ae.type.requirement->exists(
d: Dependency | tv.value->includes(d.supplier)) or
ae.type.interface->exists(
i Interface | tv.value->includes(i)))
) and
ae’.taggedValue->exists(tv: TaggedValue |
tv.name = “role” and
tv.value.isOclKindOf(Interface))

)

software element that may be detailed using object modeling.

The distinctive feature of the above stereotype lies in the def-
inition of roles that are bound by the connector. In addition,
associations are constrained so that their ends bind required
interfaces with provided ones.

Concrete Connector: In general, connectors abstract away
complex interaction protocols that are built using a num-
ber of software elements. A typical example is the use
of a CorBA-compliant middleware that offers a number of
extra-functional properties and hence combines the CORBA
ORB and some common object services. It is thus crucial
to support connector refinement as for architectural compo-
nents. Hence, the ADLConcreteConnector stereotype is de-
fined through specialization of the ADLComponent and ADL-
Connector stereotypes (see Figure 1).

<<stereotype>>
Adl Component Adl Connector

gbaseClass : Name = Subsystem HbaseClass ;. Name = Asscciation

<<stereotype>>
Adl Concrete Connector

<<stereotype>>

Figure 1: The ADLConcreteConnector stereotype

Configuration: A configuration is defined through exten-
sion of the Subsystem stereotype whose instances are re-
alized by assembling only instances of ADLComponent via
instances of ADLConnector (including their specializations).
We get:

ADLConfiguration:
self.baseClass = Subsystem
self.extendedElement.isinstantiable = true
self.extendedElement.contents->forall(c |
c.ocllskindOf(ADLComponent) or
c.ocliskindOf(ADLConnector) or
c.ocliskKindOf(ADLConcreteConnector))

For illustration, Figure 2 gives the diagrammatic specifica-
tion of a base client-server architecture using our profile.

4 EXTENDING THE PROFILE FOR THE DEFINI-
TION OF ARCHITECTURAL VIEWS

The base UmL profile for software architecture descrip-

tion enables describing the system’s structure and exploiting

UmL-based support for the system development. However,

thorough architecture-oriented design of the software system

<<Ad Component=>> <<Ad Component>>
Client Server

T T
-+client +sener

<<Ad Connector>>

~
4 ~
e

self.client.recquirement->forall(self senverinterface>orall(
d Depepdencyl . o i: Interface |
d.supplier.oclsKindORInterface) implies self role value-=includes()
self role.value->includes(d.supplier)

)

Figure 2: A Client-Server Architecture

is better supported if it is possible to define system views
[4] as supported by conventional ADLS, so as to exploit as-
sociated tools for system development. This is realized by
defining various extensions of the base profile where each
extension guides the specification of architectural elements
according to a given conventional ADL. Basically, conven-
tional ADLs are distinguishable with respect to: (i) the no-
tations used for specifying the behavior of architectural ele-
ments, which are often based on previously defined formal
notations (e.g., Wright uses CsP), and (ii) the constraints
associated with the definition of the architectural elements.
These issues are respectively addressed through the addition
of adequate tagged values and the specification of constraints
in OcL.

For exemplification, let us outline how to extend our base
profile to specify Wright-like architectures. Basically, a
Wright specification amounts to specifying each architec-
tural element as a number of CsP processes (i.e., a process
for each port and role and a process specifying the overall
behavior of the architectural element). Then, system analy-
sis is mechanized through the use of the FDR tool. Consid-
ering the base UML profile introduced in the previous sec-
tion, what we need to add is the specification of CSPmodel
tagged values that encode Csp processes, within the defini-
tion of architectural elements, including their embedded in-
terfaces. The extension for Wright thus consists in; (i) defin-
ing the Wrightinterface stereotype that is an extension of the
UML Interface element with a CSPmodel tagged value, (ii)
extending the architectural elements stereotypes through in-
heritance with a CSPmodel tagged value and requiring their
embedded interfaces to be an instance of the Wrightinterface
stereotype, and (iii) constraining the definition of the archi-
tectural elements so as to enforce the consistency rules as
defined by Wright?. System architectures described using

ZFor instance, the behavior of a component interface bound to a role
must be compatible with the role’s behavior according to the Csp refinement

"clt = requlx -= res 7y -= clt"

self. CSPModel value = Ij

self. C5PModel value =
'sry=call ?x -=ret |y -= sn

|
§
\

=<Wright Interface==
(e

J
J
!

==Wright Interface==
et

[
) b
r"ED]uI\I"ES pru\n;des
=<Wright Component>> —<Winght Component==>
WiClient e
o +client +serer T
= T
- If. CSPModel value =
self. CSPModel value = B fE . ul E_\/aL.IE>— -
"coordination = clt -= coordination" g coordination = srv-> coordination

self.client. CSPModel value =

|
"client = requlx -= res ? y = client" B‘ 1|
!

—

seff serer. CSPModel value = Ij

"server = call 7 x -= ret ly = server"

self. CSPModelvalue =
"coordination =

client.requ ? x -»

server.call 1x -=

sererret 7y >

client.res Iy -= coordination"

Figure 3: Wright-based specification of the Client-Server Architecture

the above elements may then be processed to generate a sys-
tem model that is analyzable by the FDR tool so as to check
system properties as supported by Wright. For illustration,
Figure 3 gives the Wright-base diagrammatic specification
of the client-server architecture that was introduced in the
previous section.

5 EXTENDING THE PROFILE FOR THE DEFINI-
TION OF ARCHITECTURAL STYLES
Architecture-oriented development of software systems
comes along with the definition of architectural styles that
define classes of systems, which promotes software and de-
sign reuse, and enables reasoning about system evolution.
The definition of a style is addressed in our framework by ex-
tending the definition of the architectural elements according
to the style’s specifics. As an example, let us take the specifi-
cation of the CORBA architectural style. The corresponding
extension of the ADLConcreteConnector element embeds the
specification of the proxy and skeleton architectural compo-
nents. The extended connector may then be refined for the
case where the middleware architecture offers enhanced non-
functional properties (e.g., transactions) by combining rele-
vant CORBA services®. Figure 4 gives the base diagrammatic
specification of the client-server architecture that was intro-
duced in the previous section according to the CORBA style.

relationship.
3Notice that the specialization may exploit the UML profile for CORBA
Specification [9], for the definition of relevant elements.

Ideally, the profile extension appertained to a given architec-
tural style should be provided for the base profile and exten-
sions for defining architectural views discussed in the previ-
ous section. However, notice that a given view may actually
apply to a number of related styles (e.g., the Wright-based
specification that is given for the Client-Server architecture
applies to the CoRBA-based style).

6 CONCLUSION

This paper has presented a base UML profile for architecture
description, which amounts to defining stereotypes charac-
terizing the three key architectural elements, i.e., component,
connector and configuration. Extension of the profile has fur-
ther been discussed from the standpoint of defining both var-
ious views and styles of system architectures. Our work re-
sembles the effort on defining an architecture meta-language
(in particular AcME [3]) so as to integrate in a single en-
vironment the rich toolset for assisting architecture-oriented
system development. However, it is different in that it specif-
ically targets UML-based modeling.

We are currently extending the proposed UML profile for ar-
chitecture description, for the specification of system views
and styles oriented towards assessing and improving the sys-
tem’s quality (e.g., performance, reliability). We will then
integrate the resulting extensions in the ROSE commercial
tool so as to experiment with the use of our solution. We
will further examine the coupling of object-oriented and
architecture-oriented tools for assisting the development of

== Corba Component==
CClient

=<Corba Component=»

CServer

==Corba Connector==

\
|
|
!

==Corba Connector==

=< CorbaStub Component==

|
==0rb Core Connectors=

=<CorbaBinder Component==

==0rb Core Connector==

<<CorbaSkeleton Component>=

T
=<=0rb Core Connectors=

=<CorpaBinder Component ==

==I0F Praotocol Components=

<<=0rb Core Connectors»=

Figure 4: Specification of the CoOrRBA-based

software systems. [6]
REFERENCES

[1]

2]

[3]

[4]

[5]

R. Allen and D. Garlan. A formal basis for architectural
connection. ACM Transactions on Software Engineer- [7]
ing and Methodology, 6(3):213-249, 1997.

D. Garlan, A. J. Kompanek, and P. Pinto. Reconcil-
ing the needs of architectural description with object- [8]
modeling notations. In Proceedings of the 3rd Interna-
tional Conference on the Unified Modeling Language

UML’ 2000), 2000.
() [9]

D. Garlan, R. Monroe, and D. Wile. ACME:

An architecture interchange language. Technical

report, Department of Computer Science, Carnegie- [10]
Mellon University, Pittsburgh, Pa, Usa, 1997.
http://www.cs.cmu.edu/afs/cs/project/able/www/-

papers.html.

IEEE Architecture Working Group. IEEE Rec-
ommended Practice for Architectural Description of [11]
Software-Intensive Systems (IEEE Sd 1471). |IEEE,

2000.

N. Medvidovic and D. S. Rosenblum. Assessing the
suitability of a standard design method for model-

ing software architecture. In P. Donohe, editor, Soft- [12]
ware Architecture (Proc. of WICSA' 1), pages 161-182.

Kluwer Academic Publishers, 1999.

Client-Server Architecture

N. Medvidovic and R. N. Taylor. A classification and
comparison framework for software architecture de-
scription languages. |EEE Transactions on Software
Engineering, 26(1):70-93, 2000.

R. T. Monroe, D. Kompanek, R. Melton, and D. Garlan.
Acrchitectural style, design patterns, and objects. |EEE
Software, January 1997.

OMG. OMG Unified Modeling Language Specifica-
tion, Version 1.3. Technical report, OMG Document,
2000. http://http.omg.org.

OMG. UML Profile for CORBA Specification,
V1.0. Technical report, OMG Document, 2001.
http://http.omg.org.

J. E. Robbins, N. Medvidovic, D. F. Redmiles, and
D. S. Rosenblum. Integrating architecture description
languages with a standard design method. In Proceed-
ings of the 20th International Conference on Software
Engineering (ICSE’ 98), pages 209-218, 1998.

R. N. Taylor, N. Medvidovic, K. Anderson, E. J. White-
head, K. A. Nies, P. Oreizy, and D. Dubrow. A com-
ponent and message-based architectural style for GUI
software. |EEE Transactions on Software Engineering,
22(6):390-406, 1996.

D. Wile. AML: an architecture meta-language. In Pro-
ceedings of the |EEE International Conference on Au-
tomated Software Engineering (ASE), 1999.

