

City, University of London Institutional Repository

Citation: Kloukinas, C. & Issarny, V. (2000). Automating the Composition of Middleware

Configurations. Paper presented at the he Fifteenth IEEE International Conference on
Automated Software Engineering, 11 - 15 Sep 2000, Grenoble, France.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/2900/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Automating the Composition of Middleware Configurations

Christos Kloukinas Valérie Issarny

INRIA-Rocquencourt, Domaine de Voluceau, BP 105, 78153 Le Chesnay Cédex, France
E-mail: Christos.Kloukinas@inria.fr , Valerie.Issarny@inria.fr

Abstract

A method is presented for the automatic construction of
all possible valid compositions of different middleware soft-
ware architectures. This allows reusing the latter in order
to create systems providing a set of different non-functional
properties. These compositions are constructed by using
only the structural information of the architectures i.e., their
configurations. Yet, they provide a valuable insight on the
different properties of the class of systems that can be con-
structed when a particular set of non-functional properties
is required.

Keywords: Middleware, Software configuration, Soft-
ware architecture, Configuration composition.

1. Introduction

Middleware infrastructures are recognized as provid-
ing powerful support for the construction of complex dis-
tributed software systems. However, the software develop-
ment process is still error-prone since the application devel-
oper must master, possibly complex, mechanisms so as to
select the needed middleware services and understand how
to integrate them with the application components.

The Aster development environment1 aims at easing the
construction of distributed software systems out of such
middleware platforms. It offers a number of tools for the
systematic selection and integration of middleware com-
ponents given the architectural description of a distributed
application, including the application’s non-functional re-
quirements (e.g., a tool for integrating the retrieved middle-
ware configuration with the application through the genera-
tion of appropriate proxy objects) [6, 9].

A problem that rises when mechanizing the process of
configuring a middleware is when the middleware must en-
force different types of non-functional properties. An illus-
tration of this is the combination of fault-tolerance and se-

1 www-rocq.inria.fr/solidor/work/aster.html

curity properties, requiring composing middleware config-
urations respectively associated with these properties. The
issue of composing software has formerly been addressed
from a theoretical perspective, by examining the composi-
tion of software specifications (e.g., see [2, 3, 8]). However,
such an approach is known to be at the expense of automa-
tion. In this paper, we propose a more pragmatic approach,
which consists of a tool that takes as input the configura-
tions of the middleware architectures to be composed and
computes all possible valid composite middleware configu-
rations, thus exploiting the architectural styles of the initial
systems. The developer can then select the composite con-
figuration that best suits the application under construction,
according to the application’s non-functional requirements.
Section 2 addresses further issues relating to the composi-
tion of middleware configurations, showing the benefits of
handling it at the structural level. Section 3 then introduces
our solution to the structural composition of middleware
configurations, while we compare our approach with related
work in Section 4 and offer some conclusions in Section 5.

2. Issues in composing middleware

The issue of composing software systems at the architec-
tural level has been examined in [8] where two complemen-
tary kinds of composition were identified: vertical and hor-
izontal. The former relates to the top-down refinement pro-
cess. Horizontal composition is used to compose instances
of architectures to form one large composite architecture.
It is handled by the developer on a case-by-case basis ac-
cording to a simple syntactic criterion e.g., the composed
architectures can share only components.

From the perspective of identifying a middleware config-
uration meeting application requirements, vertical composi-
tion serves refining those requirements into a concrete mid-
dleware configuration, which is the approach that is actually
used in the Aster environment. However, vertical composi-
tion falls short when applications require different types of
non-functional properties, as already suggested by the case-
by-case approach to horizontal composition proposed in [8].
Another problem with this particular solution to horizon-

SS

E D

ED

F M

C S C

M
id

dl
ew

ar
e

L
ev

el
A

pp
li

ca
ti

on
 L

ev
el

Client-Server comm. path
Server-Client comm. path

Encode-Decode Architecture Fork-Merge Architecture

11

Figure 1. The Encode-Decode and Fork-
Merge middleware configurations

tal composition is that, in general, it ignores various valid
composition patterns. For instance, consider the two typical
client-server-based middleware configurations depicted in
Figure 1. The Encode-Decode (E-D) configuration on the
left-side of the figure offers secure communication by en-
coding and decoding exchanged messages during a remote
procedure call. The Fork-Merge (F-M) configuration on the
right side of the figure offers fault-tolerance properties by
replicating the server and sent messages, and then merging
the results from the replicated servers through some voting
algorithm. Various compositions may be considered (e.g.,
see Figure 2). One that is trivial is depicted in Figure 2(a);
it consists of encoding and decoding messages between the
Fork and Server (S) components and between the Server
and Merge components. However, as a less intuitive op-
tion, we may encode messages right after the server issues
them and decode the messages right before their reception
from the client (e.g., see Figure 2(c)). Such an architecture
requires processing encoded messages, which although not
common, offers interesting capabilities [1].

Having the necessary middleware configurations to en-
force each of the targeted non-functional properties, the
issue is then to compose those configurations. As raised
above, there is a number of ways in which two middleware
configurations may be composed. Our major design objec-
tive is to be able to automate the related process as much
as possible. As a result, we have decided to not undertake
a refinement-like approach, which relies on some theorem
prover, since these are tools that need considerable guidance
from users. Instead, we noted that this can be done in a first
step at the structural level, without requiring the use of any
formal tool. Basically, this first step is achieved by pro-
cessing graphs encoding middleware configurations and its
complexity depends on the number of nodes in the graphs.
Once all the valid composite configurations are identified,
the designer can easily select some of them, since configu-
ration descriptions provide visual hints about the properties
of the configuration. In a second step, the designer may as-
sess the chosen configurations using some formal method,
so as to identify the one that best suits the application’s re-
quirements.

F

M

E D

E1
D

1

E1
D

1

E D

C S

S

FM

FM

FM

(a) A trivial, valid com-
position

F E D

E D

E1
D

1

M

C S

S

FM

FM

FM

(b) Another trivial, valid
composition

F E D

E1

E1

E D

M

D
1

C

S

S
FM

FM

FM

(c) A valid, but less triv-
ial composition

F E

E

E1
D

1

M

D

DC

S

S

FM

FM

FM

(d) An invalid composi-
tion

Figure 2. Some compositions of the Fork-
Merge and Encode-Decode configurations

3. Structural composition of middleware

Typically, a middleware configuration consists of the fol-
lowing elements:

• The middleware components, that represent the mid-
dleware services used for enforcing the non-functional
properties associated with the given configuration;

• The generic components that represent the applica-
tion components where the middleware configuration
plugs-in;

• The connections among the components, which repre-
sent the base messaging protocol used for interaction
among them.

Consider now the composition of two middleware con-
figurations (e.g., the ones depicted in Figure 1). One trivial
solution is to consider that one of the two configurations is
to be used for carrying out any of the interactions of the
other. However, this simple scheme is not well suited be-
cause even though any middleware configuration obeys the
architectural style of the associated middleware infrastruc-
ture from the perspective of the application’s components,
the interactions that are internal to the middleware con-
figurations do not necessarily follow the same style, due,
in particular, to performance concerns. For instance, both
configurations of Figure 1 obey the client-server architec-
tural style from the viewpoint of the application compo-
nents, as traditionally offered by most existing middleware
infrastructures, while the middleware components interact
according to a simple message-passing architectural style.

Therefore, when composing we must respect both the ar-
chitectural style used internally by the middleware config-
uration (e.g., message-passing in our examples), as well as
the one exported to the application layer (e.g., client-server
in our examples). Indeed we create systems, where the sec-
ond architecture is applied i.e., its generic components are
mapped to, to some components of the first. In doing so,
the only assumptions we make are that middleware compo-
nents can in general process messages arriving from other
middleware components (since these were designed to be
reusable in the first place) and that application components
can receive messages only if these are “generic friendly”
i.e., they were received by some generic component in one
of the initial architectures.

The idea behind the proposed algorithm becomes more
clear if we assume that the two architectures A and B to be
composed are network stacks and think of them as strings,
α = a1 · · · an and β = b1 · · · bm respectively, where each
letter stands for a component. Then, our goal is to create
all possible strings α ⊗ β = γ = c1 · · · cn+m, such that
cj ∈ α ∨ β and the order between different letters of the
same initial string i.e., the order in the communication path,
is preserved. If we think of this as looking for n places in
γ to place the letters of α, this lets us calculate the number
of different possibilities as

(
n+m

n

)
. The results can be con-

structed by creating a binary tree, where at each node we
choose the next letter either from α or β.

With configurations, however, there are additional con-
straints we must abide by, in order to produce valid results
for A ⊗ B. First, the generic components of B must be
mapped to some components of A, so as to identify the
components of A for which the properties of B will be pro-
vided (thus the operator ⊗ is non-commutative). Therefore,
when the next component of B during the tree traversal is
generic, we can choose it only if the last component cho-
sen (the parent) was a component of A. This way, we map
B’s generic component to that component of A. In addition,
when we reach a leaf of the tree (which is a node where ei-
ther one of the architectures has no more components left to
choose from) we check to see whether there are still generic
components in B that have not been chosen/mapped. If so,
we consider this leaf/solution as an invalid one. A second
constraint is that we cannot allow generic components of A
to be found between middleware components of B, since
generic components should not receive messages initially
meant to be received and processed by some middleware
component. Therefore, when the parent of some node is a
middleware component of B while the next component of
A is a generic one, we allow the latter to be chosen, only
if, originally, the former was sending messages to a generic
component of B, since we assume that these messages were
“generic friendly”. A last constraint is that order in the com-
munication path should be preserved. That is, if compo-

nents a and b were communicating directly in one of the ini-
tial architectures (a → b), then there should be a path from a
to b in each of the results, so that messages/data have even-
tually the same treatment in both architectures. This, how-
ever, is satisfied by the manner itself in which we construct
the results. A final point that needs clarification is the choice
of the first/root components. These are given for each of the
initial architectures as the components from which the en-
forcement of the respective non-functional property associ-
ated with the particular configuration is initiated. Typically,
this is the generic Client component in a client-server-based
configuration. For each of the results we assign as root com-
ponent that of the first configuration i.e., of A 2.

Figure 2(d) shows a configuration that is not valid be-
cause it contains a path from E to D which includes the
generic node SFM , even though E and D communicated di-
rectly originally. Thus, this configuration does not conform
to the second constraint.

The above constraints lead to a significant decrease in
the number of possible solutions. For example, for the E-
D and F-M architectures (6 and 4 components respectively)
it produces only 26 valid composite configurations, while(
6+4
6

)
= 210. In addition to these constraints, the developer

may reduce even more the number of solutions by abstract-
ing away components. For example, if the Merge compo-
nent should always be found at the client’s side, then one
can abstract those two into a new client component that re-
ceives the replies from the servers and merges them itself.

Up to this point, we have only discussed the composition
of two configurations. The composition of any number of
configurations is achieved by iteratively applying the com-
position algorithm. Also notice that our algorithm does not
cope with nodes having multiple heterogeneous outgoing
arcs. At this time, we consider only multiple homogeneous
arcs that lead to the same type of nodes (e.g., see the links
from the F component of the F-M configuration), which
are actually handled as a single link i.e., the nodes that are
pointed to may be abstracted as a single complex node (e.g.,
this case is illustrated in Figures 2(a), 2(b) and 2(c) with
the two links from F to SFM that are both enriched with
the E and D components). We are currently extending our
algorithm so as to cope with nodes having heterogeneous
outgoing arcs, as well as, investigating ways to allow users
describe additional constraints to be met e.g., that two par-
ticular components should (or should not) be directly con-
nected.

4. Related work

To the best of our knowledge, the computation of com-
posite configurations has not been examined in the past.

2An implementation of this algorithm can be found at: www-rocq.
inria.fr/solidor/code/comp-algo-single.lisp

Related work is mainly concerned with the composition of
software systems at the specification level, hence leaving
few opportunities for automating the process. The work
that is the most related to ours i.e., [8], has already been
addressed in Section 2; this section identifies other work
done on the composition of specifications of software sys-
tems. We in particular identify work appertained to software
development processes, which prescribes defining multiple
architectural views for the software system in order to ad-
dress separately the concerns of the various stake-holders
(e.g., end-users, engineers, developers). In this direction,
we find the work of [7] that introduces the “4+1” views of a
software system architecture. The four system views (logi-
cal, process, development and physical) are linked together
through use-case scenarios (i.e., the “+1” view). Multiple-
view descriptions of a software system were also considered
in [4, 5]. This area of research work relates to ours in that
it is concerned with the decomposition of the system’s soft-
ware specification in terms of various architectural views.
However, the architectural views we consider are at a higher
level of design, and all relate to the middleware architec-
tural styles underlying the execution of distributed applica-
tions. Specifically, the software system “views” we focus
on prescribe the middleware configurations to be used for
enforcing given types of non-functional properties, which is
to be composed with similar “views”. In general, our work
is complementary to the above references in that it offers
methods and tools for helping the designer in reusing exist-
ing middleware platforms for the design of a software sys-
tem complying with the architectural views that are set up
during the design phase and that integrates non-functional
considerations (e.g., the process and physical views in the
“4+1” views approach).

Composing components offering various properties (or
features) has also been investigated in [10] for the specific
case of telecommunication applications, where components
can be assembled according to the pipe-and-filter architec-
tural style. Even though features are usually self-contained
and independent from the others, inconsistencies do arise
and these are left to be resolved by the developer. Our
context, however, is broader and cannot be reduced to sim-
ple horizontal compositions chaining middleware configu-
rations. In fact, pipe and filter compositions rarely appear
to be valid middleware compositions.

5. Conclusions

We have shown how it is possible to reuse middleware
architectures providing specific non-functional properties to
create systems that provide a multitude of these. The pro-
posed method creates all possible systems that provide a
particular set of non-functional properties by using just the
structural information that is part of the initial middleware

architectures i.e., their configurations. This allows it to be
automated and does not require, at least at this level, use
of tools such as theorem provers that need substantial user
guidance.

It is our belief that it can also help at the discovery of in-
compatibilities between middleware components, since the
designers of the latter can easily visualize all possible ways
their components may be used with particular classes of
other middleware and either remove these problems early
on, or warn their users of specific cases for which their prod-
uct is not well suited for. This can lead to the construction
of components that are easier to understand and are more
trusted by their users, since all the possible ways in which
they could be used are well identified as are the cases for
which their use is inappropriate.

We are currently investigating integration of our solution
to the composition of middleware configurations within the
Aster environment so as to ease the assessment of the com-
puted composite configurations regarding provided non-
functional properties, as well as new versions of the algo-
rithm that would allow it to process more complex configu-
rations.
Acknowledgments. This work is partially funded by the
IST DSoS project.

References

[1] M. Abadi, J. Feigenbaum, and J. Kilian. On Hiding Infor-
mation from an Oracle. Journal of Computer and System
Sciences, 39(1):21–50, 1989.

[2] M. Abadi and L. Lamport. Composing Specifications. ACM
TOPLAS, 15(1):73–132, 1993.

[3] M. Abadi and L. Lamport. Conjoining Specifications. ACM
TOPLAS, 17(3):507–534, 1995.

[4] A. C. W. Finkelstein, D. M. Gabbay, A. Hunter, J. Kramer,
and B. Nuseibeh. Inconsistency Handling in Multiperspec-
tive Specifications. IEEE TSE, 20(8):569–578, 1994.

[5] P. Fradet, D. L. Metayer, and M. Perin. Consistency
Checking for Multiple View Software Architectures. In
ESEC/FSE’99, pages 410–428. Springer, 1999.

[6] V. Issarny, C. Bidan, and T. Saridakis. Achieving Middle-
ware Customization in a Configuration-based Development
Environment: Experience with the Aster Prototype. In 4th

Int. Conf. on Configurable Dis. Sys., pages 275–283, 1998.
[7] P. B. Kruchten. The 4+1 View Model of Software Architec-

ture. IEEE Software, 12(6):42–50, 1995.
[8] M. Moriconi, X. Qian, and R. A. Riemenschneider. Correct

Architecture Refinement. IEEE TSE, 21(4):356–372, 1995.
[9] A. Zarras and V. Issarny. A Framework for Systematic Syn-

thesis of Transactional Middleware. In Middleware98, pages
257–274, 1998.

[10] P. Zave and M. Jackson. A Component-based Approach to
Telecommunication software. IEEE Software, 15(5):70–78,
1998.

