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Abstract

In this paper, we derive constrained optimal investment strategies for long-term savers who are

interested in investing their funds in stocks, but are afraid of potentially losing, for example, their

retirement income. We call this probability hedging as it is determined by the probability of landing

up within bounds that are agreed from interaction with the investor. We show that our strategies

can be derived under different utility functions and multifactor model assumptions. We prove that

the probability measure varies with the utility function choice and that the logarithmic utility,

in particular, results in an intuitive probability hedge under the physical measure. This makes

it easier to communicate, without putting at risk the financial advice conducted by potentially

misrepresenting the realism of the theoretical results. Our strategy is also shown to yield a better

distribution of the terminal wealth than traditional hedging approaches.

Keywords: investment analysis, finance, utility theory

1. Introduction

When a financial advisor in the selection process of a financial plan for a consumer asks questions

like “how much risk are you willing to take on your accumulated savings?”, the long-term investor

often finds it difficult to provide an adequate individual risk preference or their targeted saving

goal. A natural answer would be: “I want to invest all my money in stocks to get a high return.

But I am afraid of losing money. What should I do?”. In fact, trying to quantitatively translate

the risk profile of the investor and select the right investment proportions in risky and risk-free

assets is not trivial at all.

As in Gerrard et al. (2019), we set our sights on a system whereby the fund manager (financial

advisor/optimiser) offers the option to the long-term investor (pension saver/consumer) to self-

select their individual financial risk preference via a simple application run on a smart device. The

original question is modified as: “how much of your invested capital are you willing to lose?”,

prompting this way the consumer to identify a lower bound GL. The upside potential is also

restricted by placing a cap GU to the possible investment outcomes. As we explain next, this

aims to simplify the customer’s choice of risk, consistently with Merton’s (2014) vision, which we

materialize in this paper via the use of upper and lower bounds. More specifically, GL corresponds

to the investor’s worst-case scenario, the guarantee, and it is chosen directly by them. On the

other hand, GU is the best-case outcome; it is possible to set this to be achieved half of the time,
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1



i.e., to correspond to the median terminal reward, so that this becomes the most likely of all the

whole-life-cycle investment outcomes for the investor. This choice is certainly not intended to be a

restriction and it can be chosen differently by the fund manager (or even be periodically reviewed

contingent on the fund’s performance). The consumer can easily look into different GL and that

should be possible via an application on the financial advisor’s or pension provider’s website, or

a slider on their smart device application. The consumers should be able to see that a lower

guarantee is in tune with a unique higher upper bound and the remaining investment outcomes lie

within these bounds. They should also be able to notice that the lower the lower bound they pick,

the higher their most likely upper bound becomes.

In this paper, we are concerned with one aspect of the asset allocation decision, that is, the

optimisation of constrained allocation strategies. We will present a framework that is able to

accommodate different underlying utility functions which are increasing and concave, including, for

example, the power, logarithmic and exponential1, and multifactor model assumptions, resulting

in a general structure. Our foremost theoretical result is a general expression which unravels

the intimate link between the optimal constrained and unconstrained strategies by means of the

probability of the terminal wealth to lie within the range [GL, GU ]: we call this probability hedging

and this is properly mathematically formulated later in the paper. There is a rich literature on the

wider field, from which we will borrow some principles for our own development that incorporates

constraints the way just described. Bajeux-Besnainou et al. (2003) acknowledge in their concluding

remarks the importance of a potential study with constraints on investor behaviour such as a

minimum terminal wealth when this is implied by an institutional constraint. Other authors have

also considered constrained optimisation for the long-term saver including, for example, Ameur

and Prigent (2018) with time-varying floors, Barucci et al. (2021) and Dong and Zheng (2019)

with minimum guarantee constraints. In this paper, we impose double bounds under different

stochastic environments and arrive at explicit – or nearly explicit in a multidimensional financial

market – probability hedging expressions.

Without aiming to be exhaustive, we attempt next to hand-pick some important related works

and briefly discuss them. The Merton (1969, 1971) papers are admittedly deemed classical in

setting consumption and portfolio rules in continuous time under uncertainty. We have seen several

other seminal contributions since then. With a focus on optimal consumption policy, Cuoco (1997)

studies existence in the presence of nontraded stochastic income over finite horizon. The investment

opportunities are represented by long-lived securities, including a bond and the remaining risky

assets. The case of constrained dollar amounts invested in the traded assets is considered; short-

sale and borrowing constraints and nontradeable assets are modelled as special cases. Cuoco

(1997) shows that the conditions for existence remain similar to the unconstrained case studied

originally by Cox and Huang (1989, 1991). Campbell et al. (2001) consider a discrete-time, time-

homogeneous model where the decision variables are the consumption and the proportion invested

in the risky asset. Equations for the optimal values are obtained for an infinitely lived investor

with a time-varying equity premium, based on a first-order autoregressive model for the Sharpe

ratio, including the constrained version with borrowing and short-sales restrictions, which can be

solved numerically. In incomplete models (e.g., see Karatzas et al., 1991; He and Pearson, 1991b,a;

1We have also investigated the case of the mean-variance utility, and more theoretical results can be made available
upon request in relation to that.
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Cvitanić and Karatzas, 1992; Kramkov and Schachermayer, 1999; Schachermayer, 2002), it can

be shown by applying duality methods that, roughly speaking, the optimal portfolio and wealth

process coincide with those in a fictitious completed market if the completion is done in the least

favourable manner (see also Kallsen, 1998). In a multi-asset market, Lioui and Poncet (2001) find

an optimal strategy where two non-equity assets are sufficiently used as hedging instruments and

are associated with the interest rate risk and the combined spot interest rate risk and market price

of risk. Bajeux-Besnainou et al. (2001) also optimise over the consumption and the terminal fund

size. The market comprises a growth-optimal portfolio of equities, a bond and the money market

account, and is complete with the risk-free rate assumed stochastic and the market price of risk

for equities and the bond constant. Kamma and Pelsser (2022) optimise over the consumption and

the retirement wealth, based on a different utility function for each of them, in a multidimensional

financial market with usual trading constraints and non-traded assets. Several papers discuss

the effect of stochastic interest rates on the optimal portfolio allocation. For example, Campbell

and Viceira (2001) use numerical approximations to analyze the optimal allocation of an investor

with an infinite horizon. Instead, Brennan and Xia (2000) provide analytical results for different

horizons for a model with constant risk premium and volatility, while their two-factor model for

interest rates captures independent long and short-term yield variations. Although the framework

of Liu (2007) assumes a single-factor interest rate model, it does offer analytic allocation results

under additional stochastic risk premium and volatility. Sørensen (1999) also adopts a single-factor

term-structure model in optimal discrete-time portfolio selection.

It is worth pointing out that our research is not directly related to optimal consumption prob-

lems with stochastic expenses and labor income (e.g., see Cuoco, 1997, El Karoui and Jeanblanc-

Picqué, 1998, Kamma and Pelsser, 2022); in fact, neither the contribution rate nor the pension

rate are considered by the fund manager. We contribute in the following ways. First, we introduce

probability hedging under constant risk premium. Using the martingale approach, we prove that a

constrained strategy with underlying logarithmic utility makes the financial hedging a probability

hedging based on unadjusted probability measure. This makes it a popular piece of advice that is

intended for a wide spectrum of investors. Instead, a constrained strategy based on a general power

or exponential utility function requires a translated probability measure which might be common

in financial mathematics, however it loses its appeal when having to explain it to non-financially

literate people who are the majority of the consumers. In those cases, any deliberately simplified

financial advice by the fund manager will misrepresent the realism of the theoretical results (see

also Bajeux-Besnainou et al., 2003 for an important analogous conclusion).

Second, with our solutions, we are able to investigate the implications of the different utility

functions. The upper and lower bounds chosen shape the risk portrayal of the financial strategy of

the long-term saver. If the unconstrained strategy – used before the introduction of bounds – has

a high-risk profile, the long-term saver can moderate this to the appropriate level of individual risk

appetite via the bounds. This is the case with the logarithmic utility, which implies more risk than

most long-term savers would like to have: under realistic market assumptions, this corresponds, as

we show later in the paper, to an unconstrained portfolio comprising a close to 100% investment

in the risky asset, consistently with the immediate and, perhaps, naive desire of a long-term saver

as stated at the very beginning of the paper. By constraining strategies, we end up with minimal

reduction in terms of certainty equivalence, and lower and upper bounds which, when compared

with the initial investment, yield most-likely gains that are at least about equal to the low-chance
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worst-case losses; the gains increase with risk-aversion up to four times. The certainty equivalent

and the bounds do not vary importantly with the choice of the utility function.

Third, following the aforementioned literature in terms of their choice of stochastic environ-

ments, we enlarge the scope of our application in a general affine model framework with stochastic

risk premium and interest rates; the correlation with the wealth process does not need to be perfect,

so the market is incomplete. We focus on the logarithmic utility case for the sake of illustration.

As a by-product, we also develop our own simulation scheme for the derived optimally controlled

constrained process, with further uses in financial engineering as this boils down to the celebrated

Ornstein–Uhlenbeck driven stochastic volatility model studied in, e.g., Scott (1987), Stein and

Stein (1991) and Schöbel and Zhu (1999). The major challenge in this simulation is the condi-

tional sampling of the integrated squared process given its marginal terminal state. The proposed

method works efficiently bypassing the most time-consuming element involving Fourier transform

inversion in the, otherwise elegant, method of Li and Wu (2019) mainly when generating entire

sample trajectories. Accounting for additional risk factors, such as a stochastic risk premium,

results in a more flexible modelling of the optimal constrained strategy whose distributional char-

acteristics vary with the level of randomness of the risk premium and are particularly magnified

for risk-seeking savers.

Our preference in the logarithmic utility when designing the financial hedge of the long-term

savers’ risk is also corroborated by its relevance in optimal hedging theory as underlined in Mer-

ton (1973), Kraus and Litzenberger (1975), Breeden (1979) and Adler and Detemple (1988). The

hyperbolic absolute risk aversion (HARA) class of utility functions, which includes the logarith-

mic utility, is considered also in Lioui and Poncet (2001) and Bajeux-Besnainou et al. (2003) in

portfolio optimisation under stochastic interest rates, in Cuoco (1997) in a finite-horizon economy

and El Karoui and Jeanblanc-Picqué (1998) in infinite-horizon consumption-portfolio problems, in

Goll and Kallsen (2000) in maximizing the expected utility from consumption or terminal wealth

in a general semimartingale market model, Maŕın-Solano and Navas (2010) in consumption and

portfolio rules for decision-makers with time-inconsistent preferences, or in Chen and Vellekoop

(2017) with allowed terminal debt.

Our new approach provides a rock-hard investment bottom while adding considerably to the

median return: at least 20% for highly and sometimes moderate risk-takers and up to 10% for

more risk-averse investors, depending on the utility function. How are these results possible in a

tough financial environment without any free lunch? The answer to this is that we sell off extra

returns in extraordinary good scenarios. We do not think that the long-term saver should gamble

with security or median returns to be able to get some fantastic returns in rare scenarios. Our

recommendation, therefore, to commercial and non-commercial pension providers is to adopt such

a cautious approach of providing for the basic living of long-term savers. Our approach takes the

gamble out of long-term saving while providing worst-case scenarios and most likely best scenarios.

Our advice is that this should be applied to that part of any long-term saving that is meant to

cover the necessary long-term expenses, whereas any additional savings could be then invested

more freely in the stock market disregarding our more disciplined approach. Finally, we note that,

whilst we present explicitly here the lump-sum case, the ideas for generalizing to annuities are

delineated in Gerrard et al. (2018).

The rest of the paper is structured as follows. In Section 2, we present the basic complete market

model framework and all the theoretical workings that lead to the formation of the probability
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hedging; Section 3 focuses on its empirical implementation and analysis of our results. In Section

4, we extend to a multi-stochastic environment with the aid of an auxiliary market resulting from a

fictitious completion of assets. We present the formulation of the probability hedging in a general

affine model setting and implement this. Section 5 concludes the paper. All our proofs of theoretical

results are gathered in the online supplement, including a simulation scheme for use when carrying

out our application.

2. Probability hedging: the case of constant market risk premium

We start by assuming a basic stock price model

dSt = µSt dt+ σSt dWt,

where the constant µ is the expected annual growth rate and σ the price volatility. W =

{Wt : t ≥ 0} is the standard Brownian motion defined on the complete probability space (Ω,F ,P),

where P is an observable, unadjusted probability measure. The available information is represented

by the filtration Ft = σ {Ws, s ∈ [0, t]}∨N (P), where t ∈ [0, T ], T > 0 and N (P) is the collection of

all P-null sets so that the filtration obeys the usual conditions. We will denote by {Xt : 0 ≤ t ≤ T}
the wealth process, based on an investment of πt in the risky asset and the remainder in the

risk-free asset, with dynamics given by

dXt = r (Xt − πt) dt+ (µdt+ σdWt)πt

= rXt dt+ σπt (θ dt+ dWt) , (1)

where X0 = x0, r is the annual risk-free rate of return and θ := (µ− r) /σ is the constant market

price of risk. In this model, any update of the investor’s allocation choice affects only the fund

process, not the dynamics of the stock price they are trading, which makes it a popular model in

a whole-life-cycle context.

Further, we introduce a generic probability measure S(α) equivalent to P, which has Radon–

Nikodým derivative

dS(α)

dP

∣∣∣∣∣
Ft

=: L
(α)
t = e−αWt− 1

2
α2t. (2)

By the Girsanov theorem,

W
(α)
t := Wt + αt

is a Brownian motion under S(α). The value of α will vary with the choice of the utility function

as we will show later in Section 2.4. Note that S(0) ≡ P and S(θ) ≡ Q, where the latter is the risk

neutral measure.

2.1. Optimising unconstrained and constrained wealth processes

The long-term saver with the aid of the fund manager seeks to maximize

EP [U(XT )] subject to EQ [XT ] = erTx0, (3)
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where U denotes a utility function which is assumed to be increasing and concave. Problem (3)

can be approached by the Lagrangian method (see Björk, 2009). More specifically, for each ω ∈ Ω,

we choose XT (ω) to be the value of x which maximizes

U(x) + λ0

(
erTx0 − L(θ)

T (ω)x
)
, (4)

where λ0 is the Lagrange multiplier, also known as the shadow price, to be determined later, and

L
(θ)
T is given by (2). The derivative of (4) is

U ′(x)− λ0L
(θ)
T (ω),

which is a decreasing function of x.

If there are no constraints on the value XT can take, the saver’s optimal terminal wealth is

XT = X∗T = Υ
(
λ0L

(θ)
T

)
, (5)

where Υ is the inverse of U ′ and is a decreasing function. The unconstrained process {X∗t : 0 ≤ t ≤ T}
reflects the investment options pursued by the fund manager and are driven by a belief in a certain

utility which may agree or not with the actual utility of the consumer. This is given at each time

t by

X∗t = e−r(T−t)EQt [X∗T ] , (6)

where the expected value is taken conditional on Ft. In addition, we define the constrained process

X̃ which reflects the behaviour of X subject to the restriction P (GL ≤ XT ≤ GU ) = 1. The optimal

terminal value of the consumer’s portfolio of assets then becomes

XT = X̃T = min (GU ,max (GL, X
∗
T )) (7)

= (GL −X∗T )+ − (X∗T −GU )+ +X∗T ,

where z+ := max (z, 0). The trajectory of the constrained process
{
X̃t : 0 ≤ t ≤ T

}
is given by

X̃t = e−r(T−t)EQt
[
X̃T

]
, (8)

which satisfies the budget constraint X̃0 = x0. The relationship between x0 and x∗0 can be written

in the form

x0 = x∗0 + e−rTEQ0
[
(GL −X∗T )+]− e−rTEQ0 [(X∗T −GU )+] , (9)

which implies that x∗0 is, in general, not equal to x0. From (9), the difference x0 − x∗0 actually

corresponds to the cost of buying a vanilla put option with strike price GL less the proceeds from

the sale of a vanilla call option with strike GU .

2.2. Dynamical behaviour of optimal unconstrained and constrained processes

In this section, we study the behaviour of the unconstrained and constrained processes X∗ and

X̃, respectively. We do this in Proposition 2, but first we present a key result in Proposition 1.

Having proved the results under general utility assumptions made by the fund manager, we then

exemplify cases corresponding to specific utility functions.
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Proposition 1. Let F (α)(x, t) be the conditional distribution function of X∗T under the generic

measure S(α) defined in (2) given Ft. Then,

F (α)(x, t) := Φ
(
K (x, t;Wt, λ) + α

√
T − t

)
, (10)

where Φ (.) := 1√
2π

∫ .
−∞ e

−z2/2dz,

K (x, t;Wt, λ) :=
lnλ− lnU ′(x)− θWt

θ
√
T − t

and

λ := λ0e
− 1

2
θ2T .

Proof. See Section EC.2 of the e-companion of the paper.

Proposition 2. i) The value at time t of a fund invested in the unconstrained process is given

by

X∗t = e−r(T−t)
∫ ∞
−∞

Υ (λH (x, t;Wt))φ(x) dx, (11)

where φ(z) := 1√
2π
e−z

2/2 and

H (x, t;Wt) := exp
(
−θ
√
T − tx− θWt + θ2(T − t)

)
. (12)

ii) The optimal constrained process is given by

X̃t = e−r(T−t)
(
GL +

∫ GU

GL

[
1− F (θ)(x, t)

]
dx

)
, (13)

where F (θ) is given in (10).

Proof. See Section EC.2 of the e-companion of the paper.

Based on the beliefs of the fund manager for the driving utility, the dynamics of X∗ varies

according to (11). The utility functions considered in this paper are the power, exponential and

logarithmic. Table 1 summarizes various quantities of interest in our study related to different

utility functions. For the family of power utility functions, we introduce, for convenience, also the

notation η := γ/(1− γ) to distinguish the special case of the logarithmic utility for η = 0 from the

general case of power utilities for η > −1. We shall see in Section 2.4 that there are circumstances

in which the limiting behaviour as η → −1 is that under the exponential utility.

Utility U(x) Parameter Υ(a) Υ′(a)

Power γ−1xγ , x > 0 γ ∈ (−∞, 1)�{0} a−(1+η) −(1 + η)a−(2+η)

Logarithmic lnx, x > 0 – a−1 −a−2

Exponential −ξ−1e−ξx, x ∈ R ξ > 0 −ξ−1 ln a −ξ−1a−1

Table 1: Fund manager’s utility function choices. For the power utility, η = γ/(1− γ).

If the optimiser uses an exponential utility, then based on the information in Table 1 we get

from (11) that

X∗t =
e−r(T−t)

(
− lnλ+ θWt − θ2(T − t)

)
ξ

= x∗0e
rt +

e−r(T−t)
(
θWt + θ2t

)
ξ

, (14)

7



from which

dX∗t = rX∗t dt+
θ

ξ
e−r(T−t) (dWt + θ dt) . (15)

Similarly, for the power utility,

X∗t =
e−r(T−t)

λη+1
exp

(
θWt − θ2(T − t)

(η + 1)−1
+

θ2(T − t)
2(η + 1)−2

)
= x∗0 exp

(
rt+

θ2(1− η2)t

2
+ θ(η + 1)Wt

)
(16)

and

dX∗t = rX∗t dt+ θ(η + 1)X∗t (dWt + θ dt) . (17)

The special case of the logarithmic utility follows from (16)–(17) by setting η = 0.

2.3. Choosing the shadow price, the lower and the upper bound

Based on the distributional properties of the processes X∗ and X̃ we have established in the

previous section, we obtain next the optimal shadow price λ and the lower bound GL for a given

upper bound GU .

As we have discussed in the introduction, we aim for GU to be achieved half of the time, i.e.,

to be the most likely of all the investment outcomes; this is not intended to be a limitation and

a different choice can be made by the fund manager. Therefore, we choose GU to be the median

such that

P
(
X̃T ≥ GU

)
= P (X∗T ≥ GU ) =

1

2
. (18)

From (5) and (18), GU = Υ(λ) or, equivalently,

λ = U ′(GU ).

In addition, from (14), for the exponential utility, x∗0e
rT = GU − θ2T/ξ and from (16), for the

power utility, x∗0e
rT = GU exp

(
−θ2(1− η2)T/2

)
.

Given the budget constraint X̃0 = x0, we have from (13) that

x0e
rT = GL +

∫ GU

GL

[
1− Φ

(
lnλ− lnU ′(x) + θ2T

θ
√
T

)]
dx (19)

as long as GL ≤ x0e
rT ≤ GU by definition of X̃.

Proposition 3. Let GU satisfy (18). Then, GL exists such that the generic equation (19) is

satisfied if

GU − x0e
rT ≤

∫ GU

l
Φ

(
lnU ′(GU )− lnU ′(x) + θ2T

θ
√
T

)
dx, (20)

where l is the minimal value that x can take2.

Proof. The result follows from (19).

2For example, l = −∞ for the exponential utility and l = 0 for the power utility, according to the support of the
distribution of the resulting X∗T .
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So far, we have two equations relating the three unknowns λ, GL and GU . There is one

remaining degree of freedom and we exercise it by choosing the best value from the point of view

of maximizing the expected terminal utility of the consumer. We will assume, without this being

restrictive, that our consumers assess wealth according to a power-law utility with parameter ρ.

This is practically unknown but it is a convenient assumption due to the flexibility that it offers

in explicitly accounting for different levels of risk-aversion, although our machinery can be rebuilt

on a different utility basis and more results can be made available for alternative cases such as for

an exponential utility. Therefore, we will choose the maximizing GL of the expected utility

EP
[
X̃ρ
T

]
ρ

, (21)

where ρ < 1.

The process X̃ depends on the optimiser’s belief about the utility and that may differ from the

consumer’s. Depending on the optimiser’s use of a certain utility function (see Table 1), the upper

bound for GU can be explicitly derived. For example, for the exponential utility, we have from

(18) and (14) that

GU = −ξ−1 lnλ,

and (19) then needs to be satisfied:

GU − x0e
rT =

∫ GU

GL

Φ

(
−ξ(G.U − x)

θ
√
T

+ θ
√
T

)
dx =

θ
√
T

ξ

∫ θ
√
T

θ
√
T−

ξ(G.U−GL)
θ
√
T

Φ (x) dx.

For a solution to exist, we have to have from (20) that

GU − x0e
rT ≤ θ

√
T

ξ

∫ θ
√
T

−∞
Φ (x) dx =

θ2TΦ(θ
√
T ) + θ

√
Tφ(θ

√
T )

ξ
.

Therefore, if x0e
rT ≤ GU ≤ x0e

rT + ξ−1
(
θ2TΦ(θ

√
T ) + θ

√
Tφ(θ

√
T )
)

, then it is possible to find

a valid value for GL > −∞. In addition, from (21)

EP
[
X̃ρ
T

]
ρ

=
GρU
ρ
− θ
√
T

ξ

∫ 0

−
ξ(G.U−GL)

θ
√
T

(
GU +

θ
√
T

ξ
x

)−1+ρ

Φ (x) dx,

where GL > 0 ensures that the integral above does not become infinite.

Based on similar arguments, for the power utility, we require from (18) and (16) that

GU = λ−(1+η),

and

GU − x0e
rT =

∫ GU

GL

Φ

(
−1 + η

θ
√
T

ln
GU
x

+ θ
√
T

)
dx (22)

9



must be satisfied3. Since GL must be non-negative, a solution exists if

GU − x0e
rT ≤

∫ GU

0
Φ

(
−1 + η

θ
√
T

ln
GU
x

+ θ
√
T

)
dx

= GU

[
Φ
(
θ
√
T
)
− exp

(
−(1 + 2η)θ2T

2(1 + η)2

)
Φ

(
ηθ
√
T

1 + η

)]
.

A possible value for GL is, therefore, implied when

x0e
rT ≤ GU ≤

x0e
rT

1− Φ(θ
√
T ) + exp

(
− 1+2η

2(1+η)2
θ2T

)
Φ
(
ηθ
√
T

1+η

) .
The best value of GL is the one which maximizes (21). The special case of a fund manager believing

in the logarithmic utility function follows by setting η = 0.

Note that if the upper bound condition for GU specified in Proposition 3 is not satisfied, it will

not be possible to find a strategy which has GU as the median terminal value. However, we will

still be able to choose GU differently and, subsequently, GL < x0e
rT , with λ given by the general

expression (19) which satisfies the budget constraint.

2.4. Optimal investment strategies and probability hedging

In the last part of this section, we assemble all the theoretical results we have developed

so far to arrive finally at a neat result which lays the cornerstone for the contribution of this

paper. More specifically, both X∗ and X̃, as we have seen in the previous sections, are admissible

portfolio processes, so can be generated from (1) using an appropriate asset allocation strategy;

these strategies are denoted by {π∗t : 0 ≤ t ≤ T} and {π̃t : 0 ≤ t ≤ T}, respectively. We show here

that the optimal control for the constrained process for universal underlying utility functions can

be derived from the optimal control for the unconstrained process. The ratio of the two optimal

strategies is given by the probability, with respect to a suitable measure and conditional on Ft, of

X∗T lying in the interval [GL, GU ] obtained in Section 2.3. We use a newly coined financial hedging

term to describe this phenomenon and that is probability hedging.

Theorem 4. Let U be a utility function governing the decisions of the fund manager. Then, the

associated optimal asset allocation strategy at time t is given by

π̃t :=
1

σ
e−r(T−t)I(t;Wt, λ), (23)

where

I(t;Wt, λ) := θ

∫ K(GU ,t;Wt,λ)+θ
√
T−t

K(GL,t;Wt,λ)+θ
√
T−t

φ(x)

A (Υ (λH (x, t;Wt)))
dx, (24)

3The integral on the right-hand side of equation (22) has an explicit solution given via

∫ GU

G
L

Φ (α ln z + β) dz = GUΦ (α lnGU + β)−GLΦ (α lnGL + β)

− exp

(
−β
α

+
1

2α2

)[
Φ

(
α lnGU + β − 1

α

)
− Φ

(
α lnGL + β − 1

α

)]
.
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H is given by (12), and

A(x) := −U
′′(x)

U ′(x)

is the coefficient of absolute risk-aversion associated with U .

Proof. See Section EC.2 of the e-companion of the paper.

Based on the general result presented in Theorem 4, we obtain next the exact probability hedge

corresponding to different cases of utility functions.

Corollary 5. Under general assumptions for the optimiser’s choice of utility function and for

constant market price of risk θ, the optimal constrained strategy is given by

π̃t = π∗t S
(−ηθ)
t (X∗T ∈ [GL, GU ]) ,

where the probability measure S(−ηθ)
t satisfies (2) (see also Proposition 1). In addition, the uncon-

strained optimal strategy and measure are given by
π∗t = θe−r(T−t)

ξσ , η = −1 (exponential)

π∗t = θ(η+1)
σ X∗t = θe

θWt−θ
2(T−t)

(η+1)−1 +
θ2(T−t)
2(η+1)−2−r(T−t)

σ(η+1)−1λη+1 , η = γ
1−γ (power)

π∗t = θ
σX
∗
t = θe

θWt−(r+1
2 θ

2)(T−t)
λσ , η = 0 (logarithmic)

. (25)

Proof. See Section EC.2 of the e-companion of the paper.

What is remarkable from Corollary 5 is that, for an underlying logarithmic utility, the prob-

ability hedging for a long-term investor does not require departing from the physical probability

measure, rendering the notion of probability hedging with the lower and upper bounds more intu-

itive. The exponential utility, instead, requires an adjustment to the risk neutral measure, whereas

a new change of measure is required in the case of the power-law utility.

From (25), it is obvious that the family of power utility functions, including the logarithmic

special case, yields constant relative amounts of wealth invested in a risky asset in the optimal

unconstrained strategies. On the other hand, the exponential utility gives rise to a deterministic

nominal amount invested in the risky asset, therefore, in this case, the only relevant relationship

is that between π̃ and π∗ and we know from Corollary 5 that π̃ ≤ π∗ as they are connected by

means of a probability. Our last theoretical result of this section is devoted to the trickier power

family case and shows that the risky investment proportion in the optimal constrained strategy is

bounded from above by the unconstrained.

Corollary 6. The proportion of wealth invested in a risky asset in the optimal constrained and

unconstrained strategies, when the optimiser assumes a utility function from the power family,

satisfies
π̃t

X̃t

<
π∗t
X∗t

.

Proof. See Section EC.2 of the e-companion of the paper.

3. Implementing the probability hedging

As we concluded in Section 2.4, the distinguishing feature of the different hedged strategies

based on different utilities is the relevant probability measure. But this is a principal aspect that

11



drives the quality of communication with pension savers; having to explain, from a fund manager’s

perspective, and understand, from an investor’s side, probability measure changes can obscure

communication and, thus, our ultimate goal. The solution is given by the logarithmic utility,

which leads to a probability hedge under the physical measure. This brings with it additional

flexibility. Imagine an investment strategy involving a capital placement entirely in stocks with an

optimistic vision of receiving a high return at retirement. This sounds like a gamble except that

the investor is reluctant to lose a significant proportion of their invested capital, especially in such

a case of long-term planning.

From equation (25) in Corollary 5, the unconstrained optimal strategies under power utility are

given by (µ−r)/(σ2(1−γ)), from which it is obvious how the percentage investment in stocks varies

with the risk appetite. We consider the cases of γ = −0.25, −1, −4 and −10, in addition to γ = 0

corresponding to the logarithmic utility. Based on the empirical analysis of Kyriakou et al. (2020,

2021b), we adopt a yearly mean excess return of 2.5% and standard deviation of 16% and obtain

the optimal investment strategies reported in Table 2. We observe that under the logarithmic

utility an implied 98% of capital invested in stocks almost matches the investment portrayal we

are after. While the logarithmic utility assumption sounds to be workable, we need to explore

the cost from transitioning from an unconstrained hypothetical power strategy to a strategy with

restrained terminal reward based on different utility assumptions made by the fund manager. In

other words, we need to study the effect of different mismatched hedges, even if intended in order

to accommodate the limited financial training of the consumers.

Risk appetite γ 0 -0.25 -1 -4 -10
Risky asset investment 97.7% 78.1% 48.8% 19.5% 8.9%

Table 2: Optimal unconstrained strategies under the power utility: proportion of wealth invested in risky asset
π∗/X∗ = (µ− r)/(σ2(1− γ)), µ− r = 2.5% and σ = 16%.

3.1. Unconstrained versus constrained strategies and the mismatched hedge effect

To this end, we revisit the four long-term investors from Gerrard et al. (2019), Lisa, John,

Susan and James, with power utility parameter values ρ = −0.25, −1, −4 and −10, respectively,

corresponding to a pattern of increasing risk-aversion. Each of them invests a total of x0 = 10,000

in stocks and a risk-free inflation bond with an investment horizon of 30 years. We consider first

their optimal strategies in an unhedged power utility world. On the left panel of Table 3, we report

for varying ρ the certainty equivalent (CE), that is, the certain amount of money they would trade

off against their uncertain terminal reward X∗T given by

CE = EP [X∗T
ρ]

1
ρ .

In addition, we report the median of X∗T and, as a lower bound is not properly defined for the

unconstrained strategy, the Value-at-Risk (VaR) for a given probability (e.g., 5% VaR). By analogy,

we then compute for different utility hedges for each of our consumers, based on the procedure

delineated in Section 2.3, for the constrained terminal reward X̃T the

CE =

ρ max
GL

EP
[
X̃ρ
T

]
ρ


1
ρ

, (26)

12



as well as the upper bound GU , given by the median of X̃T , and the lower bound GL. The different

utility hedges are reflected by the process X̃. The calculations are reported on the right panel of

Table 3, whereas an example of the outcome from the maximization in (26) is shown in Figure

EC.1 in the paper’s e-companion.

The results are most enlightening. First, as expected, we observe a reduction in the CE

compared to the unconstrained strategy. However, this is overall fairly small and largest for a

risk-lover such as Lisa with ρ = −0.25: 6.6%, 5.5% and 7.0%, respectively, under the constrained

power, logarithmic and exponential (parameter ξ := θ/(σx0)) strategy. This drops with increasing

risk-aversion to reach, respectively, 0.5%, 1.4% and 1.3% when ρ = −10 (James’ case). The second

important observation is that, for a given level of risk-aversion, the CE amongst the different

utility hedges does not vary much. This suggests that the level of risk-aversion plays some role

when we change from an unconstrained to a constrained strategy, while the actual kind of utility

hedge a far lesser role.

Furthermore, for consistency between the unconstrained and constrained strategies, we compare

the median of the terminal rewards and find perceptible increases, such as 20% (approx.) for the

exponential and power hedges and up to 30% for the logarithmic hedge in the case of a risk-taker

like Lisa. Reflecting Lisa’s risk appetite, her GL guarantee reduces, sometimes even below the 5%

VaR of the unhedged position, whilst her most likely reward GU increases, resulting in the largest

(GU −GL) spread. Both effects generally weaken with increasing risk-aversion, still the median

remains fairly high and the range [GL, GU ] narrows mostly for the exponential and logarithmic

hedges.

We conclude this section with some favourable news about the logarithmic utility. Contrary to

the power utility for γ = −0.25, −1, −4 and −10 which implies unconstrained investments of wealth

in the risky asset up to 78% as shown in Table 2, the logarithmic utility (γ = 0) amounts to an

investment of almost 100%. By constraining this strategy, we achieve a minimal CE reduction for

a relatively high lower guarantee and a high best-case outcome. Therefore, a risky investment like

this can lead, by means of our proposed hedged strategy, to favourable investment opportunities

even for less risky investors such as Susan (ρ = −4) and James (ρ = −10). Similar hedging

performances are reported for the other utility functions.

We have seen that the loss in terms of CE can be up to 7% against the unconstrained power

strategy for a risk-taker like Lisa, but this is considerably less than the loss from potential consumer-

advisor miscommunication and consequent inaccurate assessment of the risk preference and the

intended saving by retirement, as we see next.

3.2. Constrained strategies and the misspecified risk profile effect

Misspecification of the risk profile of the investor often manifests itself in the interview with the

financial advisor and can cause a significant loss. This can be in the form of a mismatched fund

manager’s decision driven by a belief in a power-law utility with parameter γ and consumer’s own

assessment of the worth of an outcome according to a power-law utility with parameter ρ. The

consumer has no choice but to accept the decisions of the fund manager. Therefore, the process

X̃ in equation (26) will reflect the investment options pursued by the fund manager. We focus on

this case on the left panel of Table 4 where we take account of the CE of each investor, if their

risk selection were mistaken. The worst possible loss of 16.7% is induced when the risk-taker Lisa

is wrongly assessed to be the risk-averse James (italicized entry). When the moderately risk-taker
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John is given James’ plan, the loss reduces at most to 10.1%, whereas when the more risk-averse

Susan’s and James’ plans are misspecified the worst percentage loss reduces further. However, in

James’ case this leads to a loss of 1% of his initial capital investment of 10,000. Contrary to an

unconstrained strategy where misspecification can have a detrimental effect on the CE against the

initial capital (e.g., see Gerrard et al., 2019), the good news here is that a hedged strategy can

bring this substantially down. Naturally, if the risk profile assessments are correctly matched, the

CE restores to its maximum level (boldfaced entries).

Alternatively, risk profile misspecification can arise when the fund manager’s decision is driven

by a belief in a logarithmic or exponential utility, contrary to the consumer’s power-law utility risk

profile. This is studied on the right panel of Table 4. Here, in support of both the logarithmic and

exponential hedges, the reduction in the CE from the correctly matched power hedges is very small

(on average 1%). In fact, in Lisa’s case we instead observe an increase by 1.3% for the logarithmic

hedge. The upper (lower) bounds of the logarithmic and exponential hedges also increase above

those of the power hedges especially for risky (risk-averse) consumers. The differences between the

two hedges are very small.

3.3. A rock-hard bottom while increasing the median return

A major advantage of our method is the replacement of the VaR with a more solid downside,

while the median return is significantly improved. These two important outputs are paid for by

selling off the upside in a few cases where returns would be higher in an unhedged strategy than

the inflated median provided by our proposed hedged strategy.

We focus the spotlight on our preferred constrained logarithmic strategy in Table 3. The

most risk-averse long-term saver (ρ = −10) is most likely to end up with a long-term reward

of GU = 11,108, that is 1,108 in excess of the 10,000 initial investment, from risking just about

10,000−GL = 300 at worst, which is actually 300 less than what is put at risk in the unconstrained

strategy according to the VaR measure. The outcome of 1,108 is also almost four times the money

at risk and we are in a situation of a much higher probability of a gain than of a loss (recall that GU

corresponds to the median terminal reward); any gambler would be excited by seeing these odds!

We are, nevertheless, following the risk-and-return laws of arbitrage-free long-term finance. Our

second, in the risk-aversion ranking, long-term saver (ρ = −4) is interested in a slightly higher gain

given the beneficial circumstances. The quadruple of gains is beyond reach in this case, but the pot

for this favourable game is bigger. More specifically, this long-term saver decides to risk 919 for a

more likely gain of 2,717, which is about three times the amount at risk. The two most risk-seeking

long-term savers arrive at most likely gains of, respectively, 8,411 and 6,827, with corresponding

amounts at risk of 3,951 and 8,446. While all four of them are receiving a favourable game, it

is clear that the more risk-averse savers benefit relatively more from their risky exposure: the

most likely gains are roughly four, three, two, one times the worst-case loss for our four investors.

The advantage of our new approach is that they can self-select the participation in the risky but

favourable game provided to them. We also think that our methodology with a most likely high

gain for an unlikely worst case, that is still better than a very uncertain bottomless approach, is

what most investors would be looking for.

3.4. Analysis of simulated optimal investment strategies

In what follows, we present the detailed pathwise properties of our hedging methodology varying

with utility function and risk preference. There are clear differences between these paths for varying
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risk preferences, whereas the important message that the utility function matters less remains,

especially in later years.

More specifically, we study the asset allocation strategies we have derived in Section 2.4 for the

logarithmic and exponential utilities. We simulate the dynamics of the ratio π̃/π∗ of the investment

in the risky asset under the constrained and unconstrained strategies, i.e., of the probability that

the unconstrained wealth at the end of the 30-year cycle will be within the lower and upper

bounds under the appropriate measure (see Corollary 5). In addition, we inspect the distributional

characteristics of the proportion of wealth invested in the risky asset.

We consider first the case of a driving logarithmic utility. The left side of Figure 1 exhibits

the evolution of the distribution of the ratio π̃/π∗. For the risky investor (ρ = −0.25) this ratio

averages around half every year, while its standard deviation increases year on year up to half and

the interquartile range is one. As the probability of the unconstrained wealth to exceed the upper

bound is, by definition of the median wealth, set equal to 50% and the mean probability to lie

within the bounds is also 50%, it is therefore implied that the probability to drop below the lower

bound is on average zero (as for the constrained wealth). This is sensible given the fairly wide

lower-upper bound spread of a risk-taker (see also Table 3). The distribution has small negative

skewness most of the time, whereas closer to the terminal time this becomes positive; it generally

also exhibits light tails. This quite changes when additional risk factors are accounted for, such as

a random market price of risk, as we will see later in Section 4.3.

With increasing levels of risk-aversion, the relative optimal investment π̃/π∗ averages at gradu-

ally decreasing levels of a 1/2, 1/3, 1/6 and 1/16 for ρ = −0.25, −1, −4 and −10, respectively. This

is connected with the increasing chance of the unconstrained wealth to fall below the lower bound

while the two bounds get close to each other (see Table 3) and the decreasing desire to allocate

wealth to the risky asset. The dispersion increases over time for all consumers but remains larger

for the riskier. The skewness is negative most of the time but in the later years it becomes positive,

especially for the more risk-averse consumers who also exhibit some positive excess kurtosis.

When we switch to the exponential utility (see the left side of Figure 2), the differences, in

general, with the logarithmic utility in the distributional properties of π̃/π∗ are more obvious for

risky investors and especially up to, approximately, the twentieth year. More specifically, during

the first 20 years, the exponential case exhibits a slightly smaller standard deviation and larger

mean, as well as a significant negative skewness and a fat tail for risky and moderately risky

investors. Over the last 10 years, the equality of the two distributions improves perceptibly and

this is confirmed by the outcome of a two-sample Kolmogorov–Smirnov test with a p-value of at

least 30%, depending on the level of risk-aversion, at the terminal time.

Finally, on the right sides of Figures 1 and 2, we focus on the percentage investment in the risky

asset in the constrained strategies, π̃/X̃, for both utilities. For the logarithmic utility, π̃/X̃ lies, on

average, within (approx.) 62% to 72%, 44% to 59%, 13% to 21%, and 5% to 9%, respectively, for

ρ = −0.25, −1, −4 and −10. For the exponential utility, the relevant ranges are 42% to 56%, 33%

to 41%, 14% to 16%, and 5% to 6.5%. The variability increases over time, but shifts downwards

with increasing risk-aversion; this is slightly larger for the logarithmic utility. In addition, the right

skewness of the percentage risky asset investment is more noticeable for risk-averse consumers and

increases over time; the skewness is larger for the logarithmic utility. Similar patterns apply for

the positive excess kurtosis, but again are more inconspicuous for the exponential utility.
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Figure 1: Left-hand side. Probability hedge distribution evolution, π̃/π∗ (see Corollary 5), under logarithmic utility
for investors with different level of risk-aversion controlled by parameter ρ and resulting bounds GL and GU as
in Table 3. Right-hand side. Corresponding evolutions of proportional-investment-in-stock distributions, π̃/X̃ (see
equations 13 and 23). Other parameter values: µ− r = 2.5%, r = 0, σ = 16%, θ = (µ− r) /σ, x0 = 10,000, T = 30
years.
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Figure 2: Left-hand side. Probability hedge distribution evolution, π̃/π∗ (see Corollary 5), under exponential utility
(with parameter ξ = θ/(σx0)) for investors with different level of risk-aversion controlled by parameter ρ and resulting
bounds GL and GU as in Table 3. Right-hand side. Corresponding evolutions of proportional-investment-in-stock
distributions, π̃/X̃ (see equations 13 and 23). Other parameter values: µ−r = 2.5%, r = 0, σ = 16%, θ = (µ− r) /σ,
x0 = 10,000, T = 30 years.
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4. Multi-stochastic environment

So far, we have presented and illuminated the notion of probability hedging under different

strategies in a basic stochastic model. Introducing extra factors of randomness leads to incomplete

market models. It would be interesting to extend our approach to situations where markets are not

dynamically complete. To this end, we generalize our model of uncertainty developed in Section

2 to a model with multiple risk factors. The assumption of market completeness is strong and is

not satisfied in many model specifications where the whole risk cannot be hedged. By introducing

sufficient artificial securities though, we allow the investor to allocate and work on a complete

market. In light of the results of the previous sections in favour of the logarithmic utility, in the

interest of space, but also the interest of the relevant literature, as mentioned in the introduction,

in the class of HARA utility functions, we derive expressions for our optimal strategies under the

logarithmic utility. (More results can be made available upon request in relation to the power,

exponential, but also the mean-variance utility as encouraged by a comment of a referee.)

Based on the martingale approach, we derive the optimal portfolio strategy which maximizes

the expected utility of terminal wealth of the investor. We consider the usual probability space

(Ω,F ,F = {Ft : 0 ≤ t ≤ T} ,P) and an n-dimensional Brownian motion {Wt : 0 ≤ t ≤ T} adapted

to F. Our market comprises a bond with instantaneous return rt, a collection of real risky assets

and, where necessary, a collection of artificial risky assets whose role is to complete the market.

The price processes of the risky assets {Sj,t : 0 ≤ t ≤ T, 1 ≤ j ≤ n} are given by

dSj,t
Sj,t

= rtdt+
∑
k

σjk,t (dWk,t + θk,tdt) , (27)

where the vector θt denotes the market price of risk.

Similarly to the single-factor model case in Section 2, if there are no constraints on the value

XT can take, we are looking into maximizing

EP [U(XT )] subject to EQ
[
e−

∫ T
0 rs dsXT

]
= x0,

i.e., we are interested in solving

max
x

{
U(x) + λ0

(
x0 − LT (ω)e−

∫ T
0 rs(ω) dsx

)}
(28)

for each ω ∈ Ω, where L is the Radon–Nikodým derivative of the risk neutral measure Q with

respect to P satisfying

dLt = −Ltθ>t dWt. (29)

The maximizing value of x in (28) is given by

U ′(x) = λ0LT (ω)e−
∫ T
0 rs(ω) ds, or X∗T (ω) = Υ

(
λ0LT (ω)e−

∫ T
0 rs(ω) ds

)
;

we postpone our discussion of the determination of the value of λ0 until after equation (38). In

the case of the logarithmic utility, Υ(a) = 1/a hence

X∗T =
e
∫ T
0 rs ds

λ0LT
,
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and

X∗t = EQt
[
e−

∫ T
t rs dsX∗T

]
=
e
∫ t
0 rs ds

λ0Lt

implying
dX∗t
X∗t

= rt dt+ θ>t dWt + θ>t θt dt.

Let πt be an Ft-measurable vector process representing an allocation strategy, that is, the

amount invested in each of the risky assets at time t. It follows from (27) that

dXt =
∑
j

πj,t

(
rtdt+

∑
k

σjk,t (dWk,t + θk,tdt)

)
+

Xt −
∑
j

πj,t

 rtdt

= rtXt dt+ π>t Σt (dWt + θt dt) . (30)

As X∗ is an admissible portfolio process, it can be generated from (30) using the asset allocation

strategy which satisfies

(π∗t )
>Σt = X∗t θ

>
t , or π∗t =

(
ΣtΣ

>
t

)−1
ΣtθtX

∗
t . (31)

This strategy implies that the asset allocations are not linearly independent and vary with time,

consistently with the so-called bond-stock allocation puzzle (Canner et al., 1997), which is theo-

retically supported by Bajeux-Besnainou et al. (2001) but also Bajeux-Besnainou et al. (2003) for

any HARA investor. If some of the assets in the mix are artificial, we ignore those components of

the vector π∗. Suppose, for example, that assets 1 to m are tradeable and m+ 1 to n are artificial;

then, defining Im to be the n× n matrix which is zero except for an m×m identity matrix in the

top-left corner, the feasible strategy we implement is

π∗†t := Imπ
∗
t . (32)

4.1. The constrained strategy

So now we come to the constrained case, and we have

X̃t = EQt
[
e−

∫ T
t rs ds max {GU ,min {GL, X∗T }}

]
=

1

Lt
EPt

[
max

{
e−

∫ T
t rs dsLTGU ,min

{
e−

∫ T
t rs dsLTGL,

e
∫ t
0 rs ds

λ0

}}]
.

Our aim is to work out the dynamics of X̃ and, by comparing it with the equation

dX̃t = rtX̃t dt+ π̃>t Σt(θt dt+ dWt), (33)

derive the optimal strategy π̃, at least in the complete market case.

Upon defining

Ψt,T =

∫ T

t
rs ds+

∫ T

t
θ>s dWs +

1

2

∫ T

t
θ>s θs ds,

we have that

e−Ψt,T =
X∗t
X∗T

(34)
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and

X̃t = GUEPt
[
e−Ψt,T 1{Ψt,T>gU,t}

]
+GLEPt

[
e−Ψt,T 1{Ψt,T<gL,t}

]
+
eΨ0,t

λ0
EPt
[
1{gL,t<Ψt,T<gU,t}

]
, (35)

where

gU,t := lnλ0 + lnGU −Ψ0,t, gL,t := lnλ0 + lnGL −Ψ0,t. (36)

Then, upon denoting by fΨ,t(·) and FΨ,t(·), respectively, the conditional density and distribution

function of Ψt,T given Ft, we get

X̃t = GU

∫ ∞
gU,t

e−ψfΨ,t(ψ) dψ +GL

∫ gL,t

−∞
e−ψfΨ,t(ψ) dψ +

eΨ0,tPt (gL,t < Ψt,T < gU,t)

λ0
(37)

= GU

∫ ∞
gU,t

e−ψFΨ,t(ψ) dψ +GL

∫ gL,t

−∞
e−ψFΨ,t(ψ) dψ. (38)

We choose λ0 such that the budget constraint x0 = X̃0 is fulfilled. Taking the derivative of the

right-hand side of (38) with respect to λ0 for t = 0 gives

−
FΨ,0(lnλ0 + lnGU )− FΨ,0(lnλ0 + lnGL)

λ2
0

< 0,

therefore the maximum value of (38) is GUEP
[
e−Ψ0,T

]
, when λ0 = −∞, and similarly the minimum

value is GLEP
[
e−Ψ0,T

]
. So, as long as x0 lies within this range, it is possible to choose a suitable

value of λ0.

Define

Ht(a) ≡ H(a, t, rt, θt) = EPt
[
eiaΨt,T

]
, (39)

where i :=
√
−1. Now look at the three pieces of (37). The first is

GU

∫ ∞
gU,t

e−ψfΨ,t(ψ) dψ =
GU
2π

∫ ∞
−∞

∫ ∞
gU,t

e−(1+ia)ψ dψHt(a)da =
eΨ0,t

2πλ0

∫ ∞
−∞

e−iagU,t

1 + ia
Ht(a)da,

whereas the third is

eΨ0,t

λ0
Pt (gL,t < Ψt,T < gL,t) =

eΨ0,t

2πλ0

∫ ∞
−∞

∫ gU,t

gL,t

e−iaψ dψHt(a)da

=
eΨ0,t

2πλ0

∫ ∞
−∞

i

a

(
e−iagU,t − e−iagL,t

)
Ht(a)da.

Regarding the second term, consider

It := Ht(i) = EPt
[
e−Ψt,T

]
=

∫ ∞
−∞

e−ψfΨ,t(ψ) dψ,

which is finite. Then, we get for the second term

GL

{
It −

∫ ∞
gL,t

e−ψfΨ,t(ψ) dψ

}
= GLIt −

GL
2π

∫ ∞
−∞

∫ ∞
gL,t

e−(1+ia)ψ dψHt(a)da

= GLIt −
eΨ0,t

2πλ0

∫ ∞
−∞

e−iagL,t

1 + ia
Ht(a)da.
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By putting the three components together, we get for (37)

X̃t = GLHt(i) +

∫ ∞
−∞

ε(a)Nt(a)Ht(a)da, (40)

where

Nt(a) := e(1+ia)Ψ0,t and ε(a) :=
i

2πλ0a(1 + ia)
e−ia lnλ0

(
e−ia lnGU − e−ia lnGL

)
,

i.e.,

dX̃t = GL dHt(a)|a=i +

∫ ∞
−∞

ε(a)d(HN)t da. (41)

It is worth noting that changing to a different utility function only requires altering the function ε

in the preceding analysis as H and N depend only on the model. We conclude this part by proving

some important properties of the process X̃ including being real, non-negative and convergent to

the strategy with no constraints.

Proposition 7. Define

χT (a) =
e−iagU,T − e−iagL,T

2πa(a− i)
+
eiagU,T − eiagL,T

2πa(a+ i)
,

where gU,T and gL,T are given in (36). Then, we have that:

1. For each a > 0, χT (a) is a real random variable;

2. |χT (a)| ≤ π−1 min
{

(1 + a) ln (GU/GL) , 2(a−2 + a−3)
}

;

3. EPt
[∫∞

0 χT (a)da
]

=
∫∞

0 EPt [χT (a)] da = λ0e
−Ψ0,t

∫∞
−∞ ε(a)Nt(a)Ht(a)da; and

4. X̃t is real and non-negative for any t and satisfies

GLEPt [e−Ψt,T ] ≤ X̃t ≤ GUEPt [e−Ψt,T ].

Proof. See Section EC.2 of the e-companion of the paper.

Lemma 8. Let Q be a strictly positive, integrable random variable. Then, limε→0 ε
−1E [Q1Q<ε] = 0

and limn→∞ n
−1E [Q1Q>n] = 0.

Proof. See Section EC.2 of the e-companion of the paper.

If we apply Lemma 8 to the random variable λ0e
−Ψ0,t−Ψt,T with ε = G−1

U and n = G−1
L

conditional on the information at time t under the measure P and let GU → ∞ and GL → 0, the

first two terms in (35) vanish in the limit and we get that

lim
GU→∞,GL→0

X̃t =
eΨ0,t

λ0
= X∗t ,

that is, the solution for X when there are no constraints on the strategy.

4.2. Probability hedging in the affine multivariate model setting

In order to proceed further, we need to look at H in more detail by making some explicit model

assumptions. More specifically, we assume that the instantaneous return rt satisfies the equation

drt = ζr(µr − rt)dt+ σ>r dWt,
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where σr is a vector of n entries and ζr > 0 and µr are scalars. This model has appeared on various

occasions in the relevant literature. For example, Bielecki et al. (2000) study asset allocation

with Vaš́ıček interest rates and a risky asset driven by uncorrelated Brownian motions; Bajeux-

Besnainou et al. (2003) concentrate on dynamic portfolio optimisation, where stochastic interest

rates and stock prices are correlated, for investors displaying HARA. In addition, as a multivariate

generalization of the Ornstein–Uhlenbeck process, we assume that the market price of risk θt

satisfies

dθt = K(µθ − θt)dt+ ΞdWt,

where K ≡ (κj,k) and Ξ ≡ (ξj,k) are n× n matrices. By affinity of our model choice, it is possible

to write H in (39) in the form

H(a, t, rt, θt) = exp

(
−A(T − t, a)−B(T − t, a)rt − C(T − t, a)>θt −

1

2
θ>t D(T − t, a)θt

)
(42)

for some scalar functions A and B, vector function C, such that A(0, ·) = B(0, ·) = 0 and C(0, ·) =

0, and symmetric matrix D to be determined (see Section EC.2 of the paper’s e-companion). We

also define the vector process

E(s, a, θ) = B(s, a)σr + Ξ>C(s, a) + Ξ>D(s, a)θ. (43)

This leads us to the following result. (Similarly to H, we will use, in general, for convenience the

notation E(s, a) without explicit mention of other arguments.)

Theorem 9. The optimally controlled constrained process is given by

dX̃t = rtX̃tdt−
[
GLHt(i)E(T − t, i)

+

∫ ∞
−∞

ε(a)Ht(a)Nt(a) [−(1 + ia)θt + E(T − t, a)] da

]>
(θtdt+ dWt). (44)

The associated optimal asset allocation strategy at time t is given by

π̃>t Σt = −GLHt(i)E(T − t, i) +

∫ ∞
−∞

ε(a)Ht(a)Nt(a) [(1 + ia)θt − E(T − t, a)]> da (45)

= X̃tθ
>
t −GLHt(i)[θt + E(T − t, i)]> −

∫ ∞
−∞

ε(a)Ht(a)Nt(a) [−iaθt + E(T − t, a)]> da.

Proof. See Section EC.2 of the e-companion of the paper.

So, we have a semi-explicit solution for the optimal investment strategy in the constrained case

where we have completed the market by the addition of artificial assets. Now it would be interesting

to express as a probability hedge, i.e., to see how π̃t compares with π∗t Pt (X∗T ∈ [GL, GU ]).

Corollary 10. The optimal constrained strategy is given by

π̃>t Σt = Pt (X∗T ∈ [GL, GU ]) (π∗t )
>Σt−GLHt(i)E(T−t, i)−

∫ ∞
−∞

ε(a)Ht(a)Nt(a)E(T−t, a)da. (46)

Proof. See Section EC.2 of the e-companion of the paper.

As a final remark, the function ε(a), and hence the integrand in (46) as a whole, has a pole
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at a = i. Working out 2πi times the residue at this pole (in line with the Residue Theorem), we

get (GU − GL)Ht(i)E(T − t, i). Therefore, we cannot cancel out the term GLHt(i)E(T − t, i) by

choosing a different path to integrate over, but we can replace it with a term that involves instead

GU . Comparing with our result in Corollary 5, the term

−GLHt(i)E(T − t, i)−
∫ ∞
−∞

ε(a)Ht(a)Nt(a)E(T − t, a)da

in (46) represents the adjustment to the optimal strategy when we switch from the one-factor to

a general affine multivariate model.

4.3. Application: the constrained strategy in a model with two risky assets

Having presented our general stochastic model setting in the previous section, in order to

facilitate our illustration of the constrained strategy, which is the core of this research, we model

the risk premium θ1 corresponding to the genuine risky asset S1 (with constant volatility σ1) as a

non-central Ornstein–Uhlenbeck process

dθ1,t = κ1,1(µθ1 − θ1,t)dt+ ξ1,1dW1,t + ξ1,2dW2,t,

where W2 is a P-Brownian motion independent of W1. In order to be able to complete the market

and work out our optimal strategy, we enlarge the asset mix by introducing the artificial risky

asset S2 (with constant volatility σ2). The dynamics of θ2 is given by

dθ2,t = κ2,2(µθ2 − θ2,t)dt+ ξ2,2dW2,t.

Finally, we recall from (29) that the Radon–Nikodým derivative of Q with respect to P takes the

form

Lt = exp

[
−

2∑
k=1

(∫ t

0
θk,sdWk,s +

1

2

∫ t

0
θ2
k,sds

)]
. (47)

For the sake of exemplification and consistency with our earlier numerical analysis in Section

3, we focus on a model with constant interest rates, however this is not intended to be a restric-

tion. Note that when converting into the real world without the artificial asset, we project the

optimal policy from the 2-dimensional space of assets, with the artificial one included, onto the

1-dimensional space of feasible assets and the optimal policy is given by (32). Based on this set-up,

we get from (34)

Ψt,s = ln
X∗s
X∗t

= r (s− t)− ln
Ls
Lt

=

(
r − ξ1,1

2
− ξ2,2

2

)
(s− t) +

ξ1,1

2(ξ2
1,1 + ξ2

1,2)

(
θ2

1,s − θ2
1,t

)
+

1

2ξ2,2

(
θ2

2,s − θ2
2,t

)
+

(
1

2
+

κ1,1ξ1,1

ξ2
1,1 + ξ2

1,2

)∫ s

t
θ2

1,udu+

(
1

2
+
κ2,2

ξ2,2

)∫ s

t
θ2

2,udu

−κ1,1µθ1ξ1,1

ξ2
1,1 + ξ2

1,2

∫ s

t
θ1,udu−

κ2,2µθ2
ξ2,2

∫ s

t
θ2,udu+

ξ1,2√
ξ2

1,1 + ξ2
1,2

∫ s

t
θ1,udW2,u, (48)

which amounts to a multivariate (two-factor) extension of the classical Ornstein–Uhlenbeck driven

stochastic volatility model studied in, e.g., Scott (1987), Stein and Stein (1991) and Schöbel and

Zhu (1999). Thinking in terms of model tractability, what is convenient about this model is that
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the conditional distribution of each of
(∫ s
t θk,udu, θk,s

)
given Ft is bivariate normal. We also know

from Li and Wu (2019) the conditional Laplace transform of
∫ s
t θ

2
k,udu given θk,s and

∫ s
t θk,udu.

Based on these, we derive in Section EC.3 of the paper’s e-companion our own simulation scheme

of the one-factor model Ψ̄t,s, which we can use in order to simulate Ψ̄t,s by independence of{(∫ s
t θk,udu,

∫ s
t θ

2
k,udu, θk,s

)}
k=1,2

.

For ease of comparison with the probability hedge under the basic model of Section 2, we

consider the same four long-term investors with utility parameter values ρ = −0.25, −1, −4 and

−10, respectively, corresponding to a pattern of increasing risk-aversion. As before, each of them

invests a total of x0 = 10,000 in stocks and a risk-free inflation bond with an investment horizon of

30 years. We focus on a logarithmic utility hedge (see also corresponding lower and upper bounds

in Table 3) and aim to see how Pt (X∗T ∈ [GL, GU ]), which determines the optimal constrained

strategy (see Corollary 10), evolves under the model of this section. To this end, using as our

basis the estimation of Gerrard et al. (2020), we fix certain parameter values of the traded asset:

κ1,1 = 0.32111, that is, a reasonably slow mean-reversion, aiming to make more discernible the

particular model feature; in addition, we set θ1,0 = 0.15625, µθ1 = 0.15625 and r = 0 for consistency

with our basic one-factor model in the previous sections. (Qualitatively, our results did not vary

when we assumed a faster speed of mean-reversion estimate.) We then carry out a sensitivity

analysis for varying volatility τ1 of the risk premium θ1. We present in Figure 3 our results for the

distribution of the probability hedge at each point in time across ρ = −0.25, −1, −4 and −10 (top

to bottom), and ξ1,1 = %τ1, where % = 0.03 and τ1 = 0.05, 0.1 and 0.2 (left to right).

Comparing with the analysis in Section 3.4, the qualitative behaviour of the term structure

of the probability and its characteristics do not exhibit, generally, abnormal changes; especially

for risk-averse investors. We rather mostly observe differences in the numerical details which are

enabled by the more flexible modelling as the evolution of the probability is now determined not

only by the wealth, but also by the risk premium process. While this increases the problem

dimensionality, it relaxes potential pressure of parameter time-dependence. More specifically, as

in the constant θ case, for the risky investor the mean probability is around half every year.

Increasing τ1 has a boosting effect on the skewness and excess kurtosis; indeed, comparing with

the case of constant market risk premium (see the left side of Figure 1), both quantities become

more significantly positive and increasing with risk premium uncertainty. Therefore, a more volatile

risk premium implies a fatter-tailed distribution to the right for the probability of wealth to remain

constrained – which is required in an efficient hedging strategy – especially for our risky investor

with a large lower-upper bound range. Although the same upward-shifting effect on the skewness

and kurtosis due to increasing τ1 is observed for more risk-averse investors, this diminishes, i.e., the

impact of risk premium uncertainty fades away, with increasing risk-aversion, which quite naturally

becomes the primary factor driving the hedge – the mean probability becomes smaller with the

lower and upper bound close to each other – as the investors become less willing to take additional

risk. All in all, accounting for additional sources of randomness is mainly important for risk-takers

with an obvious reflection of their optimal hedging strategy.

4.4. A heuristic strategy

As previously, we assume the same investment horizon of 30 years and four long-term investors.

We reconsider the original unconstrained logarithmic utility hedge with an associated optimal

investment strategy (31) in risky assets. Following standard human capital theory, pension savers
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Figure 3: Probability hedge distribution evolution, Pt (X∗T ∈ [GL, GU ]), under logarithmic utility for investors with
different level of risk-aversion controlled by parameter ρ, and resulting bounds GL and GU as in Table 3, and for
varying volatility τ1 of the stochastic risk premium process θ1. The probability distribution estimates are based on
simulation of the model defined in (48). Other parameter values: θ1,0 = 0.15625, κ1,1 = 0.32111, µθ1 = 0.15625,
ξ1,1 = %τ1, where % = 0.03 and τ1 = 0.05, 0.1 and 0.2 (left to right), r = 0, x0 = 10,000, T = 30 years.
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should invest according to their available funds, while many pension schemes do not allow more

than 100% investment in risky assets. This is often a legal constraint, but it can also be strategic.

Černý and Melicherč́ık (2020) deal with this type of constraint and present a simple near-optimal

strategy that takes this into account. Therefore, we cap the amount in the risky asset by the

available wealth and define

$∗t = min (π∗t , X
∗
t ) = π∗t 1{π∗t≤X∗t } +X∗t 1{π∗t>X∗t }

and the associated adjusted wealth process

X ∗t = X∗t 1{π∗t≤X∗t } +
σ

θt
X∗t 1{π∗t>X∗t }.

(A variant of the above could allow for 100β%, β ∈ (0, 1], investment of wealth in the risky asset for

a number of years before imposing the capped rule.) The regime-switching in this case depends on

the stochastic risk premium process θ; as we have seen, each utility has its own rules for switching.

In addition, we experiment here by imposing our upper and lower bounds aiming to improve on

the risk:

X̃t = min (GU ,max (GL,X ∗t )) .

We examine the usual four levels of risk-aversion: low with ρ = −0.25, −1, −4 and −10 as

the highest. We simulate and compare the resulting terminal reward X̃T we have heuristically

constructed against our original X̃T in terms of certainty equivalence. Table 5 shows that the

latter outperforms fairly moderately the heuristic approach for low and medium levels of risk-

aversion, while with high risk-aversion the outperformance becomes more noticeable. In addition,

as noted in the previous section, the impact of risk premium uncertainty decreases as risk-aversion

increases. Although the discrepancies between the two become generally more pronounced with

a more volatile risk premium (larger τ), it could be argued that they are not particularly large,

consistently with our earlier conclusion from our numerical results when incorporating our bounds-

based trade-off. We have also observed that the relative mix of risky assets and bonds in the optimal

portfolio shifts progressively towards the risky asset in the medium term, after which there is a

substitution towards bonds until it roughly stabilizes by the end of the 30-year period (especially

for a more volatile risk premium). This resembles a pattern observed over time in the so-called

stochastic lifestyling phenomenon (Cairns et al., 2006, Černý and Melicherč́ık, 2020).

Heuristic with bounds CE Optimal with bounds CE

τ 0.05 0.1 0.2 0.05 0.1 0.2
ρ = −0.25 12,123 12,400 14,776 12,961 13,813 16,126
ρ = −1 11,267 11,490 13,183 11,836 12,466 14,319
ρ = −4 10,384 10,456 11,037 10,540 10,736 11,396
ρ = −10 10,155 10,199 10,406 10,218 10,305 10,547

Table 5: Certainty equivalents of the heuristic and optimal strategies under logarithmic utility for investors with
different level of risk-aversion controlled by parameter ρ and for varying volatility τ of the stochastic risk premium
process θ. “Optimal with bounds CE” entries correspond to the certainty equivalent (CE) of X̃T ; “heuristic with
bounds CE” entries correspond to the CE of X̃T . Other parameter values: GL and GU as in Table 3, σ = 0.16,
θ0 = 0.15625, κ = 0.32111, µθ = 0.15625, ξ = %τ , where % = 0.03 and τ = 0.05, 0.1 and 0.2 (left to right), r = 0,
x0 = 10,000, T = 30 years.
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5. Concluding discussion

Consider a clever practitioner working in the machine room that delivers better future pensions

for their long-term saver clients. It is key that professionals implementing new ideas have a hands-

on type of intuition of what hedging does to the money under management. In this paper, we

discover that a financial hedging strategy that fits in with this goal is possible, providing a better

distribution of the terminal wealth than traditional hedging approaches.

More specifically, inspired by Merton’s (2014) vision for long-term saving “through clear and

meaningful communication and simplicity of choices”, we develop a system with double bounds

whereby a fund manager offers the savers the option to choose their minimum guarantee for the

terminal reward, subject to a budget constraint and an upper bound which is set, by assumption,

to be achieved half of the time. We make general assumptions for the utility of the investor and

the random driving factors, and study the transition from unhedged to constrained allocation

strategies, which we prove that are linked via the probability of landing up within the bounds.

This probability determines the optimal investment strategy (the financial hedge) for the long-term

saver. We dub this probability hedging and show how the probability measure varies with different

underlying utility functions.

We find that, under a constrained strategy, the impact of the fund manager’s belief about

the underlying utility is minimal, even if this differs from the consumer’s unknown risk profile.

However, more pivotal are the practical consequences from the particular assumption of a loga-

rithmic utility. We prove that the probability hedging under this assumption takes place under

the physical measure. We also show that across investors with different risk preferences, this can

result in high lower guarantee as well as best-case outcome and minimal reduction in terms of

certainty equivalence compared to a hypothetical correctly matched hedge for the investor. We

also investigate the effect of additional sources of randomness, such as a stochastic risk premium.

This more flexible modelling enables some changes in the distribution of the probability of wealth

to remain constrained, which is the main determinant of the optimal constrained strategy. In

particular, we notice a fatter tailed distribution with increasing volatility of risk premium, which

is more obvious for risky savers. This impact of the risk premium uncertainty fades away with

increasing risk-aversion.

We conclude by mentioning potential future add-ons. Blanchet-Scalliet et al. (2008) study the

influence of exit time uncertainty on portfolio selection for investors. Unlike studies dedicated to

rather non-actuarial institutional investors, an interesting question for a pension fund is the extent

to which our theoretical framework can be adapted upon introducing mortality risk. Battocchio

et al. (2007) study the fund wealth during the accumulation and post-retirement payout phases as

well as introduce a demographic dimension. Whilst it is beyond the scope of the current paper how

the consumers allocate their wealth after retirement, the introduction of mortality risk during the

accumulation phase and its potential effect on the construction of a probability hedge is an inter-

esting avenue which we study as part of a separate research. Finally, the investigation of strategies

related to maximization of a utility criterion when constraints are imposed on intermediate dates

(see El Karoui et al., 2005) or of the probability of beating a stochastic benchmark (see Browne,

1999a,b) are certainly challenging and additional new problems by themselves. The original con-

tributions rely on basic market model assumptions; inclusion of multiple stochastic factors and

American-type guarantees inevitably add to the problem intractability and implementation, but
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also the ideas themselves to the pension communication challenge.
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E-companion to “On optimal constrained investment strategies for long-term

savers in stochastic environments and probability hedging”

EC.1. Supplementary figures
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Figure EC.1: Certainty equivalent maximization for different constrained strategies. We exhibit the certainty equiva-
lent CE as a function of the lower bound GL focusing on the peak which corresponds to the outcome from expression
(26), based on the procedure described in Section 2.3, for different driving utilities (power with parameter γ, loga-
rithmic and exponential) as indicated on the plots.

EC.2. Proofs

Proof of Proposition 1. From (5),

F (α)(x, t) = S(α)
t

[
Υ
(
λ0L

(θ)
T

)
≤ x

]
= S(α)

t

[
θ
(
W

(α)
T −W (α)

t

)
≤ lnλ− lnU ′(x)− θWt + αθ(T − t)

]
from which (10) follows. It then follows from (10) that

S(α)
t (X∗T ∈ [GL, GU ]) = F (α)(GU , t)− F (α)(GL, t).

Proof of Proposition 2.
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i) We have from (6) that

X∗t = e−r(T−t)EQt [X∗T ] = e−r(T−t)EQt
[
Υ
(
λ0L

(θ)
T

)]
= e−r(T−t)EQt

[
Υ
(
λe−θ(W

Q
T−W

Q
t )−θWt+θ2(T−t)

)]
,

from which (11) follows.

ii) From (8),

X̃t = e
−r(T−t)
t EQt

[
min

{
GU ,max

{
GL,Υ

(
λ0L

(θ)
T

)}}]
= e−r(T−t)

(
GU

[
1− F (θ)(GU , t)

]
+GLF

(θ)(GL, t) +

∫ GU

GL

xf (θ)(x, t) dx

)
,

where f (θ)(x, t) is the corresponding density. (13) follows by straightforward calculus.

Proof of Theorem 4. From (13),

dX̃t = rX̃t dt− e−r(T−t)
∫ GU

GL

dx dF (θ)(x, t),

where, using Itô calculus,

dF (θ)(x, t) = φ

(
lnλ− lnU ′(x)− θWt + θ2(T − t)

θ
√
T − t

)
×

{(
lnλ− lnU ′(x)− θWt

2θ(T − t)
3
2

− θ

2
√
T − t

)
dt− dWt√

T − t

− lnλ− lnU ′(x)− θWt + θ2(T − t)
2θ(T − t)

3
2

dt

}

= − 1√
T − t

φ

(
lnλ− lnU ′(x)− θWt + θ2(T − t)

θ
√
T − t

)
(θ dt+ dWt).

We conclude that

dX̃t = rX̃tdt+ e−r(T−t)I (t;Wt, λ) (θ dt+ dWt) ,

where

I(t;Wt, λ) =
1√
T − t

∫ GU

GL

φ

(
lnλ− lnU ′(x)− θWt + θ2(T − t)

θ
√
T − t

)
dx

= −θ
∫ K(GU ,t;Wt,λ)+θ

√
T−t

K(GL,t;Wt,λ)+θ
√
T−t

φ(x)λH (x, t;Wt) Υ′ (λH (x, t;Wt)) dx

and the second equality follows by a variable change withH given by (12). Finally, from Υ (U ′(x)) =

x, we deduce that Υ′ (U ′(x)) = 1/U ′′(x) and

−U ′(x)Υ′
(
U ′(x)

)
= − U

′(x)

U ′′(x)
=

1

A(x)
, or − aΥ′(a) =

1

A (Υ(a))
,

from which (24) follows. Equation (1) then implies (23).

Proof of Corollary 5.
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Exponential utility. A comparison of (15) and (1) shows that the investment strategy π∗ which

generates this process is

π∗t =
θ

ξσ
e−r(T−t).

Then, from (24), and given U ′(x) = e−ξx, U ′′(x) = −ξe−ξx, A(x) = ξ, we have that

I(t;Wt, λ) =
θ

ξ

{
Φ
(
K (GU , t;Wt, λ) + θ

√
T − t

)
− Φ

(
K (GL, t;Wt, λ) + θ

√
T − t

)}
=

θ

ξ
S(θ)
t (X∗T ∈ [GL, GU ])

which follows from (10). This, finally, implies that

π̃t =
θ

ξσ
e−r(T−t)S(θ)

t (X∗T ∈ [GL, GU ]) = π∗t S
(θ)
t (X∗T ∈ [GL, GU ]) .

Power utility. From (17), we get that

π∗t =
θ(η + 1)

σ
X∗t .

Given U ′(x) = x−1/(η+1), U ′′(x) = −x−(η+2)/(η+1)

η+1 , A(x) = x−1

η+1 ,Υ(a) = a−(η+1), and hence A ◦
Υ(a) = aη+1

η+1 , we get that

I(t;Wt, λ) =
θ(η + 1)e

(η+1)(θWt−θ
2(T−t))

η+1

λη+1

∫ K(GU ,t;Wt,λ)+θ
√
T−t

K(GL,t;Wt,λ)+θ
√
T−t

exp
(
−1

2x
2 + θ(η + 1)

√
T − tx

)
√

2π
dx

= θ(η + 1)X∗t e
r(T−t)

{
Φ
(
K (GU , t;Wt, λ)− ηθ

√
T − t

)
−Φ

(
K (GL, t;Wt, λ)− ηθ

√
T − t

)}
,

implying

π̃t = π∗t S
(−ηθ)
t (X∗T ∈ [GL, GU ]) .

Logarithmic utility. This follows from the power utility case for η = 0.

Proof of Corollary 6. From (13) and (10), we have that

X̃t = e−r(T−t)
(
GU −

∫ GU

GL

Φ

(
lnx

%
+$

)
dx

)
= e−r(T−t)

[
GU

(
1− Φ

(
lnGU
%

+$

))
+GLΦ

(
lnGL
%

+$

)
+

1

%

∫ GU

GL

φ

(
lnx

%
+$

)
dx

]
,

where

% := θ(η + 1)
√
T − t and $ :=

lnλ− θWt + θ2(T − t)
θ
√
T − t

.

In addition from (23),

π̃t =
θ(η + 1)e−r(T−t)

σ%

∫ GU

GL

φ

(
lnx

%
+$

)
dx.
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This implies that

X̃t = e−r(T−t)
[
GU

(
1− Φ

(
lnGU
%

+$

))
+GLΦ

(
lnGL
%

+$

)]
+

σ

θ(η + 1)
π̃t

>
σ

θ(η + 1)
π̃t =

X∗t
π∗t
π̃t,

where the last equality follows from (25). This result encompasses also the special case of the

logarithmic utility function with η = 0.

Lemma 11. Define

f(u) =

∫ ∞
0

a cos au+ sin au

πa(1 + a2)
da.

Then,

f(u) =

{
1
2 , if u > 0

eu − 1
2 , if u < 0

.

Proof. First consider the case u > 0. For δ > 0, δ 6= 1, the one-sided Laplace transform of f(u)

is given by

f̃(δ) =

∫ ∞
0

e−δu
∫ ∞

0

a cos au+ sin au

πa(1 + a2)
dadu

=

∫ ∞
0

1

πa(1 + a2)

∫ ∞
0

e−δu
(
a

2

(
eiau + e−iau

)
+

1

2i

(
eiau − e−iau

))
duda

=
1 + δ

π

∫ ∞
0

da

δ2 − 1

(
1

1 + a2
− 1

δ2 + a2

)
=

1

2δ
.

We therefore conclude that f(u) = 1
2 if u > 0. Now consider u < 0. In this case,

f̃(δ) =

∫ 0

−∞
eδu
∫ ∞

0

a cos au+ sin au

πa(1 + a2)
dadu =

∫ ∞
0

e−δv
∫ ∞

0

a cos av − sin av

πa(1 + a2)
dadv

=

∫ ∞
0

1

πa(1 + a2)

∫ ∞
0

e−δv
(
a

2

(
eiav + e−iav

)
+

1

2i

(
e−iav − eiav

))
dvda

=
δ − 1

π

∫ ∞
0

da

δ2 − 1

(
1

1 + a2
− 1

δ2 + a2

)
=

1

δ + 1
− 1

2δ
.

This time we conclude that f(u) = eu − 1
2 when u < 0.

Proof of Proposition 7.

1. We have that

e−iagU,T − e−iagL,T
2πa(a− i)

=
1

2πa(a2 + 1)
{a (cos agU,T − cos agL,T )− ia (sin agU,T − sin agL,T )

+i (cos agU,T − cos agL,T ) + (sin agU,T − sin agL,T )} .

The two imaginary terms are odd functions of a. Therefore, when we add to them the

equivalent ones with a replaced by −a, we obtain

χT (a) =
a (cos agU,T − cos agL,T ) + (sin agU,T − sin agL,T )

πa(a2 + 1)
, (EC.1)

from which the first statement becomes obvious.
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2. Now

sin agU,T − sin agL,T
a

=

∫ gU,T

gL,T

cos aθdθ, cos agU,T − cos agL,T = −a
∫ gU,T

gL,T

sin aθdθ.

Noting that gU,T − gL,T = ln(GU/GL), this gives us

|χT (a)| ≤
(gU,T − gL,T )(1 + a)

π(1 + a2)
≤ 1 + a

π
ln
GU
GL

. (EC.2)

In addition, it is straightforward to see that∣∣∣∣a (cos agU,T − cos agL,T )

a(a2 + 1)

∣∣∣∣ ≤ 2

a2
and

∣∣∣∣sin agU,T − sin agL,T
a(a2 + 1)

∣∣∣∣ ≤ 2

a3
. (EC.3)

Then, based on (EC.1) and by combining (EC.2)–(EC.3), we obtain the second statement.

3. From the second statement, we have that∫ ∞
0
|χT (a)|da ≤ C

(∫ 1

0
(1 + a) da+

∫ ∞
1

(a−2 + a−3) da

)
= 3C,

where C = π−1 max{2, ln(GU/GL)}. Since the integral is absolutely convergent, it is per-

missible to interchange the integral sign and the expectation (first equality in the third

statement) and the second equality then follows.

4. From (EC.1) and Lemma 11,

∫ ∞
0

χT (a)da = f(gU,T )− f(gL,T ) =


egU,T − egL,T , if 0 > gU,T > gL,T

1− egL,T , if gU,T > 0 > gL,T

0, if gU,T > gL,T > 0

,

therefore

0 ≤
∫ ∞

0
χT (a)da ≤ egU,T − egL,T = λ0(GU −GL)e−Ψ0,T . (EC.4)

Then,

GLEPt [e−Ψt,T ] +
eΨ0,t

λ0

∫ ∞
0
EPt [χT (a)] da = GLEPt [e−Ψt,T ] +

∫ ∞
−∞

ε(a)Nt(a)Ht(a)da = X̃t

from (40), but also from (EC.4)

X̃t ≤ GUEPt [e−Ψt,T ].

Proof of Lemma 8. For the first statement,

ε−1E [Q1Q<ε] = FQ(ε) + ε−1

∫ ε

0
FQ(dq) ≤ 2FQ(ε).

The second statement is true even without the factor of n−1 – the sequence {E[Q1{m≤Q<m+1}]}m
sums to E[Q] <∞, therefore

∑∞
m=n E[Q1{m≤Q<m+1}] approaches 0 as n→∞.
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Proof of Theorem 9. Let

Zt := EPt
[
eiaΨ0,T

]
= EPt

[
exp

(
ia

∫ T

0
rs ds+ ia

∫ T

0
θ>s dWs +

1

2
ia

∫ T

0
θ>s θs ds

)]
,

which is a martingale. Then, given Ht defined in (39), we have that

Zt = exp

(
ia

∫ t

0
rs ds+ ia

∫ t

0
θ>s dWs +

1

2
ia

∫ t

0
θ>s θs ds

)
Ht,

from which

lnHt = lnZt − ia
(∫ t

0
rs ds+

∫ t

0
θ>s dWs +

1

2

∫ t

0
θ>s θs ds

)
. (EC.5)

Given the general form of Ht in (42), we have for the last term that

d(θ>t D(T − t, a)θt) = −θ>t Ḋ(T − t, a)θtdt− 2θ>t D(T − t, a)K(θt − µθ)dt

+2θ>t D(T − t, a)Ξ dWt + tr
(

Ξ>D(T − t, a)Ξ
)
dt,

with Ḋ(s, a) denoting the element-wise derivative of D(s, a) with respect to s. Therefore, we get

that

d lnZt = iartdt+ iaθ>t dWt +
1

2
iaθ>t θtdt+ Ȧ(T − t, a)dt+ Ḃ(T − t, a)rtdt

−B(T − t, a)
[
ζr(µr − rt) dt+ σ>r dWt

]
+ Ċ(T − t, a)>θtdt

−C(T − t, a)> [−K(θt − µθ)dt+ ΞdWt] +
1

2
θ>t Ḋ(T − t, a)θtdt

+θ>t D(T − t, a)K(θt − µθ)dt− θ>t D(T − t, a)ΞdWt −
1

2
tr
(

Ξ>D(T − t, a)Ξ
)
dt

=
[
ia+ Ḃ(T − t, a) + ζrB(T − t, a)

]
rtdt+

1

2
θ>t

[
iaI + Ḋ(T − t, a) + 2D(T − t, a)K

]
θtdt

+
[
Ċ(T − t, a)> + C(T − t, a)>K − µ>θ K>D(T − t, a)

]
θtdt

+

[
Ȧ(T − t, a)− ζrµrB(T − t, a)− C(T − t, a)>Kµθ −

1

2
tr
(

Ξ>D(T − t, a)Ξ
)]
dt

−
[
−iaθ>t +B(T − t, a)σ>r + C(T − t, a)>Ξ + θ>t D(T − t, a)Ξ

]
dWt,

where I denotes the identity matrix and Ȧ(s, a), Ḃ(s, a), Ċ(s, a) the (element-wise) derivatives of

A(s, a), B(s, a), C(s, a) with respect to s. Then,

dZt
Zt

= d lnZt +
1

2

∣∣∣θ>t (−iaI +D(T − t, a)Ξ) +B(T − t, a)σ>r + C(T − t, a)>Ξ
∣∣∣2 dt.

Furthermore, from (43),

E(T − t, a) = B(T − t, a)σr + Ξ>C(T − t, a) + Ξ>D(T − t, a)θt,

resulting in
dZt
Zt

= d lnZt +
1

2
(E(T − t, a)− iaθt)>(E(T − t, a)− iaθt)dt.
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Since Z is a martingale, we require

0 = ia+ Ḃ(s, a) + ζrB(s, a),

O = iaI + Ḋ(s, a) + 2D(s, a)K + (−iaI +D(s, a)Ξ)
(

Ξ>D(s, a)− iaI
)
,

0 = Ċ(s, a)> + C(s, a)>K − µ>θ K>D(s, a) +
[
B(s, a)σ>r + C(s, a)>Ξ

] [
−iaI + Ξ>D(s, a)

]
,

0 = Ȧ(s, a)− ζrµrB(s, a)− C(s, a)>Kµθ −
1

2
tr
(

Ξ>D(s, a)Ξ
)

+
1

2

[
B(s, a)σ>r + C(s, a)>Ξ

] [
Ξ>C(s, a) +B(s, a)σr

]
,

where 0 and O represent, respectively, the zero vector and the zero matrix. The first equation

solves as

B(s, a) = −iaζ−1
r

(
1− e−ζrs

)
,

whereas the others are harder and one has to resort to numerical solutions. Once we have solved

the equations, we have

dZt = −Zt [−iaθt + E(T − t, a)]> dWt.

Revisiting now (EC.5), we can say that

d lnHt = d lnZt − ia
(
rt dt+ θ>t dWt +

1

2
θ>t θt dt

)
= − (−iaθt + E)> dWt −

1

2
(−iaθt + E)>(−iaθt + E) dt− ia

(
rt dt+ θ>t dWt +

1

2
θ>t θt dt

)
= −E>dWt − iart dt+

1

2
(a2 − ia)θ>t θtdt+ iaE>θt −

1

2
E>E dt

and, therefore,

dHt

Ht
= −E(T − t, a)> dWt − iart dt+

1

2
(a2 − ia)θ>t θt dt+ iaE(T − t, a)>θt dt. (EC.6)

Finally,

d(HN)t = HdNt +NdHt + d〈N,H〉t

= HN

{
(1 + ia)

(
rt dt+ θ>t dWt

)
+

1

2
(1 + ia)(2 + ia)θ>t θtdt− iartdt

+
1

2
(a2 − ia)θ>t θtdt+ iaE>θtdt− E>dWt − (1 + ia)E>θtdt

}
= HN

{
rtdt+ [(1 + ia)θt − E]> (θtdt+ dWt)

}
. (EC.7)

From (EC.6)–(EC.7), we get for X̃ in (41)

dX̃t = GLHt(i)
{
rt dt− E(T − t, i)>(θt dt+ dWt)

}
+

∫ ∞
−∞

ε(a)Ht(a)Nt(a)
{
rt dt+ [(1 + ia)θt − E(T − t, a)]> (θt dt+ dWt)

}
,

from which (44) follows. Then, a comparison with (33) yields (45). This completes the proof.
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Proof of Corollary 10. We have that

Pt (X∗T ∈ [GL, GU ]) = Pt[gL,t ≤ Ψt,T ≤ gU,t] =
1

2π

∫ ∞
−∞

i

a
(e−ia lnGU − e−ia lnGL)e−ia lnλ0+iaΨ0,tHt(a) da

= λ0e
−Ψ0,t

∫ ∞
−∞

(1 + ia)ε(a)Nt(a)Ht(a) da.

Therefore,

Pt (X∗T ∈ [GL, GU ]) (π∗t )
>Σt =

[∫ ∞
−∞

(1 + ia)θtε(a)Nt(a)Ht(a) da

]>
and, from (45), the result (46) follows.

EC.3. The conditional behaviour of {θu : t ≤ u ≤ s} and the simulation of Ψ̄t,s

Consider the model of general form

Ψ̄t,s = β0 (s− t) + β1Kt,s + β2Jt,s + β3

(
θ2
s − θ2

t

)
+
√
β4Jt,sZ, (EC.1)

where s > t, Z ∼ N (0, 1), Kt,s :=
∫ s
t θudu, Jt,s :=

∫ s
t θ

2
udu and

θs = µ+ (θt − µ) e−κ(s−t) +

√
ξ2

2κ

(
1− e−2κ(s−t)

)
Z̃, (EC.2)

where Z̃ ∼ N (0, 1) is independent of Z.

EC.3.1. Conditional distribution of
∫ s
t θu du given θs

The vector (θs,Kt,s)
> has a bivariate normal distribution with expectations(

m(s)

mK(s)

)
=

(
yt,s 1− yt,s

1
κ(1− yt,s) 1

κ(1− yt,s)(ht,s − 1)

)(
θt

µ

)
(EC.3)

and covariance matrix

Σ =
ξ2(1− yt,s)

2κ2

(
κ(1 + yt,s) 1− yt,s

1− yt,s 1
κ(2ht,s − 3 + yt,s)

)
, (EC.4)

where yt,s := exp(−κ(s− t)) and ht,s := κ(s− t)/(1− yt,s) = − ln yt,s/(1− yt,s).
It is a standard result that (Kt,s| θs) is normal with

Et[Kt,s | θs] = µ(s− t) +
1− yt,s

κ(1 + yt,s)
(θt + θs − 2µ)

and

Vart[Kt,s | θs] =
ξ2

κ3(1 + yt,s)
[κ(1 + yt,s)(s− t)− 2(1− yt,s)] .
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EC.3.2. Conditional expectation of
∫ s
t θ

2
u du given θs and

∫ s
t θu du

For any w ∈ (t, s), the vector
(
θw, θs,

∫ s
t θu du

)>
is a trivariate normal random variable with

expectations  m(w)

m(s)

mK(s)

 =

 µ+ yt,w(θt − µ)

µ+ yt,s(θt − µ)

µ(s− t) + 1
κ

(
1− yt,s

)
(θt − µ)


and covariance matrix

Σ =
ξ2

2κ2

 κ
(
1− y2

t,w

)
κyw,s

(
1− y2

t,w

) (
1− yt,w

)(
2− yw,s − yt,s

)
κyw,s

(
1− y2

t,w

)
κ
(
1− y2

t,s

) (
1− yt,s

)2(
1− yt,w

)(
2− yw,s − yt,s

) (
1− yt,s

)2
2(s− t)− 4

κ(1− yt,s) + 1
κ(1− y2

t,s)

 .

Let’s denote by N(w) the inverse of Σ. Then, the joint density of (θw, θs,Kt,s)
> takes the form

κ exp

(
−1

2

[
nww(θw −m(w))2 + 2nws(θw −m(w))(θs −m(s)) + 2nwk(θw −m(w))(Kt,s −mK(s)) + · · ·

])
,

where κ is a constant and the remaining terms are ignored being irrelevant to the aim of working

out the conditional distribution of θw given both θs and Kt,s. Focusing on the above exponent, we

can write that as

1

2

[
nwwθ

2
w − 2θw (nwwm(w)− nws(θs −m(s))− nwk(Kt,s −mK(s))) + · · ·

]
,

from which the conditional distribution of θw given θs and Kt,s is normal with variance

Vart [θw| θs,Kt,s] =
1

nww(w)

and expectation

Et[θw | θs,Kt,s] := e(w) := m(w)− nws(w)

nww(w)

(
θs −m(s)

)
− nwk(w)

nww(w)

(
Kt,s −mK(s)

)
.

Assuming we can invert the covariance matrix, we get

Et
[∫ s

t
θ2
u du

∣∣∣∣ θs,Kt,s

]
=

∫ s

t

(
1

nww(w)
+ e2(w)

)
dw,

where

1

nww
=

ξ2(1− φ)
[
(1 + φ)(φ2 − y2

t,s)ht,s − 4φ(φ− yt,s)
]

2κ(1− yt,s)φ2
[
(1 + yt,s)ht,s − 2

] , (EC.5)

nws
nww

=
(1− φ)

[
φ+ yt,s − yt,s(1 + φ)ht,s

]
(1− yt,s)φ

[
(1 + yt,s)ht,s − 2

] , (EC.6)

nwk
nww

= − κ(1− φ)(φ− yt,s)
(1− yt,s)φ

[
(1 + yt,s)ht,s − 2

] (EC.7)

and φ = φ(w) := exp(−κ(w − t)). Noting that only m(w) and φ(w) depend on w and since the

above expressions all involve φ, though none w, it is worth changing the variable of integration to

get
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Et
[∫ s

t
θ2
u du

∣∣∣∣ θs,Kt,s

]
= E1 + E2, (EC.8)

where

E1 :=

∫ 1

yt,s

dφ

κφnww
=
ξ2
[
8− 5ht,s(1 + yt,s) + h2

t,s(1 + y2
t,s)
]

2κ2
[
(1 + yt,s)ht,s − 2

]
and

E2 :=

∫ 1

yt,s

(
µ+ φ(θt − µ)− nws

nww

(
θs −m(s)

)
− nwk
nww

(
Kt,s −mK(s)

))2 dφ

κφ
. (EC.9)

Upon substituting (EC.6)–(EC.7) in (EC.9) and defining

A = θt +
Θ̃s(1− yt,sht,s)− K̃t,s

(1− yt,s)
[
(1 + yt,s)ht,s − 2

] , B =
−Θ̃s(1− yt,s) + K̃t,s(1 + yt,s)

(1− yt,s)
[
(1 + yt,s)ht,s − 2

] ,
C =

yt,s

(
Θ̃s(ht,s − 1)− K̃t,s

)
(1− yt,s)

[
(1 + yt,s)ht,s − 2

] , Θ̃s = θs − yt,sθt, K̃t,s = κKt,s − (1− yt,s)θt,

we get the simplified expression

E2 =

∫ 1

yt,s

(
Aφ2 + Bφ+ C

)2
κφ3

dφ

=
1

2

(
A2 +

C2

y2
t,s

)
(1− y2

t,s) + 2B
(
A+

C
yt,s

)
(1− yt,s) + (B2 + 2AC)ht,s(1− yt,s).

EC.3.3. Simulation scheme for Ψ̄t,s

The algorithm next is suggested. Assuming that we have already the simulated value θ̂nδ at

time t = nδ, δ > 0, we proceed to time s = (n+ 1)δ as follows, starting with n = 0:

1. Obtain a simulated value

θ̂(n+1)δ = µ+
(
θ̂nδ − µ

)
e−κδ + Z̃n

√
ξ2

2κ
(1− e−2κδ),

where Z̃n ∼ N (0, 1).

2. Conditional on θ̂(n+1)δ, obtain a simulated value for
∫ (n+1)δ
nδ θu du (see Section EC.3.1):

K̂nδ,(n+1)δ = µδ +
1− e−κδ

κ (1 + e−κδ)

(
θ̂nδ + θ̂(n+1)δ − 2µ

)
+ Z̄n

√
ξ2

κ3
[κδ (1 + e−κδ)− 2 (1− e−κδ)],

where Z̄n ∼ N (0, 1) is independent of Z̃n.

3. Calculate the conditional expectation, E(n+1)δ, of
∫ (n+1)δ
nδ θ2

u du given θ̂(n+1)δ and K̂nδ,(n+1)δ

using the formula in equation (EC.8).

4. From (EC.1), set

̂̄Ψnδ,(n+1)δ = β0δ + β1K̂nδ,(n+1)δ + β2E(n+1)δ + β3(θ̂2
(n+1)δ − θ̂

2
nδ) + Zn

√
β4E(n+1)δ,

where Zn ∼ N (0, 1) is independent of both Z̃n and Z̄n.
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We conclude this section by noting the efficiency of the proposed simulation scheme. Although

there is some inherent bias due to the approximation of (Jt,s | θs,Kt,s) by its expected value, this

is negligible over each range (nδ, (n+ 1) δ) for sufficiently small δ. In addition, our scheme saves

considerably on computing power but also ease of use compared to the, otherwise accurate, method

of Li and Wu (2019) coupled with repeated transform inversion or the stylish general simulation

scheme of Cui et al. (2021) based on Markov chain approximations, especially when it is necessary

to generate entire sample trajectories as in our case. For brevity, we do not report here more

numerical results which illustrate this, but we can make these available upon request. If further

accuracy is needed, it is possible to expand our method by incorporating the conditional variance

of (Jt,s | θs,Kt,s), which can be derived using an extended approach of the one shown here for the

conditional mean; again, in the interest of space, details are currently omitted. Having access to

both the conditional mean and variance, one can then implement a moment-matching technique

along the lines of Chen et al. (2012), or Kyriakou et al. (2021a) when higher conditional moments

are in hand.
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