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Abstract

A unified method of flutter, dynamic stability and response 
analysis of deformable aircraft is presented. Normal modes and the 
generalised coordinate approach are used to develop the equations 
of motion. Strip theory and Theodorsen's expressions for unsteady 
lift and moment are utilised to generate the generalised 
aerodynamic forces. Theodorsen's function C(k) for harmonic motion 
is employed for the flutter analysis.

A comparison is made between generalised unsteady aerodynamic 
forces and flutter quantities obtained from lifting line theory 
and those obtained from conventional strip theory, for both a 
rigid and elastic wing undergoing binary flutter. This 
investigation shows good agreement between the two theories 
particularly at high aspect ratios and suggests that the lower 
limit of aspect ratio for good flutter prediction, using strip 
theory, is about 6.

The unified analysis is carried out on three particular 
aircraft of which two are high aspect ratio sailplanes, the 
Kestrel 22m, the tailless Ricochet and the Cranfield A1 a moderate 
aspect ratio aerobatic aircraft. A symmetric flutter analysis, 
including the effects of rigid body modes is carried out on all 
three aircraft. The Kestrel is found to suffer from classical wing 
bending/torsion flutter. The tailplane aerodynamics is seen to 
have a marginal if not stabilising influence on its flutter 
behaviour. The Ricochet in the absence of a tailplane is found to 
suffer from body freedom flutter involving coupling of the short 
period mode with the first wing bending mode. As the A1 is very 
stiff and of comparatively low aspect ratio it is found to be 
virtually flutter free.

Making use of the generalised Theodorsen's function for 
convergent motion and the current body fixed axis system, the 
analysis is extended to evaluate the short period mode of an 
aircraft. Stability derivatives using the normal classical rigid 
body approach are also used for comparison. The introduction of 
flexibility and unsteady aerodynamics is seen to have a 
destabilising influence on the short period mode. Close to the 
flutter speed, classical rigid body assumptions are found to be 
inadequate in predicting the short period characteristics of the 
Kestrel and the Ricochet, but not the relatively stiff Al. An 
unsteady wing wake is then introduced at the tailplane where this 
is seen to have a negligible effect on flutter of the Kestrel.

An analysis of the aircraft response to continuous 
atmospheric turbulence and discrete gusts is carried out using the 
Power Spectral Density method (PSD) and Statistical Discrete Gust 
method (SDG) respectively. The introduction of flexibility is seen 
to substantially increase the overall aircraft response, 
especially at subcritical speeds. From the analysis carried out on 
all the three aircraft, an SDG-PSD overlap does appear to be 
characterised in this investigation not by a 10.4 factor, but 
rather by a 10.4 plus or minus approximately 17% factor when rigid 
body modes are considered. For the flexible case this range is 
found to be plus or minus 31% factor.
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Notation

ac
non-dimensional distance from mid-chord to 

local aerodynamic centre (for steady flow) 

measured perpendicular to elastic axis, 

positive rearward, fraction of semi-chord b

ah
non-dimensional distance from mid-chord to 

elastic axis measured perpendicular to elastic 

axis, positive rearward, fraction of 

semi-chord

a0 local wing lift curve slope for a section 

perpendicular to elastic axis

a1
local tailplane lift curve slope for a section 

perpendicular to elastic axis

A normalised response quantity defined in 

Eq.(6.10)

AR aspect ratio of full wing including fuselage 

intercept, AR = s/b

Ar(t) indicial admittance to unit step input

b semi-chord of wing measured in streamwise 

direction

b semi-chord of wing measured perpendicular to 

elastic axis

c chord length

c standard mean chord (SMC)

c mean aerodynamic chord (MAC)

C(k) = F(k) + iG(k) Theodorsen's function

El flexural rigidity
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GJ torsional rigidity

h local vertical translational displacement of 

wing positive downward

he distance of centre of gravity aft of leading 

edge of mean aerodynamic chord of wing

h c
n

distance of aerodynamic centre of aircraft aft 

of leading edge of mean aerodynamic chord of 
wing

H gradient distance

H
n

static margin, stick fixed = -(SC /SC )
m L

Hy(iw) frequency response function of quantity y

H(2)(z), h '2)(z ) complex Hankel functions

Jo(z), J(Z) x
complex Bessel functions

YQ(z), Yi(z) /

i /  -1

i
y

I /Me2 
yy

I
yy aircraft pitching moment of inertia about the 

Y axis

mass moment of inertia per unit span about x 
= ba

h

V 1
rotational inertia per unit length

Ker ( ) Kernel function

k reduced frequency ub/U, fractional exponent

k
n

reduced frequency employing velocity component
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K

1

1
wt

1
T

L

L

m
q

m
w

m-
w

mf

perpendicular to elastic axis (wb/U^) 

heave spring stiffness 

pitch spring stiffness 

gust alleviation factor

wing length measured along the elastic axis, 

distance of aerodynamic centre of tailplane 

aft of aerodynamic centre of aircraft without 

tail

distance between wing trailing edge and 

tailplane leading edge

distance of aerodynamic centre of tailplane 

aft of centre of gravity of aircraft

oscillatory lift per unit length of wing,

along elastic axis, positive downward, for 

streamwise sectionsand scale length of 

turbulence

oscillatory lift per unit length of wing,

along elastic axis, positive downward, for 

sections normal to the elastic axis

- M /i
q y

- f.M/i y

- M /iw y

wing modal mass per unit length

M , M , M-
q w w

pitching moment derivatives defined in 

Eg.(4.20)
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M
q

M
w

M-w

M/2

m

M

Ma

n

N

q

non-dimensional pitching moment derivative due 

to rate of pitch M /IpUS c2
q 2 w

non-dimensional pitching moment derivative due

0 1 =to velocity increment along OZ M^/^pUSjc 

non-dimensional pitching moment derivative due
° i =2

to rate of change of w M^-pUS^c 

mass per unit length,

mass per unit length, parameter in lifting 
line theory of Davies, Ref.(11)

mach number, mass

oscillatory moment about elastic axis per unit 

length of wing, positive leading edge up for 

streamwise sections

oscillatory moment about elastic axis per unit 

length of wing, positive leading edge up for 

sections normal to the elastic axis

number of modes, parameter in lifting line 

theory of Davies, Ref.(11)

number of modes

number of strips used to represent one vortex 

cell defined in Eq.(5.3)

amplitude reduction factor of ith gust defined 

in Eq.(6.14)

Dynamic pressure p̂ll2, paramter in

lifting line theory of Davies, Ref.(11)
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qh^P,qr
generalised coordinates of heave, pitch about 

aircraft c.g. and wing flexure

generalised coordinates

2ra
non-dimensional radius of gyration of the

. 2 typical section (I^/mb )

s semi-span of wing measured perpendicular to 

free stream direction

S area of wing

t time

A

t non-dimensional time Ut/b

T torsional moment

T / e gradient of torsional moment to rotational 

deflection

T 1/2 time to half amplitude

U f ratio of quasi-steady to unsteady flutter 

speed

U freestream velocity

Uf flutter velocity

u
n

component of freestream velocity normal to 

elastic axis (Ucos A)

u0 gust intensity parameter

V /V
f' R

ratio of flutter velocity to reference 

velocity
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tS)
 O

Vh
modal velocity induced at tailplane by 

bending

wing

Va modal velocity induced at tailplane by 

torsion

wing

V volume ratio S J/Sc
T W

V
T

tailplane volume ratio S^l^/S^c

W
<3

vertical gust velocity

X distance of aerodynamic centre form aircraft 

centre of gravity

Xa non-dimensional distance from mid-chord to
inertia axis, negative rearward, fraction of 

semi-chord chord b

X distance of component centre of gravity 

overall aircraft centre of gravity

from

X,Y,Z Cartesian coordinate system as defined in 

2.2

Fig.

X,Y,Z Cartesian coordinate system as defined in 

2.2

Fig.

z complex reduced frequency, uh/U - i/ib/U = iepe

z - Z /uq q i

z - Z
w W

z • z /u
w w 1

O 0 o
z , z , z-
q w w

Force component derivatives defined 

Eq.(4.20)
in

z non-dimensional force derivative due to rate
q
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z
w

. ° 1 of pitch Z /-pUS c
q 2 w

non-dimensional force derivative due to

. . ° 1 velocity increment along OZ Z /-pUS

z-
w

non-dimensional force derivative due to rate

0 1 =of change of w Z-/-pS c
w Z w

z
T

height of tailplane above fuselage centre line

a local pitching rotation of wing measured about 

the elastic axis at streamwise sections, 

positive leading edge up

a local pitching rotation of wing measured about 

the elastic axis at streamwise sections normal 

to the elastic axis, positive leading edge up

da/dt rate of aircraft pitch

y i
individual worst case responses to a 

combination of i gusts

If defined in Eq.(6.13)

K
W

wake vortex strength distribution defined in 
Eq.(5.1)

r
n

wing circulation defined in Eq.(5.5)

r
h

wing circulation induced by heave

ra wing circulation induced by pitching rotation

<5x, <5y, 5z displacements along respective co-ordinates

8/9 gradient of deflection to applied force

dC /da
m

non-dimensional variation of pitching moment
with incidence C = M /|pU2S c

m a' 2 k  w

28



de /ac
m L

non-dimensional variation of pitching moment 

with lift Cl = L/|pU2Sw

An vertical acceleration of aircraft centre of 

gravity in terms of g

de/da rate of change of angle of downwash at 

tailplane with incidence

C mode shape of wing bending taken along the Y 

axis

*
C C/b

c.p
short period damping ratio

T) non-dimensional spanwise distance y/s

e argument of z, angle of twist

CD X CD CD N rotations about respective co-ordinates

X stability roots p + icj

Â non-dimensionalised stability roots zX

A elastic axis sweep angle, positive for sweep 

back

P mass ratio (m/npb2) , damping

longitudinal relative density parameter 

M/ipSwË

P sp short period damping

€ downstream coordinate along wake measured from 

mid-chord

P material and fluid density, modulus of z =

iepe
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[•]
[•]
[*]

subscripts

g

LLT

ST

T

W

and r defined in Eq.(B.19)

aerodynamic strip terms relating L and to a' 

and x‘ defined in Eq.(B.20)

tailplane generalised aerodynamic matrix 

including wake effects defined in Eq.(G.19)

generalised stiffness matrix

generalised mass matrix

generalised aerodynamic matrix

matrix of normal modes

matrix of shape functions

gust

lifting line theory 

strip theory 

tailplane 

wing
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1.0 INTRODUCTION

1.1 Historical Background

Aeroelasticity is the science which studies the interaction 

of aerodynamic, elastic and inertia (including gravitational) 

forces. This interaction of forces is well represented in 

Collar's1 famous triangle of forces shown in Figure 1.1. Classical 

aeroelasticity primarily deals with aircraft flutter, a self 

sustained excited oscillation, often destructive, wherein energy 

is absorbed from the air stream. Early investigations into flutter 

concentrated on component flutter such as wing-aileron and 

tailplane flutter, such occurrences can be traced back to the 

early history of flight. These investigations relied on solving 

the problems empirically. In the 1920's Frazer and Duncan? with 

their comprehensive monograph "The flutter of aeroplane wings", 

appear to be the first known investigators to solve the flutter 

problem analytically and who laid down the principles on which 

flutter investigations have been based ever since.

The 1930's saw the theoretical advancement of the field with 

the development of unsteady aerodynamic theories by Glauert? 

Wagner4 and Theodorsen? Glauert was probably the first to point 
out the dependency of these aerodynamic properties on the 

frequency parameter or the reduced frequency. These early 

two-dimensional methods were implemented in the relatively simple 

use of strip theory for wings of moderately high aspect ratios. 

Although this method has been readily accepted as a practical 

means of flutter analysis by the aviation industry for many years, 

there have been doubts recently expressed as to the validity of 

this method. With the development of lifting line theory and 

three-dimensional lifting surface theories, in the late 1960's and 

70's, such as the vortex lattice method? unsteady aerodynamics 

has been applied to low aspect ratio wings where the effects of 

finite span are critical. For a thorough systematic breakdown of 

the development of aeroelasticity, Refs.(9) and (10) provide 

interesting reading. Three-dimensional unsteady aerodynamic 

theories have been extended in some cases for tandem lifting 

surfaces11 where the strong aerodynamic coupling between the wing 

and tailplane may be critical. This is particularly true for
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variable geometry aircraft where strong wing downwash forces 

coupled with a torsionally weak fuselage initiate anti-symmetric 

tailplane flutter!2 Although conventional strip theory cannot 

predict instabilities sensitive to wing tailplane aerodynamic 

interference, it can be modified to a certain extent to 
incorporate some of these effects with some success!3

Classical flutter analysis deals predominantly with the high 

frequency dynamic interaction of inertial, elastic (structural) 

and aerodynamic forces, whereas the implementation of rigid body 

modes is restricted within the scope of low freguency dynamic 

stability investigations!4’15 However studies carried out in the 

early 1980's have again highlighted the critical role these rigid 

body freedoms play in flutter. A phenomenon known as "body freedom 

flutter", reported by Gaukroger)6 in the early fifties was 

rediscovered by Banerjee17 in a symmetric flutter analysis on the 

Ricochet, an aft swept tailless glider. This instability arises 

from the coupling of the short period pitching oscillation with 

the fundamental bending mode. The same type of instability was 

observed around the same time by Weisshaar18 for a tailed aircraft 

with forward swept wings. However Weisshaar established also an 

anti-symmetric flutter involving the roll mode. The advent of 

aeroelastic tailoring19 with structural weight always being 

minimised with new materials like composites and also the advent 

of statically unstable aircraft, like the forward sweep X29A 

aircraft, aeroelastic effects will become more significant and the 

freguency separation between the rigid-body modes and elastic 
modes will be reduced. This is particularly true for the flexible 

aircraft such as sailplanes and this has been well demonstrated in 

recent studies on a man-powered aircraft20

For aircraft of considerable flexibility, it is important to 

combine the rigid body motions with the elastic modes of 

distortion. This means combining two major disciplines of aircraft 

design namely - the stability and control on one side and the 

flutter and response on the other, as proposed by Taylor and 

Woodcock?1 In general the stability characteristics of an aircraft 
are investigated using aerodynamic derivatives14’15 and rigid-body 

assumptions only. However some authors22’23 have taken partial
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account of flexibility by using a quasi-static method or modified 

aerodynamic derivatives. The more refined and accepted programs 

that provide an integrated approach such as MSC/NASTRAN®24 utilise 

lifting surface techniques in addition to strip theory; such 

programs also encompass the supersonic region.

An integrated approach must also observe the effects of 

aircraft response to different classes of disturbance. There are 

generally two different classes of disturbance, i.e. those arising 

from the control system inputs made by the pilot or by some 
automatic device, and those arising from essentially unwanted 

disturbances such as atmospheric turbulence, buffeting and ground 

contacts. A characteristic of these unwanted disturbances is that 

they usually contain sufficient energy at the frequencies of the 

aircraft elastic modes to excite the latter to a significant 

extent, and increase the internal stresses within the structure. 

The theoretical treatment of the response to these disturbances 

must therefore take account of these modes as well as those of the 

aircraft rigid body motion. In general, response to atmospheric 

turbulence is carried out using two complementary techniques. The 

first is the Power Spectral Density (PSD) method25 which is a 

statistical approach in modelling continuous turbulence. The 

second is a discrete gust technique, e.g. developed by Jones26 

known as the Statistical Discrete Gust (SDG) method. Jones 

claims27 under certain circumstances SDG and PSD methods produce 
similar numerical results.

1.2 Aim of Current Analysis and Layout of the Work

The investigation set out in this thesis establishes an 

integrated approach to aircraft aeroelastic analysis using strip 

theory. It encompasses classical and non-classical flutter, 

aircraft dynamic stability and response analysis. The method of 

analysis is incorporated in a computer program called FLUSTAR (A 

Unified Method for the prediction of FLUtter, Dynamic STAbility 
and Response of Deformable Aircraft).

Using the above approach an aeroelastic analysis is carried 
out on three case aircraft. These are:

1) The T59H Kestrel
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2) The Ricochet

3) The Cranfield Al.

The Kestrel and the Ricochet are two high aspect ratio 

sailplanes representative of most classes of deformable aircraft 

while in contrast the Al is an aerobatic aircraft of moderate 

aspect ratio which is relatively much stiffer. The validity of 

strip theory as an aerodynamic tool in wing flutter analysis and 

the influence of sweep is initially examined, in the investigation 

in Chapter 2. In Chapter 3, a modal and then complete flutter 

analysis is carried out on each aircraft, introducing the effects 

of tailplane aerodynamics where appropriate, the relative 

contribution of the flutter modes is then observed. The effects of 

fuselage flexibility on the flutter of the Kestrel is also 

investigated in addition to an anti-symmetric analysis. A thorough 

modal analysis is undertaken on the Al, including a finite element 
model (FEM) idealisation of the rear fuselage, in an attempt to 

establish the necessary stiffnesses, prior to any flutter 

calculations. The influence of quasi-steady and full unsteady 

aerodynamics on the flutter of the Kestrel and the Ricochet is 

examined. The method of analysis is also applied to predict the 

body freedom flutter of a forward swept model. The effects of 

flexibility and unsteady aerodynamics on the short period

oscillation, stick fixed, is investigated and the results are 

found in Chapter 4. The short period characteristics are 

re-examined in Chapter 5 by incorporating a simple unsteady wake 

model and the influence of downwash on the Kestrel flutter is 

investigated. Using the Power Spectral Density (PSD) method and 

the Statistical Discrete gust (SDG) method, the response

characteristics of each aircraft to continuous turbulence and 

discrete gusts are also investigated and the results are given in 

Chapter 6. The response analysis is further expanded to

investigate the claimed SDG-PSD overlap. A summary of overall 

results from this work is presented in Chapter 7 followed by

conclusions and suggestions for further work in Chapter 8.
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1.3 Development and Scope of Current Analysis

The program FLUSTAR which stems from the current analysis, is 

the development of an existing family of aeroelastic programs, 

CFFF and later CALFUN28 (A program for CALculation of Flutter 

Speed Using Normal Modes). The CFFF and CALFUN programs are short, 

compact and completely self-contained and are written in standard 
FORTRAN. The programs calculate with a minimum amount of data, the 

flutter speed and the associated modes of high aspect ratio, 

slender wing aircraft using normal modes and unsteady aerodynamics 

in two-dimensional flow. The aircraft is represented by linear 

structural and aerodynamic theories. The structural idealisation 

includes beam and lumped mass representations of the aircraft 

whereas strip theory based on Theodorsen expressions for unsteady 

lift and moment are used in the aerodynamic idealisation.

CALFUN can utilise coupled frequencies and modes but 

considers only the cantilever wing case, while CFFF deals with 

uncoupled modes but, can include whole aircraft configurations 

with rigid body modes for a free flight flutter analysis. Although 

both programs neglect tailplane aerodynamics, CFFF has been used 

in the past to investigate the flutter characteristics of a
, # 17 ,

tailless aircraft. Tailplane aerodynamics are subsequently 

introduced into CFFF as CFFFT, which assumes the aerodynamic 

forces to be entirely generated by the wing and tailplane. Using 

CFFFT as the basic program, additional facilities are incorporated 

and the present investigation initiated the development of a 

unified method of determining the aeroelastic behaviour and 

response to turbulence of deformable aircraft.

The existing flutter analysis within CFFFT, is extended to 

evaluate the longitudinal short period mode, stick fixed, of an 

aircraft. Although lateral stability can also be considered, 

longitudinal motion is considered the more pertinent especially 

with respect to gust response problems. Control surfaces are 

assumed fixed in all the analyses undertaken in this thesis. The 

calculation of the unsteady aerodynamics due to general motion is 

achieved by employing the generalised Theodorsen function C(k) for 

non-harmonic-convergent motion, as developed by Luke and Dengler29 

(This is explained in depth in Chapter 4) . Based on a method
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given by Yates?0 modified spanwise wing and tailplane aerodynamic 

parameters aQ and at are added to augment the stability and 

flutter analyses involving finite span effects. In order to 

enhance the dynamic stability analysis and investigate the 

influence of downwash in flutter, an unsteady wake was also 

included using a simple vortex lattice method employing strip 

aerodynamics (this is dealt with in depth in Chapter 5) . These 

additional facilities are presented in the program FLUST (A 

Unified Method of FLUtter and Dynamic Stability Analysis of 

Deformable Aircraft). A summary of the development of the analysis 
is shown in Figure 1.2.

The power spectral density method of aircraft response 

analysis is carried out using both the Von Karman and Dryden forms 

of the power spectra. In this analysis transport lag effects are 

neglected and the gust is assumed to encounter the wing and 

tailplane at the same time. Using Bromwich's integral the indicial 

admittance is first obtained from the mechanical admittance or 

frequency response function. This method is implemented within 

FLUST and is fully explained in Chapter 6. A program written by 

Purcell?1 which requires the indicial admittance as one of its 

input parameters is then linked with FLUST. The worst case 

response to a pair of step gusts is then evaluated, this is 

equivalent to method 1 of Ref.(32), in the Statistical discrete 

gust method. Following this procedure the integrated program 
developed is named FLUSTAR.
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Fig. 1.1 The aeroelastic triangle of forces
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2.0 WING FLUTTER

2.1 Introduction

Flutter?3"35 is a dynamic instability. Classically, this is a 

mechanism involving the coupling of at least two degrees of 

freedom of the system. Motions in each of the participating

degrees of freedom, per se are stable, i.e. they are damped.

However when these motions are free to interact, and the fluid 

flow rate is sufficiently high, the flexible body may, in certain 

circumstances extract energy from the fluid stream. At this 

critical flow rate, known as the critical flutter speed, coupled 

oscillatory motion is sustained. At higher flow rates the 

oscillatory motion becomes divergent. There may be higher critical 

flow rates, but in the context of aircraft aeroelasticity, only 

the lowest of these is of practical importance, since when this is 

exceeded, the aircraft will (usually) be destroyed. This

phenomenon involves the coupling together of three types of 

forces, displayed in Collar's triangle of forces) namely

aerodynamic, elastic and inertia forces. In the classical wing 

flutter33 problem the two dominant degrees of freedom are provided 

by the fundamental bending and torsional modes. Wing flutter is 

perhaps the most common form of flutter. Single degree of flutter 

can occur, e.g. stall flutter, aileron buzz?3

Although there are aircraft components1 other than wings 

prone to this phenomenon this chapter deals with mainplane flutter 

only, in particular, classical bending/torsion flutter. The method 

of solution involves the use of generalised coordinates and strip 
theory.

2.1.1 Formulation of the Flutter Determinant

The use of generalised co-ordinates in aeroelastic stability 

and response calculations is well established?7"39 In this method 

the mass, stiffness and the aerodynamic matrices of an aircraft 

are expressed in terms of the generalised coordinates. Beam and 

lumped mass elements are used in the finite element idealisation 

of the aircraft to obtain the mass and stiffness matrices. The 

flutter matrix is formed by algebraically summing the generalised 

mass, stiffness and aerodynamic matrices, (see Appendix A for 

details), and assuming aerofoil oscillatory motion of the form
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the following flutter determinant can be obtainediio t e

M - u 2 [XM  1
[ • ]

= 0
L NJ L NJ

The solution of the flutter determinant is a complex double 

eigenvalue problem because the determinant is primarily a complex 

function of two unknown variables, the airspeed and the frequency. 

In the solution procedure the real and imaginary parts of the 

flutter determinant are evaluated for a range of frequencies at a 

certain airspeed. The process is repeated for a range of airspeeds 

until both the real and imaginary parts of the flutter determinant 

and hence the whole flutter determinant vanish completely. The 

procedure used is shown in Figure 2.1.

2.1.2 Strip Theory

Strip theory33 35 is used to represent the two-dimensional, 

unsteady, aerodynamic force distribution. The theory assumes that 

the loads of each spanwise station along the wing is dependent 

only upon the motion of that station at any given time. The theory 

also assumes that there is no spanwise flow along the wing. The 

wing is divided into "strips" and the aerodynamic forces upon each 

"strip" are calculated. The aerodynamic loads are based on the 

two-dimensional coefficients evaluated at the centreline of each 
section.

The study of these two —dimensional unsteady aerodynamic 

models has progressed in two directions. The first is the 

calculation of the indicial loading due to impulsive motion. This 

was first investigated by Wagner4 for incompressible flow. Later 
R.T. Jones40 and Lomax et al41 continued this line of 

investigation. The second approach is the current unsteady 

aerodynamic theory employed in this investigation, and is based on 

the calculation of the loads due to simple harmonic oscillations 

of the wing or section and was first given by Theodorsen^ The 

unsteady aerodynamic theory employed in this investigation, are 

the explicit expressions for lift and moment as provided by 

Theodorsen. The Theodorsen's function C(k) which appears in the
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expressions for lift and moment is a complex "Circulation 

function", which accounts for the effect of the oscillatory motion 

on the magnitude and phase angle of the lift vector.

A representative wing section is shown in Figure 2.2, and in 

this analysis, aerodynamic parameters are taken in streamwise 

directions. Using a method proposed by Yates30 the Theodorsen 

theory has been modified to take into account the variable section 

lift curve slope and aerodynamic centre, which takes partial 

account of finite span and compressibility effects. The effect of 

drag is considered to be small and is neglected in the analysis. 

The details of the method is given in Appendix B.

2.1.3 Lifting Surface and Lifting Line Theory

Methods for calculating generalised airforce coefficients on 

a harmonically oscillating flat plate wing in subsonic flow based 

on linearised theory have been in existence for some years?2,43 

The linearised theory is used to set up an integral equation 

relating the unknown loading distribution to the known upwash 
distribution of the wing

Wa (x,y) 1

4 Tip
L(C,T)) Ker ( x - C, y - tj) dCdfj 
S

( 2 . 2 )

where L(C,V) is the loading to be determined over the planform S, 

wa (x,y)elwt is the harmonic downwash and Ker, the known Kernel of 

this integral equation, is like an aerodynamic influence function 

giving the induced normal velocity at the surface field point x,y 

due to isolated unit loading at £ and 7). Ker contains the 

frequency and Mach number as parameters and has been expressed in 

various explicit forms for different speed regimes.

There are various methods for solving the integral equation, 

(2.2) numerically. In the one the loading distribution is replaced 

by a distribution of concentrated loads on certain lines and is 

known as the doublet lattice method3,42 whereas in the other the 

loading distribution is replaced by an approximation which is 
continuous over the wing except in the neighbourhood of its 

leading edge and is known as the lifting line theory?2,43 In 
this work the lifting line theory as presented by Davies7’44 is
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2.2.1.1 Method of Analysis

The evaluation of the generalised aerodynamic matrix (usually 

denoted by Q(i,j) in the literature) using strip theory and 

Theodorsen expressions for lift and moment is fully described and 

explained in Appendix B, which also explains the evaluation of the 

same matrix by using lifting line theory of Multhopp type. Note 

that the generalised aerodynamic matrix Q(i,j) is a complex matrix 

with each element having a real part and an imaginary part. The 

generalised aerodynamic force coefficients evaluated using either 

of these theories can then be used in the flutter analysis. Here 

attention is confined to binary flutter only, so that the wing can 

be given two degrees of freedom only, namely the heave (or plunge) 

and the pitch, to describe its flutter motion. It is assumed that 

the wing is resting on two springs; one translational with spring 

stiffness kh (giving rise to heave or plunge motion) and the other 

rotational with spring stiffness k^ (giving rise to pitching or 

torsional motion). Note that the flutter exhibited by such a model 

is analagous to the binary flutter of a two dimensional rigid 

aerofoil33 rather than to the classical bending-torsional flutter 

of an elastic cantilever wing (which is also covered later for 
comparison of results).

The dimensionless flutter speed (U / (bu )) can be defined for 

a detailed parametric investigation of the binary flutter problem 

of a wing. Bisplinghoff, Ashley and Halfman33 have produced 

legendary graphs for binary flutter showing variation of U/(bw ) 

against for a range of xa values. Non-dimensional quantities
shuch as those of Bisplinghoff are defined in the usual notation 
in obtaining the flutter results.

2.2.1.2 Discussion of Results

The details of the computed results indicate that the most 

sensitive parameter in the analysis when evaluating the strip 

theory for oscillatory aerodynamics and flutter analysis is, as 

expected, the aspect ratio (AR) of the wing. So results are 

obtained for a wide range of aspect ratios for both the 

oscillatory unsteady aerodynamic forces as well as for the flutter 

speeds. Representative results for AR = 16, 6 and 4 for the 

non-dimensionalised generalised aerodynamic forces using both the
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Strip Theory (ST) and the Lifting Line Theory (LLT) are shown in

Figures 2.3 to 2.5 respectively for wings with p = 20, ah = -0.2,

(j /(j = 0.2, b = 0.5m and r2 = 0.25 for M = 0.4. h' a ' a.
The parameters used in the generation of the generalised 

aerodynamic forces, using lifting line theory, (Ref.(44)) are 

shown in Table 2.1. As a means of testing convergence of the 
results, selected values of generalised forces for the aspect 

ratios considered were obtained using larger values of m, n and q, 

(defined in Appendix B) as suggested by Davies! However q was 

found to be the most sensitive parameter in the analysis. Table

2.2 outlines the values used and the maximum discrepancy in the 

real and imaginary part was found to be in the term Q(l,2), 

(considered to be the important term here) , compared with those 

obtained using the above parameters. Although the discrepancy in 

the imaginary term Q(l,2) for AR = 16 is large, the original 

values of imaginary part of Q(l,2) were subsequently multiplied by 

1.7 in an ad hoc manner to observe the resulting change in flutter 

speed. However the original flutter speed did not change. This 

leads to the conclusion that the flutter speed is not very 

sensitive to the imaginary part of Q(l,2). Using the appropriate 

generalised aerodynamic terms from both strip theory and lifting 

line theory, the flutter speeds and the corresponding frequencies 

at flutter were obtained and are given in Table 2.3 for 

comparison.

The real and imaginary parts of the non dimensionalised 

generalised aerodynamic forces given by Q(i,j)/pU2 obtained from 

the two theories are plotted against the reduced frequency 

parameter k (= ub/U). (Note that since heave and pitch motions 

only are considered, the generalised aerodynamic matrix Q(i,j) 

will be a 2X2 complex matrix).
Variation of Qllt and Qst with reduced frequency k for AR =

16 is shown in Figure 2.3. There is generally good agreement

between the two methods. In binary flutter of this type, it is the
2 . . .real part of Q(l,2)/pU which is usually a dominant term. 

Referring to this term, the figure indicates the difference 

between the methods decreases as the frequency is increased, which 

is generally expected. At k=0 the steady lift state the
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Q(i»j)/pU2 from both aerodynamic theories are plotted against the 
reduced frequency k, for the Goland example only, as this wing has 

the lower aspect ratio of the two. The flutter speeds for the 

Goland and Loring wings were calculated from the two methods and 

were compared with experimental results, wherever appropriate. 

These quantities were obtained in the same manner as outlined in 

Appendix B, For these two wings it was necessary to take into 

account the effects of inertial coupling. Also instead of 

considering the rigid body modes in heave and pitch, the first 

bending and first torsional modes of the wing were only introduced 

assuming cantilever boundary conditions so that the resulting 

generalised aerodynamic matrix Q(i,j) became complex 2X2 again.

For both wings the following parameters were used in the 

generation of the generalised aerodynamic forces, when using 

Davies' program: m = 28, n = 4 and q = 4, 2, 2, 4. These 

parameters were suggested by Benton (Ref.(48)) in a private

communication. The flutter speed and flutter frequency using strip
2 8theory were found using the program CALFUN.

2.2.2.1 Goland Wing

This example was taken from an early work on flutter analysis 

of a uniform cantilever wing of AR = 6.6, carried out by Goland50 

Characteristics of the wing properties needed for calculation are 

shown in table 2.4.

Variation of Q and Q against k for M= 0.4 as a result of 

the two analysis are shown in Figure 2.6. There is generally good 

agreement between the two theories, which improves with increasing 

reduced frequency as expected, which was also noted before when 

dealing with the rigid binary flutter, (see section 2.2.1). 

Referring to Figure 2.6 and the dominant term Q(l,2), there is an 

initial zero frequency discrepancy of 48.9% between strip theory 

and lifting line theory. However this decreases with increasing k. 

Considering the practical range of k being 0.1 < k < 0.5 the

difference is 42.4% and 30.5% respectively for the real part and 

17% for the imaginary part. Again the imaginary term at k = 0.1 is 

omitted as this term is small and as expected will not contribute 

much to the overall motion, unlike the dominant real term.

Considering the term Q(l,l) the difference at k = 0 is 49.6%.
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However over the range 0.1 < k < 0.5 the corresponding differences 

are 46.6% and 77.9% for the real part and 20.5% for the imaginary 
part.

For Q(2,l), the difference at k = 0 is 40%. The subsequent 

percentage differences in the real term, over the same range is 

32.3% and 19.9%. For the imaginary term this is 27% at k = 0.5.

Finally the difference for Q(2,2) at k=0, is 39.3%. Over the 

range of k considered the resulting difference is 32.0% and 17.2% 

for the real part and 0.38% for the imaginary part.

The overall good agreement between the two aerodynamic 
theories is borne out from the established flutter speed and 

flutter frequency presented in Table 2.5, where the percentage 

difference is between -15.3% and 5.2% respectively. Also noted 

incidentally is the close agreement of the flutter speed of 137.2 

m/s and flutter frequency of 70.68 rad/s as obtained from Goland's 

corrected flutter result?0

2.2.2.2 Loring's Wing * 4

This is a wing flutter model taken from Loring's37 classical 
paper on the use of generalised coordinates in flutter analysis. 

It is a uniform cantilever wing of AR = 13.52, its properties are 

given in Table 2.6. Loring's experimental results are also 

presented in Table 2.7 along with those obtained from a flutter 

analysis using strip theory and lifting line theory. As the 

results in the table suggest, it takes at least an analysis using

4 modes before the flutter speed obtained using lifting line is 
close to that obtained from experiment. The reason for this could 

be the value of m used in the analysis, as the wing has a large 

aspect ratio and hence a larger value of m is needed to model 

accurately the reduction in loading distribution close to the wing 

tips. On the contrary the difference, considering strip theory, is 

only 0.55% and -11% for the flutter speed and flutter frequency 

respectively, using the same number of modes. It is interesting to 

note that Loring's flutter analysis produced a flutter speed of 
90.7m/s and a flutter frequency of 57.7 rad/s, using 3 modes only.
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2.3 Sensitivity Analysis

A sensitivity analysis was carried out on the Goland80 and 

Loring37 wings in addition to that of the Kestrel wing, with 

possible applications for optimisation. The percentage variation 

in flutter speed against percentage variation of four parameters, 

El, GJ, M/1 and I /I was investigated using CALFUN28 and the
p

results are shown in Figure 2.7. It is noted that raising the 

torsional freguency has the same effect as lowering the bending 
frequency. It is because the frequency margin between these modes 

increase resulting in later coupling and an increase in flutter 

speed. The most sensitive parameter for these wings appears to be 

the torsional rigidity. Noting that the Kestrel wing has an aspect 

ratio of 31.35 it is seen that for a given change in either 

stiffness or inertia parameter the percentage variation in flutter 

speed increases with decreasing aspect ratios.

2.4 Effect of Sweep on Flutter

2.4.1 Introduction

Strip theory can be extended to large-aspect ratio swept 

wings. In doing so, it is observed that some swept wing structures 

have their ribs oriented in the flight direction, while others 

have ribs nearly perpendicular to the midchord line or elastic
.33 . . .axis. In the first case it is reasonable to assume that 

streamwise sections remain undeformed during bending or torsion, 

so that the strip method discussed already is very suitable. Thus 

it will suffice to take strips parallel to the flight direction as 

shown in Figure 2.2 and multiply the aerodynamic quantities such 

as lift L and moment by cos A (this is outlined in detail in 
Appendix B).

Wing structures with ribs perpendicular to the midchord line 

twist more like a surface developed out of straight lines normal 

to the elastic axis, (since perpendicular sections are the ones 

which do not bend). Therefore there are simple harmonic camber 

changes in planes parallel to U, the amount of camber being 
proportional to the product sin A (da/dy) . This leads to the 

alternative method for applying two-dimensional aerodynamics to a 

finite swept wing as outlined in Appendix B based on velocity
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as shown in Figure 2.2, the inodes areto the elastic axis33 

defined along the spar.

As inodes are required along the spar the original structural 

analysis of CALFUN need not be changed and the inodes obtained for 

a straight wing implemented. However the aerodynamic subroutine is 

adapted to incorporate the changed aerodynamics as outlined in 

Appendix B. (This new code is called CPSWPG). Although second 

order terms are generally neglected, these were kept to facilitate 

checking with Ref. (63). As a check, the case of single degree of 

freedom flutter for a highly swept wing was chosen. If a swept 

wing is swept large enough and has a large enough mass parameter 

the wing can theoretically flutter in pure bending only. The 

results were found to agree completely with those given in Fig. 7 

of Ref.(63).

Table 2.8 and 2.9 display the frequencies obtained and the 

corresponding flutter speeds using the first bending and torsional 

modes for both the cosine theory and velocity component theory and 

compares those provided by Ref.(57).

2.4.4 Comparison of Flutter Speeds and Frequencies and Generalised 

Aerodynamic Forces

2.4.4.1 Flutter Speeds and Frequencies

Referring to Table 2.8 the coupled frequencies obtained from 

the two methods are identical as expected. The agreement with 

those obtained in Ref.(57) is within engineering accuracy, with 

the exception of the bending frequencies at sweep angles 0° and 

30? However there is no indication of mode shapes which is 

perhaps more relevant.

Referring to Table 2.9 it can be seen both methods maintain 

their conservatism in predicting flutter speeds when compared with 
the experimental results. Agreement is seen to improve as the 

sweep increases beyond 30° with differences falling within 
engineering accuracy, although the agreement is not as good as for 

the straight planform. The present cosine theory is found to be 

marginally more accurate. The close agreement between these two 

methods was also demonstrated in recent studies on swept composite 

plates, carried out at the City University and discussed in 

Appendix C. The discrepancies may arise from inaccurate
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determination of the wing modes. Without any indication of 

experimental mode shapes, it is difficult to draw a comprehensive 

reason to the current discrepancies with experiment. As a note the 

experimental results are also compared with Ref.(57) own 

theoretical analysis, and this is shown also in Table 2.9. This 

approach includes coupling only within the inertial terms. Below a 

sweep angle of 30° it is found to yield flutter speeds and 

frequencies, comparable with the current analysis, involving the 

full effects of coupling. However at higher angles of sweep this

agreement is lost and 

conservatism.

at 60° sweep it no longer maintains its

The experimental results and the results from the two
theories are then non-dimensionalised with respect to a reference 

speed V . This speed is the flutter speed of the same wing rotated 

back to the unswept condition. Figure 2.8 shows these ratios 

plotted against sweep angle. The agreement in the two methods is

shown, being within 5% at A = 60? Curves of 1/cos A and l/v̂ cos A 

are shown in Figure 2.9 for comparison, as carried out in 

Ref.(57) . The two methods also predict the speed decreases 

slightly for small angles of sweepback and then increases rapidly 

as sweepback increases as concluded by Molyneux?4,55

In order to extend this investigation to higher aspect 

ratios, Figure 2.10 shows Vf/ Vr plotted for AR = 6. The methods 

are in fact in closer agreement, the difference being only 3% at A 
= 60°

2.4.4.2 Comparison of Unsteady Generalised Aerodynamic Forces

In Figures 2.11 to 2.13 the generalised forces are plotted 

for sweep angles 10°, 25° and 45° for AR 4 respectively using the 

first bending and first torsional modes, for the two methods. This 

is reprinted from work carried out in Ref.(64), partly supervised 

by the author. As before the generalised forces are represented in 
terms of their real and imaginary parts with Mach number up to 

0.665, verging on the limitations of strip theory?3

Briefly the worst discrepancies appear to be in the real 

Q (2,2) and imaginary Q(l,2) terms. The discrepancy between the two 

theories at Mach number 0.11 to 0.665 for the real Q(2,2) terms 

are 4.8% to 3.7% respectively for A = 10°, 25.8% to 27.5% for A =
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25°, 100% to 93% for A = 45°.
Similarly the discrepancy noted for the imaginary part of 

Q (1,2) are 27% to 4.2% for A = 10°, 75% to 1.2% for A = 25°, 134% 
to 32% for A = 45? However as mentioned earlier the magnitude of 

the imaginary terms is negligible at low frequencies. It is 

observed that although discrepancy is large at 45° there appears 

to be little difference in the subsequent flutter speeds predicted 

by the two theories. This perhaps suggests the small 

contribution the above terms make in this type of flutter.
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Aspect Ratio m n q

16 34 4 2

6 8 2 2

4 8 2 2

Table 2.1 Parameters used for generalised aerodynamic forces 
using lifting line theory for rigid binary flutter

AR m n q

Maximum
(

Re(Q12)

Percentage 
% )

Im(Ql2)

16 34 4 32 0.49 65.6

6 12 4 32 6.20 -3.33

4 12 4 32 4.69 2.373

Table 2.2 Variation of Q(l,2) with lifting line parameters

Aspect Ratio
Strip Theory Lifting Line Theory

Flutter
Speed
(m/s)

Flutter
Frequency
(rad/s)

Flutter
Speed
(m/s)

Flutter
Frequency
(rad/s)

16 87.4 35.0 89.0 34.0

6 138.0 32.0 145.0 33.0

4 167.0 31.0 184.0 32.6

Table 2.3. Flutter speed and flutter frequency using strip theory

and lifting line theory.

b = 0.5m, a = -0.2, r2 = 0.25, y. = 20.
' h ' a  '
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El = 9.773 x 106 Nm2 1 = 6.096 m

GJ = 9.876 x 105 Nm2 b = 0.9144 m

M/2 = 35.717 kg/m a =h -0.340

1/1 = 8.642 kgm p = 1.225 kg/m3

x = -0.183 ma

Table 2.4 Structural and aerodynamic properties of the Goland 

wing

Number of 

Modes

Strip Theory Lifting Line Theory

Flutter
Speed
(m/s)

Flutter
Frequency
(rad/s)

Flutter
Speed
(m/s)

Flutter
Frequency
(rad/s)

2 137.5 69.0 158.5 65.4

Table 2.5 Flutter speed and flutter frequency using strip theory 

and lifting line theory for Goland wing

El = 677.6 Nm2 1 = 2.06 m

GJ = 1019.6 Nm2 b = 0.1524 m

M/2 = 8.06 kg/m a =h -0.4

1/2 = 0.0585 kgm P = 1.112 kg/m3

x = -0.038 ma

Table 2.6 Structural and aerodynamic properties of the Loring 
wing
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Number
Experimental

Result
Strip
Theory

Lifting Line 
Theory

of
Modes Flutter Flutter Flutter

Speed Frequency Speed Frequency Speed Frequency
(m/s) (rad/s) (m/s) (rad/s) (m/s) (rad/s)

2 — — 97.5 49.0 105.0 51.6

3 — — 91.0 58.0 94.7 63.0

4
90.0 64.0

90.5 57.7 94.4 63.3

Table 2.7 Flutter speed and flutter frequency using strip theory 

and lifting line theory for Loring wing

Sweep Frequencies (Hz) Percentage

A° Experimental CALFUN
difference

%

0° IB 45.0 36.0 -25.0

IT 108.0 104.5 -3.0

15° IB 43.0 49.5 13.1

IT 103.0 102.5 -0.45

OJ o o IB 33.0 40.4 18.3

IT 94.0 91.5 2.8

0If)■<* IB 22.0 24.3 9.6

IT 93.0 97.2 4.4

60° IB 12.0 11.7 -2.9

IT 93.0 85.1 9.2

IB = First bending 

IT = First Torsion

Table 2.8 Experimental and theoretical frequencies for the swept 

wings of Ref.(57)
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Flutter speed 
m/s 

( Hz

and Frequency
% Difference

Sweep

A°
Exp
Ref.57

Theory 
Ref.57 CPSWPG CALFUN Ref.57 CPSWPG CALFUN

0° 122.48
(66.0) (---)

117.8

(64.0)

117.8

(64.1) (-- )

-3.9

(-2.9)

-3.9

(-2.9)

15° 109.5

(62.0)

91.6

(71.0)

86.1

(74.0)

86.7

(72.8)

-19.5

(12.7)

-27.0 

(16.0)

-26.0

(14.9)

30° 90.3

61.0)

71.3

(65.0)

69.3

(66.6)

70.6

(65.1)

-26.6

(6.1)

-30.0

(8.4)

-27.9

(6.3)

45° 87.6 

54.0)

74.2

(61.0)

79.7

(64.3)

81.4

(61.8)

-18.0

(11.5)

-9.9

(16.0)

-7.6

(12.7)

60° 80.0

37.0)

82.25

(58.0)

74.4

(51.9)

76.0

(49.7)

2.7

(36.3)

-7.5

(28.8)

-5.0

(25.6)

Table 2.9 Experimental and theoretical flutter speed and flutter 

frequencies for the swept wings of Ref.(57)
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Fig. 2.1 Procedure for flutter analysis
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Fig. 2.3 Comparison between lifting line theory and strip theory
for aspect ratio 16 at M=0.4
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Fig. 2.4 Comparison between lifting line theory and strip theory
for aspect ratio 6 at M=0.4
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Fig. 2.7 Percentage variation of flutter speed against percentage of
i) Bending rigidity (El)
ii) Torsional rigidity (GJ)
iii) Mass per unit length (M/L)
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Fig. 2.8 Effect of sweep on flutter comparison between theoretical 
and experimental results
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Fig. 2.9 Effect of sweep on flutter for aspect ratio 4



Fig. 2.10 Effect of sweep on flutter for aspect ratio 6
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3.0 ROLE OF RIGID BODY MODES IN FLUTTER

3.1 Introduction
Classical flutter analysis has predominantly dealt with the 

high frequency dynamic interaction of inertial, elastic
(structural) and aerodynamic forces as described in Chapter 2. In 

contrast the implementation of rigid body modes is restricted 

within the scope of low frequency dynamic stability

investigations 14’15 It is well recognized that one may modify the 

calculated flutter speed of a cantilevered wing by including the 

free-free or zero-frequency modes of the aircraft. One of the 

earliest reports on the subject of the influence of "Body-Freedom" 

on flutter was due to Frazer and Duncan?5 However the theme has 
been re-discovered because the aerodynamic loads caused by the 

interaction between aircraft rigid body motion and structural 

flexibility may be particularly important in the correct 

determination of vehicle instabilities. The interaction between 

rigid body pitch and plunge modes with the flexible modes of a 

proposed forward swept wing (FSW) demonstrator aircraft?6 is of 

particular significance with the advent of the use of composite 

materials. Subsequent investigations carried out by Weisshaar et 
al18’67 recognized this instability as "Body-Freedom Flutter". A 

similar instability was discovered by Banerjee17’38’39 for a 

tailless aft swept wing (ASW) sailplane.

3.1.1 Body-Freedom Flutter

The first mention of this phenomenon of rigid body/wing 

bending flutter appears to have been made by Gaukroger ’ during 

tests on a model aircraft with swept back wings. Two distinct 

types of flutter were observed, which could occur for any angle of 

sweepback. The pitching moment of inertia of the aircraft 

primarily determines which type occurs at the lower flutter speed. 

Thus, i) Symmetric body-freedom flutter. This occurs at the lower 

values of the pitching moment of inertia and is characterised 

mainly by body-pitching with wing flexure, and ii) Symmetric 
disturbed root flutter which occurs with higher values of moment 

of inertia or the installation of a tailplane and has only small 
root movement and differs only slightly from fixed flutter mode.

Both the above types of flutter exhibit mainly pitching
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motion, but the relative amplitude of the body is very much 

smaller in disturbed root flutter than in body-freedom flutter.

Body-freedom flutter is a type of dynamic instability that 

involves coupling together the flexible modes with body-freedom 

modes such as the short period mode or the roll model 6,65,67 In 

this work, symmetric disturbances are considered for the present 

body-freedom flutter involving the short period mode to be of 

prime significance. This instability can be observed with either 

aft swept wing or forward swept wing configurations. ’ This 

phenomenon has been studied analytically, using quasi-steady 

aerodynamics and fundamental wing bending mode in addition to the 

required rigid body modes, by Weisshaar et al for the FSW case 

and by Niblett69 for the ASW configuration. For FSW aircraft, a 

close analogy can be drawn between rigid body/wing bending flutter 

and classical bending/torsion flutter?6

Classically, wing divergence, a static aeroelastic 

phenomenon, has thought to be the primary mode of instability of 

FSW configurations. This is where, assuming the wing to be a 

cantilever, the first wing bending mode frequency decreases with 

increasing dynamic pressure until a zero frequency static 

divergence instability is encountered. In fact, the wing response 

is completely different from a cantilever case. The wing is no 

longer cantilevered in that it is attached to a relatively small 

mass fuselage which responds to the wing load and significantly 

modifies the cantilever fixity condition. As dynamic pressure 

increases the wing first bending mode frequency begins to drop, 

but the frequency of the aircraft short period mode rises. The 

short period mode couples with the wing divergence-prone mode 

resulting in flutter at a speed lower than the static divergence 

speed. Flutter occurs as a result of the force on the wing bending 

mode due to the rigid body pitching mode being in phase with the 

wing bending velocity, when the frequencies of the two modes are 
close together.
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3.2 Application of Current Analysis to the Kestrel, Ricochet and

the A1
Analysis using the program FLUST has been applied to two high 

aspect ratio sailplanes, (which were thought to constitute the 

best example of deformable aircraft), and one medium aspect ratio 

aircraft. The first one is the composite built Slingsby T59H 

Kestrel - 22m, which was built only in limited numbers; its 

configuration and aerodynamic details are shown in Figure 3.1 and 

Table 3.1 respectively. Hereafter Kestrel - 22m will be referred

to as Kestrel, although there are other versions of the aircraft.
The second is the Ricochet?0 an all metal tailless glider, which 

was the result of an M.Sc. design study undertaken at Cranfield 

Institute of Technology, but the aircraft was never built (details 

are presented in Figure 3.2 and Table 3.2). The third and final 

example is the Cranfield Al, which is an existing powered 

aerobatic aircraft of aspect ratio 6.7. The Cranfield Al is also 

as a result of a design study carried out at Cranfield, the

aircraft having been built and successfully flown. The Al 

configuration and aerodynamic details are shown in Figure 3.3 and 

Table 3.3. CALFUN28 is used to predict the cantilever flutter

speeds and frequencies where appropriate for the above examples. 

Concerning analyses using FLUST, it is expected that there will 

not be much inaccuracy in neglecting the inertial coupling, as the 

distance between the mass and elastic axes is small for all three 

aircraft and is unlikely to alter the results significantly.

3.3 The Kestrel

3.3.1 Structural Idealisation

A structural analysis was first of all carried out using the 

finite element program BUNVIS71 to gain an overall insight into 

the modes for the whole aircraft. The program FLUST uses a routine 

based on BUNVIS to obtain the frequencies and modes, assuming that 

the aerodynamic forces are entirely generated by the wing and 

tailplane, the program implements only the modes for these 

components. However it does take into account the dynamics of the 

whole aircraft. The structural idealisation used is schematically 

shown in Fig. 3.4. As the aircraft is symmetric about the X-Z
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plane, only one half of the aircraft needs to be taken into 

account when preparing the data. Lump masses were used to simulate 

the inertial properties of the front fuselage (including pilot and 

equipment) while beam elements, with stiffnesses and inertial 

properties derived from the cross-sectional details, of the wing, 

rear fuselage and tailplane respectively, are used (details are 

given in Appendix D). The Kestrel was idealised using 11 elements 

for the wing, 4 elements for the fuselage and 4 elements for the 

tailplane.

Only displacements and rotation within the X-Z plane are 

considered for symmetric motion. The rigid body modes of heave and 

pitch needed for the free flight analysis were obtained by putting 

two very light springs at the aircraft centre of gravity; one 

translational, the other rotational (as used in Chapter 2). A very 

light spring was used so that it did not interfere with the 

subsequent elastic modes that were obtained. For the particular 

configuration under consideration, the c.g. was located at 57.6% 

MAC (measured from leading edge fuselage centreline intersection) 

and this was used throughout the investigation. FLUST considers 

only longitudinal motion of the aircraft, the aerodynamic forces 

arising from the fin and fuselage are not included, but are 

assumed to be generated entirely by the wing and the tailplane. 

Therefore it was sufficient to locate a lumped mass at the tail to 

simulate the mass of the fin, to complete the total mass of 

aircraft. A form of "ill conditioning" arose from the element 

joining the front fuselage to the wing junction. This was supposed 

to be a rigid link, but practically it had a stiffness and inertia 

associated with it that could potentially interact with the 

elastic modes. As a cross check the frequencies were obtained 

using BUNVISTC which is an appropriate version of BUNVIS suitable 

for this problem. (The program BUNVISTC allows the use of 

"massless" elements and provides a means of adding stiffness to a 
structure without adding any mass).

The first four natural frequencies and modes of Kestrel 

obtained from the analysis are shown in Figure 3.5. Note that the 

frequencies and modes obtained from the line elements correspond 

to the displacements of the elastic (flexure) axis. The results

59



are compared with those obtained from ground resonance tests 

conducted on the Kestrel?2 wherever appropriate. The comparison of 

results is shown in Table 3.4. It can be seen from the Table 3.4 

that the frequencies obtained for the fundamental bending mode is 

in very close agreement, (the percentage difference is only -2.1%) 
whereas for the fundamental torsional mode, the difference in 

result is within 10.87%. The accuracy of these results are 

reasonable and are within engineering accuracy. However the 
agreement is not so prevalent for the first overtone bending mode 

where the difference is 29.2%. The third theoretical mode seems to 

consist of tailplane bending accompanied by a small amount of wing 

rotation.

For the flutter analysis however, agreement between 

fundamental bending and fundamental torsion was considered to be 

adequate in view of earlier investigations on the Kestrel which 

exhibited the case of fundamental bending/torsional flutter!7

3.3,1.1 Model 111 Conditioning

A severe form of ill conditioning was encountered when 

trying to simulate rigid links to represent the rigid parts of the 

aircraft, such as the ones already mentioned above. Rigid massless 
links were simulated using existing elements set with very high 

bending and torsional rigidities but with low values of mass and 

mass moments of inertia. However these pseudo-rigid links 

introduced local frequencies that were found in general to 

interfere with the structural rigid body frequencies produced by 

the artificial springs placed at the c.g. Though the rigid body 

frequencies were not used in the analysis, they were essential in

providing the correct rigid body modes for the free flight
investigation.

For a given elemental length, the inertia of the element was 

dictated by its overall contribution to the structure, so this was 

deliberately set low. The mass per unit length and the mass moment 

of inertia per unit length for the present problem were typically 

set between 0.001 and 0.0001 (kg/m or kgm). Although the 

rigidities were left to play the dominant role, it was found, as

expected, that the shorter the element the more acute this

potential ill conditioning problem. From the analysis of a two
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degrees of freedom system, the rigid body frequency in heave is 

w = (K /M)1/2 and in pitch u = (K /I ) )/z where K and K are the 
respective spring stiffnesses in heave and pitch, M is the total 

mass of the aircraft and 1^ its pitching moment of inertia. Using 
and as the required frequencies, the element rigidities El 

or GJ, depending on the degrees of freedom, were altered until a 

band of values was obtained within which the rigid body 

frequencies remained nearly constant and close to u>h and This

was done to ensure that the problem was not ill conditioned. Then, 

by using an acceptable rigidity between this band, the rigid body 

modes were then obtained. Figure 3.6 shows the type of behaviour 

of this instability. Later the threshold of ill conditioning was 

found to be sensitive to machine floating point accuracy and it 

was found necessary to introduce the rigid body modes artificially 

into the analysis.
3.3.2 Aeroelastic Analysis

The present investigation is an extension of previous 

studies, carried out by Banerjee)7’38, 3 9 but with the effects of 

fuselage flexibility and tailplane aerodynamics accounted for. The 

flutter analysis was carried out using two rigid body modes and 

the first four symmetric elastic modes. Considering the large 

aspect ratio of the Kestrel the wing lift curve slope aQ was 

assumed to be 2n /rad. A modified tailplane lift curve slope a^= 

4.70 /rad obtained from ESDU73 was used as part of the aerodynamic 

details (this was found to give flutter values only marginally 

lower than the those obtained from assuming 2n /rad at the

tailplane).

The graph showing the locus of the real and imaginary parts 

of the flutter determinant is given in Fig. 3.7. The flutter speed 

is found at 72.3 m/s at a frequency of 49.7 rad/s, and this 

compares favourably with reports of wing flutter incidents 

occurring in the region of 72.0 m/s. A subsequent flutter analysis 

was carried out on the Kestrel wing using CALFUN with three 
elastic modes, neglecting the fuselage and assuming a cantilever 

condition. This yielded a flutter speed of 73.7 m/s and a flutter 
frequency of 50.2 rad/s.
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3.4 Effects of Tailplane Aerodynamics and Fuselage Flexibility on 

the Flutter of Kestrel
As already mentioned earlier investigations attempted the 

flutter problem involving the whole aircraft but took into account 

only the structural effects and not the aerodynamic effects of the 

tailplane. However in this particular work tailplane aerodynamics 

as well as its flexibility have been incorporated. The additional 

effects of fuselage flexibility are further investigated.

The amount of published literature available on the influence 

of fuselage flexibility and tailplane aerodynamics on flutter is 

relatively small and mostly confined to swept aircraft of aspect 

ratios no greater than six. ’ ’ To investigate such complex 

phenomena, reliance is often placed on quasi-steady aerodynamics 

and strip theory to simplify the problem. In this section we set 

out to investigate the effects of tailplane aerodynamics and 

fuselage flexibility on the flutter speed of high aspect ratio, 

low speed aircraft.

The mass and inertia properties of the Kestrel in this 

analysis were slightly altered, without affecting the modes 

significantly. In this new configuration the flutter speed and 

flutter frequency with the effects of tailplane aerodynamics 

marginally increases to 72.7 m/s and decreases to 49.6 rad/s 

respectively. An investigation was carried out, neglecting the 

tailplane aerodynamics, and the corresponding flutter speed and 

frequency were 72.3 m/s and 50.0 rad/s respectively. As it can be 

seen, tailplane aerodynamics do not make any significant 

difference in the flutter speed or in the flutter frequency. 

However, the model incorporating the tailplane aerodynamics 

produces a slightly higher flutter speed and lower flutter 

frequency, this is to be expected as the tailplane provides 

aerodynamic damping and hence stability to the aircraft. The 

marginal difference in results prompted an investigation of the 
effect of the number of normal modes on flutter. A modal 

elimination technique was adopted and the number of normal modes 

included in the analysis was gradually reduced. The results are 
shown in Table 3.5, where modes 1 and 2 are the rigid-body modes 

and 3,4,5 and 6 are the elastic modes, as shown in Figure 3.5. As
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it can be seen; the flutter speed of the Kestrel can be predicted 

with reasonable accuracy by including just the fundamental bending 

and torsional mode of the wing (modes 3 and 6). The flutter of the 

Kestrel is thus a distinct example of classical bending/torsion 

flutter and a fixed-root (cantilever) end condition will give 

sufficiently accurate results.

Further illustration of the effect of these normal modes on 

the Kestrel flutter is given in Figure 3.8 where only the the real 

part of the normal mode components of the flutter mode and their 

resulting values are plotted along the semispan. (The results are 

plotted for one symmetric half of the aircraft, the fuselage 

centreline and the flexural intersection is taken to be the origin 

of the plot) . The details relating to the contribution of the 

flutter modes is shown in Appendix E. When the contributions of 

normal modes shown by the broken lines are added together, the 

resulting solid lines are obtained. Small contributions from some 

of the normal modes are not shown, leaving the predominant modes. 

In the presentation of the results, all the modes are numbered 

sequentially, starting from the rigid-body modes and finishing 

with the elastic modes. It can be seen from Figure 3.8 that the 

dominant terms in vertical displacement are g3h3 and g4h4 whereas 

the dominant terms in pitching rotation are q a and q a . (h and 

a are respectively the fundamental bending and torsional modes as 

shown in Fig. 3.5).

Figure 3.9 shows the variation of flutter speed with fuselage 

stiffness, for both models. For a 30% reduction in fuselage 

stiffness the flutter speed including tailplane aerodynamics is 

increased only by about 3%. At this value there is virtually no 

change in the elastic modes except for a 4% reduction in frequency 

in the third mode, which is characterised by tailplane bending 

with small amounts of fuselage bending, with wing and tailplane 

torsion in antiphase. As fuselage stiffness is increased the 
flutter speed decreases and at around a 50% increase in fuselage 

stiffness, appears to level out giving a maximum decrease in 

flutter speed of 2%. With an increase in fuselage stiffness the 

elastic modes remain unchanged, except for 2% increase in the 

frequency in the third mode and a stiffening of the tailplane
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play any significant role in this type of flutter.

As to whether this type of flutter is indeed the primary mode 

of instability of the Kestrel is not certain. As there seems to be 

closer agreement with the ground resonance tests for the symmetric 

modes. It is more likely that the flutter of Kestrel is a 

symmetric form of flutter involving the first bending and first 

torsional mode.

3.6 The Ricochet

3.6.1 Structural Idealisation

The Ricochet was idealised in a similar manner as to the 

Kestrel. However as the Ricochet is a tailless aircraft, the 

idealisation was somewhat simpler. The wing was swept by 13° and 

was represented by 12 elements, as shown in Figure 3.12. As the 

fuselage was assumed rigid, it was assumed to be made up of two 

elements with a lumped mass at the pilot-fuselage centre of 

gravity to simulate its mass and inertia properties.

As before two light springs one translational the other 

rotational were located at the aircraft centre of gravity to 

obtain the rigid body modes in heave and pitch respectively. The 

first four symmetric elastic modes obtained from BUNVIS are shown 

in Figure 3.13. These results were cross checked again using 

BUNVISTC to eliminate possible ill conditioning from the use of a 

small massless rigid link joining the aircraft and front fuselage 
centre of gravity.

3.6.2 Aeroelastic Analysis

As the Ricochet has a very large aspect ratio, (AR =22.93) 

the value of aQ was left as 2n /rad as was the case in prior 

investigations. ’ However the aircraft centre of gravity was 

located at the aft c.g. location, with no water ballast assumed. 

As the program FLUST can not account for the small shift in 

aerodynamic centre due to wing/body interference, the static margin 

was adjusted accordingly in the aeroelastic model to accommodate 

this. However the static margin will be found to be of more 

significance when dealing with dynamic stability of the aircraft.

The analysis was carried out using the two rigid body modes 

along with the first four symmetric elastic modes. The flutter

65



speed and frequency were found to be 47.2 m/s and 6.14 rad/s 

respectively. Modal elimination was also performed, and the 

resulting flutter quantities are shown in Table 3.7. The graph 

showing the loci of the real and imaginary parts of the flutter 

determinant are presented in Figure 3.14. It can be seen that with 

just the two rigid body modes together with the fundamental 

bending mode, the flutter speed and frequency are 52.2 m/s and 

4.26 rad/s respectively. The flutter speed is far below the design 

estimate of 150 m/s given in Ref.(70). This type of flutter known 
as "Body Freedom Flutter", ’ is predominantly a coupling between 

the short period pitching oscillation and the fundamental bending 

mode, as borne out from prior investigations, ’ giving rise to a 

characteristically low flutter frequency.

As with the Kestrel, (referring to Figure 3.15 for the 

flutter mode) , it can be seen that the predominant modes in 

vertical displacement are qihj and q3h3. This illustrates the 

unconventional way the Ricochet flutters, where an upward movement 

of the fuselage is accompanied by a downward movement of the wing 

tip. In pitching rotation the dominant contributions are <32«2 and 

q3a3. An inspection of the flutter modes in Fig. 3.15 clearly 

indicates that the flutter behaviour of the Ricochet is unusual, 

with large deflections at the wing root, whereas that of the 

Kestrel is a distinct example of classical wing bending/torsion 

flutter, with the tip having maximum displacement and the root 

being almost stationary.

A parametric study of varying c.g. position and pitching 

moment of inertia is undertaken on the Ricochet, without altering 

the basic design of the aircraft. Shifting the c.g. of the 

pilot-fuselage assembly to the forward c.g. position results in a 

15.8% reduction in flutter speed using six modes (Weisshaar et 

al found the opposite effect for a forward swept configuration). 

The parameter which is found to have the most significant effect 
on the flutter speed is the pitching moment of inertia of the 

aircraft. The variation of flutter speed against the pitching 

moment of inertia of the pilot-fuselage assembly is shown in 

Figure 3.16 and the results indicate a linear trend.

Instead of using active control technology one possible69,74

66



way of preventing this coupling with the first elastic mode as in 

the case of the Ricochet, is to make use of aeroelastic tailoring 

with composite materials as undertaken on a tailless swept back 

configuration called the SB13?4 which was successfully test 

flownT5

3.7 The Cranfield A1

3.7.1 Structural Idealisation
The finite element idealisation for one symmetric half of the 

Cranfield A1 is shown in Figure 3.17. As can be seen, the wing 

structure was made up of 12 beam elements representing both the 

elastic/inertia axes, as the coupling between these two axes is 

assumed small. The root element was made rigid, as it represents 

the wing/fuselage junction and has only an aerodynamic 

contribution to the model, and completes the gross area of the 

wing.
An element with an attached lumped mass was included to 

simulate the wheel and undercarriage assembly. This unit was 

necessary because its mass is approximately a third of that of the 

wing. The front fuselage was assumed to be rigid, so a rigid 

element with a lumped mass and inertia was used to simulate it 

(the main mass contribution coming from the engine, oil and Petrol 

tank). The rear fuselage was represented by two elements. A lumped 

mass and inertia was located in between these latter elements to 

simulate the pilot/cockpit combination. A rigid element was 

interconnected between the wing root elastic axis and the aircraft 

centre of gravity. The position of the aircraft centre of gravity 

was taken from flight test data as 26.6% MAC. As with the 

Kestrel and Ricochet two springs, one allowing heave and the other 

rotational pitch, were located at the c.g. to provide the required 

rigid body modes. The fin and rudder were represented as lumped 

masses and inertias, as they do not contribute to the aerodynamics 
in this investigation, whereas the tailplane consisted of two beam 

elements, with its aerodynamics included.

3.7.1.1 Investigation of Fuselage Stiffness

The basic fuselage structure is welded in steel T45 tubes. 

The general layout of the fuselage is shown in Fig. 3.18. The four
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main longeron members are 1.25 in. dia. 17g which are supported by 

1 in. dia. 20g and 0.5 in. dia. 17g diagonals and lateral cross 

bracing. At their forward end the longerons continue as the engine 

mounting which is also of welded construction in 1.25 in. dia 14g 

tube. Shear attachments are provided for the wing and tailplane 

and fin.
An initial evaluation of the stiffness properties of the 

fuselage was done using the fuselage proof test results provided 

by Ref. (77) . This reference is one of a number of proof tests 

carried out on certain components of the aircraft at Cranfield, 

for CAA (Civil Aviation Authority) test certification. Two 

separate loading cases were simulated. The loads were reacted at 

the front and rear spar attachment points on the lower surface of 

the fuselage frame, marked FS and RS respectively (see Fig. 3.18).

i) Test A is concerned with the design proof loading on the 

front fuselage and spar attachment sections. In particular, 

vertical nose (N) and tail (T) loads representing the 9g pull-out 

case are applied in five equal increments. This produces the 

design proof shear force and bending moment at the front spar 

section and on the forward fuselage.

ii) Test B is concerned with the design proof loading on the 

rear fuselage by torsion resulting from the combinations of 

maximum fin shear force and asymmetric tailplane loading. 

Therefore from test A and test B it is possible to ascertain the 

stiffness quantities El and GJ, for the fuselage, respectively.

3.7.1.2 Fuselage Bending Stiffness
g

From test A the derived values of - for both the nose and

tail section are shown in Table 3.8, where P is the applied

vertical load and 8 the corresponding deflection. Referring to

Fig. 3.18 it is possible to replace the structure with one forward

beam element of El and two rear elements of the same El as shown1 2
in Fig. 3.18 and using identical loading and support conditions

7 8test A was recreated using the finite element program BUNVISRG, 

which is a program for any pin-jointed or rigid-jointed space 

frame. Initial estimates of EIi and EI2 could be found by assuming 
cantilever conditions at FS, because of the nature of the loading 

it is FS which acts as the main support. Using these initial
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estimates as the base, EI^ and EI2 were gradually increased until

| for both the nose and tail were close to those values in Table 
* 6
3.8. The final resulting - values, and the corresponding 

percentage differences are also shown in Table 3.8. (The final 

results were obtained using an iterative procedure). As it can be 

seen this approach gives good agreement with experimental results.

This bending stiffness was taken for the rear fuselage from 

the idealisation mentioned above, for the symmetric modal 

analysis. The resulting elastic modes and mode shapes for the A1 

are shown in Figure 3.19, obtained from BUNVISTC. The frequencies 

are displayed in Table 3.9, along with those where possible are 

quantities obtained from ground resonance tests conducted at 

Cranfield!9 In the theoretical analysis of natural frequencies and 

mode shapes, three different finite element models of the A1 based 

on the idealisation of its undercarriage (which constitutes about 

one-third of the mass of the wing) were used. Model A represents 

the idealisation of the complete aircraft including the
undercarriage which is regarded as an offset mass (and inertia). 

Model B ignores the offset nature of the undercarriage and 

represents it just as an equivalent lumped mass and inertia on the 

wing. In model C the undercarriage is completely ignored.

Referring to Figure 3.19 the first elastic mode has 

predictably turned out to be the fundamental bending mode of the 

wing. The agreement between the ground resonance test results and 

ones obtained from each of the three models mentioned above is 

found to be good (see Table 3.9). The discrepancy between the 
theoretical and experimental results for this mode is about 5.8%. 

Also it can be seen from Fig. 3.19 that the fundamental bending 

mode of the wing, obtained from the whole aircraft configuration, 

is very nearly a cantilever mode. For all the three models, the 

difference in theoretical and experimental results for the second 

natural frequency is about 10.6%. However the ground resonance 

test at Cranfield for this particular natural frequency revealed 
that the mode was dominated by wing bending with some small amount 

of tailplane bending displacements present. In contrast, the 

theoretical mode corresponding to this frequency, in Fig. 3.19, 

indicates that there is some coupling between wing bending and
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wing-torsion in this mode, but more importantly the mode is 

dominated by tailplane bending instead, which was not evident in 

the ground resonance test. The third elastic mode shown in Fig. 

3.19 is primarily a wing bending mode, which accords with the 

observation made in the ground resonance test. Although the modes 

obtained are similar, the disagreement in frequencies between the 

theory and the experiment is about 21.3% (see Table 3.9). It may 

be noted that the effect of the undercarriage is not prevalent in 

the first three elastic modes. The fourth elastic mode of the 

aircraft shown in Fig. 3.19 is primarily the fundamental torsional 

mode of the wing which is clearly confirmed by the ground 

resonance test results. The disagreement in the frequency between 

the experiment and theoretical result obtained using model A of 

the aircraft is about 5.3% (see Table 3.9). However it was noted 

that in the ground resonance test that this mode was found to be 

heavily coupled with second wing bending mode, which has not been 

predicted by the theoretical results (see Fig. 3.19).

It can be seen from the results in Table 3.9 and Fig. 3.19 
that the undercarriage does not influence the first three elastic 

modes involving wing bending but, it has a marked effect on the 

torsional frequency as expected. It was also noted that the effect 

of the undercarriage was to increase the amount of coupling between 

the bending and torsional displacement of the wing particularly in 

the second and third elastic mode.

3.7.1.3 Fuselage Torsional Stiffness
Using a similar approach to that for the bending stiffness,

. Ttest B provided a value of - for the rear fuselage from which GJ 

could be derived, where T is the torsional moment and 0 the 
corresponding angle of twist. However problems arose in 

establishing frequencies as it was difficult to correctly estimate 

the fuselage mass moment of inertia per unit length. Initial 
calculations were centred on taking sections of the fuselage in 

its tubular form and estimating the concentration of mass and its 

effective centroid, from which the polar moment of inertia could 

be calculated. Ground resonance tests for the anti-symmetric 

frequencies and modes suggested a low torsional frequency for the 
fuselage. Therefore as no such frequencies were encountered with
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the current models it was decided to model the rear half of the 

fuselage as a framework using the program BUNVISRG78 from which 

the stiffnesses, inertia properties and frequencies could be later 

derived. The finite element idealisation for this problem is shown 

in Fig. 3.18.
Figure 3.20 displays the distribution of GJ along the 

fuselage length. The results were deduced from the finite element 

analysis above. As the front fuselage was assumed rigid, the 

fuselage distance was taken from the rear spar attachment point to 

the tail. A pure torsional moment was applied with two sets of 

equal and opposite forces, one in the vertical plane, the other in 

the horizontal. The GJ distributions resulting from these two 

separate loading conditions yield almost identical values, 

displaying the symmetry of the framework. As it can be seen the 

mid section is the stiffest as this has the largest amount of 

cross bracing. Fig. 3.20 also shows the value derived from test B, 

as this suggests the value obtained experimentally represents well 

the overall value of GJ for the rear fuselage.

Using BUNVISRG, the fuselage was first restrained at the 

front section and the first six fundamental modes are shown in 

Figure 3.21a. The first two modes are dominated by vertical and 

horizontal bending respectively. The remaining modes, the first at 

69.4 Hz, exhibit coupled bending/torsion motion. The constraints 

were next removed and Fig. 3.21b shows the free-free analysis. The 

modes again exhibit coupled bending/torsion motion. However the 

second mode, at 96.8 Hz displays distinct torsional motion.
Later values of the fuselage mass moment of inertia were 

furnished by Howe, Ref.(80) in a private communication and along 

with the values of GJ obtained from the framework idealisation, 

were incorporated in a BUNVISTC analysis. The subsequent 
anti-symmetric modes are shown in Figure 3.22. Comparing these 

results with those obtained from ground resonance tests shown in 
Table 3.10 it can be seen that the overall agreement is poor. 

However the low torsional frequency quoted in the ground resonance 

tests, of 8.18 Hz could be a rigid body mode as the frequencies 

obtained from the BUNVISRG analysis suggest a higher value. Using 

the same idealisations as denoted by model B and C, it can be seen
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from Table 3.11 that the influence of the undercarriage is 

significant in the anti-symmetric mode, especially with respect to 

the torsional mode as in the symmetric case.

3.7.1.4 Bending stiffness
Figure 3.20 shows also the vertical bending stiffness

obtained from the current analysis, this is compared with that 

derived from test A. As this figure shows the value of El 

suggested experimentally is over twice that obtained from the

idealising the fuselage as a framework. The subsequent frequencies 
obtained from incorporating this reduced stiffness are shown in 

Table 3.9 , as model D. As the results suggest the effect of 

fuselage bending stiffness is not significant in the wing modes of 

Al. It is the modes obtained from using the proof test

stiffnesses, that are implemented as the basis for this

investigation.
3.7.2 Aeroelastic Analysis

A free flight symmetric flutter analysis was carried out 

using the four elastic modes presented in Fig. 3.19, in addition 

to the two required rigid body modes. As the size of the fuselage 

element between the aircraft c.g. and wing elastic axis is small, 

severe ill conditioning was encountered and the rigid body modes 

were introduced artificially, as part of the data. For the flutter 

analysis, the aerodynamic parameters for both the wing and 

tailplane were set at 2n /rad. The flutter speed and flutter 

frequency of the Al with the effects of tailplane aerodynamics 

were established as 842 m/s and 221 rad/s respectively. The 

corresponding values, when neglecting tailplane aerodynamics and 

considering the wing just as a cantilever, were 1398 m/s and 238 

rad/s.
As it can be seen the flutter speeds obtained are well 

outside the limitations of strip theory, at M = 0.75. Accordingly 

an anti-symmetric flutter analysis is also carried out using the 

modes shown in Fig. 3.22: however no flutter of Al in the 
anti-symmetric mode is apparent. The flutter free characteristics 

of the Al is as a result of the low aspect ratio and overall high 

stiffness of the Al.
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3.8 Quasi-Steady Aerodynamics in Flutter Analysis

The analysis above implements the full effects of unsteady 

aerodynamics. However, prior investigations ’ ’ into the

mechanics of flutter have made use of quasi-steady aerodynamics, 

assuming quasi-steady flow (k=0). In this note the non-circulatory 

terms and the memory effect of the wake, as in low frequency 

dynamic stability analysis, are neglected. This is achieved in 

this case by ignoring the non-circulatory terms and setting C(k) = 

1.0 within Theodorsen's expressions5 for lift and moment, and 

replacing the downwash by (h + Ua). These expressions are employed 

within a modified version of FLUST.

Carrying out this analysis on the Ricochet, the flutter speed 

and frequency obtained using six modes are 46.2 m/s and 6.2 rad/s 

respectively; this gives uf = 0.978 (ratio of quasi-steady to

unsteady flutter speed). For two rigid body modes and first 

bending mode the flutter speed and frequency were 50.5 m/s (uf = 

0.986) and 4.4 rad/s. This analysis was also carried out on the 

Kestrel, and the flutter speed and flutter frequency were 

established as 41.2 m/s (uf = 0.569) and 89.6 rad/s respectively 

using all six modes and 39.0 m/s (uf = 0.522) and 93.28 rad/s using 

the first bending and torsional modes. The Ricochet results show 

good agreement, as the reduced frequency at flutter (k=0.09), and 

in general body freedom flutter is sufficiently low for 

quasi-steady aerodynamics to adequately predict the aerodynamic 

damping. However the reduced frequency in the classical 

bending/torsion flutter of Kestrel (k=0.48) is high enough for the 

necessity of the effects of aerodynamic lag and unsteadiness of 

the wake to be accounted for. The tendency for this type of 

quasi-steady aerodynamic model, to underestimate the flutter speed 

is suggested by work done by Lottati, on the role of structural 

and aerodynamic damping on classical bending/torsion flutter.

3.9 Flutter Analysis of a Forward Swept Model

As a part of previous investigations carried into the 

aeroelastic behaviour of graphite/epoxy cantilever wings?2’83 a 

free flight model of a forward swept aircraft was constructed at 

M.I.T (Massachusetts Institute of Technology) by Chen and
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Dugundji?4 This model employed graphite/epoxy wings of various ply 

layups to investigate the influence material bending/twisting 

coupling has on body-freedom flutter.

In terms of its appliaction to body-freedom flutter, the 

present method of analysis has been restricted to the Ricochet, an 

aft swept aircraft. It was decided to apply the current analysis 

to the Chen and Dugund j i model. Figure 3.23 shows the layout of 

the aircraft model and Table 3.12 the model and support 

properties. The flutter analysis carried out by Chen and Dugundji 

is formulated by the Rayleigh-Ritz approximation, employing the 

stiffness coupling terms in laminate analysis required for 

investigation of composite wings involving cross layups. The 

current idealisation in this work assumes wing construction of 

isotropic nature. Therefore to avoid possible errors from material 

cross coupling, the present investigation is restricted to 

experiments carried out by Chen and Dugund ji for a [ 0 / 90 ]
2 s

layup.

From the material and geometric properties of the wing, it is 

possible to construct the stiffness and inertia details of the 

wing. In this case the canard is assumed to be rigid and to 

contribute only to the aerodynamics. The model is represented in 

similar fashion to those of Kestrel and Ricochet, i.e. in terms of 

beam elements: the modes and frequencies checked using BUNVIS. The 

first three frequencies are shown in Table 3.13 along with those 

supplied from Ref.(84), obtained from ground resonance tests. As 

one can see the overall agreement is very good.

Because of the model weight, the preselected wing planform 

was not able to fly the model completely. Thus the mechanism of 

support consists of a vertical rod with a linear bearing sliding 

on the rod and attached to the fuselage through a pitch bearing 
mount located at the model centre of gravity, a soft helical 

spring attached to the linear bearing that suspended the model 

from the top of the vertical rod and a pair of linear springs 

attached to the pitch gimbals at forward and aft extended arms 

that provide the support pitching stiffness. Therefore as the 

rigid body modes are no longer zero frequency, the stiffness in 

heave and pitch provided by the support system needs to be
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introduced into the equations of motion. This is done by inserting 

one translational and one rotational spring at the aircraft centre 

of gravity, as before to provide the required rigid body modes but 

now in addition to include the support frequencies. The support 

plunge and pitch (support 2) frequencies are shown in Table 3.12.

The subsequent flutter speeds including these rigid body 

frequencies is shown in Table 3.14 along with the values obtained 

theoretically and experimentally by Chen and Dugundji?4 The first 

flutter speed and frequency is obtained assuming a lift curve 

slope of 2t t  /rad both on the wing and the canard. Modal 

elimination shows that the type of flutter encountered is indeed 

body freedom flutter, involving coupling of the first bending mode 

of the wing with the rigid body degrees of freedom. Using 5 modes 

is seen to yield a -55% and 15.2% difference in flutter speed and 
frequency compared to the quantities obtained experimentally. It 

must be noted that in the present analysis the lift is assumed to 

be generated entirely by the canard and wing, unlike in Chen and 

Dugundji analysis which includes a contribution from the fuselage. 

Also although the same aerodynamic strip theory is employed using 

the cosine theory to account for sweep in their theoretical 

analysis, Ref.(84) uses seven modes and a polynomial to represent 

the Theodorsen function.

The next step is to use the lift curve slope found 

experimentally during static tests, to establish the static margin 

and trim condition. This model was found experimentally to have an 

overall lift curve slope of 5.33 /rad. To generate this slope for 

the current idealisation the canard lift curve slope ai was taken 

as 2.75 /rad from Ref.(73) and aQ deduced as 4.59 /rad, to achieve 

the overall experimental lift curve slope. The subsequent flutter 

speed and frequency is also shown in Table 3.14. Using the result 

obtained using 5 modes it is noted that in this particular case a 

modified lift curve slope reduces aerodynamic stiffness and 

damping and predicts a higher flutter speed. This modified 

approach results in a -38.0% and 9.7% difference in speed and 

frequency respectively. As with the Ricochet, the dominance of the 

low rigid body frequencies in this type of flutter is seen from 

the flutter frequencies.
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Geometric Details

Wing Tailplane

Span 22 m Span 2.85 m

Area 15.44 m2 Area 1.30 m2

Aspect Ratio 31.35 Aspect Ratio 6.25

Root Chord 0.90m Root Chord 0.557 m

Tip Chord 0.36 m Tip Chord 0.35 m

Sweep angle 0° Sweep angle 0°

a0 2tt /rad a
i

4.70 /rad

Inertial Details

Mass of each Wing 115 kg

Fuselage mass 

and equipment

with Pilot 278 kg

Pitching inertia I
y y 845 kgm2

Table 3.1 Particulars of the Kestrel
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Geometric Details

Span 15 m

Wing Area 10.26 m2

Aspect Ratio 22.93

Wing Root Chord 0.73 m

Wing Tip Chord 0.50 m

Sweep Angle 13.0°

Inertial Details

Mass of each Wing 50 kg

Fuselage Mass with Pilot 155 kg

and equipment

Pitching inertia I 106 kgm2
y y

Table 3.2 Particulars of the Ricochet
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Geometric Details

Wing Tailplane

Span 10.0 m Span 3.11 m

Area 15.00 m2 Area 2.72 2m

Aspect Ratio 6.7 Aspect Ratio 3.56

Root Chord 2.08 m Root Chord 1.07 m

Tip Chord 0.91 m Tip Chord 0.67 m

Sweep angle 9.58° Sweep angle 00

a0 4.22 /rad a
i

3.52 /rad

Inertial Details

Mass of each Wing 71 kg

Fuselage mass 

and equipment

with Pilot 734 kg

Pitching inertia I
y y

2637 kgm2

Table 3.3 Particulars of the Cranfield A1
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Wing Modes Measured Frequency 

(Hz) (rad/s)

Fundamental bending 

First overtone bending

Second overtone bending (anti-symmetric) 

" " " (symmetric) 

Fundamental torsion 

Third overtone bending 

First overtone torsion

I. 8 11.31 

4.7 29.53 

8.58 53.91

II. 68 73.39 
15.1 94.88

Not measured 

30.5 191.64

Fuselage Mode

Fundamental torsion 3.5 21.99

Table 3.4 Symmetric and anti-symmetric natural frequencies for 
the Kestrel from ground resonance tests

Modes Used

Flutter Speed (m/s) 
and

Frequency (rad/s)

Tailplane 
Aerodynamics 
accounted for 
(m/s) (rad/s)

Tailplane 
Aerodynamics 

not accounted for 
(m/s) (rad/s)

1,2,3,4,5,6 72.7 (49.7) 72.3 (50.0)

1,2,3,6 75.3 (54.3) 75.3 (54.3)

3,6 77.1 (41.6) 77.1 (41.0)

Table 3.5 Effect of number of normal modes on flutter speed of 
the Kestrel
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Modes Used

Flutter Speed (m/s) 
and

Frequency (rad/s)

Tailplane 
Aerodynamics 
accounted for 
(m/s) (rad/s)

Tailplane 
Aerodynamics 

not accounted for 
(m/s) (rad/s)

1,2,3,4,5 71.3 (47.2) 71.4 (47.0)
1,2,3,5 71.3 (47.1) 71.3 (47.0)
1,2,5 71.3 (47.2) 71.2 (47.2)

Table 3.6 Effect of number of normal modes on the anti 

-symmetric flutter speed of the Kestrel

M o d e s  used Flut t e r
Speed
(m/s)

F l u t t e r
F r e q u e n c y
(rad/s)

1,2,3,4,5,6 47.2 6.14

1,2,3,4,5 51.4 5.01

1,2,3,4 51.2 5.05

1,2,3 52.2 4.26

Table 3.7 Effect of normal modes on the flutter of the Ricochet
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8.18 Hz Fuselage torsion

13.80 Hz Wing bending fundamental

27.00 Hz Wing bending 1st overtone

36.80 Hz

64.10 Hz Wing bending 2nd overtone

Table 3.10 Anti-symmetric natural frequencies of the A1 from 

ground resonance tests

Frequencies (Hz)

1st

Bending

Fuselage

Torsion

Tailplane

Bending

1st

Torsion

Model A 23.92 29.07 38.89 65.15

Model B 24.07 29.80 38.89 56.22

Model C 25.31 30.54 38.89 70.42

Table 3.11 Anti-symmetric natural frequencies of the A1
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Mass 0.956 kg
Pitch inertia 0.0178 kgm2

Wing mass 0.054 kg

Wing span 0.612 m
Wing swept angle -30°

Wing area 0.0538 m2
Wing aspect ratio 7

Canard area 0.0126 m2
Fuselage length 0.8 m

Model plunge frequency 0.63 Hz

Model pitch frequency (support 1) 0.20 Hz

Model pitch frequency (support 2) 0.85 Hz

Table 3.12 Aircraft model84 and support properties

First bending First Torsion Second bending
Calc Exp Calc Exp Calc Exp

11.8 11.4 33.3 37.6 72.5 71.8

Table 3.13 Natural frequencies of forward swept model84
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Modes

Flutter speed and frequency 
m/s

(HZ)

a = a 0 1
(2tt /rad)

Modified lift 

curve slopes

1,2,3 16.8 18.9

(3.8) (3.7)

1,2,3,4 12.9 14.5

(3.3) (3.1)

1,2,3,4,5 12.9 14.5

(3.3) (3.1)

Ref.84 (using 16.0
seven modes) (2.3)

Experimental 20.0
results (2.8)

Table 3.14 Flutter speed and frequencies for forward swept 

model84
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Fig. 3.1 General layout of T59H Kestrel

Fig. 3.2 General layout of Ricochet
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Unmarked elements : Rigid elements

I - XIX : Beam elements

Fig. 3.4 Finite element idealisation of Kestrel
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Fig. 3.5 Natural frequencies and mode shapes for Kestrel 
in symmetric motion
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Fig. 3.7 Plot of the complex flutter determinant for Kestrel
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Fig. 3.8 Spanwise variation of real part of vertical displacement
and pitching rotation of Kestrel symmetric flutter mode
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Fig. 3.10 Natural frequencies and mode shapes for Kestrel 
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Fig. 3.14 Plot of the complex flutter determinant for Ricochet
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Fig. 3.15 Spanwise variation of real part of vertical displacement
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Fig. 3.21a Cantilevered natural frequencies and mode shapes of A1
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Fig. 3.21b Free-Free natural frequencies and mode shapes of Al 
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4.0 AIRCRAFT DYNAMIC STABILITY

4.1 Background

In general the stability characteristics of an aircraft are 

investigated using aerodynamic derivatives14,15 and with 

rigid-body assumptions only. This approach, hereafter will be 

referred to as the classical approach in this investigation.
222385However some authors ’ ’ have taken partial account of

flexibility by using a quasi-static method which employs 

quasi-steady aerodynamic derivatives (k=0) modified to take into 

account flexibility on the basis of static deflections only. 

However these equations are derived on the assumption that all the 

inertia and damping terms, pertaining to the flexible modes and 

unsteady aerodynamics are negligible, which is questionable for 

flexible aircraft at higher frequencies for instance close to the 
flutter condition.

Other methods introduce the concept of attached, mean and 

principal axes systems, ’ instead of the classical body fixed

axes, when introducing flexibility. Warzak et al88 used a mean

axes system, implementing strip theory to represent the 

quasi-steady aerodynamic forces. Dusto89 and Rodden et al90 also 

made use of mean axes but employed structural and aerodynamic 

influence coefficients (SIC) and (AIC) to define the structural 

deformation and the subsequent aerodynamic forces induced. These 

aerodynamic influence coefficients are generated from lifting

surface programs91 and lend themselves well to aerodynamic 

factoring. Notably this approach has been implemented within the 

aeroelastic capabilities of MSC/NASTRAN1?24

Woodcock21 favoured body fixed axes for any integrated 

approach to aeroelasticity and in this investigation as in the 

case of the flutter problem, this system is used. Utilising the 

generalised form of the Theodorsen function, the effects of 

flexibility and unsteady aerodynamics are examined on the stick 

fixed short period oscillation of deformable aircraft. Changes in 

forward speed are omitted so that the current analysis does not 

predict the phugoid mode. Similar studies have utilised this axis 

system in the same manner and have used the Theodorsen function
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Howeverto evaluate the aerodynamic loads?2’93 However these 

investigations have restricted themselves to the rigid body modes 

and low frequency harmonic motion to establish the dynamic 

stability. Goland94 used the Wagner function to evaluate the

unsteady aerodynamic forces for arbitrary motion but restricted
• , , , 2 0  the analysis to rigid body motion. Van Schoor and von Flowtow

recently have demonstrated the importance of including unsteady

aerodynamic effects, with the use of the generalised Theodorsen

function within a dynamic stability analysis on a highly flexible

man powered aircraft.

4.1.1 Theodorsen's Generlised Function

In the last section the Theodorsen function C(k) and strip 

theory were used to evaluate the flutter speed. However for the 

present investigation a unified method of stability analysis of 

deformable aircraft is presented. The method involves extending 

the Theodorsen function to non-harmonic arbitrary motion and again
. , , , 39
is based on the validity of strip theory.

In the flutter problem, sinusoidal motion is assumed to exist 

between the transition of stable and unstable oscillatory motion 

so that above the flutter speed the motion is divergent and below 

the flutter speed the motion is convergent. The Theodorsen 

expressions used for lift and moment in the flutter analysis are
A

j / -f Jr ̂  A

valid for aerofoil oscillation of the form e or e, where t = 

Ut/b. The Theodorsen function used in the flutter analysis is 

expressed in terms of Hankel functions and shown below.

C(k) =
H<2)(k)

H;2)(k) + iH^2)(k)
= F + iG (4.1)

For non-harmonic oscillation (convergent or otherwise) of an 

aerofoil, the lift and moment can be obtained if the Theodorsen 
function C(k) is properly calculated for complex values of k. This 

involves the solution of Bessel's functions for complex arguments 

(The details of the derivation in the analysis are in Appendix F). 

This extension of the Theodorsen function for motion of the form 
e'̂ t where X = u + iw, can be first found in the work of Luke and
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Dengler? 9 However Edwards95 appears to be the first investigator 

to practically exploit this function via Laplace transformations 

to evaluate aerodynamic loads for arbitrary motion of an aerofoil. 

This technique measures the subcritical and supercritcal stability 

of aeroelastic systems, for active flutter suppression and gust 
alleviation modeling?6 In this investigation this analysis is 

considered within the frequency domain and includes the aircraft 

rigid body modes.
To apply this extension of the Theodorsen function, the

vertical displacements and pitching rotations at various points on

the wing are given appropriate time dependence. The term k in C(k)
2 0

is regarded as a complex argument so that k = wb - ipb = pe.
U U

Figure 4.1 shows the real and imaginary parts of C(k) as functions 

of p and 8, where p is the modulus of the argument and 8 the 

phase. This figure extends the calculations of Luke and Dengler, 

to 8 = + 60° and 8 = 180? The Theodorsen function is given by the 

curves for 8 = 90? However for the current dynamic stability

analysis only the convergent plane is considered i.e. 0°< 8 < 90?

In the flutter problem the airspeed and the frequency 

parameter are the primary unknowns and the value of p, ( which is 

a measure of damping) is zero implying that the motion is simple 

harmonic. If an airspeed is chosen below the flutter speed, the 

stability determinant involving cj and hence p and can be solved 

for zero's of both the real and imaginary part. In the case of 

symmetric motion, if the two rigid-body modes, namely heave and 

pitch are included in the analysis along with the elastic modes, 

the real part p gives the short period damping and the imaginary 

part w gives the short period frequency of oscillation at the 

chosen speed.

4.1.2 Formulation of the Stability Determinant

Utilising the flutter equation for the aeroelastic system and 

assuming aerofoil oscillatory motion of the form e**" the following 
stability determinant can be obtained

[X] * [ X ]  • ] = o (4.2)
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where in the mathematical model, the two rigid body modes, heave 

and pitch are required to define the short period motion 

associated with elastic modes in the symmetric motion.
The solution of the stability determinant is essentially the 

same as that of the flutter determinant previous. However since

determinant becomes primarily a complex function of two unknown 

variables p and 0 for a given airspeed. For a chosen airspeed the 

real and imaginary parts of the stability determinant are 

evaluated for a range of p and 0 until both real and imaginary 
parts vanish and the corresponding entities are obtained.

4.2 Extension of Classical Flutter Axes to Dynamic Stability 

Analysis

4.2.1 Tailed Aircraft
Referring to figure 4.2 we shall consider a rectangular wing 

aircraft. In addition to the rigid body modes the aircraft is 

allowed one elastic mode, namely wing bending.

4.2.1.1 Modal Representation

Using a similar approach to that by Bisplinghoff33 the 

displacement field of the aircraft is represented with respect to 

generalised coordinates.

where the <p ̂ (y) are normalised natural mode shapes of the aircraft 

under the prescribed boundary conditions, and (t) are normal 

coordinates. In this transformation, displacement of the aircraft 

is represented by two rigid body modes of zero frequency plus a 

superposition of normalised modes of the unrestrained airplane, as

2 0
the term k in C(k) is a complex argument k = wb - ipb = pe the

U U

<j = pcos 0 = short period frequency (rad/s)
s p

p = -psin 0 = short period damping (1/s)
s p

00

(4.3)

i = l
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follows:

heave «̂ (y) = 1, Wj= 0,
pitch <p2( y) =1, u2 = 0,

wing bending <P3(y)= Ç, wf taken in the spanwise

direction

4.2.1.2 Inertial Representation
The expression for the kinetic energy is written as:

T = | w(y,t) p(y) dV (4.4)

v

where here p is the material density

Assuming for simplicity the mass of the aircraft is concentrated 

at the wing and tailplane Eg.(4.4)

where q q and q are the generalised co-ordinates of heave,
h p f

pitch about the aircraft c.g. and wing flexure. xw and xt are the 

respective distances of the wing and tailplane c.g.'s from the 

c.g. for the complete aircraft.

Since the natural modes are orthogonal, Eq.(4.5) reduces to

(4.5)

(4.6)

where
M Total mass of the aircraft

I Total aircraft pitching moment of inertia
yy
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A

mf C2 (y ) m(y) dy
0

m(y) mass per unit length of 
one wing

1 Spanwise length

The total potential energy for the aircraft contains only the 

strain energy of the elastic wing i.e.

(4.7)

In terms of normalised natural modes shapes:

U =

1

C2 (y) m(y) dy q2
o

1
2

2m wf f (4.8)

Substituting expressions for the Kinetic and potential energy 

given by Eq.(4.6) and Eq.(4.8) into Lagrange's equation results in 

the following equation of motion interms of generalised 

co-ordinates.

0

0

0

- “ “
0 % Q Q Q11 12 1 3

0 q = Ç> Q
p 21 2 2 2 3

2m <j q Q Q Qf f 31 32 33

(4.9)

The generalised force £ Q j  is provided by expressions for 

the virtual work done by the aerodynamic lifting surfaces.

4.2.1.3 Generalised Aerodynamic Matrix

The work done by the respective lifting surfaces is defined
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as

rs

5W L Sh + M 5a dy + w w aw w 1 L 5h + M 5a dy (4.10)
T T ÜT t 1 ' '

(4.11)

Referring to Figure 4.2 the virtual displacements can be written 

in terms of the generalised co-ordinates. The transformation which 

gives the deflection of the aerodynamic axis in terms of the 

amplitudes of the chosen generalised co-ordinates.

5hw =
8aw L

1 -xw
0 1

C
0

ôc*h

ôqp
5qf

(4.12)

5h
T

1 X
T

5a
T

0 1
. Ô q p .

where xw and x̂  are the respective distances of the wing and 

tailplane aerodynamic centres from the aircraft c.g.

The lift and moment 

aerofoil displacements.

can also be expressed in terms of the

“ -

L A A h= li 12
M A A aa

_ -
21 22 _

(4.14)
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Substituting the above expressions for the wing and tailplane 

respectively into Eq.(4.11)

SW

8%

SW

5(3P
SW

5qf

* p - “
AW AW AW qvn 12 13

AW AW AW q
21 2 2 23 p

AW AW AW q.
^ n

31 3 2 33

J o

dy

+

sT _ r 1
AT AT 011 12
AT AT 0 q21 22 p
0 0 0 . qr .

r»0

dy

(4.15)
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where for the 

Wing

AW = A 11 11

AW = -A x + A
12 11 W 12

AW = A C1 3 11̂

2  1 11 W 21

AW = A X2 - A x +
2  2 11 W 12 w

AW = -A C X + A C2 3  1 1 ^  W 2 1 ^

AW = A C3  1 1 1 ^

AW = -A C X + A c3 2  1 1 ^  W 1 2 ^

AW = A C23  3 1 1 ^

Considering quasi-

22 21 W

Tailplane

AT = A1 1 1 IT

AT = A X + A1 2 11T T 12T

AT = A X + A2 1 1 IT T 21T

AT = A x2 + A X2 2 1 IT T 12T T

+ A + A X22T 21T T

(4.16)

for unsteady lift and moment can be re-written, neglecting the 

non-circulatory terms and setting C(k) = 1.0, as

L = -2TTpUb(h + Ua)

M = 2TTpUb2(| + a ) (h + Ua)(X Z h

(4.17)

where p here is atmospheric density. Assuming aerofoil motion of 

the form e^^ the heave displacement considered can be written as

At

At
h = h e

h = A h e
t- . 2 , Atn = A h e

expressions (4.17) are changed to take into account modified 

aerodynamic parameters.
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(4.18)

Alt= -pUbaoA Ai2= -PU2bao

A al- PubV < l  + ah) A22- p U 2b2ao(i + aj

For simplicity it is assumed that the shear centres of both wing 

and tailplane are coincident with their respective aerodynamic 

centres, ie a = -0.5, therefore A = A = 0. Integrating Eq.(4.15) 

with respect to the wing and tailplane spans, the generalised 

aerodynamic matrix is

Q(i/j)

-

Q , ,  Q , „  Q ,  „ q K
1 1  1 2  1 3 h

Q „ ,  C > „ q
2 1  2 2 2 3 p

OOO

q „
3 1  3 2  3 3 f

(4.19)

The generalised aerodynamic terms Q(i,j) are functions of A^ and 

Aj2 and can be expressed in terms provided by Eg.(4.18)

since S = 2s b w w w

S = 2s b
T T T

Q q = ( s A + s A  )q
l l ^ h  '  W 11 T l l T ' ^ h

= -pU(a s b + a s b )q ̂ ' 0 W W IT T'̂ h

Q 1 ? q n12  p

S ) q
1 -  T '

s w

= z  q
w ”  h

A X  + s A + s A
1 I T T W 12  T

a s  b
I T T

XT)qp - pU2

=  i p U S  ( a x - a  S x ) q -  ^ p U 2 S (a + a S )q 2k w v o w i -t t'^p 2^ w v o 1 - t '
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= z q - C q 
q p 1 p

Q q = A I- q„ 13̂ f 11 C f

= -pUaob> I qf

where I
C

rs
C (y) dy

o

Q2.qh ”  <-S» A11 V  SI AUT Xt ) qh

-  PD <a 0S W b.  V  a i S T bT XI )qh

= ±pUS (a x - a S„. x,Jq. = M q
2 k  w ' o w  l - T  T h w h

S

2 2  p
A x2 + s A 2

X - s A x + s A XT)q
11 W T 1 I T T W 12 W T 12T T P

s b x2+ a s„ o w w W IT b
T
x2)q + Pu2<aos» bw x - a s b x ) q

W I T  T T ^ p

ipUS (a x2 + a 2h w ' o w  i
s
-  T

sw

x2 ) q
T ' ̂ p + 5P°2V a x - a S,. x ) q

O W 1 - T T p

Sw

= M q + C q
q P 2 p

Q q = -A I,, x q„
V2 3^f 11 C w i

= pUa b I,- x q„K o  w £ w

Q q = A I- qw3̂1̂ h 11 ( h

= -pUa b I- qwK o w C h
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Q q = (-A I- x + A I-) q 
*32Mp ' u  C w 12 C p

= pUa b I w x q - pU a b I- qK O W £ w P r O W Q ^ p

Q q33̂ f = A I 11 cc qf

= -pUa b I__ K o w CC % where I
CC C (Y) dy

(4.20)

From inspection Q32 = UQ3i , Qj3= Q3j

4.2.1.4 Stability Matrix

Referring to the matrix equation 

of the form

q

q

q

q e
At

AtA q e
. 2 At A q e

(4.9) and considering motion

M 0 0

0 I 0
y y

0 0 m

0 0 0

0 0 0

0 0 m uf

(4.21)

Matrix (4.21) is identical to that of (4.2) for a system with 

three degrees of freedom.
To simplify the above equation the distance between the wing 

aerodynamic centre and the aircraft c.g. is put to zero i.e. xw= 0 

therefore the term Q23 goes to zero.
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MA

-Q

-Q

-  Q - Q ,  0u 1 2

I  A 2 -
2 1 y y

-Q
3 1 3  2

2 2

"Q 1 3

m A2+ m tj2- Q „
f  f  f  3  3

p

%

= 0

(4.22)

MA2- Z A
o

- z  ;W q
O

-M A I A2W y  y

~ Q 3  1
-Q 3  2

- C

-Q 1 3 

0 = 0

m A2 +  m (J2 -  Q
f  f  f  3 3

(4.23)

since C = -Z U1 w

C = UM2 w

Expanding the determinant of matrix (4.23) results in 

following quartic

A A4+ B A 3 + C A 2 + D A  + E = 0 (4.24)

where

P o o o
Q UM Z M31 w w q

o o
Z Mq w

Mm MI MI
y y yy yy

the
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D =

0
M

0
z > Q UM Z M Z M ] M I2 q w l 33 W w q , q w 1 q 13Ct)f I M m I MI MI MI m\ yy f yy yy yyJ yy f

E = (J
UM

+

o o
Z Mw q

o o
Z Mq w

MI
yy yy

MI
yy

(4.25)

4.2.1.5 Rigid Body Stability
Assuming the wing as rigid the structural frequency dependent 

terms in the mass and stiffness matrices go to zero and 

expressions provided by (4.25) are simplified within a quadratic 

equation.

" 0 o
-MM - Z Iq w yy X +

” o o o o o '
-UMM + Z M - Z Mw w q q w

MI MI
yy J l yy

(4.26)

Comparing with quadratic 

A2 + BA + C = 0 where z M

B

o o '
-MM - Z Iq w yy

MI
yy

(z + m )w q
1
Z

Z M - (q w UM +
o o
Z ) M

MI
yy

(z m + ( i - z  ) m ) -' w q V q w 2

(4.27)

Therefore the short period damping and frequency is
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B
2

C (4.28)U s  p
(J

s  p

B
4

It can be seen the above aerodynamic derivatives are
. . 1415identical to those supplied from more conventional means. ’ 

However unlike these more conventional techniques the current 

analysis takes into account the damping contribution from the wing 

as well as the tailplane.

4.2.2 Tailless Aircraft

This configuration is allocated one elastic freedom, namely 

wing bending and its layout is shown in Figure 4.3. Normal modes 

and quasi-steady aerodynamic are employed as before in its dynamic 

representation.

4.2.2.1 Inertial Representation

An expression for the kinetic energy similar to that for the 

straight wing aircraft can be written as follows:

T = <*h- x q ) dm
p f u s e l  a g e

i l (ytan A - x )q + Çq )
w ' ^ p  ^ ^ f  7 W in g

dm

where

x is the distance of the fuselage c.g.

(4.29)

from the aircraft

c.g.
xw is the distance of the wing inertia axis is forward of 

the aircraft c.g. at the centreline, 

y is the spanwise distance

The first term represents the contribution from the rigid body 

modes and the second the kinetic energy of the wings alone.

= 1 1
(q" + x2q2) dm

h p f u s e l  a g e

+ i l (q2 + (ytan A - x ) 2q2 + Ç2q2) dm (4.30)
'  ~  h w  w'  ^  p  ^  ^ f ' w i n g  v '
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Therefore an expression identical to equation (4.6) is obtained 

namely

T = 1
2 M q: + Iy y

• 2 , -2 q + m
p

1 qf

The above expression for the kinetic energy and that from Eq.(4.8) 

for the potential energy is substituted into Lagranges equation 

and the matrix equation of (4.9) is obtained

4.2.2.2 Generalised Aerodynamic Matrix

Considering the virtual work done by just the wing. Equation 

(4.10) can be re-written as follows, removing the contribution 

from the tailplane.

6 W

_s

L 5h + M  6a dy w w aw w 2
J o

(4.31)

(4.32)

Referring to Figure 4.3 the virtual displacements can be written 

in terms of the generalised co-ordinates. The transformation which 

gives the deflection of the aerodynamic axis in terms of the 

amplitudes of the chosen generalised co-ordinates. Where xw is the 

distance of the wing aerodynamic axis is from the aircraft c.g. at 

the centreline.

5hw 1 ytan A - xy C
6a 0 1 0w .

Sqf

Using expressions (4.33) and those for the lift and moment from
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(4.14) and substituting into Eq.(4.32)

1

y t a n  A

C

-  x

0

1
An A12 1 ytan A - xw C
A21 A22 0 1 0

p

(4.34)

dy

*
AW AW AW qu 12 13

AW AW AW q
21 2 2 2 3 p

AW AW AW q
n

31 32 33

dy (4.35)

where

AW = Ali li

AW = A y tan A - A x + A12 11 11 w 12

AW = A C
1 3 1 1 ^

AWo< = A y tan A - A x + A21 11 llw 21

aw22 = Alt*w - A,ixw 2y tan A + A,,y tan A - a ,2x„ +

» „  y tan A - A 2]x w  + A 2 j y t i n  A  * A
22

AW = A C y  t a n  A -  A C * + A C23  J 11s w 21s

AW = A C
3  1 1 1 ^

AW3 2= A 1 ^  Y t a n  A An C x w + A 2C

AW33= A nC (4-36)

The aerodynamic expressions provided by Eq.(4.18) are multiplied
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by cos A to take account the effects of sweep.

A = -pUba A cos A 11 o A = - pU ba cos A 12  ̂ o

A = pUb2a A(^ + a ) cos A A = pU2b2a (| + a ) cos A
21 r 0 '2 h/ 22 r o'2 h'

• ( 4 . 37)

Assuming a = -0.5 Therefore A = A = 0
h 21 22

After integration of Eg.(4.35) the generlaised aerodynamic matrix 
is formed as shown in Eg.(4.18)

where s = s and S = S w w

Q q = sA q
l l ’ h 11

= --pUSa cos A q = Z q
w h

- s<- An xw t S „  2 s tan A + A,2>V,

-pUSa cos A 
2  o

xw - s tan A * 1 2q - -pU Sa cos A q
P 2 o p

Z q - C q
q p i  p

Q q = A I- q13̂ f 11 C

= -pUa b 1» cos A q
r  0  W C  h

Op,13!,“ S(' A.,X»+ A„  2 s tan A > %

-pUSa cos A
2  o Xw - 2 S tan A q h =  M w q hn w h

q 2A >  = s<A,,xw - A,.xws tan A * A„  5 s2 tan2A - A12x„ +
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A12 2 S ^  A > «p

-pUSa cos A 2 o x2, - s x tan A + i s 2 tan2A 
W W  3

+ |pU2Sa cos A 2 o Xw -  2 s ta n  A qn = M q + c qp q p 2 p

s
Q q = A I >.. q

2 3 ^ r  u  Ç A  f
where I<A Ç(ytan A - xR) dy

= pUa b I... cos A q r o w ÇA

U  = qh

-pUa b Iw cos A q K o w Ç

=32%  =  <Al i r ÇA + A, 2 I < ) q p

= -pUa b L. cos A q - pU2a b L  cos A q r o # (A p  ̂ o w Ç

Q q = A I,.- q33̂ f 11 ÇÇ

-pUa b I,.,, q o w ÇÇ f (4.38)

o o
On inspection it is seen that C = -Z U and C = UM

1 w 2  w

These expressions for the generalised aerodynamic forces are 

introduced into the equations of motion and the matrix equation of 

(4.21) is again formed, however in this case the term Q can not 

be neglected as this is the function of the static margin for the 

tailless aircraft. The resulting quartic of equation (4.24) has 

the new following coefficents.
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A = 

B =

L

f Q M
3 3  q

0
zw

m I M
1 f yy 

Q
O

r m
C = 2 , 3 3(J + --f mv f

q
I

v yy

o
z

M

' 3 1

Mm

UM
+

y y

O O
Z M

w q

MI
y y

o o
Z M

q w

MI
y y

Q Q2 3  3 2

I m
y y  f

D = CJ

O
M

O
z

M
y y

3 3
UM

m

o o
Z M

w q

y y

+
MI

y y

0 o
Z M

q w

MI
y y  y

+

° 2 M Q
q  13

MI m
y y  f

Q Q3 1 2 3

MI m
y y  f

o o
z -  z

w q

01
UM

o o
Z M

O 0
Z M

w 1 w q q w

MI MI
y y  y y y y

13

MI m
y y  f

Q UZ + (Q - UQ )M
2 3  w ' * 3 2  * 1 3 ’  w

(4.39)

Neglecting flexibility and retaining the zero frequency terms the 

expressions above are inserted into the stability matrix and 

resulting quadratic is identical to Eq.(4.26) and Ci and C2 

cancel out so that the s.p.p.o (short period pitching oscillation) 

damping and frequency are obtained by the same expressions as 

those provided by Eq.(4.28).

4.3 Influence of Quasi-Steady and Unsteady Aerodynamics on 

Aircraft Dynamic Stability

The analysis above is seen to yield stability derivatives 

identical to those as established in conventional rigid body 

dynamic stability analysis)4,15 neglecting downwash effects. To
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confirm this agreement, conventional derivatives were obtained 

using the classical approach and the subsequent s.p.p.o damping 

and frequency is compared to that obtained using the current code, 

first with quasi-steady aerodynamics as implemented above followed 

by the unsteady aerodynamic expressions.

As a simple example, a fictitious aircraft of aspect ratio 20 

with a straight rectangular wing and tailplane was created with 

dimensions similar to most high aspect ratio sailplanes. Its 

layout and inertia properties are shown in Table 4.1. As elastic 

modes are not incorporated in this example the wing and tailplane 

consist of rigid massless beam elements and a lumped mass and 

inertia located at the the aicraft c.g. to represent these 

respective quantities. As before, a light spring allowing 

translational and pitching rotational freedoms provided the 

required rigid body modes. In this example the c.g. of the 

aircraft was located at the aerodynamic centre of the wing, i.e. 

a = -0.5, to leave out the damping contribution from the wing and 

make it compatible with the classical approach. Stability roots 

obtained at U = 90m/s, are non-dimensionalised with respect to z, 

(the magnitude of time unit) and are presented in Table 4.2. 

Referring to this table it is seen that the current analysis 

employing quasi-steady aerodynamics yields almost identical 

quantities to that obtained from the classical approach. Different 

speeds were subsequently investigated using the code and no 

significant change in the roots was observed, within the accuracy 

of the program eigenvalue search procedure. Also shown is the 

effect of moving the c.g. away from the aerodynamic centre, at xy 

= 0.4257 m as it can be seen the damping in the s.p.p.o mode 

increases if the wing contribution is taken into account.

Next, Theodorsen's expressions for unsteady lift and moment 

were introduced. In addition the Theodorsen function C(k) was 

extended to cover the case of convergent aerofoil motion of the 

form e ^  These results are also presented in Table 4.2 for 

comparison. It is seen that the unsteady aerodynamics reduces 

damping and increases stiffness in the s.p.p.o mode. As the 

unsteady aerodynamic forces are functions of puf it is found that 

these roots too, non-dimensionalised with respect to x do not vary
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with airspeed.

4.4 Unified Aeroelastic Analysis Applied to the Kestrel, Ricochet 

and the Cranfield A1

This proposed method of stability analysis was demonstrated 

by applying the theory to the Kestrel, Ricochet and the Cranfield 

Al, as in the case of flutter. This analysis was first carried out 

employing quasi-steady aerodynamics and full flexibility. The 

dynamic stability analysis was completed by incorporating the full 

effects of unsteady aerodynamics and flexibility. In both cases 

the damping, frequency and time to half amplitude of the s.p.p.o 

mode are computed. The corresponding results for the rigid 

aircraft using stability derivatives are also obtained for 

comparison. The stability derivatives for each aircraft considered 

is summarised in Appendix D. In presentation of results, all the 

modes are numbered sequentially, starting from the rigid body 

modes and finishing with the elastic modes.

4.4.1 The Kestrel

As the Kestrel is a high aspect ratio aircraft, and 

flexurally weak it is considered as an ideal example of a 

deformable aircraft. The effects of flexibility are also expected 

to be significant within the aspect of dynamic stability. Wing and 

tailplane aerodynamic parameters were maintained from the flutter 

study. A technique of modal elimination was carried out for both 

the quasi-steady and unsteady aerodynamic models, to investigate 
the dominant modes.

4.4.1.1 Quasi-Steady Aerodynamics

Table 4.3 displays the roots using quasi-steady aerodynamics 

from which the required quantities shown in Table 4.4 are derived. 

Table 4.5 and Table 4.6 are the corresponding values for the 

unsteady case. Referring to Table 4.3 their is good agreement, 

within engineering accuracy between the roots obtained using the 
derivative approach and that from the current analysis, assuming 

only rigid body modes (modes 1 and 2). The agreement is not total 

as this time the effects of wing and tailplane taper are 

incorporated in the current analysis. It is also noted that 

although the angle of structural sweep forward is small, of the
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order of 1.4°, neglecting its effect was subsequently found to 

double the s.p.p.o frequency. This is because the wing sectional 

ah increases the local pitching moment, this inturn increases the 

overall aircraft SC /SC and subsequent static margin. Referring
on L

to U = 30 m/s the introduction of flexibility is seen to

destabilise the s.p.p.o mode, in particular the fundamental 

bending and torsional modes (modes 3 and 7). This stems from 

approximity to the flutter speed of 41.2 m/s predicted from the 

quasi-steady theory, this is also reflected in the severe drop in 

damping ratio. From Table 4.4 the ratios of the s.p.p.o damping 

(ji ), s.p.p.o period frequency (u ) and time to half amplitude
s  p  s  p

for the flexible, using all six modes, and rigid aircraft are 

1.20, 5.80, 0.83 for a speed of 30 m/s. The results for 60 m/s

suggest convergent motion, however practically flutter is followed 

by divergent motion, which appears not to be predicted from this 

particular quasi-steady model.

4.4.1.2 Unsteady Aerodynamics
Comparing in Table 4.5, the roots obtained using the present 

theory using two rigid body modes, it is seen that the 

introduction of unsteady aerodynamics has a destabilising 

influence on the s.p.p.o mode. Introduction of flexibility, as 

before increases this instability. As both speeds are below the 

flutter speed for this case, there is not the marked increase in 

s.p.p.o frequency until at around a speed of 60 m/s the Kestrel is 

sufficiently close to its predicted flutter speed that the damping 

ratio substantially decreases. From Table 4.6 The ratios this 

time are 1.56, 1.19 and 0.65 for a speed of 30 m/s and 0.69, 2.06 

and 1.5 for a speed of 60 m/s. It is also seen from the time to 
half amplitude that, at 30 m/s the ride quality is improved with 

the introduction of flexibility, except close to the flutter 

speed.
It is seen from both quasi-steady and unsteady models that 

the inclusion of just the first bending and first torsion elastic 

modes is sufficient in predicting the dynamic characteristics of 

the Kestrel.

The contrast between the quantities obtained assuming a rigid 
body idealisation and aerodynamic derivatives and the proposed

107



analysis employing unsteady aerodynamics and flexibility is 

demonstrated in Figure 4.4 at 30 m/s and 60 m/s. Here the rate of 

pitch (da/dt) is plotted against time for both the rigid case and 

the flexible case based on four elastic modes. It is indicated 

from Table 4.4 and 4.6, that at 60 m/s the classical approach over-

estimates the short period damping by 35.2% and underestimates the 
short period frequency by 60.6%.

4.4.2 The Ricochet

The Ricochet in the absence of a tail is expected to suffer 

loss of damping in pitch. In prior investigations ’ the 

interaction of rigid-body modes with the elastic modes of 

distortion was demonstrated in the flutter results.

The Ricochet was given two rigid body and four elastic 

degrees of freedom in the symmetric motion, as in Chapter 3. The 

investigation was carried out for two airspeeds below the flutter 

speed to ensure convergent oscillation, these were 25 m/s and 40 

m/s. Although in the prior flutter investigation aQ= 2n /rad the 

value of a =5.68 /rad is taken from Buchanhan70 and was used for 

both the quasi-steady and unsteady analysis. The static margin 

stick fixed was kept at 1.79% SMC as in the flutter calculations 
aswell as the mass and inertia quantities.

4.4.2.1 Quasi-Steady Aerodynamics

Table 4.7 displays the roots using quasi-steady aerodynamics 

from which the required quantities shown in Table 4.8 are derived 

from. Referring to Table 4.7 it can be seen that there is good 

agreement (within 12%) between the roots obtained from the current 

analysis, using the two rigid body modes of heave and pitch and 

that derived using the classical approach. It appears that the 

assumption of modifying the lift by cos A, for this small angle of 

sweep, is adequate in predicting the m̂  term or the damping 

contribution in pitch from the swept wing. Referring to Table 4.8 
the ratios of the s.p.p.o damping (/Li  ), s.p.p.o period frequency

S p

(w ) and time to half amplitude for the flexible, and rigid
S p

aircraft are 0.92, 1.36, 1.08 for a speed of 25 m/s and 0.45, 

2.23, 2.23 for a speed of 40 m/s. The effect of flexibility is

seen to increase the frequency in the oscillatory mode. It is seen 

that at 40 m/s the damping has significantly reduced. At this

108



speed the Ricochet is close to its calculated flutter speed of

46.2 m/s using quasi-steady aerodynamics. Hence if the speed were 

to be increased, the damping in the resulting motion would reduce 

and finally become zero at the flutter speed. At this point the 

flutter mode will be achieved and the motion will become 

sinousoidal.

4.4.2.2 Unsteady Aerodynamics
Referring to the roots in Table 4.9 it can be seen that the 

introduction of unsteady aerodynamics does not significantly 

modify the the s.p.p.o quantities, predicted by the quasi-steady 

model. The agreement between the quasi-steady and unsteady 

aerodynmic theories is good as this aircraft's aeroelastic 

stability is dominated by the low frequency rigid body modes. 

Unsteady aerodynamics is found to marginally increase both the 

frequency and damping. From Table 4.10, the ratios this time are 

0.85, 1.24, 1.18 for a speed of 25 m/s and 0.43, 1.57, 2.32 for a

speed of 40 m/s. As exhibited in the quasi-steady analysis, the 

damping is significantly reduced at 40 m/s as the Ricochet 

approaches its flutter speed of 47.2 m/s, using unsteady 

aerodynamics.

Like the Kestrel the subsequent rate of pitch against time is 

plotted in Figure 4.5, for the rigid case and flexible case based 

on four elastic modes, at the two speeds considered. From this it 

is seen that the effect of flexibility is significant on the short 

period oscillation characteristics of the Ricochet, in 

particularly at 40 m/s. Again close to the flutter speed the 

classical approach is seen to be inadequate in predicting the 

dynamic characteristics of the Ricochet. At 40 m/s the classical 

approach overestimates the short period damping by 110.4% and 
underestimates the frequency by 57.3%. At this speed the 

introduction of flexibility and unsteady aerodynamics is seen to 

significantly degrade the ride quality for Ricochet, doubling the 

time to half amplitude.
4.4.3 The Cranfield A1

The present stability analysis was carried out on the A1 at

41.1 m/s and 61.7 m/s. These speeds were chosen to be compatible 

with those speeds flown at during flight tests to identify the
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unsteady aerodynamics and flexibility (based on four elastic 

modes) is seen to increase the time to half amplitude for the A1 

by over 18% for both speeds and consequently reduce ride comfort.

As the A1 is very stiff, the classical approach only over-

estimates the short period damping by 19.4% and underestimates 

the frequency by 0.9% at an aircraft speed of 61.7 m/s.

As a means of comparison Table 4.14 also includes the values 

from the classical approach, and the results from flight data. It 

is seen that the two methods underestimate the damping quite 

substantially, leading to an overestimation of the s.p.p.o 

frequency. The percentage discrepancy in frequencies is 25.6 % and 

23.3% for 41.1 m/s and 61.7 m/s respectively employing unsteady 

aerodynamics and flexibility. Using the quantities quoted in Table 

4.14, the rate of pitch (da/dt) is plotted against time for both 

the rigid and flexible case (based on four elastic modes) with the 

values from flight data, which are only available for the latter 

speed of 61.7 m/s. Figure 4.6 shows the plots for these two, 

speeds. There are a variety of reasons for these discrepancies, 

perhaps the most important is the effect of downwash at the 

tailplane which has the effect in general of increasing the 

damping in the s.p.p.o mode and reducing the frequency!4 The 

influence of downwash in this case is perhaps that much more 
important as the A1 is of moderate aspect ratio and the magnitude 

of the velocities induced at the tailplane can be expected high.
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Geometric Details

Wing Tailplane
Span 20 m Span 4 m

Area 20 m2 Area 2 m2

Aspect ratio 20 Aspect ratio 8

Root chord 1 m Root chord 0.5 m

Tip chord 1 m Tip chord 0.5 m

Sweep angle 0° Sweep angle 0°

a0 2tt /rad a
i

2n /rad

Inertia Details

Total Mass 600 kg

Pitching Inertia 800 kgm2

Table 4.1 Particulars of representative aircraft of aspect 

ratio 20
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Method of 
Analysis

A

V  0 x = 0.4257m w

Stability derivative 
approach (Ref.14) -9.65 + i10.17 -8.67 + i 2.56

Quasi-steady 
aerodynamics 
( i.e C(k) = 1, non- 
circulatory terms 
neglected)

-9.64 + i10.13 -9.07 + i2.33

Unsteady Aerodyanmics 
(C(k) * 1, non- 
circulatory terms 
included)

-8.09 + ill.14 -8.75 + 12.04

Table 4.2 Stability roots for representative aircraft using 

quasi-steady and unsteady aerodynamic model

Method
of

Analysis

U = 30 m/s U = 60 m/s

A A

Stability
derivative -5.86 + i 3.43 0.86 -5.86 + i 3.4 3 0.86
approach

Quasi—steady
aerodynamics
with modes :

1,2 — 5.60 + i 3.02 0.88 -5.84 + 13.06 0.88

1,2,3 -6.22 + i18.16 0.32 -4.43 + i8.34 0.47

1,2,3,6 -6.62 + i17.53 0.35 -4.47 + 17.91 0.50

1,2,3,4,6 -6.74 + 117.66 0.36 -4.56 + 17.86 0.50

1,2,3,4,5,6 -6.71 + 117.49 0.36 -4.52 + 17.89 0.50

Table 4.3 Stability roots for Kestrel using quasi-steady

aerodynamics
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Method
of

Analysis

U = 30 m/s U = 60 m/s *

U-s  p

1/sec

u
s  p

rad/s

T1 / 2 
sec

M s  p

1/sec

id
s  p

rad/s

T1/2
sec

Stability
derivatiyi
approach1

-3.22 1.89 0.22 -6.45 3.77 0.11

Quasi-steady 
aerodynamics 
with modes :

1,2 -3.08 1.66 0.23 -6.43 3.37 0.11

1,2,3 -3.42 9.99 0.20 -4.88 9.18 0.14

1,2,3,6 -3.64 9.64 0.19 -4.92 8.70 0.14

1,2,3,4,6 -3.71 9.72 0.19 -5.02 8.65 0.14

1,2,3,4,5,6 -3.69 9.62 0.19 -4.97 8.68 0.14

Table 4.4 Time to half amplitude, damping term and frequency for 

Kestrel using quasi-steady aerodynamics

Present theory 
with modes :

U = 30 m/s U = 60 m/s

A A
«.p

1,2 -6.25 + i 4.05 0.84 -6.27 + 14.03 0.84

1,2,3 -7.82 + i 3.87 0.90 -4.38 + i 8.84 0.44

1,2,3,6 -9.69 + i4.80 0.90 -4.26 + 18.34 0.46

1,2,3,4,6 -9.45 + i 4.69 0.90 -4.34 + 18.32 0.46

1,2,3,4,5,6 -9.78 + 14.84 0.90 -4.34 + 18.30 0.46

Table 4.5 Stability roots for Kestrel using unsteady aerodynamics
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Present theory 
with modes :

U = 30 m/£ U = 60 m/s

U s  p

1/sec

0)
s  p

rad/s
T1 / 2 
sec

U s  p

1/sec

u
s  p

rad/s
T1/2
sec

1,2 -3.44 2.23 0.20 -6.90 4.43 0.10

1,2,3 -4.30 2.13 0.16 -4.82 9.72 0.14

1,2,3,6 -5.33 2.64 0.13 -4.69 9.17 0.15

1,2,3,4,6 -5.20 2.58 0.13 -4.77 9.15 0.15

1,2,3,4,5,6 -5.38 2.66 0.13 -4.77 9.13 0.15

Table 4.6 Time to half amplitude, damping and frequency for 
Kestrel using unsteady aerodynamics

Method
of

Analysis

U = 25 m/s U = 40 m/s

X X

Stability
derivative -4.52 + 12.29 0.89 -4.52 + 12.29 0.89
approach1

Quasi-steady
aerodynamics
with modes :

1,2 -4.10 + 12.61 0.84 -4.29 + 12.67 0.85

1,2,3 -3.84 + 13.23 0.77 —2.50 + 14.52 0.49

1,2,3,6 -3.83 + 13.50 0.74 -2.04 + 15.73 0.34

1,2,3,4,6 -3.76 + 13.57 0.73 -1.90 + 15.99 0.30

1,2,3,4,5,6 -3.78 + 13.55 0.73 -1.93 + 15.98 0.31

Table 4.7 Stability roots for Ricochet using quasi-steady

aerodynamics
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Method
of

Analysis

U = 25 m/s U = 40 m/s

Ms p
1/sec

<js p
rad/s

T1/2
sec

Us p
1/sec

<Js p
rad/s

T1/2
sec

Stability
derivative
approach1

-2.79 1.41 0.25 -4.46 2.26 0.16

Quasi-steady 
aerodynamic 
with modes

1,2 -2.53 1.61 0.27 -4.23 2.64 0.16

1,2,3 -2.37 1.99 0.29 -2.47 4.46 0.28

1,2,3,6 -2.36 2.16 0.29 -2.01 5.65 0.35

1,2,3,4,6 -2.32 2.20 0.29 -1.87 5.91 0.37

1,2,3,4,5,6 -2.33 2.19 0.29 -1.90 5.90 0.37

Table 4.8 Time to half amplitude, damping term and frequency for 

Ricochet using quasi-steady aerodynamics

Present theory 
with modes :

U = 25 m/s U = 40 m/s

X X

1,2 -4.64 + i 3.28 0.82 -4.97 + i 3.4 3 0.82

1,2,3 -3.97 + i 3.58 0.74 -2.73 + 14.28 0.54

1,2,3,6 -3.89 + i 3.89 0.71 -2.20 + 15.13 0.39

1,2,3,4,6 -3.83 + i 3.97 0.69 -2.13 + 15.37 0.37

1,2,3,4,5,6 -3.93 + i4.06 0.70 -2.15 + 15.36 0.37

Table 4.9 Stability roots for Ricochet using unsteady

aerodynamics
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Present theory 
with modes :

U = 25 m/£ U = 40 m/s

s p
1/sec

<js p
rad/s

T1/2
sec

Ms p
1/sec

(t)s p
rad/s

T1/2
sec

1,2 -2.86 2.02 0.24 -4.91 3.38 0.14

1,2,3 -2.45 2.21 0.28 -2.69 4.22 0.26

1,2,3,6 -2.40 2.40 0.29 -2.17 5.06 0.32
1,2,3,4,6 -2.36 2.45 0.29 -2.10 5.30 0.33

1,2,3,4,5,6 -2.42 2.50 0.30 -2.12 5.29 0.33

Table 4.10 Time to half amplitude, damping term and frequency for 

Ricochet for unsteady aerodynamics

Method
of

Analysis

U = 41.1 m/s D = 61.7 m/s
A A

c-p

Stability
derivative -4.42 + i9.76 0.41 -4.42 + 19.76 0.41
approach

Quasi-steady
aerodynamics
with modes :

1,2 -4.36 + i 9.64 0.41 -4.38 + 19.66 0.41

1,2,3 -4.39 + i9.67 0.41 -4.36 + 19.68 0.41

1,2,3,6 -4.39 + i9.67 0.41 -4.40 + 19.71 0.41

1,2,3,4,6 -4.39 + 19.67 0.41 -4.36 + 19.68 0.41

1,2,3,4,5,6 -4.39 + i9.67 0.41 -4.40 + 19.69 0.41

Table 4.11 Stability roots for A1 using quasi-steady aerodynamics
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Method
of

Analysis

U = 41.1 m/s U = 61.7 m/s

Usp
1/sec

0)
s p

rad/s

T1/2
sec

s p

1/sec

0)
s p

rad/s

T1/2
sec

Stability
derivative
approach1

-1.64 3.62 0.42 -2.46 5.44 0.28

Quasi-steady 
aerodynamic 
with modes

1,2 -1.62 3.58 0.43 -2.44 5.38 0.28

1,2,3 -1.63 3.59 0.43 -2.43 5.39 0.29

1,2,3,6 -1.63 3.59 0.43 -2.45 5.41 0.28

1,2,3,4,6 -1.63 3.59 0.43 -2.43 5.39 0.29
1,2,3,4,5,6 -1.63 3.59 0.43 -2.45 5.40 0.28

Table 4.12 Time to half amplitude, damping term and frequency for 

A1 with quasi-steady aerodynamics

Present theory 
with modes :

U = 41.1 m/s U = 61.7 m/s

A A

1,2 -3.69 + i9.78 0.35 -3.72 + i 9.84 0.35

1,2,3 -3.69 + i 9.78 0.35 -3.70 + i 9.85 0.35

1,2,3,6 -3.69 + 19.80 0.35 -3.70 + i 9.85 0.35

1,2,3,4,6 -3.61 + 19.59 0.35 -3.70 + 19.85 0.35

1,2,3,4,5,6 -3.69 + 19.78 0.35 -3.70 + 19.85 0.35

Table 4.13 Stability roots for A1 using unsteady aerodynamics

118



U = 41.1 m/s U = 61.7 m/s
Method

of

Analysis

M s  p

1/sec

0)
s  p

rad/s

(Hz)

T1/2
sec

U s  p

1/sec

(j
s  p

rad/s

(Hz)

T1/2
sec

Stability
derivatiye
approach

-1.64 3.62 0.42 -2.46 5.44 0.28

Present 
theory using 
modes :

1,2 -1.37 3.63 0.51 -2.07 5.48 0.34

1,2,3 -1.37 3.63 0.51 -2.06 5.49 0.34

1,2,3,6 -1.37 3.64 0.51 -2.06 5.49 0.34

1,2,3,4,6 -1.34 3.56 0.52 -2.06 5.49 0.34

1,2,3,4,5,6 -1.37 3.63 0.51 -2.06 5.49 0.34

Flight test76 
results

( — ) 2.70 (") -9.88 4.21 0.07

Table 4.14 Time to half amplitude, damping term and frequency for 

A1 with unsteady aerodynamics and comparison with the 
classical approach and flight data
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Fig. 4.1 The generalised Theodorsen function 

C(z)=F+iG z=pei6

k« I inertia/elastic 
H  axis

Fig. 4.2 Tailed configuration



X

Fig. 4.3 Tailless configuration
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Fig. 4.4 Short period mode for Kestrel for both rigid
and flexible cases
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Fig. 4.5 Short period mode for Ricochet for both rigid
and flexible cases
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Fig. 4.6 Short period mode for A1 for both rigid and
flexible cases



5.0 DOWNWASH EFFECTS IN AIRCRAFT STABILITY AND FLUTTER

5.1 Introduction

Aerodynamic interaction between the wing and tailplane of an 

aircraft has all along been an important consideration in defining 

aircraft stability and control characteristics. In particular the 

angle-of-attack induced on the tail by the wing downwash plays an 

important role and taken into account when establishing horizontal
. . * 1 4  1 5tail size and location. ’ However effects are generally 

neglected in conventional aircraft flutter investigations. Flutter 

analysis as outlined in this work so far, sums up the contribution 

of the unsteady air loads from the wing and tailplane neglecting 

wing interference effects. To a certain extent this assumption can 

be assumed valid for moderate to high aspect ratio tandem 

surfaces. The amplitudes of the wing oscillation are usually small 

in the region near the body and high near the wing tip. Thus, high 

induced-velocity components usually can be expected downstream 

from the wing tip. Consequently, interference in most cases will 

become important where the span of the tail is not small relative 

to the wing span.

Configurations with relatively larger tailplanes are found on 

many modern airplanes especially on those with variable-geometry 

wings, or canard types, for such configurations the wing/tailplane 

interference can be very important. For example Topp et alf7 

referred to an anti-symmetric flutter case as experienced in a 

wind-tunnel test of an aircraft with variable wing geometry. For 

low wing sweep angles, the critical flutter modes were those 

mainly involving high frequency bending and torsion motions of the 

lifting surfaces. For wing sweep angles above 58°, increasing the 

wing sweep angle produced a rapid drop in the flutter speed in a 

new flutter mode involving lower frequency modes of the wing, 

fuselage and tail (see Ref.(97)). This condition could not be 

determined theoretically by using conventional flutter approaches. 

After careful consideration of all prevailing influences, the 

instability was assumed to be due to the aerodynamic interference 

of wing and tail. This trend was properly predicted by Sensberg
9  8  , ,

and Laschka when taking into account of wing-tail unsteady 

aerodynamic interference. Further theoretical and flutter model
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investigations of such coupled wing-fuselage-tail flutter problems 

with regard to the aerodynamic idealisation were subsequently 

carried out, for example in Refs.(13),(99) and (100).

The introduction of aerodynamic theories to take into account 

wing-tail interaction were late coming, probably because coupling 

of elastic modes to produce a critical flutter mode involving 

mechanical interaction of the wing, fuselage and tail is not 

generally encountered in aircraft with more conventional 

configurations. An over-view of this development and discussion of 

various theories can be found in Refs.(12) and (101).

It appears to be difficult to find any references, which give 

any quantitative account of wing-tail interference in flutter 

calculations for more conventional configurations considered in 

the work so far. As a result of a lack of any hard evidence to 

preclude these interactions for the cases considered in this work 

and also to improve the stability model, it was decided to 

incorporate these effects as best as possible.

It has been shown in Chapter 4 that determination of 

stability of an aircraft using rigid body heave and pitch modes, 

in conjunction with quasi-steady aerodynamics, is equivalent to 

methods based on stability derivatives (see Babister14). It was 

from this approach that the first attempt to incorporate downwash 

was made. However this proved difficult as additional terms not 

pertinent to the original equations of motion were being 

introduced. However in retrospect the extension of the average 

de/da would not be sufficient for the flutter case as this factor 

does not take into account the unsteadiness of the wake. Its use

also as an accurate means of stability determination has also been
, \ 02 

questioned by Hancock and Lam.

It was realised at this time that some account of the 

unsteady wake had to be introduced into the existing 

representations for unsteady lift and moment. As outlined earlier, 
existing methods based on subsonic Kernel functions which take 
proper account of the three-dimensional unsteady aerodynamics and 

the interaction between wing and tail, are well 

established!1’12’101 However these procedures could not be 

reconciled with the existing simplified strip idealisation
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implemented in this project. Another technique introduced by 

earlier investigators was the vortex-lattice method (VLM) 

presented by for example Shelton, Tucker and Davis?9 This method 
considers the aerodynamic interaction of the wing on the tail but 

not vice versa, as the more refined techniques do so. However this 

method was found to give flutter results13’99 in close agreement 

to those furnished by the Kernel function approach, which suggests 

that the effects of tail-to-wing aerodynamic interaction are often 

practically negligible. Thus a method using a similar approach to 
that of the VLM, however some what simpler, was introduced into 

the existing aerodynamic model in this work.

5.2 Unsteady Wake Model

5.2.1 Unsteady Aerodynamic Wake

The unsteady wake is represented by a two-dimensional "field" 

of ring vortices extending at least up to 12 chord lengths 

downstream from the wing trailing edge however this distance is 
dependent upon the frequency and freestream speed of the wake. 

This was thought adequate distance to cover the main contribution 

of this field. However in this idealisation there is no rolling up 

of the trailing vortex and it is assumed to remain in the 

horizontal plain of the aircraft. The wing is represented by its 

equivalent straight wing of chord c to simplify construction of 

the wake, the original geometry is taken into account when 

evaluating the unsteady circulation and ring vortex strengths.

The downstream field behind the wing is composed of the 

"bound vortex" or circulation about the wing and the "trailing 

vortex" which arises form the rate of change of wake circulation 
with respect to the wing span.

5.2.2. Wake Circulation

The running wake circulation at a general point £ (measured 

downstream from the mid chord of the aerofoil) of the wake is 
given by Eq.(5-320b) in Ref.(33) as;

r w(?) iu r  eik  B-U o W )
~u n (5.1)
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where r is the magnitude of circulation of the aerofoil bound
n

vortex. Referring to Figure 5.1 the trailing vortex sheet is 
simulated by "vortex cells", which represent one complete cycle of 

the alternating wake strength.

Therefore to give the net change in the bound circulation 

between point and £b downstream from the wing

r* .
dr = r (O dç = - „ ik -i(<jF/U) ,îü T e e v ' df

“Ü n

= r ik r -ie e
n L

-i(wÇ„/U> _ -i(uÇ /U) (5.2)

Referring to Figure 5.2, for a wake element, Eq.(5.2) can be 

generalised to give the net change in wake circulation over a 
given element dÇ as

r
n - i

r
n - ( i - 1 )

= r
n

iu£_n- i
e ~u —

n-(i-l)

e u (5.3)

For i = 1,2 ...n 

where

n = MN^

= Number of strips of elemental length dÇ to cover one

vortex cell, where = 2tiU

w.dÇ

M = Minimum number of vortex cells to extend downstream 12 
chord lengths, M £ 12k

TT

As one can see M and are both functions of the reduced 
frequency, where k = uc/2U.

However this gives the net change in circulation for the 

bound section. To obtain the trailing vortex circulation 
manipulation of Eq.(5.3) will give.
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r
n - i ■ y k (

iuÇ
n - 1

iwÇ
n-(l-l)

U U + r
n-(i-l)

(5.4)

5.2.3 Aerofoil Circulation

The unknown original aerofoil circulation r can be obtainedn
from Eq.(5-334) of Ref.(33).

r =
n

4 b e-ik
1 + 

« 1 -
Wa(Ç*) dÇ*

TTik ( H(2)(k) + iH‘2)(k)j

(5.5)

* £ where £ = g

•fg £
W (£ ) = -iwh - Ua - iwba(£ - a )
a h

Considering convergent motion of the form A, Eq.(5.5) can be 

re-written as below, (see Appendix G for details).

r
n

4 U e Ah + ab +

A(H^2’ (-iA)

X b a  a h >

+ iH'2)(-iA))
(5.6)

It can be shown that T = 27iUba for the steady case. The
n

induced velocity is found at the mid-point of each vortex ring 

using the Biot-Sa v art103 law taking into account the vertical 

location of the tailplane. Circulation contributions from the 

other side of the aircraft are included. The induced velocities at 

the tailplane integration points (tailplane aerodynamic centre) 

are then obtained via grid interpolation, including the velocities 
induced at the other side of the aircraft.

The formulation of the unsteady generalised aerodynamic 

matrix in this model is approached in a similar manner to that
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used in the strip method. The lift and moment are seen to be both 

functions of the unsteady velocities induced by the heave and 

pitch modes at the wing. Applying the transformation into normal 

co-ordinates.
N

Vh(y,t) = £ v ih(y) q,(t)
i = 1

(5.7)
N

Va (y,t) = £ v ia( y) q,(t)

i = 1

where the first two modes are rigid-body modes and the 

remaining (N-2) modes are the independent natural vibration modes 

of the wing.

The velocities induced by these two-degrees of freedom are 

dealt with independently by considering them as separate cases 

inducing the wing circulation and subsequent wake field. 

Re-arranging Eq. (5.6) the circulation induced by these two types 

of displacement i.e. I"h and can be separated.

Applying the correct transformation the resulting lift and 

moment which take proper account of unsteady lag effects can be 

expressed in terms of these induced velocities as follows.

L AD AD
T = li 12

M AD AD
(XT 21 22

V

a

(5.8)

Reintroducing these expressions for lift and moment in terms 

of generalised aerodynamic forces one obtains the following 

expression for a new modified tailplane generalised aerodynamic 

matrix with downwash effects included. (Detail derivation for 
method is given in Appendix G).

DQT(i,j)
T

AD V h + A D V  h + A D V  a + A D V  a
1 1  j h  I T  1 2  j «  I T  2 1 j h  I T 2 2  jOC I T

(5.9)

AD are elements given in Appendix G. The procedure above is
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1
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The lift may be written in terms of the induced velocities 

qiven by Eq.(5.10) where

L A D A D
T = n 12

M A D A D
a T 21 22

L A D A D
T = n 12

M A D A D
a T 21 22

V

Va

V  A 
h U (5.14)

where considering just quasi-steady aerodynamics

AD = AD = -a pUb
1 1  1 2  V

AD = AD = a pUb2(| + a ) 21 22 r '2 h'

(5.15)

Inserting expressions for the displacement from Eq.(5.13) and the 

lift and moment from Eq.(5.14), the virtual work done by the 

downwash given by Eq.(5.12) can be re-written as:

6 W

S%

<5W

5qp

s
r  T

1 0 A D  A D

i

O<>

q
11 12

h U

X  1 A D  A D 0 V q
T 21 22 a Mp

0

dy

(5.16)

s
r  T

AD v A/U
11 h  '

AD v A/U x + AD v
11 h  '  T 2 1 h

 ̂0

A/U

AD v
1 2  a

AD v x + AD v
1 2  a t  2 2  a

dy
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s AD V X/U
T 11 h '

s AD v X/U x + s AD v X/U
T 11 h ' T T 2 1 h

s AD v 
t 12 a

s AD v x + s AD v
T 12 a T T 22 a

DQT(i,j)
DQT

n

DQT
21

DQT

DQT
12

22

(5.17)

Expressions for the rigid body generalised forces from the wing 

and tailplane are added to those obtained in Chapter 4 to give the 

total generalised aerodynamic matrix.

Q(i/j) =
Q11 Q

Q21 Q
12

22
(5.18)

If a = -0.5 as before. Hence AD = AD = 0
h 2  1 2  2

Q q = ( s A + s A  + s AD v X)q
l l ^ h  '  W 11 T 1 I T T 1 1 h -  '

= ” pUS (a + a S (1 +  V h ))q 2 w ' o 1 - t ' —  ' ' n
S U

w

since dc 

da

v + v h____a

U

Xt

-  -5PuV a o + a . S j t 1 - f  = K  <
s doc

w

Q q = (-s A x + s A  x + s A + s A  + s  AD v ) q
1 2 ^ p  '  W 11 W T 11T T W 1 2  T 1 2T T 1 2  a '

= ipUS (a x -  a S x )q -  ^pU2S (a + a S (1 + Va ))q  
2  w ' o w  1 -  t t '^p 2 ^  w ' o  l  -  t  '  —  S

S S U
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- !eUS„ K V  a, ?r - |pu2s»(a0 + «T«1 - fa >>1

= z q - C q q p i p

Q q = (-s A x + s A  x + s  AD v A x„)qw
V 2 1 M h  '  W 11 W T 11T T T 1 1  h  -  T

= ipUS (a x - a S x (1 +  v h  ))qw 
2 k  w ' o w  i - t  t '  —  h

S U

1 dc • °= ipUS ( a x - a  S x (1 - —  ))qw = M q w ' o w  l - T  t '  ,  h  w ^ h

s daw

Q q = ( s A  x 2 + s A  x 2 - s A x + s A ^ . x .̂
V 2 2 M p  '  W 11 W T 11T T W 12 W T 12T T

+ s AD v x ) q
T 12 a T 7

-|pUS»(aox» + a, ?T \  >% * !eu2sw<aox„- a. ?T V 1 + ^  Dip
s s u

.lpusu(a0x  ̂ + a, ST x2 )qp + |pU2S„(ao V  a, ?J x t ( l  -  ^  ) ) <3p
s sw w

= M q + C q
q 2

(5.19)

These terms are then introduced into the dynamic stability 

matrix of Chapter 4. At this stage downwash is incorporated within 
the terms and but the lag effects have yet to be introduced 

via the unsteady aerodynamic wing circulation provided by Eq.(5.6) 

and the unsteady wake distribution given by Eq.(5.3).
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5.4 Selection of
Once the full unsteady model of the wake is constructed, with 

the addition of the elastic modes, a parametric analysis was 

carried out to select the optimum number of integration points 

to adequately represent a vortex cell.

The generalised tailplane aerodynamic matrix including 

downwash effects is plotted against for a range of reduced
frequencies and airspeeds to ascertain the value of for

adequate convergence for the induced tailplane aerodynamics. For 

comparison purposes, results are obtained for a fictitious 

aircraft with a rectangular wing of aspect ratio 12 and possessing 

elastic and inertia properties common in most large aspect ratio 

sailplanes (particulars are shown in Table 5.1).

As the proposed aerodynamic model is frequency dependent, the 

case for an aircraft undertaking harmonic motion, as in flutter, 

was considered. In this example two elastic modes namely the first 

bending and first torsional modes were incorporated in addition to 

the two rigid body modes of heave and pitch. These elastic modes 

were selected as a result of their dominance in bending/torsion 

flutter. Hence the resulting aerodynamic matrix is complex and of 

order 4X4. If a =-0.5 there is no moment contribution to theh
aerodynamic matrix except for the non-circulatory terms which are 

usually small. As a result of this fact the real and imaginary 

terms of Q(l,l) will be approximately equal to Q(2,l) and Q(l,2) 

will be approximately equal to Q(2,2). Therefore the terms Q(l,l)

and Q(1,2) are selected for observation and non-dimensionalised
. 2  . .with respect to pU. The case for k = 0.1 is shown for example in

Figure 5.4 and for the real and imaginary parts of Q(l,l)/pU2 and

Q(2,l)/pU2 and in addition the term Q(3,3)/pU2 is included. This

last term is included as it was found to be the largest value

amongst the pure elastic terms. As one can see however, this term

is small compared to the rigid body contribution. These results

were obtained using 11 integration points on the wing as this is
the number thought best representative of the points that will be

used in subsequent analyses on other aircraft.

Shown in Figure 5.5 is the time taken in seconds for 

generalised aerodynamic matrix to be formed for a given up to
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N^ = 110, on a SUN SPARK workstation. As one can see the time

required in computation using even a moderate value of is large 

and variation with N̂. is quite drastic. This is as a result of the 

time taken for the NAG routine E01ACF104 to interpolate each strip 

within the vortex cells for both the starboard and port side of 

the aircraft. It is seen from Figures 5.4 and 5.5 that a value of 

N^ = 30 establishes a reasonable compromise between computational 

time and numerical accuracy. At k = 0.1 the percentage difference 

between the value at N^ = 30 and the converged value for Q(l,l) is 

6.5% and 1.5% for the real and imaginary terms. For Q(l,2) this 

difference is 1.0% and 1.7% respectively. For the pure elastic 

term Q(3,3) the values are 9.1% and 21.2% but as small numbers are 

being dealt with this is considered not unreasonable. However to 

achieve faster processing time N^ = 20 can also be considered 

consuming just under half the time needed for N^ = 30.

It is interesting to note that once the generalised airforces
. . . .  2 have been non-dimensionalised with respect to pU the values and

trend as shown in Figure 5.4 are identical for all speeds.

5.4.1 Variation of Induced Generalised Forces with 1 and Z   w t ---- T
The variation of the induced generalised aerodynamic forces 

on the tailplane with 1 (distance between wing trailing edge and 

tailplane leading edge) is shown in Figure 5.6 for k = 0.1 and Ẑ .= 

0.0 , 5.0 and 10.0m, (vertical distance from tailplane to plane of 

wake, measured positive up) . In this example the forces plotted 

are those induced on Q(l,l) and Q(l,2). Although the expressions 

provided by Eq.(5.18) are derived on the basis of quasi-steady 

aerodynamics, it can be seen that considering the induced 

contributions to Q(i,j), that Q(l,l) and Q(l,2) are due solely to 
heave motion and pitching motion respectively.

Referring to both the real and imaginary curves in Figure 

5.6, it can be seen that as the tailplane moves downstream the 
real part of Vh increases and the imaginary part or phase 

difference decreases. When the imaginary part is zero the 

tailplane is in phase with the vortices being shed form the main 

aerofoil, due to heave motion, resulting in the maximum value of 

the real part. As the phase difference increases the subsequent
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real part decreases until further downstream the process is 

repeated and the sign of the real part is reversed.

The heave motion and the pitching rotation are out of phase 

by 90°. Therefore once the real part of vh has attained its

maximum value the corresponding real part of vff will be a minimum 

and this is in fact shown for v^ in Figure 5.6.

It is seen from the curves that as the vertical height 

between the tailplane and wake increases the influence of

the wake diminishes.

5.5 Case Study on High Aspect Ratio Rectangular Wing Aircraft

For this case study the downwash obtained had to be readily

compared with those obtained either theoretically or 

semi-empirically from reliable sources. The only notable reference 

of this type was found from ESDU sheets*05 Unfortunately the 

highest aspect ratios considered in ESDU is 12, which means that 

the example aircraft, used to represent the stability derivatives 

in Chapter 4, is not appropriate.

Hence the wing for this example aircraft is reduced from an 

aspect ratio of 20 to 12 to be compatible with Ref.(105). Before 

the unsteady aerodynamic model is dealt with the steady downwash 

was evaluated at the tailplane and compared with those obtained 

from Ref.(105). The theory is implemented by replacing the loading 

on the wing by a single bound horseshoe vortex with its trailing 

vortex stretched out to infinity at the wing tips. The circulation 

is taken for the steady case i.e. T = 2?rUba and the loading isn
assumed to be uniform along the span (which is a reasonable 

assumption for high aspect ratio wings). As mentioned earlier the 

static displacement of the vortex sheet is neglected.

The mean downwash is obtained from the distribution on the 

tailplane and reduced in terms of de/doc. The comparisons with Ref. 

(105) can be seen in Table 5.2. As can be seen from this table the 
discrepancy is quite significant and can be probably attributed to 

the assumption of the loading on the wing and the location of the 

trailing vortex from the root. It is usual when replacing an 

elliptical loading by an equivalent uniform distribution, that the 

trailing vortex is situated further inboard to take up this
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discrepancy!06 As the trailing vortex is situated on the wing tips 

the errors made are more severe in this case. Although the option 

of moving the trailing vortex is available at this stage it would 

not be so easy when incorporating taper and the elastic modes of 

the wing and tailplane. Secondly it is not compatible with the 

vortex lattice model considered. One suggestion might be to 

actually replace the loading with a distribution obtained by more
• • • • • 99refined 3-dimensional codes as reported in the literature or 

using the existing modified strip theory.

However in this work, it was judged adequate within the 

assumptions already made to just simply multiply the induced 

velocities in the downwash code by the appropriate factor to 

arrive at the ESDU value. The multiplying factor turned out to be

1.7833 assuming a value of aQ= 2n /rad for the wing distribution.
5.5.1 Rigid Body Dynamics

As in Chapter 4 the roots of the stability determinant for 

the s.p.p.o mode were obtained and compared with the classical 

solution employing stability derivatives and de/da, using 

Ref.(14). However various factors were accounted for before the 

full effects of the unsteady downwash were incorporated. These 

are:

i) The introduction of the modified aerodynamic parameters aQ 

and ai for the aircraft, without taking into account any downwash 
effects:

Also as assumed before quasi-steady wing and tailplane 

aerodynamics were considered with C(k) = 1.0 (i.e. k = 0) and 

omitting the non-circulatory terms (this is elaborated in Chapter 

4). The aerodynamic parameters were calculated as aQ = 5.04 /rad 

and ai = 4.56 /rad using Ref.(73), The roots of the s.p.p.o were 
obtained and compared with those from Babister14 this is shown in 

Table 5.3. The results are virtually identical and this is borne 

out from the theoretical derivation carried out in Chapter 4. Also 

shown are the roots obtained by including the full effects of wing 
and tail unsteady aerodynamics.

ii) The inclusion of the corrected steady downwash:

These results are also displayed in Table 5.3. In this model

no unsteady downwash effects were considered hence this is
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equivalent to no lag effects in the Babister approach i.e. 

neglecting the terms Z^ and . The agreement between the two 

theories at this stage inferred in the theoretical treatment in 

section 5.3 is well demonstrated in Table 5.3 for the two speeds 

considered.

iii) The full inclusion of an unsteady wake at the tailplane 

(as proposed in appendix G):

Although the wing circulation is evaluated in the convergent

plane for arbitrary motion of the form e**", the resulting wake

circulation was assumed to be of harmonic distribution. It was

thought unwise to consider downwash of arbitrary nature as this

did not provide the necessary convergence for the induced

velocities and is in addition conceptually dubious. In this model

downwash lag effects are accounted for by the phase shift of the
wake at the tailplane, hence there is no need to introduce the

additional derivatives14 Z- and M- as they are already representedw w
as phase shifts in the terms Z and M .^ w w

Using quasi-steady wing and tailplane aerodynamics the effect 

of an unsteady downwash was introduced to compare with the s.p.p.o 

quantity obtained using Z- and M- provided by the classical 

approach. This is shown in Table 5.3. It is seen that the damping 

generated using the unsteady wake model is marginally larger than 

that predicted by following the approach of Ref.(14). However the 

resulting s.p.p.o frequency is reduced by 20% compared to a 40% 

reduction predicted by a downwash lag assumption^4 This is 

reflected in the larger damping ratio predicted using the 
classical approach.

The next step was the full introduction of unsteady 

aerodynamics for the wing and tailplane. The general effect, as 

observed in Chapter 4, is now for the unsteady wing and tailplane 

aerodynamics to reduce the damping and increase the stiffness in 

the s.p.p.o mode. Essentially the damping predicted is comparable 

with that when using Ref.(14), but using the current theory the 

effect of unsteady aerodynamics is to reduce the damping ratio 

even further, the corresponding reduction in the frequency is now 
only 7%.

Subsequent investigation at higher speeds yielded identical
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stability roots, within the accuracy of the eigen value search

procedure. This is also inferred by the aerodynamic forces, non
• • • • 2 • •-dimensionalised with respect to pU shown in Figure 5.6.

The effect of varying tailplane height was also investigated

for the rigid case and these results are shown in Table 5.4. As

expected the influence of the wake diminishes as the tailplane

height increases to such an extent that at 10m vertically above

the the centre of the wake the influence is negligible.

5.5.2 Inclusion of Elastic modes

The full effect of flexibility and unsteady aerodynamics was

next investigated. As the time required to generate the induced

velocities was quite significant, even for = 30, the analysis

was restricted to two elastic modes in addition to the two rigid

body modes (modes 1 and 2). These elastic modes were the first

bending and first torsional modes (modes 3 and 4), which are

normally prevalent in classical bending/torsion flutter.

The analysis was first carried out employing unsteady

aerodynamics but without the influence of an unsteady wake, for

three selected speeds U = 30, 60 and 90 m/s. The corresponding

roots are shown in Table 5.5. The short period pitching frequency

and damping are given in Table 5.6. The effect of an unsteady wake

was next introduced and these results are presented for comparison
with the aforementioned tables.

It is noted from these results that without the influence of

downwash, the damping appears to be non-variant for the range of

speeds considered. When the unsteady wake is taken into account

the s.p.p.o damping appears to decrease with speed this is

accompanied by a decrease in damping ratio. The effect this has on

the flutter speed of this particular configuration is uncertain as

no flutter was found within the practical flight speed range of

this aircraft employing conventional flutter analysis.

5.6 Effect of Downwash on Flutter of Kestrel

The effect of an unsteady downwash on the flutter of Kestrel 

was initially carried out using the two rigid body modes and the 

first bending and first torsional elastic modes taking the 

tailplane height as 1.5 m. As harmonic motion is being considered
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the circulation is now dependent on the reduced frequency k as 

well as the downwash wake. The corresponding flutter speed and 

flutter frequency is found to be 74.6 m/s and 49.6 rad/s 

respectively. This figure represents a negligible decrease in 

flutter speed, in comparison to the corresponding analysis 

neglecting downwash effects.

When the number of modes is increased to six the flutter 

speed and flutter frequency are found to be 72.2 m/s and 49.6 

rad/s respectively. The corresponding values are 72.3 m/s and 49.7 

rad/s when downwash is neglected. Thus the influence of the wake 

is seen to be negligible for this aircraft and the inclusion of 

additional modes does not alter the strength of the vortices. It 

can be seen from these results that as the Kestrel posses a high 

aspect ratio wing and is a T - tail configuration the effect of 

the wake vortices on the tailplane are rather small. However as 

seen above the combination of flexibility, unsteady aerodynamics 

and the unsteady downwash may be still critical for different 

configurations, in particular for low aspect ratio aircraft.

5.7 The Effect of Downwash on Stability of the Kestrel and the 

Cranfield A1

5.7.1 The Kestrel

5.7.1.1 Rigid Body Modes
The first analysis involved the rigid body modes (modes 1 and

2) as before and the roots of the s.p.p.o mode were evaluated for

U = 30 m/s and 60 m/s. These roots are shown in Table 5.7 and the

corresponding frequencies and damping ratios are given in Table

5.8. Considering just rigid body motion the independence of the

roots with speed is exhibited again as seen form the analysis so

far. Comparing this result with the previous analysis carried out

in Chapter 4, neglecting the wake, the effect of the wake is seen

to increase the damping by 46.5% and decrease the frequency of the
s.p.p.o mode by 13%. An analysis was then carried out using

. de deRef. (14) and taking ^  = 0.097, ( was calculated from

Ref.(107) and is based on empirical data). This set of results is 

also shown in Tables 5.7 and 5.8. It can be seen from Table 5.8 

that although the predicted damping is higher using the current
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method, the damping ratio obtained using the classical approach is 

larger and the subsequent short period frequency is smaller.

5.7.1.2 Inclusion of Elastic Modes

The first bending and first torsional elastic modes (modes 3 

and 6) were next introduced. The corresponding roots are shown in 

Table 5.7. As it can be seen there is no longer a close 

non-dimensional consistency about the roots. In fact at U = 60 

m/s, the Kestrel is close to its flutter speed and this is 
reflected in the decrease in damping. However it may be noted that 

for this mode the damping encountered is higher with the inclusion 

of downwash effects. The subsequent rate of pitch (da/dt) is also 

plotted against time, as in Chapter 4, but this time with effects 

of unsteady downwash included. This is compared with the rigid 

case using classical downwash lag assumptions. The results are 

shown in Figure 5.7 for the two speeds considered.

5.7.2 The Cranfield A1

5.7.2.1 Rigid Body Modes

As in the case of Kestrel an initial analysis was carried out

using just the rigid body modes. The two speeds selected were as

used previously in Chapter 4 and are U = 41.1 m/s and 61.7 m/s.

The aerodynamic density was taken as p - 1.055 kg/m3 in accordance

with the altitude during flight trials. The results of the current

analysis are shown in Table 5.9 and compared with the flight test

results shown in Table 5.10. The results using the classical 
. . dc dcassumption taking ^  = 0.4, ( ^  = 0.4 was reported in the

original design specification of the A1. ), are also shown for 
comparison purposes.

First the results for the rigid case based on modes 1 and 2 

in Table 5.9 are compared with the corresponding results of Table 

4.14 where the wake effects were neglected. It is clearly evident 

that the introduction of the unsteady wake alters the results very 

drastically both in the present theory and also in the classical 

theory. The effect is very significant giving rise to a 28.5% 

reduction in the short period frequency and an average 203% 

increase in the short period damping. The A1 has an aspect ratio 

much lower than that of the current sailplanes considered, 

therefore the induced velocities at the tailplane and the
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subsequent damping can be expected to be higher.

5.7.2.2 Inclusion of Elastic Modes

Referring to Table 5.9 it is seen from the results obtained 

from the present theory that the introduction of elastic modes in 

the wake model has almost no influence. This is due to the 

relatively high stiffnesses and moderate aspect ratio of Al. 

Results shown for the two speeds indicate that the short period 

frequency and the corresponding damping ratio are virtually 

unaltered when the analysis is carried out for the rigid aircraft 

(using mode 1 and mode 2) and the elastic aircraft (using modes

1,2,3 and 7) respectively. However when the results from the 

present theory are compared with the ones obtained using the 

classical theory, the large discrepancy in short period damping 

given by the two methods is noticeable which is in contrast to 

very close agreement (well within 3%) found in the short period 

frequency.

The results obtained from the flight test data are compared 

with the theoretical results in Table 5.10. The present theory 

predicts the short period frequency and damping more accurately 

than the classical theory particularly at lower speeds. However 

both the present theory and the classical theory underestimate the 

damping (with greater discrepancy being found with the classical 

theory). The underestimation in damping obtained from the 

classical approach could be attributable to the simplification of 

the downwash lag effects at the tailplane introduced by using 

de/da. For the two speeds considered Fig. 5.8 shows the plot of 

the rate of pitch (da/dt) against time obtained applying the 

present theory to both the rigid and the flexible aircraft. 

Results from the flight test are only available for the latter 

speed and these are plotted for comparison. The agreement between 

the present theory and the flight test results is reasonable as 
shown.
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Geometric Details

Wing Tailplane
Span 12 m Span 4 m

Area 12 m2 Area 2 m2

Aspect ratio 12 Aspect ratio 8

Root chord 1 m Root chord 0.5 m

Tip chord 1 m Tip chord 0.5m

Sweep angle 0° Sweep angle 0°

a0 5.04 /rad a
i 4.56 /rad

Stiffness Details

Wing stiffnesses Wing frequencies

(free root values)

El 200 kNm2 (jh 10.81 rad/s
GJ 20 kNm2 0)a 82.89 rad/s

M ¡1 22.5 kg/m

V J
0.2 kgm

Inertia Details

Total Mass 600 kg

Pitching Inertia 800 kgm2

Table 5.1 Particulars of representative aircraft of aspect 
ratio 12
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Downwash program ESDU percentage

(H' ' k = 0 ref.105 diff (%)

de/da 0.2141 0.3818 78.3

Table 5.2 Comparison of downwash ratios

(i) (ii) (iii)

Approach ^  =  0 
da

—  =  0.3818 
da

(neglecting lag 
terms)

—  =  0.3818 
da

(including lag 
terms)

C<,p) « „ p > « . p >

Stability 
derivatives 
approach 
(Ref.14)

-10.40 +  i14.3 

(0.59)
-10.26 +  i10.79 

(0.69)

-12.87 +  il.22 

(0.87)

Present 
theory with

C (k) =  1 -10.27 +  i14.1 -9.98 +  i10.74 -13.24 +  ill.31
(0.59) (0.68) (0.76)

C(k) *  1 -8.65 +  i14.8 -12.80 +  i 13.73
(0.50) (0.68)

Table 5.3 Stability roots for representative aircraft using only 
rigid body modes
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Height, Zt 

(m) X

0 -12.80 + i13.73
1.0 -12.24 + i14.09

10.0 -8.97 + i14.93

Table 5.4 Variation of stability roots with tailplane height

Speed
(m/s)

Present theory without 
downwash using 
modes (1,2,3,4)

X

Present theory with 
downwash using 

modes (1,2,3,4)

X

30 -9.16 + i15.13 -12.63 + i13.08

60 -10.00 + i14.57 -10.05 + i14.10

90 -9.54 + i14.35 -7.5 + i10.89

Table 5.5 Stability roots for representative aircraft with the 

introduction of elastic modes (numbers within 

parenthesis in the first row represent the modes used 
in the analysis)
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Present theory without 
downwash using 
modes (1,2,3,4)

Present theory with 
downwash using 
modes (1,2,3,4)

Speed

(m/s)

Id
s  p

rad/s

U s  p

1/sec c . p

id
s  p

rad/s

h s  p

1/sec

30 5.53 -3.37 0.52 4.83 -4.64 0.69

60 10.74 -7.35 0.57 10.37 -7.39 0.58

90 15.83 -10.52 0.55 12.00 -8.27 0.57

Table 5.6 Short period pitching oscillation frequency and damping 

term and ratio for representative aircraft

U = 30 m/s U = 60 m/s

Â c.p X

Stability 
derivative 
approach 
de/da = 0.097

-6.09 + il.45 0.97 -6.09 + il.45 0.97

Present 
theory with 
modes :

1,2 -9.16 + i 3.53 0.93 -9.42 + i3.62 0.93

1,2,3,6 -11.25 + i 5.13 0.91 -5.51 + Î8.02 0.57

Table 5.7 Stability roots for the Kestrel with downwash
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U = 30 m/s U = 60 m/s

Us p

1/sec
u

s p

rad/s

T1 / 2 
sec

M s  p

1/sec
u

s  p

rad/s
T1/2
sec

Stability 
derivative 
approach1 
dc/da = 0.097

-3.35 0.80 0.21 -6.70 1.60 0.10

Present 
theory with 
modes :

1,2 -5.04 1.94 0.14 -10.36 3.98 0.07

1,2,3,6 -6.19 2.82 0.11 -6.06 8 . 8 2 0.11

Table 5.8 Short period pitching oscillation frequency and 

damping term and ratio for Kestrel

U = 41.1 m/s U = 61.7 m/s

X A

Stability 
derivative 
approach1 
dc/da = 0.4

-5.09 + i 6.94 0.60 -5.09 + i 6.94 0.60

Present 
theory with 
modes :

1,2 -11.42 + i 7.13 0.85 -11.27 + i 7.04 0.85

1,2,3,6 -11.42 + i 7.13 0.85 -11.68 + i 7.03 0.86

Table 5.9 Stability roots for the A1 with downwash
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U = 41.1 m/s U = 61.7 m/s

U s  p

1/sec
w

s  p

rad/s
T1 / 2 
sec

s  p

1/sec
W

s  p

rad/s
T1 / 2 
sec

Stability 
derivative 
approach 
dc/da = 0.4

-1.89 2.58 0.37 -2.83 3.90 0.24

Present 
theory with 
modes :

1,2 -4.24 2.64 0.16 -6.28 3.92 0.11

1,2,3,7 -4.24 2.64 0.16 -6.51 3.90 0.11

Flight test76 
results (-- ) 2.70 (-- ) -9.88 4.21 0.07

Table 5.10 Comparison of Theoretical results with flight test 

data for short period pitching oscillation 
characteristics of the A1
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6.0 AIRCRAFT RESPONSE TO DISCRETE GUSTS AND CONTINUOUS TURBULENCE

6.1 Introduction

Classical methods to obtain aircraft response to gusts and 

turbulence, have relied on rigid body assumptions in idealising 

the aircraft. The method also relied on modelling atmospheric 

turbulence in terms of discrete and/or isolated gusts. The earlier 

investigations14’33 also restricted the degrees of freedom of the 

aircraft. Atmospheric turbulence is in reality a continuous 

phenomenon in which the airplane is subjected to repeated 

gustiness. In an attempt to account for this, statistical 

approaches have been established such as the power spectral 

density (PSD) method whose application can be traced back to the 

aircraft turbulence response problem as early as 40 years ago?5 

Since that time the PSD method has become widely accepted, such 

that the Civil aviation authority as part of its airworthiness 

regulations, namely JAR109 (see section 25.305(d)) require that 

effects of dynamic response to turbulence be assessed by the PSD 

method. The particular advantage this method has over its discrete 

counterpart is its application to mission analysis or design 

envelope analysis, to predict the frequency exceedence of load and 

stress quantities with respect to reducing fatigue and improving 

ride quality!10 However as automatic flight control systems become 

more and more complex and the capability of operating at 

frequencies close to the natural modes of the aircraft increases, 

the effects of flexibility and unsteady aerodynamics need to be 

accounted for.

A complementary approach to the computation of gust loads is 

that based on the statistical discrete gust (SDG) method?6’32 The 

SDG method is attractive, because of its ability to compute (i) 

maximized and time-correlated gust loads and (i i) the gust 

profiles that produce these loads. Time correlation provides 
knowledge of the values (magnitudes and signs) of all loads when 

one particular load has attained its maximum (positive or 

negative) value. If the particular maximum load is critical for 

design, then an aircraft manufacturer may employ the SDG method to 

obtain a set of design loads to physically apply to a test 

specimen. This is not possible with the PSD method.
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Although the two methods above are different it has been
• 2  7claimed by Jones, developer of the SDG method, that under certain 

circumstances SDG and PSD methods produce essentially the same 

numerical results. This claimed SDG-PSD "overlap" has been 

extensively investigated and supported, by Perry et al)11 for a 
combination of rigid and flexible aircraft response analyses. It 

is in this context of this claim that the current investigation 

will evaluate the response characteristics of deformable aircraft 

within the scope of strip theory, incorporating the effects of 

flexibility and unsteady aerodynamics.

6.2 Gust Analysis Methods

6.2.1 Power Spectral Density Method

The fundamental quantity of the PSD method is the PSD

function, or power spectrum. A power spectrum contains all the
statistical information describing a random process, including the

root-mean-square (r.m.s) value. The random processes in question

in the present application are respectively atmospheric turbulence

as the input random process of r.m.s magnitude w and the
g

resulting aircraft response as the output random process. Both the 

input and the output are assumed to be Gaussian. It is also 

assumed that the turbulence is one-dimensional (that is, uniform 

across the span), homogeneous, isotropic, and "frozen" in space 

during the time it takes the aircraft to traverse its own length.

The input and output PSD functions are related to each other 

through the square of the modulus of the airplane frequency 

response function, as given by the following equation111

*y(u) = | Hy(iu)|2 * *w (u) (6.1)
g

where $ (cj) is the airplane response power spectrum and $ (to) is
g

the atmospheric turbulence power spectrum. The aircraft frequency 

response function or mechanical admittance function H (iw) 

represents the response (magnitude and phase), over a range of 

frequencies, of quantity y to a unit sinusoidal gust velocity. 

Hy(i(j) contains all the dynamics of the airplane (rigid-body modes
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and elastic modes).

The frequency response function Hy(iu) for the aircraft can 

be represented in terms of N number of modes multiplied by an N 
number of frequency response functions associated with each 

generalized co-ordinate. Thus

N

Hy(iw,x,y,z) = ^ 0 i(x,y,z) Ht (iu) (6.2)
1=1

The first two modes are rigid-body modes and the remaining 

(N-2) modes are the independent natural vibration modes of the 
elastic structure (i.e. the aircraft).

H ((iw) is solved from Eq.(6.3) for i = 1,2,....N

[ o c ] (6.3)

(iw) = -------------- --------------

M -“2N - [«.]
where  ̂QhJ is the generalized aerodynamic matrix due to disturbed 

motion and is generated as in the flutter case, from Theodorsen's 

expressions for lift and moment and the Theodorsen's function 

for harmonic motion. The generalized aerodynamic gust matrix 

is assembled from expressions for the lift and moment induced 
sinusoidal gust given as33

Lc = -2npUbW(i(c(k) (J0(k) - i ( k ) ) + JJi(k)le1“t (6.4a)

Mo ■= b(! + ah)Lc (6.4b)

c

by a

The values obtained numerically for the frequency response 

function using the above method was checked with those explicit
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expressions for response in heave and pitch for a rigid wing 

resting on two springs, as was the case in Chapter 2, but 

utilising quasi-steady aerodynamics?5 (Details of the derivation 

of expressions for the transfer function are given in Appendix H).

The Indicial admittance required for the SDG analysis is 

obtained from Bromwich's integral using the mechanical admittance 

of the aircraft (see Appendix I). This procedure is illustrated in 

Fig. 6.1.

For the present investigation , the Dryden and Von Karman

form33’111 of $w (w) is chosen which are respectively given by the
g

following equations.

$ (to) w v ' 
g

a2 L w
g

tt U

1 + 3 to L 
U

1 + to L 
U

2
(6.5)

$ (u) = w v ' 
g

a2 L w
g
n U

1 + (8/3) 1.339 to L 
U

1 + 1.339 U0L
2 1 1 / 6

( 6 . 6 )

Figure 6.2 shows a log-log plot of $w (co) as a function of to
g

for the Von Karman spectrum. For simple illustration purposes the

quantity cr̂  and the ratio L/U are chosen to be unity. At low 
g

values of frequency, the function asymptotically approaches a 

constant value (ct̂ L/ttU) ; at high values of frequency, the function

g  - 5 / 3asymptotically approaches zero as to. At intermediate values of 
frequency, the function makes a transition between the low and 

high frequency asymptotes and reaches a maximum, referred to as 
the "knee", (see Ref.(111)). The corresponding frequency is 
referred to as the "knee frequency", to where

^  2 k n e e
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U = 0.457(U/L)
knee ' ' '

(6.7)

The r.m.s values of random processes w and y may be obtained
g

by performing the following operations.

1 / 2

(6 .8)

and

w $ (u) du w v ' 
g

°°

<7 = 4> (w) dw
y y

- •0

(6.9)

A is the normalized response quantity, defined as the ratio of the 

r.m. s of the output to the r.m.s of the input.

a
A =  ~  (6.10)

w
g

6.2.2 Statistical Discrete Gust Method

The objective of the SDG method26 is to determine 

analytically the maximum, or worst-case, responses of an airplane 

to discrete gusts representative of atmospheric turbulence. The 

method is carried out in the time domain through calculation of 
response time histories.

The SDG method is based on the assumption that atmospheric

turbulence is comprised of a family of discrete equiprobable,

smoothly varying, ramp-hold gusts, whose maximum magnitudes w vary
g

as indicated by the dashed envelope in Fig. 6.3 and as defined by 

the following equation.

Wg(H) = Uo Hk for 0 i H U  (6.11)

where Uq is a gust-intensity parameter, H the gradient distance, K 
the fractional exponent and L the scale of turbulence.

Each discrete gust is defined by a transient portion (the
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first half of a one-minus-cosine wave) followed by a steady-state 

portion (whose value is equal to the value of the transient 

portion at the end of the transient). The length of the transient 

is the gradient distance. The expression for one member of the 

family of gusts is

Wg (H)

w (s,H) = 
g

“ f > ~
TTS1 - cos

• H -
for 0 i s £ H

( 6 . 12 )

Wg(H) for H < s £ L

where s is the distance and is related to time through the 

velocity U.
In the implementation of the method, an airplane is subjected 

to the following inputs, applied one at a time: 1) all possible 

single gusts, 2) all possible combinations of two gusts with all 

possible "spacings" (defined later) between the gusts, 3) all 

possible combinations of three gusts with all possible 

combinations of spacing between the gusts, and ...n) all possible 

combinations of n gusts with all possible combinations of spacing 

between the gusts.

In general, time histories of each airplane response quantity 

due to each of the (extremely large number of) inputs is examined 

to find the worst-case response (that is, the largest positive or 

negative peak value) of each response quantity. The combination of 

gusts that produces the worst-case response is referred to as the 

critical gust pattern.

Figure 6.4 contains a sketch of a combination of three gusts, 

labeled 1,2 and 3, in the time domain. Quantities t and t2 in the 

figure represent spacings in time between the completion of the 

transient of one gust and the start of the transient of the next. 
As indicated in the figure by the direction of the arrows, t and 

t are positive; however, t1 and t 2 may also be negative. When 

either t^or t2 is negative, the associated gusts are said to 
overlap one another.

For an aircraft modeled as a linear system, this extremely
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large number of inputs may be reduced to a manageable number by 

taking advantage of superposition, as described in Ref.(112). With 

superposition, worst-case response to combinations of two or more 

gusts are determined by the responses to single gusts only.

As the number of gusts in a combination increases from 1 to 

n, the probability of encountering that combination in the assumed 

atmospheric turbulence decreases, and this decrease in probability 

is accounted for analytically through the use of amplitude 

reduction factors. ’ The amplitude reduction factors reduce the 

magnitudes of the inputs (and for a linear system, reduce the 

magnitudes of the responses by the same ratio), thereby bringing 

the response to all single gusts and the responses to all 

combinations of gusts to the same level of probability of 

occurrence.

The following equation illustrates how the overall worst case 

response is determined.

7 = max •

The ji in Eq.(6.13) are the individual worst-case response to 

a combination of i gusts and the p t are the corresponding 

amplitude reduction factors. The overall worst-case response r is 

the worst of the worst or the maximum of the products of the sums 

of the ri and their corresponding p4. The critical gust pattern is 

constructed by summing single ramp inputs associated with 7 .

In this particular investigation the SDG analysis program
3 1 # .  . ,developed by Purcell is incorporated within the current computer 

code FLUSTAR. This analysis is equivalent to method 1 in 

Ref.(Ill), but restricted to a maximum of two gusts. In method 1, 

there is restrictions concerning the characteristics of the 

critical gust patterns. Critical gust patterns are comprised of

P 7 *i l
p y*2  2

p y* 3  3

p y* 4  4

p yn n

(6.13)
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single gusts whose magnitudes must have alternating negative and

positive signs (representing alternating up and down gusts) and

whose spacing in time must be positive (representing subsequent

gusts that do not overlap each other).
Following the procedure given in Ref.(Ill) (method 1) , the 

s
amplitude reduction factors are computed based on the following

ii
formula.

Pi" 1
(6.14)

p = ----—  for i £ 2
1 0 . 88/1

Therefore in this investigation the two individual worst-case
• • 3  1responses and obtained using Purcell's program, are

multiplied by pt= 1 and p2= 0.8035 respectively and the subsequent 

7 ascertained using equation (6.13).

6.3 Influence of Quasi-Steady and Unsteady Aerodynamics on the 

Response to Turbulence

6.3.1 Introduction

The PSD analysis was carried out on the representative 

aircraft in chapter 5, employing both quasi-steady and unsteady 

aerodynamics. The layout was as before and motion in this case was 

restricted to just rigid body motion, in line with classical 

dynamic stability analysisl4’15 This investigation stems from work
. 113 . .carried out by Huntley on the spectral gust alleviation factor 

K, which represents the non-dimensional root mean square normal 

c.g. acceleration. In Ref.(113) transfer functions for a second 

order system were derived via Laplace transforms in displacement, 

velocity and acceleration for an aircraft in longitudinal motion, 
for which the effects of the phugoid and unsteady aerodynamics 

were neglected. Using an input power spectrum based on the 

autocorrelation form of the Dryden function, closed form solutions 

for quantities such as the spectral gust alleviation factor K and 

the root mean square angular velocity were presented.
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6.3.2 Quasi-Steady Aerodynamics

In this current investigation it is assumed that the gust 

encounters the wing and tailplane at the same time, and the 

effects of transport lag are neglected?14 Therefore the results 

provided by the analytical solution for a tailless aircraft in 

Ref.(113) is directly compared to results obtained for the current 

tailed aircraft using the present theory and assuming quasi-steady 

aerodynamics. A PSD analysis was carried out using three scale 

lengths L = 75m, 150m and 300m. Table 6.1 shows the alleviation

factor K and the root mean square angular velocity obtained from 

expressions provided by Ref.(113) along with these quantities 
obtained from the present theory employing quasi-steady 

aerodynamics. As it can be seen the agreement between the present 

analysis and the analytical technique is good, well within 

engineering accuracy. It must be noted that the present PSD 

analysis is carried out within the frequency domain and can not be 

practically taken to infinity and is subject to errors introduced 

from truncation of the numerical integration of Eq.(6.5). 

Referring again to table 6.1 it is seen that the gust alleviation 

factor at the aircraft centre of gravity, K is sensitive to the 

scale length taken, decreasing as this parameter increases as 

noted in prior investigations?1'115 This analysis was carried out 

at other speeds and the agreement was found to be consistent.

6.3.3 Unsteady Aerodynamics
Next unsteady aerodynamics was introduced as the present 

theory in the program FLUSTAR and the respective normalized 

quantities are shown in Table 6.1 as well. Comparing the 

respective values for K from both aerodynamic models, it is seen 

that for both speeds the effect of unsteady aerodynamics is to 

reduce the alleviation factor, by 18% in this case, this is 

concurrent with observations carried out by Ref.(113), considering 

just the heaving of the aircraft, using independent unsteady 

aerodynamic models provided by the Wagner and Kiissner functions. 

It is also observed from Table 6.1 that the angular velocity is 

increased marginally.
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6.4 Investigation of the SDG-PSD Overlap

6.4.1 Definition of the SDG-PSD Overlap

Jones claims that under certain circumstances the SDG and PSD
• 2 7methods produce essentially the same numerical results, and he 

refers to this situation as the SDG-PSD overlap. The quantitative 

definition of the overlap is given by the following equation.

7 = 10.4 A (6.15)

Where 7 is defined by Eq.(6.13) and A is defined by Eq.(6.10). The 

relationship in Eq.(6.15) implies that design loads are 

proportional to A, which is consistent with the design envelope 

gust loads criterion!16
The circumstances under which Eq.(6.15) is valid are 

summarized in Table 6.2. Quantities from the SDG method are found 

in Eq.(6.11) and Eq.(6.12) and quantities from the PSD method, in 

Eqs.(6.6) and (6.8). The value 1/3 for exponent k in Eq.(6.11) 

corresponds to the -5/3 high-frequency asymptote of the Von Karman 

power spectrum in Eq.(6.6). For both the SDG and PSD methods, unit 

gust velocities and the standard value of scale of turbulence are 

used. In addition, there is a requirement that the aircraft under 

investigation be described by linear equations and that the 

frequency of the short-period mode be much greater than the Knee 

frequency of the Von Karman power spectrum. With these conditions 

met, Jones claims that the 10.4 factor of Eq.(6.15) will be 

obtained if SDG and PSD analyses are performed for the same 

vehicle.

6.4.2 Response to Continuous Turbulence of the Kestrel, Ricochet 

and A1 Using the PSD Method

A PSD and SDG analyses was carried out on these aircraft at 

the same speeds considered in the prior dynamic stability 

analysis. The SDG method as implemented by Purcell's program 

requires input data in Imperial units, therefore to maintain this 

consistency and requirement for the SDG-PSD "overlap"

investigation, the input data for the whole analysis were converted 

into Imperial units. Hence all response quantities including those
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results from the PSD method are in Imperial units. The effects of 

downwash and transport lag are neglected in this investigation. 

The frequency response functions for the considered response 

quantities are obtained to a sinusoidal input gust of amplitude 1 

ft/sec.

6.4.2.1 The Kestrel
A PSD analysis was first carried out on the Kestrel with four 

elastic modes in addition to the two rigid body modes and the 

aerodynamic parameters were kept the same as in prior 

investigations. For the Kestrel as with the other aircraft, 700 

points were found sufficient in the integration of Eq.(6.8) to 

adequately cover the influence of the elastic modes.

Representative results for the aircraft frequency response 

function and response power spectrum are shown for the lowest 

speed, in this case 30 m/s, representing a typical cruise speed. 

Figures 6.5 and 6.6 shows the squared modulus of the frequency 

response function for vertical acceleration and angular 

acceleration respectively, at the three spanwise stations, namely 

the wing tip, mid-span and wing root. Referring to Fig. 6.5 it is 

seen that the peak responses in vertical acceleration closely 

coincide with the natural frequencies of the Kestrel, including 

the largest contribution at the wing tip from wing torsion. The 

torsional mode is excited as the shear centre is offset from the 

wing aerodynamic centre. The size of these peaks are functions of 

the acceleration responses of the individual modes and their 

respective position within the frequency spectrum. Although the 

contribution to vertical acceleration from the torsional mode may 

be small, the resulting moduli, which are multiplied by u2, will 

be large. Therefore the higher up in the frequency spectrum the 

mode is, the higher the possible frequency response. It must also 

be noted that the finite element model used here for the Kestrel 

includes the effects of wing structural sweep, thus introducing 

small amounts of coupled bending from the torsional mode.

Further inboard the magnitude of the response function 

decreases towards the root, which in this case is coincident with 

the aircraft c.g. The influence of the torsional mode at the c.g. 

has significantly decreased and is dominated by the bending modes.
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The absence of any peaks associated with rigid body inodes, seems 

to confirm the initial conclusions of the flutter analysis carried 

out on the Kestrel, that this instability is dominated by the 

elastic modes.
Referring to Fig. 6.6 the dominant contribution to the 

angular acceleration appears to come from the wing torsional mode, 

with a small contribution from the third elastic mode which is 

tailplane bending with coupled wing torsion/bending. Again further 

inboard the magnitudes decrease, until at the c.g. the 

acceleration is solely driven from the wing torsional mode.

The frequency response functions are then multiplied with the

input power spectrum, of the Von Karman form, taking the mean

square of the gust velocity cr2 as 1 (ft/sec)2, in accordance with
g

the criterion set for the SDG-PSD "overlap" case in Table 6.2. 

Figures 6.7 and 6.8 show the response output spectrum for both 

vertical and angular acceleration respectively. It can be seen 

from Figure 6.7 that although there is a large torsional 

contribution to the response function its resulting influence in 

the output power spectrum for vertical acceleration is negligible. 

It is the elastic modes in bending which are seen to contribute 

the most, in particular the first bending at the wing tip. Further 

inboard the lower frequency modes, including perhaps the rigid 

body modes begin to appear, although much smaller compared to the 

wing tip values. The high contribution of the lower frequency 

modes can be explained from the the nature of the input spectrum. 

It can be seen from Fig. 6.2 that the spectrum attains its highest 

values at low frequencies and then goes asymptotically to zero for 

higher frequencies, thus magnifying the influence of the lower 

order modes.
As suggested from Fig. 6.6 the dominance of the torsional 

modes is observed, in the output power spectrum for angular 

acceleration in Figure 6.8. Although at the c.g. there again 

appears a small rigid body contribution.

From these output power spectra the r.m.s vertical and

angular accelerations are obtained, and are normalized with

respect to the r.m.s input gust velocity c r t o  give A, as defined
g
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by Eq.(6.10). The spanwise distribution of A for both vertical and 

angular acceleration are shown in Fig. 6.9 and 6.10 respectively 

at 30 m/s and 60 m/s along with quantities assuming a rigid 

aircraft. The trends suggested from these figures, appear not to 

differ that much with speed except in magnitude. It is seen that 

the introduction of flexibility predictably increases the outboard 

response in both vertical and angular acceleration, especially 

close to the wing tip. Referring to Fig. 6.9 the inclusion of 

flexibility is demonstrated on the vertical acceleration, at the 

tip, the ratio of flexible acceleration to rigid acceleration is 

3.4 at 30 m/s and 5 at 60 m/s. Referring to the angular 

acceleration encountered in Fig. 6.10 the respective ratios at 

the two speeds considered are 237 and 326. The response is greater 

at the latter speed as the Kestrel is close to its flutter speed. 

It can be seen that effect of vertical acceleration will be to 

increase the local bending moment and shear stresses along the 

wing, whereas the angular acceleration will increase the torsional 

moments encountered.

6.4.2.2 The Ricochet

In the absence of a tail the Ricochet is expected to be much 

more sensitive to atmospheric turbulence, in particular the role 

of its rigid body modes will be significant. The Ricochet was 

allowed the two rigid body freedoms in addition to the four 

elastic modes. Aerodynamic parameters were maintained from the 

earlier dynamic stability studies carried out in Chapter 4. As 

before the cases for a speed of 25 m/s and 40 m/s were selected. 

Representative results are shown for 25 m/s. Figure 6.11 and 6.12 

show the frequency response function for both vertical and angular 

acceleration, at the tip, mid span and root locations.

Referring to Figure 6.11 the peak responses due to the 

elastic modes are clearly defined. The largest contribution at the 
wing tip coming from the bending modes. However the effect of wing 

torsion is negligible at this position. It is seen that as one 

moves further inboard the contribution from the bending modes 

decays, also the rigid body or s.p.p.o mode becomes more 

pronounced, such that at the root it begins to coalesce with the 

wing first bending mode, (this as already mentioned is
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characterised as the mode of flutter for the Ricochet) . As 

observed with the Kestrel the modulus of the frequency response at 

the wing tip is similarly about 10 times the magnitude at the 

root, but the effect of the torsional mode (elastic) is less 

pronounced and the response is dominated by the bending modes and 

a noticeable input from rigid body motion.
Figure 6.12 high lights the dominance of the wing torsional 

mode in the angular acceleration response of the Ricochet. Once at 

the root, a small contribution from the bending modes is observed. 

This is perhaps due the to swept nature of the Ricochet, where 

wing bending is providing additional pitching moments at the root.

The subsequent output power spectrum for the vertical and 

angular acceleration quantities are shown in Fig. 6.13 and 6.14 

respectively for 25 m/s. From Fig. 6.13 it is seen that at the 

wing tip the response is dominated by the first and second wing 

bending modes. As one progresses further inboard their influence 

diminishes and the response is taken up by the s.p.p.o mode, which 

provides a constant contribution along the span of the wing. From 

Fig. 6.14 the torsional modes is seen to dominate the outboard 

angular acceleration response. This component diminishes towards 

the root. Until at the root the contribution from the first 

bending mode, seen in Fig. 6.13, dominates the response at this 

position.
Figures 6.15 and 6.16 show the normalized vertical and 

angular response quantities A respectively for the flexible and 

rigid case at 25 m/s and 40 m/s. Referring to Fig. 6.15 and the 

normalized vertical acceleration, in addition to the effects of 

flexibility their is also a noticeable rigid body contribution to 

the increase in response. At 25 m/s the ratio of flexible aircraft 

acceleration to rigid aircraft acceleration at the tip is 3.3 and

1.2 at the root. As the Ricochet approaches the flutter speed the 

role of the rigid body freedoms becomes apparent, such that at 40 
m/s, the ratios at the tip and root are now 2.1 and 3.3 

respectively. Considering angular acceleration in Fig. 6.16, the 

respective ratios at the same locations are 108 and 11 at 30 m/s, 

131 and 12 at 40 m/s.
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6.4.2.3 The Cranfield A1
In Chapters 3 and 4 it was established that the A1 was 

essentially a stiff aircraft. As in the previous studies the 

speeds selected for the current response analysis were 41.1 m/s 

and 61.7 m/s with atmospheric density taken as before, but all the 

quantities converted to imperial units as required. However 

representative data is presented for 41.1 m/s, considered as a 

typical cruise speed for the Al. Analysis was carried out with two 

rigid body and four elastic modes. Aerodynamic parameters were the 

same as used in the dynamic stability analysis in Chapter 4.

Figure 6.17 shows the frequency response function in vertical 

acceleration for the Al. The frequency is extended in this case as 

the Al is a stiffer aircraft and the frequencies of the elastic 

modes that much higher. At the wing tip, in the frequency range 

presented the first three elastic modes are observed, but there is 

apparently no contribution from the wing torsional mode, as 

observed for the Kestrel and the Ricochet suggesting the high 

torsional stiffness of the Al wing. The dominate peak appears to 

be that associated with third elastic mode, which is primarily a 

wing bending mode with significant wing torsional displacements 

present. The peak is particularly dominant towards the flexible 

part of the aircraft (i.e. towards the tip). As expected further 

inboard the wing the overall modulus of the frequency response 

function decreases. At the wing root (which is close to the 

aircraft c.g.), the highest peak is due to the second elastic mode 

which involved significant tailplane bending with some amount of 

coupling between the wing-bending and wing-torsional displacements 

(see Fig. 3.19). This mode has earlier been characterised by large 

movement of the root. Unlike the rest of the other modes. This 

explains why it is prevalent in the frequency response function at 

the root. It is also observed in Fig. 6.17 that at the lower end 

of the frequency band, the peak in the frequency response arising 
out from the short-period mode is particularly high.

Figure 6.18 shows the frequency response function in angular 

acceleration. Here the overall magnitude for this quantity is 

smaller compared to those encountered for the Kestrel and 

Ricochet, which are far more structurally flexible. At the tip the
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dominant peak is again associated with the third elastic mode 

which is primarily a wing bending mode with significant coupling 

present between the wing-bending and wing-torsional displacements 

(see Fig. 3.19). As the A1 wing is swept (the angle of sweep is 

around 10°) the wing bending in this mode is contributing to the 

frequency response function corresponding to the angular 

acceleration of the wing. However as the this wing has a high 

torsional stiffness the contribution from high frequency torsional 

mode is seen to be negligible in comparison. Towards the root the 

response is seen to decrease , until the contribution from the 

third elastic mode becomes apparent as was the case with the 
normal acceleration.

Considering the resulting power output spectrum for the 

vertical acceleration in Fig. 6.19 the spectra are similar to 

those shown in Fig. 6.17 for the frequency response function. 

However inaddition there is seen a low frequency contribution from 

the s.p.p.o mode, which is found to prevail and dominate the root 

location.

Figure 6.20 represents the output power spectrum for angular 

acceleration. This again shows the same trend and the relative 

dominance of the elastic modes reflected by the frequency response 

function in Fig. 6.20. Also there appears to be a contribution 
from the s.p.p.o mode.

The spanwise distribution of normalized vertical and angular 
accelerations are respectively shown in Fig. 6.21 and Fig. 6.22 

for both the rigid and flexible aircraft. It is seen from these 

figures that the introduction of flexibility increases the 

outboard response, especially close to the wing tip as expected. 

At the wing tip the ratio of the normal accelerations obtained for 

the flexible and the rigid aircraft is found to be 4.2 and 4.6 for 

aircraft speeds at 41.1 m/s and 61.7 m/s respectively. The 

corresponding ratio for angular acceleration at the wing tip was 
found to be 3.9 and 5.1 respectively at the above two speeds.

However comparing the angular accelerations, with those 

encountered on the Kestrel and Ricochet, it is seen that the A1 

response is much smaller. In particular at the wing tip and close 

to the flutter speed, the angular accelerations encountered on the
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Kestrel and Ricochet are some 45 and 25 times higher, 

respectively. This is because of the high torsional stiffness of 

the Al, which is on average about 19 times that of the Kestrel 

and 9 times that of the Ricochet.

6.4.3 SDG-PSD Overlap 

6.4.3.1 Introduction

The only thorough investigation of the SDG-PSD overlap that 

the author can ascertain was that carried out by Perry et al)11 at 

NASA, Langley Research Centre. In this reference, symmetric rigid 

body analyses and symmetric fully flexible analyses were performed 

using linear equations of motion. Two forms of the SDG method were 

implemented, referred to as method 1, mentioned above and method

2. In Method 2, there are no restrictions concerning the 

characteristics of the critical gust patterns. Critical gust 

patterns are comprised of single gusts whose magnitude may be 

negative or positive (representing either up or down gusts) in any 

order and whose spacing in time may be negative or positive 

(representing subsequent gusts that either do or do not overlap 

each other) . Method 2 is a more accurate form of the SDG method 

and is reserved for the more complicated fully flexible analyses 
in Ref.(Ill)

This investigation111 concluded that "an SDG-PSD overlap does 

appear to exist. However, this overlap appears to be 

characterized, not by a 10.4 factor, but rather by a "10.4 plus or 

minus approximately five percent factor", when rigid body 

equations are involved, and by a "10.4 plus or minus approximately 

ten percent factor" when fully flexible equations are involved".

Using Purcell's program the current response analysis was 

extended to carry out also a SDG analysis. This SDG method in this 

case, is equivalent to method 1 for a maximum of two gusts, to 

ascertain the SDG-PSD overlap for the Kestrel, Ricochet and Al. 

The indicial admittances, obtained for each aircraft from 
Bromwich's integral)17 were used as input into Purcell's program 

from which the maximum responses were evaluated and compared with 

those from the prior PSD analysis. An alternative technique for 

obtaining the indicial admittance is that provided by Mitchell)18
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6.4.3.2 Rigid Body analyses

The rigid-body analyses was carried out by suppressing the 

elastic degrees of freedom and relying on the two rigid body modes 

of heave and pitch, provided in the finite element model, by the 

light springs at the aircraft c.g. For this investigation strip 

theory was used first employing quasi-steady aerodynamics and then 

later the effects of full unsteady aerodynamics were introduced. 

The employment of quasi-steady aerodynamics, as shown in Chapter 
4, is equivalent to the classical approach of evaluating the 

dynamic stability. Response quantities for these analyses are 

angular velocity (or pitch rate) and vertical acceleration at the 
wing root, and vehicle centre of gravity wherever possible. 

Referring to Table 6.3 it is seen that the ratio u /u for
s p  k n e e

each aircraft considered, is sufficiently large for the present 

investigation. Although the s.p.p.o frequencies quoted are based 
on quasi-steady aerodynamics, the introduction of unsteady 

aerodynamics for harmonic motion, (as in this case) will be small, 

especially considering the low frequency nature of the short 
period mode.

6.4.3.3 Flexible Analyses

For these analyses the configurations and elastic modes 

allowed, for each aircraft considered, were those used for the PSD 

analyses. The full effects of unsteady aerodynamics were 

implemented via strip theory and the Theodorsen's expressions for 
lift and moment. Response quantities for these analyses are pitch 

rate, angular acceleration and vertical acceleration at three 

spanwise locations, namely the tip, mid-span and root. For this 

investigation it was thought best to concentrate on aircraft for 

which practical and realistic structural and aerodynamic details 

are available, so the fictitious aircraft of aspect ratio 12 was 
omitted in these analyses.
6.4.3.4 Rigid Body Results

For the PSD method over 700 points were used in the numerical 

integration of Eq. (6.8). For the SDG method, the aircraft were 

subjected to critical gust patterns comprised of either one (n=l) 

or two (n=2) single gusts, as presented by Purcell?1 The SDG 

method employed here is equivalent to method 1 in Ref.(Ill).

Table 6.4 displays the results of the analyses using
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quasi-steady aerodynamics for the Kestrel, Ricochet and A1 for a 

random selection of speeds. All ratios are above the 10.4 factor 

the largest discrepancy being 12.19 (17.2% above 10.4) and the

lowest is 8.95 (13.9% below 10.4). The mean value of the ratios is 

10.31 with a standard deviation of 1.072.
Next the effect of unsteady aerodynamics is shown in Table 

6.5. Here the ratios fall between 12.03 (15.7% above 10.4) and

9.70 (6.7% below 10.4). The subsequent mean is found to be 10.65

with a standard deviation of 0.791. It is noted for the aircraft 

considered that the effect of unsteady aerodynamics, is to reduce 

the vertical acceleration, and in particular the spectral gust
113alleviation factor K for the Kestrel, as observed by Huntley. 

Also the pitch rate increases in the case of the Kestrel and Al. 

This is not observed on the Ricochet, as the pitch rate for this 

aircraft is dependent primarily on the aerodynamic damping of its 

wings, which are subject to the general reduction in vertical 

acceleration.

6.4.3.5 Flexible Results

Before concentrating on the spanwise distribution of the 

response quantities for the flexible case, the quantities so far 

shown in Tables 6.4 and 6.5 are calculated for the rigid aircraft. 

Table 6.6 shows the same response quantities for the flexible 

aircraft, employing unsteady aerodynamics. As noted earlier the 

introduction of flexibility has increased the vertical

acceleration for both the Ricochet and Al, but the c.g. 

acceleration remains virtually unchanged for the Kestrel. Also the 

introduction of flexibility and unsteady aerodynamics increases 

further the angular pitch rate encountered by the Kestrel and Al.

The spanwise distributions of vertical and angular

accelerations obtained, using the PSD and SDG methods were next 

evaluated and are displayed in Tables 6.7, 6.8 and 6.9 for the

Kestrel, Ricochet and Al respectively.
Considering overlap ratios from these tables, in addition to 

the angular velocity quantities from Table 6.6, we see a larger 

band of ratios about the 10.4 factor. The maximum value is 12.54 

(in the case of the Ricochet which is 20.5% above 10.4) and a 
minimum of 7.20 (for the Al which is 30.7% below 10.4). However
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the mean is found to be 10.45 with a standard deviation of 1.455. 

Although the mean is very close to the expected factor the large 

value of the standard deviation must be noted, this large 

variation in results could due to the inadequacies of the current 

SDG method (method 1) in coping with the added complexity of 

flexibility.

A summary of the above comparison is shown in Table 6.10. 

There is a certain amount of consistency about the results for the 

mean factor in the rigid body case using both quasi-steady and 

unsteady aerodynamics. It is noted that the response in pitch is 

smaller in the case of the Kestrel and the Ricochet, thus in the 

SDG analysis it was more difficult to obtain a worst case 

response, this is reflected to a certain extent in the standard 

deviation results. As the response in pitch for the A1 and the 

representative aircraft in the rigid analyses are much higher, the 

results appear more encouraging. Thus for the rigid body case, 

considered here, the suggested overlap factor is between 10.31 and 
10.65.
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Spectral Gust alleviation Factor K 

and

Mean square response of angular

velocity aa (rad/s/m/s) 
crW

g

Scale Quasi-steady Unsteady
Length Aerodynamics Aerodynamics

L
(m) Ref.113 FLUSTAR FLUSTAR

75 0.3566 0.3400 0.2768

0.04332 0.04406 0.04605

150 0.2548 0.2428 0.1978

0.03137 0.03196 0.03316

300 0.1811 0.1723 0.1402

0.02244 0.02281 0.02356

Table 6.1 Response quantities using quasi-steady aerodynamics 

and unsteady aerodynamics
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SDG quantities PSD quantities

(Refer to Eqs.(6.9) and (Refer to Eqs.(6.1) and
(6.10)) (6.6))

K = 1/3 Von Karman form of $■
<3

U = 1 ft/sec a = 1  ft/sec
W
g

L = 2500 ft L = 2500 ft

<J » CJ
s  p k n e e

Table 6.2 Conditions for the statistical discrete gust and 

power spectral density overlap

Aircraft Speed

m/s (ft/sec)

Short period 

frequency, c j
s p

(rad/sec)

c j
s  p 

CJ
k n e e

Kestrel 30 (98.43) 1.66 92.3

Ricochet 40 (131.23) 2.64 50.3

Cranfield Al 61.7 (202.36) 5.28 66.5

AR 12 30 (98.43) 5.38 293.5

Table 6.3 Example aircraft for rigid body analysis
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PSD result SDG result

Aircraft Response quantity A 7 A
(units) (units)/fps (units)

Kestrel Pitch rate, & 0.001157 0.01410 12.19

30 m/s (rad/s)
c.g vert, accel., An 0.02365 0.2368 10.01

(g's)

Ricochet Pitch rate, a 0.002473 0.02835 11.45

40 m/s (rad/s)
vert, accel., h 0.03401 0.3178 9.34

(g's)

Al Pitch rate, a 0.005661 0.06131 10.18

61.68 m/s (rad/s)
vert, accel., h 0.02229 0.2187 9.81

(g's)

ARI 2 Pitch rate, a 0.007116 0.07521 10.57

30 m/s (rad/s)
c.g vert, accel., An 0.01229 0.1100 8.95

(g's)

Table 6.4 Summary of statistical discrete gust and power spectral 

density results for rigid body analysis using 

quasi-steady aerodynamics
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PSD result SDG result
Aircraft Response quantity 

(units)
A

(units)/fps
1

(units) A

Kestrel Pitch rate, a 0.001254 0.01509 12.03
30 m/s (rad/s)

c.g vert, accel., An 0.02012 0.1952 9.70
(g's)

Ricochet Pitch rate, a 0.002329 0.02677 11.48
40 m/s (rad/s)

vert, accel., h 0.02858 0.3039 10.63
(g's)

A1 Pitch rate, a 0.005883 0.06111 10.39
61.68 m/s (rad/s)

vert. accel., h 0.01865 0.1998 10.71
(g's)

AR12 Pitch rate, a 0.007375 0.07743 10.50
30 m/s (rad/s)

c.g vert, accel., An 0.009483 0.09255 9.76
(g's)

Table 6.5 Summary of statistical discrete gust and power 

spectral density results for rigid body analysis using 
unsteady aerodynamics
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PSD result SDG result y
Aircraft Response quantity 

(units)
A

(units)/fps
r

(units) A

Kestrel Pitch rate, a 0.01592 0.0193 12.15

30 m/s (rad/s)
c.g vert, accel., An 0.02086 0.2400 11.51

(g/s)

Ricochet Pitch rate, a 0.02007 0.2122 10.58

40 m/s (rad/s)
vert, accel., h 0.0648 0.7176 11.07

(g's)

A1 Pitch rate, a 0.005901 0.06296 10.67

61.68 m/s (rad/s)
vert. accel. , h 0.01950 0.2160 11.07

(g's)

Table 6.6 Summary of statistical discrete gust and power spectral 

density results for flexible and unsteady aerodynamic 

analysis
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Spanwise

location Response quantity 
(units)

PSD result 

A
(units)/fps

SDG result

7
(units)

7
A

Tip
Ang. accel., 

(rad/s2)
a 1.5755 17.33 10.99

vert, accel., 
(g's)

h 0.06784 0.7372 10.87

Mid-span

Ang. accel., 

(rad/s2)

•«a 0.8698 9.817 11.29

vert. accel., 
(g's)

h 0.02324 0.2361 10.16

Root

Ang. accel., 

(rad/s2)
a 0.04666 0.5733 12.29

c.g vert, accel 
(g's)

. , An 0.02086 0.2400 11.51

Table 6.7 Summary of statistical discrete gust and power spectral 

density results for flexible Kestrel at U = 30 m/s
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Spanwise

location Response quantity 
(units)

PSD result 

A
(units)/fps

SDG result 

r
(units)

r
A

Tip
Ang. accel., 

(rad/s2)

a 2.3509 26.05 11.08

vert, accel., 
(g's)

h 0.1019 1.279 12.54

Mid-span

Ang. accel., 

(rad/s2)

a 1.379 14.86 10.77

vert, accel., 
(g's)

h 0.06489 0.7124 10.98

Root

Ang. accel., 

(rad/s2)

a 0.2092 2.2405 10.71

vert, accel., 
(g's)

ii 0.06482 0.7176 11.07

Table 6.8 Summary of statistical discrete gust and power spectral 

density for flexible Ricochet at U = 40 m/s
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Spanwise

location Response quantity 
(units)

PSD result 

A
(units)/fps

SDG result

7
(units)

r
A

Tip
Ang. accel., 

(rad/s2)

a 0.1797 1.478 8.22

vert, accel., 
(g's)

• • 
h 0.09179 0.7912 8.62

Mid-span

Ang. accel., 

(rad/s2)

ii 0.09388 0.7676 8.18

vert. accel., 
(g's)

h 0.02930 0.2109 7.20

Root

Ang. accel., 

(rad/s2)

a 0.05801 0.4959 8.55

vert, accel., 
(g's)

h 0.01949 0.2159 11.08

Table 6.9 Summary of statistical discrete gust and power spectral 

density for flexible A1 at U = 61.7 m/s
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Y , ,
—  Statistics 
A

Type of analysis Mean

Standard

deviation

Rigid-body

(quasi-steady

aerodynamics)

10.31 1.072

Rigid-body

(Unsteady
aerodynamics)

10.65 0.791

Flexibility 10.45 1.455

Table 6.10 Summary of statistical discrete gust-power spectral 

density comparisons
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Power Spectral Density Statistical Discrete

Method Gust Method

Fig. 6.1 Formulation of response analysis
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Fig. 6.2 Von karman power spectral density 
(PSD) for atmospheric turbulence
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Fig. 6.3 Family of equi-probable smoothly varying 
ramp-hold gusts for SDG method

Fig. 6.4 Combination of three single gusts
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7.0 SUMMARY OF RESULTS

7.1 Introduction

A unified method of flutter, dynamic stability and response 

analysis of deformable aircraft has been presented. The theory 

developed has been applied to three case aircraft. The work 

described in this thesis can be summarised as follows:

7.1.1 Validation of Strip Theory

Strip theory is revalidated as an aerodynamic tool for 

flutter analysis of high aspect ratio aircraft wings at low 

speeds. The investigation has shown that the lower limit of the 

aspect ratio for good flutter prediction is about 6. However, on 

occasions with suitable combination of other parameters, this 

limit can be decreased to as low as 4 and an acceptable 

engineering accuracy on the flutter speed can still be achieved. 

Within the most practical range of interest for the reduced 

frequency parameter, the oscillatory aerodynamic forces obtained 

from the strip theory show good agreement with those obtained from 

the lifting line theory. Care must be exercised when considering 

taper and sweep effects particularly for wings at the lower end of 

the aspect ratio (i.e. below 6). Considering the introduction of 

sweep at low subsonic speeds the cosine theory (as described in 

Chapter 2) is shown to yield comparable, if not closer agreement 

with experimental results, when compared with the classical 

velocity component theory. A study of the variation in flutter 

speed with variation of El, GJ, M/l and I /I for the Kestrel wing
p

and two wings of Refs. (37) and (50), show that the sensitivities 

are well behaved, so that potential future applications to 
optimisation are possible.

7.1.2 Flutter Behaviour of the Kestrel

The Kestrel is found, with the inclusion of the rigid body 

modes, to exhibit an example of classical wing bending/torsion 
flutter. The analysis of the Kestrel wing as a cantilever gave 

sufficiently accurate results when compared with the results 

obtained for the whole aircraft configuration. The tailplane 

aerodynamics has a marginal effect on the flutter of the Kestrel. 

The effect is found to be beneficial as the flutter speed 

increased in the presence of the tailplane aerodynamics as
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expected. This stabilising effect is attributed to the fact that 

the tailplane provides additional aerodynamic damping to the 

aircraft. The fuselage bending stiffness played a relatively minor 

role on the symmetric flutter of Kestrel. Anti-symmetric flutter 

of Kestrel was found to be close to its symmetric value and 

exhibited another possible mode of instability.

7.1.3 Flutter Behaviour of the Ricochet

The Ricochet suffers from a phenomenon known as body freedom 

flutter, as a result of the fundamental wing bending mode coupling 

with the short period pitching oscillation. The two rigid body 

modes along with the fundamental wing bending mode are found to be 

sufficient in predicting the flutter of the Ricochet. The accuracy 

of quasi-steady aerodynamic theory was checked by applying the 

theory on the Kestrel and the Ricochet. The theory was found to 

predict flutter accurately at low reduced frequencies (for 

example, when body freedom flutter is encountered (k < 0.1)).

However the theory was more conservative at higher frequencies, 

typical in bending/torsion flutter and in this case some account 

of aerodynamic lag and unsteadiness of the wake needs to be made.
7.1.4 Flutter Behaviour of the Cranfield A1

Fuselage flexibility is seen not to have a significant effect 

on the symmetric natural frequencies and modes of the Cranfield 

Al. The undercarriage mass, a third of the mass of the wing, needs 

to be accounted for, as this quantity is seen to affect the wing 

bending frequencies and in particularly the torsional frequencies 

and modes. A subsequent symmetric and anti-symmetric flutter 

analysis demonstrated that this aircraft is free from mainplane 

flutter. This is primarily as a result of the low aspect ratio and 

overall high stiffness of its construction.

7.1.5 Flutter Results of a Wind Tunnel Model

The current analysis successfully predicts body freedom 

flutter of a wind tunnel model of forward sweep configuration. 
However, care must be taken in applying an isotropic model to 

composites with high cross stiffness coupling terms. Modified wing 

aerodynamic parameters are seen in this particular type of flutter 

to lower the aerodynamic stiffness and damping and subsequently 

raise the flutter speed.
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7.1.6 Short Period Oscillation Characteristics of the Kestrel, 

Ricochet and A1
Flexibility is seen to be quite fundamental to the 

determination of the stability and control of sailplanes. For both 

the Kestrel and the Ricochet the introduction of flexibility, in 

particular the first bending and first torsional modes, has a 

destabilising influence on the short period mode. Close to the 

flutter speed, classical rigid body assumptions are no longer 

valid. At 60 m/s, close to the Kestrel flutter speed, the 

classical rigid assumption overestimates the short period damping 

by 35.2% and underestimates the frequency by 60.6%, for the 

flexible case based on four elastic modes. Similarly at 45 m/s the 

corresponding discrepancies for the Ricochet are 110.4% and 57.3% 

respectively. Predictably the A1 being very stiff, these values 

are only 19.4% and 0.9% respectively. The damping predicted was 

generally higher for the unsteady model. For the Ricochet the 

agreement between quasi-steady and unsteady aerodynamics is closer 
as this aircraft's aeroelastic stability is dominated by the low 

frequency rigid body modes. The inclusion of the fundamental 

bending and torsional modes, in addition to the rigid body modes, 

is found to be sufficient in predicting the dynamics

characteristics of these deformable aircraft (the Kestrel and the 

Ricochet).

7.1.7 Effect of Unsteady Wake on Dynamic Stability and Flutter

The effects of an unsteady wake at the tailplane are

investigated using a simple vortex lattice method employing strip 

aerodynamics and wing flexibility. The influence of the wake is 

found to be predominantly aspect ratio dependent. Considering only 

rigid body modes in symmetric motion for the Kestrel, (aspect 

ratio 31), the s.p.p.o damping is seen to increase by 4 6.5% and 

the frequency decrease by 13% in comparison to the case when the 

effect is neglected. For the Al, (aspect ratio 6.7), the

discrepancy for these respective quantities are found to be 203% 
and 28.5%. Wing flexibility for the Al has a marginal effect on 

the wake as expected. There is found to be a negligible decrease 

in the flutter speed and flutter frequency of Kestrel with the 

introduction of a wake, as the combination of T-Tail and high
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aspect ratio reduces the influence of this wake.

7.1.8 Response to Discrete Gusts and Continuous Turbulence

Unsteady aerodynamics is found to decrease the spectral gust 

alleviation factor K by as much as 18% for the rigid aircraft. The 

addition of flexibility is seen to substantially increase the 

overall aircraft response, especially at subcritical speeds. In 

particular for the Ricochet in the absence of a tailplane, the 

influence of the flexible modes on the rigid body modes is seen to 

induce significant accelerations at the wing root as well as at 

the wing tip. As the A1 is torsionally much stiffer than both the 

Kestrel and Ricochet, the response to angular acceleration is seen 

to be much smaller. The PSD and SDG methods were applied to all 

the case aircraft, for both the rigid and the flexible case. From 

these results, an SDG-PSD overlap does appear to exist. However 

this overlap appears to be characterised in this investigation not 

by a 10.4 factor, but rather by a 10.4 plus or minus approximately 

17% of this value when only the aircraft is considered to be 
rigid. For the flexible case this range was found to be plus or 

minus 31% of the factor. However this large variation could be due 

to the inadequacies of the current SDG method (method 1) in 

dealing with the aircraft of considerable flexibility.

7.2 Development of Computer Program

Based on the method presented in this thesis, a FORTRAN 

program called FLUSTAR has been developed. Using the geometry of 

the aircraft together with its inertia and stiffness properties, 

the program will accomplish with a minimum of data the following 

tasks:

1) Evaluation of flutter speed and aeroelastic modes at 

flutter speed of an aircraft using normal modes.

2) Investigation of the short period oscillation

characteristics of an aircraft with or without the inclusion of 

flexibility.

3) Calculation of both linear and angular acceleration

responses to continuous random atmospheric turbulence using the 

frequency response function and the power spectral density (PSD) 

method.
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4) Determination of the acceleration response of a flexible 

aircraft to unit step gust velocity. Evaluation of the statistical 

discrete gust (SDG) method and identification of the worst case 

response to a pair of step gusts.
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8.0 CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

8.1 Principal Conclusions

This investigation has shown that the lower limit for good 

flutter prediction, using strip theory, is about 6. However, in 

some cases, this limit can be lowered to as low as 4 and an 

acceptable engineering accuracy on the flutter speed can still be 

achieved. The cosine theory has been shown to be adequate in 

accurately predicting the flutter speed of swept wings.

In symmetric motion the Kestrel is found to exhibit classical 

wing/torsion flutter and tailplane aerodynamics is found to have a 

marginal if not stabilising influence on the flutter speed. 

Fuselage bending flexibility plays a relatively minor role on the 

flutter of Kestrel. Anti-symmetric flutter close to the Kestrel's 

symmetric value, was discovered as another possible mode of 

instability. The Ricochet in the absence of a tailplane is found 

to suffer from body-freedom flutter involving coupling of the 

short period mode with the first wing bending mode and these modes 

are found to be sufficient in predicting the flutter of the 

Ricochet. Fuselage flexibility is seen not to be of great 

significance on the symmetric natural frequencies and modes of the 

Cranfield Al. However the undercarriage needs to be accounted for, 

because its presence influences the torsional wing frequencies and 

modes significantly. As the Al is relatively stiff and of 

comparatively low aspect ratio, it is found to be free from 
mainplane flutter.

For both the Kestrel and the Ricochet the introduction of 

flexibility has a destabilising influence on the short period 

mode. Close to the flutter speed of the Kestrel and the Ricochet 

the classical stability derivative approach, employing rigid body 

assumptions is found to be inadequate in predicting the short 

period characteristics but predictably not for the relatively 

stiffer Al. The inclusion of the fundamental bending and torsional 

modes, in addition to the rigid body modes, is found to be 

sufficient in predicting the dynamic characteristics of the 

Kestrel and the Ricochet. An unsteady wake introduced at the 

tailplane is seen to increase the short period damping of the 

Kestrel and in particular that of the low aspect ratio Al
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significantly. However the wake is found to have a negligible 

effect on the Kestrel flutter.

Flexibility is seen to substantially increase the overall 

aircraft response, especially at subcritical speeds. In particular 

for the Ricochet in the absence of a tailplane, the influence of 

the flexible modes on the rigid body modes is seen to induce 

significant accelerations at the wing root as well as at the wing 

tip. As the A1 is torsionally much stiffer than both the Kestrel 

and the Ricochet, its response to angular acceleration is seen to 

be much smaller. From the response analysis carried out on all the 

three aircraft, an SDG-PSD overlap does appear to be characterised 

in this investigation not exactly by a 10.4 factor as reported by 

Jones, but rather by a 10.4 plus or minus approximately 17% of 

this value, when rigid body modes are considered. For the flexible 

case this range is found to be plus or minus 31% of this factor.

8.2 Suggestions for Further Work

In order to verify the accuracy of the proposed theory, a 

dynamic aeroelastic model, as proposed in Appendix J, should be 

tested. This will enable evaluation of subcritical or otherwise 

flutter quantities. Additionally this model could be modified to 

simulate flexible aircraft response to atmospheric turbulence.

The effect of inertial coupling may need to be introduced for 

some critical planforms. Accurate determination of mode shapes is 

important for flutter analysis, therefore a method of matching 

mode shapes obtained from ground resonance tests in the analysis 

directly, should be investigated. The current dynamic stiffness 

matrix employed can be further developed to take into account 

materials with cross coupling stiffnesses, as present in 

composites. This is essential before extending the current theory 

for practical aeroelastic tailoring or optimisation problems.

Wing loading distribution and finite span effects on flutter 
and stability should be thoroughly investigated with the use of 

the current modified aerodynamic terms. The present unsteady 

downwash model can be easily extended to cover the anti-symmetric 

case, in particular to investigate probable downwash induced 

component flutter. However to improve the current aerodynamic
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model to deal with low aspect ratio planforms ( AR < 6) in 

general, it is suggested that a more refined 3-dimensional theory 

should be implemented, such as one of the vortex lattice theories.

The effect of control surfaces on both the anti-symmetric and 

symmetric flutter needs to be investigated, as an extension of the 

current dynamic stability theory for the stick free situation.

A method of obtaining response quantities has been developed, 

a program is now required to convert this data, to obtain the 

spanwise shear stress, bending and torsional moment distributions. 

This needs to be carried out before the case of aircraft response 
can be resolved and included in the unified theory.
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APPENDIX A

A .0 Equations of Motion 

A .1 Method of Analysis 

A.1.1 Assumed Modes
This present means of solution involves solving this 

dynamic system in terms of Lagranges equation. This is some what 
a specialised form of the principle of virtual work. In order to 

generate an N degree of freedom model of a continuous system its 

space configuration has to be described by a set of discrete 

generalised co-ordinates as shown below.

N

w(x,y,z,t) = ^ T ^ i(x,y,z) u^t) (A.l)

i=i

where w can represent any type of displacement by the 

system. If the system were a wing then these would be heave and 

rotation about the elastic axis. ^ is a functional relationship 

between displacement and generalised co-ordinate. It is by 

choosing the function ^(x,y,z) that we define the N degree of 

freedom model. The functions ^K(x,y,z) must form a linearly 

independent set. In addition each must possess

derivatives up to the order appearing in V (The potential 

work done) and must satisfy all prescribed boundary conditions, 
that is, displacement-type boundary conditions.

u^(t) are the time dependent set of generalised co-

ordinates set about the system. These can represent translation 

and rotation about the system. After a short derivation, relating 

the Virtual work done (SW) due to external forces to the 

Potential (V) and the Kinetic energy (T) Lagranges equation is 

obtained.

i i i

where is the generalised forces and is multiplied by

the generalised co-ordinates to give the Virtual work.
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K - u 2M <p =  0 (A.9)

where u) is the natural frequency and <p is the corresponding 

mode shape.

A.1.3 Orthogonality

For modes with distinct frequencies, that is it is

necessary that

<PT

1 m d> 
Y J

0 ( CJ * (J ) 
v i J '

The i and j modes are said to be orthogonal with respect 

to the mass matrix. The same principle can be applied to the 

stiffness matrix in which case the i mode and j mode are also 

orthogonal with respect to the stiffness matrix that is

0T k # = O  ( u * w )
i  j  '  i j  '

Once the frequencies w and mode shapes $ where <$ = ( <p , <p 

— <Pn) have been established the following co-ordinate

transformation u(t) = $ q(t) is introduced. Where q(t) are 

referred to as normal co-ordinates. Since they are generalised 

co-ordinates of a particular type they may be substituted into 

the Lagranges equation and the following equation of forced 
motion becomes.

['\|[«] + MM - M (A-io)
where

£XM^J = $T M $ Diagonalised generlised mass Matrix

= $T K $ Diagonalised generalised stiffness 
matrix

P = $T P(t) Generalised force
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This transformation has the effect of uncoupling the 

equations of motion, This leads to N separate single degree of 

freedom equations. This significantly reduces the computational 

time for solving the equations. This technique is known as the 

mode-superposition methodl19

200



APPENDIX B

B.O Unsteady Aerodynamic Model 

B.l Aerodynamic Strip Theory 

B.1.1 Straight Wing
The generalised forces are the unsteady aerodynamic forces 

generated across the wing on a representative section shown in 

Fig. 2.2. Where the two displacements considered are heave and 

rotation of the wing about the elastic axis.
To create the necessary displacement dependent forces, 

Theodorsen's5 explicit expressions for lift L and pitching moment 

per unit spanwise distance are implemented, taking streamwise 

sections denoted in Fig. 2.2.

1
L = -npb \h + Ua - ba 2irpUbC (k) -{h + Ua + b( | - ah)a|

(B.l)

Ma = TiPb2|bahh - Ub( § - ah)cc - b2 ( § + a2 )«}

+ 2rrpUb ( ah + 5 >c<k>{h + Ua + b( I  -  a h>“ }

(B.2)

In the flutter problem sinousoidal motion is assumed to 

exist, so the Theodorsen expressions used for lift and moment in 

the flutter analysis are valid for aerofoil oscillation of the
A

form e'*Grt or e i ^  Making the appropiate substitutions and assuming
A A

ilct fkt Ah = he and a = ae, where t = ut/b Eqs.(B.l) and (B.2) can be 

rearranged to give.

L

pnbU2

ika - 2C(k) jikh
v b

+ a + < I ' a ) ika
h ' }]
(B.3)
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Mg = ["{ a + | )2C(k)jikh + a + ( - ah)ika| + k2a

n p b V  1 b ' 5

-*2ah{ h - aha} - { | - ajiak]

(B. 4)

Where C(k) = F(k) + iG( k) is known as the Theodorsen 

function. C(k) has the effect of modifying the phase between the 
forcing and damping components of the oscillatory aerodynamic 

forces.
In matrix form Eqs.(B.3) and (B.4) can be isolated in terms 

of the displacements considered.

-

L A A h
_ n 12

M A A aa 21 22

(B. 5)

where A( 4 = -7ipU2|-k2 + 2C (k) ik
i i

A( o= -7rpU2b£| ahk2+ ikj + 2C(k)-1 2 1 + ( 2 " ah>i“ )]

a 2i= TipbU2 ̂ 2C(k) ( ah+ j ) ik - k2ahj

A22= npb2U2 ̂ 2( ah+ i )C(k){ 1 + ( i - ah)ik} + k2

+ k'ah + < ah- I >lk]

(B. 6)
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5W
sg;
SW

5W
T—n

. S _

h al l
h a2 2

h a
 ̂n

n n

hl
a l dy

-

Q 1 1 Q 1 2 - - • Q l n ^ i

= Q 2 1 q 2 2 - - • Q2n ^ 2
• • •
• • •
• • •

Q , Q • • • Q qn 1 n  2 nn n

(B.11)

where

Q(i,j)
rs
A h h  + A h a  + A h a  + A a a  dy11 i j 12 i j 2 1 j i 22 ij 1
0

(B.12)

B.3 Unsteady Aerodynamic Model for a swept Wing 

B.3.1 Cosine Theory

Equations (B.l) and (B.2) can be modified to take into

account the effect of sweep for streamwise sections by factoring
the lift and moment by cos A, Hence A... = A.. . cos A(A) i, j (A=o) i, j

B.3.2 Velocity Component Theory

For sections normal to the elastic axis as denoted in Fig. 

2.2, the explicit expressions for lift and moment per unit 

distance along the swept span are given by Barmby, Cunningham and
. 5 7  • .Garrick, retaining second order termst

L = -2np\J b C(k )-|h + U a + U a tan A + b( ì - a ) (a +
n n l n n 2 h
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U x tan A) - npbn | - Trpbz|h + U^a + 2U a tan A + U x tan A +n n

U2 da tan2A| + Trpb3ah|a + 2UnX tan A + U2 Sx tan2A| 

a y  3 y

(B.13)

and

Ma = 2npU b2/( i + a )C(k )(h + U a + U a tan A +
n ( 2 h n n n

b( i - ah) (a + U^x tan A) j- - TrpU^b3 j ( § " ah)a “ § u nT tan A) j

+ npb3a - Ih  + 2U a tan A + U2x tan A + U2 da tan2AÍr *• 1 n n n —  J
a y

- Tipb4 {( i + a2)(á + 2U x tan A + U2 dx tan2A)1 h' ' n n —— J
a y

(B.14)

where kn
wb
___n r

Un

a ah

a y
and x da

a y

Assuming sinusoidal motion

L = [-2 C(k )|ik h + a + a tan A + ( \ - a )(ik a +---- n I n — Z h n
rrpbU2 bn

bx tan h + ik a + 2ik a tan A + bx tan A— n n
b

+ b da tan A)
a y

} + \ { - k > + 2ik bx tan A + b2 3x tan2A
a y

}]
(B.15 )
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and

Mot = |2( + a )C(k )jik h + a + a tan A
--------  I 2  h n I n —— ? ? L v —

4-

T r p b 2 U 2
n

( — - a )(ik a + bx tan A)
2  h  n

a ) ik a
h '  n

j bx tan A)

4- a < 
h
-k2 h + 2ik cr tan A + bx tan A + b da tan2A

n — n -----

b Sy
}

{ +  a2) (-k2oc + 2ik bx tan A + b2 5x tan2A) 1
I o  h n n n -----

a y

( B . 1 6 )

In matrix form equations (B.15) and (B.16) can be expressed, 

in terms of the displacements considered.

r----

M
»

M
a

A  A
11 12

A  A
21 22

h
+

a
J m L

D A  D A
11 12

D A  D A
21 2 2

a

X

D D A  D D A < j '
11 1 2

D D A  D D A X '
21 2  2

(B.17)

/ 3<r ,a - —— and
ay

a x

a y

where

A t =  - 7 i p U + 2C<k >ik  }
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Aj2= -npu=b[| ahk=+ IkJ + 2C(k)| 1 + ( J - ajikj]

A21= npbu*{ 2C(k)( ah+ § )ik, - k X  }

A22= npb2u*[ 2< ah+ 5 ) ' W {  1 + ( | - ah)^„} + { | <

+ k2a2 + ( a +
n h ' h

first order terms

DAii= -2TipU2b tan A jikn + C(kn)j

5 ) i k »}]

(B.18)

DA = 2npU2b2tan A
12 n

fa ik -
 ̂ h n C(k J (  J  -  ah)

DA = 2npU2b2tan A ia ik + C(k ) ( i + a )\
21 n I h n  n z h i

DA = -2TTpU2b3tan A
2 2 ^ n {< 5 + ah >ik„+ Ï C(kn)( | - 2a*)

'  I  ah}
(B.19)

The second order terms

DDA = -7rpU2b2tan2A
11 n

DDA = 7ipU2b3a tan2A
12 r n h

DDA = 7rpU2b3 tan2A
2 1 n
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DDA = -TrpU2b4( ^ + a2)tan2A2 2 n o h

(B.20)

Substituting these new expressions for the lift and moment 

into Eq.(B.lO) and taking modes along the swept span.

SW
sq;
SW

SW
T—n<5q„

r1 ■

h
i
a
i

h2 a2

hn an
0 -

A A
11 12

A A
21 22

h h
1 _2

a a  ■ 1 2 a

h a1 i
h a

2 2

h an n

DA DA bbb
i______

11 12 1 2  n
DA DA T  X • • • X21 22 1 2  n

h a 1 1
h a
2 2

h an n

DDA DDA

l-
bbb

i _____

11 12 1 2  n
DDA DDA x' X'  • • •  X'21 22 1 2 n dy (B.21)

Therefore the expression for the generalised forces is written as

Q(i/j) = A h h  + A h a  + A a h + A a a  l11 i j 12 1 j 2 1 i j 22 1 j J +
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{DA her + DA h x + DA a c r + D A a x
1 1 1 J 1 2 1 J 2 1 I  J 2 2  i  j

{DDA h a' + DDA h x
i  l  l  j 1 2 1 j + DDA a cr'

2 1 1 j
+ DDA a x'

2 2  1 J
} dy

(B.22)

B.4 Implementation of Davies Lifting Line Program 

B.4.1 Theory and Data Preparation

There was originally a suite of four programs, each written 

in FORTRAN provided by Ref.(44), namely

The STORAGE program evaluates two integers which are used to 

allocate space for the arrays ocurring in the execution of the 

ISOLATED WINGS programs.

The MODAL DATA program will determine numbers which form the 

data for input into the ISOLATED WINGS program for the particular 

case of a wing under-going oscillation in the three modes of 

heave, pitch and symmetric control surface rotation.

The ISOLATED WINGS program will determine, for given 

subsonic Mach number and given frequency parameter, the 

generalised airforce coefficient associated with oscillation of a 

wing in a number of given modes of oscillation. Also, at the 

option of the user, it will determine the values of the loading 

function, corresponding to each mode of oscillation, at the set of 
points on the wing known as the loading points.

The LOADING program will determine the values of the loading 

function at a series of points along a chord at any given spanwise 
position. Output from the ISOLATED WINGS program is used as data 

for input into the LOADING program. The loading may, for instance, 

be required for comparison with experimentally determined values.

The co-ordinate system is as shown in Fig.Bl, where a flat 

plate wing with an axis of symmetry is situated in the space with

i) STORAGE,

ii) MODAL DATA,

iii) ISOLATED WINGS

iv) LOADING,
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all its points fixed relative to the co-ordinate system OXYZ. The 

wing axis of symmetry passes through the origin 0, the axis OX is 

along the wing axis of symmetry, the axis 0Y lies in the plane of 

the wing and the axis 0Z is then perpendicular to thr plane of the 

wing.
The flat plate wing is immersed in a uniform airstream having 

speed U in the direction of the positive X-axis. It is made to 

oscillate with circular frquency about its mean position in the 

Z = 0 plane in one of a number of modes of oscillation. In the 

mode K of Oscillation the displacement Z (x,y,t) in the direction 

of the positive X-axis at time t of a point on the wing from the 

point (x,y,0) is given by

ZK(x,y,t) = 1CK(x,y) e1(i)t (B.23)

The modal function CK(x,y) is non-dimensional

At the point on the oscillating wing displaced along the Z 

direction from the point (x,y,0) there is a pressure p^(x,y,t) 

acting on the upper surface of the wing and a pressure pR(x,y,t) 

acting on the lower surface of the wing in thhe mode k of 

oscillation the corresponding aerodynamic loading LK(x,y,t) acting 

on the wing in the mode k of oscillation is given by

LK(x,y,t) = p~(x,y,t) - p*(x,y,t) (B.24)

and is the aerodynamic force per unit area acting on the wing in 

the direction of the positive Z-axis at time t. 
we may write

LR(x,y,t) = pU2lR (x,y;u,M)e1(Jt (B.25)

v = u 1 (B.26)
U

is the frequency parameter based on the typical length 1 and M is

the Mach number. The loading function lK (x,y;u,M) is a

non-dimensional complex function which depends directly on the
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upwash function aR (x,y;u), where aK(x,y;u) is the non-dimensional

function defined by

aK(x,y;u) = 1 aCK(x,y) + ¿wCK(x,y) (B.27)

a x

The dependence is expressed in the integral relationship.

“K(x, y,*u) = 1 1 (x ,y ;u,M) Ker( x - x , y - y ;u,M) dx dy„ r  o Jo' ' o 2 Jo o-'o

(B.28)

where S is the planform of the complete wing and Ker(x,y;u,M) is a 

kernel function whose form is known.
The generalised airforce coefficient Qjk(u,M) for the wing. 

Corresponding to the loading in the mode k and displacement in the 

mode j, is the non-dimensional quantity given by the formula.

V U'M)
Cj(x,y) lK(x,y;u,M) dxdy 

S

(B.29)

It is convenient to write

Qjk(u,M) = QJk(v,M) + QJk(u,M) (B. 30)

/ //
where Q (u,M) and Q (u,M) are real quantities.

j  k  j  k

The modal function CK(xfY) f°r aH  the modes k of oscillation 
are taken as known and then the upwash functions aR(x,y;u) are 

then determined from the integral equation ( B . 2 8 )  and finally the 

generalised airforce coefficients Q^(u,M) are determined from 

formula ( B . 2 9 )  on substituting for the known functions C j ( x fY) an<* 
the already determined functions lK(x/y;u,M).

The loading function lR(x,y;u,M) is determined by solving the 

integral equation (B.28) numerically. To do this an approximation
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A

lR(x,y) to the loading function lR(x,y;u,M) must first be 

specified, involving a finite number of parameters whose values 

are initially unknown. These parameters can be taken to be 

approximate values of lK(x,y;u,M) at a finite number of separate 

points on the wing, which we shall call the loading points. The
A

approximation 1 (x,y) to the loading function 1 (x,y;u,M) is then 

expressed as an interpolation function on the approximations to 

1 (x,y;u,M) at the loading points, which properly takes into 

account the edge behaviour of the loading in the peripheral 

regions of the wings as a result of the condition that the loading 

at the trailing edge of S vanishes. The approximation to 

1 (x,y;u,M) at the loading points occur in the expression for the
K A

approximation lK(x,y), as a linear combination. Hence using this
A

approximation to the generalised force may be obtained using

expression (B.29).

The exact details of the input data for the lifting line code 

are given in Ref.(44) . However as a brief summary the procedure is 

outlined below and its extension to cover the elastic modes.

The modal function <; for the mode K is defined at m spanwise 
and n chordwise stations.

C = C + iu C = C (x<n’m,Vra))J , r , P  s j  ,r,p s j  , r , p  V r,p ’ * p  ’
(B.31)

where, referring to Fig. B2

x(n,m)
r , P

( m )

P

(m)
T) =  C O S  

P

(m)

yn = S7Jn P P

) +  -'  2
k.

1  -  c o s

f  PTI .  1 j  =  1 , 2(  m  + i j

(2r-l) tt) 
(2n+l) J

r = 1,2-- n

p = 1,2-- m

m = -
H 4

2m + L - (-1) L
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The upwash function aR(x,y;u) is then obtained from the modal

function hence.

= 1 ôÇR (x,y) + iuÇR(x,y) = aR(xj"„T’y^"}u) (B.32)

ax

where ak , i,u a + iv ak , i,u k , l,u

x(n>m) = M + i c(y'"’)
i,u w u ' 2 VJu ' 1 - COS

V m)=u c o s
l 1

(m)
y — ST)
u u

m  = i ! 2 mH 4 1l

k = 1,2-- K

i = 1 , 2  n

u = 1 , 2  m
' H

(-l)mL]

L
+ 1 for symmetric modes 

- 1 for antisymmetric modes

For the purpose of studying rigid-body binary flutter only 
the MODAL DATA program is required to obtain the modal function 

and upwash function aR neglecting control surfaces. These modes of 

oscillation are then used as input for the ISOLATED WING program 

to obtain the generalised forces.

The generalised forces are then corrected to account for 

difference between the current set of axis and Davies notation. As 

these generalised forces are generated by uncoupled rigid-body 

modes they may be substituted directly into the existing program 

FLUST. Using the existing mass and stiffness matrices provided by 

FLUST the resulting flutter determinant can be solved as before. 

This new FORTRAN program is called LIFST.
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A significant amount of time was required to produce output 

from ISOLATED WING depending on the number of collocation points 

used. Therefore a range of reduced frequency and Mach number was 

selected, that was thought best to cover the likely range of 

flutter. The resulting series of generalised forces were placed 

into an input data file called RES2 from which LIFST could read 

from. The subroutine within FLUST, that generates the aerodynamic 

matrix is altered in LIFST, to accommodate the lifting line 

values. This new subroutine interpolates for a given Mach number 

and reduced frequency from RES2 for the corresponding generalised 

forces provided by lifting line theory. This interpolation is 

carried out by the NAG routine EOIACf !04 This routine deals only 

with two modes, however as discussed later this was later extended 

to cover N number of modes. The process of analysis is shown in 

Fig.B3.

B.4.2 Introduction of Elastic Modes

When dealing with elastic modes the MODAL DATA program is no 

longer suitable, as this deals solely with the rigid-body modes.

A FORTRAN program INTP was subsequently written to generate 

the required modal functions and upwash functions for a given 

coupled mode. Referring to Fig.B4 of a representative chord and 

neglecting chordwise deformation. The modal function can be 
written as:

C ( x , y )  =_z 

1

z0
x e 
___y
1

setting 1 = 1.0

J r, p p z (y )0 ' 1 p '
X<n,m)e (y(m))

r , p  y P

(B.33)

(B.34)

Hence the upwash function (B.32) can be expressed in terms of 
Eq.(B.34).
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( n , m )
a (x ,y “ ) = 1 3

sx

z (y<m))0 w u ' x (n,n)e (y(m))
l , u  y  u  '

I V z (y(m))0 w u '
( n  , m)  _  . ( m)  .x e (y )
l , u  y ' J u

(B.35)

Again, setting 1 = 1.0, we have

( n , m J
/  v in ) « < * in / « , •a (x ,y ) = 8 (y ) + iu

K '  i  , u  ' J  u  ' y  U '
z (y<m>) - X(n,ra)e (y<m))

0  '2  u  ' l , u  y  V J u

(B.36)

The number, N, of coupled modes is supplied by the program 

CALFUN^8 This is used as input for INTP which interpolates at the 

required chordwise and spanwise loading points to obtain CK anc* “K 

using the NAG routine EOIAAf I04 Modal data are used as input to 

ISOLATED WING to provide the required generalised forces. These 

results are stored again in RES2.
As coupled modes are dealt with the existing dynamic 

stiffness matrix, provided by the code CALFUN, is used to generate 

the flutter determinant. This program is called COUPLFT for 

reference. As before a substitute aerodynamic subroutine is used 

to interpolate for the required Mach number and reduced frequency. 

As the flutter speed may be sensitive to the number of modes, the 

routines mentioned have the facility to deal with N modes. The 
process is shown in Fig.B5.

B.5 Modified Lift Curve Slope in Strip Theory

In strip theory, another set of expressions for sections 

normal to the elastic axis but arranged in a manner to allow the 

incorporation of a modified lift curve slope, is presented by 

Yates?0
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Ma = -TTpU

+ rcpU

2b2i ( i + a2 )(-k a + ik bx tan A)1 

2bi ik a + bcr tan A l + TipU2ba i-kn l n  J n h l n h + ik b<r tan An

+ TipU2b2| a - ahbr tan a| - 2TrpU2b| i - (a - a ) C(kn c

}

) a /2tt1wn ' O' j

(B.41)

where
W = iikh + a + b(r tan A + b(a /2tt + a - a ) (ik a + br tan A) l'o' c h ' ' n ' J

(B.42)

From Eqs.(B.40) through (B.42), negecting sweep terms and 

taking parameters parallel to the flight direction,, the modified 

lift and moment per unit spanwise distance can be expressed as in 

Eq. (B.5), in terms of the displacements considered.

Aj i = pU2|iTk2 - aQC(k)i
i k }

i iAj2= -pU2bjrr(ik + ahk2) - aQC(k)| 1 + (aQ/2n + a - at)ic h ‘ “ } ]

2 1 ^ahk2- ik + 2ikj 1 - ( a

[{< s + + 1

h c } ]

a - a )h c '

aQ/2nC (k)
H

1 + (ao/2Tr + a a ) ikh ' } ]
(B.43)

These new expressions for lift and moment which take into 

account modified aerodynamic parameters are used in the analysis
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for the complete aircraft and are multiplied by Cos A to take into 

account any sweep effects.

B.6 Generalised Aerodynamic Matrix for Complete Aircraft

When considering the complete aircraft,the aerodynamic forces 

are assumed to be generated entirely by the wings and the 

tailplane. The total virtual work done by these surfaces on the 
system is:-

5W = SW + SW
Wi ng T a l l

(B.44)

As before the displacements considered are solely heave h(y,t) and 

pitch a(y,t) in the symmetric case. Therefore the virtual work 

done by these respective surfaces is

SWWing

„s

1 = 1
(L(y)hj(y) + M flt(y)ai(y)) dy (B.45)

SWTall - E

,s

i = i
(lt(y)hj T(y) + Ma(y)aiT(y)) dy (B.46)

Equations (B.44) - (B.46) can be written in matrix form as:

SW■=—:1
8%
SW
sq!

SW
sq”

r  w

h a1 w 1W

h a
2  W 2 W

h a
nW nW

L

Ma dy +
h a

I T I T

h a
_ 2 T _ 2 T

h a
n T n T

Ma
t  J

dy

(B.47)
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Substituting for from Eq.(B.5) into Eq.(B.47)

SW

* <
6 W
sq"

6 W

, w

h a1 w 1 w
h a

2 W 2 W

h a
nW nW

A A
11 12

A A
21 22

h h • ■
1W 2 W

a a • ■ 1W 2 w

nW

a
nW

«1
q. dy

+

s
. T

h a
IT IT

h a
2T 2 T

h a
nT nT

A A
11 12

A A
21 2 2

h h •
IT 2 T

a a
IT 2 T

3 T

a
3 T

dy

(B.48)

QF
i i Q F 1 2" '

• QF
In

QF
2 1 q f 2 2 --'■ • QF2 n

QF ,n 1 Q F n2--'
•• QF

nn

(B.49)
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where

Q F ( i , j )  = A h h  + A h a  + A ah + A a a  dy
1 1  1 J  1 2  i j  2  1 1 J 2 2  I J  1

A h h + A h a + A a h + A a a  dy
1 1  i t  I T  1 2  I T  J T  2 1  ¡ 1  I T  2 2  I T  IT 1

(B.50)
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Fig. Bl Co-ordinate system for Davies' lifting line program

Airflow

Fig. B2 Planform of a symmetric flat plate wing



Fig.B3 Implementation of Davies^program within current 
flutter analysis



Airflow

-*»■

Zo

Fig. B4 Representative section



Fig. B5 Incorporation of elastic modes within current 

flutter analysis using Davies'program



APPENDIX C

C.O Aeroelastic Behaviour of Metallic and Composite Wings 

C.l Introduction

Aeroelastic tailoring, which exploits the anisotropic

character of advanced composites, has received considerable
120 • attention since Krone Jr. concluded that forward-swept wings

without divergence or weight penalties may be possible through

certain lay-up sequences and material combinations. Analytical
. 121 12 2designs were suggested by Weisshaar ’ based on Krone's

conclusions. He suggested that the bending-torsion stiffness 

coupling could be useful to overcome divergence in forward-swept 

wings. Sherrer et all23 performed wind tunnel tests on simple 

plate like models of a forward-swept wing as a verification of 

Weisshaar's conclusions. In addition to this, he also showed that 

the prevailing analytical techniques for prediction of divergence 

dynamic pressures were adequate for the majority of the test 

conditions. Wilkinson and Rauch124 of Grumman Aircraft and Ellis 

et all25 of Rockwell North American Aircraft provided additional 
information on specific forward-swept wing model designs, (more 

exhaustive discussion on these efforts can be found in ref.(126)), 

whereas Weisshaar et alî27 explored the inclusion of rigid body 

freedoms.
Hollowell and Dugundji provided useful experimental data 

on aeroelastic tailoring of graphite/epoxy cantilevered plates. 

The effect of bending-torsion stiffness coupling on divergence and 

flutter velocities of unswept lifting surfaces in incompressible
8 3flow was described. Furthermore, Landsberger and Dugundji 

analytically and experimentally investigated the aeroelastic 

deflections, divergence and flutter behavior of both unswept and 

30° forward-swept rectangular, graphite/epoxy, cantilevered 
plate-type wings, with various amounts of bending-torsion 
stiffness coupling.

In the light of the current literature survey, two steps were 

taken. Firstly, various parameters were evaluated theoretically 
for the plates used in Ref. (82) and they were idealised as beams. 

Then natural frequencies, mode shapes, flutter speed and flutter
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frequency were predicted using CALFUN^8 The second step was to 

conduct similar experiments at the City University, in order to 

have a feel of the flutter phenomenon. Detailed discussion of each 

stage follows.
28C.2 Comparison with CALFUN

Orthotropic engineering constants for Hercules AS1/3501-6 

uni-directional graphite/epoxy are tabulated in Table Cl as per 

Ref.(82), along with sectional parameters. The in-plane, on-axis 

lamina modulus components Qij were obtained from the orthotropic 

engineering constants. Flexural moduli for six different laminates 

were found by a LAMINATE program (developed at The City 

University). These results were identical to Ref.(82) and are 

shown in Table C2.
In order to establish norms for comparison, it is necessary

to first briefly discuss the theory behind the M.I.T.
8 2predictions.

8 2C.2.1 Theory (according to Hollowell and Dugundji_)_
The Rayleigh-Ritz energy method due to its simplicity and 

relative ease of application was employed to analyse free 

vibrations, flutter and divergence by approximating plate 

deflections. The wing was considered as a rectangular cantilevered 

flat plate with uniform thickness. By assuming the deflection 

shapes for the first three vibration modes, a five term deflection 

equation was chosen. These terms comprised first and second 

bending, first and second torsion and first chordwise vibration 

modes. Jensen et al. ’ showed that the last two terms were 

important to obtain accurate approximations for the first three 

vibration modes. Therefore, in terms of generalized coordinates, 

the deflection equation is, referring to Fig.Cl

5

v = ^ V*,y) qi(t) (C.i)
i =i

where w = lateral deflection

3" j (x,y) = the nondimensional deflection or mode shape of the ith 
mode and can be written as
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1= 1 , 2 , 3 , 4 , 5

<P
'P

= ^(x) tf'j(y)
= single-dimension mode shape in x direction 

= single-dimension mode shape in y direction 

The mode shapes assumed were as follows 

= first cantilever beam mode 

= second cantilever beam mode 

= sin (nx/2l)

=  S i n  ( 3TTX /  z ( - )

= —j— (1-x/i)

= 1 

= 1 

= y /c  
= y/c

•̂ (x)

<P2(x)
<P3(X)
<̂4(X)

05 (X)

^  (y) 

*2(y) 

03(y) 

*4<y >
^5(y)

and

(t)

q4 (t)

= [4 (y/c) -£/3]

= generalised displacement of the ith mode, such that all 

of the modes satisfy the geometric boundary conditions 

for a cantilevered plate

has units of length and it is a function of time

In the case of a symmetric anisotropic laminated plate, the
1 3 0strain energy is

%l .c/ 2

-117 [ Mf?) + (f?) (fr) -4T?)Jo J-c/2 L v dx ' v 3x v 3y ' v 3y J

+ 4 D f + 4 D [- d  * 4 D f 9 y -l Idy dx
16 l  r)y2J v ax ayJ 26 l l  a y a v '  66 i- 3y 3v '  -I3x3y; dxdyJ

(C.2)

Taking the partial derivative of the deflection equation (C.l), we 

can write equation (C.2) in summation notation as follows

U = - £ £ K q q2 U u lj i j 1 = 1 j = 1

where = element of a symmetric 5 x 5  matrix
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The kinetic energy for the plate is
*£ „c/2 « \2oWT - i J. I in
o "-c/2 St

dy dx

where m = p t

= mass per unit area 
p = density of the graphite/epoxy

G

t = total plate thickness 

Rewriting in summation notation

T = - £ £ M q q
2  U U  l j  i

i =  1 j  =  1

where M = is an element of 5 x 5 matrix
i J

.£ „c/2

= [ [ 7 m j dy dx
0 -c/2

Similarly the variation in external work can be written as

.£ «c / 2
5 W = Ap <5w dy dx

o - c / 2 z
where

Ap = distributed lateral load per unit area
Z

The above expression in summation notation can be written as 

follows:

S Q, Sq,
I '

where
i = i
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Q = Generalized forcel
-£ pC/2

= Apz Tj dy dx

Lagrange's equation provides the equations of state, and is a 

statement of Hamilton's energy principle. This is in fact the 

basis of the Rayleigh-Ritz method.

d

dt

dT
a<5

)
<3T

d%

Substituting the respective quantities in Lagrange's equation, 

five equations of motion will be obtained. In matrix form these 

can be expressed as

[M]q + [K]q = Q (i,j = 1,2,---,5)

Where [M] = diagonal mass matrix

[K] = symmetric stiffness matrix 

Their details can be seen in Ref.(82).

In order to observe the function of coupling D-matrix terms we go 

back to Hamiltons's principle and assume a solution

w(t) = w sin ut 

and suitable substitutions yield

In the case of a uniform rectangular plate clamped at x=0 , the

governing equations are, where ( ) = a ( ) and e = angle of twist

v - u>2 m ( £4/ Du) v + ( 2 Di6 t/ Du)© = 0 

-(Di6/2 D66)v + (Du c2/ 48 D66 l2)e - e - u2(m c2£2/48D66)0 = 0



These two ordinary differential equations are coupled by the 

bending-twisting stiffness factor Di6. The stiffness ratios 

D1 6/D11 and D1 6/D66 as shown in Table C3 are negligibly small and 

can be ignored.

This results in uncoupled bending and torsion equations and 

eventually yields relatively simple solutions,

v  - (j2 m ( £4/ D1 1) v  = 0

which is identical to the equation of transverse vibration of a 

bar

"" 2 4
w  ~ u  p k  i / E I v - 0

Comparing both equations shows that the usual ratio

therefore,

p A / El = m / D11
G

EI = p A D1 1/ m = p A D11 / p t = D11 c 
' g  '  ' g  g

since A = c t
g

resulting in the following expression for natural bending 

frequencies,

UnB = (knB/¿2) /Dii/m n = 1,2,3,.....

where knB = nth eigenvalue of the equation, subject to the 

boundary conditions on w

The second equation

(D11 c2/ 48 D66 12 )q  - e - w2(p c2£2/48D66)e = 0

still contains terms that represent warping stiffness, St. Venant 

torsion stiffness (4D66C = GJ for an isotropic plate) and the 

torsional polar inertia about y=0 respectively.
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Substitute R = l/c

|3 = DH/48D66R2

= representing the influence of warping stiffness 

= depending both on aspect ratio (i.e. 

geometry) and ratio of bending to torsion 

stiffness (i.e. laminate properties)

K2 = u ) 2 p f 4 /  4 8 D 6 6 R 2

so the equation becomes

•• •• «  ~

13 e - e -  k J e = o

Finally the frequencies are given by the expression

UnT = ( K /£2) /48D66R2/p

where K t = eigenvalue being function of /3

can be obtained from figures (2 & 3) or from Table 
2 of Ref.(131)

value approaches that for a long thin bar as the 

warping stiffness /3 goes to zero.

This can be compared with the expression for torsional frequencies 

of a prismatic bar made of isotropic material,

Un = Kn y/GJ7I2IP

Based on these expressions frequencies were predicted and are 

repeated for convenience in Tables C4a and C4b.

C.2.2 Theory (using CALFUN)

CALFUN is an aeroelastic program that evaluates the flutter 

speed and frequency for isotropic, straight wings. Normal modes 

are implemented to express the mass, stiffness and aerodynamic 

matrices of the wing in terms of generalised coordinates.

Beam elements are used in the finite element idealisation of 

the wing to obtain the mass and stiffness matrices. The elements 

employed are based on a Vlasov beam idealisation, however warping
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stiffness and rotary inertia are not accounted for. Natural 

frequencies and mode shapes are obtained following an 

eigen-solution procedure. The mode-superposition method is used to 

generate the generalized mass and stiffness matrices using the 

normal modes obtained from the finite element analysis.

The generalized aerodynamic matrix is formed by applying the 

principle of virtual work. The strip theory based on

Theodorsen's expressions5 for unsteady lift and moment and the 

normal modes are used in the process, with no account for 

chordwise deformation. The flutter matrix is formed is formed by 

summing the generalized mass, stiffness and aerodynamic matrices. 

The solution of the flutter determinant is a complex eigenvalue 

problem because the determinant above is primarily a complex 

function of two unknown variables, the airspeed and the frequency. 

The method used selects an airspeed and evaluates the real and 

imaginary parts of the flutter determinant for a range of 

frequencies. The process is repeated for a range of airspeeds 

until both the real and imaginary parts of the flutter determinant 

(and hence the whole flutter determinant) vanish completely.

The input to CALFUN includes,

1. flexural and torsional rigidities,(El,GJ)
2. mass per unit length,(M/l)

3. polar mass moment of inertia about the elastic axis,(I )

4. distance between the elastic axis and the centroid and (x )v a/
5. beam length, (dl)

CALFUN will then compute natural frequencies and mode shapes 

for the structure, taken normal to the flight direction. The next 

stage requires input of the geometric details of the wing for 

evaluation of the aerodynamic forces. This involves taking 
streamwise sections.

1. semi-chord length (b)

2. the ratio of the distance between elastic axis and the 
mid-chord to semi-chord length. (ah)

In the original Ref. (82) there was no straight forward 

account of flexural and torsional rigidities. Therefore, they were 

determined by using relations discussed in the theory stated 
above.
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i. e.

El = Dn c

GJ ~  4 D66 c

Rigidities calculated using these expressions will be referred to 

as scheme No.l. Alternatively, by making use of composite 

mechanics, one can arrive at the following relations.

El = c/ Dii

GJ = 4 c/ D66
* *

where Du and D66 are members of the inverted D-matrix.

This will be termed as scheme No.2. Calculated rigidities are 

given in Table C5.

This table shows that only in the case of [02/90]s do the 

values obtained for rigidities agree using both calculation 

schemes. In all others there are large discrepancies. At the 

moment we do not have any good reasons to doubt what Crawley and 

Dugundji suggested and Scheme 2 is obviously limited in its 

applications. If we proceed with rigidities that we obtained from 

scheme No.l, we obtain the natural frequencies by CALFUN and 

compare with another finite package, LUSAsl32

Laminate overall moduli Ex, Ey, Gxy and vxy values were 

computed by making use of following relationships.

Ex = 1/ tcAi*

Ey = 1/ t A22
. *

Gxy= 1/ t A6 6

where An, A22, and A66 are members of the inverted A-matrix.

LUSAS was used to establish the frequencies of these 

orthotropic plates. These results are shown Tables C6a and C6b 

along with those from Ref.(82) for comparison.

A comparative study between CALFUN and M.I.T. results 

revealed useful facts about the use of CALFUN. As long as we are 

dealing with simple lay-ups the program is capable of accurately 
predicting the frequencies and flutter characteristics, but as the 

layer sequence becomes more complex, a significant drift appears. 

This suggests that the capability for analysing composite 

materials requires inclusion of anisotropic characteristics in the 
program.
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Apart from establishing the natural frequencies for these 

plates by CALFUN, the flutter speeds and frequencies were also 

determined. These results are summarised as follows:

The percentage difference shown in Table C7 is based on 

comparison between CALFUN predicted value and M.I.T. experimental 

figure. An experimental value was not available for [-452/0]s due 

to speed limitations of the wind tunnel. While in case of 

[-452/0]s and [-302/0]s, plates suffered from divergence before it 
could exhibit flutter.

It is appropriate to make comments on each of these lay-ups 

individually first and then as an attempt to summarise, some 

overall conclusions may be drawn.

C.2.2.1 [O2/90]s

Since the Di6 term is zero, then the above mentioned 

assumptions are valid. This enabled an accurate prediction of 

first and second bending frequencies to be made. However the eigen 

value for torsional vibration depends on the material type and 

lay-up, as well as the end conditions. Therefore, the usual means 

employed for analysing isotropic materials will yield poor 

predictions for the frequencies. This will eventually affect the 

theoretical estimate of both flutter speed and frequency. Table C7 

demonstrates the large percentage differences in flutter speed and 

frequency, caused by the anisotropic materials and lay-ups.
C.2.2.2 [-4 5/ 0 ] s

Although a value of Di6 does exist but the ratios of Di6/Du 

and D16/D66 are still negligible. Therefore, the predictions of 

CALFUN are very near to the M.I.T. results for both frequencies 
and flutter velocity.

C.2.2.3 [ +4 52/ 0 ] s [ -4 52/ 0 ] s [ +3 O2/ 0 ] s [~302/0]s

In these cases ratios of D16/D11 and D16/D66 are becoming 

appreciably large enough to make the assumptions invalid. This 
resulted in grave disagreement between theoretical and 
experimental figures in all aspects.

C.3 Experimental Investigation of Aluminium and Composite Plates

Experimental investigation were carried out by the author
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and J.Z. Khan at City University on similiar lines to those at 

M.I.T. Two objectives were set forth. First to acquire a feel for 

the phenomenon and secondly to experimentally investigate the 

rigidities, fundamental frequencies and the flutter speed and 

frequency by the authors themselves.
One Aluminium and three Composite plates were prepared for 

flutter investigation. The Aluminium plate was used to check the 

accuracy of CALFUN for an Isotropic material. The material 

properties for the Aluminium specimen are shown in Table C8.

Experiments were carried out to determine the and check 

stiffness and inertia properties for the plate and these are 

summarised in Table C9.

Using the experimental and theoretical quantities above, the 

fundamental frequencies flutter speed and flutter frequency are 

evaluated using CALFUN and compared with the experimental values. 

This is shown in Table CIO.

The aeroelastic predictions showed that in the unswept 

configuration the wing would suffer from divergence prior to 

flutter. Therefore, this wing was studied for 10° and 20° sweep 

angles. Since sweeping backward cured the problem of divergence. 

As sweep is now introduced it is decided to compare the current 

aerodynamic model as employed by CALFUN with that provided by the 
veloci y component theory, developed by Barmby et al^7 

C.3.1 /elocity Component Theory

Here aerodynamic and structural parameters are taken normal 

to the elastic axis. Normal modes are taken along the spar. There 

it is sufficient to implement the frequencies and modes for the 

unswept wing. However the aerodynamics are modified to incorporate 

the changed aerodynamics. In the Velocity component theory, the 

effects of sweep are introduced via the aerodynamic coupling terms 

dh/dy and 9a/Sy , and second order terms are retained in the
. 57 . # . .present analysis. The input data is identical to CALFUN but 

parameters, normal to the elastic axis are taken.

C.3.2 Cosine Theory

The cosine theory multiplies the lift and moment at A = 0, by 

cos A and uses normal modes taken normal to the flight direction. 
To take into account structural sweep, additions to the original
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data items are the x and y coordinates in local axis, instead of 

the elemental length.

The subsequent experimental flutter speeds and frequencies 

are shown in Tables Clla and Cllb respectively. In addition 

theoretical results from both aerodynamic theories are applied 

where appropriate.

Hence, in the case of a conventional isotropic material the 

results are of reasonable engineering accuracy. A parametric study 

showed that, at moderate sweep angles (up to 25° sweep back) the 

flutter speed initially drops and then sharply increases with 

sweep angle. The magnitude of this drop in flutter speed greatly 

depends on the ratio of rigidities. This will be more obvious, 

when we try to compare the possible drop in case of various 

lay-ups of composite plates in the following paragraphs.

C.3.3.1 Graphite/Epoxy

Graphite/Epoxy C920 unidirectional prepreg composite 

material was selected for the manufacture of plates due to their 

properties having been established previously in the University. 

These orthotropic characteristics are shown in Table C12.

The lay-up sequence in the case of the composite plates were 

[03]s, 30]s, [- 45,0]s. The edges were properly trimmed and

they were weighed. The span, chord and thickness were measured. 

Static tests for flexural and torsional rigidities were carried 

out. The D-matrix was evaluated by the LAMINATE program for every 
lay-up, tabulated in Table C13.

Then as before two schemes of calculations were applied to 

predict the flexural and torsional rigidities. They were compared 

with the experimentally established figures. They are shown in 

Tables C14a and C14b respectively.

These results show that rigidities computed by the Dugundji 

method are more accurate as compared to the second scheme for 

certain lay-ups. These plates were then dynamically tested on ISAP 

(a signal analysis package available on GENRAD; a PDP computer) 

for their natural frequencies. These results are shown in Table 
C15.

Flutter tests to establish flutter speed and frequency were 

carried out in the T3 wind tunnel at The City University. The
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results are tabulated as follows in Tables C16a and C16b. Where 

appropriate/ results from the velocity component analysis are shown 

for comparison.

In general for both the aluminum and composite plates 

considered the present cosine theory is seen to be marginally more 

accurate in predicting flutter speeds, than the classical velocity 

component theory. A summary of the percentage differences for the 

fundamental frequencies is shown in Fig. C2 and for the flutter 

speed and frequency in Fig. C3 , using the cosine theory.

C.4 Conclusion

In the evaluation of fundamental frequencies, the validity 

of applying a beam-element idealisation to various composite lay 

ups is confirmed for low flexural coupling ratios D16/D11 and 

D16/D66. Further the validity of "Strip Theory" in flutter 

calculations is also confirmed for these low ratios for the swept 

conditions considered as well as the unswept case. For the 

particular plates considered the present cosine theory is seen to 

be marginally more accurate than the classical velocity component 

theory However when dealing with higher coupling terms it is 

advised to apply the more rigorous methods as outlined in 
Ref. (82) .
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MATERIAL_PROPERTIES 
Out-of-Plane loading

2E =l 98.0 x 109 N/m

E =
t

7.9 x 109 N/m

V
1 1

0.28

G =
l  t

5.6 x 109 N/m

Ply thickness = 0.134 x
Density = 1520.0 :

SECTIONAL PROPERTIES

Total length = 0.33
Effective length = 0.305

Chord length = 0.076

-3m
Kg/m

m

Aspect Ratio = 4

Table Cl Material properties and geometry of 

Graphite/Epoxy wing

No. Lay-up Flexural Moduli. ...D-matrix (Nm)
Di l Dl 2 Dl 6 D 2 2 D 2 6 D 6 6

1 [02/90]s 4.125 0.096 0.0 0.49 0.0 0.243

2 [-45/0]s 1.55 0.928 0.437 1.404 0.437 1.075

3 [452/0]s 1.55 0.928 0.946 1.404 0.946 1.075

4 [-452/0]s 1.55 0.928 -.946 1.404 -.946 1.075

5 [302/0]s 2.704 0.72 1.18 0.666 0.459 0.866

6 [-302/0]« 2.704 0.72 -1.18 0.666 -.459 0.866

Table C2 Flexural Moduli of six different layups from using 

the program LAMINATE
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No. Lay-up Stiffness Ratios
Di6/ Dii D 1 6/ D66

1 [02/90]s 0 . 0 0 . 0

2 [ -45/0]s 0.28 0.407

3 [452/0]s 0.61 0.88

4 [-452/0]s iHVD01 00CO•
01

5 [302/0]s 0.436 1.36

6 [-302/0]« -0.436 -1.36

Table C3 Stiffness ratios for six different layups

No. Lay-up Di l
Bending frequency (Hz)

First Bending Second Bending
Theo. Exp. Theo. Exp.

1 [02/90]s 4.125 10.7 11.1 67.0 69.0

2 [-45/0]s 1.55 5.7 6.1 37.0 38.0

3 [452/0]s 1.55 4.6 4.8 32.0 30.0

4 [ - 4 5 2 / 0 ] s 1.55 4.6 4.8 32.0 30.0

5 [302/0]s 2.704 6.0 6.0 41.0 36.0

6 [ —3 0 2 / 0 ] s 2.704 6.0 6.0 41.0 36.0

Table C4a First and second bending natural frequencies from 
Ref.(82)
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NO. Lay-up D 6 6 ß

Torsional frequency (Hz)

Firsl: Tors:Lon Second Torsion
Kl T Theo. Exp. K 2  T Theo. Exp.

1 [02/90]s 0.243 0.0221 1.87 39.0 42.0 6.30 132.0 -

2 [-45/0]« 1.075 0.0019 1.63 69.0 77.0 5.00 216.0 -

3 [452/0]s 1.075 0.0019 1.63 55.0 51.0 5.00 205.0 -

4 [-452/0] :;1.075 0.0019 1.63 55.0 51.0 5.00 205.0 -

5 [302/0]s 0.866 0.0041 1.68 60.0 58.0 5.20 196.0 -

6 [-302/0] :0.866 0.0041 1.68 60.0 58.0 5.20 196.0 -

Table C4b First and second torsional natural frequencies from 
Ref. (82)

No L c i y —U p
inverted D Bendincj Rigid Torsion Rigid

Du* Ö 6  6 * Di l c c/Dil* 4D6 6 C 4c/D6 6  *

i [02/90]s 243.49 2051.2 0.3135 0.3121 0.074 0.0737

2 [ -45/0]b 1095.2 1225.1 0.1178 0.0694 0.327 0.2781

3 [452/0]s 1426.3 1789.3 0.1178 0.0533 0.327 0.0995

4 [-452/0]s 1426.3 1789.3 0.1178 0.0533 0.327 0.0995

5 [302/0]s 928.70 2410.0 0.2055 0.0818 0.263 0.0935

6 [-302/0]s 928.70 2410.0 0.2055 0.0818 0.263 0.0935

Table C5 Calculated rigidities using scheme No. 2
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No. Lay-up
Bending frequency (Hz)

First Bending Second Bending

CALFUN LUSAS M.I.T?2 CALFUN LUSAS M.I.T?2
Theo. Exp. Theo. Exp.

1 [02/90]s 11.025 9.405 10.7 11.1 69.095 58.74 67.0 69.0

2 [-45/0]s 6.775 7.69 5.7 6.1 42.46 48.15 37.0 38.0

3 [452/0]s 6.775 7.38 4.6 4.8 42.46 45.83 32.0 30.0

4 [-452/0] :; 6.775 7.38 4.6 4.8 42.46 45.83 32.0 30.0

5 [302/0]s 8.95 7.999 6.0 6.0 56.08 46.48 41.0 36.0

6 [-302/0] : 8.95 7.999 6.0 6.0 56.08 46.48 41.0 36.0

Table C6a Comparison of first two bending natural frequencies 
with Ref.(82)
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No. Lay-up

Torsional Frequency (Hz)

F:Lrst Torsional

CALFUN LUSAS M.I.T?2
Theo. Exp.

1 [02/90]s 33.302 38.47 39.0 42.0

2 [-45/0]s 70.08 64.69 69.0 77.0

3 [452/0]s 70.08 46.14 55.0 51.0

4 [-452/0]s 70.08 46.14 55.0 51.0

5 [302/0]s 62.87 49.95 60.0 58.0

6 [-302/0]s 62.87 49.95 60.0 58.0

Table C6b Comparison of first torsional natural frequency with 
Ref.(82)

No. Lay-up

Flutter Speed (m/s) Flutter Frequency (Hz)

CALFUN M.I.T?2 %dif f CALFUN m .i .t ?2 %dif fTheo. Exp. M.I.T Exp.

1 [02/90]b 17.6 21.0 25.0 -42.0 21.5 25.0 -29.0 -34.9

2 [-45/0]s 39.5 39.0 >32.0 — 41.5 39.0 — —

3 [452/0]s 39.5 27.8 28.0 29.1 41.5 28.0 -24.0 42.2

4 [-452/0]s 39.5 27.8
Div.
12.5 — 41.5 27.0 Div. —

5 [302/0]s 35.0 27.8 27.0 22.8 36.0 31.0 -28.0 22.2

6 [-302/0]s 35.0 30.0
Div.
11.7 — 36.0 29.0 Div. —

Table C7 Comparison of flutter speed and frequency between 
CALFUN and Ref.(82)
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Material : Aluminium

Modulus of Elasticity = E = 68.9 x 109 N/m2
Modulus of Rigidity = G = 26.5 x 109 N/m2
Poison's ratio = V = 0.3
Density = 2700 Kg/m 3

Effective Length = 300 mm

Chord Length = 75 mm
Thickness = 0.71 mm
Cross-sectional area = 53.25 x , _ - 6 2 10 m

Table C8 Material properties of Aluminium plate

Parameter Unit Calculated Measured %dif

Mass per Kg/m 0.143775
Experimentally

0.1397 2.83
unit length 

Flexural Nm2 0.1541 0.16226 -5.29
rigidity El 

Torsional Nm2 0.2357 0.23767 CO01

rigidity GJ 

Polar mass Kg-m 6.74 x 10'5
moment of Inertia Ip

Table C9 Stiffness and inertia properties derived from experiment
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Theoretical Exp. % diff

Frequencies usingcalculated
data

using
measured
data

First Bending Hz 6.437 6.7009 5.54 17.32

Second Bending Hz 40.3405 41.994 36.122 13.98

First Torsion Hz 49.2798 49.485 48.199 2.60

Third Bending Hz 112.954 117.584 — —

Second Torsion Hz 147.840 148.456 — —

Divergence m/s 34.546 34.690 39.91 -14.32

Speed

Flutter Speed m/s 33.60 33.40 Diverged before
Flutter Freq. Hz 26.66 27.30 flutter

Table CIO Comparison of frequencies and flutter quantities 

derived from both calculated and measured data with 

experimental values

Sweep

back

Flutter speed (m/s) % Difference

Cosine

theory

Vel-
comp

theory Exp

Cosine

theory

Vel-
comp

theory

0° 33.40 — Div — —

o o 32.26 32.15 38.87 -20.49 -20.90

20° 30.95 30.65 27.80 10.18 9.30

Table Clla Comparison of flutter speed from cosine and velocity

component theory with experimental values
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Sweep

back

Flutter frequency (Hz) % Difference

Cosine

theory

Vel-
comp

theory Exp

Cosine

theory

Vel-
comp

theory

0° 27.30 — Div — —

oorH 26.26 26.74 29.00 -10.43 -8.45

ooCN 24.35 25.15 22.75 6.57 9.54

Table Cllb Comparison of flutter frequency from cosine and 

velocity component theory with experimental values

Material : graphite/epoxy

E =l 98.0 x 109 N/m2
E =t
v -l t

7.9

0.28

X 109 N/m2

G =l t 5.6 X 109 N/m2
Density = 1520.0 Kg/m
Dimensions

Effective Length = 291 mm

Chord Length = 75 mm

Ply Thickness = 0.134 mm

Total number of plies = 6 

Cross-sectional Area = 60.3 x 10~6m2 

Mass per unit length = 0.091656 Kg/m 

Polar mass moment of Inertia = 6.74 x 10

Table C12 Properties and geometry of Graphite/Epoxy plates
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Lay-up Flexural Moduli . . .  D-ma1:rix (Nm) Ratios
Di i Dl 2 Dl 6 D 2 2 D 2 6 D 6 6 Di6/Di Dl6/D6I

[03 ] s 4.271 0.096

o
•
o

0.344

OO

0.243
o

•
o o

•
o

[+ - +30]s 2 . 642 0.744 0.589 0.679 0.229 0.890 0.2229 0.662

[-45/0]» 1.549 0.928 0.436 1.404 0.436 1.074 0.2815 0.406

Table C13 Flexural moduli of composite plates obtained from 

LAMINATE program

Lay-up F]Lexural Rigidity1 — Nm2
c/Dii * c Di i Exp diffl dif f 2

[03] s 0.3183 0.32033 0.3043 4.4 5

[+-+30]s 0.1265 0.19815 0.1582 -25 20.16

[- 45/0]s 0.0685 0.11618 0.0972 -42 16.34

Table C14a Comparison of flexural rigidities obtained from 

schemes 1 and 2 with those obtained experimentally

Lay-up Torsional Rigidity -- Nm2
4C/D6 6 4CD6 6 Exp diffl dif f 2

[03] s 0.0727 0.0729 0.1749 -140 -139

[+-+30]s 0.2249 0.2670 0.24352 -8.3 8.79

[-45/0]s 0.2744 0.3222 0.32395 -18 -0.54

Table C14b Comparison of torsional rigidities obtained from 

schemes 1 and 2 with those obtained experimentally

242



Lay -up
Fundamental Frequencies (Hz)

First Bending Second Bend First Torsion Third Bending
Theo. Exp. Theo. Exp. Theo. Exp. Theo. Exp.

[03 ] s 12.685 12.78 79.589 70.0 37.34 38.06 — —

[+-+30]s 9.73 8.96 61.04 57.24 69.68 68.59 — —

[-45/0]s 7.66 5.44 47.996 37.5 75.59 — — —

Table C15 Comparison of experimental and theoretical natural 

frequencies for composite plates

Lay-up Sweep
Angle

Flutter speed (m/s) % Difference

Cosine

theory

Vel-
comp

theory Exp

Cosine

theory

Vel-
comp

theory

[03] s
0° 30.6 — 33.8 -10.46 —

20° 30.6 30.3 32.83 -7.29 -8.35

[+-+30]s
0° 36.8 _________ 41.59 -13.02 —

20° 36.1 35.8 38.52 -6.70 -7.60

[-45/0]b
0° 40.0 — 47.22 -18.05 —

20° 39.6 39.4 40.06 -1.16 -1.68

Table C16a Comparison of flutter speeds obtained from cosine and 

velocity component theory with experimental values.
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Lay-up Sweep
Angle

Flutter frequency (Hz) % Difference

Cosine

theory

Vel-
comp

theory Exp

Cosine

theory

Vel-
comp

theory

[03] s
0° 35.09 — 38.74 -10.40 —

20° 34.98 36.29 38.50 -10.06 -6.09

[+-+30]s
0° 38.99

________
38.67 -0.82 —

20° 38.20 39.47 41.70 -9.16 -5.65

[-45/0]s
0° 47.27 — 62.00 -31.16 —

20° 36.61 37.56 35.00 -4.40 6.82

Table C16b Comparison of flutter frequency obtained from cosine 

and velocity component theory with experimental 
values.
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Fig. Cl Plate layout and sign configuration for Ref.(82)
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Fig. C2 Summary of percentage differences in fundamental 
frequencies for various ply layups
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APPENDIX D

D.0 Aircraft Properties 

D.l The T59H Kestrel
D.1.1 Stiffness and Inertia Properties

The Kestrel is predominantly of glass fibre construction. 

Stiffness and inertia properties taken in the investigation for 

the wing, fuselage and tailplane are shown in Figures Dl, D2 and 

D3 respectively.

D.l. 2 Wing and Tailplane Geometry

Table Dl shows below the spanwise distribution of the wing 

and tailplane chord, including the elevators.

V c
(m)

0 0.900

0.1 0.869

0.2 0.838

0.3 0.808

0.4 0.780
in•

o 0.750

0.6 0.719

0.7 0.631

0.8 0.539

0.9 0.451

1.0 0.360

i) Wing

V c
(m)

0 0.557

0.2 0.516

0.4 0.474

0.6 0.433

0.8 0.391

1.0 0.350

ii) Tailplane

Table Dl Spanwise variation of wing and tailplane chord lengths 

for Kestrel

D.l.3 Aerodynamic Properties

Tables D2 and D3 summarise the stability derivatives used to 

calculate the short period characteristics of the rigid aircraft, 

using Ref.(14), taking de/da as 0.0 and 0.0972 respectively. As
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the phugoid mode is neglected in this investigation, terms 

relating to changes in forward speed are omitted. The wing area 

used in the evaluation of these derivatives is marginally smaller 

as the aeroelastic model did not take into account the gross wing 

area. Inertia and aerodynamic parameters are taken as in Table 

3.1.

s = 15.20 m UL = 75.32l

c = 0.724 m i = 3.192
y

1 = 4.82 m V = 0.569

1 =
T

4.58 m V = 0.541
T

h =
n

0.650 c

H =
n

0.0745 c

Z = 
w

6.685 m = 11.75
W

z = 
q

0.034 m = 5.04
q

Table D2 Stability derivatives for h = 0.576 c and dc/da = 0.0 

for Kestrel

h  =
n

0.613 c

H =
n

0.0375 c

Z = 
w

6.646 m = 5.879
W

z = 
q

0.034 m = 5.04 
q

z =
w

0.003 m-= 0.490
W

Table D3 Stability derivatives for h = 0.576 c 

and dc/da = 0.0972 for Kestrel
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D.2 The Ricochet

D.2.1 Stiffness and Inertia Properties

The Ricochet is of aluminium construction and as it is a 

tailless aircraft stiffness and inertia details for the wing only, 
are shown in Figure D4.

D.2.2 Wing Geometry

The spanwise variation of wing chord length for the Ricochet 

is shown in Table D4.

T? C

(m)

0.00 0.730

0.08 0.730
0.16 0.730

0.24 0.730

0.32 0.730

0.40 0.730

0.56 0.730

0.64 0.710
0.72 0.662
0.80 0.616
0.88 0.570
1.00 0.500

Table D4 Spanwise variation of wing chord length for Ricochet 

D.2.3 Aerodynamic Properties

Here parameters are defined with respect to the standard mean

chord, as in Ref.(70). Stability derivatives for the Ricochet are

presented in Table D5 additional details of its geometry and

aerodynamic parameters are found in Table 3.2. The terms z and m
q q

are calculated from expressions provided by Ref.(133).
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c = 0.685 m H = 59.21

H = 0.0179 c

i = 0.890
y

n

z = 5.68 m = 6.768
W W

z = 0.025 m = 3.36
q q

Table D5 Stability derivatives for h = 0.21 c 

for Ricochet

D .3 The Cranfield A1

D.3.1 Stiffness and Inertia Properties

The A1 is primarily of aluminium construction and its wing 

and tailplane stiffnesses are shown in Figures D5 and D6 
respectively.

Component
Contribution to rolling 

moment of inertia 

(kgm2)

Propellor 15.17

Engine,cowl 6.32
Bulkhead 1.26
Fuselage structure 
(assumed uniform)

9.48

Fuel 1.26
Instruments 2.74
Canopy 3.79
Seat, pilot 8.42
Tailplane/elevator 42.14
Fin/rudder 7.16

Table D6 Distribution of contribution to rolling moment of 

inertia along fuselage for A1
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Fig. D7 represents the variation of fuselage mass per unit 

length. Stiffness details pertaining to the fuselage are presented 

in Fig.3.20. The distribution of rolling moment of inertia for the 

Al, provided by Ref.(80), is shown in Table D6.

D.3.2 Wing and Tailplane Geometry
Table D7 shows below the spanwise distribution of the wing 

and tailplane, including the elevators.

V c
(m)

0 2.08

0.1 1.956

O
J•
o 1.854

0.3 1.727

0.4 1.623

0.5 1.499

0.6 1.394

0.7 1.270

CO•
o 1.143

0.9 1.029

1.0 0.914

i) Wing

V c
( m )

0 1.07

0.2 0.990

0.4 0.910

VOo 0.830

CO•
o 0.750

1.0 0.670

ii) Tailplane

Table D7 Spanwise variation of wing and tailplane chord lengths 

for Al

D.3.3 Aerodynamic Properties

As with the Kestrel the short period mode was evaluated for 

two downwash ratio cases. Tables D8 and D9 present stability 

derivatives for de/da = 0.0 and 0.4 respectively. Further
geometric and aerodynamic details are shown in Table 3.3.
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Table D8 Stability derivatives for h = 0.266 c and de/da = 0 

for A1

IIc
X! 0.481

H =n 0.215

Z = w 4.60

Z = 
q

0.025

z =w 0.009

m = 57.15w

m = 3.979
q

m- =w 1.592

Table D9 Stability derivatives for h = 0.266 c and de/da = 0.40 

for A1

D.4 Example Aircraft of Aspect Ratio 20 and 12

The stability derivatives for the aspect ratio 20 example 

aircraft are shown in Table D10. This aircraft is further outlined 

in Table 4.1.
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Table DIO Stability derivatives for h = 0.25 c for representative 
aircraft of AR = 20

The stability derivatives calculated for the example aircraft 

of aspect ratio 12, outlined in Table 5.1, with and without the 

introduction of a downwash are shown in Tables Dll and D12 
respectively.

Table Dll Stability derivatives for h = 0.25 c for representative 

aircraft of AR = 12 without downwash
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de
‘ 0.3818

da

h =
n

0.687 C

H =
n

0.437 c

Z =  
w

5.51 m =  147.79
W

Z  = 
q

0.048 m =  15.00 
q

z =
w

0.018 m-= 5.73
W

Table D12 Stability derivatives for h = 0.25 c for representative 
aircraft of AR = 12 with downwash
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APPENDIX E

E.O Flutter Modes
Once the flutter speed is established, the flutter mode is 

found by deleting one row of, say, the nth order flutter matrix 

and solving for (n-1) of the variables in terms of the nth. 

However, the flutter matrix being complex, this leads to other 

variables (coordinates) to be complex numbers and so defining the 

relative contribution of the modes to the flutter motion both in 

magnitude and phase. The results of this calculation will lead to 

a complex column matrix q of the generalised coordinates with 

elements q, q, q,...,q. The flutter mode in terms of the 

vertical displacement h and pitching rotation a can be then be 

found by multiplying q by the modal matrix formed by the mode 

shapes. Therefore, at a spanwise distance y on the wing, the 

flutter mode in bending (vertical displacement) and torsion 

(pitching rotation) can be expressed as

H(y) h(y) h2(y) h3 (y) ... hn(y)

e(y) aa(y) a2(y) « 3 <y> ... a (y) n'1 ' (E.l)

where h (y),h (y),...,h (y) correspond to the bending modes
1 2  n

of the n modes (that are included in the flutter analysis) at a 

spanwise station y and (y) ,c<2 (y) , . . . ,an (y) are the corresponding 

torsional modes at that point. H(y) and 9(y) are complex 

quantities and their magnitude and phase give relative measure of 

the vertical displacement (bending) and pitching rotation 

(torsion) vector at flutter speed at the spanwise station y. It 

then follows that the column matrix q with elements q ,q ,...,q
1 2  n

relates the contribution of the normal modes of vibration to the 

flutter motion through the use of Eq.(E.l) to give
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APPENDIX F

F. 0 Generalised Theodorsen Function C(k)

F.l The Theodorsen Circulation Function for Generalised Motion

The Theodorsen circulation function C(k) for generalised 

motion has been developed by Luke and Dengler. An extract from 

their work is reproduced here.

In the treatment of aerodynamic forces on an oscilliating
i ktaerofoil, it is assumed that the motion follows the law e where 

t is the time variable and

ik = m + iu (F.l)

Thus w gives the frequency of motion, while u defines the 

rate of decay. If (i < 0 the motion is convergent or stable; if ¡jl  < 

0 the motion is divergent or unstable. When u = 0, the motion is 
said to be neutrally stable.

To accomplish the generation of the Theodorsen function C(k) 

effectively we will start by the definition of the function as 
presented by Theodorsen?

0°
x U dx

C(k) =

x + 1 U dx

y x2-1
j i

where it is supposed that

U = Uoei[k(s/b - X) + *] (F.3)

and that cj > 0. It is well known in the theory of Bessel functions 
that

/ x2- 1 (F.2)
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00

(F.4)K (z) = e z cos^ y cosh ny dyn
0

which is valid if | arg z | < ^ . This requires that Re(z) > 0. 

Let

z = ik (F.5)

Thus, if Re(z) > 0 it follows that p > 0, so that the motion 

is assumed to be divergent. Combining Eq.(F.2) through (F.5) with 

the well-known relation.

K (z) = (n/2)ie H (iz) (F.6)n n

It is readily deduced that

C(k)
H ( 2 )

1 ( k )

h ;2) (k) + iH‘2)(k)

(F.7)

which is the generalised Theodorsen C(k) function. It is true 

that, in the development of Eq.(F.7) it was necessary to require 

that u > 0. However Eq.(F.7) has no need for such a restriction 

and therefore by the method of analytic continuation, one can 

argue that Eq.(F.7) is valid for all p's.

The Theodorsen function defined in Eq.(5.7) can be expressed 

as

h ;2)(z)
C(Z) = --— --------— -- = F (p, 0) + iG(p,e) (F.8)

(z) + iHQ (z)

where
î Q TTz = pe = u - i | i  = k , p ï 0  10 1  ̂-

Thus if the motion is harmonic, 0 = 0 therefore, p = k. In 
this case, of course, values of C(k) are well known. Since the 

intention of this section is to study the aerodynamic system for 

non-harmonic motion it is important and necessary to know the
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values of C(k) for generalised z. Luke and Dengler tabulated C(z) 

for the following range of p and 0.

p : 0(0.1) 0.3(0.02) 0.5(0.05) 1.0(0.5) 10.0 

0 : -5° (5°) 30°

Although these values have been tabulated they would prove 

time consuming to type in and insufficent to cover the total range 

of p and 0 that might be required. Since equation (F.8) relies on 

the solution of bessel functions for complex arguments z a 

subroutine was written in FORTRAN to evaluate these values with a 

set of series solution provided by Refs.(134) and (135).

F.2 Solution of Bessel Functions for Complex Arguments

From equation (F.8) the definition of C(z) is given by:

C (z)
u[2) (z)

h [2) (z ) + iH(2) (z) o ' '
= F(p,0) + iG(p,0)

where z = JLpe

h <2>
0 = J (z)ov ' - i Y (z) ov '

h (2)
i = J(z) - i ^(z)

F.2.1 Derivation of J (z) and Y (z)
----------------------------  n----------- n----

Bessel functions of order u satisfy Bessel's differential 

equation

z
,2
d y
i 2dz

+ z ^  + 
dz

/ 2 2.(z -v ) y 0 (F.9)

One fundamental solution of (F.9) is J^(z), which may be defined 

by the infinite series
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(F.10)V Z> I
v = i

/ ■. \ k / « / v^2k
(-1) (z/2)

k! T(u + k + 1)

When u is non zero or an integer and k also an integer, 

J_u (z) is a second independent solution of Bessel's differential 

equation. However, when u is an integer n, J_n(z) = (-l)nJn(z). In 

this case a second solution, Y (z) , may be defined as follows:

\,(z) = ( cos ( vtt) Jy (z) - J_v (z))/sin(vn) (F.ll)

F.2.2 Computation of Jq (z) and Ji(z)

From the definition in Eq.(F.lO)

Jo(z) = Jo(pe10) I  <-1)l
k = 0

(P/z)2k e2k10 = Uo(p,0)

(k!)2
+ i Vo(p,0)

we get

UQ(P,0)

00

V  (~l)k (p/2)2k Cos 2K0 
k=o ( k ! ) 2

(F.12)

vo(p,0) = y  (-l)k (p/2)2k Sin 2K0
k = o (k!)

and let

i eJ^z) = Jx (pe ) = U(p,0) + i Vi(p,0)

(F.13)

since

Jj(z) d

dz
J (z)0 ' ' dp

+ i Vo ]
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it follows that

VP,©) =
a
aP

U cos 0 + V sin 0o o (F .14)

V^p,G) = [ UQsi
dp

sin 0 - V cos 0o (F.15)

From Bessel's differential equation (F.9), the following two 

relations are readily obtained:

q2 u

u = p [(U0+ — -° ) cos 0 + (-Vo+ — -° )sin 0 j (F. 16)
L dp dp

a2v

V1 = P [ ‘V
s 2u  0 2V  1

0 ) sin 0 + (Vn+ — -° ) cos 0
ap 0 a 2ap

(F.17)

Substituting Eqs.(F.12) and (F.13) into Eqs.(F.16) and (F.17)

Ui = P

00 00

y  (-Dk (P/2)21C + (2k)(2k-l) V  (-l)k (p/2)
L_*
k = 0 (k!)2 kt0 (k1)2

r 00 00

cos 0 + - Y  (-i)k (p/2)2k + (2k)(2k-l) V
L_*

 ̂ k = 0 (k! ) 2 k = 0

2 k - 2

(P/2)
(k!)2

2 k -  2 sin 2K0 sin 0 (F.18)
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V1 = p

sin 2k0

00 00

y  (-Dk (p/2)2k - (2k) (2k-i) y  (-i)k (p/2)2k'2
L_*
k = 0 (k! )2 k = o (k!)2

f 00 00

sin 0 + y  (-Dk (p /2)2k + (2k) (2k-i) y  (-i)k
L—t

L kto (k!)2 k = 0

(p/2)2k~2 sin 2K0 cos 0 (F.19)

(k!)2

F.2.3 Computation of Yq(z) and Y^z)

The limiting values of Eq.(F.ll), when u is zero or one, are 

given below:

Y (z) = -O' ' TI J0(z)(y + loge \ z) + (~l)ktl (z/2)2k( 1 + | + • •
k  = 0 (k!)

(F.20)

Y (Z) = =-1 ' ' TT

+ !  +

Jj (z) (y + log

+ E > + —

I z) - -  + - y  (-i)k+ie 2 7 TT Z TT / v '
(z/2)2k+1( 2( 1

k + 1

k=o k!(k+1)!

(F. 21 )

where y = 0.577215664901533 is Eulers constant

For the purposes of computation the real and imaginary part 

of Yq(z) and Yj(z) may be written in the form.
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u0(p,e) e) (r + ioge 2 p )5 ( uo<p'

I  ( V P '

uj(P,e) = | ( ^1(pf0)(r + ioge | p)

v0(p,e) e) (r + ioge 2 P)

o vQ( p , e )

© uo(p,e)

+ so(p,e)

+ To(p,e)

v (p,a) = |

© ^ ( P / 0 )  ] - | p  cos e

- s^p,©)

^(p,0)(r + ioge \ p) + e u^p.e)  J + sin e

~ T1((p,©)

(F.22)

where
00

(p,0) II
=)
|W y  (-d ^ 1

2 k
P

k = 0 22k(k!)2

00

(PrO)
2
n y  (-Dk+i

2 k
P

k = 0 22k(k!)2

(P/0)
1

00

Y" (~1)k
2 k + 1

P
TT ^  2 2 k +1 k = 0 k!(k+1)

( 1 + 2 + + ^ ) cos 2k0

( 1 + 2 + + ^ ) sin 2k0

2 ( 1 + 2 + ' + k }

+
7 7  )

cos(2k+l)0

T , < p ' e > -  I  £
(-D P
„  2 k +1

k 2 k + 1

k = 0 k!(k+1)!
2 ( 1 + 2 + + h. >

+ -— -—  ]sin(2k+l)0
k + 1 >

(F.23)
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APPENDIX G

G.0 Model of Unsteady Wake 

G.l Wake Circulation
The aerofoil and wake is represented by a vortex sheet, where 

the time dependence of the total circulation around the aerofoil 

calls for a wake of two-dimensional shed vortices, along the x-axis 

from the trailing edge to infinity. With 7 and 7 the running
. . 3 3circulations of the wing and wake, respectively.

The quantity 7w can be written in terms of the aerofoil 

circulation T. A physically plausible derivation of their 

relationship consists of saying that the wake vortex element shed 

from the trailing edge during any small time interval dt has a 

circulation equal and opposite to the corresponding change of wing 

circulation:

Since the fluid is all moving at approximately U, we assume dx=Udt 

and

The vortex element at a general point £ of the wake was shed in 

the past at a moment determined by the time interval (£-b)/U 

required for it to reach £ Hence,

7 (b, t) dx = - d r (t) dt

dt
(G.l)

U 7 (b,t) = - d T(t) 

dt
(G.2)

u *w C/t + L_z.
u

= - d r(t) 

dt
(G.3)

Since all variables are proportional to elw*", this can be written

U 7 e
W

iu t + g -
U iu r eiu)t (G.4)

or (G.5)U
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Therefore to give the net change in the bound circulation 

between point £ and £
A B

dr
r̂ B

7(K) dÇ =w
JSA

iu Te 
u

ik e-i(uÇ/U) dÇ

= - iu Te 
U

ik -i(fc)Ç/U) dÇ

= reik [ e ' ^ / U )  ]

^ A

= reik [ e ^ V ^  - e ^ V ^  ] (G.6)

G.2 Airfoil Circulation
The expression for the aerofoil circulation is given in 

Ref.(33) as:

4 b e-ik

r = -l

1 + £ * * w (Ç ) dÇ
<11 - €

TTik ( H(2)(k) + iH*2)(k)]

(G.7)

where Ç = Ç/b

wa(Ç*) = -h - Ua - àb(Ç*- ah)

Since all variables are proportional to eiwt

W (£*) = -iwh - Ua - iwba(Ç* - aj (G.8)
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r 4 U e
Ah + ab + Aba - a )

2  h

A(H‘2) (-¿A) + iH^(-iA))

This can be written in matrix form as follows

where rh
_____ 4 U e~A A_________

A (H*2)(-iA) + iH^2,(-iA))

4 U e A b ( 1 + (1 - ah)A)

A (H‘2)(-iA) + iH^(-iA))

(G.12)

G .3 Derivation of Tailplane Generalised Aerodynamic Matrix with 

Downwash Effects included * 21
Applying the correct transformation the resulting additional 

lift and moment which take proper account of transport lag effects 

can be expressed in terms of the induced velocities at the 

tailplane.

L AD AD
T = li 12

M AD ADai 21 22 Va

(G.13)

where AD = AD = - a pUC(k) b li 1 2 or v '

AD = AD = a pUC (k) b2 ( - + a )
2 1  2 2  V  '  '  '  2  h '

(G.14)

The lift and moment are seen to be both functions of the unsteady 

velocities induced by the heave and pitch modes at the wing. 

Applying the transformation into normal co-ordinates
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(G.15)

N

vh(y,t) = ^  v,h(y) q,(t)
1 = 1

N

va (y,t) - £  Vla(y) q,(t)
i = 1

Utilising the virtual work done by the aerodynamic forces at the 

tailplane

<5W =i

,s
T

(L(y)hT(y) + M(y)aT(y)) dy
i io

(G.16)

8 W

* <
8 W
Sql

8 W

L * * n J

S
T —

h a
IT IT

h a
_ 2T _ 2T

h a
rv

nT nT

0

dy (G.17)

Substituting for from Eq.(G.13) into Eq.(G.17)

SW
sq;
5W
5q'

<5W
8q

L  n

S
r T _

h a
I T I T

h a
2 T 2 T

h a
n

n T n T

0

ADl l
AD2 1

AD

AD

V h
V

. a
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ÔW
sq;
ÔW

ÔW
T—rs g.

T

h a
I T  1 T

h a
2 T  2 T

h a
n T  n T

AD AD
1 1 12

AD AD
21  22

V V •
1 h 2  h

V V • îa 2a

r

v

V
n h

na

*i
q. dy

DQT DQT •Il 12
DQT DQT

2 1 2 2

DQT DQT
n i  n 2

DQT

DQT
l n

2n

DQT

(G.18)

where

DQFT(i,j) = AD V h + AD V h + AD V a + AD V a dy
I l  j h  i T  1 2  ja 1 T  2 1  j h  1T 2 2  ja i T

(G.19)

G.4 Evaluation of circulation integrals

Taking x as Ç* the first term of Eq.(G.9) can be expressed as

r l i

1 + x dx

J  - 1

1 + x dx

1 - X •J 1 - x2

Applying the substitution x = cos 0
dx = -sin 0 d0

Also changing the limits of integration
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.0

77

1  +  c o s  0  - s i n  0  d 0

/ 1 - cos 0

since V I -  c o s 2  0  =  s i n  0

U

( 1  +  c o s  0 )  d 0  =  -  |^ 0  +  s i n  0  j  =  TT

77 71

where the second term of Eq.(G.9) can be expressed as

-1

X 1 + X dx

0

(1 + cos 0)

* 1 - X y  i - cos2 0
J -1

0

77

0

( c o s  0  +  c o s  0 )  d 0

71

( c o s  c o s  2 0 )  d e

77

£  s i n  0  +  |  0  +  |  s i n  2 0  j  -  ^
77

G.4.1 Case for k =» 0
The value of the denominator in expression (G.12) as k => 0 is 

dealt with below, substituting x for k.

Lim ~~~ 7TT
x->o ix (H*2 (x) + ilT ’(X))
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as

ix (H*2)(x ) + iH^'(x)) = xJi (z) + xYq (x ) + i(xJQ(x) - xYi (x) )• „(2)

since

J_(x) = (X/2)

n!

1 + (x/2)2 + (x/2)4

1.(n+1) 1.2(n+1)(n+2)

Yn ^ )  = TT

n - 1

2 J (x) (7 + log \ x) + J (n-s-l) 1 X)'n+2s
S = 1

S I

n - 1

-  i
s  =  1

(-l)S(X/2)n+2S (1 + \  +
s!(n+s)!

5 + 1 + \ + HTi)

as x -» o

xJq (x) = xJ^x) = xYo(x) = 0

but

xY^x) 2
n

therefore

Lim
x->o

1

ix (H*2) (x) + 1h '2)(x ))

TT
2
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APPENDIX H

H.O Aerofoil Response to a Sinusoidal Gust

H.l Response to Sinusoidal Gust

Using a typical section35 one can obtain the transfer 

functions in vertical and angular acceleration due to a sinusoidal 

gust.
Considering translational and pitching degrees of freedom the 

equations of motion for the aerofoil can be written as follows, 

neglecting inertia coupling.

M h + Kh h = -L (H.l)

I a + K a = M (H.2)a a a v '

The expression for lift and moment, assuming quasi-steady 

aerodynamics, about the elastic axis can be written as35

h w
L = <3Sao — + a + -

U u

M = Le

where q = U2

e = the distance of the elastic axis from the wing 
aerodynamic centre.

Assuming aerofoil motion of the form e1(i)t the lift can be 

re-written as

L = qSa
w

i w  , , , G—  h + a + —
U U

where w is the vertical fluid gust velocity, which varies
G

randomly with time but is assumed here to be uniformity disributed
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spatially over the aerofoil chord. Then

Mtd h + K h = -qSa h ^ o
. w
—  h + a + —
U U

(H. 4)

(J I a + K a = qSa a a ^ o
. w
—  h + a + —
U U

(H. 5)

Expanding Eqs.(H.4) and (H.5)

2 wh( -Mu + K + qSa iu ) + qSa a = -qSa —G h o—  ' ^ o ^ o
U U

(H. 6)

w
a ( -u I + K - qSa e) - qSa iu h = qSa — oc a  ̂ o '  ̂ o —  ^ o

U U
(H. 7)

Eqs.(H.6) and (H.7) are written in matrix form as

--
-
1

h-» ►-» R12 h -qSa w /U^ 0 G
R21 R22 a qSaoewc/U

where

R = -Mu>2+ K + qSa i to 11 h ^ o —
U

qsao

(H.8)

R = -qSa itj e 
2 1 ^  0  --------

U
R„ = -w2I + K - qSa e 22 a a ^ o

Multiplying both sides of Eq.(H.8) by its determinant the transfer 

functions for heave and pitch are obtained, with respect to the 
gust velocity w t

G
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APPENDIX I

1.0 Response to a Unit Step

1.1 Bromwich's Integral

Mitchell118 has introduced a Fourier transform method to find 

the response of a flexible aircraft to a unit step and thus avoid 

the direct evaluation of the Kiissner functions. If the transfer 

function (or the frequency response) of the aircraft is known 

Bromwich's integral formula33’117 provides an explicit formula for 

calculating the response to unit step which is also known as the 

indicial admittance of the aircraft.

The theory presented here is by and large taken from Ref.(33) 

Let us consider a gust with a velocity history

W(t) = 0 , t < 0 

W(t) = 1 , t > 0 •

The Fourier transform of this is

W (<j) = t t S  (cj) + —
iw

(1.1)

(1 .2 )

where 6 (cj) is the Dirac delta function which does not pose a 

problem in the case of the transfer function for acceleration, and 

velocity which tends to zero as u tends to zero and the transform 

response does not become infinite at u = 0.

Now if H (iw) is the transfer function (admittance function)r
of the aircraft then the indicial admittance (response to a unit 

step) is given by

Ar(t)

(J = + CD

1
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H (iw)
r iute dw

( J  = - CD

(1.3)

where the path of integration makes an infinitesimal loop below 

the origin. As it is seen from the above equation that the
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integrand has a pole at the origin i.e when id = 0, the integrand 

is infinite and unless H (0) = 0  , the integral will not converge.
r

In dealing with the transfer function of acceleration which tends 

to zero as id tends to zero, the integral

-Id = oo

H (iid) 6 (to) du
 ̂Id = - oo

becomes zero and the response to unit step given by Eq. (1.3) can 
be evaluated without any difficulty in integration. However Eq. 

(1.3) can be written in the following form

Ar(t)
H r ( 0 )

2rr

„Id = +oo 

ildt
----  did + —
iid 2rr

(d = - oo

-Id = +oo

H (JU) - H (i<J) 
--------------  e did

lid

(d = -oo

(1.4)

It can be shown that by applying residue theorem (Ref.(33)) that

.Id = +00

ildt
— --- did = 1 (t) (1.5)
i Id

Id = - co

Equation (1.4) with the help of Eq.(1.5) reduces to

1
2tt

A (t) = H (0) l(t) + —
2 71

rld = +oo

H (iid) - H (iid)
ildt , e did

lid

Id = -co

(1 .6)
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we make the following substitution in Eq.(1.6)

eI(jt = cos (dt + i sin (dt (1.7)

Hr(i(d) = R r (w) + ilr(u) (1.8)

so that Eq.(1.6) becomes

A (t) = R (0) l(t) + ±-
2 tt

nU) = +00

R ((d) -  R  ( i t d )r r

O)
' W = -co

sin wt +

Ir(“)

Cd
COS Cdt

1

d(d - —
2n

%

+ 00

R ( ( d )

-0 0

-  R ( l t d )r

(J
s i n  (dt -

I  (Cd)
COS (dt

(d
did (1.9)

where the assumption Ir(0) = 0 requires merely that when the

forcing function is statically applied the lag is zero which is a 
valid assumption in aeroelastic systems.

Because Ar (t) is real, the last term in Eq. (1.9) must 
vanish. Moreover, we know (Ref.(33))

= +00 

s i n  (dt did =
(d

n for 
- tt for

t > 0 | 
t < o /

(1.10)

(d
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Eq.(1.9) finally becomes

Ar(t) = I Rr(0) +
2n

= +00 

r R »

(d

Id = -00

s i n  i d t  +
I (u)

C O S  ( d t did
(d

(I.11)

Eq. (I.11) provides an explicit formula for computing the 

indicial admittance A (t) if the real and imaginary parts of the
r

mechanical admittance functions are known. Eq. (I.11) can be 
reduced to a simpler form by putting the conditions that ((d) is 

an even function so that R (-(d) = R ((d) and I (id) is an oddr r r
function so that I (-id) = -I (id) . These conditions are generally

r r
satisfied in aeroelastic systems so that we obtain from Eq. (I.11)

\(t> = | R r(0) + S

r(d = +00

R ((d)
s i n  ( d t  +

I ((d)
C O S  ( d t did

(d

id

— 00

(J

(1 .12)

Since H (id) and I (id) are most of the time not available in
r r

explicit function form but are available as plotted curves, the 

summation form of Eq. (1.12) is more useful for practical 

application and computational procedure.

00

A (t) =  ̂R (0) + — \ - [ R (nid )sin nid t + I (nid ) cos nid t
r 2 r  TT / n |_ r ' 0 ' 0 r O 0

n =  1

(1.13)

The frequency idQ is arbitrarily selected so as to obtain 

satisfactory convergence. The criterion for convergence is that
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Rr(ncjQ) and Ir(n(jQ) approach zero for large values of n.

Once the response to a step gust A (t) is known, the responser
A(t) to a general gust w(t) is found by the use of Duhamel's 

superposition integral.

A(t) = A (t)w(O) +r
A (t - x)r

dw

dt
(r) dr (1.14)
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APPENDIX J

J.O Design and Construction of an Aeroelastic Tailless Model

J.l Introduction
Experimental investigations in the field of aeroelasticity 

have served two major purposes. They have been the guiding 

influence necessary to the development of useful theory and they 

have produced solutions to immediate practical problems in the 

large areas were existing theory is not yet dependable. 

Particularly in dealing with flutter, the testing of wind-tunnel 

models with properly scaled mass and stiffness properties has 

often been more rewarding than equivalent efforts using analytical 

techniques or even full-scale aircraft.
As we are interested in the effect of structural flexibility 

on aircraft dynamic stability and control, a program was initiated 

into constructing a model to view aeroelastic effects within the 

context of this domain, in particular the effects on the short 

period mode. In the dynamic stability model we are interested in a 

subcritical dynamic behaviour, which is dominated by the rigid 

body modes of motion. Most aeroelastic tests have concentrated on 

component flutter and neglected the rigid body modes. Nevertheless 

models have been constructed to the investigate the role of rigid
3  3  1 3  6body modes in aircraft subcritical response and flutter. ’ 

However these tests require elaborate support mechanisms to
3 3 1 3 6 - 1 3 8provide the necessary free flight conditions. ’

In the work of Chen and Dugundji84 a free flight model, of 

forward swept wing (FSW) configuration, with graphite/epoxy wings 

was constructed to exhibit the effect of different ply 

orientations on the body freedom flutter. It is in the light of 

this study that the present model, an aft swept wing (ASW) in this 

case, is proposed with the aim of extending the tests to a dynamic 

stability analysis. The model is restricted to a tailless 

configuration to maintain simplicity, but to also exhibit body 

freedom flutter.
J.1.1 Aims and Objectives

The aim was to construct a free flight tailless aircraft 

model of an aft swept configuration for flutter and dynamic 

stability analysis. This model was specifically designed to
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perform body freedom flutter within the maximum airflow speed of 

the T3 wind Tunnel at City University. The objectives were as 

follows:

i) Using the current program FLUSTAR, design and construct a 

tailless aeroelastic model to perform body freedom flutter in a 

wind tunnel and subsequently compare with theoretical predictions.

ii) To evaluate the subcritical response, namely the short 

period damping and frequency. To observe the effects of 

flexibility and unsteady aerodynamics on this mode for this 

particular configuration. To then compare these experimental 

quantities with those from two methods. The first using the 

classical approach ’ assuming just rigid body modes and then 

secondly, the current stability analysis in FLUSTAR incorporating 

full flexibility and unsteady aerodynamics employing Theodorsen's 

function C(k) for convergent motion.

J.2 Wind Tunnel Model Construction

In prior investigations17,38’39 concerning body freedom 

flutter of an ASW tailless aircraft, it has been the aircraft 

pitching moment of inertia that the flutter speed has been most 

sensitive too. Bearing this in mind a light but sturdy plywood 

base was designed as a fuselage to hold the wing and minimise its 

contribution to the total pitching moment of inertia. The initial 

geometry of the model was restricted by the dimensions of the 

working section of the (0.8m X 0.7m) T3 wind tunnel.

A parametric study was carried out on a particular geometry 

using initial estimates of the aircraft inertia and mass. A 

further parametric analysis was carried out by assuming the wings 
as aluminium and the sweep varied from 5° to 25° in steps of 5°. 

This initial analysis established that 20° sweep produced the 

lowest flutter speed for this particular configuration. Once the 
wing sweep was established the positioning of these wings on the 

ply wood base was fixed so that the aircraft c.g. was located as 

close as possible to wing elastic axis, carried through on to the 

base. This criterion simplifies the model and ensures that the 

c.g. is well ahead of the wing aerodynamic centre to ensure 
static stability.
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The pitching moment of inertia of the fuselage proved to be 

difficult to control within the constraints required, Therefore 

the next parameter that was seen to be sensitive to this 

phenomenon, was the wing bending stiffness El. It is found that 

generally lowering this quantity lowers the flutter speed. However 

a compromise needs to be established as reducing El too much will 

substantially increase the wing deflection due to the static 

aerodynamic loads. The greatest opportunity comes in aeroelastic 

tailoring these wings, by using composite structures such as 

carbon fibres as in Ref.(84). However the current finite element 

program in FLUSTAR caters only for isotropic materials.

A joint investigation was initiated with J.Z. Khan, to 

establish the limitations of the current code in predicting 

frequencies and flutter speeds for graphite plates with varying 

amounts of cross coupling. The results of this investigation are 

presented in Appendix C. It is found that as long the ply 

arrangements have low flexural coupling ratios , the program will 

predict within engineering accuracy the fundamental frequencies 

and flutter speeds. As a result of this analysis it was decided to 

keep the current analysis as simple as possible by using thinner 

sheets of aluminium to provide the minimum allowable bending 

stiffness.
It is noted that with certain ply lay ups the resulting 

torsional stiffness GJ was reduced to such an extent that flutter 

analysis, suggested classical bending/torsion flutter as the main 

mode of instability, rather than body freedom flutter. Therefore 

subsequent analyses concentrated on establishing the cantilever 
flutter speed. For body freedom the role of the rigid body modes 

were confirmed by printing the flutter modes. Initial flutter 

calculations were carried out assuming the rigid body frequencies 

as zero and neglecting the low frequencies introduced via the 

support system.
Another significant parameter in this particular case was the 

influence of the mass of the fuselage. Although not an important 
factor for the Ricochet the mass was seen to have a marked 

influence on the wing first bending frequency of the model. As the 

fuselage mass increases the bending frequency falls, lowering the
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flutter speed. However increasing the mass will increase the 

pitching moment of inertia producing a stabilising influence. 
Therefore once the aircraft c.g. was located Brass blocks were 

screwed onto the support system coincident with the aircraft c.g.. 

The advantage of using brass, is its high density, enabling large 

concentrations of mass to be concentrated over small areas, hence 

minimising any further increase in fuselage pitching inertia.

The layout for the final model is shown in Fig. J1 with the 

stiffness mass and inertia details shown in Table Jl. Polystyrene 

fairings were placed around the plate wings to introduce camber 

and on the plywood base to create the fuselage shape. Slits were 

made in the wing to minimise the effect of these fairings on the 

wing stiffnesses. It is seen from Table Jl that comparing these 

experimental stiffnesses with the experimental values quoted for 

the uncovered plates in Appendix C, the effect of fairings , 

within experimental accuracy, does not significantly modify the 

stiffnesses.

J .3 Evaluation of Flutter Speed of Model Wing

As a means of establishing the experimental wing flutter 

speed, the wing was cantilevered and swept back to its 2 0° 

configuration in the working section of T3. The subsequent results 

are compared with CALFUN as in Appendix C, using both the cosine
, 33 ,

theory and the velocity component theory. The experimental

flutter speed and frequency is shown in Table J2a and J2b along 

with those quantities obtained theoretically. During the 

experiment, frequencies were monitored using a transducer on the 

plate, linked to a GENRAD facility (as outlined in Appendix C). At 

the flutter condition the flutter frequency was taken as the value 

at which the monitored aeroelastic frequencies coalesced. This 

proved to be a lot more reliable than measuring the frequencies 

using a stroboscope.
Referring to these tables it is seen that both theories give 

comparable results, to a large degree, part of the discrepancy in 

flutter speed was probably due to overestimating the sectional 

I /l. The initial estimate of this quantity relies on the
p
assumption that the mass of the plate and fairings are
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concentrated along the thickness of the plate. In reality there is 

a sectional contribution from the fairings, which will 

redistribute and decrease the effective value of I and thus raise
p

the torsional frequency.
Table J3 shows the fundamental frequencies for the complete 

aircraft and Table J4 shows the subsequent theoretical body 

freedom flutter. As it can be seen this speed is well within the 

speed range of T3 ( U < 50 m/s) . Modal elimination confirms that 

the instability is rigid body coupling with the fundamental wing 

bending. The modes are numbered sequentially from the 1 to 5, 

where 1 and 2 are the rigid body modes and 3 to 5 are the 

remaining elastic modes. The flutter frequency also shows the low 

frequency nature of this instability. As an indication of the 

sensitivity of this flutter to the fuselage inertia, Fig. J2 shows 

the variation in flutter speed for various percentage decreases 

and increases in fuselage mass and pitching inertia. This assumes 

a fixed model c.g. location. Comparing Fig. J2 with the equivalent 
figure for the Ricochet, (see Fig. 3.16), the suggested effects of 

pitching inertia are more critical for this model especially for 

higher inertias.

J.4 Determination of Wing Stiffnesses 

J.4.1 Flexural Rigidity

For the determination of these critical parameters a test rig 

was specially constructed as shown in Fig. J3. For determination 

of the Flexural rigidity, the plate is clamped securely at one end 

and a series of vertical loads applied at the other end. A point 

was selected along the plate, not too near the end, and the 

vertical displacements recorded with applied loading, for both the 

loading and unloading case. From the readings obtained, the slope 

P/S was calculated using Eq.(J.l), from Engineers theory of 

bending, the flexural rigidity El deduced. The loading was applied 

at the mid chord, which is the assumed position of the shear 
centre. Although this assumption is valid for isotropic plates, 

for composite plates with significant coupling ratios , applied 

bending is followed by small amounts of twist. Therefore the mean 

vertical displacement taken from the scales at both sides of the
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plate was taken as 

centre.

El
2

X
6 (x - 3L) P

Ô

the displacement of the mid chord or shear

(J.l)

J.4.2 Torsional Rigidity
The determination of the torsional rigidity, the end loading 

was replaced by a pure torque applied about the plate section. 

This is achieved by the pulley arrangement shown in Fig. J4. This 

arrangement also cancels out the the effects of bending introduced 

by the application of this loading. The displacements recorded by 

both scales on either side is converted into angular displacements 

for the unloading and loading case. From this data the slope of 

TL/6 was calculated and using Eq.(J.2) the value of GJ deduced. 
The reason for taking readings from both sides was to monitor the 

nature of the rotation and to counteract any discrepancies arising 

from loading offset from the shear centre. This is important 
especially considering the nature of composites where the position 

of the shear centre is not so certain.

J.5 Evaluation of Model Pitching Moment of Inertia

As I is a very sensitive parameter it is important to 

measure this correctly. The first technique relied on hanging the 

model via fish wires and measuring the period of oscillation. From 

these times and assuming the structure as a compound pendulum the 

pitching moment of inertia can be obtained from Eq.(J.3). However 

aligning both the wires to straighten the model proved difficult. 

Also as the model swung it carried out small oscillations about
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its longitudinal axis and these had to die down before 

measurements could be made.

any

I
yy

where

An alternative method of suspending the model was 

established. This arrangement consists of inserting small blades 

along the arms that suspended the model in the first method. This 

arrangement is seen in Fig. Jl. These blades each rest on the edge 

of two plates clamped to a support. The arrangement sees the model 

hang and oscillate between the two plates, as seen in Fig. J5. 

This provides a sturdy platform to measure the oscillations and 

minimise the effects of friction at the supports.

J.6 Wind Tunnel Model Support System

As in ref.(84) because of the model weight, the preselected 

wing planform was not able to fly the model completely. Therefore 

a vertical rod support system is selected as in Ref.(84) to test 

the model. This system consists of a 0.8 m long, vertically 

installed, case hardened steel rod with a 10 mm diameter. A 

Thompson super ball bushing slides along the rod and attached to 

the fuselage through a pitch bearing mount located at the model 

centre of gravity. The pitch bearing or pitch gimbal along with 

the linear bearing is shown in Fig. J6. This gimbal allows only 
vertical heave and pitch freedoms, this is adequate for the 

current stability analyses which neglects forward changes in 

speed, a potentiometer is located on the pitch bearing to record 

pitching displacement.

As in Ref. (84) springs were to be located at the linear 

bearing and the pitch gimbals to provide the required support 

stiffnesses. In Ref.(84) a dynamic support instability was 

observed at certain speeds, this was due to interaction of the
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pitch and plunge inodes of the rigid aircraft. This was cured by 

making the still air model pitch frequency greater than the model 

plunge frequency. Spring stiffnesses were calculated bearing this 

instability in mind and avoiding possible interaction with the 

predicted body freedom flutter frequency of 2-4 Hz. However due to 

the small size of the T3 working section, springs of the necessary 

stiffnesses could not be obtained.

Alternative support systems were visualised before the 

program was terminated due to lack of time. The most promising set 

up is one in which the model is supported via a set of wires that 

loop outside the tunnel along miniature pulleys and return to the 

model to form a closed circuit. A mass is introduced into the 

circuit to counteract the weight of the model. The model is then 

free to plunge up and down, the wires running along the pulleys. 

The advantage of this system is that reliance is not placed so 

much on spring stiffness and with this arrangement a potentiometer 
can be inserted into the network to measure the model vertical 

displacement.

J .7 Experimental Procedure

If this work had been completed the following experiments 
would have been carried out.

1) A ground resonance test to determine the fundamental 

frequencies of the model and compare them with those from the 
finite element analysis.

2) Carry out wind tunnel tests on a static rig to evaluate 

the model lift curve slope and the trim condition from the dC /dam
curve. If necessary small flaps might have to placed along the 

wing to attain the right trim condition. This test would also 

establish the static margin stick fixed from which the location of 

the aircraft c.g. could be refined. The new aerodynamic parameters 
above could be inserted into a modified flutter and stability 

analysis, provided by FLUSTAR.

3) Carry out in the wind tunnel body freedom flutter tests. 

However before the onset of flutter the subcritical response would 

be evaluated at fixed speeds. This would be achieved by knocking 
the model and measuring the subsequent trace in pitch from which
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the damping and frequency of the short period mode could be 

ascertained.
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Total Mass 0.764 kg

Pitch inertia of fuselage 0.0036 kgm 2

Wing mass 0.0585 kg

Wing span 0.68 m

Wing sweep angle 20°

Gross wing area 0.0589 m2

Wing aspect ratio 8.52

Wing stiffnesses El 0.1614 N/m2

GJ 0.2777 N/m2

M/l 0.1834 kg/m

I /Ior 8.599x10 5 kgm

Table J1 Aircraft model properties

Flutter speed (m/s) % Difference

Cosine

theory

Vel-
comp

theory Exp

Cosine

theory

Vel-
comp

theory

32.90 31.28 38.39 -16.69 -22.73

Table J2a Comparison of theoretical and experimental flutter 

speeds for cantilevered model wing
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Flutter frequency (Hz) % Difference

Cosine

theory

Vel-
comp

theory Exp

Cosine

theory

Vel-
comp

theory

21.80 22.14 21.88 -0.37 1.17

Table J2b Comparison of theoretical and experimental flutter 

frequencies for cantilevered model wing

Frequencies (Hz)

1st bending 2nd bending 1st torsion

5.16 32.37 44.64

Table J3 Theoretical fundamental frequencies for model wing

Modes used Flutter Flutter
Speed Frequency
(m/s) (Hz)

1,2,3,4,5 13.0 3.18

1,2,3 14.8 3.08

Table J4 Effect of normal modes on the model flutter
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Fig. J3 Flexural rigidity test rig

Fig. J4 Torsional rigidity test rig



Fig. J5 Model pitching moment of inertia test rig
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APPENDIX K

K.O Background to the Computer Program FLUSTAR

K.l Introduction
A unified theory of aeroelastic analysis has been developed 

during the course of the investigation. The theory and 

implementation has been discussed within the main text of this 

thesis.
This section provides guidlines for prepering data for the 

FORTRAN computer program FLUSTAR. This program will accomplish the 

following tasks using a combination of the finite element theory 

and aerodynamic strip theory.
1) Evaluation of flutter speed and aeroelastic modes at 

flutter speed of an aircraft using normal modes.

2) Investigation of the short period oscillation 

characteristics of an aircraft.
3i) Calculation of both the linear and angular acceleration 

responses to continous random atmospheric turbulence using the 

frequency response function and the power spectral density (PSD) 

method.
3ii) Determination of the acceleration response of a flexible 

aircraft to a unit step gust velocity. Evaluation of the 

statistical discrete gust (SDG) method and identification of the 

worst response to a pair of gusts.

For tasks (1) and (2) the option of introducing an unsteady 

wake at the tailplane is provided.

K.2 Structural and Aerodynamic Idealisation

The structural idealisation is common to all three types of 

the above of analyses. The aircraft structure is idealised as a 

framework, with beam elements located along the elastic axis. 

Member types and method of solution is identical to that 

implemented in BUNVIS71 and is used to obtain the natural 

frequencies, mode shapes and the generalised mass and stiffness 

matrices.

Using two-dimensional unsteady aerodynamics5 and strip theory 

the mode shapes are incorporated to yield the generalised 

aerodynamic forces. The option of including modified
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30 • •aerodynamics is incorporated to take into partial account the 

effects of finite span and compressibility.

K .3 Additional Features

As in BUNVIS the main consideration when writing the program 

was to reduce the array space needed. Nearly all the storage is in 

two-dimensional arrays, one real (RA) and one integer (IA) , which, 

are used for very compact storage of data and working space. The 

dimensions of these two arrays can be altered to match the size of 

the problem. Now in addition to quantities particular to the 

structural analysis, parameters for the aerodynamics are also 

stored in the same real array.
The original BUNVIS relied on a linear and rotational spring 

at the c.g. node, to provide the respective rigid body freedoms. 

In this program the springs are retained but there is the added 

facility of reading in zero frequency modes directly. This option 

is installed in cases of severe ill conditioning. In symmetric 

flutter and dynamic stability analysis, the two rigid body modes, 

namely heave (<$zR) and rotational pitch (eyR) are required (these 
freedoms are defined in Fig. 3.4.), whereas in antisymmetric 

analysis only rigid body roll (0 ) is required.
x  R

K.4 Input Data Preparation

Card Group No.l

CF Convergence factor. Solutions are

obtained to an accuaracy of at least 1 

part in CF.

FQ Positive trial value of first required

eigenvalue. Any positive number can be 

used ( but excessive values must be 

avoided for vibration problems).

NN No. of structural nodes.

NC No. of connections.
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NR No. of numbers in list of real numbers.

NM No. of eigenvalue

incorporated in analysis.

frequencies

ND No. of triplets in list of affected 

degrees of freedom.

LR Use 1 if rotary inertia is to be allowed 

for in analysis.

LS Use 1 if shear deflection is to be 

allowed for, otherwise 0.

SF Shape factor, use any dummy value if LS=0 

above.

PR Poisson's ratio, use any dummy value if 

LS=0.

IFGTO Use 0 if tailplane aerodynamics are to be 

incorporated in analysis, otherwise 1.

Card Group No.2

IA NM integers forming the list of required

natural frequencies. The integers in this 

list must be in ascending order and must 

be prefixed by a negative sign to obtain 

the mode shape.

Card Group No.3

IA Connection list in triplets. Each triplet

defines one connection. The three 

integers in each triplet are the node
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numbers of the connected nodes, which

must be given in ascending order,

followed by the member number. Such 

triplets must be given in the order of 

their i values, where i is the first

integer of the triplet, i.e. the lower

numbered of the two connected nodes.

Triplets with the same i value can be

Card Group No.4

given in any order.

NMR No. of rigid body modes implemented.

Card Group No.5 Section properties of each member.

El Flexural stiffness

EA Axial stiffness

GJ Torsional stiffness

M/L Mass per unit length

IP Polar moment of inertia

AF

Card Group No.6

Axial force

RA List of real numbers: NR real numbers

used to define coordinates and values of

Card Group No.7

lumped masses, lumped (rotatory) inertias 

and elastic support stiffnesses.

IA Node coordinate list in triplets. The

coordinates can be related to any

right-hand cartesian axis system xyz. The

node coordinate list references the list of real numbers to enable 

the program to deduce the three coordinate values (x,y, and z) of

292



each structure node. The i th triplet corresponds to node i and 

the three integers respectively give the locations in the list of 

real numbers of the nodes x, y and z coordinates. The sign of a 

coordinate can be changed by a prefixing the integer which locates 

it in the list of real numbers by a minus sign. Thus negative

integers can be used, with positive numbers in the list of real 

numbers, to give negative coordinates. Thus two coordinates which 

are equal and opposite can be obtained from a single number in the 

list of real numbers.

Card Group No.8

IA List of affected degrees of freedom. The

list is in triplets and the number of 

triplets must be read as ND in card 1 

data. Each of the triplets comprises three integers of which the

first two must be postive and the third can be negative. These

three integers must give, respectively:

i) Node Number

ii) Degree of freedom reference number

iii) Indicator to effect suppression or elastic support of 

the freedom, or to add lumped mass or inertia at the node.

1,2 or 3 at (ii) denote 8x 8^ and $z respectively, and 4, 5 and 6 

denote 0 0 and 0 respectively. If a zero is used at (ii) all
x  y  z

the translational freedoms (i.e. the displacement in the x, y and 

z directions) are affected simultaneously.

For suppression, (iii) is set to zero and the computer 

suppresses the freedom (ii) of node (i). If (iii) is set greater 

than zero its value gives the location in the list of real numbers 

of a lumped mass ((ii)=0) or inertia ((ii)>3) which the program 

will associate with 0 0 and 0 at node (i) if (ii)=0, or with
x  y  z

rotation (ii) at node (i) if (ii) > 3.

If (iii) is negative, =-j say, then there is an elastic 
support at the node which constrains the translation (or rotation) 

(ii) at node (i) with a linear (or rotational) stiffness given as 

the j th number in the list of real numbers.

The triplets must be given in ascending order of their node
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numbers (i.e. the numbers at (i)) but the order in which the 

stiffnesses or masses/inertias associated with any one node are 

altered is immaterial.

Card Group No.9

IFGRM Use 1 if rigid body modes in card 10 are 

going to be read in, otherwise 0.

IFGMT

Card Group No.10

Use 1 if aeroelastic analysis involves 

symmetric modes. Otherwise -1 for 

antisymmetric analysis.

RA NMR x NN data items describing the rigid

body modes of the aircraft.

If IFGMT = 1 The vertical displacement Sz

of each node starting sequentially from 1

to NN followed by the corresponding rigid

pitch rotation 8 for each mode.
y

If IFGMT = -1 the vertical displacement 

of each node starting sequentially from 1 

to NN followed by the corresponding rigid

Card Group No.11

roll 8 .
X

NWN No. of wing nodes, not including the 

undercarriage node.

NIP No of wing integration points for the 

evaluation of the aerodynamic forces.

NRB No. of rigid body modes disregarded in 

analysis.
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NCS Maximum number of crossing points for 

real and imaginary determinant.

SWP Sweep angle of the wing elastic axis

(deg).

RO Atmospheric density

G Structural damping

NUC Node number of undercarriage, otherwise 0

Card Group No.12 If IFGTO = 1 (i.e tailless configuration)

use 0 for the parameters below.

NTPN No. of tailplane nodes

NNTT Node number of tailplane tip.

NNTR Node number of tailplane root

NIPT No. of integration points in evaluation 

of tailplane aerodynamic forces.

Card Group No.13 If IFGTO = 1 (i.e tailless configuration)

use 0 for the parameters below.

SWPT Tailplane sweep angle (deg)

SMC Standard mean chord of wing

XLT Distance of wing aerodynamic centre from 

tailplane aerodynamic centre.

ZT Vertical height of tailplane from 

horizontal datumn. (positive upwards).
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Card Group No.14

Y Spanwise distance of wing node from

fusealge intersection.

B Wing section semi-chord

AH The distance of the elastic axis (shear

centre) from mid-chord point expressed as 

a fraction of the semi-chord (B) . Taken 

positive rearward.

CLA Wing lift curve slope of spanwise strip

(/rad).

If IFGTO = 0, card Group No. 14 is repeated for the tailplane

Card Group No.15

OM

XI

R

KL

Card Group No.16

IFGAA

Offset mass

Use 0.0 if offset mass is not to be 

considered, otherwise use the magnitude 

of this mass.

Moment of inertia of offset mass about y 

axis.

Distance offset from node

Node number of offset connection

Single integer which indicates the type 

of analysis, from the menu below:

1. Flutter Analysis

2. Dynamic Stability Analysis

3. Response Analysis
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IFGMIFGM Use 1 to find aeroealstic modes in

flutter analysis, otherwise use 0.

IFGUW Use 1 to introduce the effects of an

unsteady wake at the tailplane, otherwise

use 0.

NZI No. of integration points taken to 

represent a single wake vortex cell.

Flutter Analysis (IFGAA = 1)

For this analysis the next card groups inserted are as follows:

Card Group No.17 This card contains the frequency range

for flutter analysis in (rad/s).

WFI Starting frequency

DWF Increment in frequency

WFMAX Maximum value of frequency

Card Group No.18 This card indicates the airspeed range in

(m/s).

UI Starting airspeed

DU Increment in airspeed

UMAX Maximum value

Dynamic Stability Analysis (IFGAA = 2)

For this analysis the next card groups are as follows where p in 

this card group is taken as the modulus of the complex argument

k, where k = to b 
U

• v. i© - ill b = pe
U
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Card Group No.17

u

Card Group No.18

Airspeed taken for dynamic stability 

analysis.

RHO Starting p value

DRHO Increment in p value

RHOMAX

Card Group No.19

Maximum value of p

THETA Starting 0 value

DTHETA Increment of 0 value

THETAM Maximum Value of 0

Response Analysis (IFGAA = 3)

For this analysis the next card groups are as follows:

Card Group No.17 This contains items for the Power

Spectral Analysis (PSD).

DW Increment in frequency for frequency 

response function.

U Airpeed taken for response analysis

N Number of frequency points taken for 

integration of the output power spectrum.

Card Group No.18 This contains items for the Statistical

Discrete Gust analysis (SDG) and are 

fully discussed in Ref.(31).
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NT No. of time intervals

DT Time Interval at which the straight ramp

response is to be calculated.

TMAX Time of the last point in the step

Card Group No.19

response.

NH No. of trial values of H supplied (NH a

Card Group No. 2 0

3) •

H (I) 1 = 1, NH trial gust lengths. H to be

Card Group No. 21

bracketed; t £ H/V £ At preferably.
MAX

HLTOL

Card Group No.22

Accuracy required, AH/H

I PR Print control parameter giving different

levels of output.

IPR = -1 

= 0

= 1

Data summary; y and t for trial H(I) and
K

H ; A ; Aw ; worst gust pair: 

as IPR = -1 plus r and t for all extra 
gust lengths investigated including hi 

and 2H. Also the integrals in (9) or (10) 

(ref.31) are output at intervals of At

for H = H and -H.2
as IPR = 0 plus the tabulated spline fit
to the step response.
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= 2 as IPR = 0 plus ramp responses for each

H(I) supplied by the user. The
- 2 / 3  .multiplying factor vH is also output 

for converting the integrals to 

= 3  as IPR = 1 and IPR = 2 combined.

I ANAL Set to zero if subroutine ANALYTIC to

evaluate <p( H,t) analytically is either 

not provided or not being used. 

Otherwise, input any non-zero integer 

value.

300



K .5(A) Data file for symmetric flutter of Kestrel with Downwash

1.0000D+06 
-1 -2 -3 -4

2.00 21 20 
-5 -7

38 6 75

oo

0.67 0.3 0

1 2  1 2 3 2 3 4 3 4 5 4 5 6 5
6 7 6 7 8 7 8 9 8 9 10 9 10 11 10

11 12 11 12 13 20 12 14 12 14 15 13 15 16 14
16 17 15 

o
17 18 16 18 19 17 19 20 18 20 21 19

8.82 00D+04 1.000D+07 1.3400D+04 4.5710 0.02917 0.0
1.0950D+05 1.000D+07 1.7 500D+04 5.7910 0.05364 0.0
1.4450D+05 1.000D+07 2.0900D+04 7.1000 0.09364 0.0
1.8350D+05 1.000D+07 2.3800D+04 8.0820 0.1236 0.0
2.6240D+05 1.000D+07 2.9300D+04 20.459 0.4419 0.0
3.4380D+05 1.000D+07 3.6800D+04 9.9270 0.2276 0.0
4.6410D+05 1.000D+07 5.2100D+04 10.927 0.2718 0.0
6.3230D+05 1.000D+07 7.9300D+04 11.954 0.3180 0.0
8.6120D+05 1.000D+07 1.2 3 60D+05 12.954 0.3718 0.0
1.1633D+06 1.000D+07 1.8930D+05 13.945 0.4300 0.0
1.4552D+06 1.000D+07 2.5180D+05 14.945 0.4927 0.0
2.253D+06 1.000D+07 9.4350D+04 4.878 0.4182 0.0
1.3488D+06 1.000D+07 8.3200D+04 3.775 0.1377 0.0
7.605D+05 1.000D+07 6.6700D+04 3.000 0.06714 0.0
3.155D+05 1.000D+07 4.62 50D+04 1.986 0.02465 0.0
1.1910D+04 1.000D+07 1.4060D+04 6.0520 0.01155 0.0
6.1700D+03 1.000D+07 1.0620D+04 5.0236 0.0056335 0.0
4.0180D+03 1.000D+07 7.8920D+03 4.2016 0.0036617 0.0
2.7 2 60D+03 1.000D+07 5.3090D+03 3.1512 0.002535 0.0
1.0000D+07 1.000D+06 1.000D+06 1.000D-02 1.000D-04 0.0
11.000 10 .175 9.0757 7.9746 6.8746 6.3246 4.9496 3.8496
2.7496 I.-6496 5.4965 0.0 -5.4965 -1. 6496 -2.7496 -3.8496

-4.9496 -6.3246 -6.8746 -7.9746 -9.0757 -1.0175 -11.000 -1.025
2 .0250 -3.0250 -4.5410 3.5000 7. 0000 1.0500 1. 4250 0.7380
0.60 0.55 112 .09 35. 70 5.70 2.20
12 1 12 12 2 12 12 3 12 12 4 12 12 5 12
12 6 12 12 7 12 12 8 12 12 9 12 12 10 12
12 11 12 12 12 12 32 12 12 24 12 12 25 12 12
26 12 12 27 12 12 27 28 12 27 29 12 27 30 12
27 31 12
1 1 0 1 2 0 1 6 0 2 1 0 2 2 0
2 6 0 3 1 0 3 2 0 3 6 0 4 1 0
4 2 0 4 6 0 5 1 0 5 2 0 5 6 0
6 1 0 6 2 0 6 6 0 7 1 0 7 2 0
7 6 0 8 1 0 8 2 0 8 6 0 9 1 0
9 2 0 9 6 0 10 1 0 10 2 0 10 6 0
11 1 0 11 2 0 11 6 0 12 1 0 12 2 0
12 3 -33 12 4 0 12 5 -34 12 6 0 13 1 0
13 2 0 13 3 35 13 4 0 13 5 36 13 6 0
14 1 0 14 2 0 14 4 0 14 6 0 15 1 0
15 2 0 15 4 0 15 6 0 16 1 0 16 2 0
16 4 0 16 6 0 17 1 0 17 2 0 17 3 37
17 4 0 17 5 38 17 6 0 18 1 0 18 2 0
18 6 0 19 1 0 19 2 0 19 6 0 20 1 0
20
T

2 0 20 6 0 21 1 0 21 2 0 21 6 0
X
0 0.0 0

oo oo •oo

0 0. 0

oo o•o oo o•o 0.0 -0. 162519 o.:225721
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0.44593 0.66615 1.0 1.0 1.0 1.0 1.0 
0.220216 0.220216 0.220216 0.220216 0.220216 0.220216 0.220216
0.220216 0.220216 0.220216 0.220216 0.220216 0.220216 0.220216
0.220216 0.220216 0.220216 0.220216 0.220216 0.220216 0.220216
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0 . 0  0 . 0  0 . 0 0 . 0  0 . 0  
12 11 0 10 0.00 1.225 0.0 0 
5 21 17 7
0.0 0.69 4.815 1.5
11.0 0.180 -0.012 6.283185 -0.5
10.175 0.214 -0.023 6.283185 -0.5 
9.075 0.258 -0.038 6.283185 -0.5 
7.975 0.304 -0.046 6.283185 -0.5 
6.875 0.349 -0.068 6.283185 -0.5 
6.325 0.363 -0.072 6.283185 -0.5
4.949 0.382 -0.072 6.283185 -0.5
3.849 0.397 -0.072 6.283185 -0.5
2.749 0.411 -0.072 6.283185 -0.5 
1.649 0.427 -0.072 6.283185 -0.5 
0.549 0.442 -0.072 6.283185 -0.5 
0.000 0.449 -0.072 6.283185 -0.5 
1.425 0.177 0.00 4.70 -0.5 
1.050 0.2022 0.00 4.70 -0.5
0.70 0.2275 0.00 4.70 -0.5 
0.350 0.2530 0.00 4.70 -0.5 
0.00 0.2785 0.00 4.70 -0.5 
0.0 0.0 0.0 1 
1 0 1 30
48.0 1.0 51.0
72.0 0.1 73.0
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K .5(B) Data file for longitudinal stability analysis of A1 with

Downwash

0.10000D+06 2.00 20 19 38 4 72 0 0 0.670 0.30 0
-1 -2 -3 -8 

1 2  1 2 3 2 3 4 3 4 5 4 5 6 5
6 7 6 7 8 7 8 9 8 9 10 9 9 11 10

11 12 11 12 13 12 13 14 13 14 15 14 14 16 15
16 17 16 17 18 17 18 19 18 19 20 19

2.6100D+05 9.1250D+07 2 .4 000D+05 6.940 0.3764 0. 0
3.2400D+05 1.1682D+08 3 .4 000D+05 9.772 0.5030 0. 00
4.3200D+05 1.4240D+08 4 .5000D+05 11.360 0.7450 0.0
5. 7600D+05 1.694 0D+08 6.2000D+05 12.821 1.0370 0.0
9.0900D+05 1.9500D+08 9 .0000D+05 14.251 1.5190 0.0
1.2780D+06 2.1900D+08 1.2 600D+06 20.170 1.9766 0.0
1.7550D+06 3.3600D+08 1.7800D+06 19.520 2.4500 0.0
2.2230D+06 4.5210D+08 2 .2 600D+06 26.323 3.9030 0.0
1.0D09 1.0D09 1.0D09 1.0D-03 1.0Di-03 0.0
2.6370D+06 4.7 216D+08 2 .5900D+06 27.850 4.2020 0.0
3.0060D+06 4.9010D+08 2.8700D+06 28.946 4.4430 0.0
3.3750D+06 5.1450D+08 3 .1600D+06 34.496 4.6820 0.0
1.0D09 1.0D09 1.0D09 1.0D-03 1.0D-04 0.0 
1.0D09 1.0D09 1.0D09 1.0D-03 1.0D-04 0.0 
1.0D09 1.0D09 1.0D09 1.0D-03 1.0D-04 0.0 
7.29065D06 1.0D+10 2.9342D+05 22.7985 13.460 0.0 
7.29065D06 1.0D+10 2.9342D+05 6.1265 5.0400 0.0
1.4 600D+05 1.0D+11 1.0D+07 10. 770 1.0D-03 0.0
7.9100D+04 1.0D+10 1.0D+07 8.6442 1.0D-03 0.0
0.49670 5.00 -0. 43180 4 .558 -0.3810 4.048 -0.30480 3. 546 -0. 2286
3 .038 -0.15240 2.528 -0. 076200 1.9668 1.618 1.318 1.008 0.758
0.428 0. 0 0.45584 0.78144 1.44718 -0. 02332 -1. 03332 -4.48932
0.7775 1.555 -1 . 5850 0.80 0.35 20.0 182.0 116 .31 85 .442 10. 0
2 .3945 6.735
1 2 20 3 4 20 5 6 20 7 8 20 9 10 20

11 12 20 13 14 20 20 15 20 20 16 20 21 16 22
20 17 20 20 18 20 20 19 20 20 20 20 23 20 20
24 20 20 25 20 20 26 20 20 26 27 20 26 28 20
1 1 0 1 2 0 1 6 0 2 1 0 2 2 0
2 6 0 3 1 0 3 2 0 3 6 0 4 1 0
4 2 0 4 6 0 5 1 0 5 2 0 5 6 0
6 1 0 6 2 0 6 6 0 7 1 0 7 2 0
7 6 0 8 1 0 8 2 0 8 6 0 9 1 0
9 2 0 9 6 0 10 3 32 10 6 0 11 1 0
11 2 0 11 6 0 12 1 0 12 2 0 12 6 0
13 1 0 13 2 0 13 6 0 14 1 0 14 2 0
14 4 0 14 6 0 15 1 0 15 2 0 15 3 33
15 4 0 15 5 34 15 6 0 16 1 0 16 2 0
16 3 -30 16 4 0 16 5 -31 16 6 0 17 1 0
17 2 0 17 3 35 17 4 0 17 5 3 17 6 0
18 1 0 18 2 0 18 3 36 18 4 0 18 5 37
18 6 0 19 1 0 19 2 0 19 6 0 20 1 0
20 2 0 20 6 0
1 1
0.105996 0.09146 0.08008 0.06302 0.04596 0.02890 0.01184
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-5.2217D-03 -5.2217D-03 -0.10729 -5.2217D-03 -5.2217D-03 
-5.2217D-03 -5.2217D-03 -0.329266 0.0 0.226153 1.0 1.0 1.0 
0.22391 0.22391 0.22391 0.22391 0.22391 0.22391 0.22391 0.22391
0.22391 0.22391 0.22391 0.22391 0.22391 0.22391 0.22391 0.22391
0.22391 0.22391 0.22391 0.22391
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0
l.OD-05 l.OD-05 1.0D-05 1.0D-05 1.0D-05 1.0D-05 1.0D-05 1.0D-05
1.0D-05 l.OD-05 l.OD-05 l.OD-05 l.OD-05 l.OD-05 l.OD-05 l.OD-05
l.OD-05 l.OD-05 l.OD-05 l.OD-05
13 13 0 10 9.58 1.055 0.0 10
3 20 18 5
0.0 1.5 4.355 0.0
5.00 0.4572 -0.462 4.221 -0.5
4.558 0.505 -0.459 4.221 -0.5 
4.048 0.565 -0.438 4.221 -0.5 
3.546 0.624 -0.425 4.221 -0.5 
3.038 0.683 -0.413 4.221 -0.5 
2.528 0.743 -0.402 4.221 -0.5 
1.9668 0.808 -0.383 4.221 -0.5 
1.618 0.850 -0.404 4.221 -0.5 
1.318 0.885 -0.349 4.221 -0.5
1.008 0.921 -0.296 4.221 -0.5 
0.758 0.950 -0.257 4.221 -0.5 
0.428 0.989 -0.207 4.221 -0.5 
0.00 1.04 -0.1452 4.221 -0.5
1.555 0.335 0.0 3.52 -0.5 
0.7775 0.435 0.0 3.52 -0.5 
0.0 0.535 0.0 3.52 -0.5
0.0 0.0 0.0 1 
2 0 1 30
5.0 1.0 9.0 
61.68
55.0 1.0 62.0
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Output file for example K.5 (A)

STABILITY OF AIRCRAFT

STRUCTURAL DETAILS:

CF FQ NN NC NR NM ND LR LS SF PR
1.0000E+06 2. 0000E+00 21 20 38 6 75 0 0 6.700 3.0000 0

LIST OF NORMAL MODES REQUIRED FOR FLUTTER ANALYSIS:

-1 -2 -3 -4 -5 -7

CONNECTION LIST: 20 CONNECTIONS IN ALL(LOWER NODE,HIGHER NODE,MEMBER)

1 2 1 2 3 2 3 4 3 4 5 4 5 6 5
6 7 6 7 8 7 8 9 8 9 10 9 10 11 10
11 12 11 12 13 20 12 14 12 14 15 13 15 16 14
16 17 15 17 18 16 18 19 17 19 20 18 20 21 19

LIST OF MEMBER PROPERTIES:

El EA GJ MASS/L MASS M.I/L AXIAL FORCE
8.82 00E+04 1.0000E+07 1.3400E+04 4.5710E+00 2.9170E-02 0.0000E+00
1.0950E+05 1.OOOOE+07 1.7500E+04 5.7910E+00 5.3640E-02 0.0000E+00
1.4450E+05 1.0000E+07 2.0900E+04 7.1000E+00 9.3640E-02 0.0000E+00
1.8350E+05 1.OOOOE+07 2.3800E+04 8.082 0E+00 1.2360E-01 0.0000E+00
2.6240E+05 1.0000E+07 2.9300E+04 2.0459E+01 4.4190E-01 0.0000E+00
3.4 380E+05 1.0000E+07 3.6800E+04 9.9270E+00 2.2760E-01 0.0000E+00
4.6410E+05 1.0000E+07 5.2100E+04 1.0927E+01 2.7180E-01 0.0000E+00
6.3230E+05 1.0000E+07 7.9300E+04 1.1954E+01 3.1800E-01 0.0000E+00
8.6120E+05 1.0000E+07 1.2 3 60E+05 1.2954E+01 3.7180E-01 0.0000E+00
1.1633E+06 1.0000E+07 1.8930E+05 1.3945E+01 4.3000E-01 0.0000E+00
1.4552E+06 1.0000E+07 2.5180E+05 1.4945E+01 4.927 0E-01 0.0000E+00
2.2530E+06 1.0000E+07 9.4350E+04 4.8780E+00 4.1820E-01 0.0000E+00
1.3488E+06 1.0000E+07 8.3200E+04 3.7750E+00 1.3770E-01 0.0000E+00
7.6050E+05 1.0000E+07 6.6700E+04 3.0000E+00 6.7140E-02 0.0000E+00
3.1550E+05 1.0000E+07 4.6250E+04 1.9860E+00 2.4650E-02 0.0000E+00
1.1910E+04 1.0000E+07 1.4060E+04 6.052 0E+00 1.1550E-02 0.0000E+00
6.1700E+03 1.0000E+07 1.0620E+04 5.0236E+00 5.6335E-03 0.0000E+00
4.0180E+03 1.0000E+07 7.8920E+03 4.2016E+00 3.6617E-03 0.OOOOE+OO
2.7260E+03 1.0000E+07 5.3090E+03 3.1512E+00 2.53 50E-03 0.0000E+00
1.0000E+07 1.0000E+06 1.0000E+06 1.0000E-02 1.0000E-04 0.0000E+00

LIST OF NR ;REAL NUMBERS:

1.1000E+01 1.0175E+01 9.0757E+00 7.9746E+00 6.8746E+00 6.3246E+00
4.9496E+00 3.8496E+00 2.7496E+00 1.6496E+00 5.4965E-01 0.0000E+00

-5.4965E-01 -1.6496E+00 -2.7496E+00 -3.8496E+00 -4.9496E+00 -6.3246E+00
-6.8746E+00 -7.9746E+00 -9.0757E+00 -1.0175E+01 -1.1000E+01 -1.0250E+00
-2.02 50E+00 -3.02 50E+00 -4.5410E+00 3.5000E-01 7.0000E-01 1.0500E+00
1.4250E+00 7.3800E-01 6.0000E-01 5.5000E-01 1.1209E+02 3.5700E+01
5.7000E+00 2.2 000E+00
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NODE CO-ORDINATE LIST CO-ORDINATES OF 21 NODES(X,Y ,Z : RIGHT HANDED SET)

12 1 12 12 2
12 6 12 12 7
12 11 12 12 12
26 12 12 27 12
27 31 12

12 12 3 12 12
12 12 8 12 12
12 32 12 12 24
12 27 28 12 27

4 12 12 5 12
9 12 12 10 12
12 12 25 12 12
29 12 27 30 12

LIST OF ND AFFECTED DEGREES OF FREEDOM:

1 1 0 1 2 0 1
2 6 0 3 1 0 3
4 2 0 4 6 0 5
6 1 0 6 2 0 6
7 6 0 8 1 0 8
9 2 0 9 6 0 10
11 1 0 11 2 0 11
12 3 -33 12 4 0 12
13 2 0 13 3 35 13
14 1 0 14 2 0 14
15 2 0 15 4 0 15
16 4 0 16 6 0 17
17 4 0 17 5 38 17
18 6 0 19 1 0 19
20 2 0 20 6 0 21

6 0 2 1 0 2 2 0
2 0 3 6 0 4 1 0
1 0 5 2 0 5 6 0
6 0 7 1 0 7 2 0
2 0 8 6 0 9 1 0
1 0 10 2 0 10 6 0
6 0 12 1 0 12 2 0
5 -34 12 6 0 13 1 0
4 0 13 5 36 13 6 0
4 0 14 6 0 15 1 0
6 0 16 1 0 16 2 0
1 0 17 2 0 17 3 37
6 0 18 1 0 18 2 0
2 0 19 6 0 20 1 0
1 0 21 2 0 21 6 0

AERODYNAMIC DETAILS:

NWN NIP NRB NCS SWP
12 11 0 10 0.00

RO G NUC
1.2250 0.000 0

NTPN NNTT NNTR NIPT 
5 21 17 7

SWPT SMC XLT ZT
0.00 0.6900 4.8150 1.5000

WING DETAILS

Y B AH CLA A

11.000 0.180 -0.012 6.283 -0.500
10.175 0.214 -0.023 6.283 -0.500
9.075 0.258 -0.038 6.283 -0.500
7.975 0.304 -0.046 6.283 -0.500
6.875 0.349 -0.068 6.283 -0.500
6.325 0.363 -0.072 6.283 -0.500
4.949 0.382 -0.072 6.283 -0.500
3.849 0.397 -0.072 6.283 -0.500
2.749 0.411 -0.072 6.283 -0.500
1.649 0.427 -0.072 6.283 -0.500
0.549 0.442 -0.072 6.283 -0.500
0.000 0.449 -0.072 6.283 -0.500

TAILPLANE DETAILS
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YT BT AHT CLAT AT

1.425 0.177 0.000 4.700 -0.500
1.050 0.202 0.000 4.700 -0.500
0.700 0.228 0.000 4.700 -0.500
0.350 0.253 0.000 4.700 -0.500
0.000 0.279 0.000 4.700 -0.500

GENERALISED MASS AND STIFFNESS MATRICES

2.07407E+01 
1.97260E-02 
7.11608E-03 
2.97650E-05 
7.50745E-05 
I.17457E-03

2.7 6722E-02 
3.38701E-06 
1.61170E-04 
8.84053E-04
1.8 5212E-02 
4.61597E-03

1.97260E-02 
2.53831E+02 

-1.00913E-02 
-1.60321E-03 
-9.40659E-05 
-1.95952E-04

3.38391E-06 
6.00609E-01 

-7.65242E-02 
-4.45904E-02 
1.34589E-02 

-2.08196E-03

-7.11608E-03 
-1.00913E-02 
1.51171E+01 
6.38208E-05 
5.32505E-05 
1.67970E-04

1.61170E-04 
-7.65242E-02 
1.85462E+03 

-5.02267E-02 
-8.45034E-01 
2.54470E-01

2.97650E-05 
-1.60321E-03 
6.38208E-05 
1.07028E+01 

-5.84754E-06 
8.16098E-06

8•84054E-04 
-4.45904E-02 
-5.02267E-02 
1.86141E+04 

-7.62200E-03 
-9.43817E-03

-7.50745E-05 
-9.4 0659E-05 
5.32505E-05 

-5.84754E-06 
1.14744E+00 
1.64361E-03

-1.85212E-02 
1.34589E-02 
-8.4 5034E-01 
-7.62 2 00E-03 
9.66617E+03 
7•89295E+00

1.17457E-03 
-1.95952E-04 
1.67970E-04 
8.16098E-06 
1.64361E-03 
6.14780E-01

-4.61597E-03 
-2.08196E-03 
2.54470E-01 

-9.43817E-03 
7.89295E+00 
6.83841E+03

FREQUENCIES IN RAD/SEC:

3.58909E-02 4.86185E-02 1.10762E+01 4.17013E+01 9.17635E+01 1.05194E+02

INTERPOLATED VALUES OF HH,AA,BB,AHH,CLA, A 

WING DETAILS

ERTICAL DISPLACEMENT

0.00000E+00 
0.00000E+00 
0.00000E+00 
0.OOOOOE+OO 
0.00000E+00 
0.OOOOOE+OO 
0.00000E+00 
0.OOOOOE+OO 
0.OOOOOE+OO 
0.OOOOOE+OO 
0.OOOOOE+OO

1.OOOOOE+OO 
1. OOOOOE+OO 
1. OOOOOE+OO 
1. OOOOOE+OO 
1. OOOOOE+OO 
1. OOOOOE+OO 
1.OOOOOE+OO 
1.OOOOOE+OO 
1.OOOOOE+OO 
1.OOOOOE+OO 
1.OOOOOE+OO

1.OOOOOE+OO 
8.062 52E-01 
6.18716E-01 
4.41127E-01 
2.84325E-01 
1.51233E-01 
4.38366E-02 

-3.53048E-02 
-8.89359E-02 
-1.17778E-01 
-1.27773E-01

-1.OOOOOE+OO 
-5.05935E-01 
-7.66579E-02 
2.41688E-01 
3.86742E-01 
3.84885E-01 
2.94241E-01 
1.61295E-01 
4.04970E-02 
-5.00028E-02 
-7.58578E-02

1.03705E-01 
2.40119E-02 
-3.32472E-02 
-4.95252E-02 
-2.59780E-02 
1.28213E-02 
4.13973E-02 
4.97114E-02 
4.10132E-02 
2.7563 6E-02 
2.02409E-02

6.37637E-02 
1.12170E-02 

-2.46785E-02 
-3.01154E-02 
-1.03250E-02 
1.48394E-02 
2.82891E-02 
2.57984E-02 
1.33470E-02 
6.18344E-04 

-4.88049E-03

»ITCHING ROTATION

2.20216E-01
2.2 0216E-01
2.2 0216E-01
2.2 0216E-01 
2.20216E-01 
2.20216E-01 
2.20216E-01
2.2 0216E-01 
2.20216E-01 
2.20216E-01

0.OOOOOE+OO 
0.OOOOOE+OO 
0.OOOOOE+OO 
0.OOOOOE+OO 
0.OOOOOE+OO 
0.OOOOOE+OO 
0.OOOOOE+OO 
0.OOOOOE+OO 
0.OOOOOE+OO 
0.OOOOOE+OO

7.21713E-04 
7.82857E-04 
8.39604E-04 
8.91878E-04 
9.18593E-04 
9.28598E-04 
9.41762E-04 
9.47013E-04 
9.43209E-04 
9.33271E-04

1.28195E-02 
1.27852E-02 
1.26978E-02 
1.25162E-02 
1.22256E-02 
1.17948E-02 
1.13138E-02 
1.08919E-02 
1.05378E-02 
1.02717E-02

2.77909E-01 
2.74367E-01 
2.65292E-01 
2.46725E-01 
2.18156E-01 
1.78470E-01 
1.36809E-01
1.03 052E-01 
7.71724E-02 
5.99604E-02

-1.OOOOOE+OO 
-9.83300E-01 
-9.40554E-01 
-8.53616E-01 
-7.21977E-01 
-5.44025E-01 
-3.62097E-01 
-2.19811E-01 
-1.15361E-01 
-5.02825E-02
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.20216E-01 O.OOOOOE+OO 

ALUES OF AHH:

1.20000E-02-3.64528E-02 

7.20609E-02-7.18099E-02 

ALUES OF CLA:

6.28318E+00 6.28318E+00 

6.28319E+00 6.28318E+00 

ALUES OF A:

•5.00000E-01-5.00000E-01 

•5.00000E-01-5.00000E-01 

'AILPLANE DETAILS

9.25515E—04 1.00360E-02

3.63699E-02-5.23490E-02-7 

7.24639E-02-7.05701E-02-7

6.28318E+00 6.28318E+00 6 

6.28319E+00 6.28318E+00 6

5.00000E-01-5.00000E-01-5 

5.00000E-01-5.00000E-01-5

4.57764E—02 1.22236E-03

06160E-02-7.22665E-02 

20000E-02

28319E+00 6.28319E+00 

28318E+00

OOOOOE-Ol-5.00000E-01 

00000E-01

iRTICAL DISPLACEMENT

.. 00000E+00 

..OOOOOE+OO
L.00000E+00 
..00000E+00
L. 00000E+00
L.00000E+00 
L.00000E+00

1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.OOOOOE+OO 
1.OOOOOE+OO

-1.32743E-01 
-1.31908E-01 
-1.31095E-01 
-1.30377E-01 
-1.29815E-01 
-1.294 54E-01 
-1.29328E-01

-1.32266E-01 
-1.21438E-01 
-1.10899E-01 
-1.01677E-01 
-9.45566E-02 
-9.0074 IE-02 
-8.85205E-02

-8.56961E-01 
-6.21900E-01 
-3.96130E-01 
-2.04890E-01 
-6.43321E-02 
1.84790E-02 
4.55677E-02

-1.01179E-01 
-6.86104E-02 
-3.74944E-02 
-1.14742E-02 
7.26050E-03 
1.79737E-02 
2.13831E-02

ITCHING ROTATION

2.20216E-01 
2.20216E-01 
2.20216E-01 
2.20216E-01 
2.20216E-01 
2.20216E-01 
2.20216E-01

VALUES OF AHH:

O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO

-1.53322E-03 
-1.53145E-03 
-1.52382E-03 
-1.51410E-03 
-1.50531E-03 
-1.49979E-03 
-1.49915E-03

-1.49460E-02 
-1.49454E-02 
-1.49444E-02 
-1.494 3 0E-02 
-1.49411E-02 
-1.49387E-02 
-1.49356E-02

-4.31204E-02 
-4.31145E-02 
-4.31016E-02 
-4.30829E-02 
-4.3 058 3 E-02 
-4.30268E-02 
-4.29863E-02

1.05855E-02 
1.0584 IE-02 
1.05806E-02 
1.05752E-02 
1.05678E-02 
1.05580E-02 
1.05449E-02

O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO

O.OOOOOE+OO 

VALUES OF CLA:

4.7 0000E+00 4.7OOOOE+OO 4.70000E+00 4.70000E+00 4.70000E+00 4.70000E+00

4.70000E+00

VALUES OF A:

-5.00000E-01-5.OOOOOE-Ol-5.00000E-01-5.00000E-01-5.00000E-01-5.00000E-01 

-5.OOOOOE-Ol

EFFECTS OF DOWNWASH INCLUDED WITH NZI =30

UTTER ANALYSIS
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IAL FREQUENCY: INITIAL VALUE
48.000

INCREMENT
1.000

FINAL VALUE 
51.000

LI AL VELOCITY: INITIAL VALUE
72.000

INCREMENT
0.100

FINAL VALUE 
73.000

********** ALL DATA ABOVE THIS LINE **********

********** RESULTS FOLLOW THIS LINE **********

AROW THETA U MU OMEGA REAL PT IMAG PT

48.000 0.00 72.000 0.000 48.000 -0.3701E+25 -0.8430E+25
49.000 0.00 72.000 0.000 49.000 -0.6868E+24 -0.5045E+25
50.000 0.00 72.000 0.000 50.000 0.2344E+25 0.6657E+24

RHO VALUE WHEN REAL DET ZERO= 49.22660

RHO VALUE WHEN IMAGINARY DET ZERO= 49. 88344

51.000 0.00 72.000 0.000 51.000 0.5122E+25 0.9257E+25
48.000 0.00 72.100 0.000 48.000 -0.4113E+25 -0.7659E+25
49.000 0.00 72.100 0.000 49.000 -0.1253E+25 -0.4149E+25
50.000 0.00 72.100 0.000 50.000 0.1586E+25 0.1701E+25

RHO VALUE WHEN REAL DET ZERO= 49.44119

RHO VALUE WHEN IMAGINARY DET ZER0= 49. 70923

51.000 0.00 72.100 0.000 51.000 0.4144E+25 0.1045E+26
48.000 0.00 72.200 0.000 48.000 -0.4535E+25 -0.6885E+25
49.000 0.00 72.200 0.000 49.000 -0.1829E+25 -0.3251E+25
50.000 0.00 72.200 0.000 50.000 0.8323E+24 0.2742E+25

RHO VALUE WHEN REAL DET ZERO= 49.68726

RHO VALUE WHEN IMAGINARY DET ZERO= 49. 54243

51.000 0.00 72.200 0.000 51.000 0.3171E+25 0.1165E+26
48.000 0.00 72.300 0.000 48.000 -0.4955E+25 -0.6108E+25
49.000 0.00 72.300 0.000 49.000 -0.2403E+25 -0.2347E+25
50.000 0.00 72.300 0.000 50.000 0.7370E+23 0.3787E+25

RHO VALUE WHEN REAL DET ZERO= 49.97024

RHO VALUE WHEN IMAGINARY DET ZERO= 49. 38264

51.000 0.00 72.300 0.000 51.000 0.2192E+25 0.1285E+26
48.000 0.00 72.400 0.000 48.000 -0.5376E+25 -0.5326E+25
49.000 0.00 72.400 0.000 49.000 -0.2983E+25 -0.1440E+25
50.000 0.00 72.400 0.000 50.000 -0.6980E+24 0.4834E+25

RHO VALUE WHEN IMAGINARY DET ZERO= 49. 22956

51.000 0.00 72.400 0.000 51.000 0.1199E+25 0.1406E+26
RHO VALUE WHEN REAL DET ZERO= 50.36800

48.000 0.00 72.500 0.000 48.000 -0.5806E+25 -0.4542E+25
49.000 0.00 72.500 0.000 49.000 -0.3565E+25 -0.5296E+24
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50.000 0.00 72.500 0.000 50.000 -0.1461E+25 0.5888E+25
RHO VALUE WHEN IMAGINARY DET ZERO= 49. 08253

51.000 0.00 72.500 0.000 51.000 0.2150E+24 0.1527E+26
RHO VALUE WHEN REAL DET ZERO== 50.87173

48.000 0.00 72.600 0.000 48.000 -0.6229E+25 -0.3753E+25
49.000 0.00 72.600 0.000 49.000 -0.4147E+2 5 0.3852E+24

RHO VALUE WHEN IMAGINARY DET ZERO= 48. 90692

50.000 0.00 72.600 0.000 50.000 -0.2230E+25 0.6945E+25
51.000 0.00 72.600 0.000 51.000 -0.7802E+24 0.1649E+26
48.000 0.00 72.700 0.000 48.000 -0.6659E+25 -0.2962E+2 5
49.000 0.00 72.700 0.000 49.000 -0.4732E+25 0.1304E+25

RHO VALUE WHEN IMAGINARY DET ZERO= 48. 69435

50.000 0.00 72.700 0.000 50.000 -0.3003E+25 0.8006E+25
51.000 0.00 72.700 0.000 51.000 -0.1772E+25 0.1771E+26
48.000 0.00 72.800 0.000 48.000 -0.7085E+25 -0.2166E+25
49.000 0.00 72.800 0.000 49.000 -0.5312E+25 0.2227E+25

RHO VALUE WHEN IMAGINARY DET ZERO= 48. 49306

50.000 0.00 72.800 0.000 50.000 -0.3773E+25 0.9073E+25
51.000 0.00 72.800 0.000 51.000 -0.2764E+25 0.1894E+26
48.000 0.00 72.900 0.000 48.000 -0.7 512E+2 5 -0.1367E+25
49.000 0.00 72.900 0.000 49.000 -0.5898E+25 0.3154E+25

RHO VALUE: when :IMAGINARY DET ZERO= 48. 30239

50.000 0.00 72.900 0.000 50.000 -0.4543E+25 0.1014E+26
51.000 0.00 72.900 0.000 51.000 -0.3757E+25 0.2017E+26
48.000 0.00 73.000 0.000 48.000 -0.7941E+25 -0.5645E+24
49.000 0.00 73.000 0.000 49.000 -0.6483E+25 0.4085E+25

RHO VALUE WHEN IMAGINARY DET ZERO= 48.12142
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Output file for example K.5 (B)

STABILITY OF AIRCRAFT

STRUCTURAL DETAILS:

CF FQ
1.0000E+05 2.OOOOE+OO

NN NC NR NM ND LR LS SF PR
20 19 38 4 72 0 0 6.700 3.0000 0

LIST OF NORMAL MODES REQUIRED FOR FLUTTER ANALYSIS:

-1 -2 -3 -8

CONNECTION LIST: 19 CONNECTIONS IN ALL(LOWER NODE,HIGHER NODE,MEMBER)

1 2 1 2 3 2 3 4 3 4 5 4 5 6 5
6 7 6 7 8 7 8 9 8 9 10 9 9 11 10
11 12 11 12 13 12 13 14 13 14 15 14 14 16 15
16 17 16 17 18 17 18 19 18 19 20 19

LIST OF MEMBER PROPERTIES:

El EA GJ MASS/L MASS M.I/L AXIAL FORCE
2.6100E+05 9.1250E+07 2.4 000E+05 6.94 00E+00 3.7640E-01 0.0000E+00
3.2400E+05 1.1682E+08 3.4 000E+05 9.7720E+00 5.03 00E-01 0.0000E+00
4.3200E+05 1.4240E+08 4.5000E+05 1.1360E+01 7.4 500E-01 0.0000E+00
5.7600E+05 1.6940E+08 6.2000E+05 1.2821E+01 1.0370E+00 0.OOOOE+OO
9.0900E+05 1.9500E+08 9.0000E+05 1.4251E+01 1.5190E+00 0.0000E+00
1.2780E+06 2.1900E+08 1.2600E+06 2.0170E+01 1.9766E+00 0.OOOOE+OO
1.7550E+06 3.3600E+08 1.7800E+06 1.9520E+01 2.4500E+00 0.OOOOE+OO
2.2230E+06 4.5210E+08 2.2 600E+06 2.6323E+01 3.9030E+00 0.OOOOE+OO
1.0000E+09 1.OOOOE+09 1.0000E+09 1.0000E-03 1.0000E-03 0.OOOOE+OO
2.6370E+06 4.7 216E+08 2.5900E+06 2.7850E+01 4.2020E+00 0.OOOOE+OO
3.0060E+06 4.9010E+08 2.87 00E+06 2.8946E+01 4.4430E+00 0.OOOOE+OO
3.3750E+06 5.1450E+08 3.1600E+06 3.4496E+01 4.6820E+00 0.OOOOE+OO
1.0000E+09 1.0000E+09 1.0000E+09 1.0000E-03 1.0000E-04 0.OOOOE+OO
1.0000E+09 1.0000E+09 1.0000E+09 1.0000E-03 1.0000E-04 0.OOOOE+OO
1.0000E+09 1.0000E+09 1.0000E+09 1.0000E-03 1.0000E-04 0.OOOOE+OO
7.2906E+06 1.0000E+10 2.9342E+05 2.2799E+01 1.3460E+01 0.OOOOE+OO
7.2906E+06 1.0000E+10 2.9342E+05 6.1265E+00 5.04 00E+00 0.OOOOE+OO
1.4 600E+05 1.0000E+11 1.0000E+07 1.0770E+01 1.0000E-03 0.OOOOE+OO
7.9100E+04 1.0000E+10 1.0000E+07 8.6442E+00 1.0000E-03 0.OOOOE+OO

LIST OF NR REAL NUMBERS:

-4.9670E-01 5.0000E+00 -4.3180E-01 4.5580E+00 -3.8100E-01 4.0480E+00
-3.0480E-01 3.54 60E+00 -2.2860E-01 3.0380E+00 -1.5240E-01 2.5280E+00
-7.62 00E-02 1.9668E+00 1.6180E+00 1.3180E+00 1.0080E+00 7.5800E-01
4.2800E-01 0.OOOOE+OO 4.5584E-01 7.8144E-01 1.4472E+00 -2.3320E-02
-1.0333E+00 -4.4 893E+00 7.7750E-01 1.5550E+00 -1.5850E+00 8.0000E-01
3.5000E-01 2.0000E+01 1.8200E+02 1.1631E+02 8.5442E+01 1.0000E+01
2.3945E+00 6.7350E+00
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NODE CO-ORDINATE LIST:CO-ORDINATES OF 20 NODES(X,Y ,Z :RIGHT HANDED SET)

1 2 20 3 4 20 5 6 20 7 8 20 9 10
11 12 20 13 14 20 20 15 20 20 16 20 21 16
20 17 20 20 18 20 20 19 20 20 20 20 23 20
24 20 20 25 20 20 26 20 20 26 27 20 26 28

LIST OF ND AFFECTED DEGREES OF FREEDOM:

1 1 0 1 2 0 1 6 0 2 1 0 2 2
2 6 0 3 1 0 3 2 0 3 6 0 4 1
4 2 0 4 6 0 5 1 0 5 2 0 5 6
6 1 0 6 2 0 6 6 0 7 1 0 7 2
7 6 0 8 1 0 8 2 0 8 6 0 9 1
9 2 0 9 6 0 10 3 32 10 6 0 11 1
11 2 0 11 6 0 12 1 0 12 2 0 12 6
13 1 0 13 2 0 13 6 0 14 1 0 14 2
14 4 0 14 6 0 15 1 0 15 2 0 15 3
15 4 0 15 5 34 15 6 0 16 1 0 16 2
16 3 -30 16 4 0 16 5 -31 16 6 0 17 1
17 2 0 17 3 35 17 4 0 17 5 38 17 6
18 1 0 18 2 0 18 3 36 18 4 0 18 5
18 6 0 19 1 0 19 2 0 19 6 0 20 1
20 2 0 20 6 0

AERODYNAMIC DETAILS:

NWN NIP NRB NCS SWP RO G NUC
13 13 0 10 9.58 1.0550 0.000 10

NTPN NNTT NNTR NIPT 
3 20 18 5

SWPT SMC XLT ZT
0.00 1.5000 4.3550 0.0000

WING DETAILS

Y B AH CLA A

5.000 0.457 -0.462 4.221 -0.500
4.558 0.505 -0.459 4.221 -0.500
4.048 0.565 -0.438 4.221 -0.500
3.546 0.624 -0.425 4.221 -0.500
3.038 0.683 -0.413 4.221 -0.500
2.528 0.743 -0.402 4.221 -0.500
1.967 0.808 -0.383 4.221 -0.500
1.618 0.850 -0.404 4.221 -0.500
1.318 0.885 -0.349 4.221 -0.500
1.008 0.921 -0.296 4.221 -0.500
0.758 0.950 -0.257 4.221 -0.500
0.428 0.989 -0.207 4.221 -0.500
0.000 1.040 -0.145 4.221 -0.500

20
22
20
20

0
0
0
0
0
0
0
0

33
0
0
0
37
0
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TAILPLANE DETAILS

YT BT AHT CLAT AT

1.555 0.335 0.000 3.520 -0.500
0.777 0.435 0.000 3.520 -0.500
0.000 0.535 0.000 3.520 -0.500

GENERALISED MASS AND STIFFNESS MATRICES

6 . 5 7 4 1 1 E + 0 1  
- 2 . 5 1 0 5 2 E - 0 1  

3 . 0 6 7 1 3 E - 0 2  
- 8 . 8 3 1 9 2 E - 0 2

8 . 2 1 5 6 2 E + 0 8  
4 . 2 7 6 8 4 E + 0 7  
1 . 7 7 4 8 9 E + 0 2  

- 1 . 6 3 1 4 8 E + 0 4

-2.51052E-01 
4.38011E+02 
5.46200E-02 

-9.17167E-02

4.27684 E+07 
9.92033E+06 
3.23066E+02 

-1.603 37E+04

3.06713E-02 
5.46200E-02 
9.52119E+00 
1.56152E-04

1.77489E+02 
3.23066E+02 
5.80515E+04 
5.32989E+00

-8.83192E-02 
-9.17167E-02 
1.56152E-04 
2.04690E+00

-1.63148E+04 
-1.60337E+04 
5.32990E+00 
3.70539E+05

FREQUENCIES IN RAD/SEC:

5.02659E+01 5.02659E+01 7.80835E+01 4.24443E+02

INTERPOLATED VALUES OF HH, AA, BB, AHH, CLA, A 

WING DETAILS

VERTICAL DISPLACEMENT

1.05996E-01 
5.48795E-02 
1.25514E-01 
4.8611IE-02 
6.66424E-02 
3.70110E-02 
2.90129E-02 
1.90924E-02 
-3.99139E-03 
-4.64755E-03 
-6.0553 5E-03 
-6.38634E-03 
-5.22170E-03

1.00000E+00 
1.OOOOOE+OO 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.OOOOOE+OO 
1.OOOOOE+OO 
1.OOOOOE+OO 
1.OOOOOE+OO 
1.OOOOOE+OO 
1.OOOOOE+OO

1.OOOOOE+OO 
8.36648E-01 
6.87007E-01 
5.31391E-01 
3.96728E-01 
2.75985E-01 
1.76592E-01 
9.68634E-02 
3.62373E-02 

-3.67 009E-03 
-2.71100E-02 
-3.46472E-02 
-3.45478E-02

1.16528E-01 
1.12165E-01 

-6.90704E-02 
-1.63198E-02 
-6.98771E-02 
-3.97697E-02 
-2.84135E-02 
-1.314 09E-02 
1.62845E-02 
1.01813E-02 
2.95409E-03 
-9.46166E-04 
-2.53072E-03

PITCHING ROTATION

2.23910E-01 
2.23910E-01 
2.23910E-01 
2.23910E-01 
2.23910E-01 
2.2 3910E-01 
2.23910E-01 
2.23910E-01 
2.23910E-01 
2.23910E-01 
2.23910E-01 
2.23910E-01 
2.23910E-01

1.OOOOOE-05 
1.OOOOOE-05 
1.00000E-05 
1.00000E-05 
1.00000E-05 
1.OOOOOE-05 
1.00000E-05 
1.OOOOOE-05 
1.00000E-05 
1.00000E-05 
1.00000E-05 
1.00000E-05 
1.00000E-05

5.76223E-02 
5.67461E-02 
5.6609 IE-02 
5.27523E-02 
4.79896E-02 
4.13118E-02 
3.49032E-02 
2.81876E-02 
2.12724E-02 
1.54900E-02 
1.05593E-02 
6.28595E-03 
6.39655E-03

-1.OOOOOE+OO 
-9.30830E-01 
-9.67113E-01 
-8.11772E-01 
-7.43954E-01 
-6.16470E-01 
-5.08790E-01 
-3.97521E-01 
-2.92328E-01 
-2.03675E-01 
-8.89632E-02 
1.08517E-02 
6.19248E-03

VALUES OF AHH:
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-4.62000E-01-6.46490E-01-2.30487 E-01-5.38195E-01-3.65283E-01-4.34988E-01 

-3.9614 0E-01-3.$8130E-01-4.06861E-01-3.34044E-01-2.72680E-01-2.11118E-01 

-1.45200E-01 

VALUES OF CLA:

4.22100E+00 4.22100E+00 4.22100E+00 4.22100E+00 4.22100E+00 4.22100E+00 

4.22100E+00 4.22100E+00 4.22100E+00 4.22100E+00 4.22100E+00 4.22100E+00 

4.22100E+00 

VALUES OF A:

-5.00000E-01-5.00000E-01-5.00000E-01-5.00000E-01-5.00000E-01-5.00000E-01 

-5.00000E-01-5.00000E-01-5.00000E-01-5.00000E-01-5.00000E-01-5.00000E-01 

-5.00000E-01 

TAILPLANE DETAILS

VERTICAL DISPLACEMENT

1.00000E+00 
1.OOOOOE+OO 
1.00000E+00 
1.OOOOOE+OO 
1.00000E+00

1.OOOOOE+OO 
1.OOOOOE+OO 
1.OOOOOE+OO 
1.OOOOOE+OO 
1.OOOOOE+OO

-1.16308E-01 
-1.05014E-01 
-9.62054E-02 
-8.98822E-02 
-8.60444E-02

6.93649E-03 
1.10501E-03 

-2.94481E-03 
-5.21297E-03 
-5.69948E-03

PITCHING ROTATION

2.23910E-01 
2.23910E-01 
2.23910E-01 
2.23910E-01 
2.23910E-01

1.00000E-05 
1.00000E-05 
1.00000E-05 
1.00000E-05 
1.OOOOOE-05

-1.95358E-02 
-1.95358E-02 
-1.95358E-02 
-1.95359E-02 
-1.95360E-02

-8.27717E-03 
-8.27705E-03 
-8.2 7 658E-03 
-8.27574E-03 
-8.27454E-03

VALUES OF.AHH:

0.OOOOOE+OO 0.OOOOOE+OO 0.OOOOOE+OO 0.OOOOOE+OO 0.OOOOOE+OO

VALUES OF CLA:

3.52000E+00 3.52000E+00 3.52000E+00 3.52000E+00 3.52000E+00

VALUES OF A:

-5.00000E-01-5.00000E-01-5.00000E-01-5.00000E-01-5.00000E-01

EFFECTS OF DOWNWASH INCLUDED WITH NZI =30

DYNAMIC STABILITY ANALYSIS

VELOCITY= 61.680

TRIAL RHO: INITIAL VALUE 
5.000

INCREMENT
1.000

FINAL VALUE 
9.000
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AL THETA: INITIAL VALUE INCREMENT FINAL VALUE
55.000 1.000 62.000

********** ALL DATA ABOVE THIS LINE **********

********** RESULTS FOLLOW THIS LINE **********

AROW THETA U MU OMEGA REAL PT IMAG PT

5.000 55.00 61.680 -4.096 2.868 0.1104E+18 0.3400E+18
6.000 55.00 61.680 -4.915 3.441 0.1099E+18 0.3 673E+18
7.000 55.00 61.680 -5.734 4.015 0.2303E+17 0.2698E+18
8.000 55.00 61.680 -6.553 4.589 -0.2215E+18 -0.1210E+17

RHO VALUE! WHEN REAL DET ZERO= 7.09419

RHO VALUE; WHEN IMAGINARY DET ZERO= 7.95709

9.000 55.00 61.680 -7.372 5.162 -0.7106E+18 -0.5471E+18
5.000 56.00 61.680 -4.145 2.796 0.1101E+18 0.3373E+18
6.000 56.00 61.680 -4.974 3.355 0.1174E+18 0.3558E+18
7.000 56.00 61.680 -5.803 3.914 0.4935E+17 0.2416E+18
8.000 56.00 61.680 -6.632 4.474 -0.1629E+18 -0.6881E+17

RHO VALUEI WHEN REAL DET ZERO= 7.23249

RHO VALUE! WHEN IMAGINARY DET ZERO= 7.77832

9.000 56.00 61.680 -7.461 5.033 -0.6008E+18 -0.652 OE+18
5.000 57.00 61.680 -4.193 2.723 0.1078E+18 0.3358E+18
6.000 57.00 61.680 -5.032 3.268 0.1249E+18 0.3467E+18
7.000 57.00 61.680 -5.871 3.812 0.7661E+17 0.2185E+18
8.000 57.00 61.680 -6.709 4.357 -0.1010E+18 -0.1173E+18

RHO VALUE: WHEN REAL DET ZERO= 7.43138

RHO VALUE: WHEN IMAGINARY DET ZERO= 7.65063

9.000 57.00 61.680 -7.548 4.902 -0.4850E+18 -0.7451E+18
5.000 58.00 61.680 -4.240 2.650 0.1038E+18 0.3357E+18
6.000 58.00 61.680 -5.088 3.180 0.1324E+18 0.3399E+18
7.000 58.00 61.680 -5.936 3.709 0.1048E+18 0.2003E+18
8.000 58.00 61.680 -6.784 4.239 -0.3578E+17 -0.1579E+18

RHO VALUE WHEN REAL DET ZERO= 7.74550

RHO VALUE WHEN IMAGINARY DET ZERO= 7.55912

9.000 58.00 61.680 -7.632 4.769 -0.3582E+18 -0.82 56E+18
5.000 59.00 61.680 -4.286 2.575 0.1021E+18 0.3348E+18
6.000 59.00 61.680 -5.143 3.090 0.1412E+18 0.3346E+18
7.000 59.00 61.680 -6.000 3.605 0.1354E+18 0.1863E+18
8.000 59.00 61.680 -6.857 4.120 0.3372E+17 -0.1904E+18

RHO VALUE WHEN IMAGINARY DET ZERO= 7.49453

9.000 59.00 61.680 -7.715 4.635 -0.2250E+18 -0.8939E+18
RHO VALUE WHEN REAL DET ZERO= 8.13030
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5.000 60.00 61.680 -4.330 2.500 0.9988E+17 0.3348E+18
6.000 60.00 61.680 -5.196 3.000 0.1495E+18 0.3321E+18
7.000 60.00 61.680 -6.062 3.500 0.1661E+18 0.1775E+18
8.000 60.00 61.680 -6.928 4.000 0.1054E+18 -0.2149E+18

RHO VALUE WHEN IMAGINARY DET ZERO= 7.45233

9.000 60.00 61.680 -7.794 4.500 -0.8579E+17 -0.9498E+18
RHO VALUE WHEN REAL DET ZERO= 8.55137

5.000 61.00 61.680 -4.373 2.424 0.9710E+17 0.3357E+18
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