

City, University of London Institutional Repository

Citation: Cook, S.C. (1990). A knowledge-based system for computer-aided generation of

measuring instrument specifications. (Unpublished Doctoral thesis, City, University of
London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/29073/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Knowledge-Based System for Computer-Aided Generation of

Measuring Instrument Specifications

by

Stephen Clive Cook

A thesis submitted to

City University

for the degree of

DOCTOR OF PHILOSOPHY

Measurement and Instrumentation Centre,

Department of Electrical, Electronic and Information

Engineering, City University, London EC1V OHB, U.K.

November 1990

l

Contents
List of Figures
Acknowledgements
Declaration

Abstract

1. Introduction 12

1.1 Preface

1.2 Background

1.3 Structure of the Thesis

2. Review of Specifications as Engineering Management Tools 15

2.1 Introduction
2.2 Specifications in Systems Engineering

2.3 The Use of Specifications in the Instrument Development Process
2.3.1 The Industrial Instrument Development Process

2.3.2 Distinction Between the Specifications Used in the Development Process

2.4 The Specifications Considered for Computer-Assisted Generation

2.5 Consolidating Industrial Practice with Design Methodology Research

2.6 Conclusion

3. A Methodology for Automating the Specification Generation Process 27

3.1 Introduction
3.2 An Examination of Specification Practices for Measuring Instruments

3.2.1 Specification Practices

3.2.2 Selecting a Specification Type

3.2.3 A Review of Specification Methods, Language and Style

3.2.3.1 General Points

3.2.3.2 The Military Specification Style

3.2.3.3 Other Standard Techniques
3.3 The Case for Automation of the Specification Generation Process

3.3.1 The Importance of Specification Generation
3.3.2 Technology Transfer

3.3.3 Efficiency Limitations of the Manual Method

3.3.4 Adequacy Limitations of the Manual Method

3.3.5 Overspecification

3.3.6 Design Aims for a Specification Generation Tool

3.4 A Basis for the Automation of Specification Generation

3.4.1 The Human Specification Process

2

3.4.2 A Computer Specification Generation Process

3.4.2.1 The Process
3.4.2.2 Restrictions on Generality
3.4.2.3 A Specification Template for Measuring Instruments

3.5 Specification Methods

3.5.1 Scope
3.5.2 Applicable Documents

3.5.3 Requirements

3.5.4 General Description
3.5.5 Interface Definition

3.5.6 Electrical Interface
3.5.7 Mechanical Interface

3.5.8 Mechanical Interface

3.5.9 Thermal Interface

3.5.10 Performance Characteristics

3.5.10.1 Measuring Range

3.5.10.2 Static Performance

3.5.10.3 Dynamic Performance
3.5.10.4 Power Consumption

3.5.11 Physical Characteristics
3.5.12 Reliability

3.5.13 Maintainability

3.5.14 Environmental Conditions

3.5.15 Design and Construction

3.5.16 Quality Assurance Provisions

3.5.17 Preparation for Delivery

3.5.18 Notes
3.6 Discussion and Conclusion

4. Specriter 1: The First Automation of the Specification Generation Process 88

4.1 Introduction

4.2 Initial VAX Implementation

4.2.1 Human Interface

4.2.1.1 A Look at a Dialogue System

4.2.1.2 The Screen-Based Human Interface

4.2.2 Document Generation
4.3 The Need to Change Development Environments

4.4 The Personal Computer Implementation

4.4.1 The Selection of a More Suitable Host

4.4.2 The Final Version - Specriter 1.41

3

4.4.3 Specriter 1 Structure

4.4.3.1 Command Program

4.43.2 The Entry and Editing Program
4.43.3 The Text Generation Programs

4.5 Discussion of Specriter 1

4.5.1 Achievements of Specriter 1
4.5.2 Lessons Learned From Specriter 1

4.5.3 Requirements not Addressed by Specriter 1

4.5.4 Design Directions for the Next Specriter

4.6 Conclusion

5. Underlying Concepts for a Knowledge-Based Specriter 113

5.1 Introduction
5.2 Formal Specifications

5.2.1 The Case for Employing Formal Specification Techniques

5.2.2 A Limited Formal System for Measuring Instrument Specifications

5.2.2.1 Model-Based Approach

5.2.2.2 Property-Oriented Approach

5.2.2.2.1 Algebraic Specifications

5.2.2.22 Non-Algebraic Approaches

5.2.23 Selection of A Formal Technique

5.3 In Search of a Knowledge Representation for Specriter

5.3.1 The Case for Inclusion of Knowledge into Specriter

5.3.2 Specriter Knowledge Representation Requirements

53.2.1 Instrumentation Knowledge Representation Requirements

53.2.2 Specriter Human Interface Requirements

5.3.23 Specification Generation Requirements

5.33 In Search of A Knowledge Representation for Specriter

5.33.1 Rule-Based Systems

5.33.1.1 Introduction

53.3.1.2 Backward Chaining

5.33.1.3 Forward Chaining

533.1.4 Suitability of Rule-Based Systems for Specriter

5.33.2 Logic-Based Systems

5.3.33 Semantic Nets
53.3.4 Frame-Based Systems

53.3.4.1 Description

533.4.2 Suitability of Frames for Specriter

5.3.4 Selection of a Knowledge Representation for Specriter

5.4 Conclusion

4

1406. Specriter 3: A Knowledge-Based Specification Generation System
6.1 Introduction
6.2 The Selection of a Host Machine and Development Software

6.2.1 The Selection of the Host Machine

6.2.2 The Selection of the Programming Language

6.2.3 Text Handling and Human Interface Tools

6.3 Specriter 2

6.3.1 Introduction

6.3.2 Main Menu
6.3.3 Attribute Editing Program

6.3.4 Lessons Learned From Specriter 2

6.4 Specriter 3 General Description
6.4.1 Specriter 3 Knowledge Representation

6.4.1.1 Background

6.4.1.2 Implementation

6.4.2 Description of Each Layer

6.4.2.1 Proprietary Software

6.4.2.1.1 Operating System

6.4.2.1.2 Logical Framework

6.4.2.2 Purpose Written Software
6.4.2.2.1 The Specriter 3 Shell

6.4.2.2.1.1 The Human Interface Drivers

6.4.2.2.1.2 Local Text Generation

6.4.2.2.1.3 The Inference Engine

6.4.2.2.2 The Knowledge Base

6.4.2.2.3 The Specification

6.4.2.2.4 The Views

6.5 Specriter 3 Design and Function

6.5.1 Spec3

6.5.1.1 General Functions
6.5.1.2 Initialisation

6.5.1.3 The Main Menu
6.5.1.3.1 Overview

6.5.1.3.2 Menu Options

6.5.1.3.2.1 Options

6.5.1.3.2.2 Create

6.5.1.3.2.3 Edit

6.5.1.3.2.4 Text

6.5.1.3.2.5 Files
6.5.1.3.2.6 DOS

5

6.5.1.3.2.7 Quit

6.5.2 Edit3
6.5.2.1 General
6.5.2.2 Initialisation

6.5.2.3 Ediß Functions

6.5.2.3.1 Function Keys
6.5.2.3.1.1 Cursor Movement Keys

6.5.2.3.1.2 Function Key FI

6.5.2.3.1.3 Function Key F2
6.5.2.3.1.4 Function Key F3

6.5.2.3.1.5 Function Key F4

6.5.2.3.1.6 Function Key F5

6.5.2.3.1.7 Function Key F6

6.5.2.3.1.8 Function Key F10

6.5.2.3.1.9 Escape
6.5.2.3.1.10 Enter

6.5.2.3.2 Attribute Editing
6.5.2.3.2.1 Standard Entry Attributes

6.5.2.3.2.2 List Entry Attributes

6.5.2.3.2.3 Database-Assisted Entry Attributes

6.5.2.3.2.4 Option Attributes

6.5.2.3.2.5 Edit Attributes

6.5.3 The Specriter Inference Engine (SIE)

6.5.4 Textgerß
6.6 The Framedt Facility

6.6.1 Background

6.6.2 Framedt General Description

6.6.3 Using Framedt

6.7 Conclusion

7. Using Specriter 3 to Produce a Measuring Instrument Specification 186

7.1 Introduction

7.2 Human Interface Concepts
7.3 Generating a Measuring Instrument Specification with Specriter 3

7.3.1 Specification Creation

7.3.1.1 File Name Elicitation

7.3.1.2 The High Level Requirements

7.3.1.3 Intelligent Default Generation

7.3.1.3.1 Units, Measurand, and Instrument Name

7.3.1.3.2 Physical Characteristics

6

7.3.1.3.3 Electrical Interface
7.3.1.3.4 General and Static Performance
7.3.1.3.5 Dynamic Performance
7.3.1.3.6 Operating and Storage Environment

7.3.1.3.7 Quality Assurance

7.3.1.3.8 Reliability
7.3.1.3.9 Maintainability

7.3.1.3.10 Design and Construction

7.3.1.3.11 Preparation for Delivery

7.3.1.3.12 Notes
7.3.1.3.13 Applicable Documents

7.3.1.4 Completion of Entry

7.3.2 Editing a Specification
7.3.2.1 Units, Measurand, and Instrument Name

13.2.2 Physical Characteristics

13.23 Electrical Interface

13.2A General and Static Performance

13.2.5 Dynamic Performance

13.2.6 Operating and Storage Environment

13.2.1 Quality Assurance

13.23 Reliability

13.2.9 Maintainability
7.3.2.10 User Paragraph Screens

7.4 Text Generation

7.5 Finishing a Specriter 3 Session

7.6 Achievements of Specriter 3

1.1 Conclusion

8. Conclusions and Suggestions for Further Work 213

8.1 Conclusion

8.2 Suggestions for Further Work

Appendices

Appendix 1 - Specriter 1 User’s Guide

Appendix 2 - The Specriter 3 Knowledge Base

Appendix 3 - Specriter 3 Technical Reference

Appendix 4 - Publications Associated with this Research

Appendix 5 - Example Specification Produced by Specriter 3

217

227

246

252

266

References

Acronyms and Abbreviations

275

288

7

18

21

25

30

45

49

52
84

92

92

96

97

100

106

106
120

125

130

130

134

147

150

151

153
154

159

161

168

176

180

181

182

189

203

205

207

List of Figures

Typical System Specification Tree

Information How Diagram for the Development of an Instrument

Stages of the Design Process

Military Specification Types
The Human Specification Generation Algorithm

A Computer-Aided Specification Generation Process

Paragraph Headings for Requirement Specifications for Measuring Instruments

Default Matrix of Compliance

Order of Tackling Topics

Typical Specriter 1 Edit Screen

Specriter 1 Structure

Specriter 1 Main Menu

Specriter 1 Question Tree

Editor Menu

Text Format Menu
Structure of an Expert System

Production System Execution Cycle

Example of a Semantic Net
Semantic Net Illustrating Inheritance

Example of a Frame-Based System

The Layering of Specriter 3

Specriter 3 Frame Tree

List of Screens Topics for the Instrument Knowledge Base

Specriter 3 Frame Description

Specriter 3 Active Field Description

Specriter 3 Structure

Specriter 3 Main Menu - Edit Sub-Menu Open

A Typical Specriter 3 Editor Screen

Standard Predicates Implemented in the Specriter Inference Engine

The Structure of Framedt

The Framedt Main Menu

The Framedt Frame-Editing Menu

High-Level Requirements Screen

Physical Characteristics Screen

General and Static Performance Screen

Operating and Storage Environment Screen

8

Acknowledgements

I would like to acknowledge the support and encouragement given to me by my joint

supervisors Professors L. Finkelstein and P.H. Sydenham and thank them for

accommodating my need to start the research programme part-time. I would like to

express my gratitude to Dr. A Finkelstein for expanding my awareness of knowledge

representation and the application of formal methods.

A post-graduate research programme, especially one largely conducted part-time, has a

significant impact on one’s family. I would particularly like thank my wife, Hilary, for

her support and tolerance over what has been a very long haul. My sons, Aaron and

Robert, small as they are, have also done their best to give me the time I needed to

complete this work. Of the many friends and family who have given us help in our

relocation to the U.K. this year, my wife’s parents Mr & Mrs Burke, deserve special

mention.

All three employers I have had during the period of the research programme have

provided essential support. I am grateful to British Aerospace Australia Limited who

granted me paid study leave each week and enabled me to combine visits to the City

University with business trips. I am also grateful to Vision Systems who allowed me

study leave. I am particularly grateful to my current employer, the Electronics Research

Laboratory of the Defence Science and Technology Organisation, who not only granted

me study leave for a year’s part-time study but also awarded me a Postgraduate

Fellowship for 1990 to allow me to complete this work full time. I would also like to

thank members of the Terrestrial Transmissions Systems of ERL for their informative

communications throughout the year and help with many of the drawings.

9

Declaration

I grant powers of discretion to the University Librarian to allow this thesis to be copied

in whole or in part without further reference to me. This permission covers only single

copies made for study purposes, subject to normal conditions of acknowledgement.

10

Abstract

The task of writing specifications for measuring instruments requires knowledge from
many fields, including specification writing practices, measurement science and current
instrumentation practice. The subject of this thesis is the automation of this difficult
specialist task. This topic forms part of larger systems concerned with instrumentation
system design automation at the Measurement and Instrumentation Centre at City
University and the Measurement and Instrumentation Systems Centre at the South
Australian Institute of Technology. The thesis commences with a thorough review of
the specification process as applied to measuring instruments. This examination of the
specification process, was performed with cognisance of the engineering management
procedures in common use in industry. The outcome of this study was the extraction
of salient methods and techniques needed to systemise the production of formatted
instrument specifications. These were ensconced in a procedural program suite,
Specriter 1, which demonstrated the potential of computerising the process. The
valuable knowledge gained in the production and use of this system is discussed. The
body of the thesis covers the more ambitious limited formal system, Specriter 3, which
incorporates integral domain knowledge to provide substantial user assistance, and
checking for consistency and reasonableness. The frame-based generalised
documentation generation shell constructed for this task, is discussed together with the
features which make it particularly useful for Specriter 3, such as, the ability to
represent knowledge of the human interface, the output text, and the problem domain in
a modularised fashion, the ability to reason with the contents of the knowledge base
directly, and the complete independence of the knowledge base from the shell. The
knowledge-base editor Framedt, is described, which enables the knowledge base to be
readily altered or a new one constructed for a different document generation task.
Specriter has been used in two practical applications, and these are referenced in the
text.

li

Chapter 1

Introduction

1.1 Preface

This thesis describes the work performed as a Research Student at the City

University Measurement and Instrumentation Centre (MIC) and the South Australian

Institute of Technology Measurement and Instrumentation Systems Centre (MISC).

The majority of the research was conducted part time in Australia in conjunction

with MISC whilst employed as an Engineering Manager, with the final year being

undertaken full time at MIC at City University.

The subject of the research is the creation of a computer tool to assist in the

production of measuring instrument specifications. This work forms an integral part

of the Computer-Aided Engineering of Instruments (CAEINST) research program at

MISC which seeks to provide the necessary knowledge for a user to specify, create,

install and apply capable measurement and control systems (Sydenham 1987). It also

forms part of the research programme of the Design Theory and Methods Group, at

MIC, aimed at automating the measuring instrument specification process (Finkelstein

et. al., 1990). The design process can be thought of as a sequence of stages each of

which consists of information gathering and organisation, formulation, generation of

candidate designs, analysis of candidate designs, and finally decision (Finkelstein and

Finkelstein, 1983). Each of these can be automated separately and this research is

concerned with the first stage of the design process, that is, the preparation of the

requirements statement

1.2 Aim of the Research

The aim was to produce an automated, or at least a computer-assisted method of

generating a measuring instrument requirements specifications from a requirements

12

analysis. A further aim was to produce a specification in a form that can be used

for both technical, management, and contractual purposes. Another objective was to

provide direct interfacing to the other instrument design packages under development

at the two research centres, for example, measurement system requirements elicitation

(Sydenham et. al., 1990), and design concept generation (Mirza et. al., 1990).

1.3 Background

The current CAEINST concept was derived from the observation that there is an

underlying structure to the process of designing measuring instruments, and that there

exists commonly applicable principles and methodologies for this design field

(Bosman, 1978; Finkelstein & Finkelstein, 1983 & 1985; Sydenham, 1984). From

this, it was believed that it would be possible to construct a computer-aided design

package using this structure together with stored knowledge. From this background,

the context for the research program was framed:

(a) The users can be expected to be educated, but not expert in measurement

science, instrumentation, or specification writing.

(b) In the first instance, concentrate on the incorporation and structuring of existing

knowledge and techniques.

(c) Project management aspects are to be considered, not just technical ones.

(d) At a later stage, the resulting software would be integrated into larger systems.

1.4 Structure of the Thesis

The thesis is divided into eight chapters. The introduction and conclusion have been

kept small to encourage complete reading. The remaining chapters are outlined
below. Firstly, Chapter 2 discusses the various types of measuring instrument

specifications used in industry and how they relate to the literature of design

methodology. A brief review of the instrument design cycle highlights development

requirements specifications as the principal focus for this research effort.

Chapter 3 opens by examining the specification practices currently in use for

13

measuring instruments. In this treatment, emphasis is given to the more formal

specification practices generally found when the customer and supplier are from

different organisations and cost and timescales are important. The outcome from this
review is a choice of specification format. The chapter continues with a review of

specification language and style. Against this background, the case for automating

specification generation is argued. There are no precedents for this type of task, so

the human specification generation method was scrutinized and from this a process

which could be implemented on a computer is developed. The remainder of the

chapter is devoted to describing methods which can be used to specify each of the

paragraphs identified in the chosen specification format.

Chapter 4 opens by enumerating the design aims for a software tool to generate

measuring instrument specifications. Specriter 1, the first known computer-aided tool

of its type, is then described. A great deal was learned from this activity and this is

recorded later in the chapter.

Chapter 5 examines theoretical concepts that are of interest for further development

of the Specriter idea. It commences by examining the possibility of applying formal

specification methods to measuring instruments. This is followed by a review of

knowledge representation techniques suitable for the domains of instrument

engineering and specification writing. The chapter concludes by choosing a formal

specification paradigm and a cooperating knowledge representation technique suitable

for implementation on available computer systems.

Chapter 6 describes Specriter 3, the software system which embraces the ideas of

Chapter 5, Whereas, Chapter 7 describes how Specriter 3 can be used to generate,

edit and print measuring instrument requirements specifications. As the mechanics of

the software have been discussed in the previous chapter, this description is designed

to illustrate the contents of the measuring instrument knowledge base used by

Specriter 3.

Chapter 8 concludes the thesis by summing up the achievements of all phases of the

project and the contribution it has made to knowledge.

14

Chapter 2

Review of Specifications as Engineering Management Tools

2.1 Introduction

The relevant Oxford English Dictionary (1989) definition of the word specification

states:

"defn. 4d. techn. A detailed description of the particulars of some projected work

in building, engineering, or the like, giving the dimensions, materials, quantities

etc., of the work, together with directions to be followed by the builder or

contractor; the document containing this."

The dictionary traces the usage of the word specification in this context to 1833

when it was introduced by architects to describe the materials and workmanship

required for building contracts. From the inception of engineering specifications as

we know them, these documents have formed part of the agreement, or contract,

between a customer and a supplier (Mead et. al. 1956; Dunham et. el. 1979). Thus

the engineering specification takes on the dual role of describing the product or

service in technical terms and becoming a management tool. In their latter role,

specifications are used for estimating labour and material costs, controlling the

conduct of the work, and finally for determining acceptability of the final deliverable.

When a specification becomes part of a contract, the level of detail is necessarily

increased and consideration has to be given to the legal and financial consequences

of ambiguity and lack of completeness (Mead et. al. 1956). It is this form of

specification that this thesis is primarily concerned with. This chapter discusses the

various types of measuring instrument specifications used in industry and how they

relate to the literature of design methodology.

Instruments are often part of larger systems. System engineering employs numerous

15

specification types and it is advantageous to examine these to obtain the broadest

perspective on specification methods and applications. The first section of this

chapter is devoted to this topic.

The instrument design cycle is reviewed next. The exact type of specification this

project is concerned with is then identified within the system engineering framework

and the instrument design cycle.

The chapter concludes by consolidating this industrial background against more

theoretical viewpoints on instrument design methodology.

2.2 Specifications in Systems Engineering

Systems engineering has gained increasing attention since its recognition as a

discipline following the second World War. This has been stimulated by the

increasing cost and technical complexity of development and acquisition programs.

Some of this attention is no doubt due to large program failures which could

possibly have been avoided, or at least mitigated through the use of system

engineering (M’Pherson, 1980; DSMC, 1983).

The purpose of systems engineering is to prevent these failures through a unified

approach that completely defines all requirements on the system and establishes a

system configuration which can be shown to meet those requirement before detailed

development commences. The definition of the terms system and system engineering

depend on the application. The US Department of Defense definition given in

DSMC (1983), derived from MIL-STD-499A (1974), is perhaps the broadest and the

most common interpretation:

"System Engineering is the application of scientific and engineering efforts to (a)

transform an operational need into a description of system performance parameters

and a system configuration through the use of an iterative process of definition,

synthesis, analysis, design, test, and evaluation; (b) integrate related technical

parameters and ensure compatibility of all physical, functional, and program

16

interfaces in a manner that optimizes the total system definition and design; (c)

integrate reliability, maintainability, safety, survivability, human, and other such

factors into the total engineering effort to meet cost, schedule, and technical

performance objectives."

In its simplest terms, systems engineering is both a technical and a management

process and is often referred to as a "front end" process. That is, the majority of

system engineering tasks are completed in the initial phase of the program, termed

realisation by M’Pherson, when about 5% of the program’s funding is expended

(DSMC 1983).

Only those aspects of systems engineering which relate to measuring instruments as

system components will be pursued here. Of particular interest to this research

project is the first part of the system engineering definition, namely, the generation

of performance parameters and system configuration from an operational needs

statement. The outcome of this process is a complete set of system requirements

documented in a system specification and augmented by supporting specifications and

by a number of subsystem and lower level development specifications. Figure 2-1

illustrates a typical system specification tree for a space-flight instrument.

The system support specifications of Figure 2-1 are used to hold system specific

requirements which are common to many levels of the specification hierarchy.

Typical example include quality assurance requirements, safety standards,

workmanship standards, electromagnetic compatibility design standards and practices,

software standards and practices. The advantage of placing these requirements in

separate documents is to allow citation from each level of the specification tree

thereby avoiding needless repetition.

The system design process partitions the system requirements by function or

discipline until a level is reached where specific hardware items or software routines

are identified. The partitioning process usually involves the use of analysis and

simulation to translate and allocate all the system-level requirements to equipment-

level requirements (DSMC 1983). Examples include error budgets, mass, power

17

Figure 2-1
Typical System

 Specification Tree

SYSTEM - LEVEL

SPECIFICATIONS

SEGMENT - LEVEL

SPECIFICATIONS

SUB - SYSTEM - LEVEL

SPECIFICATIONS

EQUIPMENT - LEVEL

SPECIFICATIONS

consumption, reliability, structural alignment, communication bus loading. Note that

non-functional requirements are very definitely included in this process. Thus from a

system perspective, an individual instrument appears as one component. The common
conception of an instrument specification - a single page of predominantly functional

requirements - is dangerously inadequate. The complete system may fail if

inadequate attention is paid to such factors as availability, reliability, maintainability,

supportability, survivability, ergonomic factors, safety, and internal and external

compatibility (M’Pherson, 1980). Hence it is not only desirable but essential for the

specification to encompass all of these subjects.

The designer of an instrument destined to become part of a larger system, is isolated

from the ultimate customer’s desires and preferences by the system designers and by

a lack of a system-wide perspective (M’Pherson 1981). This places greater emphasis

on the completeness of the specification.

The acquisition of the various equipments which comprise a system may be

achieved through purchase of existing products or alternatively through

commissioning the development of purpose-built entities. This choice is usually

determined by circumstances rather than by choice. It is far less expensive to

purchase existing equipment, where possible, and this would be the preferred route

for most industrial systems. Military and space systems also make use of existing

equipment, in particular general purpose items such as computers, however a

higher proportion of new developments is common. The type of specification

needed in either case is different. This issue is the topic of discussion for the next

section and is elaborated further in Chapter 3.

2.3 The Use of Specifications in the Instrument Development Process

2.3.1 The Industrial Instrument Development Process

The instrument development process is preceded by the conversion of the

measurement problem description, inherent in which is an understanding of

knowledge the instrument is to obtain, into a development specification. If the

19

instrument is part of a larger system, then this task will be performed as part of

the system design process (M’Pherson, 1981). A similar process must also occur

if the instrument is the highest level entity under consideration. Stage 1 of the

Measurement Process Algorithm (Sydenham, 1985b) is apt in either case.

The measuring instrument life cycle is generally considered to commence from the

design specification through to production and later post production support. This

process has been established for many years and differs little now from Figure 2-2

extracted from Draper, McKay & Lees (1952). The process commences from

what they refer to as the design specification (which is also commonly referred to

as a requirement specification, design aim, or development specification) and

proceeds into the research and development phase. The outcome of this phase,

often referred to as the A Phase or Alpha Phase, is all the information needed to

develop a production model. The physical principle of operation will have been

determined, theoretical performance calculated, and design realisation pursued to a

functional prototype. This prototype, often called the Engineering Model will be

functionally representative of the finished product but will be fabricated by the

most expedient means.

The first phase embraces the majority of the development risk. At its conclusion,

the performance and physical characteristics of the finished product will have been

determined. At this stage, the development specification is converted into a

product specification which contains more detail and more constrictions on the

final article. Such things as the physical principle of operation, enclosure material

and manufacturing method may be included now.

The production design phase, often referred to as the B Phase or Beta Phase, then

commences. The mechanical components are now designed to suit available

production processes. Electronic design activities concentrate on developing the

existing circuits into a form appropriate for the desired scale of production

followed by selecting production components, and finally laying out the circuit

boards. The resulting pre-production prototypes will then be exposed to both

rigorous laboratory testing and extensive field trials in the intended operating

20

z w
O in
in ^

S S
Z z .o iih 2U J- □ 0
0 £
i s

S,°
a O J z

hj (hi
ji|i if.’«in

rc T

ill!-1 j i Hi!
■Hi

lj!ii

2zfS ou

&

i [l

t11

j i

g52c-
¡HI
“els

uif)
g i
< a

I z

5sM J
LUQ

11 ; I » 1 :
»-s i IJ j i i i

!?"i

Figure 2-2 Information Flow Diagram for the Development of an Instrument
(from Draper, McKay & Lees, 1952)

21

environment. The output of this phase is the manufacturing or production data

pack which will include a complete set of drawings, a product specification which

reflects the characteristics to be achieved by the production instruments, all the

usual production planning documentation, together with specifications for

functional testing, physical inspection, and environmental testing.

2.3.2 Distinction Between the Specifications used in the Development Process

Confusion often exists when one talks about a specification for an instrument.

This is not surprising as there are so many different specifications which are used

within industry. Each functional group within an organisation usually only sees

one type, and there is a natural tendency to refer to it as the specification.

The specifications used by production staff are the easiest to distinguish. These

documents describe product inspections, functional tests, environmental tests,

acceptance tests and the like. Often a single document is issued to cover these

topics, although in certain circumstances, in particular in high risk projects,

numerous documents can be manifest. Typical names for these documents include

Inspection Requirements Specification, Test Requirements Specification,

Environmental Test Requirements Specification, EMC Verification Specification.

The common feature of all of these documents is that they refer to the verification

of the performance or some other characteristic of the instrument which should be

acceptable whenever the instrument has been correctly manufactured.

Perhaps the most difficult distinction is the one between development

specifications and product specifications. A development specification should

contain a minimum of constraints on the creativity of the designer. These
constraints should be limited to either system-level requirements which flow down,

such as the number and mass of enclosures or a few key features identified by the

marketing staff as being crucial to the product’s success. The latter category

would usually include size, colour, appearance and sometimes work’s cost price.

Development specifications describe what has to be done and should put no

restrictions on how it is to be achieved providing the specifications are met. In

22

contrast, a product function or fabrication specification has a different role. These

specifications ensure form, fit and function interchangeability and lower level

component interchangeability respectively. There is little flexibility left, and that

is the intention.

Another contributing factor to the confusion is the often messy interface between

the system engineers or marketing staff and the equipment designers. All too

often the requirement generators place unnecessary restrictions on the design

process because they wish to decide some aspect of the equipment design. In

addition, the system design activity may often include an A Phase for each unit to

provide verification of system budget partitions and costs etc. This is often

necessary to prepare the submission for funding of a major capital project. Thus

it is often the case that when the equipment designer first sees the instrument

specification, the design effort remaining is little more than that associated with

the production development phase.

Unfortunately the term Requirements Specification doesn’t have a consistent

meaning, although it usually is taken to mean a development specification. All

specifications which place requirements on the vendor can be called requirements

specifications. The MIL-STD-490A no longer uses the term for hardware items

preferring instead development, product function or product fabrication

specifications. However, it does retain the term for software and interfaces.

2.4 The Specifications Considered for Computer-Assisted Generation

The ensuing sections illustrate why it is important to make it clear exactly what type

of instrument specification is being discussed. This research project is not concerned
with all of the possible specifications which may be used in the development of an

instrument.

The primary interest of this research is to assist in the preparation of development

specifications. These specifications can then be used as input to the instrument

design process. Nonetheless, it will be shown in Chapter 3 that the format of

23

design process. Nonetheless, it will be shown in Chapter 3 that the format of
product function specifications differs little from a development specification and that

it is possible to generate both types using the same tools.

2.5 Consolidating Industrial Practice with Design Methodology Research

Finkelstein and Finkelstein (1983), showed that the process usually drawn as a linear

flow such as in Figure 2-2, can be thought of as a number of iterations through the

design process shown in Figure 2-3 reproduced from that paper. Each design process

is fuelled by either a needs statement or a requirements specification.

This more general description of the design process is quite consistent with industrial

practice and takes into account the flexibility that can occur in the number of stages

employed. The first stage is the system design or alternatively, the conversion of the

customer needs statement into a development specification. Each level of system

partition will usually involve another stage of the design process. Next comes the

equipment, in this case the instrument, research and development phase. The

production design phase is the final design phase, although this is often divided into

two to reflect the two-stage product refinement strategy commonly used in industry.

Within the context of this model, this research project and the resulting software aim

to undertake the information gathering and organisation for the cycle which precedes

the research and development phase. Capability to produce the more constrained

specifications needed before the production design phase will also be considered.

2.6 Conclusion

This chapter has reviewed the varied specifications used in industry and those

discussed in the systems engineering and design methodology literature. Broad

equivalence between the specification types referred to in these fields has been

shown. The type of specification which forms the subject of this research has been

identified as a requirements specification suitable for input to the research and

development phase of the instrument design process. An industrial perspective has

24

pr i mi t i ve need s tatement or r equi rement speci f i cat i on
f rom previ ous des i gn s tage

i n f o r m a t io n for creation of artefact or s y s t e m

or requ i re m e nt sp e c i f ic a t io n to next design stage

Figure 2-3 Stages of the Design Process (from Finkelstein & Finkelstein, 1983)

25

been adopted in this chapter because the practices developed to produce measuring

instrument specifications have come from that domain. The next chapter examines
specification practices and specification generation and proposes a general

specification method for measuring instruments which can be automated.

26

Chapter 3
A Methodology for Automating the Specification Generation Process

3.1 Introduction

In Chapter 2 the various types of specifications used in industry were discussed. It

was shown that the type of specification needed for development of an instrument is

what is variously known as a requirements specification, development specification,

design aim or design specification. These documents are characterised by describing

what the entity to be developed is to do and the design, implementation, and project

management aspects are specifically excluded. This chapter examines the practices

used in the production of requirements specifications for measuring instruments,

suggests what is to be gained by automating it, and proceeds to describe techniques

which could be used for that purpose.

All instruments are part of a larger universe and there are more constraints than just

the performance of the instrument characterised, by say, its input to output transfer

function. These additional constraints are so numerous that standard requirements

specification formats have been developed to aid completeness amongst other things.

This chapter commences by examining specification practices and selecting the most

appropriate practice, format and type for the general case of measuring instruments.

The language and style adopted to write specifications is covered here.

The next section presents the case for automating the specification process against
the background material previously presented. It concludes with a list of design aims

for a specification generation tool.

This is followed by a section which commences by examining the process used by

specification writers to create specifications for measuring instruments. An

underlying algorithm is identified which is exploited to form the basis for

27

automation. The remainder of the section describes a method that can be adopted to

generate each portion of the specification. The outcome of this section is a method

of producing English text which avoids the complexity of true natural language

generation.

The chapter closes by discussing what has been shown and how it can be used to

fulfil the goals of the research project.

3.2 An Examination of Specification Practices for Measuring Instruments

3.2.1 Specification Practices

Many items are still designed and produced in informal environments with little or

no written description. This practice is only workable if the supplier has an

intimate knowledge of the customer’s requirements and the application environment

of the finished product. It can, say, be both feasible and efficient in a research

environment for colleagues to task each other to develop instruments. However,

the success of this approach does rely on a vast amount of shared knowledge

between the parties involved in the task. It is also limited to situations where

money does not change hands or the amounts are insubstantial. This represents

one extreme of the continuum of specification practices.

In the more general case, a supplier will be expected to produce an instrument for

a customer at fixed price to be delivered on an agreed date. As the stakes

increase, the quality of the requirements specification, which is the cornerstone of

the contractual documentation, also needs to increase. Hence specifications for

scientific instruments to fly on spacecraft, are very detailed as the program budget

will usually be in the tens of millions of pounds and there is no second chance to

perfect the product. This represents the other extreme.

In recent years, Australia, in line with other countries has been extending the use

of formal quality requirements and encouraging their more widespread use in

industry to rectify the poor quality control of products. This has culminated in

28

the phasing in of stringent requirements regarding supplier’s quality assurance

provisions for all Australian Government purchases (SAA, 1985). For example,

organisations responsible for the design and manufacture of the products must

possess a quality assurance system conforming to AS 1821 (1985) which is

broadly equivalent to ISO 9001 and BS 5750 (1979). An important part of such

quality programs is design control which covers contract and specification review,

document preparation, design reviews, change control and adherence to company

standard procedures (Stebbing, 1979). Thus, the use of comprehensive formatted

specifications has expanded from military and avionics contractors to a much

wider cross-section of industry.

It would seem there is little value in generating a back-of-the-envelope-type

specification as used in an informal environment. Thus the selection of a suitable

practice really becomes a question of how detailed and rigorous one wishes to

become. In view of the changes occurring in industry and the desire to tackle all

the issues, at least briefly, it was decided to examine practices originating from

tighdy controlled industries.

There are a number of specification formats in use. Government agencies, large

companies and industry associations all have their preferred format. The one that

is probably the most commonly used is MIL-STD-490 (1968). This format has

been described in the literature by Burgess (1969) shortly after the publication of

the standard. In comparison, other formats, for example Leech (1972), suffer from

a lack of completeness. Since its introduction, adherence to MIL-STD-490 has

been mandatory for all United States Military procurements and is also extensively

used by U.S. government agencies such as NASA. It is also the basis for the

standard used for Australian Defence procurements. After 17 years the standard

was revised to become MIL-STD-490A (1985). The newer document is largely

unchanged from its predecessor but does embody a few refinements such as where

descriptive text should be placed in a specification.

MIL-STD-490A (1985) was selected for use in this research project, because the

format described is not only time proven but has recently been revised to reflect

29

the experience of long and widespread use. It can be argued that the actual

format chosen is less important than its completeness because it is not a difficult

task to present the information in an alterative form should this be necessary. In

regard to completeness, MIL-STD-490A is second to none.

3.2.2 Selecting the Specification Type

Measuring instruments are a sub-set of all the things MIL-STD-490A can be used

to specify. Hence the first decision to be made was which of the range of
specification types available, shown in Figure 3-1, is the most applicable to

requirement specifications for measuring instruments. Guidance for this is

available in the military specification MIL-S-83490 (1968).

Type A - System Specification

Type B - Development Specification

Type Bl - Prime Item

Type B2 - Critical Item

Type B3 - Non-Complex Item

Type B4 - Facility or Ship

Type B5 - Computer Program

Type C - Product Specifications

Type Cla - Prime Item Function

Type Clb - Prime Item Fabrication

Type C2a - Critical Item Function

Type C2b - Critical Item Fabrication

Type C3 - Non-Complex Item Fabrication

Type C4 - Inventory Item

Type C5 - Computer Program

Type D - Process Specification

Type E - Material Specification

Figure 3-1 Military Specification Types (from MIL-STD-490A & MIL-S-83490)

30

It is important to define the terminology used in Figure 3-1 as the meanings are

not uniform across the world and some are peculiar to the U.S. Military. MIL-S-

83490 defines a Type A System Specification as one which shall:

"... state all necessary requirements in terms of performance, including test

provisions to assure that all requirements are achieved. Type A specifications

shall state the technical and mission requirements of the system as an entity.

Specifications shall include requirements for functional areas, interfaces between

functional areas, interfaces with other systems, and application of any known

specific existing equipment"

Whereas Type B Development Specifications are defined as ones which:

"... shall state all necessary requirements in terms of performance. Essential

physical constraints shall be included. Type B specifications shall state

requirements for the development of items, other than systems. Specifications

shall specify all of the required item functional characteristics and the tests

required to demonstrate achievement of those characteristics."

A Type C Product Specification is used when the item already exists and contains

all the necessary detail to ensure that anything supplied to the specification will

have form, fit, and function interchangeability. In practice these specifications are

modified versions of the development specification containing increased level of

physical detail. They are prepared at the end of development phase B2 as

described in Chapter 2.

Types C and D refer to considerations in the production phase of the product life

cycle and will not be considered further.

Types A or B are the most suitable for the purpose of describing items which

may be either developed or purchased. Choosing which one to use is based on

what defines a system. An instrument would normally be considered at best to be

a sub-system and generally no more than an item, in particular when it is one of

31

many on a ship, for example. Even in the case where the purpose for the

platform is to carry an instrument, for example a spacecraft instrument or a sonar

buoy the instrument is considered to be a sub-system to be described by a Type B
description. When the instrument is a small desk-top unit, such as, say, a

laboratory thermometer, it could then be considered a system. However this

problem is resolved by the Intended Use paragraph of MIL-S-83490 which states

that:

"... Type A specifications are generally intended for use only for systems of

significant size and complexity."

Thus the use of Type B development specification is indicated for general

application to measuring instruments. The next decision is to determine which

subgroup is the most appropriate. The last two are clearly not applicable as

instruments are not computer programs or facilities. MIL-STD-490A defines non-

complex items as simple parts of prime or critical items which can be shown to

be suitable for the intended application by inspection or demonstration. Examples

given of non-complex items include special tools, work stands, fixtures, dollies

and brackets. Often the specification requires little more than a drawing. Thus

Type B3 Non-complex item specifications are unsuitable for even the simplest

measuring instrument.

The decision between choosing Type B1 and Type B2 is more difficult and can

be dependant on the nature of the instrument being specified and how it is to be

dealt with by the design authority. A definition of the two terms is the key to

understanding the difficulty in making the distinction. A prime item is considered

to be a complex item such as an aircraft, missile, radar set, or training equipment.

MIL-STD-490A states that a Type B1 specification is indicated if:

" ... A prime item development specification may be used as the functional

baseline for a single configuration item development program or as a part of

the allocated baseline where the configuration item covered is part of a larger

system development program."

32

It goes on to support this by stating that such an item will normally be formally

accepted, that spare parts will need to be provided for it, manuals produced, and

quality conformance inspection will be required for each item as opposed to

sampling. In contrast, a critical item is declared to be below the complexity of a

prime item but is nonetheless engineering or logistics critical because of its

complexity, its effect on system reliability, the need for spare parts or because it

has been designated an item for multiple source procurement.

The distinction between the two is largely a matter of the nature of the whole

task and the way the configuration control program has been organised. If the

overall task is to equip a new facility with instrumentation then each instrument

would be a critical item. Configuration control, the discipline of knowing exactly

the revision status of each item in a system, would be applied to the system as a

whole, and each instrument would appear as a minor element in the overall

configuration management plan. On the other hand, if the task is to design, build

and commission a major scientific instrument such as a wide aperture radiometer

then it is a prime item if not a system. Examination of Appendix II and

Appendix III of MIL-STD-490A which detail the contents of prime item

development specifications and critical item development specifications

respectively, shows that the major difference is in the amount of detail that needs

to be included in the requirements section, in particular interface definition and

characteristics. Thus a prime item specification can be considered to be a superset

of the contents of a critical item specification.

When considering the automation of the specification generation process, using

more than one format is an unnecessary complexity. A single format must be

chosen that is sufficiently general to cover a large range of instrument

development situations. There is little value in attempting to automate the

production of specifications for really large systems because they tend to have

unusual requirements and because by very nature and expense, these projects tend

to challenge established techniques. Hence generation of system specifications

will not be considered further. Prime item development specifications cover all

the items presented in critical item specifications, so this type was seen as the

33

logical choice, and the Type B1 format was selected. Excessive detail can be

handled, as necessary to suit the project, using the techniques presented later in

the chapter.

3.2.3 A Review of Specification Language and Style

It has already been stated that specifications have the dual role of conveying

essential technical requirements from a customer to a supplier and acting as a

management tool for the conduct of the work. In their latter capacity a

specification will often form the basis for a legally binding contract. In the same

way that the legal profession has found it necessary to adopt a definite style of

language, specifications tend to be written in a particular style and certain words

and phrases have taken on specific meanings.

3.2.3.1 General Points

There is a large number of references that offer guidance on what should

appear in a specification, the pitfalls to avoid, and some advice on which

practices should not be used in specification generation (Mead et. al., 1956;

Hill, 1970; Leech 1972; Dunham et al., 1979; Sydenham, 1986). These points

can be summed up by the realisation that specifications are documents which

fill a particular role and must be written with that thought firmly entrenched.

It is commonly pointed out that a specification is not a novel but a series of

requirement statements which must be written in clear and simple language,

and, as such, everything should be sacrificed for clarity. It is also advised that

specifications are not a treatise and should be as brief as possible, consistent

with completeness and exactness. A point which receives considerable attention

is that the requirements should be definite and unambiguous. Indeterminate

specifications especially those which seek to exercise arbitrary control are

warned about in Mead et. al. (1956). This is more a problem in civil

engineering where terms such as "as the engineer or architect shall direct" are

used which leave the entire matter open to interpretation. Further problems to

34

be avoided include overspecification, which simply increases the cost to no

advantage, and unnecessary restrictions which stifle creativity (Voelcker 1988).

Specifications should not include management information such as statements of

work, schedules, warranty provisions, payment details etc. These should be

covered in the general provisions of the contract.

All this advice is correct and valuable but does little to help the fledgling

specification writer learn how to write a specification or describe the style to

be used. This information is not readily available as it is considered

proprietary by commercial organisations. Once again examination of military

methods provides some assistance.

3.2.3.2 The Military Specification Style

The United States of America Department of Defense mandates not only the

format of specifications in MIL-STD-490A (1985), but also constrains the use

of language and writing style. The standard directs that short sentences with a

minimum of punctuation, consistent with correct interpretation, are to be used

and long sentences containing compound clauses should be rewritten in the

required format. Consistency in terminology is also required hence the

common practice of using more or less synonymous words for the sake of

euphony is not only discouraged as it is by Mead et. al. (1956), but prohibited.

These points are valuable when considering the automation of specification

generation. The language style adopted by the US military is much easier to

generate than free form prose.

The next most important point is the meaning attributed to certain words by

MIL-STD-490A (1985). The word shall is required whenever a specification

expresses a provision that is binding. The infinitive form of the verb or the

word must as used to convey the same meaning in commercial specifications,

(Leech, 1972) are not acceptable. The words should and may are to be used

whenever it is necessary to express non-mandatory provisions. DSMC (1983)

35

expands on this by stating that the use of should or preferred means that the
use of an alternative must be justified whereas may indicates that the

contractor’s selection will be acceptable. The use of will is limited to cases

where simple futurity is to be indicated. For example, the statement "The

instrument shall survive its operating environment." means that it is to be

designed and manufactured in such a way that it will survive its operating

environment. Whereas if "shall" were replaced by "will", the statement would

be interpreted as a fact that would be of no concern to the designers, i.e., the

very nature of the instrument would be such as to permit it to survive the
environment. Hence, use of the word "will" is constrained to statements of the

type: "The Government will provide the following equipment to support the

development ... ". Use of the present tense is taken as expressing a fact and

does not form part of the specification. The standard requires that the

emphatic form of the verb shall be used throughout the specification, for

example: "The indicator shall be designed to measure ...". The exception is in

the test provisions section where the imperative form is permissable when

preceded by the text: "the following tests shall be performed". The example

given for the emphatic form is:

"The indicator shall be turned to zero and 230 volts alternating current

applied."

Which may expressed in imperative form as:

"Turn the indicator to zero and apply 230 volts alternating current."

MIL-STD-490A (1985) also denotes certain phrases be used in certain

situations. For example, when citing a reference document one of the

following is mandated "conforming to ..." , "as specified in ...", or "in

accordance with ...". When referencing a requirement in the specification

which is rather obvious or not difficult to locate "as specified herein" is to be

used. "Unless otherwise specified" placed at the start of a sentence or

paragraph is used to indicate an alternative course of action but only where it

36

is possible to clarify the meaning by providing a reference. This will usually

be the contract or a higher level specification. When it necessary to use a

proprietary name because it is the only adequate method of describing an item,

the words "or equal" are used to permit competition.

Positive limitations are described so that the number stated is included in what

is acceptable. This effectively amounts to specifying measurable quantities as

greater than or equal to or less than or equal to the stated limit. The example

given is:

"The diameter shall be no greater than ... ".

"Not applicable" indicates that the specifier has thought about the subject of the

paragraph and has deliberately chosen not to state a requirement. (Irrelevant or

inapplicable paragraphs are not removed from the specification but labelled "not

applicable".) This treatment conveys the intention of the writer, retains the

structure of the specification, and obviates correspondence on the topic from

concerned contractors.

3.2.3.3 Other Standard Techniques

Specification writers employ a number of techniques to enable them to release

draft documents before all the information they need is to hand. Perhaps the

most useful one is TBS. This is an abbreviation for "to be specified" and is

used when it is known that the parameter will be specified before the design is

complete. Initial issues of specifications often have TBS against parameters

which are derived from higher level system specifications, for example, quality

provisions or operating and storage environment. Another related term is "to

be determined" abbreviated to TBD. This is used when values are not yet

available usually because the system design is not complete. While releasing a

specification to tender containing TBD’s and TBS’s is undesirable, it is a

common practice as the system designers often need the feedback contained in

the responses to tender to know what can be achieved by which organisation

37

and make the final system-level trades-off accordingly. From a contractor’s

viewpoint, more information is conveyed using these forms than if the

uncompleted paragraph was simply omitted to be made a contract amendment

at a later date.

The most common technique for specifying requirements, approaches,

procedures, or testing to be used in the development and production process, is

to reference an appropriate specification, standard, or handbook. This practice

provides new programs with the benefit of previous experience, promotes

common testing techniques, minimises logistics costs and simplifies the

specification process (DSMC, 1983). Providing the potential contractor is

familiar with the reference document and the consequences of the paragraph

referenced, it can be quite efficient. In addition, well established industrial

standards are used, were applicable, by the courts in the United Kingdom as

yardsticks with which to interpret acts of Parliament (Lucas, 1981). This gives

them a firm legal standing. On the negative side, there is a tendency to

become entrapped in a chain of referenced standards. Each one that is

referenced can reference further ones until it sometimes seems that the entire

standards library is required before what should be a simple paragraph, can be

interpreted. As there are many thousands of military and civil standards this is

a major problem. In a large system this can be compounded by the fact that

standards are referenced at all levels of the specification tree and hence at the

uppermost level, vast numbers of documents can be incorporated by cross

referencing at successively lower levels. Some consolation is offered by

DSMC (1983) which observes that while the number of references could

theoretically reach hundreds of thousands, in actuality, multiple referencing

tends to make the number level out rather than increase exponentially as the

number of specification levels increases. Nonetheless, the resultant number can

still be very large.

Another serious problem is that either or both of the parties may not truly

understand what has been called up, especially when there is a large number of

references cited. Meeting certain quality, environmental testing, and in

38

particular electromagnetic compatibility (EMC) requirements, can be extremely

costly. An example of this, from personal experience, is EMC testing. The

supplier thought that conforming to the EMC requirement in the cited standard,

MIL-STD-461, would be straightforward and easy to verify. Unfamiliarity with

the implications of the standard caused massive cost overruns to meet the

stringent specification. It became necessary to use nested enclosures around the

circuitry and very expensive filtered connectors and high frequency absorbing

external cables. However, these design and production costs were swamped by

the verification costs which necessitated the hiring of an instrumented EMC test

chamber which could measure emissions between 0 and 40 GHz and subject

the item to fields over the same range up to 400 V/m. Several months facility

hire at £5000 a day certainly imparted a lesson never forgotten.

The general rule is to write out simple statements rather than reference a

standard when at all possible. The standard can then be designated a

"guideline" document. This means that the standard may contain useful

information and is probably worth having, but does not have to be explicitly

conformed to. Statements such as "in general conformance with" a particular

document, are often used here. The uninitiated might interpret this as a

requirement to meet the standard with only minor exceptions. In practice, it

means that the customer cannot afford to invoke that standard and wants a

mechanism to try and achieve the best for the money available.

Knowledgeable contractors will always state their agreement to comply to

requirements stated in this way, because it shows willing, and because they

realise there is no firm requirement to meet. Such techniques are frequently

used to separate out contractors who are familiar with the industry from those

who are not.

39

The arguments which support the automation of the production of measuring

instrument specification can be subdivided into five largely self-contained sections:

(a) Importance.

(b) Technology Transfer.

(c) Efficiency.

(d) Adequacy.

(e) Overspecification.

3.3.1 The Importance of Specification Generation

Specifications form the basis for contracts between customers and suppliers. Each

cannot exist without the other so it is mutually beneficial for work to be

conducted according to an agreed specification and be completed to time and

budget. At tendering time, bidders learn from the specifications not only

information about the nature of the work but also they form some idea as to

competence and fairness of the parties who prepared the documents and the

treatment they can expect to receive during the progress of the work (Mead et. al.,

1956). If the specification is not what would be expected for the type of work

offered then suppliers will be reluctant to tender. Signs suppliers look for are

indiscriminate referencing of standards, poor format and use of language,

ambiguity, and lack of clarity, consistency, and reasonableness. If a bid is made

at all, the potential supplier will add contingency costs to cover the uncertainties

in the specification.

Just as suppliers employ senior staff to prepare responses for requests for tender,

customers need to employ knowledgeable, experienced staff to compile the

specifications used. Specification writing, therefore, must be seen as an important,

labour-intensive, and expensive process which is crucial to the long-term success

of an organisation.

3.3 The Case for Automating the Specification Generation Process

40

3.3.2 Technology Transfer

Organisations which design and manufacture expensive and often complex

instruments for discerning customers, are very familiar with the production,

interpretation and configuration control of requirements specifications. They are

also familiar with the commonly cited standards used in their industry and other

knowledge needed to form good working relationships with their customers.

Young expanding companies, in contrast, frequently lack this knowledge and are

often even bereft of standard procedures. There is a clear case for technology

transfer to assist such companies and this is usually provided by consultants and

selective recruitment. The increasing importance of formal quality systems, as

mentioned earlier, has resulted in a shortage of staff skilled in this area. It is not

easy to expand the number of specification writers quickly because a wide basis

of industrial experience is needed to write a specification which is adequate,

complete and consistent and at the same time incorporates cost effective

verification procedures and takes advantage of cost versus utility functions for the

many parameters to be specified. Mead et.al. (1956) devotes the first part of

Chapter 16 to the knowledge needed to be able to write a good specification and

concludes that:

"Such knowledge is acquired only by extended study, observation, and

experience, and is not usually possessed by the young engineer."

For example, the underlying physical principal that can be employed to measure

temperature say, is dependant on the measuring range, accuracy required and so

on. Each method will have a typical cost associated with its use, and while it is

not the specification writer’s job to select which to use, it is important not to

inadvertently exclude one, particularly if it the least expensive, because a single

parameter was arbitrarily, too tightly specified.

Another example is quality assurance. The more rigorous the quality system

demanded by the specification, the more expensive the instrument will be. Thus

41

to specify quality assurance provisions appropriately, it is necessary to derive an

expected cost and have some knowledge of the potential suppliers’ standard

operating practices and approach to quality management.

There is a definite need to provide some of this expertise in a form readily

available to assist inexperienced specification writers.

3.3.3 Efficiency Limitations of the Manual Method

A fundamental limitation of the manual method is that it takes considerable effort

to prepare a comprehensive specification, in the region of days to months.

Specification writers are highly skilled and experienced people who acquire their

skill over many years. Novice writers will take much longer to prepare

specifications, even if they have a solid industrial background, because of

unfamiliarity with the formats and lack of specification preparation knowledge,

including usage of language, standards to cite, industry practice outside their

experience and associated bounds of reasonableness.

3.3.4 Adequacy Limitations of the Manual Method

As has been already stated, it is very difficult to write a good specification, that

is, one which is complete, consistent, unambiguous and not overly restrictive.

Specifications are written in natural language, and it is an unfortunate fact that

any such document cannot avoid being open to interpretation. This means they

never stand in isolation without human interaction between the customer and the

supplier. It is possible, however, to reduce dissention, in particular near the end

of a development, if all the requirements are recorded. This is not an easy thing

to achieve as not all requirements may be known at the time of writing. This is

where the specification writer and systems engineer use their experience and

knowledge to provide sensible defaults. It can be said that detecting a lack of

completeness is a specialist task in itself, see Section 3.4.

42

3.3.5 Overspecification

There is a tendency to overspecify equipment. This is particularly true when

supply is to go to open tender as a somewhat tighter specification is seen as a

method to improve the probability of receiving what is actually required

(Wheeldon, 1974).

Overspecification is hard to avoid especially in larger instruments which are

extensively partitioned. At each specification level, tolerances are tightened in an

effort to ensure the overall system performance can be met (Sydenham, 1986).

Overspecification very often leads to unnecessary expense but is commonly

overlooked unless it threatens the viability of the project. In the extreme, a

reasonable system requirement can be translated into such a stringent equipment

requirement three or four levels down the specification tree, that the system

becomes infeasible.

3.3.6 Design Aims for a Specification Generation Tool

The arguments presented to support the need for automating specification

generation can be converted into initial design aims for a computer-aided

engineering tool.

Experienced writers and novices have been identified as potential users. This

requirement places demands on the human interface and the logic behind the

assistance tendered. Frequent users require little help and often wish to avoid

tedious human interface procedures which can be of great benefit to novice or

infrequent users. In addition, there is no doubt that an experienced writer would

possess knowledge in some areas beyond that available in any conceivable

program. Thus facilities must exist for the program to be overridden when

desired.

Given that producing a specification usually takes many days, there is an obvious

desire to speed the process.

43

Consistency and lack of ambiguity would appear to be relatively straightforward to

achieve; this is not always so as specifications for large systems can run into

many hundreds of pages. There is no effective way for humans to ensure

consistency in such large documents; the best that can be done is to have a

number of cognisant people review the document. Thus some form of

computerised completeness, consistency and reasonableness checking would be

highly desirable.

There is a need for a mechanism to check that numerical values generated in the

final specification can be traced back to the original user requirement to control

overspecification. This would be the ultimate aim of a system-level

reasonableness checking facility. At the equipment level, where this research

project is focused, assistance would probably be limited to providing sensible

defaults and flagging unreasonably expensive requirements.

3.4 A Basis for the Automation of Specification Generation

3.4.1 The Human Specification Generation Process

When planning to automate an intellectual task, it is often fruitful to study the

human method of performing the task to determine if there is a systematic basis

which can be formulated as an algorithm. From personal experience, there is

indeed a specification generation algorithm which is often followed. This is

illustrated in Figure 3-2, specifically for measuring instruments.

The algorithm starts when the writer selects the desired document format. This

choice will depend on the a range of factors such as whether the instrument is to

be developed, the level of detail indicated by complexity and cost of the

instrument, the expected relationship between customer and supplier. In practice

this is usually pre-determined by company standard procedures or customer

requirements.

The next two tasks can be conducted in parallel. The most straightforward, albeit

44

Task 2

GATHER
SPECIFICATIONS

OF
SIMILAR

INSTRUMENTS
IN CHOSEN

FORMAT

CREATE
SPECIFICATION

TEMPLATE
WHICH INCLUDES

PARAGRAPH
HEADINGS

&
STANDARD TEXT

Figure 3-2 The Human Specification Generation Algorithm

Task 3

45

time consuming, is to collect a representative sample of recent specifications for

similar instruments. Greatest benefit can be extracted from specifications for

equipment destined for the same industry and operating environment and written

to conform to the selected format. Larger companies are at an advantage here

because sufficient material can often be uncovered by a search through the files.

The parallel task is to create a skeleton of the document from the format

description including paragraph headings, and the standard paragraphs which

invariably appear, such as disclaimers, description of citation practice for

applicable documents, etc. In the case of an often used format, this skeleton, or

template, is likely to be incorporated into company standard procedures and may

well be available as a word processing file.

The next task requires a level of intellectual input. In essence it is a "cut and

paste" operation. For each paragraph of the template, the most appropriate

paragraph from the reference material is selected, modified to suit the instrument

under consideration, and inserted into the new document. Whenever a particular

paragraph cannot be completed this way, it is simply left blank.

The next process involves greater intellectual input. Each of the paragraphs not

yet dealt with has to be written. This needs to be done in a style consistent with

that of the paragraphs already grafted into the document. Matching the style may

not be all that difficult because specifications tend to be written in stereotyped

language as described earlier.

The last process is the most demanding. Here the draft document is reviewed for

completeness, consistency, reasonableness and conformance against the contractual

requirements for the project and the company standard procedures. This is usually

a multi-level task conducted by the Project Engineer, Engineering Manager,

Quality Manager and finally the individual with the authority to release the

document.

In organisations which regularly produce specifications, this algorithm is efficiently

46

streamlined and detailed specifications of complex items can be produced in

around two weeks.

3.4.2 A Computer Specification Generation Process

3.4.2.1 The Process

The process described above can be used as the basis for a computerised

realisation. The first task, deciding on the specification format to use, is not

required as it has already been decided that a Type B1 development

specification, defined by MIL-STD-490A (1985), is well suited to the task.

The task of creating a specification template can be replaced by the provision

of a single fixed template applicable to a broad class of measuring instruments.

Thus the concept of making the template available as a word processing file

has been extended into incorporating it into a purpose built software package.

Note no processing is needed.

The purpose of acquiring specifications, Task 2 of Figure 3-2, is to provide

knowledge on the methods that can be used to specify each paragraph. The

ultimate realisation of this task would be to access a database containing a

large number of specifications, extract the most suitable documents for the

specification task in hand, and then from these, compile a list of specification

methods. This is not feasible at present because the reference specifications are

not readily available to the public in printed form let alone electronic form;

their owners regard them as proprietary material. In addition, building a

natural language processor capable of performing this task using techniques

available at the start of this project (Winston, 1984), would have been a vast

task.

An obvious alternative is to perform a general survey of methods for specifying

measuring instruments and store this information within the computer. Thus

this task can also be replaced by stored knowledge.

47

The next two tasks can be combined and become alternatives. Completion of

the paragraphs can be achieved from either the stored methods where adequate,

or by the user entering a paragraph.

The checking function is performed last after the draft specification is

completed in the same way that a human manager will generally only review a

complete document. Interactive checking could be accommodated in the entry

process.

Figure 3-3 illustrates the complete process. An additional task has to be added

to convert the internal representation used by the computer into a printed

document.

3.4.2.2 Restrictions on Generality

A tool to specify all classes of measuring instruments was thought to be too

bold a task and beyond what could be achieved. Hence it is decided that some

limits to generality would be necessary to make the project tractable. These

are:

(a) Instruments are to be limited to one measurand;

(b) This measurand is to be one dimensional.

Thus a proportion of instruments, for example optical imagers which measure

intensity in two dimensions, had to be excluded. These could be added later

but there would need to be a template created for each number of measuring

dimensions.

3.4.23 A Specification Template for Measuring Instruments

The generation of a list of paragraph headings is the first step in the process of

creating a template. The headings selected are shown in Figure 3-4 and follow

the numbering scheme described in MIL-STD-490A (1985). The list of

48

USER

Figure 3-3 A Computer-Aided Specification Generation Process

49

performance characteristics and their definitions was taken from AS 1514

(1980). Further detail on the derivation of this template is given in Section

3.5. This list can be widely applied to instruments which have one single-

dimensional measurand.

For simple instruments, it may be thought that the detail is excessive but this

can be countered by examining the amount of useful information presented that

might otherwise have been omitted. It is often lack of attention to this sort of

detail which leads to confrontation between suppliers and customers. The most

valid complaint about the preparation of comprehensive specifications is the

time and effort required. Computer assistance could well render that argument

invalid.

For major expense instruments, the specification structure dictated by the

paragraph headings is still valid and in fact has been commonly used for such

tasks for many years (Auspace, 1984; ESA, 1983; AEL, 1987) Each of the

paragraphs tend to be much more comprehensive, in particular requirements not

related directly to performance such as reliability, maintainability, workmanship

standards etc.

Completing the template is the task of the specification generation process.

This is covered in the next section.

3.5 Specification Methods

Experience of writing and reviewing instrument specifications reveals that there is an

underlying finite set of methods used to specify each paragraph of a natural language
specification. In many instances there may be a limited number of options available

and simply identifying a specific option is sufficient specification. Alternatively,

descriptive text can often be generated by inserting numeric values or phrases into

standard sentences. Appropriate use of this technique can cover a wide range of

eventualities and exceptions can be handled by having the user write the whole

paragraph.

50

By employing these techniques to advantage, it is possible to prepare a limited set of

general paragraphs for most of the template headings and instantiate the appropriate

paragraphs with suitable parameters for the instrument under consideration. These

general paragraphs, often referred to in the computer industry as "potted text",

(possibly a metaphor alluding to potted electronic assemblies which are very hard to

alter) can incorporate the special language and techniques of the specification writer

described earlier.

The remainder of this section is devoted to oudining the methods selected for

specifying the paragraphs identified in Figure 3-4. In the example output text, italics

is used to refer to text stored in the computer while the text enclosed in "<>"

denotes non-terminal symbols. These symbols represent strings which would be

entered by the user or a string which would be generated by the program in response

to the selection of an option. The text generation process needs to insert these

strings into the stored text and make grammatical adjustments such as selecting

between a and an and decisions on capitalisation.

3.5.1 Scope

The example from MIL-STD-490A can be employed directly to form the

paragraph. All that needs to be inserted is the name of the instrument.

This specification establishes the performance, design, development, and test

requirements for a instrument name>.

At first sight it might appear that this paragraph is only applicable to development

specifications. This is not the case as the word design appears in the product
function specification example in Appendix VII of MIL-STD-490A.

3.5.2 Applicable Documents

All the documents referenced in the text of the specification must appear here. It

is preferable to state the exact version number which for contractual reasons may

51

1 SCOPE
2 APPLICABLE DOCUMENTS
3 REQUIREMENTS

3.1 Instrument Definition
3.1.1 General Description
3.1.2 Interface Definition

3.1.2.1 Electrical Interface
3.1.2.1.1 Power Interface
3.1.2.1.2 Communications Interface
3.1.2.1.3 Electromagnetic Compatibility

3.1.2.2 Mechanical Interface
3.1.2.2.1 Sensor
3.1.2.2.2 Data Processor
3.1.2.2.3 Display

3.1.2.3 Thermal Interface
3.1.2.3.1 Sensor
3.1.2.3.2 Data Processor
3.1.2.3.3 Display

3.2 Instrument Characteristics
3.2.1 Performance Characteristics

3.2.1.1 Measuring Range
3.2.1.2 Discrimination
3.2.1.3 Repeatability
3.2.1.4 Hysteresis
3.2.1.5 Drift
3.2.1.6 Dynamic Response
3.2.1.7 Measuring Error
3.2.1.8 Power Consumption

3.2.2 Physical Characteristics
3.2.2.1 Enclosures

3.2.2.1.1 Sensor
3.2.2.1.2 Data Processor
3.2.2.1.3 Display

3.2.2.2 Mass
3.2.2.2.1 Sensor
3.2.2.2.2 Data Processor
3.2.2.2.3 Display

3.2.3 Reliability
3.2.4 Maintainability
3.2.5 Environmental Conditions

3.3 Design and Construction
4. QUALITY ASSURANCE
5. PREPARATION FOR DELIVERY
6. NOTES

Figure 3-4 Paragraph Headings for Requirement Specifications for Measuring Instruments

52

not be the current one. If no version is given then the current version is assumed

but this is poor practice as it makes the requirements subject to changes in the

reference documents. MIL-STD-490A states that only documents specifically

referenced should be listed but in practice it can be useful to include guideline

documents. The following statement can be used to cover this instance and the

extent of reference. This would be immediately followed by the applicable

document list.

The documents listed hereunder form a part of this specification to the extent

invoked by specific reference in other paragraphs of this specification. I f a

specification is listed but not referenced in any specific paragraph, then the

specification is applicable as a design guideline.

applicable document list>

3.5.3 Requirements

The requirements section must include the essential requirements and descriptions

that apply to performance, design, reliability, interfaces etc. In fact this section

comprises all the information most people think of as a specification. The

requirements section should be so written that compliance with all the

requirements will assure the suitability of the instrument for its intended purpose.

The corollary is that non-compliance with any requirement will indicate

unsuitability for the intended purpose. Development specifications can include

design goals in addition to minimum requirements, but each must be identified

clearly to avoid confusion. Only essential design constraints should be included

as requirements, for example, restrictions on the use of certain materials due to

toxicity or dimensional or functional restrictions to assure compatibility with

associated equipments. A short sentence is all that is necessary under the section

heading before each of the requirements is spelt out in detail.

The measuring instrument described by all the requirements o f this section shall

pass the examinations, analyses and tests specified in Section 4.

53

3.5.4 General Description

This paragraph is used to define the item in terms of major physical parts and

functions. Block diagrams, schematic diagrams and pertinent operational,

organisational and logistic considerations and concepts can be included here. In

the interests of generality, it was decided to restrict the definition to the physical

partition of the instrument followed by a statement of what the instrument is

intended to measure and its place in any system hierarchy. The provision of a

block diagram was not considered justified. The description here is determined by

the physical characteristics option selected in paragraph 3.2.2 of the specification

and covered in paragraph 3.5.11 of this thesis. Hence one of five paragraphs is

selected as appropriate. The one for separate housings is shown.

The cinstrument name> comprises three modules, namely, the <Measurand>

Sensor, the Data Processor and a Display. Division of functions between the

three enclosures including compensation for temperature and influence effects is

unrestrained. The purpose of the instrument is to measure <measurand> in

a(n) environment type> environment. The <instrument name> forms a part of

<larger systemx

The general description paragraph does not contain any requirements, rather it is

information for the reader, hence the word shall is not used.

3.5.5 Interface Definition

This paragraph covers the functional and physical interfaces between the item

being specified, in this case a measuring instrument, and other external items.

The internal interface between the units which make up the instrument is

specifically excluded as these should be determined by the supplier or designer.

The sub-section heading simply carries an introduction while the detail is

contained in later sub-paragraphs which cover electrical, mechanical and thermal

interfacing aspects.

54

The instrument name> will interface to the system being measured, power

supplies, equipment mountings and the operator.

3.5.6 Electrical Interface

The electrical interface was sub-divided into three areas: power, communications

and electromagnetic compatibility. This paragraph can get quite complicated for

some items which require multiple power supplies with possibly different

frequencies. The trend over the last decade or so has been to include a suitable

power supplies in the instrument rather than rely on the availability of external

supplies. This simplifies the power interface and its specification. In particularly

sensitive instruments, the AC to DC convertor may well be housed in a separate

enclosure but this does not prevent it from being considered part of the

instrument. The chosen specification method is to opt for a single supply and

require that all internal supplies be generated from this. After which a

specification for the power plug is given. If the power supply is AC, for example

the mains or aircraft power, the frequency can be included as part of the power

supply specification i.e., "50Hz British power mains conforming to BS", or

"400Hz aircraft power conforming to MIL-STD-748AM.

The performance of the instrument name> shall be met when connected to

a(n) <power supply specifications Connection to the power source shall be

achieved by a flexible power lead. Plugs conforming to <power plug

specification> shall be fitted to these leads. The peak current drawn by the

instrument shall not exceed <peak currents

If the supply is not well specified, for example a battery that is subject to

intermittent charge, then voltage limits can be included in the power supply

specification, for example "12 V lead acid battery with terminal voltage in the

range 11 to 14.5 V".

There is some difficulty deciding where the power consumption and hence current

55

drawn from the power supply should be specified. The interface is what the
instrument has to be designed or purchased to work with and that includes

electrical and mechanical constraints. Thus supply voltage, noise and fluctuations

correctly belong to the interface. The current flow is determined by the
instrument and is constrained by a performance characteristic. The view taken is

that it is the responsibility of the specifier to ensure that the power source has

adequate average current output to provide for the specified power consumption,

but it is worth specifying a limit for the peak current.

Many modem instruments can be configured to form part of an information

gathering network by connecting them to a computer or other information

processing equipment. Common interface standards employed are the serial RS

232-C and the parallel instrumentation bus standard IEEE-488, (the Hewlett

Packard Interface Bus HP-IB). The only effective way to specify the

communication interface is to reference the required standard. It is useful to

distinguish between the raw sensor data and the processed data which is that

normally displayed.

Processed, and corrected measurement data shall be available to external

equipment via a communication port conforming to communications interface

standards

ElectroMagnetic Compatibility (EMC) is a discipline of growing importance. As

the electromagnetic spectrum becomes increasing heavily used, shielding

requirements become greater. For this reason, commercial electrical equipment

now has to meet relevant national limits for conducted and radiated emissions.

The second aspect to EMC is susceptibility. Many instruments are susceptible to

electromagnetic radiation emanating from automotive ignitions, airport radars and

nearby broadcast transitions. This is a particularly difficult area to specify well

and is a specialist field in its own right. The two prominent standards are MIL-

STD-461 "Electromagnetic Compatibility Requirements" and MIL-STD-462 "EMC

Verification Methods". The first deals with the amplitude levels versus frequency,

while the second deals with how this can be verified. The frequency responses

56

and amplitude levels are often tailored to meet project requirements. The general
rule is that there should be at least 6dB margin between expected field strengths

at a particular frequency and the field strength which causes the equipment to

malfunction. Thus if a geophysical instrument say, is intended to be located near

a broadcast transmitter, there would be a requirement for the instrument to operate

in the expected field without malfunction. EMC requirements are especially

important for integrated systems where individual units from a variety of vendors

have to work in close proximity, for example on an aircraft or even in a computer

room.

When wishing to specify EMC, two problems arise: the first is what the emission

and susceptibility levels should be used for each piece of equipment; and secondly

how these are to be verified. Complete verification requires the use of extensive

and expensive facilities. EMC is another area which is strongly related to the

amount of money at risk. It is not feasible to place anything but the most general

requirement on a low price commercial instrument. Statements such as "The

instrument shall not be affected by electrical plant noise." are of minimal value if

an instrument is to be developed but may enable the customer to return an off-

the-shelf unit. At the other end of the financial spectrum it would have major

safety and economic consequences if a purpose-designed avionics instrument was

found not to be compatible with the aircraft into which it was intended to be

fitted. Consequently all avionic and space flight equipment undergoes rigorous

EMC testing.

The general approach adopted was to cite susceptibility and emission standards

which might be national standards, a system EMC standard, or the previously

mentioned United States military EMC standards.

The «¡instrument name> shall meet the emission requirements of <emission

standard & limits> and the susceptibility requirements of <susceptibility

standard & limitsx

57

3.5.8 Mechanical Interface

The mechanical interface specification is dependant on the chosen physical

partitioning of the instrument. Obviously the number of enclosures affects the

number of interfaces which need to be specified. The example shown here is for

three separate enclosures.

The Sensor shall be <sensor mounting methodx

And similarly for the other two housings.

The Data Processor shall be <data processor mounting methodx

The Display shall be <display mounting methodx

3.5.9 Thermal Interface

The thermal interface deals with heat removal and consequently, temperature

control. In most applications, temperature control of the instrument will be

achieved by limiting the temperature rise of critical components by suitable heat

sinking to the environment. Specification of thermal interface can be achieved by

selection of one the following from a list:

(a) Conduction to the mounting face

(b) Natural convection

(c) Forced convection

(d) Radiation

(e) Cooling not specified

Convection is the usual cooling method for all classes of applications except for

military and space instruments which tend to use conduction to temperature

controlled cold plates. Natural convection is the preferred method whenever

feasible because of the freedom from fan noise and the avoidance of concerns

58

about fan failure. Forced convection would be specified when the power
consumption is high, when the maximum operating temperature is high, or when

the operating temperature of the unit is to be kept low for reliability or other

reasons.

Radiation is only a significant heat loss mechanism in vacuum and even then is

generally limited to lower power units with a large radiating area. The option not

to specify a cooling mechanism for an enclosure is intended to be used whenever

the power consumption is very low, or zero.

There can be more to specifying the thermal interface than the heat transfer

method. The heat transfer surfaces may need to be specified with a drawing or

perhaps reference to a manufacturer’s part number for a heat sink. These

instances can be handled by permitting a text string to be entered as for other

attributes.

Standard option selections can be interpreted to give:

The Display is to be conductively cooled via the mounting faces described in

paragraph 3.1.22.2.

The Data Processor is to be convectively cooled.

The Sensor has negligible power dissipation and no thermal interface is

specified.

3.5.10 Performance Characteristics

The structure and contents of this sub-section are highly dependant on the item

being specified. The only guidance given in MIL-STD-490A Appendix II is that

this sub-section is to state what the item, in this case the measuring instrument,

shall do, including both upper and lower performance limits.

59

Section 5 of AS 1514 (1980) lists the meterological properties of measuring

instruments and defines each term. This list which applies only to one-

dimensional, single measurand instruments, was used as the basis for a

performance requirements list. The introduction to this section of the specification

is:

The instrument name> shall meet the performance requirements specified

herein when operated in the environment specified in Section 3.2.5.

Strictly speaking this introduction is redundant as it is inherent in the fabric of the

specification, however, the reason it has been included is to alert the supplier to

the need for the instrument to work over the complete range of environmental

conditions encountered later in the document. This is particularly important when

it is intended for the instrument to operate in harsh or unusual environments, for

example, exposed outdoor locations, low Earth orbit, or underwater.

3.5.10.1 Measuring Range

The detailed paragraphs commence with measuring range.

The instrument shall be able to measure <measurand> from <lower range

limit> to cupper range limit> with at least the performance described by the

remaining paragraphs of Section 3.2.1.

Once again the final clause is redundant but serves to remind the supplier that

the remaining performance specifications need to be met across the entire

measuring range.

3.5.10.2 Static Performance

Static performance is characterised by parameters such as discrimination,

repeatability, hysteresis, drift, and total error. These terms are well defined

(AS 1514, 1980) and well known and hence were selected for inclusion into

60

the general method of specifying static performance. These parameters do not

exhaustively deal with the topic, however. Complex performance limitations

such as non-linearity (Sydenham, 1983a), and the effects of digital signal
processing such as quantisation error, rounding errors and filter coefficient

quantisation (Proakis & Manolakis, 1988) could also need to be specified.

There is no general way of dealing with these and other specialised

performance characteristics, so the approach selected was to offer a user entered

special requirements paragraph.

There are two ways given in AS 1514 to apply bounds to the properties of

measuring instruments:

(a) As absolute values in the measuring units, and;

(b) Percentage of indicated value.

Another method occasionally encountered is to specify uncertainty in terms of

percentage of measuring range.

A further consideration is that measurement is a stochastic process (Doebelin,

1983; Sydenham, 1983a). In a measuring situation where noise of known

statistics is encountered, it could be useful to specify the measurement mean,

variance and perhaps other statistical parameters.

All of these specification methods can be found in specifications and it was

decided to allow the specifier to use whichever one was felt to be appropriate.

This desire is achieved by including the necessary text into the specification

string, for example, "3% of measuring range" or "13 Pascals". The static

performance parameters are dealt with thus:

The instrument name> shall have a discrimination of <discrimination> or

better.

Any two measurements performed on any given identical value of

61

<measurand> within the range specified in para 32.1.1 shall indicate values

within <repeatability>.

Hysteresis effects owing to alteration of the direction of the <measurand>

change, including any dead band, shall be less than <hysteresis>.

Drift resulting from aging effects shall be less than <drift> over <drift

periodx

The error of measurement including systematic error, random error, reading

error, repeatability error and hysteresis error shall be less than <total

errorx

<special static performance characteristics^

The method of specifying drift needs some explanation. The term drift is used

in a general sense to describe changes in performance of a measuring

instrument due to changes in influences quantities such as temperature,

humidity etc. These are dealt with by specifying that the performance shall be

within the stated bounds over the range of environmental conditions specified in

3.2.5. AS 1514 (1980) specifies drift as:

"That property of a measuring instrument as a result of which its

metrological properties change with time, under defined conditions of use."

The definition of drift used here refers to the change in mean indicated value

with time. This most closely matches the term "stability" perhaps, but the term

"drift" was retained because its use is more widespread.

3.5.10.3 Dynamic Performance

Dynamic response can be specified in a number of ways, the following were

pursued:

62

(a) Mathematical

(b) Empirical.

(c) User entered paragraph.

The mathematical specification technique was based on the technique of

Sydenham (1983b). This treatment concentrates on systems of zeroth, first, and

second order based on the observation that higher order systems tend to display

characteristics which can be described by one of these in the frequency area of

interest. It is stated that this assumption has been found adequate in practice.

A zeroth order instrument indicates that the indicated value follows the input

signal time features faithfully. A perfect zero order system is a mathematical

abstraction as infinite frequency response is implied, however, this frequently

desirable response can be approximated if the maximum rate of change of the

input signal is very slow compared to the dynamic performance of the

instrument. In practice it is not feasible to specify a zeroth order system

because it is impossible to implement one. If instead a specification such as

"zeroth order response up to 100 Hz" were used, the conundrum of determining

what constitutes a response which is no longer zeroth order is presented. This

could take the form of maximum phase shift or amplitude attenuation but it is

probably better to describe the response in terms of a first order system of

sufficiently short time constant to give the desired characteristics. In addition,

from a practical point of view, as noise power is proportional to bandwidth, it

is always useful to limit the bandwidth of a measuring system. For these

reasons, the option of specifying zeroth order response was later withdrawn

from the mathematical description option list. The option of specifying zeroth

order response with suitable qualification is still available via a user entered

paragraph. First order response is characterised by a time constant while

second order response requires both natural frequency and damping ratio.

The instrument name> shall exhibit first order response. The time constant

shall be ctime constants

63

The instrument name> shall exhibit second order response. The natural

frequency shall be cnatural frequency> and the damping ratio shall be

<damping>.

These specification methods rely on the specification strings containing the

limits. It was decided not to restrict the user to say just a maximum time

constant because the time constant may have been introduced to curtail noise or

deliberately restrict dynamic performance. The values for second order systems

would normally be bounded but to cater for all possibilities, limits for these too

were left for the user to explicitly specify.

The "mathematical" method is really a frequency domain specification

paradigm. Anything that has to be specified must be verifiable (MIL-STD-

490A, 1985). In many cases it is impractical to verify the performance of an

instrument by sinusoidally varying the measurand over a range of frequencies.

The alternative method, is to specify time domain dynamic performance to a

step input. The "empirical" specification technique is so named because it

based on the parameters that are conveniently measured and effect the practical

application of the instrument.

When subjected to a step input o f <step size>% of measuring range, the

instrument name> shall have a 10 to 90% rise time of <rise time> and

shall settle to <settling limit> within <settling time>. The -3dB frequency

response cutoff shall be <frequency response> and the ripple in the pass

band shall be less than <ripple>.

Once again the limits have to be included in the specification string. This

specification technique has the advantage of easier verification and is often

preferred because it uses terms more familiar to testing personnel. Another

benefit is that it can be used successfully regardless of the response order.

However, care is needed to ensure that the time and frequency domain

specifications are consistent. If desired, one or other of the methods could be

left unspecified by setting the appropriate specification string to "unspecified"

64

or "not applicable".

Systems that cannot be conveniently specified with the previous two methods,

such as those which cannot be subjected to step or sinusoidal inputs, can be

dealt with by a user controlled paragraph. This option allows the user total

freedom of expression, but as with all such paragraphs the possibility of

automated consistency checking is lost.

3.5.10.4 Power Consumption

The approach taken with power consumption was just to specify an upper limit

as this is adequate in most circumstances. An exception that could arise would

be the need for a minimum heat output to be maintained for thermal control.

Another could be a more comprehensive description of the load on an AC

supply. In the latter such items as power factor, crest factor and peak inrush

current might need to be specified. This paragraph, however, deals with

performance while most of the items mentioned relate more to an interface

requirement and as such could be dealt with there by reference to a power

subsystem specification or a standard.

The power consumption of the cinstrument name> shall not be greater than

<maximum power consumptions

3.5.11 Physical Characteristics

The area of physical characteristics is where most diversity of specification

occurs. For a development specification, the physical characteristics of a

measuring instrument should include the following as applicable (MIL-STD-

490A, 1985):

(a) Physical configuration, including dimensional and volume limitations.

(b) Mass limit of the instrument.

65

(c) Requirements for transport and storage, such as tiedowns, pallets,

packaging and containers.

(d) Durability factors to indicate degree of ruggedness.

(e) Health and safety criteria including adverse effects on operators.

The prime physical characteristics of an instrument are associated with its

number and type of housings. It is not necessary to specify these if their

choice is unimportant, but usually there will be some constraint on the size,

mass and configuration derived from the intended installation. For example,

many companies prefer to rack mount all displays and processing equipment

and will always write this into a development specification as a requirement.

An instrument must have three basic functions: a sensor, a data processor or

signal conditioner, and a human or machine readable display. These often form

a natural physical partition as well, although one, or indeed all, functions may

be combined. The sensible combinations of the functions, shown below, were

used as the starting point to automate the process of describing physical

characteristics:

(a) Single enclosure.

(b) Separate sensor, data processor and display units.

(c) Separate sensor, combined data processor and display.

(d) Combined sensor and data processor, separate display.

(e) User specified physical arrangement.

The option chosen affects the interface definition and the mass distribution.

When an instrument is partitioned into more than three physical units, as

indicated by Sydenham (1983) for the process control industry, then the user

specified paragraph must be used. The user will need to indicate the number of

enclosures, their names, and their physical characteristics. The latter can be

dealt with as below.

The mass of each enclosure is specified rather than a total mass as this was

thought to be the most useful. For each enclosure, one of three options can be

66

%

used to specify the housing:

(a) Rack mount.

(b) Standard off-the-shelf enclosure.

(c) User paragraph.

Most rack mount equipment conforms to IEC 914, or the national adoption of

this ubiquitous 19 inch rack mounting standard. Rack width and mounting hole

positions for front panels are specified in the standard. Rack height is always

specified in terms of rack units of 1.875 inches. Thus a 1U rack occupies

1.875 inches of rack height while, say 6U occupies 11.25 inches. Rack depth

does not appear to be well modularised and rack boxes are made in a range of

depths to suit the equipment to be housed. Thus to guarantee physical

interchangeability it is necessary to specify the number of rack units and the

maximum rack depth.

The specification of three separate enclosures is shown; the other physical

partitioning variants are derived from this. A different specification method is

used for each to illustrate the variety available even without having to resort to

the user paragraph.

The instrument name> Sensor shall be housed in an enclosure conforming

to <sensor housing specificationx

The mass of the instrument name> Sensor shall be less than <sensor

massx

The instrument name> Data Processor shall be housed in a cnumber of

rack units for data processor>£7 rack-mounted enclosure conforming to IEC

914. The maximum depth of the enclosure shall be <maximum data

processor rack depthx

The mass of the instrument name> Data Processor shall be less than <data

67

processor mass>.

The instrument name> Display shall be housed in an enclosure whose

maximum dimensions are not to exceed <display dimensions^

The mass of the instrument name> Display shall be less than <display

mass>.

3.5.12 Reliability

Reliability is the probability that an item will perform its required function, under

stated conditions, for a stated period of time (ISO 8402, 1986; BS 4778, 1987;

MIL-STD-721B). This can be paraphrased as "the probability of non-failure in a

given period" (Smith, 1985). High risk, high reliability items, in particular space-

based instruments and military systems are indeed specified this way. This option

takes the form:

The probability o f the instrument name> surviving for <survival period> shall

be greater than probability of survivalx The probability o f survival (Ps)

shall be determined using <basis for reliability calculations>.

A major advantage of this specification method is that it is straightforward to

calculate system reliability for the survival period (O’Conner, 1985) without

needing to make assumptions about the failure rate statistics. The reliability

calculation basis refers to both the calculation technique and failure rates used.

The foremost handbook used is MIL-HDBK-217E (1987) although others are

given in Smith (1985). This handbook describes two methods; parts count and

stress analysis. The former is intended for quick appraisals of potential reliability

and sees most use in system design trade-offs. The stress analysis method uses

complex algebraic formulas to calculate the probability of survival for each

component, mechanical or electrical, right down to solder joints. Such factors as

operating temperature, device procurement specification, stress factors, and device

maturity, feature in every calculation. Calculations of systems reliability are

68

usually performed using computer models which allow ready alteration of any of

the thousands of components which comprise the system. Unless otherwise stated,

the worst case environmental and electrical conditions are used for the reliability

analysis which will always give rise to a pessimistic result. Hence it is important

when specifying the basis for reliability calculations that the method and the

relevant average environmental conditions are stated. For example: "MIL-STD-

217E Parts Stress Analysis assuming an ambient temperature of 20 degrees C and

maximum power supply voltage".

For other types of instruments, reliability requirements are seldom stated in

probability terms (Smith, 1985). Parameters such as Mean Time Between Failure

(MTBF) or failure rate are usually specified instead.

The mean time between failure (MTBF) of the instrument name> shall be

greater than <MTBF> when operated in the environment specified in

paragraph 3.25.1. The MTBF shall be calculated using <basis for reliability

calculations;».

This method of specification is often used for purchased components such as

power supplies and computers. In this case, the basis for reliability calculations

could well be observed reliability data from the manufacturer. If the instrument is

to be incorporated into a larger system, it is however, problematical to convert

MTBF into a probability for inclusion into system reliability models. Probability

of survival can be determined from any of the established failure rate probability

density functions (Amstadter, 1971). However, in converting MTBF to Ps, it is

necessary to make some assumption about the failure rate statistics. The constant

failure rate negative exponential distribution is usually selected which represents

the Useful Life region of the well-known "bathtub curve". If the observed MTBF

data includes infant mortality and wearout failures then the calculated Ps will be

incorrect and significantly pessimistic. If redundancy is employed in the system,

small errors of this type can be magnified to the extent where years are removed

from the projected system life expectancy. Conversely, if non-constant failure rate

conditions are to be modelled, in particular wear-out, then once again deriving Ps

69

from MTBF is misleading at best.

The last reliability specification option is simply to state that reliability has not

been specified. In instances where an instrument is expected to comprise few

components, the nominal MTBF will be so long, typically, hundreds of years, that

any models used to derive the value will be invalid.

3.5.13 Maintainability

Maintainability can be defined in similar terms to reliability: the probability that a

failed item will be restored to operational effectiveness within a given period of

time when the repair action is performed in accordance with prescribed procedures

(Goldman & Slattery, 1964; Smith, 1985). MIL-STD-490A (1985) takes a

somewhat broader view as shown by the extracts below:

"a. Time (e.g., mean and maximum downtime, reaction time, turnaround time,

mean and maximum time to repair, mean time between maintenance

actions).

b. Rate (e.g., maintenance manhours per flying hour, maintenance manhours

per specific maintenance action, operational ready rate, maintenance hours

per operating hours, frequency of preventative maintenance).

c. Maintenance complexity (e.g., number of people and skill levels, variety

of support equipment)."

It goes on to state that maintainability is to be specified quantitatively and that the

requirements shall apply to maintenance activities conducted in the planned

maintenance and support environment. Maintenance philosophy, per se, does not

belong in a requirements specification but it does influence where the maintenance

actions will be conducted, and the level of skill needed in the maintenance staff.

Once the maintenance philosophy is determined, it is then possible to determine

the level of detail required. A list of options was prepared which covers a wide

70

range of eventualities. These are listed in rough order of maintainability priority:

(1) Full maintenance support - on-site repair personnel

(2) Full maintenance support - off-site repair personnel

(3) Assembly replacement by owner.

(4) Despatch to service organisation for repair.

(5) Throw-away instrument - need not be designed to be repaired

(6) Application environment prohibits maintenance.

(7) Unusual - enter a paragraph.

The first two are traditionally favoured by owners of large, expensive, but failure

prone systems whose availability is essential to the well being of the organisation.

Examples include computer systems, industrial plant instrumentation, and many

military systems. The term full maintenance support means having qualified and

experienced repair personnel on standby, in case of failure, in addition to

resources dedicated to routine maintenance. Option one implies that down time

must be minimal and that a comprehensive inventory of spares be held on-site.

The military concept of maintainability given above, is very strongly biased

towards complex systems, such as a combat aircraft, which have a system failure

rate in the order of a few hours and as such are continually under repair,

calibration or other maintenance activity. Maintenance in an industrial or

laboratory setting, in contrast, usually takes the form of routine preventative

maintenance, re-calibration at lengthy intervals, and hopefully infrequent repairs.

The rate of maintenance method is commonly applied to complex systems, such as

combat aircraft which have low availability and very high maintenance

requirements. In general, the routine servicing of instruments would be required

no more than a few times per year. Hence the most suitable specification method

is to specify the routine maintenance interval, maximum down time for routine

maintenance, and mean time to repair.

To ensure performance is within specification, all instruments need to be

calibrated at intervals specified either by the manufacturer or by statutes. Formal

71

calibration against traceable standards comprises a complete functional verification

of the performance of the instrument (Sydenham, 1982) and as such is convenient

to combine with any other routine maintenance. Hence the calibration interval can

become the minimum routine maintenance interval. These points are combined to

create the text for option one:

The instrument name> shall be designed to permit on-site routine

maintenance, calibration and repair by trained servicing personnel. The

instrument should be designed so that routine maintenance should not need to

be conducted at more frequent intervals than the calibration period. The

routine maintenance interval (calibration period) shall not be less than

ccalibration period> and down time shall be limited to <routine maintenance

down time>. Mean time to repair shall not be greater than cmean time to

repairx

Comprehensive specification of maintainability is a complex task and Smith (1985)

devotes a chapter of his book to this topic. The general method above covers

most situations applicable to measuring instruments and uses well known terms.

Extensions to this will be specific to the instrument being specified and are best

handled with a user entered paragraph.

Option two implies that the delay incurred in repair personnel arriving can be

tolerated which may flow down to reduced spares holding as short delays

obtaining infrequently used parts from a central depot may also be acceptable.

What can be inferred is the skill level of the maintenance staff. The breakdown

maintenance staff, in particular, would usually be experienced technicians backed

up by an engineer. The text is virtually unchanged from option one:

The <instrument name> shall be designed to permit on-site routine

maintenance, calibration and repair by trained servicing personnel. The

instrument should be designed so that routine maintenance should not need to

be conducted at more frequent intervals than the calibration period. The

routine maintenance interval (calibration period) shall not be less than

72

calibration period> and down time shall be limited to <routine maintenance

down time>. Mean time to repair shall not be greater than cmean time to

repair> from the arrival o f servicing personnel.

Note that the response time of the maintenance contractors is a contractual issue

and forms no part of the specification. Once again a user entered paragraph is

needed for special requirements.

The third option imposes definite design requirements. The "user" here is

assumed to be the instrument operator who would normally be expected to possess

only modest technical skills but would nonetheless be capable of following fault

isolation and rectification procedures after suitable training. The use of modular

design techniques combined with elaborate self test incorporating automatic fault

location is indicated. User replaceable modules would need to be readily available.

The instrument name> shall be designed to be repaired by the user replacing

one or more modules on-site. The instrument should incorporate self test and

fault indication to facilitate this. The User’s Manual shall reflect this

philosophy by including fault rectification procedures. The instrument should

be designed so that routine maintenance should not need to be conducted at

more frequent intervals than the calibration period. The routine maintenance

interval (calibration period) shall not be less than calibration period> and the

mean time to repair shall not be greater than cmean time to repair>.

It was decided not to specify MTTR for this option because it is highly dependant

on the ability of the user and their familiarity with the fault finding procedures in

the user’s guide. Specific cases can be dealt with in a user entered paragraph.

The fourth option, is to send the instrument to the manufacturer, or their

representative, for repair in the event of failure. It is the least expense but repairs

can take months; not an attractive proposition for owners who cannot afford to

lose the utility of the instrument. It is expected that repair staff would be

experienced technicians with the back up of the engineering staff.

73

In the event that the <instrument name> requires maintenance, it is expected

that the instrument is to he despatched to the manufacturer’s service

organisation for servicing. The instrument should be designed so that routine

maintenance should not need to be conducted at more frequent intervals than

the calibration period. The routine maintenance interval (calibration period)

shall not be less than calibration periodx

The next alternative is often forgotten but probably the commonest for inexpensive

items. Calibration is still required and hence a calibration interval must still be

specified. Any other maintenance is limited to replacement of the instrument with

a new one. Hence a complete instrument would need to be stocked as a

maintenance item, should short down time be a system objective.

The instrument name> does not need to be designed to be repaired. The

calibration period shall not be less than calibration periodx In the event o f

malfunction, it is intended that the instrument be replaced with a new one.

The next choice is another method of specifying "not applicable" but has the

advantage of reinforcing that repair is not possible after deployment. This would

be the case for most spacecraft and performance monitors in undersea cables.

Once installed in its intended operating environment, the instrument name> is

not accessible for maintenance. There is no maintainability requirement.

The last option is the catch all user entered paragraph.

<Maintenance philosophy paragraphs

74

3.5.14 Environmental Conditions

The environments that the instrument can expected to experience in shipment,

storage and service are specified in this paragraph. A distinction needs to be

made between environments which the instrument has to survive without

impairment and the operating environment where the performance characteristics

must be met. This was achieved by separating the environmental characteristics

into two categories; operating and non-operating which covers transport and

storage. This division is introduced by the following statement and followed by

details of the operating environment:

The environment the instrument is to withstand is divided into operating and

non-operating environments. The instrument name> shall meet the

performance characteristics specified in section 32.1 when operated within any

of the combinations of environmental conditions defined in the operating

environment. It is not necessary for the instrument name> to be able to meet

its specified performance whilst being subjected to non-operating environment

extremes that exceed those for the operating environment.

The last sentence covers the eventuality of an instrument which is being operated

whilst being subjected to environmental stress beyond its operational limit due to

say, transportation.

Temperature is generally the most important influence parameter which affects an

instrument’s performance and this appears first. The temperature range refers to

ambient air temperature so if the instrument is to operate in sunlight where direct

heating of the enclosure occurs, this should be specified in the special

environment paragraph.

The ambient air operating temperature range over which the instrument

name> shall be able to operate shall be cminimum operating temperature> to

cmaximum operating temperature>.

75

Humidity is dealt with next. If the upper limit approaches 100% it should be

stated in the upper limit specification string whether it is to operate in the

presence of condensation or not because this will make a significant impact on the

mechanical design of the housings and perhaps necessitate a sealed enclosure.

The humidity range over which the <instrument name> is to operate shall be

from <minimum operating humidity> to cmaximum operating humidity>.

The vibration specification follows. The rather simplistic method given is to

specify frequency limits and a maximum vibration amplitude, however, this would

be sufficient for many non-demanding applications. The most obvious alternative

method would be to give an amplitude versus frequency graph which allows the

vibration specification to be tailored for particular measured environments such as

space craft launch, rail transport, factory plant operating vibration etc. This could

be cited using the user entered paragraph.

The <instrument name> shall meet the performance requirements o f section

32.1 when subjected to vibration over the range from <lower operating

vibration frequency> to cupper operating vibration frequency limit> of

amplitudes up to cmaximum operating vibration amplitudex

The ambient pressure range is important for two reasons. Firstly, ambient

pressure can be an influence variable for many instruments. Secondly, natural

convection is the commonest cooling method for instruments. If the instrument is

to operate in an unpressurised aircraft, in space or even on a mountain,

overheating may occur if this factor has been ignored in the design.

The atmospheric pressure range over which the cinstrument name> is to

operate over shall be from dower ambient pressure range limit> to cupper

ambient pressure range limitx

In addition, a user entered paragraph is available for special environmental

characteristics not covered by the standard paragraphs.

76

The storage time statement then follows:

The instrument shall survive the storage environment for <storage time> without

deterioration. I f the length o f time in storage exceeds the calibration interval

the instrument shall be calibrated before use.

The storage and transportation environment specification method is a repeat of that

for the operating environment and need not be shown. Although an instrument

need not operate in storage and transportation environments which are often more

severe than the operating environment, it is a requirement that they will function

within specification once the environment returns within the operating bounds.

This requires that not only is the instrument undamaged by the harsher

environment but it remains within calibration and that the calibration interval is

not affected. This can be more difficult to achieve than it first seems, especially

if the transportation environment is particularly harsh, for example space craft

launch, or that encountered during tactical manoeuvres. It is not recommended

that the storage and transportation environment be marked as not applicable even

for low cost instruments. Most electronic equipment is air freighted.

Inadequately designed or packaged equipment frequently suffers damage from

large or heavy components breaking off circuit cards and insufficiently restrained

assemblies becoming loose often as a result of screws falling out during transit.

For this reason, the default transportation environment is airfreight.

3.5.15 Design and Construction

This section covers minimum or essential requirements not covered by
performance characteristics, interface requirements, or reference documents. These

can include design standards which have general applicability and are pertinent to

the class of equipment into which the instrument falls, for example, process

control, avionics etc. Requirements governing the use or selection of materials,

parts and processes, interchangeability requirements, safety requirements and the

like are also included in this section. It is intended that this section should

77

reference established standards to the maximum extent possible.

This section is very product and industry specific. The best way this can be dealt
with is to have a standard section for each type generic application. Automation

would then comprise of assisting the choice of the most appropriate section. This

is a major task and so the selected method is to present a general default

paragraph which can be modified by the user as required.

<potted design and construction paragraph>

This paragraph was deliberately poorly specified to ensure generality. Help

information could be made available on suitable standards for a range of

situations. This topic, which is primarily relevant to product specifications and

not development specifications, is an area for further research.

3.5.16 Quality Assurance Provisions

This section covers the formal tests and verifications which the instrument must

pass before it will be accepted by the customer. MIL-STD-490A requires that

there be subparagraphs covering reliability testing, engineering evaluation to define

extent of test program, qualification testing, installation testing and finally a formal

test verification of performance characteristics to demonstrate that prime item

requirements in Section 3 of the specification have been satisfied.

Quality assurance programs cost money (Smith, 1985; Stebbing, 1987) and if a

rigorous quality assurance program is specified the instrument will cost many

times more than one delivered with minimal performance verification. It is

essential to match the quality assurance provisions to the risk involved with the

delivery of a non-conforming instrument and to the type of supplier. For

example, if the instrument is low cost and likely to be supplied by an organisation

that caters for the domestic market, the lowest level of quality assurance is

indicated. In that case the instrument would most probably be supplied off the

shelf. If the instrument did not function correctly or did not meet its advertised

78

performance it could be returned for replacement, repair or refund. This minimum

standard is usually referred to as "good commercial practice". Acceptance testing

is usually limited to batch testing, with perhaps individual visual inspection or a

perfunctory functional test.

Large organisations, such as government agencies and major companies, generally

specify more rigorous quality requirements consistent with their procurement and

quality control procedures. Furthermore, if the instrument is to form part of a

larger project, then serious financial and timescale consequences can arise if the

instrument is not fit for its intended purpose for whatever reason. It is too great

a risk to permit the chance of the supplier unilaterally making a small change

from the agreed specification which might render the instrument unusable. In

these cases 100% functional testing will be called for and the customer will

usually insist on a certificate of compliance stating that the specification has been

met. It is usual for the customer to require that their representatives have right of

access during testing.

The ultimate level of quality control is that employed in the space industry with

military following only a little behind. For the purposes of producing general

statements these can be grouped together. These industries usually require that

each item is 100% functionally tested in a range of operating environments and

that each stage of the process is vetted by the customer’s representatives.

Quality assurance specification is by selection of one of the three options

described above or a blank user paragraph:

(1) Good commercial practice.

(2) 100% testing of performance & certificate of compliance.

(3) Rigorous compliance against each paragraph of specification.

(4) User paragraph.

These stored paragraphs for the first two are quite short:

79

The instrument name> shall be built to a good commercial standard and

be able to meet the performance characteristics specified in Section 3.2.1 in

the environmental conditions specified herein.

The instrument name> shall be built to a good commercial standard and

be able to meet its performance characteristics in the environmental

conditions specified herein. The performance criteria specified in Section

32.1 shall be 100% tested. Certificates o f performance and calibration,

signed by the supplier’s Quality representative shall be despatched with the

instrument. The calibration o f the instruments used to test the instrument

name> shall be traceable to national standards.

The text for option three is considerably longer and the paragraph headings are

included for clarity.

4.1 G en era l

4 .1 .1 R esp o n sib ility f o r T ests

The vendor shall be responsible for the performing the tests, analysis or

inspections specified in Figure 4.1 the Verification Matrix. Any

non-compliancies encountered during the examinations or tests shall cause

rejection of the instrument.

4 .1 .2 T est R ep o r ts a n d C ertifica tes

A test report shall be prepared following the testing of the instrument. A

copy of this report shall be available on request. A calibration certificate

shall be included with the instrument when despatched.

4 .2 Q u a lity C o n fo rm a n ce V erifica tion

The requirements for and the methods used to verify that the design and

80

performance requirements o f section 3 will be satisfied, are tabulated in the

Verification Matrix, Figure 4.1.

4 2 .1 T es t S a m p le

Each instrument delivered shall be inspected and acceptance tested.

4 2 .2 T es t S eq u en ce

Acceptance inspection and tests shall be consist of the examinations and

tests in the following sequence.

(1) Physical Examination

(2) Functional Test

(3) Environmental Tests

(4) Post Environmental Functional Test

4 .2 2 .1 P h y s ic a l E x a m in a tio n

Examination of the instrument shall be performed prior to functional

testing.

4 .2 .2 2 F u n c tio n a l T estin g

Functional tests shall be performed prior to, during and where

appropriate, following environmental testing.

4.3 V erifica tion M eth o d s

4 .3 .1 In sp ec tio n

Inspection shall consist of physical examination of the product,

engineering drawings and/or other documentation to determine

81

conformance to the requirements. The cinstrument name> shall be

inspected, to determine conformance to the physical characteristics
specified in paragraph 3.22 and the applicable drawings and

specifications.

4 .3 .2 A n a ly s is

The analysis method shall consist of review of analytical data resulting

from analyses performed by generally recognised techniques for

requirements that cannot readily be demonstrated through conventional

testing techniques. Computer simulation, is the preferred method, where

appropriate.

4 .3 .3 T estin g

4 .3 .3 .1 F u n c tio n a l T ests

Verification that the instrument name> performs as specified herein

shall be achieved by performing functional tests specified in Figure

4.1.

4 .3 .3 2 E n v iro n m en ta l T ests

Testing of performance shall be performed at both extremes of the

range of each environmental characteristic. It shall not be necessary to

combine tests o f more than one environmental characteristic in a

single test, i.e. high temperature and low pressure. Instrument

performance in such situations shall be verified by analysis as

indicated in Figure 4.1.

4 .4 T es t P ro ced u res

All tests shall be performed in accordance with approved, released

82

procedures.

4 5 R e jec tio n a n d R e te s t

I f a failure occurs during a test, testing shall be discontinued until an

analysis is performed to determine whether the condition warrants

continuation of the tests or discontinuation of the tests for more detailed

failure analysis. The test procedure shall be repeated until completed

successfully. I f corrective action substantially affects the significance of

results of previously completed tests, such tests shall be repeated also.

Figure 3-5 is an example verification matrix typical of that referenced as Figure 4-

1 in the text above. Verification methods are based on either inspection, analysis

or testing. Selection of the method used has to be considered carefully.

Functional requirements are usually verified by testing unless the cost of the

necessary environmental or measurement facilities renders this impractical.

Inspection is used for verifying physical parameters. Analysis is used on all other

requirements which cannot reasonably be measured, for example, reliability,

maintainability, and certain functional characteristics at more than one operating

environmental extreme. An example of the latter might be physical dimensions at

low temperature, vibration and vacuum. The matrix of compliance lists the

selected verification method for each paragraph of Section 3. This matrix would

be based on the default matrix of Figure 3-5 edited as required by the user.

Verification is a large topic and much more could be added on methods and

standards used. Fortunately, method 3 tends to be applied mainly to instruments

which are intended to become components of larger systems. In which case the

verification methods will not be duplicated in each instrument specification but

will reside in the system specification, or most likely, the system quality assurance

requirements document.

83

PARAGRAPH VERIFICATION
METHOD

3.1.2.1.1 Power Interface A
3.1.2.1.2 Communications Interface I
3.1.2.1.3 Electromagnetic Compatibility T

3.1.2.2.1 Sensor Mechanical Interface I
3.1.2.2.2 Data Processor Mechanical Interface I
3.1.2.2.3 Display Mechanical Interface I

3.1.2.3.1 Sensor Thermal Interface A
3.1.2.3.2 Data Processor Thermal Interface A
3.1.2.3.3 Display Thermal Interface A

3.2.1.1 Measuring Range T
3.2.1.2 Discrimination T
3.2.1.3 Repeatability T
3.2.1.4 Hysteresis T
3.2.1.5 Drift A
3.2.1.6 Dynamic Response T
3.2.1.7 Measuring Error A
3.2.1.8 Power Consumption T

3.2.2.1.1 Sensor Enclosure I
3.2.2.1.2 Data Processor Enclosure I
3.2.2.1.3 Display Enclosure I

3.2.2.2.1 Sensor Mass T
3.2.2.2.2 Data Processor Mass T
3.2.2.2.3 Display Mass T

3.2.3 Reliability A
3.2.4 Maintainability A

3.2.5 Environmental Conditions A,T

3.3 Design and Construction I

5. PREPARATION FOR DELIVERY A, I

Legend: A = Analysis
I = Inspection
T = Testing

Figure 3-5 Default Matrix of Compliance

84

3.5.17 Preparation for Delivery

This section is generally applicable to product specifications only, but is included

here to keep the specification compatible with both development and product

specifications. This is worthwhile because development specifications can lead to

limited manufacture and delivery of working models without the production of

product specifications.

It is useful to make a distinction between what covers packaging as opposed to

packing. MIL-STD-490A states that preservation and packaging covers:

" ... requirements for cleaning, drying, and preservation methods adequate to

prevent deterioration, protective wrapping, package cushioning, interior

containers and package identification marking up to but not including the

shipping container. ... ".

Whereas packing covers:

" ... the exterior shipping container, the assembly of items therein or packages

therein, necessary blocking, bracing, cushioning, and weatherproofing."

The method selected to handle this section was to provide a default text

containing only the most general of requirements which the specifier could modify

to suit special requirements.

The instrum ent. name> shall be packaged in such a way that its performance

shall not be impaired by storage for periods up to the storage time specified in

Section 3.2.5.

The packing shall be designed to support the instrument during transportation

and storage and provide absorbent protection from mechanical shock. The

packing shall not contaminate the instrument during storage and shall keep it

free from scratches, dust and chemical attack.

85

All containers or parcels which comprise the instrument shall be marked with a

minimum of the manufacture’s name and the product name. In addition, where

appropriate, labels detailing special handling requirements shall be affixed, for

example, "Fragile Device", "Do not expose to X-rays", "This Way Up", "Anchor

during Transport", etc.

3.5.18 Notes

The notes section contains information of a general or explanatory nature, but no

requirements and nothing which is contractually binding. MIL-STD-490A lists the

possible contents of the notes section in the order they are to appear:

(a) Intended use.

(b) Ordering data.

(c) Preproduction sample, pilot model, or pilot lot, if any.

(d) Standard sample, if any.

(e) Definitions, if any.

(f) Qualification provisions.

(g) Cross reference of classifications.

(h) Miscellaneous notes.

The most common use of the notes section is to explain the intended use of the

item as this important information can be obscured in the detailed requirements.

Contractors can then be in a position to identify inconsistencies between detailed

requirements and the intended use of the instrument. This feedback forms an

important part of the human specification generation process, because although
legally if an item is produced to the letter of the specification it has to be

accepted and paid for, there are no long term business prospects in producing

useless products.

86

3.6 Discussion and Conclusion

This chapter examined current practices for generating measuring instrument

specifications. It was suggested that the human specification process as distilled into

the human specification generation algorithm, could be investigated as a route to

automation. A generalised specification approach applicable to a wide range of

measuring instruments was then proposed using the MIL-STD-490 Prime Item format.

A discussion on specification methods followed which outlined standard practices

developed over the last forty years. A general method of completing the paragraphs

of the chosen format was then proposed. Each paragraph of the specification format

was then discussed and suitable specification methods described.

The important outcome of the work described in this chapter is that by examining

the human specification generation method an algorithm has been identified which

indicates there is structure to the tasks which can be exploited to assist automation.

The seemingly infinite number of specification options has in fact been shown to be

tractable. This has been achieved by enumerating all the viable alternative

specification methods for each paragraph and giving suitable text for each one. The

chosen text for each paragraph has to be customised by inserting short strings which

contain the essence of the specification. Provision for user entered custom paragraphs

has been included as an alternative to cope with diverse situations.

Chapter 4 shows how the methods derived in this chapter can be successfully used to

assist in the production of specifications for measuring instruments.

87

Chapter 4

S p e c r ite r 1: The First Automation of the Specification Generation Process

4.1 Introduction

Chapter 3 proposed a computer-aided specification generation process, derived from a

human one, which could be used as the backbone of a computer-aided engineering

(CAE) tool. The key concept in the proposed procedure was the use of a fixed,

general-purpose instrument specification format, ensconced as a template. The latter

half of Chapter 3 was devoted to describing alternative methods for specifying each

paragraph of this template.

The last chapter also established some functional design aims for a tool to assist in

the production of measuring instrument requirements specifications. These can be

summarised as follows:

(1) Improve the efficiency of generating specifications compared with manual

processes.
(2) Provide knowledge-based assistance in generating the specification, covering

areas such as specification format and use of language.

(3) Provide a user interface suitable for both novice and experienced specification

writers.

(4) Provide some mechanisms for completeness, consistency and reasonableness

checking.

(5) Provide sensible defaults preferably generated from information already

entered.

To these, can be added those requirements, not already covered, which flow from the

Computer-Aided Engineering of Measuring Instruments (CAEINST) project

philosophy, see Chapter 1:

88

(6) Concentrate on the incorporation and structuring of existing knowledge and

techniques.

(7) Incorporate project management aspects in addition to technical ones.

(8) Consider that the resulting software may later form part of a larger entity.

Armed with this list of requirements, work began on the software suite which

eventually became Specriter 1. The initial work looked into human computer

interface methods and how to generate a document from a question and answer

session. Development of the software then proceeded. This activity took place on a

sequence of three machines over the course of two and a half years. The final

software implementation, (Cook, 1988a), receives most attention as all earlier

versions are subsumed into it.

The chapter concludes by summing up the attainments, and inadequacies of the

software. This summary, together with the knowledge gained in producing and using

Specriter 1, are distilled into a brief description of improvements needed for future

realisations.

4.2 Initial VAX Implementation

At the commencement of the task, the only computing facility available was the

central VAX/VMS cluster at the South Australian Institute of Technology. VAX

Pascal was the only modern, general-purpose language available on this computer and

so was selected for all tasks except the human interface. To permit future

portability, it was decided to constrain programming to the ANSI Pascal subset of

VAX Pascal and to prohibit the use of system calls from within the programs.

4.2.1 Human Interface

4.2.1.1 A Look at a Dialogue System

Considerable thought was given to the human interface. Character strings

89

containing the essence of the specification information had to be extracted from

the user in a form which would require minimal processing before insertion

into the stored paragraphs described in Chapter 3. Program control also had to

be derived from user responses as most paragraphs could be specified using

one of many alternative methods. The first tack was to examine an intelligent

dialogue systems called SYNICS (Edmonds & Quest 1979) available on the

SAIT VAX cluster. This system possesses two features of interest for this

task: facilities to build a natural language parser and node-hopping control.

A parser can be used to extract the meaning of the user’s response and this

allows the user to express an answer to a query in his own words. The

meaning, or semantics, can then be used by the node-hopping control to alter

the question sequence to suit responses to previous questions.

In practice, natural language understanding was not well suited to Specriter and

later was also found not to be useful for other related tasks (Sydenham et. al.,

1990). The fundamental difficulty is that free form entry was found to give

insufficient guidance to users. A second consideration was the realisation that

building an adequate natural language parser for the joint domains of measuring

instruments and specification preparation would be a major task. Instead, a

more conventional form filling procedure was used which proved effective and

did not suffer from the substantial overhead involved with SYNICS.

A useful output from the investigation was the discovery that certain parameters

to be specified formed natural interrelated sets and that these are best displayed

together. Another finding was the emergence of a question sequence based on

responses. The concept of response-directed control was thought valuable and

was carried through into the later versions.

4.2.1.2 The Screen-Based Human Interface

VAX Pascal was selected for all further work on the human interface. All

terminals connected to the SAIT VAX featured screen addressing and as this

90

facility was becoming common, it was decided to investigate its use in the

design of a human interface.

Cursor addressing permits defined placement of characters on the screen. This

permits help text, titles, and previous questions and answers to be remain on

the screen when new questions are asked rather than have the entire screen

output scroll up from the bottom.

The question sequence was partitioned into eleven areas to be tackled in the

order shown in Figure 4-1. Eleven screens were designed for the standard VT-

100 terminal following the recommendations by Galitz (1985). Each screen

had the major topic heading appearing in inverse video at the top immediately

followed by help information to aid question answering. The questions are

asked in sequential order separated by sub-topic headings also in inverse video.

Previous questions stayed on the screen whenever space permitted. The context

in which the current question was being asked could easily be determined by

scanning the nested and indented topic headings. Figure 4-2 shows a typical

Specriter 1 screen including user responses.

To cater for the fixed format of the screen, and the inability of standard ANSI

Pascal to cope with variable length strings, responses had to be limited to 75

characters.

4.2.2 Document Generation

Use was made of Digital Standard Runoff which is a VMS system utility identical

in concept to Unix nr off in that it is a text formatter controlled by command

strings imbedded in the source text. It can be thought of as a very primitive

word processor but with the control codes explicitly generated and always visible.

While it is a poor substitute for a word processor, Runoff is ideal for the task of

automatic text generation because it does not require human interaction from a

keyboard. A program was written to accept the user responses from the user

human interface program, generate paragraphs of text according to these responses,

91

1. Measurand Definition
2. Performance characteristics
3. Interface definition
4. Physical characteristics
5. Environmental conditions
6. Quality assurance provisions
7. Preparation for delivery
8. Reliability
9. Maintainability
10. Design and construction
11. Notes

Figure 4-1 Order of Tackling Topics

Figure 4-2 Typical Specriter 1 Editing Screen

92

and finally produce an output file in a suitable form for the text formatter. The

final document was then produced using the text formatter.

4.3 The Need to Change Development Environments

Well before Specriter 1 was finished, it became obvious that the SAIT VAX Cluster

was not an appropriate host for a system such as Specriter. The foremost reason is

that VAX Pascal did not support modular compilation and this meant the entire

program had to be re-compiled after every change. Even with just a few thousand

lines of code, the edit, compile, link and run cycle extended into many minutes, even

when sole user. When the system was heavily loaded, program development became

effectively impossible. Another major factor which encouraged a change of host,

was access to the computer; screen-based programs do not work effectively over low-

rate modems. Additional concerns included the lack of any expert system software

or artificial intelligence languages which could be attached to the developing system.

The cost of such packages for VMS systems made their acquisition unlikely.

For these reasons, it was decided to expend the effort to port Specriter to a VAX

11/750 running Unix 4.2 BSD. This was successful but development was even

slower as Unix is tailored for the C programming language and the Pascal

development environment lacked necessary tools, for example, symbolic debuggers.

Furthermore, despite the precautions taken, the Pascal source code proved hard to

install on other Unix sites, such as City University, due to differences in Pascal

implementations and variations in terminal control codes. A complete re-write in C

was considered but rejected as yet another consumer of hours for very little benefit.

At about this time, it also become clear to other MISC researchers that the potential

users of CAEINST, MINDS and other software under development, were unlikely to

possess expensive VAX systems. Hence, they too began to consider alternatives.

93

4.4 The Personal Computer Implementation

4.4.1 The Selection of a More Suitable Host for S p ecr ite r

Microcomputers were shown to be useful in instrument system design automation

by Gardener (1985) for the following reasons:

(1) The computer is dedicated to the user ensuring good availability and full

allocation of the machine’s resources.

(2) Microcomputers require no specialist support staff and no special facilities

such as airconditioned rooms.

(3) Users have greater control and better interaction with the system.

(4) Hardware and in particular software are inexpensive.

(5) Widely available throughout the world.

These points are even more valid now because of the vastly increased computing

power offered by this class of machine. In fact the term personal computer has

largely replaced the diminutive term microcomputer which has become

misrepresentative. Of particular value for this project, is the superior screen

handling capability inherent in most personal computers which can be exploited to

create sophisticated human interfaces. Another consideration for this application,

is the ability to connect a dedicated printer directly to the computer. This facility

certainly speeds the process of creating documents.

The target machine chosen for the final port from Unix was the ubiquitous IBM

PC/AT style personal computer. The reasons for this choice were based on

affordability, good software availability, good processing performance and the
desire to achieve good hardware availability through the huge installed base of

these machines. Time has vindicated this decision as development of backward-

compatible high-performance machines continues unabated. However, it was

known that IBM PC/ATs possess some major limitations, in particular the inability

of the normal operating system, DOS, to access more than 640k of main memory

and the lack of virtual memory capability. Nonetheless, if carefully designed,

94

large powerful programs can execute on IBM PCs.

Borland’s Turbo Pascal Version 3.0 was selected because of its high development

efficiency, low price and because it implements a super-set of ANSI Pascal thus

easing the task of installation. The VT-100 style display was retained but a much

more rapid screen update rate was achieved by mapping the Specriter screen

functions onto the Turbo Pascal equivalents.

4.4.2 The Final Version - S p ecr ite r 1.41

Once established in the Borland development environment, progress on completing

Specriter 1 accelerated. The final version, Specriter 1.41, was produced in April

1988. The installation and use of the system are described in the User’s Guide,

Appendix 1, and will not be repeated here. The design and facilities of the

software are described below.

4.4.3 S p ecr ite r 1 Structure

Figure 4-3 illustrates the structure of Specriter 1 which was implemented as six

separate executable modules tied together with an operating system command

language program. This approach was used for two reasons. The first is because

the text formatter and document display utility were proprietary software which

could only be invoked from the operating system. The second was because this

early version of the Turbo Pascal compiler was constrained to a maximum

executable module size of 64k bytes which equates to roughly 4,000 lines of code.

This was circumvented by dividing the roughly 13,000 lines of source code by

function, as below:

(a) Main menu production and task sequencing.

(b) Operating system command language generator.

(c) Attribute entry and editing.

(d) Text generation.

95

Figure 4-3 Specriter 1 Structure

96

4.4.3.1 Command Program

The command program provides the main menu shown in Figure 4-4 and a

sequencer which calls the various modules to be executed. The latter is quite

cumbersome as Turbo Pascal Version 3 cannot call executable modules direcdy

from the language. To overcome this, the original idea from the VMS and

Unix implementations of using an operating system command language program

was adopted. The paucity of control available in the DOS batch file language,

necessitated extra complexity. The effective but messy solution was to have

one Pascal module to produce the human interface and a second to generate a

DOS batch file which could subsequently be executed. On completion of this

batch file, the command program was reloaded and executed and thus the cycle

continues until the user elects to terminate the program.

Figure 4-4 Specriter 1 Main Menu

97

The main menu provides eight options. Numbers one to four call up purpose-

written programs which are described in subsequent sub-sections. The HELP

option calls up the Borland Readme program which reads the help file and

displays it on the screen. Readme supports backward and forward scrolling

and has string search facilities. Control is returned to the main menu by

pressing the Escape key.

Rudimentary file handling facilities are provided with LIST and RECALL.

These were included to support a workfile concept. Individual instrument

specifications are held as instrument attribute files and the one currently under

consideration is nominated the workfile and its name is shown in bold on the

main menu. Being able to store the essence of the specification in this way

means that it is possible to return to a previous instrument without having to

repeat the creation process. It also opens the possibility of having a library of

instrument specifications available. An alternative to the CREATE process

could then be to select and edit the most appropriate library file. LIST

displays the instrument attribute files held in the current directory and RECALL

is used to designate the workfile. The workfile then becomes the instrument

attribute file that the EDIT, DISPLAY and PRINT programs load and process.

4.4.3.2 The Entry and Editing Program

This program, known as Edit, is the heart of Specriter 1. The same program is

employed for creation and editing. The mode of operation is set by status

information written into a control file. When CREATE mode is selected from

the main menu of the command program, the user is prompted for a file name

for the instrument to be described and once this is entered Edit is invoked in

entry mode. A new workfile is created using the name given. It is loaded

with defaults which can be used if questions are skipped or the program

terminates abnormally.

Information entry is accomplished by a question and answer format. The order

98

of the questions is based upon the concept of extracting a high proportion of
the information in the early questions with the detail following. The idea was

to try and build a mental image of the instrument in the mind of the user

before the detail was tackled. The order the topics are tackled in was shown

earlier in Figure 4-1. Requested responses fall into one of the following

categories:

(a) A text string containing such items as numeric limits, qualifiers and

measuring units.

(b) A selection of one of a given set of alternatives.

(c) A user entered descriptive paragraph.

The number of questions presented to the user is minimised. This is achieved

by interpreting responses to key questions, in particular those configured as

alternatives, and selecting the appropriate continuation sequence. Figure 4-5

illustrates the full question sequence.

After completion of information entry, the essence of the information gathered

is written to the instrument attribute file named at the start. Control is then

returned to the main menu.

The editor can now be used to alter any of the responses. It is called from the

main menu by selecting the EDIT option. Edit is invoked in editing mode and

the specification just entered, being the current workfile, is loaded. Editing

takes the form of replacing the previous responses to the questions. To avoid

sequencing through the entire question list, the questions are divided into

eleven topics and displayed on the editor menu, Figure 4-6. The user selects

the topic containing the question(s) to be altered and the question sequence

starts from the beginning of that topic. For each question of the topic, the user

is presented with the original question followed by the previous response

enclosed in square brackets. The user can change the response simply by

typing in a replacement or alternatively, can elect to leave the previous one

unaltered by simply pressing the return key without making an entry. One or

99

START

NOT

Measurand
I

Instrument name

Lower range boundary

Upper range boundary
I

Discrimination
I

Repeatability
I

Hysteresis

Drift limit

Drift period

Legend: small caps = option names

Courier font = questions

Figure 4-5 Specriter 1 Question Sequence (Part 1)

100

FROM PART 1

Physical partitioning

Figure 4-5 Specriter 1 Question Sequence (Part 2)

101

FROM PART 2

Power source

Power connector
I

communications interface option

specific EMC requirements option

Low operating air pressure limit
I

High operating air pressure limit

Low operating humidity limit
I

High operating humidity limit
I

Low operating vibration frequency limit
I

High operating vibration frequency limit

Operating vibration amplitude limit

Special operating environment option

YES NO

Figure 4-5 Specriter 1 Question Sequence (Part 3)

102

FROM PART 3

Low transportation temperature limit

High transportation temperature limit

Low transportation air pressure limit
I

High transportation air pressure limit
ILow transportation humidity limit
I

High transportation humidity limit
I

Low transportation vibration frequency limit

High transportation vibration frequency limit

Vibration transportation amplitude limit

Special transportation environment option

YES NO

YES NO

Figure 4-5 Specriter 1 Question Sequence (Part 4)

103

FROM PART 4

Reliability option

DEFAULT TEXT ENTER A PARAGRAPH

Figure 4-5 Specriter 1 Question Sequence (Part 5)

104

HOUSING SUBROUTINE

19" RACK OFF THE SHELF PURPOSE DESIGNED SIZE LIMITS

END OF SUBROUTINE

(a) Housing Subroutine

THERMAL INTERFACE SUBROUTINE

TEMPERATURE RISE NOT SPECIFIED THERMAL RESISTANCE

(b) Thermal Interface Subroutine

Figure 4-5 Specriter 1 Question Sequence (Subroutines)

105

Specriter Editor Menu

The instrument a ttribu te f i l e temp is entered fo r editing.

Would you lik e to e d it the instrument a ttribu te f i l e in one o f the
fo llow in g areas:

[1] Measurand D efin ition
[2] Performance C haracteristics
[3] Physical C haracteristics
[4] In terface D efin ition
[5] Environmental Conditions
[6] Q ua lity Assurance
[7] Preparation fo r Delivery

[8] R e l i a b i l i t y
[9] M ainta inability
[10] Design and Construction
[11] Notes

Or a lte rn a te ly , se lec t from one o f the fo llow ing options:

[0] To fin ish ed itin g & return to the Main Menu
[22] For help

Enter your choice . . .

Figure 4-6 Editor Menu Screen

T e x t P r o c e s s o r P a r a m e te r s

Page Width (40 -■ 132 chars) [85]
Page Length (40 -■ 200 lin e s) [66]
L e ft Margin (0 - 40 chars) [12]
Right Margin (L. Margin+65 - P.Width) [77]
Top Margin (1 - 10 lin es) [1]
Bottom Margin (1 - 10 lin e s) [“>]
Document Number [1]
Issue Number [A]
Paragraph Indent (0 - 10 chars) [2]
Right J u st ific a t io n (o n /o ff) [OFT]
In i t ia l Page Number (1 - 99) [2]

Figure 4-7 Text Format Menu

106

or more topics can be edited as many times as necessary in one editing session.

Once the user is satisfied with the information entered, the attribute file is written

to disk and control is returned to the main menu.

4.4.3.3 The Text Generation Programs

Text Generation is performed by selecting the DISPLAY or PRINT options on

the main menu. Both these options call the text generation program Textgen.

This program reads the workfile and the associated text format file. The latter

file contains control information for the text formatter and can be altered by

the menu which appears next shown in Figure 4-7. The values shown in the

figure represent the default format derived from Cook (1986). Once the format

is decided the construction of the text commences. The process comprises

examining the user’s responses, selecting which paragraphs should be used in

the output text, and creating the final text from a combination of stored and

user text strings. Small grammatical adjustments are performed in this process.

Control codes for the target text formatter are then added prior to writing the

raw text to an ASCII text file.

Three different formatters have been used successfully; Runoff when using

VMS, Nr off when using Unix and finally, the finished Specriter 1 uses a DOS

program called RUNOFF (Blaise, 1986). Each of these is conceptually

identical; in response to control codes the text is placed into justified

paragraphs, headers and footers and page numbers are added, and the resultant

text written to a disk file. Constants were used in Textgen to facilitate changes

between operating systems.

If DISPLAY is selected, then the finished document is displayed on the screen

using Borland’s Readme program. Whereas, if the PRINT option is used, the

finished text is sent to the DOS printer spooler utility Print to be printed out

as a background task. Control would be returned to the main menu as soon as

the spooler was loaded.

107

4.5 Discussion of S p e c r ite r 1

Specriter 7 is a complete working system that can assist in the preparation of

requirements specifications for measuring instruments. If the user has all the

information to hand, a complete document can be produced in around half an hour.

The specification will be as good as the input provided and can be adequate for low-

risk projects. A modest amount of editing by a manager could render it suitable for

contractual use. Specriter 1 was never intended to be a product; indeed it was not

engineered as such. Rather, it was to be a research tool with which to demonstrate

the viability of computer assistance in this non-numeric area. Other reasons to

produce a demonstrator included the desire to identify research issues, to gain

experience in human-computer interface techniques, and to derive the requirements

for a knowledge-based approach.

The remainder of this section is divided into four parts. The first enumerates the

contribution Specriter 1 has made to knowledge and the support its success lends to

the MISC program CAEINST. The second is concerned with the important lessons

that can only be learned from observing an entity in action. The third considers

areas identified in early chapters that this system did not address. And finally, the

last sub-section sums up the knowledge gained from Specriter 1 in terms of input to

the design of the next generation Specriter.

4.5.1 Achievements of S p ecr ite r 1

Specriter 1 was the first known computer-aided engineering package to be

produced to assist in the automated production of measuring instrument

specifications. It demonstrated that the generalised specification method for

measuring instruments, described in Chapter 3, is capable of being applied to a

wide range of tasks and is fundamentally sound. The very fact that a complete

system could be made to work from attribute entry, through editing, to data

controlled document generation is, in itself, important.

Many of the items identified in the design aims both in this chapter and in

108

Chapter 3 were met to at least a limited degree. A comprehensive list of

questions is provided as a aid to completeness. Quite reasonable specifications of

measuring instruments can be produced quickly which represents a major

improvement in efficiency and perhaps in quality as well. Initial defaults are

provided for all the responses, even if rudimentary.

Specriter 1 was one of the first major components of CAEINST. MINDS was

able to interface to Specriter by generating an instrument attribute file using the

description given in Cook (1988b). Completion of the many items not determined

by MINDS could then be performed using the Edit program.

From an implementation viewpoint, run-time performance vindicated the choice of

the IBM family of personal computers as a platform. Portability has proved no

problem to date; all IBM PC machines and compatibles have run Specriter 1

satisfactorily.

4.5.2 Lessons Learned From S p e c r ite r 1

The first observation is that there is a need to limit the amount of detail the user

is exposed to. Depending on the instrument, there can be nearly 100 questions to

answer and considerable expert knowledge of instrumentation is required to do this

satisfactorily. Users (Goldsmith, 1989; Sydenham 1989) suggested more elaborate

help facilities be incorporated and a mechanism be provided to return to previous

questions and change the response before completing the entry process.

From a software engineering viewpoint, many important points emerged. The

programs are hard to maintain; to add another attribute requires changes to both

Edit and Textgen. As the screen is produced by many separate statements, editing

the screen layout and adding another question is not simple. To permit easier

maintenance, this information needs to be held in data structures rather than

program statements. Software tools could then be constructed to generate and

maintain these screens. It was also clear that the string handling limitations

stemming from the original decision to use ANSI Pascal were causing significant

109

degradation of the human interface and this needed to be rectified. Provision for

very long strings coupled to line and paragraph editors was also identified.

4.5.3 Requirements Not Addressed by S p ecr ite r 1

Specriter 1 was never intended to be a product but rather a research tool to

demonstrate concepts and help identify requirements. Accordingly, some

requirements known to be necessary in a final system were not attempted. The

foremost of these was consistency and reasonableness checking.

No attempt was made to extract any meaning from the specification generated or

from the user text responses. At no point in the execution of Specriter 1 is the

knowledge about the instrument under consideration in a form which readily

permits the contents of the specification to be reasoned about.

4.5.4 Design Directions for the Next S p ecr ite r

Part of the purpose of producing an early demonstrator like Specriter 1 was to

hone the requirements for a more comprehensive system. The question list itself

has proved adequate but completing it required the user to possess too much

domain knowledge. Additional knowledge would also be required to check the

specification during and after preparation to ensure consistency, completeness and

reasonableness. These requirements indicate that a knowledge-based approach

would be required. The latter also indicated that the responses would have to be

reasoned about. This is quite a special requirement for a knowledge-based system

(KBS). What is usual, is to design the human interface to suit the KBS in

particular its inferencing strategy. Instead, here the aim is to create a KBS which

has to use the question and answer structure imposed by the text needed to

complete a formatted specification. This has important implications and indicates

that the adoption of an underlying formal specification for Specriter is not just

desirable but perhaps essential if consistency and reasonableness checking are to

be performed. This is elaborated in the next chapter.

no

Some of the limitations of the human interface need to be removed as already

discussed. A more fundamental improvement that was identified, would be to

allow greater flexibility over the order in which the questions could be answered.

The need for comprehensive help facilities in all contexts was often requested by

users.

There was no reason to change from the hardware platform as this had proved to

be well suited to the task. There remained, however, the task of finding a

programming language or environment, available for the EBM PC, that could be

used to construct a knowledge-based system and also be used to produce a human

interface driven from data structures as opposed to programs.

4.6 Conclusion

This chapter describes the software system Specriter 1 which implemented the ideas

developed in Chapter 3. In doing so, the computer specification generation process,

the use of a specification template and the paragraph specification methods have all

been shown to be viable. While it was intended to be no more than a concept

demonstrator, Specriter 1 was fully functional and robust.

The description of Specriter 1, started by explaining the background of the

development which was largely directed by the available software and hardware.

The limitations of employing a VAX were discussed and the reasons for transferring

the development onto an IBM PC/AT style personal computer elaborated. This

account tracks the evolution of the computing industry over the last five years which

has led to the rise of the personal computer, and now the workstation, as the

replacement for central mainframes supporting numerous terminals.

A description of the final version Specriter 1 then followed. Each of the modules

was described together with the concepts behind their design. (Installation and use

of the software is covered in Appendix 1.)

The attainments of Specriter 1 were then compared against the design aims

in

developed earlier. Most of the aims were in fact met. Valuable lessons were

learned from building and using this software. The prime one was the need for

more stored knowledge to reduce the load on the user. This is not an easy addition

onto the procedural realisation adopted. Thus Specriter 1.41 represents, the final

development using conventional procedural programming.

Chapter 5 takes the knowledge gained from the work to date and discusses methods

of designing an improved software tool which can meet all of the design aims. The

largely minor deficiencies recognised in the discussion of Specriter 1 are also

considered there.

Specriter 1 is currently installed on a PC pool at the South Australian Institute of

Technology. It has been surprisingly successful, over the last two years over 200

students, staff and clients have used Specriter 1 in training exercises and design

projects (Sydenham & Harris, 1990; Sydenham & Vaughan, 1990).

112

Chapter 5 - Underlying Concepts for a Knowledge-Based S p ecr ite r

5.1 Introduction

Chapter 4 showed what could be done, using conventional procedural programming,

to meet the design aims for a Computer-Aided Engineering (CAE) tool intended to

assist in the generation of measuring instrument specifications. The system

described, Specriter 1, worked well and succeeded not only in meeting many of these

design aims, but was also valuable in refining these aims and identifying aspects not

adequately covered. The discussion of Specriter 1, concluded that knowledge-based

techniques were indicated for such tasks as entry assistance, minimising the number

of questions, and checking the specification for reasonableness and internal

consistency. The latter requires that the specification under consideration be in a

form suitable for automatic reasoning, which implies the use of a formal

representation.

The chapter opens with a brief description of formal methods which is immediately

followed by an appraisal of the potential this technique for the largely non-functional

specification domain of Specriter. Given the candidate specification technique that

emerges from the subsequent examination of possible specification paradigms, the

search for a compatible knowledge representation technique is then pursued.

This chapter deals with the selection of basic concepts for a completely new

specification generation tool. Design and implementation issues are the subject of

the next chapter.

5.2 Formal Specifications

Formal methods have developed in response to the increasing complexity of systems,

in particular, software. Berg et. al. (1982), state that formal methods seek to do for

113

programming what mathematics has done for engineering: provide symbolic methods

whereby the attributes of an artifact can be described and predicted. Listov and

Berzins (1986) define a formal specification as one written entirely in a language

with an explicitly defined syntax and semantics. They go on to state that formal

specifications have the advantage that they can be studied mathematically and can be

meaningfully processed by a computer and in addition, certain forms of inconsistency

or incompleteness can be detected automatically. Thus validation and system

behaviour can be studied before the design stage commences rather than having to

wait to observe the execution of the final system.

Cohen et. al. (1986) devote the first chapter of their book to the role of formal

specifications in the design cycle. While their treatment is software orientated, they

do show how formal specification can be used on a wider class of problem. Formal

methods currently find use in software engineering as an aid to specification

preparation, program design, and subsequent verification (Berg et. al., 1982; Cohen

et. al., 1986; Lees, 1987; Guttag & Homing (1986)). Another related application is

automatic programming. This term refers to the process of converting a user’s

requirement into an executable computer program (Blazer, 1985). This is achieved

by first translating the user requirements into a formal specification and then

invoking a compiler to generate the executable code. Other applications of formal

specifications include automatic verification of communications protocols (Wibur-Ham

(1987); Sunshine, 1982) and more recently, albeit in a limited way, the specification

of measuring instruments (Delisle & Garlan, 1990).

5.2.1 The Case for Employing Formal Specification Techniques

The subject of this research project is the automation of the process of specifying

measuring instruments. This is part of a larger research program CAEINST

(Sydenham, 1987) which aims to automate the entire instrument development

process from requirements analysis through to application of the finished

instrument. The goal of going from a user requirement to a finished product is

analogous to the aim of the automatic programming researchers. However, Blazer

(1985) states that he considers that full optimisation will never be achieved for

114

automatic programming and that interactive translation of the high-level

specification to a lower-level which can be automatically compiled, will always be

necessary. In the measuring instrument domain, this equates to directing the

selection of such things as the physical principle of operation and the choice of

candidate designs.

From this it would appear that a reasonable expectation for the new Specriter

would be to operate as an advisory system or intelligent assistant in the

preparation of a formal specification. This formal specification would then be

interrogated to create the final output text. The advantage of using a formal

specification as an intermediate step is the same as in the automatic programming

case; the possibility exists for the specification to be validated without recourse to

building the item in question. Reasoning can be performed using an inference

mechanism operating on the formal specification and associated knowledge bases.

Future benefits to be gained include the possibility of using the specification to

drive subsequent design, implementation, and manufacturing packages which could

eventually create the finished product.

5.2.2 A Formal System for Measuring Instrument Specifications

It is important to consider the implementation of other aspects of the task when

considering which of the formal methods to pursue. Knowledge of measurement

science and specification practices has to be stored in a form which is appropriate

for the reasoning mechanisms which need to operate on the specification. In

addition, the user interface needs access to both entities to provide knowledge-

assisted entry and context-sensitive help facilities. Finally the text generation

program must be able to translate the specification into an English language

equivalent.

Software behaviour can be specified as logical relations between inputs and

outputs (Blackburn, 1989). However, measuring instruments can only be partially

described in terms of a relation between inputs and outputs. Chapter 3 shows

clearly that performance characteristics represent a fraction of the items which

115

need to be described when specifying an instrument. The introduction of two

separate specification methods, one for the performance or functional

characteristics and one for the rest would not only be cumbersome but would

prohibit reasoning about performance in relation to all the other requirements, for

example the operating environment.

Cohen et. al. (1986) discusses a range of formal specification techniques. These

are abstracted below and later examined for suitability for the task in hand.

5.2.2.1 Model-Based Approach

In the model-based approach, specifications are explicit system models

constructed out of well defined abstract or concrete primitives. The

constituents of models are data objects representing the inputs, outputs, and the

internal state of the system. This approach is well established and methods

based on models have been applied to industrial problems successfully.

Perhaps the best known model-based specification language is the Vienna

Development Model (VDM) which was developed at the IBM Vienna Research

Laboratories in the 1970’s and is described in Chapter 5 of Cohen et. al.

(1986). VDM is based on the use of mathematical abstractions such as sets

and finite mappings. A newer approach based on set theory, called Z, has

been developed by the Programming Research Group at the University of

Oxford (Sufrin, 1986; Delisle & Garlan, 1990). Another example is Gist

(Blazer, 1985), a model-based language developed by the Information Sciences

Institute of the University of Southern California which has executable

semantics and is intended to support automatic programming.

5 .2 .2 .2 Property-Oriented Specifications

In the property-oriented approach, specifications are given in terms of axioms

which define the relationships of mathematical operations to each other. Data

types have no values defined and no explicit model is formulated, but logical

manipulation of the axioms can be used to deduce interesting properties of the

116

specifications. So-called "algebraic" specifications are the best known.

5.2.2.2.1 Algebraic Specifications

An algebraic specification defines a mathematical object in terms of relations

among the operations defined over the object. The specification comprises a

list of operations, a list of equations which defines the meaning of these

operations in terms of a collection of relations that exist among them

together with declarations of constants, types, and the nature of the closure

of the set of equations. The complete specification is made up of a

hierarchy of modules descending down to basic primitives such as the

Boolean object.

5.2.2.2.2 Non-Algebraic Approaches

The principal example of this axiomatic approach is logic programming, such

as Prolog (Kowalski 1979) where a restricted form of logic known as Horn

clauses is used as a specification language which can also be directly

executed using a resolution theorem proving approach. Two other systems

are given in Cohen et. al. (1986), a Japanese system IOTA where programs

are specified in predicate logic and implemented in an Algol-like language

and ANNA proposed for specifying Ada programs.

5.2.2.3 Selection of A Formal Technique

It is not clear how algebraic or model-based specification paradigms can be

used to specify anything other than the relation between the input and output of

the instrument. Also the complexity of the simple examples given in Cohen et.

al. (1986) is somewhat daunting. None of the languages for these paradigms

were available to investigate their extension for use on this project. As each of

these example systems has been the subject of around a decade’s research it

was seen as far too large a task to attempt to produce a new formal

specification language specifically for measuring instruments.

117

The approach selected was to write the specification in Prolog. Prolog which

is a contraction for PROgramming in LOGic is a programming language which

borrows its basic constructs from logic. A Prolog program comprises a finite

set of facts and rules expressed as Horn clauses. Prolog is a declarative

language and a Prolog program does not step through a sequence of steps but

rather seeks to establish whether a goal is true or false. Procedural activities

can, however, be achieved by making use of standard predicates which produce

side effects in the process of proving the goal. Good descriptions of Prolog

can be found in Kowalski (1979), Clocksin and Mellish (1987), Bratko (1986),

and Sterling and Shapiro (1986).

Predicate calculus is the underlying formalism of Prolog. Ramsay (1988)

examines first order predicate calculus and shows how it can be used to

construct a formal system and how unification and resolution can be employed

to prove whether an arbitrary formula expressed in that calculus is valid. In

Chapter 10 of their book, Clocksin and Mellish (1987) compare Prolog to

predicate calculus in order to ascertain just how far the results of logic can be

applied to Prolog. They show that predicate calculus formulae can be rewritten

in clausal form in terms of conjunction, disjunction and negation. They go on

to describe how resolution can be applied to this clausal form to achieve

inferencing of new propositions from the ones stated and hence achieve

theorem proving. They state that in general Prolog matching will be equivalent

to unification used in resolution. They acknowledge, however, that differences

can arise because Prolog is a computer language and its design had to take into

consideration execution efficiency and extralogical constructs necessary to

perform a range of tasks. The offending additions are the built-in predicates

which perform functions such as input/output and the "cut" which is used to

control the procedural meaning of a Prolog program. In Prolog, it is possible

to convert symbols to strings, convert structures to lists and convert structures

to clauses. These operations violate the simple self-contained nature of

predicate calculus propositions. What is more, the Prolog database can be

altered during the conduct of a proof altering the set of axioms. This violates

the principle that in logic each fact or rule states an independent truth,

118

independent of what other facts and rules there may be.

From the above, it can be surmised that Prolog can be used to construct a

formal system provided that Prolog’s extralogical clauses are avoided. This

restriction cannot always be guaranteed and hence not all the properties of a

formal system may be available in the new Specriter. For this reason, the term

limited formal specification is most meaningful here. The great attraction of

using a computer language rather than a specification language for

implementing the underlying formal specification is that other parts of the

overall task can be constructed using the same language and development

environment. This presents an opportunity for integration of the specification,

knowledge based systems and control mechanisms.

5.3 Knowledge Representation

5.3.1 The Case for Inclusion of Knowledge into S p ecr ite r

Traditional procedural programming is an efficient method of solving problems

which can be expressed in an algorithmic form. The very existence of an

algorithm indicates that the process to be modelled on the computer is well

understood. However, when the problem domain is not well understood, or input

data is incomplete or inconsistent, or the relationship between interacting factors

cannot be well described, usually because of complexity, procedural techniques

cannot be employed. This is often the case for complex real-world problems,

which until recently could only be tackled by humans.

Knowledge-based systems are an attempt to duplicate the performance of the
human reasoning process using computers. This approach is based on the concept

of storing domain knowledge, as facts and relations between facts (in general

rules), in a manner amenable to the chosen inferencing process. Figure 5-1 from

Bratko (1986) illustrates the minimal structure of a knowledge-based system.

119

Figure 5-1 Minimal Structure of a Knowledge-Based System (from Bratko, 1986)

Such systems are often termed expert systems. This phrase has many definitions,

see Simons (1985), but it is generally agreed that expert systems tackle problems

requiring a considerable level of human expertise, the classic example being

medical diagnosis, using stored knowledge and can produce an explanation of their

reasoning. As there is no need for Specriter to meet all these restrictions the

more general term Knowledge-Based System (KBS) will be used henceforth. As

there are many books which describe the evolution of knowledge-based systems

(for example, Michie, 1982; Hayes-Roth et. al. 1983; Winston, 1984), this standard

discourse will not be reproduced here.

The task of preparing measuring instrument specifications requires a combination

of intelligence and, in particular, experience derived from considerable exposure to

the engineering industry. This point was strongly reinforced in Chapter 3. While

it has been shown in Chapters 3 and 4 that certain aspects of the task can be

conceived as an algorithm, within that algorithm are sub-tasks which require

knowledge for their completion. The most important areas are user assistance and

checking for consistency and reasonableness. The latter can only be achieved by

a considerable depth of knowledge across the domains of measurement science,

instrument engineering with emphasis on current industrial practice, and project

120

management including commercial factors. As discussed in Chapter 3, this is

usually beyond the scope of a single person’s competence and becomes a shared

responsibility. Other topics which could benefit from KBS treatment could be text

generation coupled to natural language understanding and the document format

selection and enhancement. It was decided to concentrate on the first two as the

last two areas are tolerably well handled using the techniques implemented in

Specriter 1, see Chapter 4.

5.3.2 S p ecr ite r Knowledge Representation Requirements

Knowledge can be represented in a computer using techniques which vary from

the purely procedural, through to constructs which support an emulation of

common-sense reasoning. Reviews of established knowledge representation

techniques can be found in Brachman & Levesque (1985), Ringland & Duce

(1988) and Walters & Nielsen (1988). These works make it clear that the

selection of a knowledge representation and the associated inferencing strategy is

dependant on the application. Thus the representation requirements of the

knowledge domains need to be established.

There are some general requirements common to all knowledge-based systems. In

order to maintain and improve the knowledge base, it is desirable that it be

completely separate from both the inferencing mechanisms and the human

interface which together are often referred to as an expert system shell or just

shell. This also allows the shell to be re-used for other similar problems.

The Specriter-specific knowledge representation requirements are unusual in that

there are at least three definable knowledge domains to be considered. Each of

these is dealt with in turn below but ideally they need to be unified into a single

structure which can become the Specriter knowledge base. Another consideration

to take into account is the desire to construct the KBS’s using Prolog to allow

ready interaction with the limited formal specification of the measuring instrument

under consideration.

121

This is a large field of knowledge which covers the domains of measurement

science, instrument engineering and current industrial practice. In addition, for

each measurand there will need to be a separate knowledge base. The potential

magnitude of the knowledge base(s) indicates that the knowledge will have to

be organised in some way to constrain the number of facts and rules considered

at any one time. The reasonableness of an instrument specification can be

divided into two components: whether the requirements are reasonable from a

technical point of view, for example with respect to known operating principles

and associated achievable performances; and whether the specification represents

a reasonable potential task for a supplier to undertake. The latter would also

need to take into account company objectives, contractual arrangements, and

penalty clauses. Thus project management knowledge needs to be included.

5.3.2.2 S p ecr ite r Human Interface Requirements

There is a desire to provide knowledge-assisted entry to reduce the input entry

effort and the knowledge needed to successfully specify an instrument. Such

techniques as intelligent default generation, intelligent question list generation,

intelligent option generation are all possibilities. The help information could

not only be context-sensitive but also intelligently generated.

The finished text can be thought of as a translation, or view, of the internal

limited formal specification. It can be conveniently considered as part of the

human interface. It would be particularly useful to be able to view the finished

text during an editing session. Hence the human interface system will need

access to the questions, screen format information, the instrumentation

knowledge bases, the specification knowledge base and whatever structure is

used to hold the text fragments. This access would be necessary during both

user interaction and specification generation.

5.3.2.1 Instrumentation Knowledge Representation Requirements

122

5.3.23 Specification Generation Requirements

The knowledge of specification practices and specification methods for

measuring instruments, described in Chapter 3, mapped well onto the procedural

implementation described in Chapter 4. The sole criticism from an

implementation viewpoint is that all the knowledge was held as program

statements. Any changes necessitated recompilation. Adding an extra attribute,

for example, meant amending both Edit, Text gen and the format of the
instrument attribute file. This was not only time consuming but also led to

configuration control problems as the programs can only work together as a set.

To overcome this problem and to provide the human interface functionality

discussed above, it is clear that the entirety of the knowledge about the finished

document structure, the specification methods, and the text fragments, needs to

be held in some structure that can be accessed by the text generation engine.

5.3.3 In Search of A Knowledge Representation for Specriter

Quite a number of knowledge representation schemes have been proposed over

recent years. Brachman and Levesque (1985) state that the notion of knowledge

representation is essentially a simple one that has to do with writing down in

some language, or other communication medium, descriptions that correspond in

some salient way to the world or the state of the world. It is however, also

necessary to consider the ways in which the representation can be manipulated and

the uses to which it can be put. Ringland and Duce (1988) suggest that the first

ingredient in the knowledge representation problem is to find a knowledge

representation language, that is some formal language in which domains of

knowledge can be described. The second is to have some component of the

knowledge representation which can perform automatic inferences for the user,

while the last concerns capturing the knowledge.

Prolog, the language already selected to represent the specification of the

instrument under consideration, is widely known for its ability to represent

123

knowledge (Kowalski, 1979; Clocksin and Mellish, 1987; Bratko, 1986; Sterling
and Shapiro, 1986; Ramsay, 1988). There is significant practical value in

selecting this language for the knowledge representation tasks also. Prolog can be

used for a variety of representational paradigms and examples of Prolog rule-based

systems (Bratko, 1986; Schildt 1987; Smith, 1988; Marcellus, 1989), logic-based

systems (Yin, 1987; Weiskamp & Hengl 1988), frame-based systems (Cuadrado &

Cuadrado, 1986; Yin, 1987; Rosin 1988; Weiskamp & Hengl 1988), and semantic

nets (Weiskamp & Hengl, 1988) can all be found. Thus the choice of language

does not complete the task of choosing a knowledge representation. Each one of

these representation techniques is examined below together with its reasoning

strategy to decide the knowledge representation best suited to Specriter.

In addition to expressive adequacy and reasoning efficiency, Ringland and Duce

(1988) include the following issues in their list of items to be considered when

selecting a knowledge representation: meta-representation, the structure of the
knowledge and the representation of knowledge about this structure;

incompleteness, how can inferencing be performed over incomplete knowledge and

how earlier inferences can be revised in the presence of more complete

knowledge; and real-world knowledge, how can beliefs, desires and intentions be

dealt with. These issues will also temper the selection of a knowledge

representation technique.

5.3.3.1 Rule-Based Systems

5.3.3.1.1 Introduction

A classic way to represent human knowledge is the use of a series of

production rules of the form:

IF <predicate> THEN <consequent>

The satisfaction of the rule antecedents contained within the predicate gives

rise to execution of the consequent which performs some action.

124

observed
data

output

Figure 5-2 Production System Execution Cycle

(from Williams and Bainbridge, 1986)

Figure 5-2 reproduced from Williams & Bainbridge (1988) shows the

architecture and execution cycle of a simple production system. Such

systems have been used successfully to model human problem solving

activity and adaptive behaviour. Commercial quality tools such as OPS 5

(Forgy 1982) have been developed to support applications such as R1

(McDermott, 1982). The pioneering medical diagnostic expert system

MYCIN and its derivatives (Buchanan & Shortliffe, 1984) showed what

could be achieved with rule-based systems.

Reasoning is performed by the inference engine which analyses and

processes these rules in one of two ways: backward or forward.

5.3.3.1.2 Backward Chaining

In backward chaining, the inference engine works backward from the

hypothesised consequent to locate known predicates that would provide

support. The classic example of such a system is where the number of

goals is small such as in a diagnostic system and the inference engine starts

125

with the first possible diagnosis and checks to see if the facts about the

current fault or condition support the diagnosis. This is the inherent

mechanism of Prolog and is achieved readily using the inbuilt unification

algorithm.

5.3.3.1.3 Forward Chaining

In forward chaining, the inference engine works forward from known

predicates to derive as many consequents as possible. The classic use of

this inferencing mechanism is for planning or computer configuring where

the solution space i.e. number of goals can be very large. Forward chaining

can be implemented in Prolog but the semantics of the program are

somewhat harder to grasp.

5.3.3.1.4 Suitability of Rule-Based Systems for S p ecr ite r

The biggest drawback of rule-based systems is the lack of structure in the

knowledge base. As the number of rules increases, inferencing efficiency

declines and maintenance become difficult, it is often not clear what effect

the addition of a new rule will have on the system. In addition, because the

rules are independent from each other and from the control strategy, it is

impossible to determine rigorously the systems’s behaviour by static analysis

(Williams & Bainbridge, 1988). Hence system performance can only be

ascertained by testing the system with the data of interest. Large rule-based

systems cannot be exhaustively tested hence behaviour can never be verified.

A rule-based paradigm is not ideal for Specriter because of the potentially

large number of rules needed to cover the various knowledge domains and

the lack of structure and the potential maintainability problem. An

additional consideration is that much knowledge, for example associated with

the human interface and text generation, is procedural or just text strings,

neither of which is well catered for by production rules.

126

5.3.3.2 Logic-Based Systems

There is dispute over what is meant by the term, logic when applied to

artificial intelligence (Pavelin, 1987). He distinguished three definitions:

"(a) First Order Logic (FOL).

(b) Some development of FOL which maintains its notation, its notion of a

formal language, a deductive proof theory and a well defined model

theory.

(c) Any formally defined method of representing knowledge and making

inferences about it."

Following Pavlin’s example, this discussion of logic-based systems will only

consider (a) and (b). In what follows, the term predicate calculus which is

synonymous with FOL, will be used in preference because it is more common

in AI literature.

In a logic-based system, the knowledge base consists of statements of fact

expressed in predicate calculus or some extension of predicate calculus.

Deductive reasoning is performed on these statements, i.e., sentences of

predicate calculus in the knowledge base, to arrive at new sentences, which are

in fact theorems.

The primary advantage of using logic to represent knowledge is that logic is

precisely defined and has a widely understood notation and a model theory

(semantics) which gives precision to the mapping between sentences of logic

and some domain (Pavlin, 1988). Logic is also expressive. Moore (1985),

observes that problems of reasoning and representation involving incomplete

knowledge can typically only be tackled by systems of formal logic. Logic is

free of the ambiguity of meaning often attributed to frames and semantic nets.

Perhaps the most attractive property of a logic representation is the proof

theory, in particular that the completeness theorem that everything that is true

127

in all models of a theory can be proved (Pavlin, 1988; Ramsay, 1988; Winston,
1984).

The most obvious language to implement a logic-based system is Prolog, which

is in fact itself based on predicate FOL clauses as discussed earlier, because it

has been shown that predicate calculus can be represented in Prolog (Clocksin

& Mellish, 1987). Reasoning can be performed directly by Prolog using

resolution and unification, and if more than one predicate of the same type is

present, then conflict resolution is performed by Prolog’s inherent capability

based on declaration order. Because a logic-based system mirrors the structure

of the selected computer language, Prolog, it can be very efficient and effective

in operation.

The major difficulty with using logic in artificial intelligence applications is not

in representation but in its role in reasoning. It has been argued that reasoning

about the real world is not deductive McDermott (1987). Furthermore FOL is

monotonic in that new axioms only add to the list of provable theorems and

never cause any to be withdrawn. This property is incompatible with some

natural ways of thinking because initial axioms cannot be revised to take new

axioms into account (Winston, 1984).

Logic is also weak in its ability to represent certain types of knowledge.

Winston (1984: Chapter 6) gives examples such as heuristic distances, state

differences, the idea that one approach is particularly fast, or the idea that some

manipulation works well but only if done less than three times. As this is the

type of knowledge that would be held on instrumentation and perhaps other

areas, a purely logic-based approach would be unsuitable for Specriter.

It is useful to note that in practice, Prolog overcomes many of the

representational and reasoning limitations of first order logic by resorting to

special built-in predicates and second order logic which considers sets and their

properties rather than individuals (Sterling & Shapiro, 1986: Chapter 17).

Notwithstanding, knowledge represented as a sequences of clauses in Prolog

128

suffers from the many of the same problems as rule-based representations. The

knowledge base becomes hard to maintain and system behaviour hard to predict

as the knowledge base grows.

5.3.3.3 Semantic Nets

Quillian (1968) is generally acknowledged to have been the first to apply

semantic networks in the AI field, more specifically in the field of natural

language translation and understanding. His idea was to capture the meaning

of words in an encoding scheme similar to human memory. Semantic nets

comprise objects denoted as nodes and relations between objects denoted as

links or arcs. For example the semantic net of Figure 5-3, from Winston

(1984), is a semantic net which signifies that BRICK12 is a BRICK and a

TOY and that it is RED in colour. The links are unidirectional and it

cannot be inferred that RED is a BRICK.

There are a number of important concepts arising from semantic networks

that are of interest for Specriter. These are described clearly in Winston

(1984). The first is the concept of inheritance which is based on the

observation that when humans know the identity of something they adopt a

list of assumptions about it. This can be modelled using a tree-like

semantic net where the root is the most general level and the descendants

become more specific. Information need only be explicitly stored at the

most general level and can be inferred or inherited by any of that node’s

descendants. For example, in Figure 5-4 also from Winston (1984), asking

for the shape of WEDGE 18 yields TRIANGULAR and for BRICK 12,

RECTANGULAR. The inheritance algorithm given in Winston (1984)

institutes a breadth first search in the event that the object does not possess

the required link. Inheritance reduces repetition and enables some concept

of hierarchical structure. Procedural knowledge has been successfully

coupled into semantic networks. If the value for an object is not available

then a procedure can be called to compute the value from information which

exists within the database. This concept was interesting because it offered a

129

Figure 5-3 A Simple Semantic Net (from Winston, 1984)

Figure 5-4 Semantic Nets and Inheritance (from Winston, 1984)

130

mechanism for driving the Specriter human interface and text generation

from the knowledge base.

The assumptions that a human makes about an object requires the adoption

of defaults. For example if a small part of a car is visible a human can

often recognise the make of car, approximate year of manufacture and will

assume the rest of the car is present and that it represents a mode of

transport which uses petrol as a fuel and so on. This concept is very

interesting for the specification problem because it could represent a method

of capturing the myriad assumptions that are normally taken for granted in

the interaction between customer and supplier.

Semantic nets have, however, been criticised for their inadequacies. Woods

(1975) points out that links are used in two different ways: assertionally to

establish relations between nodes as in the previous examples and

structurally to construct part of the knowledge base structure. Brachman

(1983) discusses how the IS-A link is used to describe a variety of relations

which make the semantics of the net open to interpretation. He also points

out that many of the features of semantic nets, for example, modality and

defaults, raise severe difficulties for predicate calculus. Randal (1988)

concludes by stating that semantic networks are not sufficient in themselves

to be an adequate knowledge representation langauge, though they provide a

powerful and flexible base on which more complex hybrid system can be

built.

5.3.3.4 Frame-Based Systems

5.3.3.4.1 Description

The concept of frames as a knowledge representation technique was initiated

by Minsky (1975) although he gives credit for many of the concepts to

Bartlett (1932). Minsky sought to represent common sense thought and

wished to combine AI with psychology. Minsky asserts that to enable the

131

performance of human mental activity, the unit of reasoning and the

representation of language memory and perception should be larger and more

organised than production rules or independent statement expressed in logic.

He postulated that when a human encounters a new situation, we select from

memory a structure he calls a frame which is a remembered framework to

be adapted to fit reality by changing details as necessary.

A frame can be considered to be a data structure for representing a

stereotyped situation. Minsky uses examples such as being in a certain kind

of room or going to a child’s birthday party. Attached to each frame can be

several kinds of information, for example, how to use the frame, what can

happen next in the situation described, what to do if the unexpected occurs,

and all manner of details about the situation under consideration.

Each frame can be considered as a network of nodes and relations. It is

customary to follow Minsky’s suggestion that the top levels of the frame

should be fixed and represent things that are always true about the situation.

The lower levels have slots that must be filled by specific instances of the

data. Each slot can specify conditions its assignment must meet and may

take the form of a sub-frame. Collections of related frames are linked

together into frame-based systems and important actions are mirrored by

transformation between the frames of a system. Thus in visual systems, the

different frames of a system can represent a scene from different viewpoints

and the transformation between frames corresponds to the observer changing

position.

The power of frames is based on the inclusion of expectations and other

kinds of presumptions. These take the form of defaults placed in the

frame’s terminal slots. These defaults are loosely attached and can be

replaced by new items that fit the current situation better. Defaults can also

be generated automatically. In the information retrieval network for machine

vision described by Minsky (1975), a matching frame is sought to describe

the current scene. If an adequate match is not available, the network

132

provides another frame which possesses whatever information is appropriate

and generates defaults to cover values which are not explicitly known.

Winston (1984) makes it clear that frames are an extension of semantic

networks where each frame can comprise a portion of the semantic net.

Thus all the desired properties of semantic nets such as inheritance, attached

procedures, and defaults are available in frames. Figure 5-5 from Ringland

(1988), illustrates a simple frame system comprising just two frames,

MAMMAL and DOG. This figure also illustrates inheritance by showing

that when reasoning about DOG, a new frame can be formed which

combines all the information explicitly known about DOG with that inherited

from MAMMAL.

Hayes (1979) considers stereotypical frames to be bundles of properties

expressible in predicate calculus and particular instances as simply

instantiations. He notes, however, that while the meanings appear to be the

same, the inferences allowed by frames, because of their structure, may be

different from those sanctioned by logic. Ringland’s (1988) discussion of

frames, which is based on the papers of Minsky and Hayes augmented by

input from later researchers, concludes that frames are more than an

alternative logic representation as many features such as the inherent

structure of the frame system and the special properties of defaults, such as

non-monotonicity and loose attachment are meta-logical.

53.3.4.2 Suitability of Frames for S p ecr iter

In the context of Specriter, frames offer all the expressive power of semantic

nets with the advantages that they can be largely modelled using predicate

calculus and are easier to understand and maintain. The near equivalence of

frames to predicate calculus indicates that Prolog would be well suited for

implementing a frame-based system providing the meta-logical characteristics

of frames can be handled by appropriate means.

133

Figure 5-5 Frames and Inheritance (from Ringland, 1988)

134

Frames systems, like semantic nets possess an inherently hierarchical

structure. To take advantage of a frame-based representation the problem

domain needs to be structured in like fashion. It is easy to perceive the

Specriter knowledge domains as devoid of any such structure and in fact this

has often been mooted in private communications. It can certainly look that

way from the instrument engineer’s perspective because it is difficult to

modularise or create a hierarchy of the heuristics needed to judge

consistency and completeness. Indeed it can appear that it is necessary to

reason about the specification as a whole. The specification generation

process, already demonstrated to be a predominantly serial procedural

process, also reveals little structure. It is from the perspective of the human

interface that modularisation and the ensuing benefits of a hierarchical

structure can be appreciated.

It has already been said that certain questions can be beneficially arranged

into groups. The lengthy question list of Specriter 1 was divided into

eleven such groups as shown in Figure 4-1. This can be considered the

first level of structure. The selection of options determines the question

sequence. After a selection is made, the context of the topic changes; these

alternative contexts become the next level of structure. Options within

options represent further levels of structure.

This method of partition may initially seem superficial but far more than the

question sequence is determined by option selection. Text generation, the

behaviour of the checking system, most of the human interface parameters

such as context sensitive help, function keys, and entry assistance are

determined in this manner. Hence it could be proposed that every possible

entry screen should be represented as a frame, as each can be considered a

unique view of the specification under consideration.

5.3.4 Selection of a Knowledge Representation for Specriter

In the previous section, a number of commonly used knowledge representation

135

methods were examined for their potential to fulfil the Specriter knowledge

representation requirements. The multiple problem domains and desired

functionality posed problem for all candidate representations. The most promising

candidate is some type of frame-based representation but the proposed screen-

partitioned hierarchy needs to be examined in detail for viability.

Frames provide a useful method of modularising a knowledge base. In this case,

a frame system is proposed which will have as many lowest-level or terminal

frames as there are individual screens. Many of the properties of higher level

frames could be inherited by the ones at lower levels in the interests of

representational economy. The final obstacle to be overcome is the representation,

within this frame system, of consistency checking knowledge. This is a highly

heuristic area which has no apparent structure. However, it is clear that the

knowledge base of the checker would need to take into account the options

selected during the entry and editing processes. The method eventually proposed

was to attach a fragment of the consistency checking knowledge base to each

frame. That fragment would only be concerned with the values display on the

current screen. The entire specification can be checked for consistency by simply

checking each valid terminal frame in turn. Rudimentary completeness checking

could also be performed at that time by validating that each terminal frame

possesses a complete set of slot values.

The question remains on how to represent the checking information in the frames.

Aikens (1983) solved a somewhat similar problem by combining the frames with

production rules to form the CENTAUR system. Her task was to improve the

implementation of a system called PUFF which was written to perform pulmonary

function test interpretations. PUFF employed the generalised of MYCIN called

EMYCIN, a subject covered by most texts on knowledge-based systems.

Although PUFF’s performance was satisfactory, there were difficulties with the

knowledge representation, in common with many rule-based systems, such as:

adding or modifying the rules, altering the order of the questions comprising the

consultation, and representing prototypical knowledge. Aikens found that the

unstructured rules in the PUFF knowledge base could in fact be grouped. These

136

smaller collections of rules could then be much more easily maintained and the

interaction between rules better established. Aikens then overlaid a frame system

over the groups of rules and assigned the rules to a designated slot type. Aikens’

prototypes, which represent lung disease patterns are conceptually equivalent to the

screen frames proposed for Specriter, but the problem solving strategy is quite

different.

CENTAUR, in common with all diagnostic systems, seeks to establish a diagnosis

given the responses to a list of questions. This is done by establishing which

prototype best fits the observed situation, i.e., the frame of best fit. Specriter, in

contrast, seeks to assist in the production of a specification. The frames are not

matched to a given task but are used to determine the perspective when viewing

the specification under construction. When a consistency check is called from a

particular screen, only the concerns of that screen need be checked. In this

proposal, the checking rules of each frame, in fact, comprise a small independent

knowledge-based system.

A valid criticism of Specriter 1 is that a large number of questions need to be

answered. It was felt that many of these could be completed automatically in

response to higher-level questions. This can be achieved within the proposed

frame system using the following strategy. Provide a high-level screen which

seeks the response to a small number of general questions such as measurand,

environment type, instrument life, expected cost, etc. Assign a slot to each

terminal frame which can hold rules to convert these high-level responses into

intelligent defaults replacing the initial general defaults such as "not specified".

In assessing the proposed knowledge representation, it is worth examining it

against the design aims for a knowledge-based Specriter. Reduction in entry

effort can be achieved by the intelligent default generator just described. The

frame structure can possess slots containing context-sensitive help messages, screen

titles and other items necessary to assist users. Checking facilities can be

provided on a screen by screen basis which will allow modular construction of

this complex function. The proposed structure can contain everything about the

137

problem domain including all the necessary information about the screens to be

displayed. The specification of the instrument under consideration can also be

represented in the structure by instantiation of value slots with elements of the

specification. In this way the knowledge base structure is complete and becomes

the idealised separate knowledge base often discussed but rarely achieved in

knowledge-based systems.

The production of the screens and the creation and maintenance of the knowledge

base can be achieved using a purpose built tool. This can cope with the inherent

tedium associated with constructing screen-based interfaces using cursor

addressing.

Thus all the design aims identified for the knowledge-based Specriter have been

addressed. A particularly useful feature of the frame-based approach is the
simplicity in which an unusual situation can be dealt with. A frame representing

a complete new screen at any level can be constructed which can cope with any

unforeseen extension to Specriter.

In fact, as the shell is separate from the knowledge base, the entire knowledge

base could be replaced by another which could be used to generate a completely

different type of structured document.

5.4 Conclusion

This chapter commenced by examining the possibility of creating a formal

specification of the instrument under consideration. It was decided that the most

appropriate technique was to write the specification in Prolog and attempt to avoid

the meta-logical extensions of the language which distinguish it from predicate

calculus. The obvious attractiveness of a single language implementation led to the

search for a Prolog knowledge representation suitable for the three knowledge

domains to be embraced in a knowledge-based Specriter.

A review of established techniques exposed that a structure based on frames

138

associated with display screens appeared the most attractive and a hybrid

representation was proposed which combined production rules and frames. This

representation was compared against the design aims evolved in earlier chapters, and

all desired features were shown to be possible.

Chapter 6 describes the design and implementation of this system which is named

Specriter 3.

139

Chapter 6 - S p ecr ite r 3: A Knowledge-Based Specification Generation System

6.1 Introduction

This chapter describes the evolution, design and implementation of the Prolog

software system, Specriter 3. The chapter commences by detailing the selection of

the host computer and development software. The appropriateness of the selection is

illustrated with examples of how aspects of the task could be tackled.

A description of Specriter 2, a Prolog re-implementation of Specriter 1, then follows.

This development is worthy of discussion because it showed what could be achieved

with the tools selected and because many of the concepts for the human interface

were evolved during its construction.

Specriter 2, which was undertaken in the spirit of a training exercise, was conducted

in parallel with the research recorded in Chapter 5. At around the time work on

Specriter 2 finished, the limitations of an unstructured knowledge representation were

becoming obvious from both a theoretical and practical viewpoint. The next section

shows how the important ideas developed in Chapter 5 flowed through into the

design and implementation of a completely new system, Specriter 3.

The ensuing section describes the facilities offered by this new system. The

numerous options available from the main menu are covered and greater detail about
the design of the system is provided. A description of how Specriter 3 can be used

to generate a measuring instrument requirements specification is covered in the next

chapter.

This chapter concludes with a description of the knowledge base editing facility,

Framedt. The description covers design, implementation and use.

140

6.2 The Selection of a Host Machine and Development Software

6.2.1 The Selection of the Host Machine

Following the successful implementation of Specriter 1 on the IBM series of

personal computers, it was felt that this class of host would provide a good

platform for future development. This choice is supported by the other

considerations previously listed in Section 4.4.1, in particular, excellent software

portability and fast screen updating.

6.2.2 The Selection of the Programming Language

The study of specification and knowledge representation, described in Chapter 5,

had determined that Prolog was to be the language for further work. The initial

choice of development language was the newly-released Turbo Prolog, Version

1.1, (Borland, 1986), primarily because of its high development and run time

efficiency (Shammas, 1986). This product can behave both as a traditional Prolog

interactive interpreter, with full execution trace facilities, and as a native code

compiler. Version 1.1 was subsequently upgraded to Turbo Prolog Version 2.0

(Borland, 1988a&b) and further discussion of the language will refer entirely to

this version.

The high compilation and execution speed of Turbo Prolog has been achieved by

compromising some of the generality of traditional Prolog described by Clocksin

and Mellish, (1987). The main differences are:

(1) In Turbo Prolog, programmable operators and meta-programming are not

provided as built in functions, although they can be modelled.

(2) Turbo Prolog is a typed compiler.

Programmable operators enable the modification of Prolog syntax at run time by

the declaration of infix operators. This feature is said to aid readability of the

141

code but as the user will not interact with the Prolog source code directly, this is

of little interest. In any event, conventional Prolog prefix operators can always be

used to implement the function normally achieved with programmable operators.

Meta-programming refers to the manipulation of the source code at run time. The

ability to assert and retract clauses at run time is one of the features of traditional

Prolog. However, if this facility is used, the Prolog code departs from predicate

calculus as the set of axioms becomes non-monotonic. Hence, there is a desire to

avoid this feature so that Specriter can maintain its links with first-order logic.

Borland, (1988b), in defence of their product, point out that realistic expert

systems implemented in traditional Prolog usually require that an inference

mechanism be modelled. They state that this is done because backward chaining

inherent in Prolog is rarely adequate, and also because it is a method of

separating the knowledge base from the inferencing and control mechanisms.

Examples of this technique can be found in Sterling and Shapiro (1986: Chapter

19). Such an Inference engine would be an interpreted interpreter with

corresponding speed penalties. Thus the concept of modelling an inferencing

engine in a compiled language looks to be an advantage rather than a handicap.

A stand alone inference engine is distributed with the compiler.

Turbo Prolog is a typed compiler which means that all relations and objects must

be declared within the program. Typing enables compilation-time checking of the

program which can detect many potential errors such as variables only used once

in a predicate, missing predicates and erroneous type clashes. Borland (1986b:

Appendix K) also state that it enables functors of compound objects to be

converted into single-byte tokens resulting in very fast execution and minimal

memory consumption. Typing also eliminates some of the departures of

traditional Prolog from predicate calculus, such as the ability to unify variables

with structures (Clocksin and Mellish, 1987: Section 10.6).

Another feature of Turbo Prolog which was attractive, was the ability to link to

other programming languages such as C, Fortran, Pascal and assembler. It is

142

generally considered that Prolog is unsuitable for procedural tasks such as human
interface, file handling, and algorithm encoding. In the event that these tasks

proved difficult to implement in Prolog, the provision of a lifeline to familiar

languages was very appealing.

6.23 Text Handling and Human Interface Tools

Section 4.5.2 listed some lessons learned from the implementation of Specriter 1.

It was pointed out that the constrictions on string length and the lack of true

screen editing needed to be attended to. Turbo Prolog string types allow variable

length strings and this facility immediately solves the problem of internal

manipulation of text. The only limitation on string length is set by the internal 16

bit segment registers of the IBM PC’s processor, thus the limit is 26 characters.

User entered paragraphs can be dealt with equally as easily using other features of

the language. The text of the paragraph can be assigned to a single string.

Editing is performed by opening a window, loading the previous text into it, and

invoking the Turbo Prolog editor. At the termination of the editing session, the

corrected text is stored. Thus, a large purpose-written Pascal module was replaced

by two lines of code. Furthermore, a primitive line-replacement editor has been

replaced by a fully-featured editor with in-built context-sensitive help.

Another recommendation from Section 4.5.2 was that screen descriptions should be

held in text files rather than the source code and that tools should be used to

create and maintain them. The creation of screen layout tools was abandoned

upon the release of the Turbo Prolog Toolbox (Borland, 1987). This inexpensive

package includes examples of all the necessary tools such as line input drivers,

pull down menus, and screen handlers. These products have the capability to

cope with strings much longer than the screen area reserved for their display.

This virtual screen capability frees applications from arbitrary limits on string

length.

The high-level built-in predicates of Turbo Prolog, coupled with the human

143

interface tool archetypes available in the Turbo Prolog Toolbox, cover the

Specriter human interface requirements completely.

6.3 S p ecr ite r 2

6.3.1 Introduction

In parallel with developing the ideas for the desired knowledge and specification

representation, work began on becoming familiar with Prolog and the numerous

tools in the toolbox. After the standard examples were mastered, work began on

progressively converting Specriter 1 to Turbo Prolog to form Specriter 2. The

structure of the software remained the same as the intention was to simply

translate the program adding only limited extra functionality.

6.3.2 Main Menu

The first module tackled was the main menu. Turbo Prolog’s "system" predicate

was used to call the various compiled modules avoiding the need to generate and

execute batch files. The menu itself was implemented using the "pulldown" tool

from the toolbox. Each major function was displayed along the top line of the

screen. Selection was performed by moving the cursor to the required option with

the arrow keys and pressing Enter. For options with sub-choices, a column menu,

generally referred to as a pull down menu appeared. The desired command could

then be selected using Enter in the same way once again. This is the type of

menu Borland use in all their compilers and is widely used in PC software.

The new menu worked well with the executable modules from Specriter 1.41 and

the complete system was designated version 1.5. This main menu was carried

over into Specriter 3 and will be described in greater detail there.

6.3.3 Attribute Editing Program

The Edit program was tackled next. Each of the topics shown in Figure 4-1 was

144

assigned to a single screen. The screens were then laid out using the Scrdef

program from the Toolbox. The new Edit_2 comprised 11 programs each of

which used the Scrhnd module from the toolbox to display the screen. The use

of these tools permitted the screen to be designed by writing the questions and

response fields directly onto the screen in the place they were to appear. Also

various function keys were enabled to provide help, display of options, editing of

responses, invocation of checking facilities, and the means to signal completion

and return to the main menu. These screens were also carried over to Specriter 3

largely unchanged, and will be described later.

The text generation program translated readily in Prolog and completed the re-

implementation. The human interface limitations of Specriter 1 were now

overcome and more importantly, familiarity with Turbo Prolog and its capabilities,

and limitations, established. Some checking facilities were incorporated to show

that it was a straightforward business to reason about the attribute values.

6.3.4 Lessons Learned From S p ecr iter 2

There were a number of important lessons learned from building Specriter 2. The

first is that the powerful human interface programs were so large that a separate

program was needed for each screen to avoid exceeding the memory limitations of

the computer. Another reason for the size of the programs was that every field

needed to have its own set of predicates. One was needed to describe the actions

to be performed during the editing of the attribute value. This covered calling a

line input driver, performing input checking, executing attribute specific routines,

and finally, attribute storage. A second was then needed to display each attribute

in its field, and further predicates were required to handle certain functions

associated with a field, in particular, paragraph editing fields.

Another major problem was that the amount of time needed to add another

attribute was nearly as long as with the Pascal version. The process comprised

updating the relevant screen using Scrdef, adding an action and display predicate

into the appropriate screen handling program, and adding checking information,

145

adding appropriate text into the text generation program. Worst of all, the global

database declaration needed to be updated every time a new attribute was added,

necessitating recompilation of every module.

The third important lesson learned was that while it is easy to represent

knowledge directly in Prolog, the knowledge then becomes part of the source code

with all the disadvantages this entails. The principal problem is that because the

human interface, control, and knowledge are all combined, good familiarity with

the entire program suite is needed before new knowledge can be added.

Additional problems can arise from the way certain predicates deal with the

attributes held in the global database. These attributes which hold the information

about the instrument under consideration, can be modified from anywhere in the

program and, consequently, changing a rule in one part of the program can have

unexpected effects elsewhere.

Although none of the above problems were insurmountable, it was clear that the

ad hoc knowledge representation technique and the human interface program could

be improved. Work stopped on Speer iter 2, and the search for a structured

knowledge representation proceeded in earnest. The outcome of this task, which

is documented in Section 5.3, became for basis for the design of Specriter 3.

6.4 S p ecr ite r 3 General Description

Specriter 3 is a knowledge-based advisory program which is designed to assist users

create specifications for measuring instruments. This version, in contrast to its

predecessors, adds heuristic knowledge to the procedural knowledge previously

employed to provide improved performance and functionality.

The best way to consider the conceptual design of Specriter 3 is by portraying it in

a layer diagram akin to the ISO Open System Interconnect (OSI) seven layer

reference model (Nussbaumer, 1990) or the popular operating system onion skin

model (Lister, 1984). Figure 6-1 shows the six layers that comprise the total

software environment of Specriter 3. In this model, the lower layers are closest to

146

User

Figure 6-1 The Layering of Specriter 3

147

the hardware of the machine and perform low level functions, such as interaction

with the machine’s hardware, while the higher layers provide the higher level

functions such as human interface and elements of intelligent behaviour.

The design of the entire system is predicated on the knowledge representation

scheme selected so this is described first. In the ensuing discussion on the content

of the layers the extent to which this external knowledge base controls program

operation, can then be appreciated.

6.4.1 S p ecr ite r 3 Knowledge Representation

6.4.1.1 Background

In order to present the minimum number of questions to the user, Specriter

systems have altered their question list in reaction to previous question

responses. In the procedural Specriter 1, this was achieved by using

conditional branching in the question sequence. In Specriter 2 the screens

changed to suit the response to certain options. Thus for each topic there was

a number of different states the screen could take and this was handled by

asserting and retracting the necessary screen fields.

In both systems, the final text was produced by a text generation program

which read the state of the question list in conjunction with the values held in

the associated attributes and selected the appropriate text fragments to assemble.

After observing that the state of the set of questions or screens is the

fundamental determiner of the behaviour of the system, it was decided to
investigate the use of this information to partition the knowledge base. Hence,

this information, combined with other knowledge representation considerations

detailed in Chapter 5, led to the scheme proposed in Section 5.3.4.

The concepts proposed were entirely incorporated into Specriter 3. Thus all the

knowledge used in Specriter 3, be it procedural or heuristic, implicit or

148

explicitly described, is held in a hierarchical frame-based structure where each

of the terminal frames of the tree represents a displayable screen.

The knowledge base contains:

(1) All the information required to create the various screens that comprise

the human interface to the specification of the instrument under

consideration. This includes context-sensitive help information and

function key definitions.

(2) Knowledge of the domain of instrumentation to provide consistency

checking and intelligent default generation.

(3) Knowledge of specification and document generation techniques. This

is held as the list and organisation of the attributes comprising the

screens, and the associated text fragments.

The first level of partitioning of the knowledge base is the revised list of topics

from Figure 4-1 which are shown in Figure 6-2. Options within those topics

which change either the text fragment needed or the list of attributes displayed

on the screen, spawn succeeding levels of partitioning. A frame tree for the

measuring instrument knowledge base is illustrated in Figure 6-3. The value of

these key options determines which leaf frame is displayed, or otherwise

viewed, by the application programs. Changing any of these options causes an

alternative frame to be loaded.

6.4.1.2 Implementation

There are many ways to implement frames in Prolog (Cuadrado & Cuadrado,

1986; Weiskamp & Hengl, 1988; Keller, 1988). The concept of frames is very

general, and about the only thing which appears universal is that a frame

should comprise a set of slots. There are no limitations about what these slots

may contain. The fundamental decision was whether to have a single large

149

Units, measurand, and instrument name
Physical characteristics
Electrical interface
General and static performance
Dynamic performance
Quality assurance
Reliability
Maintainability
Design and Construction
Preparation for delivery
Notes
Applicable Documents
High-level requirements

Figure 6-2 List of Specification Topics

150

top

Figure 6-3 Measuring Instrument Specification Frame Tree

151

predicate for each frame or use more than one. The latter was adopted because

Turbo Prolog is a typed compiler which mandates that each predicate to be

asserted into the database must conform to a pre-declared format. Addition of

further slots at a later date, would have proved problematic had a single

predicate been used. In addition, it is generally quicker to search through a list

of small predicates rather than through a list of lists. Thus it was decided to

have one predicate for each different type of slot. Adding another type of slot

is no problem with this implementation. Figure 6-4 lists the slot types

supported, and Figure 6-5 expands the information on the active fields. These

fields are the ones displayed on the screen which have actions associated with

them. The Prolog representation of each of these predicates can be found in

Appendix 2.

6.4.2 Description of Each Layer

A brief description of the functions residing in each layer follows. The design

and implementation of the modules which implement the functions, is covered

later.

6.4.2.1 Proprietary Software

6.4.2.1.1 Operating System

The bottom layer is the standard operating system of the IBM Personal

Computer (PC), DOS. Development and demonstrations were performed on

machines loaded with DOS versions 3.2 and 3.3 but as minimal use is made

of the operating system, no problem with other versions is anticipated.

6.4.2.1.2 Logical Framework

The logical framework which supports the Specriter 3 shell is provided by

Turbo Prolog Version 2.0 (Borland 1988a&b).

152

SLOT NAME DESCRIPTION

Frame description1: A four-tuple which contains the frame
name, the frame level (top = 0), the
parent frame name, and a string containing
a screen title to be displayed in the top
centre of the window.

Output text1: A single string suitable for use by the text
generation utility. Any variables in the
string will be replaced by their current
value held in the knowledge base.

Help message2: A string containing all necessary control
characters for help display utility.

Function key list2: A formatted string which holds the function
key labels.

Screen text3: A set of text strings that will appear on the
screen.

Consistency rules1: A set of Prolog terms. Can cover the entire
knowledge domain.

Default generation rules4: A set of Prolog terms used to generate
intelligent defaults from "High_level" frame

Active fields3: Description of the active fields which permit
user interaction with the knowledge base and
specification. Types include:

Standard entry
Predefined list entry
Database assisted entry
User paragraph entry
Key option selection

Non-inheritable slots.
2 Optional. If absent, slot value from next highest frame inherited.
3 Optional and all slot values from higher frames are always inherited
4 Optional. Level 1 frames primarily.

Figure 6-4 Specriter 3 Frame Description

153

F I E L D S L O T T Y P E i S U B - S L O T S D E S C R I P T I O N

Standard entry: Line editor-based string entry.

Screen position:
Default value:

Minimum value:
Maximum value:
Prompt:
Actual value:

Row, starting column and length.
Pre-defined value used when a new specification is
created. (Not intelligent default.)
Lower range checking limit.
Upper range checking limit.
Prompt message which appears in line input window.
Specified value.

Predefined list entry: Selection from a predefined list. Used for control.

Screen position:
List title:
Default selection:
Option list:
Prompt:
Actual value:

Row, starting column and length.
A string which will be displayed top centre of list.
Preferred selection when new specification created.
A formatted list, separated by commas.
Prompt message which appears in line input window.
Specified selection.

Database-assisted Entry: Selection from a database of options. Can be used as a
standard entry.

Screen position:
List title:
Default value:

Prompt:
Actual value:

Row, starting column and length.
A string which will be displayed top centre of list.
Predefined value used when a new specification is
created.
Prompt message which appears in line input window.
Specified value.

User paragraph entry: Invokes a screen editor to create or edit a paragraph

Screen position:
Field title:
Edit window position:
Window title:

Default paragraph:
Actual paragraph:

Row, starting column and length.
A string which overlays the field.
Starting row & column, number of rows and columns.
A string which will be displayed top centre of edit
window.
Paragraph loaded when a new specification created.
Specified paragraph.

Key option: Entry from a predefined list. Each entry represents a
frame.

Screen position:
Default selection:
Actual value:

Row, starting column and length.
Preferred selection when new specification created.
Specified selection.

Figure 6-5 Specriter 3 Active Field Description

154

6.4.2.2 Purpose Written Software

6.4.2.2.1 The S p ecr ite r 3 Shell

The shell is a domain independent program which provides the human

interface drivers, local text generation, and an inference engine to interpret

attribute checking rules and intelligent default generation rules.

6.4.2.2.1.1 The Human Interface Drivers

The behaviour of the human interface can be limited to a pre-defined set

of actions, hence a conventional data-driven system can be used. Thus as

the size of the editor screens and the help windows, and the nature of the

line input drivers were all pre-determined, the variables held in the slots

of the knowledge base, provide all the necessary information to generate

the human interface. Inspection of Appendix 2 provides information on

the options available to the human interface drivers from the knowledge

base.

6.4.2.2.1.2 Local Text Generation

Local text generation is limited to displaying the output text associated

with the current screen. As text is held in each frame, and a frame is

already being viewed, searching is limited to collecting the text fragments

from parent frames. The local text generator assembles these text

fragments into a single string, inserts the value of attributes where

indicated, and displays the result in a window.

6.4.2.2.1.3 The Inference Engine

In order to permit maximum generality it was decided to represent the

heuristic rules directly in Prolog. The rules could then be interpreted

155

using the inherent backward chaining mechanism of Prolog or, if

necessary, by any other inferencing mechanism modelled in Prolog, for

example forward chaining.

The interpretation of rules directly requires meta-programming. Although

meta-programming is not available as a standard feature of Turbo Prolog,

a meta-interpreter can be built using the language. This is the subject of

Appendix K of the Reference Manual, (Borland, 1988b). Extensions to

the interpreter were necessary to permit operations on real numbers and

the use of special data handling predicates.

6 A .2 .2 .2 The Knowledge Base

The knowledge base has already been described. It can then be thought of

as sitting on top of the shell and accessing it to provide the functions

demanded by the layers above such as screen display and reasoning. Details

of the implementation of the knowledge base can be found in Appendix 2.

6.4.2.2.3 The Specification

The specification under consideration is a list of Prolog terms held in a data

file. During loading, the specification is used to fill the values of the slots

in the knowledge base. There is no requirement for the specification to be

complete and the prolog terms can be stored and retrieved in any order.

This flexibility allows ready integration of Specriter to other programs which

may wish to create, manipulate, or use all or part of the specification. Any

slot values which are not loaded from the specification file are filled with a

default value held in the database.

Because the specification and knowledge base are merged at run-time, the

Views effectively see a seamless knowledge representation.

156

6 .4 .2 .2A The Views

The outermost layer of Specriter 3 is the called the views. These are the

programs which view, or interrogate, the entire system. As the shell

contains most of the low-level predicates and all the screen handlers, the

various view programs tend to be quite small.

6.5 S p e c r ite r 3 Design and Function

The purpose-written software which comprises Specriter 3, is formed from a number

of modules which are linked together to form a single large executable program.

The partition of the modules was directed by implementation issues, as discussed

below, rather than conceptual design.

Turbo Prolog has powerful debugging facilities but these are only available when the

program is compiled into memory as opposed to a stand alone executable fde.

Prolog can be particularly difficult to debug at any time, and there are many

instances were debugging facilities are essential. An example would be when

optimising highly recursive predicates by applying techniques such as tail-recursion

elimination. Thus, each of the modules was designed to be a stand alone program to

provide access to these valuable tools. Conversion between stand alone modules and

a linked executable is achieved through use of conditional compilation directives.

Specriter 3 divides readily into four modules:

(1) The main module, SPEC3, which creates the main menu, accesses the on-

line manual and calls all the other modules.

(2) The specification creation and editing facility, Edit3.

(3) The Specriter Inference Engine, SIE, which performs reasoning tasks on the

specification, based on the contents on the knowledge base.

157

(4) Textgen3 the text generation facility which converts the specification held in

the knowledge base into a document.

Figure 6-6 illustrates the connection between the four modules and shows which ones

access the various disk files. Each will now be described in turn from an

operational viewpoint.

6.5.1 S pec3

6.5.1.1 General Functions

The primary functions of Spec3 are the initialisation routine which sets up the

system, the main menu system, and the straightforward menu command

routines. File accessing is also concentrated in this module and the extensive

file checking routines reside here.

6.5.1.2 Initialisation /

On invocation of Specriter 3, the main module, Spec3 runs. Its first task is to

re-create the environment previously stored in disk files. The first file loaded

is "SETUP.DAT" which contains the screen colours, names of the knowledge

base files, name of the specification file and the last frame examined. (The

latter is used by Framedt, the knowledge base editor, see later.)

There are three knowledge base files. Fragmenting the large knowledge base

was necessary because the text editor in Framedt, in common with many DOS

editors, can only operate with files up to 216 or 64 K bytes in length.

The order of loading the knowledge bases is not crucial because of the modular

nature of the knowledge base and the independence of Prolog terms. In fact it

is possible to load only one file should this be desirable for any reason. The

files which comprise the measuring instrument specification knowledge base are

called "SPEC3_1.KBA", ”SPEC3_2.KBA" and "SPEC3_3.KBA". The first

158

Figure 6-6
Specriter 3 Structure

HARD COPY

contains frames for measurand establishment and physical characteristics. The

second contains electrical interface, environmental characteristics and

performance while the last contains all the other topics listed in Figure 6-2.

The workfile concept from Specriter 1 is retained in this version of the

software. The system retains the name of the last specification under

consideration in the setup file so that work can continue from where it was left

off. This specification file is loaded next. This file comprises a list of

predicates named "att" with two arguments; the attribute or slot name and a

string representing its value. A process is then called to load these values into

the knowledge base value sub-slots. If an unknown attribute is encountered it

will be ignored and the process will continue with the next predicate. There is

no need for the specification file to cover every slot; if a slot is missed the

default value will be used. The benefit of this flexibility is that if the

knowledge base is updated and frames and slots added or deleted, specification

files created with earlier versions of the knowledge base will still be useable to

the extent they are still applicable.

The knowledge base loaded with the specification of current interest, represents

the limited formal specification of that measuring instrument.

The main menu help system files are now loaded. These files

"TOPMENU.HLP" and "TOPMENU.DEF" contain the help message text and

indexing information respectively. These files were created and can be edited

with the Toolbox facility Helpdef (Borland, 1987). There is one help screen

for each main menu topic.

Specriter 3 is now ready for operation and the main menu is called.

6.5.1.3 The Main Menu

6.5.1.3.1 Overview

Figure 6-7 is a screen image of the Specriter 3 main menu with the Edit

160

Figure 6-7

Specriter 3 Main Menu - Edit Sub-Menu Open

161

option pull-down menu exposed.

The main menu is made up of four windows. The first is the blue

horizontal menu which lists the major options. There is no cursor, instead

the active selection appears in inverse video. There are two ways to select

an option and execute its function. The first is to press Enter which will

execute the active selection. The menu item is chosen by moving the active

selection with the arrow keys. The alternative is to type the high-lighted

first letter of the menu topic required.

The next window is the help window, shown in green in Figure 6-7. The

text is automatically updated when a new menu item is selected with the

arrow keys. Below the edit window is a one-line borderless window which

displays the current specification file name.

At the bottom of the screen is the function key window. The active keys

are displayed in inverse video. Care has been taken throughout Specriter 3

to ensure that the function key display line is applicable to the current

human interface context. When the main menu is displayed, the status line

shows that the arrow keys permit movement around the menu, the Escape

key can be used to return to the top line, and Enter can be used to select

the menu option currently highlighted.

6.5.1.3.2 Menu Options

There can be more than one level in the menu. Vertical sub-menus appear

whenever an option is selected that possess sub-options. All the options will
be discussed from left to right and from top to bottom. Whenever a task is

complete, control is returned to the main menu.

6.5.1.3.2.1 Options

Specriter 3 starts with Options highlighted. Upon pressing Enter, the two

162

sub-options are displayed; On-line manual and Colours. The on-line

manual option creates a full-screen window over the main menu and

invokes the Turbo Prolog screen editor in Display mode and loads the

manual file "SPEC3.MAN". In this mode, the editor allows the user to

read the file but no changes are permitted. The function key line is

updated to show the keys available in Display mode. Of particular value

are the text searching functions which significantly reduce the time taken

to find information shown in the index.

The Colours sub-option permits a user to change the colour of the

windows to suit himself. A further sub-menu will appear when Colours

is selected with the six windows in the following order: Menu, Help,

Message, Error, Edit, and Status. The colour changing mechanism uses

the Turbo Prolog "colorsetup" predicate which open a window which

displays the 128 foreground and background text colour combinations

displayable on an IBM PC. The current colour is boxed and a new

colour can be selected simply by moving the box with the arrow key and

pressing enter when finished.

6.5.1.3.2.2 Create

Create has no sub-options. This option has the same basic function as

the Create option in Specriter 1. It is used to create a specification of a

measuring instrument from scratch. Create first looks for a Level 1

frame called ”High_level". If it is present, as it will be when the

measuring instrument knowledge base is loaded, Edit3 will be called and

this frame displayed with all values set to "not specified". The user

completes this screen and presses F10 to signal this. Create then invokes

SIE to generate defaults for all other aspects of the instrument

specification from the informaUon given and the default generation rules.

In instances where an attribute is not covered by these rules, then the

default stored in the knowledge base is used. With many of the attributes

sensibly completed, the user is now presented with the screen for each

163

topic in turn. These can be edited in exactly the same way as they can

when in Edit. Upon completion of this sequence of screens, the first

draft of the specification is complete.

6.5.1.3.2.3 Edit

The Edit option permits each specification topic to be edited. When the

Edit option is selected, a sub-menu is produced which displays a list of

Level 1 frames. It is important to note that this sub-menu is not hard

programmed but is in fact read from the knowledge base. The values of

the attributes in each frame can be edited including those in Highjevel.

The intelligent default process can be re-run from the Highjevel frame.

This option is covered in greater detail later during the discussion of

Edit3 and the use of Specriter 3.

6.5.1.3.2.4 Text

Text has three sub-options: Display, Print, and Format. When Display is

selected, TextgenS is invoked and the finished document created and

displayed using the Display facility in the same way as the on-line

manual is displayed. The Print sub-option directs the document to the

DOS printer spooler for printing rather than displaying it on the screen.

The last sub-option, Format, permits the format of the finished text to be

altered by editing the format control options in exactly the same way as

Specriter 1.

6.5.1.3.2.5 Files

The Files option has five sub-options: Load, Directory, Copy & Load,

Rename, and Erase. The Load sub-option is intended to be used

whenever a previously created specification is to be edited. On selection

of Load, the current specification file will be saved and a small window

is opened prompting for a file name with the ".SPC" extension. The file

164

to be loaded can be entered here with or without the extension, or

alternatively, if Enter is pressed without a file name being given, a

directory of suitable files is displayed and the required file can be

selected using the arrow keys and Enter. Checking is provided to prevent

non-existent file names being accepted. The Directory option simply

produces a directory of all the instrument specification files in the current

directory. Copy & Load allows the selection of the required file using

the same method as Load and then prompts for a file name to copy it to.

The name offered is thoroughly checked to verify that it is a valid DOS

file name before the file is created and loaded. This option is intended

to be used to copy existing files, in particular future library specifications,

to the workfile for customisation. Rename simply changes the name of a

given specification file while Erase can be used to delete unwanted

specification files.

A full range of file handling options is provided so that users do not

have to resort to using the operating system for these tasks. All file

operations support full directory paths so that it is possible to access files

not in the current directory or indeed the default disk drive. This means

that the specification files can be held on a floppy disk and need not

become immersed in the numerous Specriter 3 run-time files.

6.5.1.3.2.6 DOS

The DOS option creates another copy of DOS over the top of Specriter 3

and places user control there. Specriter 3 is still loaded and can be

returned to at any time by typing EXIT at the DOS command prompt.

This option allows users to execute DOS commands and run small

external programs without incurring the time delay associated with exiting

Specriter 3 and subsequently re-loading it to continue work.

165

6.5.1.3.2.7 Quit

This option saves the status of the current session in the specification and

setup files and then terminates the program.

6.5.2 E dit3

6.5.2.1 General

The Edit3 module is the heart of Specriter 3. It comprises the Edit and Create

views, the Specriter 3 Shell, and all the human interface functions for

specification editing. The necessary environment for Edit3 is made available

by Spec3. Thus when Edit3 is called, the knowledge base is already in place

and loaded with the attribute values for the instrument under consideration.

6.5.2.2 Initialisation

Edit3 is passed the name of the Level 1 frame to be edited. However, it is the

terminal or leaf frame which characterises the topic and this must be

determined before going further. This frame is found by a predicate which

traces the branching options until the leaf frame is found. An additional

function performed during this search is to assert into the database the list of

parent frames for the frame to be displayed. This frame list is used repeatedly

by the Prolog backtracking mechanism to achieve inheritance of parent slot

information.

Editing screens are composed of text messages and active fields, one for each

attribute to be specified. The search for screen text starts first. These text

strings are inheritable and as such it is necessary to collect them not only from

the current leaf frame but all the parent frames as well, and place them in the

screen database for display. This is achieved using Prolog’s inherent

backtracking mechanism. Next, the list of active fields is extracted and placed

into the screen database in the same way. The distinct advantage in using

166

inheritance in this application is that all the information contained in the parent

frames need not be repeated. Providing some fields have been found, Edit3

goes on to create the function key list. This slot is also inheritable but the

search through the frame hierarchy ceases when the first function key definition

slot is found. A utility predicate is then called which takes the' function key

list as a parameter and creates the status line at the bottom of the screen. The

frame placed at the root of the frame tree, called "top", has some function keys

specified, so there will always be a function keys list to display.

The screen handler sub-module is invoked next. This complex program is a

heavily modified version of Vscrhnd from the Turbo Prolog Toolbox (Borland,

1987). It commences by reading the screen database loaded earlier, and

proceeds to write the text strings and the active fields to the screen. The

screen handler is a continuous process which continues until a key is pressed.

There are five distinct types of active fields: entry, list, database-assisted,

option, and edit (See Appendix 2). To aid the user, each is displayed in a

unique colour. For the first four, Edit3 looks up the appropriate colour and

creates a field on the screen in that colour containing the field value. If the

string containing the value is longer than the space available, the undisplayable

portion is simply truncated.

Edit slots take more effort. A small window is displayed on the screen to

show the contents of user entered paragraphs. If these are re-written

continuously, screen update is very slow and key response sluggish, hence a

flagging arrangement was adopted. The first time the screen is displayed, the

display window is created and the text entered, after which that paragraph is
flagged as "displayed".

The screen handler now loops, updating the screen until a key is pressed. This

continuous activity permits time-dependant strings to be displayed such as a

clock, should the need arise. Figure 6-8 is an editor screen chosen to show the

use of a diverse selection of fields.

167

Figure 6-8

A Typical Specriter 3 Editor Screen

168

6.5.2.3 E dit3 Functions

When a key is pressed, the looping process is suspended and the key handler

commences and executes the required action. Actions can be divided into two

broad classes: attribute editing, the act of changing the value of an attribute,

and function key handling which covers a range of tasks.

Some of the complexity of the screen handler is caused by the virtual screen

capability built into it. This facility permits much larger screens to be built

than can be displayed at any one time. When operating in this mode, the

screen handler is analogous to a window which can slide over a large picture.

Virtual screens are used extensively to specify physical characteristics as the

large number of items to specify could not be made to fit in a single screen.

6.5.2.3.1 Function Keys

6.5.2.3.1.1 Cursor Movement Keys

The cursor can only reside on the first space of the active fields. It can

be moved to the field of interest by the arrow keys. Other keys which

move the cursor are Home and End which takes the cursor to the top and

bottom of the virtual screen respectively, and Page Up and Page Down

which move to the top and bottom of the screen being displayed. All

fields can be found, however, by scrolling the screen with the arrow keys.

6.5.2.3.1.2 Function Key FI

The function key FI calls up a help message. When FI is pressed Edit3

first creates a message display window over the top of the screen being

edited. It then proceeds to search the database for a help message. The

search uses the same inheritance method employed by the function key

status line handler in that it searches the current frame first and

backtracks through the parent frames until one is found. The first

169

message found terminates the search. Once again, as there is a help

message in the top frame so there will always be one to display. The

Display facility used for the on-line manual is used to display this
message, so the length of the message is not constrained by the window

size.

6.5.2.3.1.3 Function Key F2

F2 is used to set the values of all the attributes on the current screen to

the empty string with the exception of the branching options which

determine which screen is being displayed. This key is useful when
making large changes to a specification and it needs to be clear which

attributes have been changed and which have not.

6.5.2.3.1.4 Function Key F3

F3 opens an attribute for editing. It is useful when wishing to enter an

uncatered-for response for database-assisted and list fields. This is

because the Enter key displays the database or list as this is the preferred

entry mode, for these field types.

6.5.2.3.1.5 Function Key F4

F4 calls up the options available for database-assisted, list and option

fields. It is not strictly necessary as this can be done with the Enter key.

However, it is included to indicate that option selection fields are present

in the screen.

6.5.2.3.1.6 Function Key F5

F5 invokes the Specriter Inference Engine (SIE) using the checking rules

for the frame. A dialogue window is created over the top of the screen

being displayed to permit interaction with the user, which is usually just

170

display of messages. SIE is described later.

6.5.2.3.1.7 Function Key F6

F6 invokes the local text generation process. The process starts by

collecting the text fragments for the current frame and all the parent

frames using the same inheritance mechanism employed for screen text

and active field collection. The text fragments are then placed in a single

string starting with the parents first, as this is the logical way a

specification reads, i.e. the more general statements come first. This

string is then searched for attribute names. As the string has to be

searched character by character for the escape character ’#’, which

surrounds the attribute names, the performance of this process is crucial

on a finite-memory machine such as an IBM PC. If the process stacks

for every character, the limit of around three to four thousand stack

frames can easily be exceeded and memory overflow result. By careful

design, it has been possible to employ tail recursion elimination which

means that each recursive loop of the process can use variables held in

registers and stacking is avoided.

After the replacement process, a window is created over the screen being

displayed and the resultant text displayed, once again using the "display"

predicate. The user can then check instantly whether the responses given

will fit into the stored text for that frame. This technique of using the

user to perform text checking, neatly avoids the complexity of natural

language processing. To keep local text generation fast and simple, there

is no paragraph sorting, justification, or other tiding up performed.

6.5.2.3.1.8 Function Key F10

F10 terminates Edit3 and returns control to the main menu. The

specification is left in the state displayed on the screen. In general,

pressing F10 can be interpreted as "finish gracefully, accepting changes"

171

whereas Escape can sometimes abort changes, for example during attribute

entry.

6.5.2.3.1.9 Escape

Escape is used to exit processes such as sub-menus, text display, attribute

editing etc. As stated above it is better to use F10 to guarantee that

changes will not be lost.

6.5.2.3.1.10 Enter

The Enter key is used to initiate and terminate processes such as line

entry and option selection. It is the most natural way to use Specriter as

the default function, for Enter is always the preferred option in any

circumstance.

6.5.2.3.2 Attribute Editing

6.5.2.3.2.1 Standard Entry Attributes

A standard entry attribute can be recognised by its characteristic field

colour; black writing on a white background. To enter a new attribute

simply position the cursor in the field and start typing. On pressing the

first key, an input window containing a prompt, will open on the screen

over the field position. To edit an attribute, press Enter or F3. The

input window will now contain the current entry after the prompt. In

either case, the area occupied by the previous entry operates as a text

editor. The arrow keys enable movement along the string and Home and

End can be used to find the beginning and end of the text. To insert

new characters into the string, press Insert before typing, otherwise the

line editor operates in overstrike mode. The line input editor can accept

strings up to 216 characters long so there is no artificial barrier to

adequate expression. To cater for this, the line input driver is another

172

virtual length process which just displays a portion of large strings.

6.5.2.3.2.2 List Entry Attributes

List attributes, identified by their white on purple appearance, can be

edited in two ways. The first is to use free form entry as described

above. This is invoked by F3. The preferred method is to select one of

the items in a predefined list stored in the knowledge base. Selection

from the list will not only provide a sensible answer to the question but

will also enable automatic reasoning to take place if there is any checking

or default generation associated with that attribute. To display the list,

press Enter or F4. The list will be displayed with the previous value

highlighted in inverse video. A new choice can be selected either by

positioning the highlighted region over the desired choice with the arrow

keys and pressing Enter, or alternatively using the "hot key" highlighted

in the desired option.

6.5.2.3.2.3 Database-Assisted Entry Attributes

Database assisted entry attributes, identified by their black on orange

colour, can be modified in exactly the same way as list entry attributes.

The only difference being that because the list is derived from an external

database, hot key selection is disabled as many options may have the

same first letter. If the list is long, it will extend beyond the limits of

the window created to display the list. Once again, the list selection

utility resorts to a sliding window technique to overcome this potential

problem. The database entries are sorted into alphabetical order to aid

selection.

6.5.2.3.2.4 Option Attributes

Option attributes are the gateway to the Specriter 3 frame hierarchy

structure. When the value of one of these options is changed, the leaf

173

frame changes. A new option is selected in the same manner as a list

attribute option. After a selection is made, the screen handler terminates.

It is quite possible to change an option which is part-way up the tree,

therefore, it is necessary to search for the correct leaf frame and then

repeat the initialisation process and re-start the screen handler to display

the selected frame.

6 .5 .2 3 .2 .5 Edit Attributes

Edit attributes are changed by placing the cursor on the black on green

edit field and pressing either Enter or F3. The display window will turn

into an edit window and the control is passed to the Turbo Prolog editor.

At this stage it is usually useful to enlarge the edit window to fill the

screen using F5, as directed by the status line. Help on the numerous

editor commands is available by pressing FI. Complete information is

available in the Turbo Prolog User’s Guide (Borland, 1988a) but this

should not prove necessary. Completion of editing, and incorporation of

the result into the knowledge base, is achieved by either pressing F10 or

Escape.

6.5.3 The Specriter Inference Engine (SIE)

It is impossible to predict the nature of all the possible rule-based systems which

may be needed, so in order to permit maximum generality it was decided to

represent the rules in Prolog. The rules could then be interpreted using the

inherent backward chaining mechanism of Prolog or, if necessary, by the wide

range or other inferencing mechanisms which can be built in Prolog, for example

forward chaining. The interpretation of rules directly requires Specriter 3 to

support meta-programming.

Although meta-programming is not available as a standard feature of Turbo

Prolog, a meta-interpreter can be built using the language. This is the subject of

Appendix K of the Reference Manual, (Borland, 1988b). Extensions to the

174

interpreter were necessary to permit operations on real numbers, to extract numeric

values from strings, and to interact with the attribute values of the knowledge

base.

Figure 6-9 is a complete list of the predicates and operators supported. The

interpreter was further modified to look for its input code in slots in the

knowledge base as opposed to user control. The resulting module has been

named the Speer iter Inference Engine (SIE).

Using this module it is possible to extract the value of any attribute stored in the

knowledge base, perform processing operations available from both Prolog and the

purpose written predicates, (such as extracting the first real number from a string),

reason about the set of values extracted, write messages to a window, and perform

modifications to the knowledge base. In fact, because the interpreter can interpret

a whole language rather than just rules in a pre-defined format, its potential uses

go well beyond what is required in this application. If it should be necessary, it

is possible to modify the interpreter to gain access to any of the predicates in

Turbo Prolog or to linked functions written in assembler or C.

6.5.4 T ex tgen 3

TextgenS is invoked from main menu with either of the Text sub-options; Display

or Print. Textgen commences by compiling a complete list of applicable

paragraphs from the knowledge base. This is achieved using Prolog backtracking

as follows. The text collection algorithm finds a Level 1 frame from the

knowledge base, finds the active leaf frame by searching through the options in

the same way Edit3 does to determine the frame to display, then collects all the

text fragments up through the sub-trees in an identical manner to the local text

generation. Once all the text is collected for the topic, the algorithm backtracks,

and finds another Level 1 frame until all the paragraphs are collected. This

compendium is then scanned to find and replace attributes with their values using

the identical optimised algorithm previously described under local text generation.

175

Predicate Function

true
fail
repeat
write(Term*)
nl
display(Term*)
read(Term)
readln(Line)
readchar(char)
retract(Term)
tell(Filename)
telling(Filename)
told
see (Filename)
seeing(Filename)
seen
term =.. list
arg (N,Term,Argn)
functor(Term,Functor,Arity)
clause(Head,Body)
concat(string,string,string)
str_int(string, int)
str_real(string,real)
strg_real(string, real)
str_atom(string,Atom)
Integer is Expression
Term == Term
Term \== Term
Term = Term
Term \= Term
Term < Term
Term > Term
Term =< Term
Term >= Term
Term >< Term
integer(Term)
var(Term)
novar(Term)
time(Hour,Min,Sec,Hundreds)
scr_char(Row,Col,char)
char_int(char,int)
consult(Filename)
reconsult(Filename)
save(Filename)
op(Priority,Assoc,Op)
Goal, Goal
Goal; Goal
not(Goal)
I

call(Goal)
assert(Rule)
asserta(Rule)
assertz(Rule)
value(Attribute,Value)
change(Attribute,New_value)

Success
Prolog fail
Succeeds forever
Writes a list of arguments
Outputs a carriage return and line feed
Outputs a functor in prefix notation
Read a term
Read a line into a string
Read a character
Retract a term
Redirect output to a this file
Return the current output file
Close the current output file
Redirect input to this file
Return the current input file
Close the current input file
Prolog univ; conversion between a term and a list
Unify Argn with the nth argument of Term
Return functor and arity of Term or builds a new one
Returns clauses from the database
Concatenation of strings
Conversion between a string and an integer
Conversion between a string and a real
Extracts first real number from string
Conversion between a string and an atom
Evaluation of expressions
Testing for true equality
Not true equality
Unify terms
Test whether terms unified
Less than (real numbers)
Greater than (real numbers)
Less than or equal (real numbers)
Greater than or equal (real numbers)
Different evaluated values (real numbers)
Is Term an integer?
Is Term a free variable?
Is Term bound?
Returns the system time
Print a character at a selected position
Conversion between characters and integers
Consult named file
Reconsult named file
Save a file
Returns operators or changes operators
And
Or
Negation
Cut
Call
Asserts rule into database
Asserts rule at front of database
Asserts rule at rear of database
Extracts the value to the measuring instrument attribute
Assigns a new value to a measuring instrument attribute

Figure 6-9 Standard Predicates Implemented in the Specriter Inference Engine

176

The text is collected in any order. Hence there is a need to sort the ensemble

into paragraph order. The need for a paragraph sort algorithm has the advantage

of permitting non-contiguous paragraphs to be handled in one frame. To permit

easy sorting, each paragraph is stored as a list commencing with the paragraph

number.

The sorting algorithm used to place the paragraphs in order is a modified

quicksort. The algorithm design is complicated by the need to take into account

the significance of the dots as well as numeric order, for example, 3.3.20.8 must

appear before 3.4.2.6.

Final text processing in Specriter 3 is still performed by Runoff (Blaise 1986)

primarily because it has been a low priority to incorporate its function into a

Prolog program. Runoff takes a formatted input file complete with control codes

and creates a processed output file. Thus, Textgen3 opens a disk file named

"WORD." into which it writes heading information, the document title, and the

processed text. Textgen3 concludes by calling Runoff to process WORD, via an

external system call.

The resultant text file "WORD.DOC" is copied to a file bearing the specification

name and the ".TXT" extension, for example, "FLOW.TXT". This file is either

displayed or printed depending on the main menu option used to start the text

generation process.

6.6 The F ra m ed t Facility

6.6.1 Background

Any knowledge-based system that has the desirable characteristic of having a

distinct and separate knowledge base, must possess a mechanism for creating and

maintaining that knowledge base. There are three main methods used, and each

will be discussed below.

177

The first is to create a knowledge base language and describe the knowledge base

using this langauge. The knowledge base can then be edited using a conventional

text editor. The knowledge base source code is then synonymous with the

program source code written in a conventional computer language. In order to

load such a knowledge base into the system, it is usual to employ tools similar to

those found at the front end of a compiler, namely a scanner to break the input

stream into recognisable tokens and then a parser to extract the symbols and

variables of the language and hence the semantic content of the input. This is the

technique employed by Rosin (1988) to load his frame-based vision system. It is

suitable for knowledge bases that are changed infrequently. However, construction

of the tools is an extended task, especially if comprehensive error trapping is to

be incorporated. Such error detection is quite necessary as it is very easy to

introduce errors into the knowledge base during the creation and editing processes.
In any event, this technique is not all that useful for Specriter because the screen

layouts will have to be done on paper beforehand. In fact the knowledge base

may just as well be written in Prolog and compiled with the rest of the programs.

The second knowledge base creation and maintenance technique, is to incorporate

an interactive module into the run-time system. This method is commonly used in

proprietary expert system products. The knowledge base can then be readily

altered and the system run immediately to observe its behaviour. Specriter,

however, seeks to create, edit, and print, specifications not knowledge bases.

Hence there is little reason to combine the knowledge base editor with the run-

time system.

The last alternative is to build a stand-alone tool to create and maintain the

knowledge base. The primary advantage of this technique is that the number of
errors introduced during editing can be greatly reduced. Low-level syntax errors

in the knowledge base can be completely eliminated simplifying the run-time

system. Another advantage of a completely separate tool is that it does not

compete for memory, a valuable commodity on an IBM PC.

Of the three options, the approach selected was to develop a stand alone system

178

with an integral screen layout tool.

6.6.2 F ra m ed t General Description

The Specriter 3 knowledge base editing facility is a stand alone program called

Framedt for FRAMe EDiTor, reflecting its frame by frame operation.

Conceptually Framedt is a top-level view of the layered Specriter 3 system shown

in Figure 6-1. In practice, Framedt is completely separate from Specriter 3 so the

underlying layers are duplicated to permit interaction with the active knowledge

base. Figure 6-10 illustrates the structure of Framedt.

The main module creates the Framedt environment, and specifically handles the

interaction with the knowledge base, with the exception of the displayable fields.

There are two control screens; the main screen shown in Figure 6-11 and the

frame editing screen Figure 6-12. The Framedt screens were created, and can be

edited, using the Turbo Prolog Toolbox Scrdefn program (Borland, 1987).

Framedt uses the same human interface concepts as Specriter 3.

ScreenDef, the screen definition module permits the displayable fields to be

entered and moved. This module is capable of working on screens which extend

beyond the physical limits of the video display unit by using the sliding-window

virtual screen technique described earlier.

SIE, the Specriter Inference Engine, is identical in every respect to the module

used in Specriter 3.

6.6.3 Using F ra m ed t

Framedt starts up the same way as Specriter 3; the setup file is read to find the

names of the knowledge base files, and the last frame accessed by Specriter 3.

Then the three knowledge bases are scanned and only the one containing the

frame is loaded. This automatic loading feature aids frame development by

speeding the edit and test cycle. The main screen is then displayed.

179

Figure 6-10
The Structure of Fram

edt

KNOWLEDGE BASE UNDER
CONSTRUCTION

Figure 6-11

The Framedt Main Screen

181

Specriter Fraxe Description Editor —

This window is used to create and edit the fraxe inforxation not accessible
to the screen description prograx.

Haxe: Delivery

Parent: (if highest write "top") top

i-ew : ; 1 Heading: Preparation for Delivery

Function keys option: Specified

Function keys: (separate by V ’) FI : H elp” F3: Edit , F6: Text , F10

Help option: Specified Help Text: i Edit Help Message i

" P"1 fext l Edit Output Text i Consistency Rul es: * Edit Rules i |

Default value generation rules: i Show Generation Rules i

how attributes for this fraxe: » Show Attributes •

F10 : Quit

Figure 6-12

The Framedt Frame-Editing Menu

1 8 2

The main screen shown in Figure 6-12, provides the following functions:

(1) Knowledge base loading using the same file loading routine developed for

Speer iter 3.

(2) Frame selection from a list created from all the frames contained within

the knowledge base.

(3) Frame display showing parent frame.

(4) Display of all slots in the knowledge base showing parent and slot type.

(5) Level 1 frame creation facility.

(6) Text editing of the knowledge base file.

(7) Editing of the non-displayable slots of the current frame using the frame

editing screen.

(8) Editing of the displayable slots using the Virtual Screen Definition (VSD)

module.

The user is free to use any of the main module functions in any order. A typical

operation would be to correct, say, a spelling mistake on the current frame. To

do this, the cursor is moved to the last field of the screen and the Enter key

pressed. VSD is called, a window opened, and the current frame fields displayed.

None of the frames from either parent or child frames are displayed, these can

only be edited when they are nominated as the current frame. The spelling error

is amended by editing the text fields as if they were in a line editor, i.e., by over

typing, or if Insert is pressed, inserting new characters. New attribute fields can

be added by positioning the cursor on the beginning of the proposed field and

pressing F3. The field is then drawn on the screen with the arrow keys. Pressing

Enter completes that process and then a sequence of windows appear requesting

183

the information needed to specify all the information for the type of field

requested. See Appendix 2 for details.

When displayable field editing is complete, pressing F10 returns control to the

main menu. Pressing F8 displays the Frame editing menu in place of the main

menu, see Figure 6-12. All non-displayable fields can be edited from here and

the functions available can be ascertained from the menu.

Editing the heading can be achieved simply by changing the string shown.

Function keys and help messages can be inherited from a parent frame or

specified in each frame. The function key and help option fields enable slots,

once defined, to be removed if required. The function key definition is entered as

a single string separated by commas. This is converted into the internal list

structure when the slot is saved.

The help message is straightforward to edit. On selecting this function, a window

identical in size to the one displayed in Specriter 3 is opened with the Turbo

Prolog editor activated. The user has the full power of the editor available to

create or modify the message, which can extend beyond the borders of the

window in both dimensions. The output text is edited in the same way.

The "show attributes" facility displays the attributes from the current frame and its

parents, i.e. all those that would be displayed in the Specriter 3 editor screen.

This is handy, as these names need to be referenced by the output text and the

generation and checking rules.

The generation rules are edited by placing the cursor on the appropriate field and

pressing Enter. A window opens, with the editor enabled, containing the existing

rules. The generation rules are intended to be used to create intelligent defaults

given the information available from the "Highjevel" screen. There is however,

no restriction on what can be undertaken and all the predicates of Figure 6-9 are

available. After editing, SIE is called, which executes the rules, and displays the

184

result to the user. The editing and execution cycle can be repeated until the

desired function is achieved. Consistency rules are edited in the exactly the same

way.

Control is returned to the main menu with F10 and pressing F10 a second time

will save the edited knowledge base and exit the program. The results of the

editing session can then be observed by running Specriter 3.

6.7 Conclusion

This chapter has described the evolution, design and implementation of the structured

specification generation system, Specriter 3. The system is based on a novel

application of frames where the entire context of the topic being specified is

described by the leaf-frame in use. The numerous attributes which characterise the

specification are represented as slot values combined into the frames, for all

functions other than storage. This represents a complete implementation of the

knowledge representation proposed for the new-generation Specriter in Chapter 5.

Specriter 3 can be thought of as being analogous to an expert system shell. It is

domain independent and contains all the necessary components to solve a range of

structured documentation generation problems. It has been characterised by the

addition of a measuring instrument knowledge base to create requirements

specification for measuring instruments.

A comprehensive knowledge base editing tool was constructed to create and edit

knowledge bases for Specriter 3. This fully functioning facility, named Framedt, has

been described. It is noteworthy that Framedt was, in fact, used to create the
measuring instrument knowledge base.

The next chapter shows how the Specriter 3 combined with the measuring instrument

knowledge base can be used to generate a requirements specification for a measuring

instrument. That chapter contains a review of the achievements of Specriter 3.

185

Chapter 7 - Using S p ecr ite r 3 to Produce a Measuring Instrument Specification

7.1 Introduction

One of the features of Specriter 3, is that the nature of the documents it produces is

completely characterised by the knowledge base. This means that the description of

Specriter 3, given in the last chapter, will have given little insight into how well the

design aims for a specification generation tool, enumerated at the beginning of

Chapter 4, have been met. This chapter addressees that issue by discussing the

performance and use of Specriter 3 when loaded with the measuring instrument

knowledge base.

The chapter commences with a brief discussion of how the human interface chosen

for Specriter 3, helps to meet the design drivers derived from the design aims.

The bulk of the chapter describes the process of creating and editing an example

measuring instrument requirements specification using the Create and Edit facilities of

Specriter 3. In this discussion, the content of the knowledge base and the degree of

automation provided is also covered. This descriptive method of dealing with the

knowledge base was thought to be more effective than providing a listing of the

complete knowledge base as an appendix of around 200 pages.

Finally, the last section is devoted to comparing the software described in this and

the last chapter, to the original design aims. The effectiveness of the third

generation of the software in overcoming the design and implementation limitations

of the first two generations also receives attention.

186

7.2 Human Interface Concepts

Any large software entity takes some time to learn to use effectively. One of the

aims of the research project was to design a system for infrequent specifiers. Hence

it became a design goal to produce a system that takes minimal time to learn and is

simple to use. The key to ease of use is the design of the human interface and the

quality of the help available (Galitz, 1985; Borland, 1987). It is also preferable to

limit the need to access the user’s guide. This ideal is hard to achieve and most

software products have manuals that extend to hundreds of pages. It is, however,

believed that it should be possible to use Specriter 3 without having to undergo the

type of training course usually necessary for modem word processors, spreadsheets

and computer modelling and simulation packages.

The main menu is the user’s introduction to Specriter 3. Users familiar with PC

software will adapt quickly to the horizontal menu which is similar in concept to

Borland language compilers and commercial products, such as the Lotus 123

spreadsheet. All the screen designs follow the guidelines of Galitz (1985). The

colours, which are customisable using the Options/Colours command, are used to

help the user follow the context of the task. Thus menus, edit screens, help screens,

status lines, error messages, and warning messages all appear in different colours.

Similarly, the fields of the edit screens are colour coded. The default colours were

chosen to provide good contrast and to be easily distinguishable from one another.

7.3 Generating a Measuring Instrument Specification with S p ecr ite r 3

This sub-section traces through the process of creating, editing and printing a

measuring instrument specification using Specriter 3. The measuring instrument

chosen to illustrate the process is a thermometer intended to be part of the thermal

control sub-system of an interplanetary scientific satellite.

187

7.3.1 Specification Creation

In this example, a new specification is to be created rather than an existing one

modified, so the Create facility is used. Accordingly, this option is selected from

the main menu. Create starts by saving the current specification and then sets all

the attribute values in the knowledge base to the pre-defined standard defaults.

Subsequent functions are described in greater detail below.

7.3.1.1 File Name Elicitation

The Create utility’s next action is to open a window and request a file name

for the specification to be created. A comprehensive checking routine is

employed to ensure that the name will be acceptable to the DOS operating

system. This means that the name given must start with a letter and can be no

more than twelve characters, where the last four characters must be the

predetermined extension ".SPC" which denotes a specification file. This

extension will be added automatically as required. If the name offered is not

correct, the user is given further instructions and re-prompted for a another.

7.3.1.2 The High Level Requirements Screen

The screen called "High-level" is loaded next. This screen is shown in Figure

7-1 with the intended operating environment field open for selection. The

attributes to be completed in this screen are not intended to be used directly in

the finished specification. Their purpose is to capture the high-level user

requirements which would normally be included in other contractual

documentation or taken for granted. This information can then be used to

provide intelligent default generation for many attributes and input for

consistency checking. As nothing is known about the instrument at this stage,

each of the high-level attributes is set to "not specified". Like all Specriter 3

screens, this one can be completed in any order, but for convenience, the

discussion will run down the list in the order displayed.

188

Figure 7-1

High - Level Requirements Screen

189

The intended measurand field comes first. This is a database-assisted field and

the preferred mode of completion is to select an option from the database.

Upon pressing Enter or F4, the Shell looks up the database name from the

knowledge base, reads the file, in this case "NAME.DAT" and displays a list of

the attribute nominated, in this case measurands. The virtual list handler is

needed in this case to deal with the list as it is longer than the number of

screen rows available. The list is sorted into alphabetical order so the desired

measurand, "temperature", is found by scrolling the list up with the PgDn and

down arrow keys. Selection is completed by pressing Enter when the desired

measurand is reached.

It also possible to enter a measurand name not in the list, by using the

standard attribute line entry facilities available by pressing F3. However, if the

measurand is not in the database, then intelligent default generation and many

checking functions will be hampered.

The next field encountered in the list, is "intended environment". This is a list

attribute and pressing F4 or Enter will display the list available for selection,

see Figure 7-1. The intended environment selection is used to generate

intelligent defaults for numerous detailed attributes, in particular those relating

to the operating and storage environment To make use of this facility, it is

necessary to chose one of the four options offered even if it is not a good

match. Details can be amended later. For the example specification, the

obvious choice is "Space/Avionics".

Intended cost field can take one of six value representing the order of

magnitude cost. Expected cost is rarely included in a specification explicitly as

it is a contractual, as opposed to technical, matter. However, it impacts most

aspects of an instrument development or purchase and hence the reason for its

inclusion here. Default generation rules exist to specify a number of topics

based at least partially on cost, for example, quality assurance, reliability

verification, and maintainability philosophy. All space craft equipment is

expensive, and a cost estimate for the thermometer could be expected to be,

190

say, twelve thousand pounds. Hence, the "10 000 to 100 000" option is used.

Intended life has been divided into four coarse divisions: less than one year,

one to five years, five to twenty years, greater than twenty years. The option

selected helps the intelligent default generation process specify such topics as

reliability, maintenance philosophy, and housing type. The spacecraft has a

goal life of nine years so the option "5 - 20 years" is selected.

The last list attribute to specify is the customer type. Four options are

provided: space, military, industrial, and consumer. Once again, the best match

should be chosen to take advantage of intelligent default generation and

consistency checking facilities. In this case the selection is simple: "Space".

The customer type helps define quality assurance, applicable documents,

maintainability, and physical characteristics.

The standard attribute at the bottom of the screen requires the name of the

super-system, if any, to be entered, i.e., what the instrument may be part of.

For the space craft thermometer of the current example, the entry is

"Interplanetary Explorer, Thermal Sub-system". This is used in descriptive

parts of the specification for the information of the reader.

Any of the entries, in this or in fact any other Specriter 3 screen, can be edited

any number of times after initial completion. Once the entries are satisfactory,

the user exits this screen in the normal way by pressing F10.

7.3.1.3 Intelligent Default Generation

At this stage, the knowledge base is in a known state as all the attributes

values have been set to their default values. Thus, the intelligent default

generation function needs only alter those attribute values which can be better

specified using values inferred from the high-level requirements using the

default generation rules stored in slots in the knowledge base.

191

A search for default generation rules slots starts the process. It commences

with the Level 1 frames and works down through each tree. In the measuring

instrument knowledge base, these rule slots are confined to the Level 1 frames.

However, the exhaustive search facility is provided for unforseen use.

When a default generation rule slot is encountered, the Prolog rules are

extracted and passed to the Specriter Inference Engine (SIE). SIE produces a

dialogue window and executes the rules until completion, whereon the user is

asked to press the space bar. This manual intervention enables the user to read

the messages output by SIE. After the key is pressed, Control is returned to

the Create utility and the search continues. Whenever a default generation slot

is found, SIE is called again. This sequence proceeds until all the default

generation rules have been executed.

The search algorithm will follow the same path as the one used to create the

Edit sub-menu, hence the default generation rule sets will be found and

executed in that order.

The operation of each default generation rule set is described topic by topic
below.

7.3.1.3.I Units, Measurand, and Instrument Name

The "measurand" attribute in this topic is not the same as "intended

measurand" completed earlier in the high-level requirements screen. It was

decided to keep these separate to permit the future possibility of processing

the intended measurand string and converted into, say, one of the pre-defined

measurands. The current system simply sets the measurand to the intended

measurand.

Next, the database file which holds the relationship between measurands,

instrument names and measuring units is consulted and loaded into the SIE

database. This database is then searched for the intended measurand. The

192

measurand "temperature" is present and hence the corresponding values for
the other two attributes are extracted and automatically written into the

specification. Hence, measuring units are set to "degrees Celsius" and the

instrument name becomes "thermometer".

7.3.1.3.2 Physical Characteristics

The standard default physical arrangement is the provision of two enclosures,

one to house the sensor and the other to house the remaining functions,

nominally the data processor and display. There is no information available

in the high-level menu to improve on this default so the default generation

rules are limited to selecting the cooling option and the mounting methods.

The default generation rules use the fact that space or avionic instruments

will generally possess a special mounting face which also acts as a heat

path. Hence this knowledge is used in the current example. Had an

industrial customer been specified, rack mounting would have been specified

together with convective cooling. Instruments destined for the consumer

market would have been catered for by the standard defaults of purpose

designed enclosures and convective cooling.

The most appropriate default for military instruments was difficult to

determine because of their diverse physical characteristics. It was eventually

decided not to alter the standard defaults.

7.3.1.3.3 Electrical Interface

There is little that can be extracted from the high-level frame to help to

specify the electrical interface. The customer type is used to define the

power source. A space instrument will often be powered from 28V D.C. so

this is used for the current example, whereas many military systems operate
from 115V, 400Hz A.C. These will, of course, often be inappropriate but

they can be readily changed.

193

Military and space instruments will have defined electromagnetic

compatibility requirements, so for these classes of product, the general

requirements of MIL-STD-461 are cited.

7.3.1.3.4 General and Static Performance

There are no default generation rules for this topic.

7.3.1.3.5 Dynamic Performance

The standard default for this topic the mathematical description using a first

order response with a time constant of 20 ms. This time constant is

somewhat arbitrary and was chosen to provide a response which is

effectively instantaneous to a human observer without unnecessary

bandwidth. There is no information available to improve on this default so

there are no default generation rules for this topic.

7.3.1.3.6 Operating and Storage Environment

The intelligent default rules for this topic generate the many detailed

environment attributes from the intended environment selection in the high-

level requirements menu. It is worth noting that the operating environment

is usually modified by a platform and this has been taken into account when

deciding the intelligent defaults. The following default values are used for

the example instrument because it is intended for a space environment:

Temperature range:

Pressure limits:

Humidity limits:

Vibration range:

Max. vibration:

5 to 50 degrees C

0 to 105 kPa

0 to 95%

not applicable

not applicable

194

The upper pressure and humidity limits reflect the fact that spacecraft need
to be tested in the integration and test facility before launch. The

temperature of most space craft electronic boxes is controlled to within a

few degrees of a nominal 20 degrees Celsius to ensure good reliability and

freedom from thermal stress, hence the operating temperature range boundary

is narrower than might have been expected. There is generally little or no

vibration in a spacecraft after deployment, and thus the default vibration

attributes are set to "not applicable".

The non-operating environment for a spacecraft is dominated by launch and

airfreight considerations. The values applied were derived from MIL-STD-

810E (1989) and AEL (1987), except for the storage time which is a

customary default for scientific spacecraft launched by NASA:

Temperature range:

Pressure limits:

Humidity limits:
Vibration range:

Max. vibration:

5 to 50 degrees C

0 to 105 kPa

0 to 100%

10 to 500 Hz

3mm from 10 to 50 Hz decreasing at

octave until 500 Hz

6dB per

Had the instrument been intended for a military environment, then the

following default operating environment extracted from MIL-STD-810E

(1989) and Cook (1983) would have been used:

Temperature range:
Pressure limits:

Humidity limits:

Vibration range:

Max. vibration:

-31 to +55 degrees C

73 kPa to 105 kPa
0 to 100%

5 to 55 Hz

1.5 mm from 5 to 15 Hz, 1 mm from 15 to 25 Hz,

and 0.5 mm from 25 to 55 Hz.

The figures correspond to "basic cold" as encountered in Europe, and

195

operation to altitudes of up to around 3,000 metres. The vibration values

relates to what could be expected on a "non-specific mobile platform" and
encompasses things like ships and ground vehicles driven on roads.

The non-operating environment for this option is drawn from the same

reference documents. The low pressure limit is the minimum cargo hold

pressure encountered in transport aircraft.

Temperature range: -40 to +55 degrees C

Pressure limits: 57 kPa to 105 kPa

Humidity limits: 0 to 100%

Vibration range: 5 to 55 Hz

Max. vibration: 1.5 mm from 5 to 15 Hz, 1 mm from 15 to 25 Hz,

and 0.5 mm from 25 to 55 Hz.

Selection of the more benign sheltered indoor environment would have set

the following default operating environment:

Temperature range: 2 to 40 degrees C

Pressure limits: 95 kPa to 105 kPa

Humidity limits: 0 to 95%

Vibration range: not applicable

Max. vibration: none

The non-operating environment would be dominated by the airfreight

environment:

Temperature range: -19 to +55 degrees Celsius

Pressure limits: 57 kPa to 105 kPa

Humidity limits: 0 to 100%

Vibration range: 5 - 100 Hz

Max. vibration: 0.25 mm

196

Finally, in the event that the controlled environment option was selected, as

found in, say, a computer room, the following values from MIL-STD-810E

would have been set:

Temperature range:

Pressure limits:

Humidity limits:

Vibration range:

Max. vibration:

21 to 25 degrees Celsius

95.45 kPa to 103.05 kPa

45 to 55%

not applicable

none

In this instance, the non-operating environment would be unchanged from

the last option.

7.3.1.3.7 Quality Assurance

Quality assurance provisions are specified by selecting one of three options,

good commercial practice, 100% testing of performance characteristics, or
rigorous verification of every paragraph of the specification. The choice of

the one to use will usually be decided by the expected cost of the

instrument and the type of customer. For instruments costing less than 1000

pounds destined for commercial customers, the first option is selected. For

instruments whose expected cost is between 1000 and 100 000 pounds, that

are intended for other than the space industry, the second option is used.

Finally, for instruments costing more than 100 000 pounds and/or bound for

the space industry, the expense of a full quality assurance program is

indicated. The latter category will have been automatically selected for the

current example because of the instrument’s intended use on a spacecraft.

7.3.1.3.8 Reliability

The default generation rules are required to chose between specifying

reliability by probability of survival, mean time to failure, or a user supplied

paragraph. The rules examine the customer and use this parameter as the

197

main switch. Consumer instruments are assigned no formal reliability

criterion but instead a sentence is placed in the user paragraph to the effect

that the instrument should be designed with its intended life taken into

account. Instruments intended for industrial customers are specified by mean

time between failure with the MTBF set to the upper end of the life

expectancy. The military or the space industry usually wish to specify

reliability by probability of survival. As a starting point, the probability is

set to 0.99 and the survival period the upper end of the intended life. Thus

for the current instrument, the latter method and values are used.

7.3.1.3.9 Maintainability

The standard default for this topic is to specify that the instrument should be

returned to a service organisation for repair. This covers most situations but

this is changed by the default generation rules, in some situations. For

example, if the instrument costs less than 100 pounds then a throw-away

philosophy is specified and repair is by replacement. At the other end of

the scale, full maintenance support will be specified for very expensive

instruments. If, as in the case of the current example, the intended

operating environment is space flight, maintenance will be impossible so this

option is selected.

7.3.1.3.10 Design and Construction

This topic is generally left unspecified for development specifications and

accordingly there are no default generation rules. This is an area for further
research.

7.3.1.3.11 Preparation for Delivery

A useful, general purpose default paragraph is provided. This is adequate

for most situations and no default generation rules are provided.

198

7.3.1.3.12 Notes

Notes do not form part of the specification and there are generally few, if

any. Hence there is no need for default generation rules.

7.3.1.3.13 Applicable Documents

The number of applicable documents should always be as small as possible,

hence the standard default is an empty list. Certain of the default generation

rules, however, cite reference documents and hence it is useful to include

these in the list, as necessary. In the case of the current example, some of

the basic reference documents for a space flight instrument would have been

automatically written into the applicable documents paragraph by the

intelligent default generation rules.

7.3.1.4 Completion of Entry

At the completion of the above process, each of the editor screens will be

displayed in turn. The user will need to examine each of the default attributes

and make amendments as necessary. (The specification methods for each topic

are fully described in Chapter 3.) This completes the specification creation

process.

For the sake of combining the current example with a description of the editing

process, it is assumed that no changes were made to the example specification
during the pass through the sequence of editor screens.

7.3.2 Editing a Specification

If the current specification is not the one to be edited, the first action will be to

locate the required specification, make a copy, and load the new file. This can be

readily accomplished using the Files/Copy & Load command. If the user presses

Enter in place of supplying a source file name, a directory of file names is

199

displayed to select from.

After the file is loaded, editing can begin by selecting Edit from the main menu.

The list of Level 1 frames is then displayed, see Figure 6-7. Each of these menu

items can access the full compliment of leaf frame options in that topic. The

editing process can take place in any order as there is no dependency between the

items shown in the list menu, however, the description which follows will start

from the top.

The functions of the edit process will be illustrated using the specification of the

spacecraft thermometer created earlier. Because no attributes were altered during

the pass through the edit screens at the end of the create process, that work will

need to be done now.

7.3.2.1 Units, Measurand, and Instrument Name

This screen contains just three database-assisted fields, one for each of the

items of its title. All three have been completed by the intelligent default

generation rules for this frame. The measurand is set to "temperature", the

units to "degrees Celsius", and the instrument name to "thermometer". On

pressing F5, the checking process commences. The consistency checking rules

for this frame are extracted from the knowledge base and passed to SIE for

execution. Consistency checking for this frame consists of searching the

nominated database "NAME.DAT" to see if a set comprising the specified

measuring instrument, measurand and measuring units can be found. The

matching process is case independent, but no attempt is made to perform
natural language processing to match strings with identical meaning but

different expression. This is a topic for further research. Dialogue with the

user is via a window opened by SIE for that purpose. In the case of the

example, the user is informed that the three attributes form a set known to the

system. This is to be expected as they all came from the database.

200

The example instrument is a component of a larger system and a more specific

name is required for identification purposes. The user moves the cursor to the

instrument name field and presses enter to examine the list held in the

database. The correct name is not found so it is necessary to return to the
editor screen without altering the previous value using the Escape key. The

desired name is entered by pressing F3 to open the line editor and then typing

"Type 601 Spacecraft Thermometer" followed by Enter.

This screen is now complete and F5 is pressed again. This time the checking

process reveals that the set of items is not known to the system. This is

already known and can be ignored. The approach taken in the Specriter 3

measuring instrument knowledge base, is to keep the checking rules simple and

flag potential errors and let the user decide on the action to be taken. Much

more could be done in this area and this would be a good candidate for further

research.

F10 closes this screen and returns control to the Edit sub-menu.

13.2.2 Physical Characteristics

Physical characteristics, which covers physical partitioning, thermal interface,

and mechanical interface, is the next topic on the list. These items are strongly

interrelated so were combined into one frame tree. There are four

combinations of physical arrangements and three enclosure specification

methods. To cater for all of these, around 50 leaf frames are required. There

is a useful amount of knowledge held in the frame structure and, wherever

possible, automatic defaults are written directly into the text in preference to

presenting another attribute. For example, if a 19 inch rack mounted enclosure

is specified, it is known that mounting is achieved via the pre-defined mounting

flanges and cooling is convective.

The default physical arrangement is to specify two enclosures, one for the

sensor and another for the remaining functions, nominally data processing and

201

display. The intelligent default generation process used the fact that the

intended environment for the example specification was space or avionics to

specify purpose designed enclosures as these are customary in this field.

Additional intelligent default rules specified conductive cooling and mounting

via bolts through the expected mounting flange.

Of the nineteen possible attributes spanning the range of leaf frames, as a result

of the intelligent default generation process for this topic, the user is presented

with only 12. Three of these are correctly completed option fields and a

further four have sensible defaults deduced from the high-level requirements.

As there are more options to complete than could comfortably fit on a single

screen, the virtual screen handler has been used for this topic. Figure 7-2

shows the first half of the attribute list under discussion. The remaining

attributes can be scrolled up, to permit observation and editing, using the arrow

keys, Page Down, or End.

The attributes can be completed in any order. The mass limits for each

enclosure will already be known as these will have been determined in the

system design phase. The main unit mounting method is correct so this needs

no changes, however the one for the sensor had to be changed to "attached to

the structural member nominated in IE-ICD-MI-005 using heat conductive

epoxy adhesive type AD-185".

The housing description paragraphs need to be completed to specify only those

enclosure restraints necessary. This is best done by referencing an interface

control document, or a drawing. The former is used for both enclosures

needed for the current example specification.

The last field to complete is the maximum sensor temperature rise. As the

instrument under consideration is a thermometer, this parameter is not

particularly applicable as it is intended for sensors concerned with other

measurands. In a space flight application where thermal design cannot be left

to chance, it is worth placing a limit on it nonetheless, so 0.1 degree Celsius is

202

Figure 7-2

Physical Characteristics Screen

203

entered. When entering this value, a warning message is displayed saying that

the value entered is lower than the nominal lower limit of 1 degree Celsius. In
this case the warning is ignored.

7.3.23 Electrical Interface

Electrical interface is specified using a single screen with no options. There

are six standard entry fields covering power, communication interface and

electromagnetic compatibility (EMC). The power source of 28 V DC was

correctly specified by the intelligent default rules for the frame. The power

connector and the peak current need to be entered next. Once again, these will

be available from earlier system design activity. The communication interface is

indeed an RS-232-C and this standard default is left unaltered. The EMC

limits are described in the spacecraft Electrical Interface Control Document and

hence these entries are changed to reflect that.

73.2.4 General and Static Performance

This screen contains nine standard entry fields and a single user paragraph for

special requirements, see Figure 7-3. These were all set to "not specified".

Each has to be completed in turn.

The values entered are checked for consistency with themselves and the rest of

the specification by pressing F5. Consistency rules produce warnings if the

total measuring error is not achievable given the values of the other error

sources, the power consumption inconsistent with peak current limits and
thermal interfacing.

The help information is particularly useful in assisting the completion of this
frame.

204

Figure 7-3

General and Static Performance Screen

205

7.3.2.5 Dynamic Performance

This topic contains two option fields which give rise to a total of five leaf

frames to chose between. The standard default of first order response is the

most appropriate for the instrument under consideration. However, the time

constant needs to be changed to suit the instruments’s role as a component of

the closed loop control systems which maintains the spacecraft’s structure at a

constant temperature. The value mandated by the thermal control loop design

is entered in the normal way.

7.3.2.6 Operating and Storage Environment

This environment screen contains 19 standard entry screen and two user

paragraphs, see Figure 7-4. The intelligent default generation process has set

the standard entry fields to the values listed earlier for space flight instruments.

These require few changes for this particular instrument, but there is a need to

specify ionising radiation dose limits using the special operating environment

paragraph. Acoustic noise is specified using the special environment paragraph

for the storage and transport environment.

7.3.2.7 Quality Assurance

The intelligent default of specifying rigorous quality assurance provisions is

ideal for the spacecraft thermometer. The consistency checking rules for this

topic compare the selected option against the high-level requirements of

expected cost, intended environment, and intended customer type. As would be

expected, an option chosen by the intelligent default generation rules produces

no warning messages when the checking key, F5, is pressed.

7.3.2.8 Reliability

The Reliability screen shows that the probability of survival method has been

chosen. The intelligent default of 20 years needs to be changed to reflect the

206

Figure 7-4

Operating and Storage Environment Screen

207

mission lifetime of 10 years and the probability of survival of this relatively

minor part of the spacecraft needs to be increased to a more respectable 0.998.

7.3.2.9 Maintainability

The application environment does indeed prohibit maintenance, thus the

intelligent default is unchanged.

7.3.2.10 User Paragraph Screens

The last four topics are specified solely by user paragraphs. The default text

can be edited to suit the instrument in question and the nature of the

specification, i.e., whether it is a development specification where considerable

flexibility is permitted particularly on design and construction or a product

specification where interchangeability is paramount.

7.4 Text Generation

Now that the specification has been edited and consistency checked, is time to

generate the first draft requirements specification. This is done by selecting the

Text/Display command from the main menu. Textgen3 is called and after performing

its functions, as described in Chapter 6, the final text appears on the screen. If

checking reveals that alterations are required, then the editor can be called as many

times as desired to perform the necessary changes.

The Text/Print Option can be used to print the finished document on a printer

attached to the standard printer port on the computer. Another alternative is to exit

Specriter 3 and read the output text file, in this case, "TEMP.TXT", into a word

processor program and proceed from there.

7.5 Finishing a S p ecr ite r 3 Session

After the completion of the printing process, or indeed at any other time, selection of

208

the Quit option from the main menu will terminate the session. The specification

under consideration will be saved automatically. Restarting the program will return

the user to exactly the same state as just before exiting; there is no need to explicitly

load the specification file.

7.6 Achievements of S p ecr ite r 3

Chapters 1, 2, and 3 generated a set of requirements for a tool to assist in the

production of measuring instrument specifications. These were listed in the

introduction of Chapter 4, Section 4.1. This discussion commences by examining the

degree to which each of these is met by the final system Specriter 3.

The first aim was to improve the efficiency of generating specifications compared

with manual processes. This was achieved with Specriter 1 and has been improved

upon since. The fact that a reasonable printed draft can be produced in less than an

hour confirms this.

The second aim was to provide knowledge-based assistance to help in the generation

of the specification, covering areas such as specification format and use of language.

This knowledge has been incorporated into the knowledge base, and is embodied in

the numbered paragraph headings, the stored text fragments, the text generation

routines, and the default text format parameters.

The third aim was to provide a user interface suitable for both novice and

experienced specification writers. Specriter 3 possesses a sophisticated user interface

which combines a high degree of functionality with ease of use. User entry is

always handled by either a virtual-line editor or a full screen editor. Either can cope
with pages of input should it ever be necessary.

There are two command modes available. Infrequent users can access the system

using just the arrow keys and Enter. They can choose items from lists and menus

with the arrows and select them with Enter. Users more familiar with the system,

can use the "hot keys" present in most menus. These can be pre-typed to save time.

209

For example, after Specriter 3 is called from the operating system, if ’e’ and ’o’ are

pressed the system will commence with the operating and storage environment screen

of the editor. The on-line manual and the context-sensitive help, which is available

for almost all situations, further assists users.

The fourth aim was to provide some mechanisms for completeness, consistency and

reasonableness checking. Specriter 3 allows consistency checking to be incorporated

into every leaf frame. Checking takes the form of executing a sequence of rules

written in Prolog. Thus a powerful open-ended mechanism exists for this function.

Consistency checking rules exist for many situations and more can be added without

difficultly, using the knowledge base editor Framedt.

Completeness checking is also provided but in a different form. Cohen et. al. (1986)

and Blackburn (1989) define a formal specification to be complete when the

implementation of all the (abstract) objects is fully defined. As Specriter 3 is a

limited formal system, a specification contained within the system will be complete

whenever each topic has a leaf frame defined and the values of the attributes which

comprise that frame, and its ancestors, are defined. All specifications produced with

the Create process conform to this requirement, and in that sense can be considered

to be complete. From a practical perspective, it is of course possible to have many

attributes not fully defined because they are assigned the value "not specified", or

something similar. Checking for this situation can be done by the simple expedient

of inspecting each editor screen in turn.

The fifth aim was to provide sensible defaults preferably generated from information

already entered. This has been successfully achieved with the intelligent default
generation process.

The sixth requirement was to concentrate on the incorporation and structuring of

existing knowledge and techniques. This has been the approach adopted throughout.

Novel specification techniques have not been pursued.

The seventh design aim was to incorporate project management aspects in addition to

210

technical ones. This has been achieved by including many contractual items in the

high-level requirements screen, such as expected cost and intended life. This

information is available to the system’s reasoning mechanisms. In addition the

format of the specification produced and its comprehensiveness are a definite aid to

project management. It would be possible to construct a view into the knowledge

base from a management system should this be desirable.

The eighth and final aim was to be aware that the resulting software may later form

part of a larger entity. This requirement has always been observed and any DOS

program, whether written in Turbo Prolog or not, can gain direct access to the

specification and knowledge base files used by Specriter 3. Simple integration of

disparate computer-aided design software entities could be achieved through these

files. The format of these files is described in Appendix 2.

7.7 Conclusion

This chapter has built on the description of the Specriter 3 system given in Chapter

6 by discussing how a measuring instrument requirements specification can be

produced using the knowledge base compiled for that task. This account was used

as a vehicle to discuss the heuristic knowledge contained in the default generation

and consistency checking rules. Appendix 5 includes a copy of the finished

specification generated in the course of illustrating the Specriter 3 specification

creation, editing, checking, and text generation facilities.

The last section of this chapter critically examines Specriter 3 against the design

aims established, some four years ago, before the commencement of any

programming work. Each has been fulfilled.

A point which was not made in that review is the future potential of Specriter 3.

The measuring instrument knowledge base can be readily expanded with both more

options and more rules through use of the Framedt facility. Completely new

structured document generation applications can be built by replacing the existing

domain-specific knowledge base with another.

211

Relatively small modifications to the Specriter shell, such as the inclusion of slots

containing attached procedures, would permit a range of frame based tasks to be

performed. Specriter 3 could then be extended with extra views which could

interrogate the specification to simulate the instrument’s behaviour or to pass

information onto design assistance programs.

212

Chapter 8 - Conclusions and Suggestions for Further Work

8.1 Conclusion

This thesis describes the first scientific attempt to apply the growing understanding of

the specification process to the important field of measuring instruments. A human

specification generation algorithm, uncovered during the investigation, has been

shown through the application of knowledge engineering and artificial intelligence, to

form a suitable basis for a computer tool for assisting the process of creating

requirements specifications for measuring instruments.

Writing requirements specifications for measuring instruments is a difficult task. The

writer needs to have a clear idea of what the measuring instrument is to do, what

forms a consistent and reasonable specification, the specification format and type

most appropriate for the task, and finally the writing style to employ. Specifications

form a part of contractual documentation between a customer and a supplier, and

hence the adequacy of a specification is a matter of considerable importance to both
organisations. For these reasons, and others fully covered in Chapter 3, it can be

seen that there is a need to automate the specification generation process.

It was not apparent at the commencement of the research programme, some five

years ago, what could be achieved in this field. The approach adopted was to

examine the human specification generation process, as practised in industry, in an

effort to identify some structure, and possibly an algorithm, which could be used as

the basis for automation. A human specification generation algorithm was discovered

and this was translated into a computer generation process. This process,

documented in Chapter 3, requires extensive use of stored knowledge concerning the

specification format to be used and the methods used to specify the individual

paragraphs. The uncovering of this knowledge and its description in a single work,

represents a useful contribution to instrument engineering.

213

Specriter 1 was the first software system designed and built to implement the

computer generation process. This system is capable of producing a complete printed

specification in response to a list of questions. Editing, file handling and text

generation facilities were all integrated into a single entity. The specification

methods and the format of the specification are taken care of, permitting a user to

concentrate on the instrumentation aspects of the task. Specriter 1 has been very

successful and has been used by staff, clients and students at MISC to produce a

wide range of measuring instrument specifications.

It became clear that extending the architecture Specriter 1 to contain instrumentation

knowledge in the form of reasonableness and consistency rules would not be

appropriate. A formal specification representation was indicated, one possessing a

defined syntax and semantics that could permit direct reasoning about the contents of

the specification. Chapter 5 presents a review of such methods. The method

adopted was to write the specification in Prolog because of its expressive power and

because the specification can be interpreted directly using the reasoning mechanisms

inherent in the language.

An adequate knowledge representation is a pre-requisite for a successful knowledge-

based system. Three different knowledge domains were identified for inclusion in

the new system: instrumentation knowledge, human interface, and specification

generation knowledge. A review of knowledge representation techniques revealed

that a frame-based system could be used to contain all of these and also the

specification, provided the entire system were constructed in Prolog. The key

concept behind the chosen representation is that each individual view or perspective

on the specification is represented by a unique frame. Thus each screen displayed to

the user corresponds to a frame held in the knowledge base. Where there are

options in the specification process for a given topic, a hierarchy of frames is used.

Knowledge common to more than one frame is inherited from a parent frame thus

reducing needless repetition. Reasoning about the content of the specification is

performed on a frame by frame basis thus avoiding the verification and maintenance

difficulties associated with large unstructured knowledge bases.

214

The formal specification and knowledge representation concepts were incorporated

into Specriter 3, a completely new system written in Prolog. The major advantages
this system has over its predecessor are: the inclusion of heuristics in the form of

rules written in Prolog, the complete separation of the knowledge base from both

control and inferencing mechanisms, and its potential for expansion to cater for

additional requirements. Specriter 3 can be thought of as a specialist expert system

shell dedicated to the creation and editing of standard documents or forms. Its

behaviour is totally characterised by its external knowledge base. The single

knowledge base currently in existence has been referred to as "the measuring

instrument knowledge base" but, in fact, it contains all three knowledge domains

identified earlier. A purpose-built editing tool named Framedt, was built to create,

edit and extend this or any future knowledge base.

The functionality of the system resulting from loading Specriter 3 with the measuring

instrument knowledge base, completely eclipses the earlier Specriter 1. Specification

of the roughly one hundred attributes is greatly assisted in Specriter 3 by the

adoption of intelligent default generation. From the user’s response to a few high-

level questions, such as intended environment, expected cost, and intended customer,

rules held in the knowledge base select the most appropriate specification options for

every topic and deduce roughly half of the detailed attributes. Considerable

assistance is offered to the user during editing, through context-sensitive help

messages and highly-capable line and paragraph text editors. After completion, the

consistency of the specification can be examined, topic by topic, using consistency

checking rules. These can alert the user to a range of potential problems in the

specification.

8.2 Suggestions for Further Work

Specriter 3 breaks new ground in the preparation of specifications for physical

equipment. There are, understandably, many areas which need to be developed to

maturity.

The Specriter 3 shell is well advanced, the most obvious need is to extend the

215

knowledge base. For example, extension could be provided for instruments which

measure in more than one dimension, for example vision systems. The specification

template could be extended to cover topics which are more specific to product
specifications such as design and construction, logistics, documentation, and safety.

The intelligent default generation and consistency checking rules could be augmented.

Of greater interest, is to use the Specriter 3 knowledge representation paradigm and

the imbedded instrument specification, as the central core for a complete measuring

instrument design system such as CAEINST at SAIT or that evolving at City

University. Design concept generation and detailed design modules could then

interact with a development specification created by Specriter 3 to convert it into a

product specification from which an instrument could be built, perhaps later via

computer aided manufacture.

216

Appendix 1 - Specriter 1 User’s Guide

SPECRITER USER’S GUIDE

S.C. COOK, APRIL 1988

CONTENTS

1. Description and Background

2. Installation

3. How to Generate a Specification Using Sp

4. Specification Editing

5. The Display Utility

6. The Print Utility

7. File Handling

8. Tidying Up

217

Doc: MISC/SPEC/01

1 DESCRIPTION AND BACKGROUND

1.1 Background

Specriter 1.4 is an intermediate output from research into
Computer-Aided Engineering of measuring INSTruments (CAEINST)
being conducted by The Measurement and Instrumentation System
Centre (MISC) at The South Australian Institute of Technology
(SAIT). CAEINST aims to provide the necessary knowledge for
a user to specify, create, and apply capable measuring and
control systems.

Specriter's primary function is to extract information from
the user regarding the measurement problem to b e solved, and
from this, generate a written specification for a measuring
instrument. The output text closely follows the MIL-STD-490
specification format. This format or derivatives of it are
widely used throughout the world for specifying military,
aerospace, and professional equipment.

This version of Specriter was originally developed in VAX
Pascal running on the VMS operating system and then converted
to ANSI PASCAL to run under UNIX to finally be ported to
Turbo Pascal for use on IBM PC or compatible computers. To
permit portability, few language extensions over ANSI Pascal
were used. This heritage explains the appearance of the
screens; each was designed for a ANSI terminal and hence none
of the advanced features available for the PC have been
employed. String handling and input robustness have all been
built from the ground up; this approach, while necessary
because of the inadequacies of ANSI Pascal, has resulted in
high degree of input checking and hopeful freedom from abrupt
exits due incorrect user actions.

A consequence of designing the programs for portability is
that all operating system calls are contained in a single
element; a command language program for the VMS version and a
batch file and small associated programs for MS-DOS. This
necessitates a certain overhead and sub-optimal
implementation in DOS. For this reason and because the
programs are large and use overlays, execution from floppy
drives is not practical.

1.2 Structure

Figure 1-1 illustrates the structure of Specriter 1.4. The
structure has been heavily influenced by the use of ANSI
Pascal and the desire to permit portability across operating
systems. Specriter uses the concept of v/ork files. There is
an Instrument Attribute File for each instrument that held in
the Specriter directory. The file name of the current
instrument being worked on is displayed in bold in the main
menu. Disk space is the only limit to the number of

Issue: 1

218

Instrument Attribute Files that can exist permitting
substantial libraries to be built.

Doc: MISC/SPEC/01

Figure 1-1 Structure of Specriter 1.4

Issue: 1

219

Doc: MISC/SPEC/01

1.2.1 Command Programs

The command program is in fact a group of programs; two for
VMS and UNIX and three for DOS, only the latter
implementation will be discussed here. DOS has a very
limited command language which means that many tasks
originally handled in the command language needed to
implemented by a Pascal program.

Invoking Specriter runs a program called "COM". This
program generates the banner and produces the main menu. A
correct menu selection updates the file "CONTROL" which
contains the work file name, and the menu option selected.
"COM" then terminates and the Specriter batch file now
starts the DOS specific program "CONVERT" which interprets
"CONTROL" and generates a batch file called "NEXTTASK".
"NEXTTASK" runs next performing the function selected from
the main menu, e.g., running the Editor program. When this
program terminates, control is returned to the "SPECRITER"
batch file which restarts "COM". This program re-displays
the main menu and awaits another selection.

This method of performing operating system calls indirectly
from an applications program, although rather cumbersome,
does permit portability with the change of just one
program.

1.2.2 Attribute Entry & Editing

Knowledge elicitation from the user and subsequent editing
of the information gathered, is performed by a program
called "SPEC". This program is set to either edit an
existing Instrument Attribute File or create a new one
dependant on the main menu selection which invokes it.

Turbo Pascal version 3, the language used to implement
Specriter, has a maximum code size of 64K. As "SPEC" is
considerably larger than this, 10 overlays have been used,
one for each of the major areas of the specification.
(This is another reason why floppy disk operation is so
slow.) The essence of the instrument described by the user
is written to an Instrument Attribute File given the
current work file name. Whenever the Editor program is
invoked and the Instrument Attribute File changed, the
corresponding text file is deleted because it will now be
out of date.

Issue: 1
220

Doc: MISC/SPEC/01

1.2.3 Text Format Elicitation and Text Formatting

Whenever the display or print main menu options are
selected, the Specriter command program searches for the
text file, and if absent, invokes the text generation
program "SPECOUT". This program reads in the formatting
data contained in "FORMAT". There is only one format file
for each Specriter installation because it was felt that
most of the entries, e.g., page length, margins, and indent
rate would not change once set up. The consequence of this
is that the user has to be careful to ensure that the
document and issue number are current when the work file is
changed. "SPECOUT" uses the format control information to
generate a suitable input file for the Runoff text
formatter. This program reads the data file output by
"SPECOUT" and generates another file which later becomes
named as the current work file name with the extension
".TXT". The text formatter produces a finished right
justified document comparable in presentation to a word
processed document. The only blemish being that it is not
able to attach text to paragraph headings very well.

1.2.4 Text Display

The Borland program "README.COM" is used to display the
text. This program offers a range of facilities and
provides fast scrolling when the Page Up and Page Down keys
are pressed.

1.2.5 Text Printing

Printing is performed by using the DOS Print command which
is assumed to be available on the machine.

2 INSTALLATION

2.1 Hardware Requirements

Specriter is written in Turbo Pascal and also uses MS-DOS
commands to perform operating system calls. Any IBM PC or
compatible machine which can run Turbo Pascal in a DOS
environment should experience no problems. The Specriter
programs are of sufficient size to crowd out a standard 360K
double density disk used to distribute the software. For
this and the other reasons mentioned earlier, Specriter needs
to run from a hard disk. Temporary files are generated
during execution hence be sure to have at least 500K bytes
free before loading Specriter. Minimum memory requirements
have not been established. Certainly 512K is sufficient and
probably as little as 256K may suffice.

Issue : 1

221

Doc: MISC/SPEC/01

2.2 Software Requirements

Development was performed using MS-DOS Version 3.2. Other
recent versions should pose no problem. Specriter calls many
DOS commands hence it will be necessary for the DOS to be
installed on the hard disk and the DOS directory included in
the path statement. (This is normally the way IBM PCs are
s e t up.)

2.3 Installation

Create a directory for Specriter called SPEC using:

c:> MD SPEC

Next copy the contents of the distribution disk to this
directory using:

c:> COPY A:*.* SPEC

To start Specriter set the default directory to SPEC using:

c:> CD SPEC

Check that at least the folio wing files are present:

SPEC.COM - Entry and Editor Programs
SPEC.000 - Overlay for Spec.com
SPEC0UT.COM - Text Generation Program
C0M.C0M - Main Menu Program
C0NVERT.COM - Batch file Generation Program
RUN0FF.C0M - Text Formatter
README.COM - Text Display Program

APPD0C. - Applicable documents file
CONTROL. - Control file holds work file & menu option
FORMAT. - Text formatter set-up file
ATT. - Current work file
HELP.MSG - Main menu help file

SPECRITE.BAT - Start-up batch file

by typing:

C:\SPEO DIR

then type the single command:

C:\SPEO SPECRITER

The introductory banner should now appear shortly followed by
the main menu. Specriter should now be installed. The best
way to verify correct operation is to generate a
specification, edit it, display and then print it.

Issue: 1

222

Doc: MISC/SPEC/01

3 HOW TO GENERATE A SPECIFICATION USING SPECRITER

There are two ways to use Specriter to generate specifications:

(a) Create a new specification from scratch
(b) Modify an existing specification.

3.1 Creating New Specifications

Start Specriter as described in Section 2. When the main
menu appears, select the CREATE option by entering 1 and
pressing enter. A file name will be requested; enter an
appropriate name following the directions displayed on the
screen. Once an acceptable name has been entered the Entry
program starts. Follow the directions given and complete the
list of questions, don't worry about mistakes they can be
corrected later. Eventually the questions will end and your
responses will be written into the file bearing the name you
entered earlier and the extension ".STD". A new
specification now exists in a computer readable form which
can be manipulated by other programs in the Specriter system,
i.e., edited, displayed or printed.

3.2 Creating New Specifications From Old

If you have a library of specifications available from
previous use of Specriter, the quickest method of generating
a specification for new instruments is to modify an existing
relevant Instrument Attribute File. Identify the most
suitable file using either the finished output as displayed
or printed, or the EDIT program. Quit Specriter and copy the
Instrument Attribute File to a suitable new file name. For
example if a thermometer is described by TEMPI.STD and the
another thermometer of slightly different performance needs
to be specified then type the following:

C:\SPEO copy tempi.std temp2.std

The original file is still available and work can begin on
the new specification. Start Specriter as described in
Section 2 and use the RECALL utility to load TEMP2.STD into
Specriter. See Section 7 for details but the process is
straightforward. Proceed to alter the information contained
within this file using the EDIT program as described in the
following section.

Issue: 1
223

Doc: MISC/SPEC/01

4 SPECIFICATION EDITING

Instrument Attribute Files which contain the information
entered by the user about particular instruments, can be edited
using the EDIT program. This program is invoked by selecting
option 2 from the main menu. The work file (highlighted in the
main menu), is loaded into the program and after the header
page the editor menu appears. The questions asked by the
create program are divided into ten separate areas each of
which can be edited individually. After selecting a topic
using the appropriate number, editing begins. Editing takes
the form of replacing the previously stored response with a new
one. If the enter key is pressed without entering any
characters then the previous response is untouched.

When editing is complete, enter option 0 from the editor menu.
An opportunity is provided to scrap changes made in the editing
session but the default is to replace the old Instrument
Attribute File with that just created.

5 THE DISPLAY UTILITY

The Display main menu option automatically generates the text
of the document and displays it on the screen. If the text
already exists, the user is prompted to see if either the
existing text should be displayed to save time, or if the
generation process should be invoked to allow alteration of the
print format. The generation process first prompts the user
to provide details on the print format. The defaults given are
for the standard 66 line per page fan fold computer paper. A4
paper can be catered for by selecting 70 lines per page. It
will be necessary to change the document and issue numbers to
suit the current work file.

Once the print format is satisfactory, the text is generated
and automatically displayed. Use of the display program is self
explanatory and additional information is available by pressing
the help key, FI. Use the ESC key to leave the text viewing
program and subsequently return to the main menu.

6 THE PRINT UTILITY

The Print main menu option uses the DOS print command (PRINT)
to print the specification documents generated by Specriter.
Print will generate the text if necessary but it is highly
recommended to use Display to perfect the text before pri nting
it. Print uses no special printer commands and hence places no
special requirements on the printer.

Issue: 1

224

Doc: MISC/SPEC/01

7 FILE HANDLING

7.1 General

Instrument description data entered by the user will be
stored in Instrument Attribute Files which commence with the
name entered by the user and have the extension ".STD".
Specriter uses the concept of a work file such that the
options selected from the main menu will be performed on the
file highlighted near the top of the screen. Text files
generated will have the name of the work file and the
extension ".TXT".

ANSI Pascal does not requires all file names to be declared
at compilation time. Consequently, predefined file names are
used in the programs and DOS batch programs are employed to
copy the files related to the current work file to these when
required. Hence the intermediate files "ATT." and "WORD."
and "WORD.DOC" can be found in the specriter directory after
using Specriter and these represent the current Instrument
Attribute File, the output from the text generation program
"SPECOUT" in a form ready for text formatting, and the
finished document for the current work file, respectively.
It was decided not to delete these files at the end of a
session because they are useful as diagnostic tools. For
those who like to minimise disk usage add the following lines
to the end of "SPECRITE.BAT":

DEL ATT.
DEL WORD.
DEL WORD.DOC

It has been decided to write the Instrument Attribute Files
to the same directory which holds the Specriter programs.
This is somewhat messy but does avoid adding additional path
statements to the "AUTOEXEC.BAT" file and being wary of
duplicating executable file names. Those who use Specriter
in earnest may wish to create sub-directories for the
Instrument Attribute Files - this is left to them.

7.2 The List Utility

The List utility is available as an option on the main menu.
It calls the DOS directory (DIR) command without leaving
Specriter and displays all the instrument attribute files.
To return to the main menu simply press any key.

7.3 The Recall Option

Recall enables the user to select a new work file from the
Instrument Attribute Files that exist in the Specriter
directory. Incorrect or non-existent files are not accepted
and the current work file can be retained by simply pressing
Enter without entering any other characters.

Issue: 1

2 2 5

Doc: MISC/SPEC/01

8 TIDYING UP

Inevitably, anyone using another person's software will want to
change the defaults. The documents produced by Specriter are
in standard ASCII format and can be edited by any ASCII editor
or read into most word processors. Small changes should
present no problem but deletion and especially creation of new
lines will need to be performed carefully. If the number of
lines on the page are changed, then the document page breaks
will no longer line up with the page length selected.

Keen users who wish to make substantial changes to the output
text without having to fiddle with the page breaks may wish to
exit Specriter and edit the file which contains the raw source
text, "WORD.". This file is filled with text formatter
commands but it should be possible to successfully make
substantial changes without difficulty. To generate the
finished document, simply type:

C:\SPEO runoff word.

The resultant text will be found in "WORD.DOC".

Issue: 1

226

Appendix 2 - S p e e d ie r 3 Knowledge Base Technical Description

1 Introduction

Specriter 5 is a frame-based structured document generation tool which is

characterised by external knowledge bases stored as disk files. It is not intended that

these knowledge bases should be created and maintained using ASCII text editors.

An interactive frame editing tool Framedt is available for this purpose and should

always be used as it eliminates syntax errors which would prevent Specriter 3

loading the knowledge base. The purpose of this document is to provide the detail

necessary to permit interested programmers to interface to a Specriter 3 knowledge

base.

The first application of Specriter 3, and the reason for it construction, was the

generation of measuring instrument specifications in accordance with established

military practice. Hence there will be many references to instruments in the text to

follow which could just as easily be references to monthly financial statements.

2 General Description

Specriter 3 comprises a domain-independent compiled executable program and up to

three separate knowledge bases. The program contains inferencing mechanisms, the

human interface drivers and text generation modules. It has been designed to

produce structured documents from user-supplied responses to question options. The

knowledge base characterises the behaviour of the Specriter 3 and contains:

(1) All the information required to create the various screens that comprise the

human interface to the document, say specification, under consideration. This

includes context sensitive help information and function key definitions.

(2) Knowledge of the domain of interest, for example instrumentation, to provide

227

consistency checking and intelligent default generation.

(3) Knowledge of the appropriate document format techniques, for example

specifications, held as the list of attributes comprising the screens, the help text

and the final text fragments.

The knowledge is organised into a hierarchy of frames as shown in Figure 1 which

illustrates the measuring instrument specification knowledge base used in Specriter 3.

Each frame at the leaf of the tree represents a displayable screen. The totality of the

information available to each frame is that contained within the frame and that which

is inherited from parent frames. The parent frames contain information applicable to

more than one screen and thus inheritance reduces repetition. The frames are

divided into slots and these are defined in Figure 2. The types of inheritance

employed depends on the slot type:

(1) No inheritance; used for slots which contain information unique to the frame or

alternatively, control information. Slots of this type are Frame description and
Default generation rules.

(2) Conditional inheritance; used when the inheritance process terminates when the

first slot of the required type is found, be it the leaf frame or a parent. Used

in Help message, Function key list, and Consistency rules.

(3) Complete inheritance; used when all the information contained within the parent

slots of the same type is to be inherited. Used in Output text, Screen text, and

Active fields.

The top frame contains no screen information but does contain function key

definitions and a help screen which can be inherited if needed. The Level 1 frames

start the frame trees for each topic to be specified. The leaf frames emanating from

each, represent the diversity of screens needed to cover the range of options

supported. The frame tree branches on certain options which change the document

context or the output text. The appropriate leaf frames can be selected using these

228

top

Figure 1 - Measuring Instrument Specification Frame Tree

229

SLOT NAME DESCRIPTION

Frame description1; A four-tuple which contains the frame
name, the frame level (top = 0), the
parent frame name, and a string containing
a screen title to be displayed in the top
centre of the window.

Output text1: A single string suitable for use by the text
generation utility. Any variables in the
string will be replaced by their current
value held in the knowledge base.

Help message2: A string containing all necessary control
characters for help display utility.

Function key list2: A formatted string which holds the function
key labels.

Screen text3: A set of text strings that will appear on the
screen.

Consistency rules1: A set of Prolog terms. Can cover entire
knowledge domain.

Default generation rules4: A set of Prolog terms used to generate

Active fields3;

intelligent defaults from "High-level" frame.

Description of the active fields which permit
user interaction with the knowledge base and
specification. Types include:

Standard entry
Predefined list entry
Database assisted entry
User paragraph entry
Key option selection

Non-inheritable slots.
2 , (^
Optional. If absent, slot value from next highest frame inherited.
Optional and all slot values from higher frames are always inherited

4 Optional. Level 1 frames primarily.

Figure 2 Specriter 3 Frame Description

230

options. Only the questions associated with the leaf frame will be presented rather

than all the possible questions relating to the topic. In this way, the human interface

of Specriter 3 can be thought of as an intelligent form which can modify itself in

response to the form completion process.

3 Detailed Description

3.1 General

The knowledge base is a series of Prolog terms. The order is not important.

However, as Specriter 3 is written in Turbo Prolog, which is a typed compiler,

only the predefined predicate types described below can be used. Any others will

cause consultation errors at run-time.

The frames are described by a number of predicates, one for each slot type. This

technique has the advantage over having a single predicate for each frame, in that

it makes access to the slots in the knowledge base much quicker as no list

processing is needed to extract the slots. It also helps to keep the predicates to a

manageable size and hence makes maintenance via a text editor much easier.

Should be necessary at a later date, it would be a simple matter to declare another

slot predicate type and add examples to an otherwise unchanged knowledge base.

Figure 3 is an example frame definition for the measuring instrument knowledge

base. It is the Level 1 frame for entering measurand, instrument name, and

measuring units. The only change has been the addition of carriage returns, line

feeds and spaces to assist readability because otherwise the predicates are single

lines.

The only special frame in the knowledge base is the one bearing the reserved

name "High_level". This frame is used as the first screen of the Specriter 3

Create module from which intelligent defaults can be generated in response to a

few high-level questions. If this frame does not exist, then the Specriter 3 Create

command will be inoperative and all document manipulation will have to be

performed using the Edit command.

231

f r a m e ("Meas 'top", "1 Units, Measurand, and Instrument Name ")

o u t e x t (" M e a s " , " 1 . S c o p e " ,

" \ n T h i s s p e c i f i c a t i o n e s t a b l i s h e s t h e p e r f o r m a n c e , d e s i g n , d e v e l o p m e n t ,

\ n a n d t e s t r e q u i r e m e n t s f o r a # i n s t r u m e n t _ n a m e # . ")

h e l p _ s l o t (" M e a s " ,

" T h e MEASURAND i s t h e q u a n t i t y t h e i n s t r u m e n t i s t o m e a s u r e .

\ n T h e MEASURING UNI TS a r e t h e u n i t s u s e d t o e x p r e s s t h i s m e a s u r e m e n t ,

\ n S p e c r i t e r k n o w s a b o u t t h e i n t e r n a t i o n a l s y s t e m o f m e t r i c u n i t s .

\ n T h e INSTRUMENT NAME i s t h e name u s e d t o r e f e r t o t h e i n s t r u m e n t .

\ n

\ n T h e m e a s u r a n d , i n s t r u m e n t name a n d m e a s u r i n g u n i t s f o r m a s e t .

\ n S p e c r i t e r c o n t a i n s a d a t a b a s e o n s u c h s e t s w h i c h c a n b e u s e d t o

\ n c o m p l e t e t h i s s c r e e n .

\ n

\ n To u s e t h i s f a c i l i t y , f i r s t c l e a r a l l t h e f i e l d s w i t h F2 a n d t h e n

\ n p o s i t i o n t h e c u r s o r o n t h e f i e l d y o u w i s h t o s t a r t w i t h a n d p r e s s F4

\ n t o d i s p l a y t h e o p t i o n s f r o m t h e d a t a b a s e . T h e l i s t i s s o r t e d i n t o

\ n a l p h a b e t i c a l o r d e r a n d e x t e n d s b e y o n d t h e b o r d e r s o f t h e w i n d o w . T h e

\ n a r r o w k e y s a n d P gUp , PgDn c a n b e u s e d t o f i n d a n d s e l e c t t h e d e s i r e d o p t i o n .

\ n

\ n Move t o a n o t h e r f i e l d . R e p e a t t h e p r o c e s s . T h i s t i m e t h e o p t i o n s a r e

\ n l i m i t e d t o t h o s e c o n s i s t e n t w i t h t h e p r e v i o u s e n t r y . S i m i l a r l y , c o m p l e t e t h e f i n a l f i e l d .

\ n

\ n I n t h e e v e n t t h a t t h e d a t a b a s e d o e s n o t c o n t a i n t h e d e s i r e d s e t , e n t e r

\ n t h e m a s y o u w o u l d a n y o t h e r a t t r i b u t e . T h e s e t ma y b e i n c l u d e d i n

\ n t h e d a t a b a s e i f y o u w i s h b y s e l e c t i n g t h e a p p r o p r i a t e o p t i o n a f t e r F10

\ n i s p r e s s e d . ")

f k e y s (" M e a s " , [" F l r H e l p " , " F 2 : C l e a r " , " F 3 : E d i t F 4 : 0 p t i o n s " , " F 5 : C h e c k " , " F 6 : T e x t F 1 0 : F i n i s h "])

t x t _ s l o t (" M e a s " , 1 , 2 , 6 8 , " C o m p l e t e t h e s c r e e n i n a n y o r d e r . T h e r e i s a d a t a b a s e o f m e a s u r a n d s ")

t x t _ s l o t (" M e a s " , 2 , 0 , 6 8 , " a v a i l a b l e t o a s s i s t c o m p l e t i o n , u s e F I t o o b t a i n i n s t r u c t i o n s . ")

t x t _ s l o t (" M e a s " , 4 , 2 , 5 4 , " T h e s e a t t r i b u t e s w i l l b e u s e d t h r o u g h o u t t h e d o c u m e n t . ")

t x t _ s l o t (" M e a s " , 9 , 2 , 1 0 , " M e a s u r a n d : ")

t x t _ s l o t (" M e a s " , 1 1 , 2 , 1 6 , " I n s t r u m e n t Name : ")

t x t _ s l o t (" M e a s " , 1 3 , 2 , 1 6 , " M e a s u r i n g U n i t s : ")

Figure 3 Example Frame for Measuring Instrument Knowledge Base (Part 1)

232

c o n s _ r u l e s (" M e a s " ,

" r u n : - c o n s u l t (\ Mn a m e . d a t \ ") , ! , w r i t e (\ " C o n s u l t e d m e a s u r a n d d a t a b a s e X ") , n l , n l ,

\ n w r i t e (\ MI f n o f u r t h e r m e s s a g e s a p p e a r , m e a s u r a n d , i n s t r u m e n t n a m e a n d t h e \ M) , n

\ n w r i t e (\ Mm e a s u r i n g u n i t s d o n o t f o r m a s e t k n o w n t o S p e c r i t e r . \ H) , n l , n l ,

\ n a s s i g n _ n a m e (\ M# m e a s u r a n d # \ M, \ M# i n s t r u m e n t _ n a m e # \ " , \ " # u n i t s # \ ") ,

\ n w r i t e (\ " 0 K - S e t f o u n d . \ M) ,

\ n n l , n l . H)

g e n _ r u l e s (" M e a s " ,

" r u n : - w r i t e (\ " M e a s u r a n d E s t a b l i s h m e n t X ") , n l , n l , f a i l .

\ n

\ n r u n : - c h a n g e (\ " m e a s u r a n d X " , \ " # i n t e n d e d _ m e a s u r a n d # \ ") ,

\ n w r i t e (\ " S e t m e a s u r a n d t o i n t e n d e d m e a s u r a n d . \ ") , n l , f a i l .

\ n

\ n r u n : - c o n s u l t (V n a m e . d a t \ ") , ! , w r i t e (\ " C o n s u l t e d m e a s u r a n d d a t a b a s e X ") , n l ,

\ n a s s i g n _ n a m e (X " # i n t e n d e d _ m e a s u r a n d # X " , N a m e , U n i t s) ,

\ n w r i t e (X " M e a s u r a n d f o u n d i n t h e d a t a b a s e . X ") , n l ,

\ n c h a n g e (\ " i n s t r u m e n t _ n a m e X" , N a m e) ,

\ n c h a n g e (X " u n i t s X " , U n i t s) ,

\ n w r i t e (X" I n s t r u m e n t n a m e a n d u n i t s s e t t o t h e f i r s t o p t i o n i n t h e d a t a b a s e . \ ") ,

\ n n l .

\ n

\ n r u n : - w r i t e (X " M e a s u r a n d n o t f o u n d i n t h e d a t a b a s e . Y o u w i l l n e e d t o c h a n g e t h e \ ") , n l

\ n w r i t e (X" i n s t r u m e n t n a m e a n d t h e m e a s u r i n g u n i t s l a t e r . X") , n l . ")

s l o t (" i n s t r u m e n t _ n a m e " , s (" M e a s " , s e l e c t , a , i n h e r i t) , f (1 1 , 2 4 , 3 1) ,

pi»« H«, h i . , " E n t e r i n s t r u m e n t n a m e : " , 4 3) ,

[" n a m e . d a t " , " a s s i g n _ n a m e (_ , X , _) " , " a s s i g n _ n a m e " S e l e c t I n s t r u m e n t N a me "] ,

" l i q u i d c r y s t a l t h e r m o m e t e r ")

s l o t (" u n i t s " , s (" M e a s " , s e l e c t , a , i n h e r i t) , f (1 3 , 2 4 , 3 1) ,

p (" " E n t e r m e a s u r i n g u n i t s : " , 4 3) ,

[" n a m e . d a t " , " a s s i g n _ n a m e X) " , " a s s i g n _ n a m e (_ , _ , _) " , " S e l e c t M e a s u r i n g U n i t s "] ,

" C e l s i u s ")

s l o t (" m e a s u r a n d " , s (" M e a s " , s e l e c t , a , i n h e r i t) , f (9 , 2 4 , 3 1) ,

p (" " E n t e r m e a s u r a n d : " , 3 7) ,

[" n a m e . d a t " , " a s s i g n _ n a m e (X , _ , _) " , " a s s i g n _ n a m e (_ , _ , _) " , " S e l e c t M e a s u r a n d "] ,

" t e m p e r a t u r e ")

Figure 3 Example Frame for Measuring Instrument Knowledge Base (Part 2)

233

Line feed/carriage return combinations are signalled using "\n". In the descriptions

below, all symbols are literals except the arguments enclosed in the meta-symbols
"<" and ">" which represent variables. A definition for each slot follows. It is

essential that the correct types are used for each argument.

3.2 Frame Description

The frame description takes the form of a 4-tuple of strings:

frame(<frame name>,<level>,<parent>,<screen title>)

For example:

frame("Dynamic","top","l"," dYnamic Performance ")

The frame name is the name cited by all the slots which comprise the frame.

Frame names must be unique. The frame level is a positive integer, but as a

string type has been declared it must be enclosed in quotation marks. The top

frame is Level 0 and the main topics are Level 1, succeeding levels are 2,3,4 ...

etc. The level number is used during execution to make lists of frames at the

same level. The Edit pulldown sub-menu uses this facility.

In this context and throughout this document, the parent frame refers to the next

frame up in the hierarchy, not the ultimate parent. The screen title is used in two

ways depending on the position of the frame in the hierarchy. In the case of leaf

frames, it is used as the screen title of the editor screen. Whereas, for Level 1

frames, the titles are used as menu items in the Edit pulldown sub-menu. The

order of this menu is determined by the order the Level 1 frame definition

predicates are loaded into the database from the knowledge base files. This

feature permits the knowledge engineer control over the order. The main menu

handler uses hot keys which are highlighted. These will be the first capital letter

in the title or the first letter should there be no capital letters. To enable hot keys

to function correctly, title for Level 1 frames should avoid starting with a

234

previously used capital letter. This can be done in numerous ways; note the

curious appearance of the title in the example.

33 Output text

The output text predicate has two arguments in addition to the frame name. They

are all strings, thus:

outtext(<ffame name>,<paragraph number>,<paragraph text>)

For example:

outext("Probability of survival","3.2.3 Reliability",

"\nThe probability of the #instrument_name# surviving for\n#surv_period#

shall be greater than #prob_surv#.\nThe probability of survival shall be

determined using\n#rel_basis2#.")

The paragraph number includes the title of the paragraph. This is separated from

the paragraph text to simplify text sorting in the text generation modules. The

paragraph text includes all the text for the frame in one string, including sub-

paragraphs. The values assigned to the active fields can be substituted into the

text by using the Specriter 3 slot name substitution mechanism. Wherever a slot

name appears in the output text surround by the escape character ’#’, the Specriter

3 text generation modules will substitute the current value.

3.4 Help Message

Help messages are held in a double string-argument predicate:

help_slot(<frame name>,<message>)

235

For example:

help_slot("Notes",',\nThe notes section contains information of a general or

explanatory\nnature, but no requirements and nothing which is contractually

binding.NnThe possible contents of the notes section in the recommended

order ofsnappearance are:\n\n Intended use\n Ordering dataNn Preproduction

sampleVi DefinitionsVi Qualification provisions^ Cross reference

classifications^ Miscellaneous notes.Nn")

The message will be display in a window 72 characters wide so it is useful to

restrict the line length. Not all frames have help_slots as they are optional. The

help facility searches up the frame tree until a slot is found. It is useful to place

a general message in the top frame so there is always a message to display from

any frame in the system.

3.5 Function Key List

Function key definitions are held in a list in a double argument predicate, where

the first argument is a string and the second a list of strings, thus:

fkeys(<frame name>,<function key list>)

Where:

function key list = [<first key>,<second key>, ... ,clast key>]

For example:

fkeys("App_docs",[" FI: Help F3: Edit F6: Text"," F10: Finish "])

The list can have from one to as many key definitions as will fit within the 79

character limit. This slot is optional so if no definition is needed the entire

predicate is omitted, in which case, a key definition from a parent frame will be

236

used. If a key list is placed in the top frame, there will always be a key list

displayed.

Specriter 3 extracts the key definitions from the list and displays them as a status

line on the bottom of the screen in inverse video, black on white, separated by

black spaces. To surround the key definitions by spaces, as is the practice in

measuring instrument knowledge bases, it is necessary to include the space

characters in the key definitions. This method provides greatest flexibility.

3.6 Screen Text

The text to be displayed on the screen is defined using any number of the

following predicates:

txt_slot(<frame name>,<row>,<starting column>,

<length>,<text string>)

For example:

txt_slot("High_level",11,0,15,"Estimated cost:")

The first and last arguments are strings and the remaining three numbers are

integers and must not be surrounded by double quotation marks.

Specriter 3 uses a virtual screen handler so it is possible to specify row, column

and length combinations which lie outside the 21 row, 77 column active display

window. These will be displayed automatically upon the user pressing the cursor

movement keys initiating a search for an active field beyond the boundary of the

physical display window. It is important to include a message on any screens

where the virtual screen handler is employed, for the benefit of the user.

A significant side benefit of the use of this type of advanced screen handler is

that errors in positioning will not give rise to fatal run-time errors.

237

3.7 Consistency Rules

Consistency rules are stored as a single string in the second string argument of the

double argument predicate:

cons_rules(<ffame name>,<rule text>)

The rule string can cover many lines; an example of this predicate can be seen in

Figure 3. The rules must be written in Prolog. A list of standard predicates is

given in Figure 4. Values can be extracted from any slot in the knowledge base

using either the substitution mechanism of surrounding the slot name with hash

symbols, for example, "#measurand#" or by using the value predicate. The later

method can be used at run time. New values can be set into the knowledge base

using the change predicate. It must be remembered that the slot names and

values are handled as strings and must be surrounded by double quotation marks.

External files can be consulted to make dynamic extensions to the database,

Figure 3 shows an example of this technique where a database held in

"NAME.DAT" is accessed to provide a list of relations between measurands,

instrument names, and measuring units.

The intention is that consistency checking rules should alert the user to possible

problems with the values of the slots in the current frame. Access is available to

other frames but checking is intended to be modular although it need not be so.

The potential exists for these rules to provide automatic error correction by

modifying clearly faulty entries.

3.8 Default Generation Rules

Default generation is performed using the same inference engine as that employed

for consistency checking. The rules are held in the double string-argument

predicate below:

gen_rules(<frame name>,<default generation rules>)

238

Predicate Function

true
fail
repeat
write(Term*)
nl
display(Term*)
read(Term)
readln(Line)
readchar(char)
retract(Term)
tell(Filename)
telling(Filename)
told
see(Filename)
seeing(Filename)
seen
term =.. list
arg(N,Term,Argn)
functor(Term,Functor,Arity)
clause(Head,Body)
concat(string,string,string)
str__int (string, int)
str_real(string,real)
strg_real(string,real)
str_atom(string,Atom)
Integer is Expression
Term == Term
Term \== Term
Term = Term
Term \= Term
Term < Term
Term > Term
Term =< Term
Term >= Term
Term >< Term
integer(Term)
var(Term)
novar(Term)
time(Hour,Min,Sec,Hundreds)
scr_char(Row,Col,char)
char_int(char,int)
consult(Filename)
reconsult(Filename)
save (Filename)
op(Priority,Assoc,Op)
Goal, Goal
Goal; Gaol
not (Gaol)
t

call(Goal)
assert(Rule)
asserta(Rule)
assertz(Rule)
value (Attribute,Value)
change(Attribute,New_value)

Success
Prolog fail
Succeeds forever
Writes a list of arguments
Outputs a carriage return and line feed
Outputs a functor in prefix notation
Read a term
Read a line into a string
Read a character
Retract a term
Redirect output to a this file
Return the current output file
Close the current output file
Redirect input to this file
Return the current input file
Close the current input file
Prolog univ; conversion between a term and a list
Unify Argn with the nth argument of Term
Return functor and arity of Term or builds a new one
Returns clauses from the database
Concatenation of strings
Conversion between a string and an integer
Conversion between a string and a real
Extracts first real number from string
Conversion between a string and an atom
Evaluation of expressions
Testing for true equality
Not true equality
Unify terms
Test whether terms unified
Less than (real numbers)
Greater than (real numbers)
Less than or equal (real numbers)
Greater than or equal (real numbers)
Different evaluated values (real numbers)
Is Term an integer?
Is Term a free variable?
Is Term bound?
Returns the system time
Print a character at a selected position
Conversion between characters and integers
Consult named file
Reconsult named file
Save a file
Returns operators or changes operators
And
Or
Negation
Cut
Call
Asserts rule into database
Asserts rule at front of database
Asserts rule at rear of database
Extracts the value to the measuring instrument attribute
Assigns a new value to a measuring instrument attribute

Figure 4 Standard Predicates Implemented in the Specriter Inference Engine

239

These rules will be executed whenever the "generate" function is invoked from the

"High_level" screen, either by the user in the Specriter 3 Edit mode, or

automatically during Create mode.

Figure 3 shows an example of simple default generation rules from the measuring

instrument knowledge base. This example is interesting because the values

asserted are extracted from an external database. In fact further external rules

could be consulted in the same way. Such techniques greatly extend the

capabilities of the checking system and obviate the need to include all such

options in the rules in the main knowledge base files. The external database can

be created and maintained using an ASCII editor.

3.9 Active Fields

There are five types of active fields and each will be discussed below. They each

use a single predicate and the type of the field is selected by the constant string

held in "field type". The general form is as follows:

slot(<attribute name>,

s(<frame>,<field type>,<status>,<inheritability>),

f(<row>,<starting column>,<length>),

p(<lower bound>,cupper bound>,<default>,

<prompt>,<prompt length>),

[<list>],

ccurrent value>)

where:

cattribute name>, <frame>, dower bound>, cupper bound>, cdefault>,

cprompt>, and ccurrent value> are strings;

cfield_type> is one of the set symbols [att,select,option,edit,list];

cstatus> is one of the set of symbols [a,p];

cinheritability> is one of the set of symbols [inherit,no];

crow>, cstarting column>, clength>, and cprompt length> are integers;

240

and <list> is a list of strings.

The attribute name is the name of the slot. It is used internally and the name is

never seen by the user. The "s" functor includes the following: the name of the

frame the slot is a part of, the type of field, and two arguments which were

included for special control. The field types are covered individually later. Status

refers to whether the field is active or not. In the measuring instrument

knowledge base, this is always set to "a" to indicate that the frames are active and

have actions associated with them. The alternative option, "p", for passive, will

disable any action associated with the field but the field will still be displayed.

Inheritability determines if a slot can be inherited by a child frame. Inheritance is

enabled with "inherit" or disabled with "no". The measuring instrument slots all

have inheritability set to "inherit".

Descriptions of how this general active-field predicate is used for each of the five

field types is the subject of the next five sub-sections.

3.9.1 Standard Entry

Standard entry attributes are defined with the following format:

slot(<attribute name>,s(<frame>,att,a,inherit),f(<row>,<column>,<length>),

p(<min value>,<max value>,<default>,<prompt>,<prompt length>),

[Recurrent value>)

For example:

slot("disp_rack_depth",s(" 19\" Rack Unit",att,a,inherit),f(16,24,24),

PO'IOO mm","600 mm","450 mm","Enter rack depth: ",38),[],"450 mm")

The "p" functor is concerned with the elicitation of responses and holds limits and

default values. Specriter 3 when the attribute is edited a prompt window appears

which displays the prompt message and the current value. On completion of

241

editing, indicated by pressing Enter or F10, the first real number is extracted from

the string holding the proposed new value and compared against that of the pre-

defined limits. If the value lies within the limits it is immediately accepted and

loaded into the current value sub-slot. If not, a window is created which states

this fact and displays the limits. The user can then elect to accept the new value

or not. The list is not used for standard entry slots.

3.9.2 List Entry

List entry fields can be used in the same way as standard attribute entry if F3 is

pressed when the cursor is on the field. However, the preferred mode of use is to

use Enter or F4 to display a predefined list held in the knowledge base and then

select one of the options. List entry slots are defined as follows:

slot(<attribute name>,s(<frame>,list,a,inherit),f(<row>,<column>,<length>),

p(<min value>,<max value>,<default>,<prompt>,<prompt length>),

[coption list>],<current value>)

For example:

slot("sensor_cool_select",s("Standard off-the-shelf sensor enclosure",list,a,inherit),

f(38,24,24),p("","","natural convection",

"Enter cooling option (manual entry defeats checking): ",70),

["radiation","conduction to the mounting face","natural convection "/'forced

convection","unspecified means"],"natural convection")

In the example, no limit values are given. A blank string, or indeed any which

does not contain a number, will return a zero from the numeric extraction routine.

Zeros for both limits disables checking. When the entry is expected to be

descriptive, as in the example, blank limit strings are the appropriate entry.

The list can contain up to 20 options. If more are required database-assisted entry

fields should be used as they can cater for a very large number. The length of

242

the entries is not constrained but strings longer than 78 characters will be

truncated. The width of the menu is automatically adjusted to accommodate either

the longest entry or the menu title.

3.9.3 Database-Assisted Entry

These active fields function in the same way as the list entry fields but instead of

having the options held in the knowledge base, they are held in an external

database file. Database-Assisted entry fields are defined thus:

slot(<attribute name>,s(<frame>,select,a,inherit),f(<row>,<column>,<length>),

p(<min value>,<max value>,<default>,<prompt>,<prompt length>),

[<file name>,<findall argument>","",<menu title>],<current value>)

For example:

slot("measurand",s("Meas",select,a,inherit),f(9,24,31),

p("","","not specified","Enter measurand: ",37),

["name. dat","assign_name(X,_,_)","assign_name(_, _,_)",

" Select Measurand "],"flow")

In this case, the file name is a database file which contains the desired predicate.

The findall argument is the second argument of the Turbo Prolog standard

predicate "findall" which makes a list from matching facts in a database. Using

the example, the executed program statement would read

"findall(X,assign_name(X,_,_),List)" where "X" is an unbound fact, and

"assign_name" is the functor which holds the relations between measurands,

instrument names and measuring units. The resulting, "List", is then input to the

list menu handler. A virtual length list handler is employed to display and select

items from the list. Thus lists much longer than the number of lines available on

the screen, can be handled.

243

3.9.4 User Paragraph Entry

User paragraph entry is quite different from all other entry possibilities. An edit

window is provided which enables the user to enter free format text. This text is

intended to take the place of the entire paragraph text (although this is dependant

on the way the output text is written). There is no checking or intelligent default

generation available for user entered paragraphs. They are defined as follows:

slot(<attribute name>,s(<ffame>,edit,a,inherit),f(<row>,<column>,<length>),

p("",<field overlay>,<default paragraph>,<paragraph title>),

[<start row>,<start column>,<number of rows>,<number of columns>],

<paragraph text>)

For example:

slot("disp_housing_para",s(" Purpose Designed Enclosure",edit,a,inherit),

f(12,51,18) ,p(""," Edit Paragraph Display Housing Paragraph ",0),

["15","2","5","75"],"unspecified")

The field overlay is placed over the green paragraph entry field in black letters.

In the measuring instrument knowledge base, the convention of surrounding the

overlay string with square blocks, (ASCII 254), has been adopted. The paragraph

title appears in the top centre of the edit window. The list contains the

information needed to specify the window position, namely, the top left hand row

and column coordinates and the number of rows and columns (including border).

The paragraph text will often encompass many lines. The control sequence "\n"

will give carriage retum/line feed combinations to allow easy reading in the editor

or in local text display.

3.9.5 Option Entry

Option entry slots are used when the selected response can alter the context of the

document and hence the frame to be used to describe this option. Each of the

244

options available from these fields spawns a new branch of the frame tree.

Option entry slots are defined as follows:

slot(<attribute name>,s(<frame>,option,a,inherit),f(<row>,<column>,<length>),

p("","",<default option>,"",0),

[coption list>],<current value>)

For example:

slot("sensor_housing_option",s("19 Inch Rack Unit",option,a,inherit),f(30,24,52),

p("","","Purpose designed sensor enclosure","",0),

["19\" Rack Mounted Sensor (Unusual)","Standard off-the-shelf sensor

enclosure","Purpose designed sensor enclosure"],

"Purpose designed sensor enclosure")

The control mechanisms search through these options to find the active leaf frame,

hence it is essential the current value be one of the available options. For the

same reason, no input numeric checking is needed and empty strings are provided

in place of the limits. Line input is not needed and thus no prompt is needed.

The prompt length can set to any integer value, nominally zero to satisfy the

knowledge base syntactic checker.

245

Appendix 3 - S p ecr ite r 3 Technical Reference

1 Introduction

Specriter 3 is a knowledge-based system which assists in the preparation of

measuring instrument specifications. It has a separate knowledge base which is

described in the Specriter 3 Knowledge Base Technical Description document.

2 Installation of Run-Time S p ecr ite r 3

2.1 Hardware Requirements

Specriter 3 is written in Turbo Prolog version 2.0 and can only run on an IBM

PC or compatible computer. The programs and data files fit onto a single high

density 1.2 M bytes 5 1/4" floppy disk. It is possible to run the system from this

disk but as there is considerable disk access, operation from a hard disk is highly

recommended. Temporary files are generated during execution so it is worthwhile

to ensure 2 M bytes are available on the hard disk before loading Specriter 3.

Memory requirements are 640 K bytes minimum. It will be necessary to remove

terminate-stay-resident utilities to run Specriter 3 successfully as at least 500 K

bytes of free memory are required.

2.2 Software Requirements

Development and testing have been conducted on MS-DOS versions 3.2 and 3.3.

No problems are anticipated with other versions. Specriter 3 does call some DOS

commands so it will be necessary for DOS to be available from the Specriter 3

directory through a suitable path setup.

246

2.3 Installation

Create a directory for Specriter 3, called SPEC3, using:

C:> MD SPEC3

Next copy the contents of the distribution disk to this directory using:

C:> COPY A:*.* C:\SPEC3

Check that at least the following files are present:

S3.BAT - Specriter 3 start up batch file

SPEC3.EXE - Specriter 3 executable program

TEXTGEN3.EXE - Stand-alone text generator

TOPMENU.DEF - Main menu help definition file

PROLOG.ERR - Error message file (just in case)

PROLOG.HLP - Help file used by screen editor

TOPMENU.HLP - Main menu help text

SETUP.DAT - Setup data file

*.SPC - Specification files

TEXT_CON.DAT - File holding text generator control data

SPEC3_1.KBA - Knowledge base file 1

SPEC3_2.KBA - Knowledge base file 2

SPEC3_3.KBA - Knowledge base file 3

SPEC. MAN - Specriter 3 on-line manual text file

RUNOFF.COM - Text formatter

NAME.DAT - Database file

The following files comprise the frame editing facility Framedt:

FRAMEDT.EXE - Framedt executable program

FE1.SCR - Framedt frame-editing screen definition

247

FE2.SCR - Framedt main screen definition

FRA_HLP.DEF - Framedt help definition file

FRA_HLP.HLP - Framedt help text

The following files will be created at run time:

WORD.

WORD.DOC

LISTS.DAT

NEXTTASK.BAT

*.TXT

Frame or attribute list, temporary file.

Unformatted document produced by the text generator

Formatted file produced by RUNOFF.COM

Batch file used to chain the text generator

Finished document files

3 Executing S p ecr ite r 3

To run Specriter 3, set the default directory to SPEC3 using:

C:> CD SPEC3

and call the batch files which starts the system using:

C:SPEC3> S3

This batch file contains only two commands; SPEC3 and NEXTTASK. The idea is

that if the internal text generation system senses there is insufficient memory

available, for whatever reason, the external text formatting program is used instead.

To do this, a batch file called NEXTTASK is generated which lists two commands;

the external text generation program TEXTGEN3.EXE followed by SPEC3. Specriter

3 then terminates and as NEXTTASK is the next command in the batch file which

started the process, this new batch file is loaded and run. The external text

generator then runs and displays the finished text. Specriter 3 is then reloaded and

runs once again. This rather messy sequence frees up about 200K of memory for

knowledge base expansion, terminate-stay-resident utilities, or network software. If

Specriter 3 terminates using the Quit command, NEXTTASK is cleared, resulting in

248

a clean return to DOS.

4 The S p ecr ite r 3 Development Environment

Specriter 3 is a sizeable software development and the files were held in a number

of directories. Firstly, A Turbo Prolog Version 2.0 compiler will need to be installed

on the machine according to the directions contained in the Turbo Prolog User’s

Guide.

The entire set of Specriter 3 files are contained on three 1.2 M byte High Density

floppy disks. The first contains the executable programs and support files, as

described above, and these are loaded into a directory named C:\SPEC3. The second

disk has two sub-directories: LINK and NOT_LINK which contain the sources for

Specriter 3 and the stand-alone modules respectively. The last disk has three sub-

directories: SIE, FRAMEDT, and TOOLS which contain the inference engine (in

stand-alone form), the frame editor, and software tools respectively. Corresponding

directories should be created on the target machine’s hard disk and the files loaded.

If the programs are to be re-compiled it will be necessary to create sub-directories

below each of the program directories named OBJ to hold the object files.

The following files should be present:

C:\SPEC3\TOOLS:

HELP.SCR

HELPDEF.EXE

SCRDEF.EXE

- Screen definition for HELPDEF

- Help screen updating tool; used for main menu and

Framedt help

- Screen definition facility; used for editing the Framedt

screens

C:\SPEC3\SIE:

SIE.PRO - Inference engine main module

249

SIE_S.PRO - Stand-alone inference engine main module

SIE.SCA - Inference engine scanner include file

SIE.PAR - Inference engine parser include file

SEE.INF - Inference engine inferencing include file

SIE.HLP - Inference engine on-screen help include file

SIE.OUT - Inference engine screen writing include file

GLOBS_L.PRO - Specriter global declarations

UTILS_L.PRO - Specriter utilities include file

PROLOG.ERR - Turbo Prolog error message file

PROLOG.SYS - Turbo Prolog configuration file

C:\SPEC3\LINK:

SPEC3.PRJ - Specriter project (linking list) file

SPEC3_L.PRO - Specriter 3 main module

EDIT3_L.PRO - Specriter 3 editor module

TXTGENJL.PRO - Text generation module, linkable

SEE.PRO - Inference engine main module

SIE.SCA - Inference engine scanner include file

SIE.PAR - Inference engine parser include file

SDE.INF - Inference engine inferencing include file

SIE.HLP - Inference engine on-screen help include file

SIE.OUT - Inference engine screen writing include file

GLOBS_L.PRO - Specriter 3 global declarations

UTILS_L.PRO - Specriter 3 utilities, linkable

LGMENU_L. PRO - Virtual menu handler, linkable

LIST_L.PRO - List handling utilities, linkable

HELP_S3L.PRO - Help system, linkable

LINEIP_L.PRO - Virtual line input driver, linkable

FNAME_L.PRO - Filename elicitation driver, linkable

TPREDS_L.PRO - Toolbox standard predicates, linkable

PROLOG.ERR - Turbo Prolog error message file

PROLOG.SYS - Turbo Prolog configuration file

250

C:\SPEC3\NOT_LINK:

TEXTGEN 3. PRO - Stand-alone text generation main module

GLOBS_L.PRO - Specriter 3 global declarations

LIST.PRO - List handling utilities include file

TPREDS.PRO - Toolbox standard predicates include file

UTILS.PRO - Specriter 3 utilities include file
PROLOG.ERR - Turbo Prolog error message file

PROLOG.SYS - Turbo Prolog configuration file

C:\SPEC3\FRAMEDT :

FRAMEDT.PRJ - Framedt project (linking list) file

FRAMEDT.PRO - Framedt main module

SCRDEF_L.PRO - Screen definition module

SIE.PRO - Inference engine main module

SEE_S.PRO - Stand-alone inference engine main module

SIE.SCA - Inference engine scanner include file

SEE.PAR - Inference engine parser include file
SEE.INF - Inference engine inferencing include file

SIE.HLP - Inference engine on-screen help include file

SIE.OUT - Inference engine screen writing include file

GLOBS_L.PRO - Specriter global declarations

UTILS_L.PRO - Specriter utilities include file

FILEN AME .PRO - Filename elicitation driver include file

HELP_S3.PRO - Help system include file

LINE IP 1. PRO - Virtual line input driver include file
LIST.PRO - List handling include file

LGMENU.PRO - Virtual line input driver include file

SCRHND_F.PRO - Screen driver include file

TPREDS.PRO - Toolbox predicates include file

PROLOG.ERR - Turbo Prolog error message file

PROLOG. SYS - Turbo Prolog configuration file

251

Appendix 4 - Publications Associated with this Research

Automatic generation of measuring
instrument specifications
S. C. Cook
Engineering Manager, Vision System s Ltd, Innovation House West, Technology Park, The Levels,
Adelaide, South Australia 5095, Australia

Equipment specifications are tools used in the engineering industry to ensure
equipment designed and/or supplied matches the requirements of the customer. A
computer-aided engineering software package, named Specriter, is being developed
to automate the specification compilation process. The progress and future direction
of this research is discussed. The rationale behind the decision to transfer to a
knowledge-based approach is outlined.

K eyw o rd s: CAD, Systems engineering, Heuristic programming, Instrument specifications

1 In troduction

Specriter is a part of the Computer-Aided Engineer-
ing of Instruments software package (CAEINST) under
development by the Measurement and Instrumentation
Systems Centre (MISC) of SAIT (Sydenham, 1987).
CAEINST aims..to provide the necessary knowledge for
a user to specify, create, and apply capable measure-
ment and control systems.

Specriter fits near the beginning of the CAEINST
process. Its primary function is to extract information
from the user regarding the measurement problem to
be solved, and from this, generate a written specification
for a measuring instrument. The other major function
is to make the information which defines the instrument,
ic, the essence of the written specification, available as
direct input to programs which can produce a detailed
design.

2 Th e need to automate the specification
generation process

Defining a product to be designed or purchased is an
important task in all fields of engineering. This definition
usually takes the form of a written specification. Regard-
less of the form chosen, the purpose of the specification
is to convey the requirements identified by the customer
to the provider of the goods or services. A good specifi-
cation is essential to ensure that the equipment, or
service, to be provided will fulfil the customer’s actual
requirement.

Where the requirement can only be satisfied by
developing a new product, the stakes are much higher.
Product developments commenced with inadequate
specifications inevitably lead to expensive product
iterations and, all too often, disappointing final results.
Expressed in commercial terms, poorly controlled
dev.efopipent programmes equate to cost overruns and
uncompetitive products. The larger system engineering
and product development companies well recognise this
situation, and establish procedures to endeavour to con-
trol engineering tasks (Burgess, 1969). All such proce-

dures emphasise that the first step in the design process
is to clearly identify the requirements for the items to
be developed.

With so much depending on the adequacy of specifi-
cations, it is disturbing that the traditional methods of
specification preparation arc far from ideal. Not only
docs the generation of a document usually consume
many man-hours, but the result is often incomplete and
marred by inconsistencies and ambiguities. Another
fundamental limitation is that the knowledge contained
within a specification is limited to a subset of the know-
ledge held by the authors. If this were not bad enough,
documents, however precisely written, are always open
to interpretation. It is not surprising, therefore, that
more thorough specifications arc often called for. Hence
the need for tools in this area.

Specriter aims to permit an inexperienced engineer
or scientist to produce a specification for a measuring
instrument which is at least as good as one produced
by an experienced specification writer. Furthermore,
Specritcr aims to complete the task in an hour or so
rather than days.

3 Specrite r im plem entation

3.1 Specritcr 1 design requirements

At an early stage, it was determined that the intended
users of Specriter would be engineers or scientists who
had only modest computing skills and no specialist train-
ing or experience in instrumentation. This baseline
firstly establishes the need for a sophisticated human
interface optimised for simplicity of use, and secondly,
necessitates the incorporation of the measurement
science and specification writing knowledge lacking in
the targeted users.

The latter requirement indicates the use of artificial
intelligence techniques. However, processing know-
ledge as opposed to numerical data is a relatively recent
development of computer science and is a current re-
search topic. To gain an understanding of what was
truly required in both the computing and measurement

Measurement Voi 6 No 4, Oct-Dec 1988
252

Cook

science fields, it was decided that research should be
combined with the production of a demonstrator pro-
gram written in Pascti!. Specriter 1 is the outcome of
this activity.

Fig I S p e c r i te r / s tru c tu r e

Fig 1 is a block diagram of Specriter 1 illustrating the
connectivity between the programs and files. Instrument
attribute data files are used to store the information
needed to characterise a particular instrument. These
files are created by the entry program and can be modi-
fied by the editor. The text generation programs operate
on the data stored in these files to produce the final
printed text. To enable minimal effort portability across
computers and their operating systems, all system calls
are handled by a single command program which is
written in the operating system command language.
Installation on a particular computer requires an ANSI-
compatible PASCAL compiler, a text formatter and a
purpose-written command program. To date, versions
exist for VAX/VMS and MS-DOS.

Liven for the first demonstrator, considerable thought
has gone into ensuring that the targeted users are able
to use Specriter easily. Once invoked, there is no need
to leave the Specriter environment until the job is
finished. Tasks normally performed by operating system
commands such as running programs, copying files, and
printing text tire all handled from within Specriter. In
order to get started, till the user is required to know is
how to log on to the computer and the single command
to start Specriter.

3.2 The form of the specification produced

Organisations charged with producing national and
international standards have compiled documents to de-
scribe the format and content of equipment specifica-
tions. One of the most comprehensive and widely used
formats is that described by MIL-STD-490 written by
the United States Military.

1 SCOPE
2 APPLICABLE DOCUMENTS
3 REQUIREMENTS
3.1 Instrument Definition
3.1.1 General Description
3.1.2 Interface Definition
3.1.2.1 Electrical Interface
3.1.2.1.1 Power Interface
3.1.2.1.2 Communications Interface
3.1.2.1.3 Electromagnetic Compatibility

3.1.2.2 Mechanical Interface
3.1.2.2.1 Sensor
3.1.2.2.2 Data Processor
3.1.2.2.3 Display

3.1.2.3 Thermal Interface
3.1.2.3.1 Sensor
3.1.2.3.2 Data Processor
3.1.2.3.3 Display

3.2 Characteristics
3.2.1 Performance
3.2.1.1 Range
3.2.1.2 Discrimination
3.2.1.3 Repeatability
3.2.1.4 Hysteresis
3.2.1.5 Drift
3.2.1.6 Dynamic Response
3.2.1.7 Measuring Error
3.2.1.8 Power Consumption

3.2.2 Physical Characteristics
3.2.2.1 Sensor Physical Characteristics
3.2.2.2 Data Processor Physical Characteristics
3.2.2.2.1 Data Processor Housing
3.2.2.2.2 Data Processor Mass

3.2.2.3 Display Physical Characteristics
3.2.2.3.1 Display Housing
3.2.2.3.2 Display Mass

3.2.3 Reliability
3.2.4 Maintainability
3.2.5 Environmental Conditions

3.3 Design and Construction
3.4 Documentation
3.5 Logistics
3.6 Personnel and Training

4 QUALITY ASSURANCE
5 PREPARATION FOR DELIVERY
6 NOTES

F ig 2 P a r a g r a p h h e a d in g s f o r a m e a s u r in g in s tr u m e n t
s p e c i f ic a tio n

Using this format, it is possible to write a generic
equipment specification for measuring instruments cov-
ering a wide range of mcasurands and measuring situ-
ations. Fig 2 gives the paragraph headings for a docu-
ment ol this type, which is specifically tailored to de-
scribe instruments with a physically separate sensor,
data processor and information display. Clearly, not all
the topics will be applicable to each example but this
represents no problem as ‘not applicable’ can be entered

253 Measurement Voi 6 No 4, Oct-Dec 1988

Cook

or the paragraph removed as appropriate. Fig 3 is a
typical paragraph produced by Specritcr.

For most paragraphs the information to be written
will be either a numeric boundary - for example, ‘Power
dissipation shall be less than 2 W’ - or one of a limited
number of pro-defined alternatives. Armed with this
knowledge, it has been possible to produce computer
programs which extract details from the user and pro-
duce a formatted specification written in English.

3.1.1 General Description
The pressure gauge comprises three modules: viz,

the pressure sensor, the data processor and a display.
Each of these modules is separate and is to be selected
from standard catalogue lines wherever possible to
minimise cost.

The sensor shall receive any power required from,
and output data to, the data processor in unprocessed
form. The data processor shall process the input stream
to provide the necessary information for display to the
user. Compensation for temperature and influence
effects may be performed at the sensor, the data pro-
cessor or a combination of both.

Fig 3 A ty p ic a l p a ra g r a p h o u tp u t f r o m S p c c r i tc r

4 Producing formatted sp ec ifica tio ns using
Specrite r 1

4.1 The main menu
Spccritcr is invoked from the computer operating sys-

tem by a single command: for example, in the MS-DOS
version, “SPECRITER". Following the presentation of
a banner giving version details, the command program
generates the main menu. The user has the choice of
creating a new specification or working on one created
previously. A list of attribute files held in the computer
is available by selecting one of the menu options. The
current instrument attribute file under consideration
(ie, the workfile) is established by either selecting one
from the list or by selecting the option which invokes
the attribute entry program. Further options arc avail-
able to enable editing of the workfilc, generation of the
text from the information contained within the workfile.
and printing of the final text.

4.2 Information entry

The entry program is selected from the main menu
by a single keystroke. The user is then prompted for a
file name to identify the instrument specification about
to be produced. Once a mime has been entered, the
information entry process commences.

Information entry is accomplished by a question and
answer format. The order of (he questions is based upon
the concept of extracting a high proportion of the infor-
mation in early questions with the detail following. This
technique helps the user to build a mental image of the
instrument at a functional level before the detail is
tackled. Fig 4 shows this order and this can be compared
with Fig 2.

1 Measurand definition
2 Performance characteristics
3 Interface definition
4 Physical characteristics
5 Environmental conditions
6 Quality assurance provisions
7 Preparation for delivery
8 Reliability
9 Maintainability

10 Design and construction

F ig 4 O r d e r o f ta c k l in g to p ic s

Requested responses fall into one of the following
categories:
(a) A numeric limit to a particular parameter.
(b) Selection of one of a given set of alternatives.
(c) A user-entered descriptive paragraph.

Entry of a user-defined paragraph is available as an
override option to many questions. This provision caters
for unusual instruments not covered by the internal
knowledge base used to source the questions and the
range of response alternatives. If is expected that this
facility will be needed infrequently.

Once invoked, the information entry program pro-
ceeds through the questions until all the necessary infor-
mation has been extracted. Users arc prompted to enter
“TBD” (to be determined) for parameters which cannot
be entered during the current session but will be defined
later. If no entry is made, the program inserts “TBS”
(to be specified) to highlight the fact. Use of these two
forms is common in draft specifications compiled in
industry. Their use enables feedback from engineering
staff, or a contractor, to be obtained to the bulk of the
document during the period when the remaining details
arc being defined.

Considerable thought has been given to the presenta-
tion of the questions. Rather than have the dialogue
with the user roll up from the bottom of the screen, a
cursor-addressable terminal is used which permits
defined placement of characters on the screen. Major
topic heading appears in inverse video at the top of the
screen and subtopic headings appear similarly high-
lighted, directly above the relevant questions. Informa-
tion is given on the screen to aid question answering,
and help facilities are incorporated. This type of screen
layout has proven to Ire particularly effective for the
targeted users.

The minimum number of questions are presented to
the user. This is achieved by interpreting the responses
to key questions to select the appropriate question
sequence. Although conceptually the information entry
program is equivalent to completing a form, efficiency
gain is achieved by question list truncation and the
explanations given. Help facilities should improve pro-
ductivity further.

After completion of information entry, the essence
of the information gathered is written to the instrument
attribute data file named at the start. Control is then
returned to the main menu. The user may wish to gen-
erate and print the document at this stage or go directly
into the editor to correct errors and omissions that may

Measurement Voi 6 No 4, Oct-Dec 1988 254

Cook

have come to mind during the course of the entry
session.

4.3 Information editing

The editor is invoked directly from the main menu.
The instrument attribute file to be edited is the workfile
shown in this menu, which will cither be the file just
created by the entry program or one previously selected
from the library. Editing takes the form of altering the
previous responses to a question. Rather than sequence
through all the questions again, the questions are
divided into the 10 topics shown in Fig 4 and a single
topic at a time is edited by selecting it from the editor
menu.

For each topic, the user is presented with the original
questions followed by the previous responses enclosed
in square brackets. The user can then elect to leave an
entry unchanged by simply typing “ RETURN” , or enter
a different response. User-entered paragraphs can be
edited on a line by line basis.

One or more topics can be edited as many times as
necessary in one editing session. Once the user is
satisfied with the information entered, the attribute file
is written, the editing session terminated, and control
returned to the main menu.

4.4 Alternative information entry

Instead of answering the complete list of questions
needed to specify a new instrument, a user can nominate
an existing instrument attribute file which describes a
broadly similar instrument and alter it to meet his exact
requirements. This method provides inexperienced
specifiers with even greater assistance, as default
responses will exist for a similar measurement situation.
A documented library of such files is being compiled
for Specriter. Each time a new instrument attribute file
is created using the Specriter entry program, another
file is added to the library. A facility to help choose the
most appropriate file for a particular application will be
added as the number of files grows.

An extension of this idea, which is being investigated,
is to partition the attribute file into a number of smaller
files. For a given number of these smaller files it would
then be possible to more closely match a measurement
situation. This idea is analogous to using a ‘photofit’
for human identification.

4.5 Text generation

Text generation is performed by selecting the appro-
priate option on the main menu. This program reads
the specified instrument attribute workfile and proceeds
to construct the text of the specification. This process
comprises merging the user’s responses into stored para-
graphs, deleting unwanted paragraphs, and selecting
the most appropriate paragraph when there is a choice.

The output from this program is a text file in a format
suitable for input to the text formatter used to produce
the final printable text. A future refinement will be to
add a pre-processor for the text formatter to provide
user selectable text formats. Such details as page length,
column width, indenting of paragraphs, and headers
and footers (containing document number, issue num-
ber and date) will be attended to by this program.

Control of the text pre-processor will be achieved via
a text format specification which would normally be set
to the default shown in Fig 5, which is that adopted by
Vision Systems Ltd (Cook, 1986) and is similar in con-
cept to the standard document format of many com-
panies. User-defined text format specifications, to suit
either a company’s format or the printing hardware,
will be entered using special menu.

5 L im ita tio n s of the current approach

The demonstrator program suite, Specriter 1, has
shown that computer-aided specification generation is
both feasible and of value. Pursuing the method of pro-
ducing formatted specifications outlined, through to a
finished product, would yield a useful tool for instru-
ment engineers who need to specify instruments.

Nevertheless, it is felt that such an approach only
partially fulfills the goals of the research program.
Although a user needs to know nothing about how to
write a formatted specification or even the normal con-
tent of such a document to produce a specification using
Specriter 1, he is still required to be familiar with instru-
ment performance characteristics and the effects of
operating environments on these. In short, to specify
an instrument well with Specriter 1, an instrumentation
expert is still required.

Further study of knowledge engineering techniques
and evaluation of some software tools indicates that
Intelligent Knowledge Based Systems (1KBS) could be
applied to further reduce the level of user knowledge

Page width: 210 mm (A4)
Page length: 296 mm (A4)
Left margin: 30 mm
Right margin: 20 mm
Top margin: 20 mm
Bottom margin: 20 mm
Centre header: Page number
Right header: Document number
Centre footer: Issue number
Paragraph indenting: Two spaces per paragraph level
Miscellaneous: Right justification enabled

Paragraphs separated by blank lines
Single line spacing
Two blank lines before major sections
Major paragraph headings capitalised

F ig 5 P a g e f o r m a t d e fa u l t

255 Measurement Voi 6 No 4, Oct-Dec 1988

Cook

necessary to generate an instrument specification. A
possible development is to use one or more IKBS to
process the response to higher-level questions and pro-
duce the instrument attribute file used by the existing
Specritcr system. The provision of limited natural lan-
guage understanding has been considered to avoid the
regimentation of multiple choice selection.

However, this is only a partial solution as a fundamen-
tal deficiency still remains in that the current software,
even enhanced as described above, docs not explicitly
address the meaning of the specification and of the in-
formation comprising it. This makes it difficult to ensure
that the resulting specification is well formed. Further-
more, to enable a CAD system to design the instrument,
a more suitable method of representing and extracting
the knowledge contained within the specification is
required. For these reasons it became clear that a better
method of knowledge representation than that employ-
ed to date would be preferable.

6 Th e way ahead

Recent developments in software engineering, in par-
ticular the field of automatic programming (Balzcr,
1985; Borgida, 1985; Alexander, 1985), provide an
alternative approach which overcomes the limitations
of the above and is altogether more suited to the task.

Automatic programming research endeavours to con-
vert a user's requirement for a computer program,
expressed in human terms, into an executable program.
The heart of such a system is the formal specification
which is generated cither directly by the user or from
requirements stated to the computer in an English-like
form. In this context a formal specification is a set of
requirements expressed in an unambiguous notation
that allows the entity described to be reasoned about.
Fig 6 illustrates the conceptual construction of the next
generation of Specritcr. At the innermost level is the
underlying logical framework of the system, which will
be based on that of Prolog as this language is both
available and appropriate for the task (Subrahmanyan,
1985; Bratko, 1986). The next level will be an instrument
description language which will define the syntax, rules
of semantics and rules of the domain of the next level.
It will be optimised for the domain of measuring instru-
ments. Above this resides the set of rules in the in-
strument description language which model or specify
a particular instrument.

These elements comprise a formal specification. Con-
struction and interrogation of the specification are
achieved via a set of programs known as views. Entry
of the specification can be achieved by similar methods
to those already in use. The output of the entry program
is now not a data file but a set of rules. Alternative
entry programs encompassing IKBSs, as previously
proposed, would be able to generate the whole or a
portion of this set from the responses to higher-level
questions. Production of a formatted specification is
performed by interrogating the model and, for compata-
bility with the software already developed, production
of a suitable attribute file. Similarly, editing facilities
can be provided at both the attribute level and the higher
level of human entry using developments of the exist-
ing program. CAD interface is achieved by a purpose-
written interrogation program.

It is believed that the proposed concept has the poten-

tial to fulfill the aims set down for Specritcr. The impor-
tant point is that the nexus of the system is to be a
model of the measuring instrument under consideration,
which shall permit the meaning of the model (ie, the
specification) to be reasoned about.

Extensions and enhancements to the model which
defines the instrument can be achieved by the inclusion
of additional rules in the model description language.

The entry program can be written to prevent the
generation of specifications which arc not well formed
by reasoning about the information entered to date in
conjunction with the current information presented to
the model before it is accepted. Establishing what con-
stitutes a well formed specification for a measuring
instrument is the key to the success in this area and is
currently a research topic.

F ig 6 S p e c r i tc r 2 s tr u c tu r e

7 C onclusion

A demonstrator program suite, named Spccritcr I,
has been produced which is capable of producing for-
matted specifications for instruments. Requirement
entry and editing is performed via a screen-addressable
computer terminal, and the philosophy of minimal
typing has been implemented. A fully developed version
of this program will be a useful aid to the generation
of specifications for instruments, but requires the user
to be skilled in measurement science to ensure the result

Measurement Vol 6 No 4, Oct-Dec 1988
256

Cook

is meaningful. For this reason, Spccriter is best con-
sidered as an efficient alternative to the manual method
of specification generation currently used in industry.

Research is continuing into more fully automating
the process to enable a scientist or engineer, who is not
an instrumentation expert, to enter a requirement into
a computer and obtain a written specification for equip-
ment to fulfil it. A CAD interface program will be de-
veloped to interrogate the information stored in the
computer to generate input to an instrumentation CAD
suite.

8 Acknowledgem ents

The author wishes to thank his joint research super-
visors, Professors L. Finkelstein and P. Sydenham, for
their direction and encouragement from the commence-
ment of the research project. Dr A. Finkelstein, who
introduced the concepts of formal specifications to the
project, also deserves special mention.

References

Balzer, R. 1985. ‘A 15-vear perspective on automatic
programming’, I E E E T ra n s o n S o ftw a re E n g , SE-11
(11) .

Borgida, A. e t a l . 1985. ‘Knowledge representation as
the basis for requirements specifications’, I E E E C o m -
pu ter , April.

Bratko, I. 1986. P ro lo g p r o g r a m m in g f o r a rtific ia l in te lli-
g en ce , Addison-Wesley.

Burgess, J. A. 1969. ‘Organising design problems’,
M a ch in e D esig n , November 27.

Cook, S. 1986. D o c u m e n t p re p a ra tio n g u id e lin e s , Vision
Systems Ltd.

Subrahmanyan, P. 1985. 'The “Software engineering”
of expert systems: Is Prolog appropriate?’, I E E E
T rans o n S o ftw a re E n g , SE-11(11).

Sydenham, P. 1987. ‘Computer-aided engineering of
measuring instrument systems’, C o m p u te r -a id e d
E n g in e er in g Jo u rn a l, 4(3), 117-123.

257

VDI BERICHTE NR. 856,1990 145

K no w le d g e -Ba se d G enera tion o f M e a su ring In strum e nt
Specifications

Mr. S. Cook, London/GB

Abstract

The task of writing specifications for measuring instruments requires knowledge
from many fields, including, specification writing practices, measurement science
and current instrumentation practice. It is a specialist task which is time
consuming and difficult to do well. This paper describes the derivation of a
knowledge-based system, Specriter 3, which produces specifications of measuring
instruments by user interaction. The representation paradigm for the domain
knowledge and how it is used is discussed, and the potential and use of the
software outlined.

1. Introduction

Specriter is a computer-aided engineering tool which assists engineers and scientists
in the production of requirements specifications for measuring instruments. The
knowledge incorporated into Specriter enables a user, who has little experience or
training in measurement science and instrumentation, to produce a document which
rivals that of instrumentation specialist but in much less time. Furthermore, the
internal computer representation can be used to provide a degree of consistency
and reasonableness checking and a valuable interface to other CAE packages.

Specriter is a part of the Computer-Aided Engineering of Instruments software
package (CAEINST) under development by the Measurement and Instrumentation
Systems Centre (MISC) of SAIT /1 /. CAEINST aims to provide the necessary
knowledge for a user to specify, create and apply capable measurement and control
systems. The session commences by running MINDS /2 / to determine appropriate
measurands and then Specriter is called to prepare specifications for the
instruments identified, in both computer usable form and in printed form.
Additional programs, currently under development, at SAIT and City University,
London /3 / will digest the computer usable specification and attend to the design,
implementation, and application of the resulting instruments.

2. Specriter 1 - A Problem Definition Exercise

Automatic generation of measuring instrument specifications was first demonstrated
by a Pascal program suite entitled Specriter 1 /4 / which produced a written
equipment specification in the well known U.S. military format /5/.

This software asked a sequence of questions and used the responses to direct the
construction of a printed specification. Intelligence was limited to removing

258

146 VDI BERICHTE

questions from the sequence if a previous responses had rendered their asking
redundant. Once the initial entry process was completed, the questions and
associated responses were grouped into ten categories, thus permitting editing
without sequencing through all the questions. On the completion of editing, the
text generation programs produced a document in the military style according to
a physical layout predefined by the user.

Specriter 1 was surprisingly successful, and has been used at MISC to produce
specifications for many measuring instruments. It is also used routinely at SAIT
in the undergraduate teaching program.

More importantly, Specriter 1 succeeded in defining the scope of the task through
the identification of over 100 measuring instrument attributes requiring
specification. Another important result was the identification of short lists of
alternative specification methods for many topics, for example maintainability,
reliability, quality, and dynamic response. Finally, it demonstrated that the
automation of specification generation was viable starting from attribute entry,
through editing to data-controlled document generation.

Although Specriter 1 captured a useful amount of knowledge about specification
generation, it lacked the expertise of the instrumentation engineer. This is needed
to provide adequate responses to the many questions and conduct consistency
checking. The classically procedural implementation of Specriter 1 made the
addition of this largely heuristic knowledge difficult.

Furthermore, Specriter 1 also served to establish the limitations of a written
specification in the design process; the only thing that can be done with such a
document is to give it to a human to read. Flence it became clear that progress
in computer assistance hinged on representing the specification of the instrument
in a form that permits computer reading and subsequent reasoning. Facilities such
as consistency and reasonableness checking, high-level entry and interface to other
CAEINST packages can then be much more easily supported.

Hence, it was decided to take the knowledge gained from the software, the user
comments regarding the need for context-sensitive help and improvements to the
user interface /6,7/ and seek a better representation for both the specification itself
and the knowledge needed to produce it.

3. The Introduction of Formal Methods

Formal methods, as applied to software engineering, automatic programming and
protocol verification /8,9 / were investigated as a possible specification
representation technique. Automatic programming research endeavours to convert
a user’s requirement for a computer program, expressed in human terms, into an
executable program. The heart of such a system is the formal specification which
is generated either directly by the user or from requirements stated to the
computer in an English-like form. In this context, a formal specification is a set
of requirements expressed in an unambiguous notation that allows that entity to be
reasoned about. Reasoning is performed using an inference mechanism operating
on the formal specification and an associated knowledge base.

259

VDI BERICHTE 147

It was important to consider the implementation of other aspects of the task when
considering which of the formal methods to pursue. The knowledge of
measurement science and specification practices has to be stored in a form which
is appropriate for the reasoning mechanisms which need to operate on the
specification. In addition, the user interface needs access to both entities to
provide knowledge-assisted entry and integrated context-sensitive help features.

Clearly, a representation which combines these requirements would be ideal.
Prolog has been advocated for property-oriented non-algebraic formal specifications
which can also be directly interpreted using a resolution theorem proving approach
/8/. Prolog is also widely used for implementing knowledge-based systems, hence
it was decided to examine the potential of this language for the task. This decision
avoids the need to construct a specification language for measuring instruments and
write an interpreter. Borland’s Turbo Prolog Version 2.0 was selected to
investigate the production of a limited formal system because of its library of
screen handling predicates and good program development efficiency.

4. Specriter 3 Description

Specriter 2 was a Prolog re-implementation of the Pascal software and primarily
constructed as a learning exercise in Prolog and screen design. Specriter 3,
however, is truly knowledge-based. It employs a knowledge representation
technique which encompasses the entire domain. In fact, the editor program can
be thought of as a shell because it is domain independent and could be used to
assist in the creation of a range of structured documents.

4.1 Knowledge Representation

The knowledge representation requirements for Specriter are somewhat unique in
that domain is broader than that encountered in many knowledge-based systems.
Two specialist areas, specification generation to MIL-STD-490A and
instrumentation had to be included along with most of human interface control and
a portion of the program control. The aim was to remove all the domain specific
information from the compiled programs and place it in external files. This would
then permit a complete separation of user interface, inference engine and control.

When tackling such a large domain it is useful to try and identify an underlying
structure in the knowledge. Specriter 1 successfully demonstrated that editing
could be performed on the mutually independent question groupings below:

Measurand Definition
Performance Characteristics
Physical Characteristics
Interface Definition
Quality Assurance
Design and Construction
Reliability
Maintainability
Preparation for Delivery
Operating and Storage Environment

260

148 VD I BERICHTE

These were used as the first level partition for the knowledge base. User feedback
identified that it was desirable to display on one screen the entire grouping of
between 3 and 15 questions. This necessitated that the sequential nature of
question asking and the associated control mechanism be abandoned. Instead, a
set of screens was proposed, one for each question grouping. Redundant question
removal would then be handled by expanding each question grouping screen into
a set of slightly different screens. The actual screen being displayed from this set
would then be dependant on responses to option questions. After changing a key
option, screen re-selection would occur. It was noted that not only does the screen
need to change to display the appropriate question list, but the context for
reasoning is also changed. This then is the rationale for the second and subsequent
partitions of the knowledge base. Thus a tree structure can be created. A
particular instrument would be described by the responses to the questions on the
screens represented by active leaves of the tree.

Having defined the requirements for the knowledge base, it remained to identify
a suitable knowledge representation technique. From the structured techniques,
a variation on the concept of frames introduced by Minsky, /11 / was selected to
represent all the domain knowledge. In this case, a frame represents a user
interface screen to which is coupled the following: related questions and answers,
the active function keys, the help message, the output text, and heuristic rules.
Figure 1 illustrates the slots which make up a frame using the format from
reference 12.

A child frame is called whenever a user entered option is selected which requires
that the screen be changed. This child can inherit all but the output text from the
parent reducing duplication of knowledge. Progressively lower-level child frames
can be called from other option fields within the displayed frame. The knowledge
base thus becomes modular and the rule-based consistency checking facility can be
a manageable size.

The instrument under consideration is represented by the instantiation of the set
of values of the instrument attributes. These are incorporated into the knowledge
base structure and are available to the reasoning mechanisms inherent in Prolog
as directed by the contents of the knowledge base.

4.2 Inclusion of Heuristic knowledge into Specriter 2

Heuristic knowledge comprises the rules of thumb and intuition humans use so
successfully to solve problems for which there exist no problem solving algorithm
or other rigorous technique. By their very nature, heuristics tend to be
unstructured and are best represented by production rules and facts. However, rules
can be grouped to solve sub-problems. Specriter 3 uses these observations to
extend the concept introduced by Aikins /13/ of combining production rules with
frames. This has the advantage of retaining the frames structure which ideally suiH
the screen-based user interface whilst utilising the convenient representation of
heuristics as rules. The modular nature of the knowledge base, helps keep the
number of rules to be dealt with at any one time within practical limits. There are
two types of rules used in Specriter:

261

V W BERICHTE 149

Figure 1 - Specriter Frame Description

Way of Specifying:
Frame Level:
Screen Heading:
Screen text:

Help message:

Output text:

Function key list:

Consistency rules:
Generation rules:

Higher-level frame (parent).
1 onwards.
Screen title.
Many individual text fields can be used
on each screen.
A single string suitable for use by the
screen display utility.
A single string suitable for use by the
text generation facility. Any variables
in the string are replaced by their value
currently held in the knowledge base.
A formatted string which holds the
function key labels.
A set of Prolog terms.
A set of Prolog terms.

Active fields: Fields displayed that user interacts
with.

Standard entry: Line editor-based string entry
Question prompt:
Default value:
Default minimum value:
Default maximum value:
Actual value:
Screen position:

Predefined list entry: Selection from a predefined list
- used for control

List title:
D e f a u l t s e l e c t i o n :

A c t u a l v a l u e :

Screen position:
Option list:

Database assisted entry: Selection from database held in a
file or alternatively, normal
standard entry.

Screen position:
Rules for assistance:
Actual value:

C o n t r o l : U s e d t o i n v o k e d u s e r p a r a g r a p h e n t r y .

P r o c e d u r e t o e x e c u t e :

K e y o p t i o n s : E n t r y f r o m a p r e d e f i n e d list. F o r c e s

c h a n g e t o a n o t h e r f r a m e .

L i s t t i t l e :

D e f a u l t s e l e c t i o n :

A c t u a l v a l u e :

O p t i o n l i s t :

S c r e e n P o s i t i o n :

262

150 V W BERICHTE

(a) Those which test the values in a particular frame for consistency and
reasonableness;

(b) Those used to generate default values, and default limits from a small
number of high-level questions.

The rules are held in Prolog syntax and are directly executable. It is thus possible
to construct whatever form of knowledge-based system in best suited to each
screen. To date, the backward-chaining paradigm inherent in Prolog has been
employed.

4.3 Human Interface and Program Control

The human interface comprises a main menu together with pull-down sub-menus
which are used to call the various program modules. These modules can be
partitioned into two types: utilities and program specific functions. The first
category covers file handling of instrument specification files, access to the on-line
manual, access to the operating systems and facilities to tailor the Specriter
environment. These features, in common with most modern software products,
obviate the need for detailed familiarity with the operating system.

The program specific functions will be described in order of use. CREATE is used
whenever there is no suitable instrument specification in the library which can be
modified to suit the current requirements. It begins by invoking the high-level
question screen which calls for such information as the measurand, physical
arrangement, intended use, intended life, operating environment, expected cost etc.
When this screen is complete, the generation of detailed attribute values and the
numeric default limits commences. The program then searches for areas not
satisfactorily dealt with and prompts the user to complete these screens. Upon
completion of this process, the user is directed to use the EDIT program to view
and modify, as necessary, the detailed values.

The heart of Specriter 3 is the EDIT program. The main menu edit pull-down
window displays the list of level 1 frames, i.e., the first level question groupings.
A topic is selected by positioning the cursor over the required option and pressing
the Enter key. This causes the lowest level child frame defined by the values of the
internal options, to be displayed. The screen comprises text and five types of
colour-coded active fields as described in figure 1. These fields permit values to
be selected from lists, entered as free text using a line editor or entered as
paragraphs using a screen editor. Assistance is available through context-sensitive
help and each numeric input is compared to default reasonableness values to help
identify errors. The consistency checker looks at the values entered in the screen
as a set and attempts to identify problems. From within the editor, it is possible
to display the output text relevant to the current screen. This allows the user a
convenient opportunity to modify responses to suit the text stored in the knowledge
base.

Once editing is complete, the complete text can be displayed or printed using the
TEXT facility. This program extracts the paragraphs from the active leaves of the
knowledge tree structure and sorts them according to their paragraph number.

263

VDI BERICHTE 151

Page numbers, headers and footers, indenting and date stamping are then included.
Finally, the text is formatted using a traditional text formatter to produce the
finished document.

4.4 The Frame Editor

The traditional method of entering frame-based knowledge is to write it out in a
language specifically designed for the task and then employ a purpose-built
interpreter to load in into the knowledge-based system. Since the entire knowledge
base is held as Prolog terms, it is relatively easy to enter it directly in this form
using an ASCII editor. However, to make the task of creating and maintaining this
rather substantial knowledge base easier, a frame editing program was written.
This program allows the user to create and edit frames using a variety of tools. A
similar user interface to that developed for Specriter is employed for all the non-
displayed knowledge, whilst the actual screen can be crafted using a screen
definition program. Thus it is a straightforward task to edit the knowledge base
and add new frames.

5. Conclusions

A new program suite which can generate measuring instrument specifications has
been described. The core concept employed is to represent the requirements
specification for the instrument under consideration, as a formal specification
written in Prolog. This specification can then be reasoned about using sets of rules
held within a knowledge base. A domain independent shell is used to perform the
specification generation, and limited checking under control of the contents of the
knowledge base. The final text is generated using another program which views the
knowledge base and the instantiated values which represent the instrument under
consideration. The knowledge base can be easily updated using a separate frame
editing facility.

Specriter 3 goes a long way to fulfilling the aim of producing a user-friendly
knowledge-based specification generation tool. It is certainly easy to use and can
produce a useful specification,
however, the knowledge base would benefit from further research.
It is proposed that the internal Prolog representation of the specification be used
as the backbone for the CAEINST package. Then not only can the design,
implementations and performance simulation programs use the specification as
input, but it opens the way for output from each stage of the design process to be
automatically verified against the specification. The latter can be used to evaluate
bottom-up detailed designs which can often be more efficient solutions.

6. Acknowledgements

The author would like to acknowledge the guidance and support of his supervisors.
Professors P. Sydenham and L. Finkelstein throughout the research program. The
informative discussions with Dr. A. Finkelstein which led to the development of the
unified knowledge base are gratefully acknowledged. The author is a Postgraduate
Fellow employed by the Electronics Research Laboratory, Defence Science and
Technology Organisation, Salisbury, South Australia.

264

152 V W BERICHTE

References

/1 / Sydenham P.H.: Computer-aided engineering of measuring instrument
systems. Computer-Aided Engineering Journal, June 1987.

/2 / Sydenham P.H., Harris D.D., Hancock N.H.: MINDS - A software tool
to establish a measuring system requirement. To be published in
Measurement 1990.

/3 / Mirza M.K., Neves F.J.R., Finkelstein L.: A knowledge-based system
for design-concept generation of instruments. Measurement Vol 8 Nol,
Jan-Mar 1990.

/4 / Cook S.C.: Automatic generation of measuring instruments.
Measurement Vol6 No4, Oct-Nov 1988.

/5 / MIL-STD-490A Military Standard - Specification Practices. United
States of America Department of Defence, 4 June 1985.

/6 / Sydenham P.H.: Private communication, 1989

p / Goldsmith K.: Private communication, 1989

/8 / Cohen B., Harwood W.T., Jackson M.I.: The Specification of Complex
Systems, Addison-Wesley, U.K. 1986.

/9 / Balzer R.: A 15 Year Perspective on Automatic Programming. IEEE
Transactions on Software Engineering Vol SE-11, No 11 November
1985.

/10/ Borgida A.: Greenspan S., Mylopoulos J.: Knowledge Representation
as the Basis for Requirements Specifications. IEEE Computer, April
1985.

/11/ Minsky M.: A framework for representing knowledge, in P. Winston
(Ed.), The Psychology of Computer Vision. McGraw-Hill, New York,
1975 pp 211 -277.

/12/ Barr A., & Feigenbaum E.: Handbook of Artificial Intelligence
Volume 1. Addison-Wesley USA, 1981.

/13/ Aikens J.S.: Prototypical Knowledge for Expert Systems. Artificial
Intelligence 20 (1983) 163-210.

265

Appendix 5 - Example Specification Produced by Specriter 3

This document was produced by

SPECRITER 3.A

from

The Measurement and Instrumentation Centre (MIC)

of

The City University, London

Written and Copyright by Stephen C Cook, 1990

Specification Details

Specification Name: TEMP

Generation Date:
Document Number:
Issue Number:

: November 28, 1990 3:05 PM
: ERL-TR-23456

1

266

REQUIREMENTS SPECIFICATION

for a

TYPE 601 SPACECRAFT THERMOMETER

1. Scope

This specification establishes the performance, design, development, and
test requirements for a Type 601 Spacecraft Thermometer.

2. Applicable Documents

The documents listed hereunder form a part of this specification to the
extent invoked by specific reference in other parts of this specification.
If a specification is listed but not referenced in any specific paragraph,
then the specification is applicable as a design guideline.

AD-185 Requirements Specification for Thermally Conducting
Adhesives for Spacecraft Use.

AD-409 Requirements Specification for Low-Outgassing Potting
Compound - Space Grade.

IE-ICD-MI-005 Interplanetary Explorer Thermal Sub-system Interface
Control Document.

IE-ICD-EI-601 Interplanetary Explorer Thermal Sub-system Electrical
Interface Control Document.

NHB 1007 Design and Construction Standards for Spaceflight and
Ground Equipment associated with Scientific Spacecraft.

MIL-HDBK-217E Reliability Prediction Data for Electronic Components.

3. Requirements

The measuring instrument described by all the requirements of this section
shall pass the examinations, analysis and tests specified in Section 4.

3.1 Instrument Definition

3.1.1 General Description

The purpose of the instrument is to measure temperature in a
Space/Avionics environment. The Type 601 Spacecraft Thermometer is
housed in two enclosures; one for the sensor and the other for the

v remainder of the functions, nominally the data processor and display.

267

The Type 601 Spacecraft Thermometer forms part of Interplanetary
Explorer II.

3.1.2 Interface Definition

The Type 601 Spacecraft Thermometer is to interface to the system being
measured, power supplies, equipment housings and the operator.

3.1.2.1 Electrical Interface

3.1.2.1.1 Power Interface

The performance of the Type 601 Spacecraft Thermometer described
herein shall be met when connected to 24 +/- 2V DC. Connection to
the power source shall be achieved by one or more flexible power
leads. Plugs conforming to Cannon Royal D, 7 pin shall be fitted
to these leads. The peak current drawn by the instrument shall
not exceed 50 mA.

3.1.2.1.2 Communications Interface

Processed and corrected measurement data shall be available to
external equipment via an interface port conforming to RS-232-C.

3.1.2.1.3 EMC

The Type 601 Spacecraft Thermometer shall meet the emission
requirements of IE-ICD-EI-601 and the susceptibility requirements
of IE-ICD-EI-601.

3.1.2.2 Mechanical Interface

3.1.2.2.1 Data Processor and Display Unit Mechanical Interface

The Data Processor and Display Unit shall be attached via bolts on
mounting flanges surrounding the mounting face.

3.1.2.2.2 Sensor Mechanical Interface

The Sensor shall be attached to its mounting by multiple bolts.

3.1.2.3 Thermal Interface

3.1.2.3.1 Data Processor and Display

The Data Processor and Display Unit shall be cooled via
conduction to the mounting face.

3.1.2.3.2 Sensor Thermal Interface

The Sensor shall be cooled by conduction to the mounting face such
that the temperature rise of the sensing element above ambient,
when operating, shall be constrained to less than 0.1 degrees C.

268

3.2 Characteristics

3.2.1 Performance

The Type 601 Spacecraft Thermometer shall meet the performance
requirements specified herein when operated in the environment
specified in section 3.2.5.

3.2.1.1 Range

The instrument shall be able to measure temperature from 5 degrees C
to 40 degrees C with at least the performance described by the
remaining paragraphs of Section 3.2.1.

3.2.1.2 Total Measuring Error

The error of measurement including systematic error, random error,
reading error, repeatability error, hysteresis error, and dynamic
error shall be less than 0.7 degrees C.

3.2.1.3 Static Performance

3.2.1.3.1 Discrimination

The Type 601 Spacecraft Thermometer shall have a discrimination of
0.02 degrees C or better.

3.2.1.3.2 Repeatability

Any two measurements performed by the Type 601 Spacecraft
Thermometer on any given identical value of temperature within the
range specified in paragraph 3.2.1.1, shall indicate values within
0.5 degrees C.

3.2.1.3.3 Hysteresis

Hysteresis effects owing to alteration of the direction of the
temperature change, including any dead band, shall be less than
0.04 degrees C.

3.2.1.3.4 Drift

Drift resulting from aging effects shall be less then 0.05 degrees
C over 24 hours.

3.2.1.3.5 Special Requirements

The transfer function of the instrument shall be monotonic to
better than 0.01 degrees C.

3.2.1.4 Dynamic Performance

The Type 601 Spacecraft Thermometer shall exhibit first order
response. The time constant shall be 0.5 seconds.

269

The power consumption of the Type 601 Spacecraft Thermometer shall be
less than 1.00 W.

3.2.2 Physical Characteristics

3.2.2.1 Enclosures

3.2.2.1.1 Data Processing and Display Unit Enclosure

The Type 601 Spacecraft Thermometer Data Processor Unit housing
shall observe the mounting face requirements and dimension limits
specified in IE-ICD-MI-005.

3.2.2.1.2 Sensor Housing

The sensor shall be enclosed by potting compound conforming to
AD-490. The mounting face and overall dimensions shall conform to
IE-ICD-MI-005. Any necessary machining shall be performed to
approved procedures.

3.2.2.2 Mass

3.2.2.2.1 Data Processing and Display Unit Mass

The mass of the Data Processor and Display shall be less than 1.2
kg.

3.2.2.2.2 Sensor Mass

The mass of the Sensor shall be less than 120 gms.

3.2.3 Reliability

The probability of the Type 601 Spacecraft Thermometer surviving for
10 years shall be greater than 0.998. The probability of survival
shall be determined using MIL-STD-217E.

3.2.4 Maintenance

Once installed in its intended operating environment, the Type 601
Spacecraft Thermometer is not accessible. There is no maintainability
requirement.

3.2.5 Environmental Conditions

The environment the instrument is to withstand is divided into
operating and non-operating environments. The latter includes both
transportation and storage. The Type 601 Spacecraft Thermometer shall
meet the performance characteristics specified in section 3.2.1 when
operated in any of the combination of environmental conditions defined
in the operating environment. The Type 601 Spacecraft Thermometer
shall survive the storage environment for 36 months without
deterioration.

3.2.1.5 Power Consumption

270

3.2.5.1 Operating Environment

3.2.5.1.1 Operating Temperature Range

The operating temperature range of the Type 601 Spacecraft
Thermometer shall be from 5 degrees C to 50 degrees C.

3.2.5.1.2 Operating Humidity Range

The humidity range over which the Type 601 Spacecraft Thermometer
is to operate shall be from 0% to 95%.

3.2.5.1.3 Operating Vibration Range

The performance of the Type 601 Spacecraft Thermometer shall be
within the bounds specified in 3.2.1 when subjected to vibration
over the range 5 Hz to 200 Hz of amplitudes up to 0.1 mm.

3.2.5.1.4 Operating Air Pressure Range

The instrument shall operate over an atmospheric pressure range of
0 kPa to 105 kPa.

3.2.5.1.5 Special Operating Environment Characteristics

The Type 601 Spacecraft Thermometer shall withstand an ionising
radiation dose of 200 Greys without damage or loss of calibration.

3.2.5.2 Non-Operating Environment

The instrument is required to survive the non-operating environment
and be able to meet its performance characteristics without re-
calibration when environmental stress falls within the operating
environment limits.

3.2.5.2.1 Non-Operating Temperature Range

The non-operating temperature range of the Type 601 Spacecraft
Thermometer shall be from 5 degrees C to 50 degrees C.

3.2.5.2.2 Non-Operating Humidity Range

The non-operating humidity range of the Type 601 Spacecraft
Thermometer shall be from 0% to 100%.

3.2.5.2.3 Non-Operating Vibration Range

The Type 601 Spacecraft Thermometer shall survive vibration over
the range 10 Hz to 500 Hz of amplitudes up to 3mm from 10 Hz to 50
Hz decreasing at 6dB per octave until 500 Hz.

3.2.5.2.4 Non-Operating Air Pressure Range

The non-operating atmospheric pressure range of the Type 601
Spacecraft Thermometer shall be from 0 kPa to 105 kPa.

271

The Type 601 Spacecraft Thermometer shall withstand the launch
acoustic noise environment of 150 dBA from 200 Hz to 5000 kHz
falling at 6dB per octave beyond those frequencies, without damage
or loss of calibration.

3.3 Design and Construction

The materials and workmanship of the Type 601 Spacecraft Thermometer shall
conform to the "Space" requirements of NHB 1007.

3.2.5.2.5 Special Non-Operating Environment Characteristics

4 Quality Assurance

4.1 General

4.1.1 Responsibility for Tests

The vendor shall be responsible for performing the tests, analysis or
inspections specified in Figure 4.1 the Verification Matrix. Any non-
compliancies encountered during the examinations or tests shall cause
rejection of the instrument.

4.1.2 Test Reports and Certificates

A test report shall be prepared following the testing of the
instrument. A copy of this report shall be available on request. A
calibration certificate shall be included with the instrument when
despatched.

4.2 Quality Conformance Verification

The requirements for, and the methods used, to verify the design and
performance requirements of section 3 will be satisfied, are tabulated in
the Verification Matrix, Figure 4.1.

4.2.1 Test Sample

Each instrument delivered shall be inspected and acceptance tested.

4.2.2 Test Sequence

Acceptance inspection and tests shall consist of the examinations and
tests in the following sequence.

(1) Physical Examination
(2) Functional Test
(3) Environmental Tests
(4) Post Environmental Functional Test

4.2.2.1 Physical Examination

Examination of the instrument shall be performed prior to functional
testing.

272

4.2.2.2 Functional Testing

Functional tests shall be performed prior to, during and where
appropriate, following environmental testing.

4.3 Verification Methods

4.3.1 Inspection

Inspection shall consist of physical examination of the product,
engineering drawings and/or other documentation to determine
conformance to the requirements. The Type 601 Spacecraft Thermometer
shall be inspected to determine conformance to the physical
characteristics specified in paragraph 3.2.2 and the applicable
drawings and specifications.

4.3.2 Analysis

The analysis method shall consist of review of analytical data
resulting from analyses performed by generally recognised techniques
for requirements that cannot readily be demonstrated through
conventional testing techniques. Computer simulation, is the
preferred method, where appropriate.

4.3.3 Testing

4.3.3.1 Functional Tests

Verification that the Type 601 Spacecraft Thermometer performs as
specified herein shall be achieved by performing functional tests
specified in figure 4.1.

4.3.3.2 Environmental Tests

Testing of performance shall be performed at both extremes of the
range of each environmental characteristic. It shall not be
necessary to combine tests of more than of environmental
characteristic in a single test, i.e. high temperature and low
pressure. Instrument performance in such situation shall be verified
be analysis as indicated in figure 4.1.

4.4 Test Procedures

All tests shall be performed in accordance with approved, released
procedures.

4.5 Rejection and Retest

If a failure occurs during test, testing shall be discontinued until an
analysis is performed to determine whether the condition warrants
continuation of the tests or discontinuation of the tests for more
detailed failure analysis. The test procedure shall be repeated until
completed successfully. If corrective action substantially affects the
significance of results of previously completed tests, such tests shall be
repeated also.

273

5. Preparation for Delivery

The instrument shall be packaged in such a way that its performance shall
not be impaired by storage for periods up to the storage time specified in
Section 3.2.5. The packing shall be designed to support the instrument
during transportation and storage and provide absorbent protection from
mechanical shock. The packing shall not contaminate the instrument during
storage and shall keep it free from scratches, dust and chemical attack.
All containers or parcels which comprise the instrument shall be marked with
a minimum of the manufacture's name and the product name. In addition, where
appropriate, labels detailing special handling requirements shall be
affixed, for example, "Fragile Device", "Do not expose to X-rays", "This Way
Up", "Anchor during Transport", etc.

6. Notes

The Type 601 Spacecraft Thermometer is intended to be used for a number of
forthcoming missions in the next ten to fifteen years.

274

References

Adole (1985). P o s tsc r ip t R eferen ce M anual, Addison-Wesley, U.S.A.

AEL (1987). S ystem F unctional R equ irem en ts Specifica tion f o r a L a ser A irborn e D epth

Sounder f o r use b y the R A N in H yd rograph ic Surveying A pp lica tio n s, Advanced

Engineering Laboratory, Adelaide.

Aikens J.S. (1983). "Prototypical Knowledge for Expert Systems." A rtific ia l

In telligence, Vol. 20, pl63-210.

Amstadler B.L. (1971). R elia b ility M athem atics, McGraw-Hill, New York.

AS 1514, Parti (1980). G lo ssa ry o f term s U sed in M etro logy , P a r t 1 - G en era l Term s

an d D efin itions, Standards Association of Australia, Sydney.

AS 1821 (1985). S u p p lier’s Q u a lity S ystem s f o r D esign , D evelopm en t, P rodu ction an d

In sta lla tion , Standards Association of Australia, Sydney.

Auspace (1984). S tarlab Instrum ent P ackage - E lectron ics Subsystem S pecifica tion ,

Auspace, Canberra.

Barr A. & Feigenbaum E. (1981). H andbook o f A rtific ia l In te lligen ce Volum e 1,

Addison-Wesley, USA.

Bartlett F.C. (1932). R em em berin g , Cambridge University Press, Cambridge.

Balzer R. (1985). "A 15 Year Perspective on Automatic Programming." IEEE

T ran saction s on Softw are E ngineering, Vol. SE-11, No. 11, pl257-1268.

275

Berg H.K., Boebert W.E., Franta W.R. & Moher T.G. (1982). F o rm a l M eth ods o f

P ro g ra m V erifica tion an d S pecifica tion , Prentice-Hall, New Jersey.

Blackburn M.R. (1989). "Using Expert Systems to Construct Formal Specifications."

IEEE E xpert, Spring, p62-74.

Blaise (1986). R U N O F F - The p ro g ra m m ers Text F orm atter, U ser R eferen ce M anual,

Blaise Computing Inc, Berkeley.

Bobrow D.G. (1985). "If Prolog is the Answer, What is the Question? or What it

takes to Support AI Programming Paradigms." IEEE T ransactions in Softw are

E ngineering, Voi. SE-11, No. 11.

Borgida A., Greenspan S. & Mylopoulos J. (1985). "Knowledge Representation as

the Basis for Requirements Specifications." IEEE C om puter, April, p82-91.

Borland (1986). Turbo P ro lo g O w n er’s H andbook, Borland International Inc., U.S.A.

Borland (1987). Turbo P ro lo g T oolbox U ser’s G uide and R eference M anual, Borland

International Inc., U.S.A.

Borland (1988a). Turbo P ro lo g U ser’s G uide - V ersion 2 .0 , Borland International Inc,

U.S.A.

Borland (1988b). Turbo P ro lo g R eference G uide - Version 2 .0 , Borland International

Inc, U.S.A.

Borgida A. (1985). "Knowledge Representation as the Basis for Requirements

Specifications." IEEE C om puter, p82-91.

Bosnian D. (1978). "Systematic design of instrumentation systems", J. P hys. E .:

Scientific Instrum ents, Voi. 11, p97-105.

276

Brachman RJ. (1983). "What IS-A is and isn’t: an analysis of taxonomic links in

semantic networks." IEEE C om pu ter , Vol. 16, No. 10, p30-36.

Brachman RJ. & Levesque HJ. (Ed.) (1985). R ead in gs in K n o w led g e

R epresen ta tion , Morgan Kaufman Publishers Inc, Los Altos.

Bratko I. (1986). P ro lo g P rogram m in g f o r A rtific ia l In telligen ce, Addison Wesley,

U.K.

BS 4778 Ptl&2 (1987). Q uality V ocabu lary, British Standards Institution

BS 5750 (1979). Q u ality System s, P t l , British Standards Institution.

Burgess J.A. (1969). "Organizing Design Problems." M achine D esign ,

November 27, pl20-127.

Buchanan B.G. & Shortliffe E.H. (1984). R u le-B ased E xpert System s: TH e M YC IN

E xperim ents o f the S tan ford H eu ristic P rogram m ing P ro jec t, Addison-Wesley, London.

Clocksin W.F. & Mellish C.S. (1987). Program m ing in P ro log , 3rd Edition,

Springer-Verlag, Berlin.

Cohen B., Harwood W.T. & Jackson M.I. (1986). The Specifica tion o f C om plex

S ystem s, Addison-Wesley, U.K.

Cook S.C. (1983). D esig n A im fo r D yn am ic A ccess M em ory P C A , P a r t O f A vion ics

F ault T ree A n a lyzer (AFTA), Doc: 20033, British Aerospace Australia, Adelaide.

Cook S.C. (1986). D ocu m en t P repara tion G uidelines, Vision Systems Limited,

Adelaide.

Cook S.C., Thomas G. & Leslie B.A. (1988). Q uality M anual, Vision Systems

Limited, Adelaide.

277

Cook S.C. (1988a). "Automatic generation of measuring instruments." M easurem ent,

Vol. 6 No. 4, pl55-160.

Cook S.C. (1988b). "Specriter Instrument Attribute File, Technical Description."

Unpublished research note.

Cook S.C. (1990). "Knowledge-Based Generation of Measuring Instrument

Specifications." In IM E K O In tern a tion a l Sym posium on K n o w led g e -B a sed M easurem en t,

1st, Karlsruhe, FDR, Sept.

Cuadrado J.L. & Cuadrado C.Y. (1986). "AI in Computer Vision." Byte, January

1986.

Delisle N. & Garlan D. (1990). "Applying Formal Specifications to Industrial

Problems: A Specification of an Oscilloscope." IEEE S oftw are, September.

Doebelin E.O. (1983). M easurem en t System s, 3rd Edition, McGraw-Hill, Singapore.

Donker J. C. & Kat PJ. (1987). NEXT: An E xpert S ystem D eve lo p m en t T oo l to

S u pport E ngineering D esign , NLR M P 8 6 0 7 0 U, National Aerospace Laboratory NLR,

The Netherlands.

Draper C.S., McKay W. & Lees S. (1952). Instrum ent E ngineering, McGraw Hill,

New York.

Dunham C.W., Young R.D. & Bockrath J.T. (1979). C on tracts, S pecifica tion s a n d

L aw f o r E ngineers, McGraw Hill, New York.

DSMC (1983). System E ngineering M anagem ent G uide, Defense Systems Management

College, Fort Belvoir, Virginia, U.S.A.

Edmonds E.A. & Guest S. (1979). A M an-C om puter D ia lo g u e S ystem , Leicester

Polytechnic.

278

ESA (1983). Hipparcos System Specification, European Space Agency.

Forgy C.L. (1982). "A Fast Algorithm for the Many Pattem/Many Object Match

Problem." Artificial Intelligence, Vol. 19, No. 1, pl7-37.

Finkelstein A.C.W. & Finkelstein L. (1985). "A review of instrument system design

automation." In Acta IMEKO X, New Measurement Technology to Serve Mankind,

Ed. Striker G., OIKK, Budapest, p79-85.

Finkelstein L. & Finkelstein A.C.W. (1983). Review of design methodology. IEE

Proceedings, Vol. 130, Pt. A. No. 4, p213-222.

Finkelstein L. & Leaning M.S. (1984). "A review of the fundamental concepts of

measurement." Measurement, Vol. 2, No. 1, p25-34.

Finkelstein A., Maibaum T. & Finkelstein L (1990). "Engineering-In-The-Large:

Software Engineering and Instrumentation", Proceedings of UK IT 1990.

Galitz W.O. (1985). Handbook of screen format design, QED Information Sciences,

Wellesley.

Gardner P. (1985). The Use of Microcomputers for the Mathematical Modelling of

Instruments, Ph.D. Thesis, City University.

Goldman A.S. & Slattery T.B. (1964). Maintainability: A Major Element of System

Effectiveness, John Wiley & Sons, New York.

Goldsmith K. (1989). Private communication.

Guttag J.V. & Horning J.J. (1986). "Formal Specifications as a Design Tool." In

Software Specification Techniques, Ed. Gehani N. & McGettrick A.D., Addison-Wesley.

279

Hayes F. (1979) "The Logic of Frames", in F ram e C on cep tion s a n d T ext

U nderstanding , ed. Metzing D., Walter de Gruyter & Co, Berlin.

Hayes-Roth F., Waterman D. & Lenat D. (Ed.) (1983). B uild ing E xpert S ystem s,

Addison-Wesley.

Hill P.H. (1970). The Science o f E ngineering D esign , Holt, Rinehart and Winston

Inc., New York.

IEC 914. S pecifica tion f o r R ack M ou nted Equipm ent. International Electrotechnical

Commission.

ISO 8402 (1986). Q u ality - V ocabu lary, International Standards Organisation.

ISO 9001. M o d el f o r qu a lity system s f o r design!developm ent p rodu ction , in sta lla tion

an d servic in g , International Standards Organisation.

Keller R. (1987). E xpert System T echnology, Prentice-Hall Inc., New Jersey.

Kowalski R. (1979). L o g ic f o r P rob lem Solving, North Holland, Oxford.

Lees A. (1987). The Development of Non Critical Systems Using Abstract

Specifications, Jou rnal o f E lec tr ica l a n d E lectron ic E ngineering A u stra lia , Voi. 7,

No. 1.

Leech D J . (1972). M an agem en t o f E ngineering D esign , John Wiley and Sons, London.

Liskov B.H. & Berzins V. (1986). "An Appraisal of Program Specifications." In

S oftw are S pecifica tion Techniques, Ed. Gehani N. & McGettrick A.D., Addison-Wesley.

Lister A.M. (1984). F undam entals o f O perating System s, Macmillian Education,

London.

280

Lucas T.A. (1981). "Standards for Instrumentation." M easurem en t & C on tro l, Vol. 14,

June.

Kowalski R. (1979). L o g ic f o r P rob lem Solving, North-Holland.

Marcellus D.H. (1989). E xpert System P rogram m in g in Turbo P ro lo g , Prentice Hall,

New Jersey.

McDermott J. (1982). "Rl: A Rule-Based Configurer of Computer Systems." A rtific ia l

In telligence, Vol. 19, No. 1, p39-88.

Mead D.W., Mead H.W., & Ackerman J.R. (1956). C ontracts, S pecifica tion s a n d

E ngineering R ela tion s, McGraw Hill, New York.

Michie D. (1982). M achine In telligence R e la ted T opics, Gordon & Breach Science

Publishers, London.

Metric Conversion Board, Australia (1972). M etric H andbook: SA A M H 1-1972,

Standards Association of Australia.

MIL-S-83490 (1968). M ilita ry Specification - S pecifica tion s, T ypes a n d F orm s, United

States of America Department of Defense.

MIL-STD-461. M ilita ry S tan dard - E lectrom agn etic C o m patib ility , United States of

America Department of Defense.

MIL-STD-490 (1968). M ilita ry S tan dard - Specifica tion P ra c tices , United States of

America Department of Defense.

MIL-STD-490A (1985). M ilitary S tan dard - Specifica tion P ra c tices , United States of

America Department of Defense.

281

MIL-STD-499A (1974). M ilitary S tan dard - E ngineering M an agem en t, United States

of America Department of Defense.

MIL-STD-721B. D efin ition s o f E ffectiveness Term s f o r R eliab ility , M ain ta inab ility ,

H um an F a cto rs a n d Safety, United States of America Department of Defense.

MIL-STD-810E (1989). M ilita ry S tan dard - E nvironm ental T est M eth ods a n d

E ngineering G uidelines, United States of America Department of Defense.

MIL-Q-9858A Q uality P rogram R equirem ents, United States of America Department

of Defense.

Minsky M. (1975). "A framework for representing knowledge." The P sych o lo g y o f

C om pu ter V ision, Ed. Winston P.H., McGraw-Hill, New York, p211-277.

Mirza M.K., Neves FJ.R. & Finkeistein L. (1990). "A knowledge-based system for

design-concept generation of instruments." M easurem ent, Vol. 8, No. 1, p7-11.

Moore R.C. (1985). "The Role of Logic in Knowledge Representation and

Commonsense Reasoning." In R ead in gs in K n ow ledge R epresen ta tion , Ed. Brachman

RJ. & Levesque H.J., Morgan Kaufman, Los Altos.

M’Pherson P.K. (1980). "Systems Engineering: an approach to whole system design."

The R ad io a n d E lectron ic E ngineer, Vol. 50, No. 11/12, p545-558.

M’Pherson P.K. (1981). "A framework for systems engineering design." The R a d io

a n d E lectron ic E ngineer, Vol. 51, No. 2, p59-85.

Nii H.P. (1986). B la ck b o a rd System s, Knowledge System Laboratory Report No KSL

86-18, Stanford University. (Also appeared in AI Magazine, Volumes 7-2,7-3.)

Nussbaumer H. (1990). C om pu ter C om m unication System s V ol 1., John Wiley &

Sons, Chichester.

282

O’Conner P.D.T. (1985). Practical Reliability Engineering, John Wiley & Sons,

Chichester.

O’Neill J.L. (1987). "Plausible Reasoning." The Australian Computer Journal, Vol. 19,

No. 1.

Oxford English Dictionary (1989). The Oxford English Dictionary, Ed. Simpson J.A.

& Weiner E.S.C., Oxford University Press, Oxford.

Pavelin C. (1987). "Logic in Knowledge Representation." In Approaches to Knowledge

Representation, Ed. Ringland G.A. & Duce D.A., Research Studies Press, Letchworth.

Proakis J.G. & Manolakis D.G. (1988). Introduction to Digital Signal Processing,

Macmillan Publishing Company, New York.

Quillian M.R. (1968). "Semantic Memory." In Semantic Information Processing, Ed.

M. Minsky, MIT Press, Cambridge, MA.

Ramsay A. (1988). Formal Methods in AI. Cambridge University Press, Cambridge.

Randal D.M. (1988). "Semantic Networks." In Approaches to Knowledge

Representation, Ed. Ringland G.A. & Duce D.A., Research Studies Press, Letchworth.

Ringland G. (1988). "Structured Object Representation - Schemata and Frames." In

Approaches to Knowledge Representation, Ed. Ringland G.A. & Duce D.A., Research

Studies Press, Letchworth.

Ringland G.A. & Duce D.A. (Ed.) (1988). Approaches to Knowledge Representation,

Research Studies Press Ltd, Letchworth.

Roseman M.A., Coyne R.D. & Gero J.S. (1987). "Expert Systems for Design

Applications." In Proceedings of the 2nd Aust. Conf. on Applications of Expert Systems,

Sydney, May.

283

Rosin P. (1988). Model Driven Image Understanding: A Frame-Based Approach, Ph.D.

Thesis, City University 1988.

SAA (1985). QA1 - Guidelines for the Preparation of Quality Manuals, Standards

Association of Australia.

Shammas N.C. (1986). "Turbo Prolog", Byte, September

Schildt H. (1987). Advanced Turbo Prolog: Version 1.1, Osbome/McGraw Hill, U.S.A.

Simons G.L. (1985). Expert Systems and Micros, NCC Publishers, Manchester.

Smith DJ. (1985). Reliability and Maintainability in Perspective, 2nd edition,

Macmillian.

Smith P. (1988). Expert Systems Development in Prolog and Turbo Prolog, John

Wiley & Sons, Chichester.

Stebbing L. (1987). Quality Assurance - The route to efficiency and competitiveness,

2nd Edition. John Wiley & Sons, Chichester.

Sterling L. & Shapiro E. (1986). The Art of Prolog: Advanced Programming

Techniques, The MIT PRess, Cambridge, Ma.

Subrahmanyam P.A. (1985). "The Software Engineering of Expert Systems: Is Prolog

Appropriate?" IEEE Transactions on Software Engineering, Vol. SE-11, No. 11.

Sufrin B. (1986). "Formal Specification of a Display-Oriented Text Editor" In Software

Specification Techniques, Ed. Gehani N. & McGettrick A.D., Addison-Wesley.

284

Sunshine C.A., Thompson D.H., Erickson R.W., Gerhart S.L. & Schwartz D.
(1982). "Specification and Verification of Communications Protocols in AFFIRM Using

State Transition Models." IEEE Transactions in Software Engineering, Vol. SE-8, No.

5, p460-489.

Sydenham P.H. (1982). "Standardisation of measurement fundamentals and practices"

In Handbook of Measurement Science Volume 1. Ed. Sydenham P.H., John Wiley and

Sons, Chichester.

Sydenham P.H. (1983a). "Static and steady-state considerations." In Handbook of

Measurement Science Volume 2, Ed. Sydenham P.H., John Wiley and Sons, Chichester.

Sydenham P.H. (1983b). "Measurement system dynamics." In Handbook of

Measurement Science Volume 2, Ed. Sydenham P.H., John Wiley and Sons, Chichester.

Sydenham P.H. (1984). "CAD-BASED Instrument Design." In Conference on

Measurement, Instrumentation and Digital Technology, The Institution of Engineers

Australia, Melbourne.

Sydenham P.H. (1985a). "Structured understanding of the measurement process - Part

1, Holistic view of the measurement system." Measurement, Vol. 3, No. 3 pi 15-120.

Sydenham P.H. (1985b). "Structured understanding of the measurement process - Part

2, Development and implementation of a measurement process algorithm."

Measurement, Vol. 3, No. 4, pl61-168.

Sydenham P.H. (1986). Mechanical Design of Instruments. ISA, USA.

Sydenham P.H. (1987). "Computer-aided engineering of measuring instrument

systems." Computer-Aided Engineering Journal, Vol. 4, No. 3, pi 17-123.

Sydenham P.H. (1989). Private communication.

285

Sydenham P.H., Harris D.D. & Hancock N.H. (1990). "MINDS - A software tool to

establish a measuring system requirement." To be published in Measurement.

Sydenham P.H. & Harris D.D. (1990). "Knowledge-Based Measurement Systems

Design and Operation." In IMEKO International Symposium on Knowledge-Based

Measurement, 1st, Karlsruhe, FDR, Sept.

Sydenham P.H. & Vaughan M.M. (1990). "Sensor design using rules of knowledge

required", Measurement, Vol. 8, No. 4, p i80-187.

Voelcker J. (1988). "Flex In Specs: A License to Innovate?" IEEE Spectrum,

November, 1988.

Walter J. & Nielson N.R. (1988). Crafting Knowledge-Based Systems. John Wiley &

Sons, New York.

Wheeldon R.W. (1974). "Specifications - the identifying facts." In Introduction to

Stathmology, Ed. Sydenham P.H., Dept, of Continuing Education, Univ. of New

England, N.S.W., Australia.

Weiskamp K. & Hengl T. (1988). Artificial Intelligence Programming in Turbo

Prolog. John Wiley & Sons Inc, New York.

Wilbur-Ham M.C. (1987). "PROTEAN: A Tool for Verifying Protocol Specifications."

Proceeding of IREECON International 1987, Sydney, p579-581.

Williams T. & Bainbridge B. (1988). "Rule Based Systems." In Approaches to

Knowledge Representation, Ed. Ringland G.A. & Duce D.A., Research Studies Press,

Letch worth.

Winston P.H. (1984). Artificial Intelligence, 2nd Edition. Addison Wesley.

286

Woods W.A. (1975). "What’s in a link: foundations for semantic networks." In

Studies in Cognitive Science, Ed. D.G. Bobrow and A.M. Collins, Academic Press, New

York.

Yin K.M. & Soloman D. (1987). Using Turbo Prolog, Que Corporation.

287

Acronyms & Abbreviations

AI

CAD

CAE

CAEINST

FOL

KBS

ISO

MIC

MINDS

MISC

MTBF

MTTR

OSI

PC

SAIT

TBD

TBS

VAX

VMS

VSD

Artificial Intelligence

Computer-Aided Design

Computer-Aided Engineering

Computer-Aided Engineering of INSTruments

First Order Logic

Knowledge-Based System

International Standards Organisation

Measurement and Instrumentation Centre, City University

Measurement INterface Design System

Measurement and Instrumentation Systems Centre, SAIT

Mean Time Between Failure

Mean Time To Repair

Open Systems Interconnect (networking model)

Personal Computer

South Australian Institute of Technology

To Be Determined

To be Specified

Series of super-mini computers made by DEC

Virtual Memory System (operating system for VAX computers)

Virtual Screen Definition

288

