
              

City, University of London Institutional Repository

Citation: Zhou, D., Zhou, B., Zheng, Z., Soylu, A., Cheng, G., Jimenez-Ruiz, E., Kostylev, 

E. V. & Kharlamov, E. (2022). Ontology Reshaping for Knowledge Graph Construction: 
Applied on Bosch Welding Case. In: The Semantic Web – ISWC 2022. (pp. 770-790). 
Cham, Switzerland: Springer. ISBN 9783031194320 doi: 10.1007/978-3-031-19433-7_44 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/29099/

Link to published version: https://doi.org/10.1007/978-3-031-19433-7_44

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Ontology Reshaping for Knowledge Graph
Construction: Applied on Bosch Welding Case

Dongzhuoran Zhou1,2,∗, Baifan Zhou2,∗, Zhuoxun Zheng1,3, Ahmet Soylu3,
Gong Cheng4, Ernesto Jimenez-Ruiz5,2, Egor V. Kostylev2, and Evgeny Kharlamov1,2

1 Bosch Center for Artificial Intelligence, Germany
2 Department of Informatics, Univeristy of Oslo, Norway

3 Department of Computer Science, Oslo Metropolitan University, Norway
4 State Key Laboratory for Novel Software Technology, Nanjing University, China
5 Department of Computer Science, City, University of London, United Kingdom

Abstract. Automatic knowledge graph (KG) construction is widely used in in-
dustry for data integration and access, and there are several approaches to enable
(semi-)automatic construction of knowledge graphs. One important approach is
to map the raw data to a given knowledge graph schema, often a domain ontology,
and construct the entities and properties according to the ontology. However, the
existing approaches to construct knowledge graphs are not always efficient enough
and the resulting knowledge graphs are not sufficiently application-oriented and
user-friendly. The challenge arises from the trade-off: the domain ontology should
be knowledge-oriented, to reflect the general domain knowledge rather than data
particularities; while a knowledge graph schema should be data-oriented, to cover
all data features. If the former is directly used as the knowledge graph schema,
this can cause issues like blank nodes created due to classes unmapped to data and
deep knowledge graph structures. To this end, we propose a system for ontology
reshaping, which generates knowledge graph schemata that fully cover the data
while also covers domain knowledge well. We evaluated our approach extensively
with a user study and three real manufacturing datasets from Bosch against four
baselines, showing promising results.

Keywords: semantic data integration · knowledge graph · ontology reshaping ·
graph algorithm · automatic knowledge graph construction

1 Introduction

Knowledge graphs (KG) allow to structure information in terms of nodes and edges [1].
The nodes represent entities of interests. The edges that connect entities represent rela-
tionships between them. The edges that connect entities to their data values, represent the
data properties of the entities. In the context of Industry 4.0 [2] and Internet of Things [3],
knowledge graphs have been successfully used in a wide range of applications and in-
dustrial sectors [4,5,6,7] and companies such as Bosch [8,9,10], Siemens [11,12,13],
Festo [14], Equinor [15,16], etc.

Due to the complexity and variety of industrial data (the typical example is relational
tables [17]), it is very desired to facilitate automation of knowledge graph construction.

∗Dongzhuoran Zhou (dongzhuoran.zhou@de.bosch.com) and Baifan Zhou
(baifanz@ifi.uio.no) contributed equally to this work as first authors.
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Fig. 1. (a) Ontology-based knowledge graph construction without ontology reshaping generates
sparse knowledge graphs with many dummy nodes, which are generated based on classes in the
knowledge graph schema that do not have correspondence in the raw data; (b) knowledge graph-
construction with ontology reshaping that converts the general domain ontology to data-specific
knowledge graph schemata, which makes the knowledge graph more user-friendly. (c) Domain
ontology reflects the domain knowledge; (d) The knowledge graph schema needs to reflect raw
relational data schema specificities and usability. orange and red circles: classes that can be
mapped to attributes in the relational data schema; blue circles: classes that cannot be found in
the relational data schema.

A common approach on knowledge graph construction is to construct entities and prop-
erties by relying on a given knowledge graph schema, often a domain ontology (Fig. 1a).
This approach matches the attributes names in raw data to entities and properties in
knowledge graph, then organise them in the same pattern as the schema [18,19]. How-
ever, the existing approaches to construct knowledge graphs are not always efficient
enough and the resulting knowledge graphs are not sufficiently application-oriented and
user-friendly. The challenge arises from the trade-off between the knowledge-orientation
and data-orientation: A classical domain ontology is a formal specification of shared
conceptualisation of knowledge [20,21]. It should be knowledge-oriented, to reflect the
experts knowledge on upper level concepts, specific domains, or applications, rather
than data particularities of arbitrary datasets [22]; while a knowledge graph schema
should be data-oriented, to cover all the features (columns in tables) and have limited
number of blank nodes. If a knowledge-oriented domain ontology is directly used as the
knowledge graph schema, this can cause a series of issues, e.g., the data integrated with
the help of domain ontologies suffers from a high load of blank nodes in knowledge
graphs that result from data integration, e.g., up to 90% of information in the knowledge
graph are blank nodes [23].

Indeed, sparse knowledge graphs are hard to digest for end-users: browsing them is a
bad experience, users will have to go through hordes of blank nodes. Then, blank nodes
affect application development. The applications should adapt to the structure of the
knowledge graph, e.g., by reflecting this structure in SPARQL queries, thus the queries
will have to handle and skip many bank nodes. Then, the bigger a knowledge graph gets
the mode difficult is to process or search in it. Thus, it is desired to reduce the number
of spurious blank nodes and to make knowledge graphs more compact.

Considering an example in Fig. 1c-d, where classes and data properties in the domain
ontology (G𝑑𝑜) are mapped to tables and attributes in the relational schema (𝑅). There
exist many discrepancies between G𝑑𝑜 and 𝑅. If G𝑑𝑜 is directly used as the schema to
construct knowledge graphs, a number of issues will arise: many classes in G𝑑𝑜 that are
not mapped to any tables or attributes in 𝑅 will lead to blank nodes (or dummy nodes);
the attribute DP2 will be connected to a dummy class C6, instead of C1, which it should
be connected to, etc.
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Fig. 2. Schematic illustration of the (a) domain ontology (partial) and (b) an excerpt of knowledge
graph constructed by directly using the domain ontology as the knowledge graph schema, which
has many dummy nodes due to classes in (a) that are unmapped to the data.

Past works like ontology modularisation, summarisation did not address the chal-
lenge, because they still use the domain ontology to construct knowledge graph. Our
previous work [24] could convert the domain ontology to data-oriented ontologies as
knowledge graph schemata, but did not fully exploit the knowledge in the domain on-
tology. A better solution is to have data-oriented knowledge graph schemata while still
preserve knowledge in the domain ontology.

To this end, we propose our knowledge graph construction system that relies on the
OntoReshape+ algorithm to “reshape” a given domain ontology to data-oriented knowl-
edge graph schemata (Fig. 1b), better incorporates knowledge in the domain ontology.
Our contributions are as follows:
– We introduce a use case of knowledge graph generation for welding quality monitoring

which shows the challenge of sparse knowledge graphs constructed from raw data
based on the domain ontology as the schema.

– We derive the four requirements: data coverage, knowledge coverage, user-friendliness
and efficiency, from the use case perspective, and mathematically abstract them.

– We propose an algorithm, OntoReshape+, which can fully satisfy data coverage while
better incorporates knowledge from the domain ontology, compared to the baselines.

– We implemented the algorithms in system of knowledge graph construction enhanced
by ontology reshaping, which can automatically reshape the domain ontology to
data-oriented ontologies that serve as knowledge graph schemata, and construct the
knowledge graph without dummy nodes.

– We evaluated our approach extensively with a user study and three real manufacturing
dataset from Bosch against four benchmarks, showing promising results.
This paper is organised as follows. Sec. 2 introduces Bosch manufacturing welding

use case. Sec. 3 introduces some preliminary knowledge. Sec. 4 presents our method.
Sec. 5 evaluates the method. Sec. 6 discusses related work. Sec. 7 concludes the paper.

2 The Bosch Welding Use Case

Resistance Spot Welding and Quality Monitoring. Resistance spot welding is a type
of automated welding process that accounts for millions of car production globally.
During the welding, the electrode presses the worksheets (car bodies) and passes a high
current through the electrodes and the worksheets [8,25]. The material in the small area
between the electrodes will melt due to the heat generated by electricity and then congeal
after cooling down, forming a welding spot that connects the worksheets by control-
ling robot arm positioning [26,27]. Multiple quality indicators, e.g. the spot diameter,
are monitored to ensure the welding quality. The quality monitoring of resistance spot
welding is essential and involves large amounts of data collected from welding process.
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Fig. 3. (a) An example query to retrieve the current sensor measurement array, over knowledge
graph constructed based on the domain ontology. (b) The query that retrieves the same results
over knowledge graph constructed based on the reshaped ontology, which is much user-friendly
than that in (a).

Bosch Welding Data with High Variety. Bosch welding data come from multiple
sources [28,29], e.g. welding production plants, welding laboratories, analytical or nu-
merical simulation models in Bosch’s research centres. Just taking the production data
as example, whose sources are hundreds of Bosch plants worldwide and many Bosch’s
renowned customers [30]. These data are highly diversified because they are collected
with various sensors settings, formats, databases, software versions, etc. that are tailored
to individual customer needs and factory specifications [31,32,33].

Data Integration, Domain Ontology and Knowledge Graph. Due to the many dis-
crepancies of data semantics and formats, data integration is essential for building
user-friendly, sustainable and efficient industrial solutions [34,35]. Bosch adopts se-
mantic data integration that relies on domain ontologies to transform various data into
uniform data formats, one typical example of which is knowledge graph for it provides an
efficient foundation for many applications. The welding domain ontology is usually gen-
erated by semantic experts or domain experts, and should reflect the general resistance
welding knowledge across different scenarios of production, laboratory and simulation
(Fig. 2). It is modelled in OWL 2 language and has a large number of axioms. One of
such example has 1181 axioms that describe 210 classes, 203 object properties, and 191
datatype properties. In contrast, the various welding datasets may have a much smaller
scope. For example, one production dataset only contains data generated by the welding
control of a particular welding setting or a specific software version, and miss large data
that are measured in other settings, software versions, or in laboratory or simulation. On
the other hand, laboratory and simulation data enjoy the flexibility of sensor installation
that would be otherwise extremely costly to realise in the real production. Traditional
approaches that use a common domain ontology as the knowledge graph schema for
integrating various data will cause a series of issues, discussed in next section.

Cumbersome KGs and Long Queries due to KG Schema. The knowledge graphs
integrated from various data sources with the same domain ontology as the knowledge
graph schema enjoys the data interoperability, namely uniform data access across all
datasets. However, it also has serious drawbacks. Considering the example knowledge
graph (Figure 5b) generated with the schema in Figure 5a, where the black blocks with
white background are dummy nodes, generated because classes in the domain ontol-
ogy is not mapped to anything in the data. The number of such dummy nodes are
very high, up to 63.6%. The dummy nodes cause the knowledge graph to be unneces-
sarily cumbersome, consuming much computational power in generation and storage
resource in the database. In addition, they also lead to superfluously long queries (Fig-
ure 3a) that need to traverse many dummy nodes during data accessing, which is neither
technologically-friendly nor user-friendly. Moreover, our users also complain that some
knowledge graphs based on domain ontologies have disconnected sub-graphs that can-
not be reached with queries starting from the welding operation, which is the most
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important node in the knowledge graphs that they usually start in the queries. They
prefer connected knowledge graphs schemata.
Requirements for the Ontology Reshaping System. Both from the system and user
view, it is highly desired to simplify the knowledge graph schemata to avoid the dummy
nodes while still cover all the data and reflect the domain knowledge, so that the knowl-
edge graphs become much more efficient and queries become simpler (Figure 3b). We
thus derive the following requirements for the new knowledge graph schemata and for
the algorithm and system that generates the knowledge graph schemata and facilitates
knowledge graph construction:
– R1 Data Coverage. The knowledge graph schemata generated by system should still

cover all the data, e.g. including table names and attribute names for relational tables.
– R2 Knowledge Coverage. The knowledge graph schemata should still possibly pre-

serve the knowledge encoded in the domain ontology. It should be similar to the
domain ontology, either judged by the users or with some metrics.

– R3 User-friendliness. The user-friendliness involves at least 3 aspects: R3.1, the
knowledge graphs constructed based on the new knowledge graph schemata should
possible have very few dummy nodes, ideally zero (we call this the succinctness of
the knowledge graph schemata or the knowledge graph); R3.2, the knowledge graphs
schemata should be connected, namely no disconnected sub-graphs, so that the users
can reach all nodes relevant to when they write queries (connectivity); R3.3, users
prefer simpler and shorter queries than long queries when they can retrieve the same
information. Thus, the constructed knowledge graphs should possibly have shallower
structure (simplicity). Apart from that, the system for generating knowledge graph
schemata and constructing knowledge graphs should also be user-friendly. This is
commonly known as system usability [36] in terms of human machine interaction. It is
evaluated by effectiveness, user efficiency (note this is the efficiency of users using the
system, different from the R4 system efficiency), and user satisfaction of the system.

– R4 System Efficiency. The system efficiency measures two aspects: time efficiency,
namely the overall time for generating the knowledge graph schemata and construct-
ing the knowledge graphs, and the space efficiency, the storage space needed for the
knowledge graphs to store the same information.

3 Preliminaries
Concepts and Problem Formulation. We formulate the problem of Ontology Reshap-
ing as problem of computing from a given ontology and some context, a new ontology
that fully satisfies the requirement R1 (Section 2) and achieves possibly good perfor-
mance in terms of R2-R4. In particular, in this work we focus on specific type of contexts
that can be formulated as follows:

Ontology Reshaping : (G𝑑𝑜, 𝑅, 𝑀𝑑𝑜,𝑈) → G𝑟𝑜, 𝑀𝑟𝑜 (1)

where G𝑑𝑜 is a given domain ontology, 𝑅 is a relational schema of relational tables,
𝑀𝑑𝑜 is a mapping between 𝑅 and G𝑑𝑜, 𝑈 is optional user information, and G𝑟𝑜 is the
“reshaped” ontology, 𝑀𝑟𝑜 is a mapping between G𝑟𝑜 and 𝑅– defined as follows:
An Ontology in the context of our work is a directed labelled multigraph G(N , E), e.g.,
projected 6 from a set of OWL 2 axioms (e.g., the domain ontology G𝑑𝑜 and reshaped

6Ontology projections typically do not preserve all information captured by ontologies, but
they are sufficient for our purpose of ontology reshaping.
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ontology G𝑟𝑜) as follows: The classes are projected to class nodesN𝐶 , the datatypes to
datatype nodesN𝐷 , the object properties to object property edges E𝑂, and the datatype
properties to datatype property edges E𝐷 .
A Relational Schema (𝑅) is a finite set relational tables 𝑅 = {T1 (A), ...,T𝑛 (A)}, where
T𝑖 is a table name while A is a finite set of attributes A = {𝑎1, ..., 𝑎𝑘} represented by
their attribute names 𝑎 𝑗 . Among the attributes, there exist attributes called the primary
key A𝑝 (each table only one) that uniquely identifies the rows, (optionally) foreign key
attributes A 𝑓 refer to the primary keys of other tables, and normal attributes A𝑛 that
contain normal data.
A Mapping (𝑀) is a bidirectional function that maps the elements in 𝑅 to elements in
G. The Raw-to-DO Mapping (raw data to domain ontology mapping) 𝑀𝑑𝑜 maps the
table names T in 𝑅 to class nodesN𝐶 in G𝑑𝑜, normal attributes A𝑛 to datatype property
edges E𝐷 , and foreign keys A 𝑓 to object property edges E𝑂, and vice versa. Similarly,
the generated Raw-to-RO Mapping (raw data to reshaped ontology mapping) 𝑀𝑟𝑜 maps
the T, A𝑛, A 𝑓 to N𝐶 , E𝐷 , E𝑂 in G𝑟𝑜. In this work, we assume the mapping 𝑀𝑑𝑜 is
one-to-one mapping that maps all elements in 𝑅 to elements in G𝑑𝑜. 7 Similarly, the
generated 𝑀𝑟𝑜 is also one-to-one mapping.

𝑀 : {T↔ N𝐶 ,A𝑛 ↔ E𝐷 ,A 𝑓 ↔ E𝑂 | T,A𝑛,A 𝑓 ∈ 𝑅, N𝐶 , E𝐷 , E𝑂 ∈ G}.
The User Information (𝑈) can be understood as (1) a mandatory label that labels a node
in G𝑑𝑜 as the most important node for the users, named as the main node, 𝑛𝑚; (2) an
extra set of mappings that map some normal attributes A𝑛 in 𝑅 to class nodes N𝐶 in
G𝑑𝑜:𝑈 : {A𝑛 ↔ N𝐶 | A𝑛 ∈ 𝑅,N𝐶 ∈ G𝑑𝑜}.
The Dummy Nodes N𝑑𝑢𝑚𝑚𝑦 are the nodes in the knowledge graph schema G (and the
knowledge graph constructed based on G) that cannot be mapped to any elements in 𝑅.

Mathematical Abstraction of Requirements. Following the requirements for the sys-
tem in Section 2, we derive their mathematical abstraction. The R1-R3 are designed in
a way that they range from 0 to 1. The closer to 1 they are, the better performance the
ontology reshaping algorithm has
– R1 Data Coverage, this is measured by the number of elements in 𝑅 mapped to G𝑟𝑜:
– R2 Knowledge Coverage, G𝑟𝑜 should preserve possible many nodes and edges in
G𝑑𝑜, measured by the number of elements in G𝑑𝑜 kept in G𝑟𝑜. We use the formula
to transform this metric to a range between(0,1]: ( |{n}| + |{e}| ) / ( |N𝑑𝑜 | + |E𝑑𝑜 | ),
where ∃ 𝑛𝑑𝑜 ∈ N𝑑𝑜, 𝑛↔ 𝑛𝑑𝑜, ∃ 𝑒𝑑𝑜 ∈ E𝑑𝑜, 𝑒 ↔ 𝑒𝑑𝑜, n,e∈ G𝑟𝑜.

– R3 User-friendliness, calculated in 3 aspects:
• R3.1 Succinctness, measured by the percentage of non-dummy nodes divided by

the total number of nodes: |N𝑑𝑢𝑚𝑚𝑦 |/|N𝑟𝑜 |, N𝑑𝑢𝑚𝑚𝑦 ⊂ N𝑟𝑜.
• R3.2 Connectivity, determined by the number of required extra edges 𝑒 needed to

connect G𝑑𝑜. We use the formula to transform this metric to a range between (0,1]:
1/(1 + #𝑒).
• R3.3 Simplicity, determined by the graph diameter 𝑑 of G𝑟𝑜. We use the formula

to transform this metric to a range between (0,1]: 1/𝑑.
– R4 Efficiency. The time efficiency is measured by the total time of ontology reshaping

and knowledge graph construction based on knowledge graph schema. The space effi-
ciency is measured by the storage space needed for the constructed knowledge graph.
7Note it is not the same case for the other way around: there normally exist many nodes or

edges in G𝑑𝑜 that cannot be mapped to any elements in 𝑅.
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Fig. 4. An architectural overview of our KG solution. KG: knowledge graph. KGS: KG schema.

4 Our Approach

4.1 Architectural Overview

We now walk through the readers through our ontology reshaping system (Figure 4)
The system consists of four layers: (Non-KG) Data Layer, Semantic Layer, KG Data
Layer, and Application Layer. From the very left, the (Non-KG) Data Layer contains the
Welding Raw Data. The Welding Raw Data are in the form of relational tables and also
have their corresponding Relational Schemata. The Semantic Layer contains several
semantic artefacts and semantic modules. The OntoReshape+ module takes the Domain
Ontology G𝑑𝑜, the Raw-to-DO Mapping 𝑀𝑑𝑜 (raw data to domain ontology), and the
Relational Schemata 𝑅 (in addition, the user information 𝑈) as inputs, and generates
a series of Reshaped Ontology G𝑟𝑜 (KG Schemata at the same time) and their corre-
sponding Raw-to-RO Mappings 𝑀𝑟𝑜. These KG Schemata and Raw-to-RO Mappings
are then used by the KG Construction module to construct the Welding KGs from the
Welding Raw Data. And common Queries are selected by the users for welding quality
monitoring. The Welding KGs in the KG Data Layer then can be used for applications
like Query-Based Analytics and ML Analytics [4] in Application Layer.

4.2 Semantic Artefacts

Ontologies. The three different type of ontologies are domain ontology, relational
schema graph and KG schema. Domain Ontology G𝑑𝑜. The domain ontology mod-

els the general knowledge of resistance welding spot manufacturing process (Fig. 2)
and should cover all attributes in the common Bosch datasets in our consideration.
The domain ontology has the RSWOperation as the most important class, where the
RSWOperation is a welding operation that produces an atomic product. The RSWOper-
ation takes sheet components with specified combination in, choose the specific welding
machine and outputs the welding sheet combination with welding spots.

Reshaped ontology G𝑟𝑜. The reshaped ontology is similar to domain ontologies. Our
reshaped ontology are reshaped from the Domain Ontology G𝑑𝑜 by Alg. 1. An exam-
ple is given by Fig. 5d. The reshaped ontologies are the simplified knowledge graph
schemata, and keep the necessary parts to cover the specified datasets, which are then
used as the schema of Welding knowledge graph.
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Fig. 5. (a) Schematic illustration of a small excerpt of the domain ontology G𝑑𝑜. (b) Intermediate
results in OntoReshape+: Tree 1 T1 and (c) Tree 2 T2. (d) Reshaped ontology G𝑟𝑜. (e) knowledge
graph constructed based on (d).

Mapping. The system has two types of mappings: Raw-to-DO Mapping 𝑀𝑑𝑜 (raw data
to domain ontology) and the Raw-to-RO Mapping 𝑀𝑟𝑜 (raw data to reshaped ontology).
Raw-to-DO Mapping 𝑀𝑑𝑜 is generated manually by users (welding experts). It should
map all tables and attributes in the data to the nodes or edges in the domain ontology.
Thus, each dataset has its own 𝑀𝑑𝑜.
Raw-to-RO Mapping 𝑀𝑟𝑜 is automatically generated by the ontology reshaping algo-
rithm, accompanying the reshaped ontology G𝑟𝑜. It is needed for every G𝑟𝑜 since every
G𝑟𝑜 will be used for data integration. 𝑀𝑟𝑜 reuses most of the 𝑀𝑑𝑜 and should map all
tables and attributes in the raw data to the nodes and edges in G𝑟𝑜.
Queries. The queries in our system are SPARQL queries with the backbone as Basic
Graph Pattern (BGP) query.

4.3 The Algorithm OntoReshape+

Intuition. The intuition behind our algorithm OntoReshape+ is to select subsets of nodes
and edges from a given domain ontology G𝑑𝑜, which can be mapped to a relational
schema 𝑅 or included in the user information 𝑈, and then connect the selected subsets
with possibly more edges in G𝑑𝑜, thus generating the reshaped ontology G𝑟𝑜. More
specifically, OntoReshape+ does so in three steps:
– Step 1, it transforms G𝑑𝑜 (Figure 5.a) to a tree T1 (Figure 5.b) by removing some

edges, where the tree has the main node 𝑛𝑚 given in𝑈 as the root;
– Step 2, it selects the subsets of nodes and edges of T1 that are mapped in 𝑅 by 𝑀𝑑𝑜

or pointed by the users, creating a T2 (Figure 5.c);
– Step 3, some deleted edges in Step1 and Step 2 are added back to T2, where these

edges have both their head and tail in T2, resulting G𝑟𝑜 (Figure 5.d).
Step 1. Graph2Tree. With 𝑛𝑚 as the root node, Step 1 (Alg. 2) expands the tree T1 with
nodes and edges selected from G𝑑𝑜 layer by layer, in a way that there exists only one path
between any node and 𝑛𝑚. We first clarify several concepts used in the step:N 𝑙𝑒𝑎 𝑓 refer to



Ontology Reshaping for KG Construction: Applied on Bosch Welding Case 9

Algorithm 1: Schema Reshaping
Input: G𝑑𝑜, 𝑅, 𝑀𝑑𝑜,𝑈
Output: G𝑟𝑜, 𝑀𝑟𝑜

1 T1, E𝑑𝑒𝑙𝑒𝑡𝑒𝑑1 ← Graph2Tree(G𝑑𝑜,𝑈)
2 T2, E𝑑𝑒𝑙𝑒𝑡𝑒𝑑2 , 𝑀𝑟𝑜 ← TreeCollapse(T1, 𝑅, 𝑀𝑑𝑜, 𝑈)
3 G𝑟𝑜 ← T2 ∪ {𝑒(𝑛𝑡 , 𝑛ℎ) | 𝑒(𝑛𝑡 , 𝑛ℎ) ∈ E𝑑𝑒𝑙𝑒𝑡𝑒𝑑1 ∪ E𝑑𝑒𝑙𝑒𝑡𝑒𝑑2 , 𝑛𝑡 ∈ T2, 𝑛ℎ ∈ T2}

the set of leaf nodes ofT1,N𝑟𝑖𝑛𝑔 refers to the set of “ring nodes” (nodes in a outer layer of
the leaf nodes) that are potential to be added toT1,N 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 is the set of visited nodes, and
E𝑑𝑒𝑙𝑒𝑡𝑒𝑑1 is a set of the deleted edges. Then we introduce the procedure. First, Alg. 2 reads
the user information to mark the main node 𝑛𝑚, and initialise T1, N 𝑙𝑒𝑎 𝑓 , N 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 with
𝑛𝑚, and the set E𝑑𝑒𝑙𝑒𝑡𝑒𝑑1 with the empty set (Line 1). Next, ifN 𝑙𝑒𝑎 𝑓 is not empty, Alg. 2
does the following steps: it initialises an empty set N𝑟𝑖𝑛𝑔 (Line3), then it enumerates
each node 𝑛𝑖 in the currentN 𝑙𝑒𝑎 𝑓 (Line 4) and create an empty set of ring nodesN𝑟𝑖𝑛𝑔

𝑖
that belong to 𝑛𝑖 . For each leaf node 𝑛𝑖 , it enumerates the edges incidental to the node
𝑛𝑖 in G𝑑𝑜, 𝑒𝑢 (𝑛𝑖 , 𝑛 𝑗 ) 8, but not in E𝑑𝑒𝑙𝑒𝑡𝑒𝑑1 , and exams the other node 𝑛 𝑗 that this edge is
connected to. If 𝑛 𝑗 is not visited (not inN 𝑣𝑖𝑠𝑖𝑡𝑒𝑑), then the node 𝑛 𝑗 and the edge 𝑒𝑢 (𝑛𝑖 , 𝑛 𝑗 )
are added to T1 (Line 8), 𝑛 𝑗 is added to N 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 and a new ring set N𝑟𝑖𝑛𝑔

𝑖
that belongs

to 𝑛𝑖 (Line 9-10), and . If 𝑛 𝑗 is already visited, the edge 𝑒𝑢 (𝑛𝑖 , 𝑛 𝑗 ) is added to E𝑑𝑒𝑙𝑒𝑡𝑒𝑑1
(Line 12). After all 𝑒𝑢 (𝑛𝑖 , 𝑛 𝑗 ) are enumerated, all elements inN𝑟𝑖𝑛𝑔

𝑖
are added toN𝑟𝑖𝑛𝑔

(Line 13). After all 𝑛𝑖 are numerated, the N𝑟𝑖𝑛𝑔 becomes the new N 𝑙𝑒𝑎 𝑓 (Line 14).

Step 3. Tree collapse. Step 3 (in Algorithm 3) selects nodes in G𝑟𝑠 , by user or rule, and
save them inN 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 , then deletes the nodes not inN 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 from T2 which is copied
by T1, at the same time keeps the connectivity of T2. It takes 4 inputs: the tree T1, the
relational schema 𝑅, raw data to domain ontology mapping 𝑀𝑑𝑜, and user information
𝑈. The algorithm firstly inisialised the ring node setN𝑟𝑖𝑛𝑔 with main node 𝑛𝑚, T2 with
T1, and deleted edge set E𝑑𝑒𝑙𝑒𝑡𝑒𝑑2 forT2 with empty set (Line 1). Then the algorithm
selects the nodes in relational schema graph G𝑟𝑠 , or with datatype property having "ID"
or “Name", or by user choices. These nodes are added intoN 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (Line 2). IfN𝑟𝑖𝑛𝑔

is not empty, the Algorithm 3 does the following steps: it inisialise an empty setN𝑟𝑖𝑛𝑔
𝑛𝑒𝑥𝑡 ,

then it enumerate each node 𝑛𝑖 in the current N 𝑙𝑒𝑎 𝑓 (Line 4). For each leaf node 𝑛𝑖 , it
enumerates the edges incidental to the node 𝑛𝑖 in T1, 𝑒𝑢 (𝑛𝑖 , 𝑛 𝑗 ). If 𝑛 𝑗 is not selected (not
inN 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑), then the node 𝑛 𝑗 and edge 𝑒𝑢 (𝑛𝑖 , 𝑛 𝑗 ) are deleted from T2 and 𝑒𝑢 (𝑛𝑖 , 𝑛 𝑗 ) is
added to E𝑑𝑒𝑙𝑒𝑡𝑒𝑑2 . If the edge 𝑒𝑢 (𝑛 𝑗 , 𝑛𝑘) is in T1,then 𝑒𝑢 (𝑛 𝑗 , 𝑛𝑘) is deleted fromT2, and a
new edge 𝑒𝑢 (𝑛𝑖 , 𝑛 𝑗 ) with same label of 𝑒𝑢 (𝑛 𝑗 , 𝑛𝑘) is added toT2. The 𝑒𝑢 (𝑛 𝑗 , 𝑛𝑘) is added
to N 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 and the 𝑛𝑖 is added to N𝑟𝑖𝑛𝑔

𝑛𝑒𝑥𝑡 . If 𝑛 𝑗 is in N 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 , 𝑛 𝑗 is added to N𝑟𝑖𝑛𝑔
𝑛𝑒𝑥𝑡 .

After all 𝑛𝑖 are enumerated, TheN𝑟𝑖𝑛𝑔 is added toN𝑣𝑖𝑠𝑖𝑡𝑒𝑑 , theN𝑟𝑖𝑛𝑔
𝑛𝑒𝑥𝑡 becomes the new

N𝑟𝑖𝑛𝑔. After N𝑟𝑖𝑛𝑔 is empty, items in 𝑀𝑑𝑜, of which exist in T2, are added in 𝑀𝑟𝑜.

Step 4. Add edges back. The algorithm adds the edge back into T2, which is in E𝑑𝑒𝑙𝑒𝑡𝑒𝑑1
or E𝑑𝑒𝑙𝑒𝑡𝑒𝑑2 , and the endpoints are both in T2. The final tree is the reshaped ontologyG𝑟𝑜.

8Here we use 𝑒𝑢 (𝑛𝑖 , 𝑛 𝑗 ) to represent both the edge 𝑒(𝑛𝑖 , 𝑛 𝑗 ) and 𝑒(𝑛𝑖 , 𝑛 𝑗 )
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Algorithm 2: Graph2Tree
Input: G𝑑𝑜,𝑈
Output: T1, E𝑑𝑒𝑙𝑒𝑡𝑒𝑑1

1 Initialisation: 𝑛𝑚 ←ReadUserInfo(𝑈); T1,N 𝑙𝑒𝑎 𝑓 ,N𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← {𝑛𝑚}; E𝑑𝑒𝑙𝑒𝑡𝑒𝑑1 ← {}
2 while N 𝑙𝑒𝑎 𝑓 ≠ ∅ do
3 N𝑟𝑖𝑛𝑔 ← {}
4 foreach 𝑛𝑖 ∈ N 𝑙𝑒𝑎 𝑓 do
5 N𝑟𝑖𝑛𝑔

𝑖
← {}

6 foreach 𝑒𝑢 (𝑛𝑖 , 𝑛 𝑗 ) ∈ G𝑑𝑜 \ E𝑑𝑒𝑙𝑒𝑡𝑒𝑑1 , 𝑛 𝑗 ∈ G𝑑𝑜 do
7 if 𝑛 𝑗 ∉ N𝑣𝑖𝑠𝑖𝑡𝑒𝑑 then
8 T1 := T1 ∪ {𝑛 𝑗 , 𝑒𝑢 (𝑛𝑖 , 𝑛 𝑗 )}
9 N𝑣𝑖𝑠𝑖𝑡𝑒𝑑 := N𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∪ {𝑛 𝑗 }

10 N𝑟𝑖𝑛𝑔

𝑖
:= N𝑟𝑖𝑛𝑔

𝑖
∪ {𝑛 𝑗 }

11 else
12 E𝑑𝑒𝑙𝑒𝑡𝑒𝑑1 := E𝑑𝑒𝑙𝑒𝑡𝑒𝑑1 ∪ {𝑒𝑢 (𝑛𝑖 , 𝑛 𝑗 )}
13 N𝑟𝑖𝑛𝑔 := N𝑟𝑖𝑛𝑔 ∪ N𝑟𝑖𝑛𝑔

𝑖

14 N 𝑙𝑒𝑎 𝑓 ← N𝑟𝑖𝑛𝑔

Algorithm 3: TreeCollapse
Input: T1, 𝑅, 𝑀𝑑𝑜, 𝑈

Output: T2, E𝑑𝑒𝑙𝑒𝑡𝑒𝑑2 , 𝑀𝑟𝑜

1 Initialisation: N𝑟𝑖𝑛𝑔 ← {𝑛𝑚}, T2 ← T1, E𝑑𝑒𝑙𝑒𝑡𝑒𝑑2 ← {}
2 N 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ← GetNodes(𝑅, 𝑀𝑑𝑜) ∪ ReadUserInfo(𝑈) ∪ IdentifyID(G𝑟𝑠)
3 while N𝑟𝑖𝑛𝑔 ≠ ∅ do
4 N𝑟𝑖𝑛𝑔

𝑛𝑒𝑥𝑡 ← {}
5 foreach 𝑛𝑖 ∈ N𝑟𝑖𝑛𝑔 do
6 foreach 𝑒𝑢 (𝑛𝑖 , 𝑛 𝑗 ) ∈ T1 do
7 if 𝑛 𝑗 ∉ N 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 then
8 T2 := T2 \ {𝑛 𝑗 , 𝑒𝑢 (𝑛𝑖 , 𝑛 𝑗 )}
9 E𝑑𝑒𝑙𝑒𝑡𝑒𝑑2 := E𝑑𝑒𝑙𝑒𝑡𝑒𝑑2 ∪ {𝑒𝑢 (𝑛𝑖 , 𝑛 𝑗 )}

10 if 𝑒𝑢 (𝑛 𝑗 , 𝑛𝑘) ∈ T1 then
11 T2 := T2 \ {𝑒𝑢 (𝑛 𝑗 , 𝑛𝑘)}
12 T2 := T2 ∪ {𝑒𝑢 (𝑛𝑖 , 𝑛𝑘)}, where 𝑒𝑢 (𝑛𝑖 , 𝑛𝑘) adopts the label of

𝑒𝑢 (𝑛 𝑗 , 𝑛𝑘)
13 E𝑑𝑒𝑙𝑒𝑡𝑒𝑑 := E𝑑𝑒𝑙𝑒𝑡𝑒𝑑 ∪ {𝑒𝑢 (𝑛 𝑗 , 𝑛𝑘)}
14 N𝑟𝑖𝑛𝑔

𝑛𝑒𝑥𝑡 := N𝑟𝑖𝑛𝑔
𝑛𝑒𝑥𝑡 ∪ {𝑛𝑖}

15 else
16 N𝑟𝑖𝑛𝑔

𝑛𝑒𝑥𝑡 := N𝑟𝑖𝑛𝑔
𝑛𝑒𝑥𝑡 ∪ {𝑛 𝑗 }

17 N𝑟𝑖𝑛𝑔 ← N𝑟𝑖𝑛𝑔
𝑛𝑒𝑥𝑡

18 𝑀𝑟𝑜 ← 𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑇2, 𝑀𝑑𝑜)
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Table 1. User profiles in the user study

# Age Occupation Education Sem. Web Query Welding skills
P1 28 R&D Engineer MSc 2 2 3
P2 29 R&D Engineer MSc 2 1 3
P3 29 Welding Engineer MSc 1 0 3
P4 41 Senior Welding Expert MSc 0 0 5
P5 45 Welding Engineer MSc 0 0 4
P6 25 Welding Engineer BSc 0 0 4
P7 42 Software Engineer BSc 3 2 2
P8 39 Production Engineer BSc 0 0 3
P9 23 Data Scientist MSc 2 2 2
P10 44 Data Scientist PhD 2 1 2

Table 2. Tasks and type in the user study
# Tasks Type

T1 Select "RSWOperation" as the main node Type 1
T2 Mark “SheetComponent1” as a table node Type 1
T3 Create a new table node “SheetCombination” Type 1
T4 Inspect operation curves on 𝐾𝐺𝑟𝑜 Type 2
T5 Inspect operation curves on 𝐾𝐺𝑑𝑜 Type 2
T6 Detect abnormal welding operations 𝐾𝐺𝑟𝑜 Type 2
T7 Detect abnormal welding operations 𝐾𝐺𝑑𝑜 Type 2

Fig. 6. Time/correctness for tasks

4.4 knowledge graph Construction

The KG Construction module takes the reshaped ontologyG𝑟𝑜, the Raw-to-RO Mapping
𝑀𝑟𝑜 and the Welding Raw Data as inputs, and generates a series corresponding Welding
KG. We enumerate all class nodes in G𝑟𝑜. For each node and its datatype property edges,
we find the primary keys for node and attributes for the edge respectively in the mapped
tables and attributes in Welding Raw Data via 𝑀𝑟𝑜, and create an entity for each key, and
create datatype properties for each such edge. Next, we enumerate all object property
edges in G𝑟𝑜, find the mapped foreign keys in the Welding Raw Data via 𝑀𝑟𝑜, and create
links (object properties) between the entity represented by the primary key and the entity
represented by the foreign key. An small excerpt is shown in Figure 5e, which shows the
knowledge graphs constructed based on G𝑟𝑜 as the schema has zero dummy nodes.

5 Evaluation

This section includes a preliminary user study and a system evaluation that evaluate our
system from the user view and system view, respectively.

5.1 Preliminary User Study

Participants. We deployed our system with tasks and questionnaires on a Bosch en-
vironment and received a number of results. The participants (Table 1) include Bosch
welding experts, engineers, welding, and production, and additionally software engi-
neers and data scientists. They need to input their age, occupation, education and skills
for semantic web, query, and welding, ranging from 0 (no knowledge), to 5 (experts).

Tasks. We selected 7 tasks (Table 2) that should reach a balance between testing the
system and maintaining a controllable scope. The tasks include two types: Type 1, to
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Table 3. Questionnaires and scores for subjective evaluation. The scores range from 1 (disagree),
2 (fairly disagree), 3 (neutral), 4 (fairly agree), to 5 (agree). The column Score is aggregated by
reversing the scores of negative questions (Q2, 4, 6, 8, 10, 12) and then computing the average
(avg.) and standard deviation (std.) (avg.±std.)

# Questions Dimension Score

Q1 I’m in general satisfied that 𝐾𝐺𝑟𝑜 cover the data that I need. Data
coverage 4.31 ± 0.87

Q2 I found 𝐾𝐺𝑟𝑜 miss some welding parameters that I need.
Q3 I felt the knowledge represented by 𝐾𝐺𝑟𝑜 is reasonable. Knowledge

coverage 4.63 ± 0.32
Q4 I thought 𝐾𝐺𝑟𝑜 differs much from my understanding of welding.
Q5 I like that in 𝐾𝐺𝑟𝑜 all data can be reached from the main node.

4.23 ± 0.71

Q6 I do not think that the queries over 𝐾𝐺𝑟𝑜 become simpler.
Q7 I found that it is great that 𝐾𝐺𝑟𝑜 contains no dummy nodes. User-

friendlinessQ8 I hardly found 𝐾𝐺𝑟𝑜 became simpler compared to 𝐾𝐺𝑑𝑜.
Q9 I found very confident using the system
Q10 I needed to learn many things before I could use the system.
Q11 I like that 𝐾𝐺𝑟𝑜 saves storage space. System

efficiency 4.46 ± 0.33
Q12 I find it unnecessary the small amount of time saved by 𝐾𝐺𝑟𝑜.

input user information for ontology reshaping and Type 2, to select one query from
four options (only one option is correct) to perform data inspection or diagnostics in
the knowledge graph (𝐾𝐺𝑟𝑜) with the reshaped knowledge graph schema and in the
knowledge graph (𝐾𝐺𝑑𝑜) with the domain ontology as the schema. Type 1 measure the
usability of using our ontology reshaping system, and Type 2 compares users’ perception
of querying knowledge graphs with and without the ontology reshaping. Specifically,
Type 1 has three tasks: T1, select the main node; T2, mark an attribute to table node in
𝑅; T3, create a new table node in 𝑅. Type 2 has four tasks: T4, select a query to inspect
operation curves in 𝐾𝐺𝑟𝑜; T5, do the same on T4 in the 𝐾𝐺𝑑𝑜; T6, select a query to
detect abnormal welding operations (exceeding tolerance limit) in the 𝐾𝐺𝑟𝑜; T7, do the
same on T6 in the 𝐾𝐺𝑑𝑜.

Workflow of the User Study. For the user study, we first give the participants a short
introduction with background knowledge, including basics of semantic technology like
ontology, knowledge graph construction, and SPARQL query. Then, we explain them
some relevant concepts of welding and the welding data (some users are not welding
experts), present them visualisation of resistance welding domain ontology (Figure 5).
Then, we introduce them our tasks and how to use our GUI system. This introduction
text is shown later constantly during the tasks. After that, the participants use the GUI
system to perform the tasks. We record the time they use for each task, and the results
of their actions stored in json. At the end, they answer a questionnaire (Table 3) with 12
questions that represent dimensions of their satisfaction about the system.

Results and Discussion. The results reflect the system usability (R3) [36] in efficiency
(time used for tasks), effectiveness (correctness of user actions), and satisfaction. The
recorded time (Fig. 6) show that the users need very limited time (average 28.0s) to
perform the tasks, and thus the system is efficient. We compared the user results with
a list of recommended results (we designed the tasks in a way so that the comparison
is possible) and calculate the correctness. The results show (Fig. 6) that the correctness
is always very high (average 82.1%) for the ontology reshaping tasks (Type 1) and for
the query on the 𝐾𝐺𝑟𝑜 (Type 2). The results also show that the correctness of selecting
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Table 4. The data coverage of all methods is 100%, and thus not displayed in the table. B: baseline.

Dataset Evaluation Metrics Baseline Methods / Ontology Reshape Methods
B1: G𝑑𝑜 B2: G𝑚𝑑 B3: G𝑟𝑠 B4: OntoReshape OntoReshape+

knowledge coverage 1.00 0.36 0.21 0.42 0.74
Production1 user-

friendliness

succinctness 0.38 0.46 1.00 1.00 1.00
(𝐷1) connectivity 1.00 0.50 1.00 1.00 1.00

simplicity 0.13 0.17 0.33 0.33 0.33
knowledge coverage 1.00 0.42 0.25 0.42 0.61

Production2 user-
friendliness

succinctness 0.45 0.57 1.00 1.00 1.00
(𝐷2) connectivity 1.00 0.50 1.00 1.00 1.00

simplicity 0.13 0.14 0.33 0.33 0.33
knowledge coverage 1.00 0.45 0.27 0.42 0.81

Lab data user-
friendliness

succinctness 0.51 0.59 1.00 1.00 1.00
(𝐷3) connectivity 1.00 0.50 0.60 1.00 1.00

simplicity 0.13 0.17 0.33 0.33 0.33

queries on 𝐾𝐺𝑟𝑜 is higher than that on 𝐾𝐺𝑑𝑜 (T4>T5, T6>T7), which demonstrates the
benefit of our ontology reshaping system.

The questionnaires (Table 3) subjectively evaluate the users’ satisfaction about our
system in four requirements (Section 2). From the aggregated scores, it can be seen that
the users unanimously agree that our ontology reshaping system has good data coverage
(R1); The knowledge coverage (R2) is scored 3.8, relatively good but has improvement
room; The user-friendliness (R3) that covers connectivity, succinctness, simplicity and
usability is also evaluated relatively high; The users are also quite satisfied with the
system efficiency in terms of saving time and space (R4).

5.2 System Evaluation with Bosch Welding Dataset

We evaluated our system with OntoReshape+ on 3 industrial datasets. In addition to base-
line of using G𝑑𝑜 as knowledge graph schema, we also compare with other 3 baselines.

Data Description. We now describe the datasets, including 3 industrial datasets 𝐷 for
knowledge graph construction and four inputs for ontology reshaping: 1 domain ontology
G𝑑𝑜, 3 relational schema 𝑅, 3 data to domain mappings 𝑀 , and user information𝑈.

Industrial datasets 𝐷. Two production datasets 𝐷1 and 𝐷2 are collected from production
lines in a factory of resistance spot welding in Germany. The third dataset 𝐷3 is collected
from a laboratory for welding research in Germany. After some processing they are
transformed into relational tables. 𝐷1 and 𝐷2 contain 4 types of tables: they are the
welding operation table, welding setting table, operation curve tables and reference
curve tables. 𝐷1 has 121 attributes and 𝐷2 has 147 attributes. 𝐷3 contains 5 types of
tables: similar 4 types of tables as in 𝐷1 and 𝐷2 and an extra table of control parameter
setting. 𝐷3 has 160 attributes. For the evaluation purpose and a fair comparison, we
select 1000 welding operations from each dataset.

Domain ontology G𝑟𝑠𝑤 . The domain ontology models general knowledge of resistance
spot welding. It is projected to a graph G𝑟𝑠𝑤 with 210 class nodes and 191 datatype
nodes, and 203 edges for object properties and 191 edges for datatype properties.

Relational Schema 𝑅 and Mappings 𝑀 . The 3 relational schemata are information
of table names and attribute names stored in csv. They are extracted from the three
datasets 𝐷1, 𝐷2, and 𝐷3. The 3 mappings map the table names and attribute names in
the relational schemata to the domain ontology G𝑟𝑠𝑤 . These two help to generate the
relational graphs G𝑟𝑠 .
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Fig. 7. Evaluation of space efficiency with storage taken by the constructed knowledge graph
(a) and consumed time (b). The figure exemplifies the results obtained on 𝐷1 since the results
obtained on 𝐷2 and 𝐷3 are very similar.

Baselines. We compare the OntoReshape+ algorithm with the traditional approach
(Baseline 1, B1) that directly uses the domain ontology G𝑑𝑜 as the schema for knowl-
edge graph construction, in terms of the four requirements and 7 performance metrics
(Section 3). In addition, we also compare with three other state-of-the-art baselines:
Baseline 2 (B2) adopts an established ontology modularisation method [37] and uses
the graph G𝑚𝑑 projected from the modular ontology as the knowledge graph schema,
which is computed with a signature of all table and attribute names in 𝑅; Baseline 3
(B3) uses the relational graph G𝑟𝑠 as the knowledge graph schema, which is trivially
transformed from the relational schema 𝑅 and the mapping 𝑀𝑑𝑜; Baseline 4 (B4) is a
previous work of ontology reshaping [24].

Results and Discussion. We now discuss the performance of OntoReshape+ in terms
of the 4 requirements. We show the results evaluated in Table 4 and Fig.7. We first look
at 𝐷1. It can be seen from Fig. 7a that our OntoReshape+ outperforms the RawData,
B1, B2 significantly in terms of the storage space (system efficiency R4), fairly better
than B4, and slightly worse but comparable to B3. In terms of time efficiency (Fig. 7b),
OntoReshape+ significantly outperforms B1 and B2, while achieving comparable per-
formance with respect to B3, B4.

All approaches have 100% data coverage (R1). Thus it is not displayed in the table. In
terms of knowledge coverage (R2), it can be seem that OntoReshape+ outperforms B2-
B4 significantly, which means OntoReshape+ keep the most knowledge of the domain
ontology. It of course cannot beat B1 because B1 directly uses G𝑑𝑜 as the knowledge
graph schema, but B1 suffers substantially in terms of the later two metrics. The user-
friendliness (R3) is decomposed to three metrics. OntoReshape+ outperforms B1 and B2,
and is equally good as B3 and B4 concerning succinctness. In respect to connectivity B3
is the worst and the others are equally good. As to simplicity, OntoReshape+ outperforms
B1, B2 and B4 and is equally good as B3. Thus, OntoReshape+ either beats the baselines
or is equally good as some. Regarding efficiency (R4), OntoReshape+ saves time and
space for knowledge graph generation when compared to B1, B2, and is comparable
to B3 and B4. When looking at 𝐷2 and 𝐷3, it can be seem that the results are quite
consistent across the datasets.

In summary, baselines B1, B2, B3 all are too focused either on knowledge coverage
or data coverage. B4 and OntoReshape+ are a balance between them, but OntoReshape+
outperforms B4 in knowledge coverage and is comparable in other requirements.
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6 Related Work
Knowledge graphs provide semantically structured information that can be interpreted
by computing machines and are widely used in industries [11,6]. The methods for knowl-
edge graph construction have also been studied in many works [38,39], with focus on the
rule-based approach, the combination of rule-based and similarity-based approach [40],
the connection of data silos methods [11]. RDF lifting and lowering [41]. Commercial
tools like OpenRefine [42] and OntoRefine [43] can transfer XML or tabular data to
knowledge graphs or generate RML and SPARQL [44]. Yet, they do not provide docking
interface to our ML Mapping Reasoner/Annotator that reasons over domain ontologies,
mappings and ML ontology.

The problem of transforming a bigger ontology to a smaller ontology of the same
domain is often referred to as ontology modularisation [45,46] and ontology summari-
sation [47,48]. Most of them focus on the problem of selecting a subset of the ontology
that is interesting for the users [49], but they still cannot avoid dummy entities. Works on
ontology reengineering [50,51] also talked about reuse/adjustment of ontologies, they
do not focus on the challenge of creating an ontology that reflect data specificities.

Previous work on ontology evolution [37] did not focus on the data coverage re-
quirement. Our previous work on ontology reshaping [24] insufficiently address the
knowledge coverage. Works on ontology bootstrapping [52,53,54] attempt to align on-
tologies with relational data schemata by automatically computing mappings between
the ontologies and the data schemata, but the ontologies in these work only serve as a
vocabulary for computing the mapping and new ontologies. Not much information from
the original ontologies are retained.

In summary, past works insufficiently addressed the requirements R1-R4. Thus, we
propose our work that can better address them overall.

7 Conclusion and Outlook
This work addresses the challenge of sparse knowledge graphs with many dummy
nodes when domain ontologies that reflect general knowledge are directly used as the
knowledge graph schemata. To this end, we proposed the ontology reshaping system
and the algorithm OntoReshape+. We evaluated the approach with a user study and a
system evaluation in terms of four requirements, which shows promising results.

Our system is currently deployed in our Bosch evaluation environment, and we
are considering to push it further into a more advanced and strict evaluation phase of
production that runs in real-time. To show the benefits, we also plan to demonstrate our
knowledge graph solution with more users and more use cases. In the future, we plan to
study the compatibility between domain ontologies and knowledge graph schemata, i.e.
to ensure that the semantics of the domain is respected in the smaller ontology.

We also plan to compare our work with the body of research, where we actively
contributed, on ontology evolution [55,56,57], knowledge modelling and summari-
sation [58,59,60,61], ontology extraction or bootstrapping [62,63], and to investigate
how to extend our work to account for ontology aggregation techniques [64,65], and
to develop end-user interfaces for exploration and improvement of reshaped ontolo-
gies [66,67,68].
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