IT City Research Online
UNIVEREIST%( ]OggLfNDON

City, University of London Institutional Repository

Citation: Petricek, T., van den Burg, G. J. J., Nazabal, A., Ceritli, T., Jimenez-Ruiz, E. &
Williams, C. K. I. (2023). Al Assistants: A Framework for Semi-Automated Data Wrangling.
IEEE Transactions on Knowledge and Data Engineering, 35(9), pp. 9295-9306. doi:
10.1109/tkde.2022.3222538

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/29107/

Link to published version: https://doi.org/10.1109/tkde.2022.3222538

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.



City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk



http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Final manuscript version of paper accepted for publication in /EEE Transactions on Knowledge and Data Engineering.

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Al Assistants: A Framework for
Semi-Automated Data Wrangling
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Abstract—Data wrangling tasks such as obtaining and linking data from various sources, transforming data formats, and correcting
erroneous records, can constitute up to 80% of typical data engineering work. Despite the rise of machine learning and artificial
intelligence, data wrangling remains a tedious and manual task. We introduce Al assistants, a class of semi-automatic interactive tools
to streamline data wrangling. An Al assistant guides the analyst through a specific data wrangling task by recommending a suitable
data transformation that respects the constraints obtained through interaction with the analyst.

We formally define the structure of Al assistants and describe how existing tools that treat data cleaning as an optimization
problem fit the definition. We implement Al assistants for four common data wrangling tasks and make Al assistants easily accessible
to data analysts in an open-source notebook environment for data science, by leveraging the common structure they follow. We
evaluate our Al assistants both quantitatively and qualitatively through three example scenarios. We show that the unified and
interactive design makes it easy to perform tasks that would be difficult to do manually or with a fully automatic tool.

Index Terms—Data Wrangling, Data Cleaning, Human-in-the-Loop

1 INTRODUCTION

HILE most research in data science focuses on novel

methods and clever algorithms, the practice is domi-
nated by the realities of working with messy data. Surveys
[1], [2] indicate that up to 80% of data engineering is spent
on data wrangling, a tedious process of transforming data
into a format suitable for analysis, which includes parsing,
making sense of encodings, merging datasets, and correct-
ing erroneous records. Data wrangling prevents both orga-
nizations and individuals from applying machine learning
and represents an enormous cost, both in terms of wasted
time and in terms of missed opportunities.

Despite attempts to address this issue [3], [4], data wran-
gling remains hard to automate, because it often involves
special cases that require human insight. An automatic
tool can easily confuse interesting outliers for uninteresting
noise in cases where a human would immediately spot the
difference. This makes incorporating human understanding
into the process crucial. A major advance in the practice of
data wrangling therefore requires semi-automated tools that
integrate automatic methods with human insight, allow the
analyst to review cleaning operations before applying them,
and follow a unified interface that makes it easy to use a
wide range of tools during data wrangling.
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1.1 Background

Data wrangling is most often done manually using a com-
bination of programmatic and graphical tools. Jupyter and
RStudio are popular environments used for programmatic
data cleaning. They are used alongside libraries that im-
plement specific functionality such as parsing CSV files or
merging datasets [5], [6] and general data transformation
functions provided, e.g., by Pandas [7] and Tidyverse [8].
Trifacta [9] and OpenRefine [10] are complete graph-
ical data wrangling systems that consist of myriad tools
for importing and transforming data, which are accessible
through different user interfaces or through a scriptable
programmatic interface. Finally, spreadsheet applications
such as Excel and business intelligence tools like Tableau
[11] are often used for manual data editing, reshaping,
and especially visualization [12]. The above general-purpose
systems are frequently complemented by ad-hoc tools such
as Tabula [13], which extracts tables from PDF documents.

1.1.1  Semi-automatic data wrangling

Some of the most practical tools along the entire data wran-
gling pipeline partially automate a specific tedious data
wrangling task. To merge datasets, Trifacta [9] and datadiff
[6] find corresponding columns using machine learning.
To transform textual data and tables, Excel [14] employs
programming-by-example to parse semistructured data,
LearnPADS [15] automatically generates programmatic
data processing routines, and many tools exist to semi-
automatically detect duplicate records in databases [16].

A common theme in data wrangling tools that utilize
machine learning, including those listed above, is that they
allow the analyst to review and influence the results. The
interaction between a human and a computer in such data
wrangling systems follows a number of common patterns:



e Onetime interaction. A tool makes a best guess, but
allows the analyst to manually edit the proposed data
transformation. Examples include LearnPADS [15] and
dataset merging in Trifacta [9] and datadiff [6].

o Live previews. Environments like Jupyter, Trifacta [9],
and The Gamma [17] provide live previews, allowing
the analyst to check the results and tweak parameters
of the operation they are performing before moving on.

o Iterative. A tool re-runs inference after each interaction
with a human to refine the result. For example, in
Predictive Interaction [18] the analyst repeatedly selects
examples to construct a data transformation.

e Question-based. A system repeatedly asks the human
questions about data and uses the answers to infer
and refine a general data model. Examples include data
repair tools such as UGuide [19], [20].

The interaction pattern that combines human inputs and
automatic inference is also known as mixed-initiative inter-
faces [21], [22] in the context of graphical user interfaces,
and as human-in-the-loop data analytics (HILDA) [22], [23]
in the context of data science. However, both of these are
general patterns, rather than specific technical frameworks.

1.1.2

The emerging class of semi-automatic data wrangling tools
have the potential to dramatically simplify data wrangling
because they combine the automation and scalability of
machine learning with crucial human insight. However, this
development has been hindered by two main issues.

First, semi-automatic data wrangling tools lack a com-
mon structure. Notions such as mixed-initiative user in-
terfaces and human-in-the-loop are too general and do
not provide a specific technological framework that a tool
implementation could follow. Moreover, many tools only
exist in one specific environment or programming language,
forcing the analyst to repeatedly switch between tools. They
may, for example, need to export data from Trifacta to a CSV
file, run a particular R or Python script and then import data
back. This is not without risk, as intermediate data formats
may accidentally corrupt data.

Second, the way analysts interact with such tools can
vary significantly. Consequently, users have to learn how to
interact with each new tool using whatever mechanism it
supports, be it a graphical user interface, a program library,
or a command-line script. Moreover, most semi-automatic
data wrangling tools accept only limited forms of human
input. The onetime interaction pattern of interaction prevails
and only a few systems [18], [24] follow the flexible iterative
pattern. Even then, the way of specifying feedback in such
systems is often specialized and tied to the problem domain.

Issues and limitations

1.2 Contributions

We present the notion of an Al assistant, a common structure
for building semi-automatic data wrangling tools that incor-
porate human feedback. Al assistants capture the iterative
pattern of interaction where a human user repeatedly pro-
vides insights about the problem and a computer performs
automatic inference. The design addresses the issues with
semi-automatic data wrangling tools described above.
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First, the Al assistant framework allows for a wide range
of semi-automatic data wrangling tools that can integrate
human feedback. For analysts, this makes using Al assis-
tants easy as they can complete a variety of data wrangling
tasks through a uniform user interface. For tool developers,
this makes building Al assistants easier, because any Al as-
sistant can be readily used from JupyterLab and potentially
other data wrangling systems.

Second, the notion of an Al assistant defines a simple
uniform mechanism for iteratively providing feedback to
the assistants. An Al assistant makes an initial best guess
and then it repeatedly offers the analyst a list of options that
they can choose from in order to guide the next iteration of
the automatic process.

The remainder of this paper is structured as follows:

e We introduce Al assistants by example in Section 2,
looking at how the datadiff Al assistant simplifies
merging data from inconsistent datasets.

e We define the structure of Al assistants formally in
Section 3 and show how tools solving an optimization
problem fit the definition.

o We present four Al assistants in Section 4 (for parsing,
merging, type inference, and semantic type prediction),
that each restructure an existing non-interactive tool as
an interactive Al assistant.

e We evaluate our approach in Section 5 qualitatively,
by discussing three scenarios where automatic tools
would fail, and quantitatively, by evaluating how many
interactions are needed to complete a wrangling task.

While we may not entirely eliminate the 80% of time data
scientists spend on data wrangling, our framework provides
a pathway to the future where data analysts leverage the
advances in Al for the most time-consuming aspect of their
job. The four Al assistants we develop illustrate the benefits
that a rich ecosystem of Al assistants would provide.

2 MOTIVATION

To give an overview of how Al assistants work, we discuss
the data wrangling task of merging multiple incompatible
datasets, using the UK broadband quality data [25], pub-
lished by the UK communications regulator Ofcom.

The regulator collects data annually, but the formats
of the files are inconsistent over the years. The order of
columns changes, some columns are renamed, and new
columns are added. We take the 2014 dataset and select six
interesting columns (latency, download and upload speed,
time needed to load a sample page, country, and whether
the observation is from an urban or a rural area). We then
want to find corresponding columns in the 2015 dataset.

The 2015 dataset has 66 different columns so finding cor-
responding columns manually would be tedious. Instead,
we can use the automatic datadiff tool [6], which matches
columns by analyzing the distributions of the data in each
column. Datadiff generates a list of patches that reconcile the
structure of the two datasets. A patch describes a single data
transformation to, for example, reorder columns or recode
a categorical column according to an inferred mapping.
Datadiff is available as an R function that takes two datasets
and several hyperparameters that affect the likelihood of
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Fig. 1. Using the datadiff Al assistant in JupyterLab to semi-automati-
cally merge data from two sources, parsed by an earlier R script.

the different types of patches. Datadiff correctly matches
five out of six columns, but it incorrectly attempts to
match a column representing Local-loop unbundling (LLU)
to a column representing UK countries. This happens as
datadiff allows the recoding of categorical columns, and
seeks to match them based on the relative frequencies in
the two columns. Consequently, the inferred transformation
includes a patch to recode the Cable, LLU, and Non-LLU
values to Scotland, Wales, and England. To correct this,
we could either manually edit the resulting list of patches,
or tweak the likelihood of the recode patch. Such parameter
tuning is typical for real-world data wrangling, but finding
the values that give the desired result can be hard.

The semi-automatic datadiff Al assistant presented in
this paper enables the analyst to guide the inference process
by specifying human insights in the form of constraints.
The AI assistant first suggests an initial set of patches with
one incorrect mapping. After the analyst chooses one of the
offered constraints, shown in Figure 1, datadiff runs again
and presents a new solution that respects the specified con-
straints until, after two more simple interactions, it reaches
the correct solution (see Section 5.1.1 for details).

The example illustrates the interaction pattern at the core
of Al assistants. At each step, the assistant analyzes the data
and recommends the best data transformation. It previews
the transformed data and offers a range of constraints that
may be sorted by their estimated fit. The analyst can then
accept the result or choose another constraint to refine the
outcome. The behaviour is controlled through comprehen-
sible constraints rather than opaque numerical parameters.

As discussed in Appendix D (see supplemental files), we
make Al assistants available in JupyterLab, which allows an-
alysts to combine text and equations with code and outputs
such as charts. We introduce a new cell type that leverages
the common structure of Al assistants to provide a unified
user interface (see Figure 1) for accessing any Al assistant.

3 THEORY OF Al ASSISTANTS

The notion of an Al assistant formally captures a pattern of
interaction between a semi-automatic data wrangling tool
and a data analyst. The precise definition distinguishes Al
assistants from more general notions such as human-in-the-
loop data analytics, and it facilitates the development of
concrete Al assistants discussed in Section 4.

3.1 Formal model

Our definition uses the algebraic approach [26] and presents
Al assistants as a formal mathematical entity that consists
of several operations, modeled as mathematical functions
between different sets. For reference, a glossary of symbols
used in the paper can be found in Table 5 (supplement).

Every Al assistant is defined by three operations that
work with expressions e, past human interactions H, input
data X, and output data Y. While Al assistants share a
common structure, the language of expressions e that an
assistant produces, the notion of human interactions H, and
the notion of X and Y can differ between assistants.

We refer to e as expressions, following the programming
research tradition, but expressions e can also be thought of
as data cleaning scripts. As we will see from our concrete
examples, the input data X is typically one or more data
tables and the output data Y is typically a single table, often
annotated with meta-data such as column types.

Definition 3.1 (Al assistant). Given expressions e, input
data X, output data Y, and human interactions H, an
Al assistant (Hy, f, best, choices) is a tuple where Hj is a
set denoting an empty human interaction and f, best and
choices are operations such that:

e f(e,X)=Y

o bestx(H)=¢e

o choicesx(H) = (Hy,Hs, Hs,...,Hp).

The operation f transforms an input dataset X into an out-
put dataset Y according to the expression e. The operation
best x recommends the best expression for a given input
dataset X, respecting past human interactions H. Finally,
the operation choicesx generates a sequence of options
H,,H,, Hs,..., H, that the analyst can choose from (for
instance through the user interface illustrated in Figure 1).
When interacting with an assistant, the selected human
interaction H is passed back to bestx in order to refine the
recommended expression. Note that the sequence of human
interactions given by choices x may be sorted, starting with
the one deemed the most likely. To initialize this process, the
Al assistant defines an empty human interaction H.

The interesting Al logic can be implemented in either
the bestx operation, the choicesx operation, or both. The
f operation is typically straightforward. It merely executes
the inferred cleaning script. Both best x and choices x are pa-
rameterized by input data X, which could be the actual in-
put or a smaller representative subset, such as coresets [27],
to make working with the assistant more efficient.

The logic of working with Al assistants is illustrated in
Figure 2. When using the assistant, we start with the empty
interaction Hy. We then iterate until the human analyst
accepts a proposed data transformation. In each iteration,
we first invoke bestx (H) to get the best expression e* re-
specting the current human insights captured by H. We then
invoke f(e*, X) to transform the input data X according to
e* and obtain a transformed output dataset Y. After seeing
a preview of Y, the analyst can either accept or reject the
recommended expression e*. In the latter case, we generate
a list of possible human interactions Hy, Ho, Hs, ..., H,
using choices x (H) and ask the analyst to pick an option H;
(where i € {1,...,n}). We use this choice as a new human
interaction H and call the Al assistant again.



H = H, ¢* = bestx (H) Y = f(e*, X)
Choose the next Hy,Hy, Hs,... , H, Display
interaction H = H; = choicesx (H) refine preview of Y
. . . . . accept
Fig. 2. Flowchart illustrating the interaction be-

tween an analyst and an Al assistant. Steps
drawn as rounded rectangles correspond to
user interactions with the system.

script = e*
data = f(e*, X)
Having a unified structure for Al assistants means that
we can separate the development of individual Al assistants
from the development of tools that use them. Our Jupyter-
Lab implementation facilitates access to any Al assistant that
adheres to the interface captured by Definition 3.1.

3.2 Example

To provide intuition behind the operations, we return to the
semi-automatic datadiff Al assistant introduced in Section 2
and presented in full in Section 4.1. In case of datadiff, an
expression e is a list of patches. Input data X is a pair of data
tables comprising a reference dataset and an input dataset.
The output data Y is the input dataset, transformed to the
format of the reference dataset. Finally, human interactions
H are lists of constraints that restrict what expressions
are permissible. An example constraint, discussed earlier,
prevents the matching of particular columns.

The most interesting aspect of the assistant is the best x
operation. It takes a sample input X together with a trace
of human interactions H, which is a list of constraints. It
then finds the best way to match the columns from the two
datasets, utilizing the algorithm from the original datad-
iff [6], but respecting the constraints. The result is a list of
patches, which is returned as an expression e. The choices x
operation generates a list of choices Hi, Hs, Hs, ..., H,.
An individual choice is obtained by taking the constraints
specified earlier and adding one additional constraint that
restricts some aspect of the recommended script, e.g., recod-
ing of a column that was recommended in the expression e.
Finally, f applies the list of patches to the input data.

In datadiff, the clever algorithmics are done in the
best x operation, while choicesx is simpler. It generates
constraints in a simple hard-coded way, although a more
elaborate Al assistant could rank these constraints.

3.3 Optimization perspective

Our definition of an Al assistant is purposefully general,
but the way most Al assistants recommend cleaning scripts
is based on the optimization of an objective function. They
attempt to find the best cleaning script for a given problem
from a set of possible cleaning scripts. The best script is de-
termined by an objective function () that scores expressions
based on how well they clean the specified input data.

As before, we write e for expressions (cleaning scripts)
that an Al assistant recommends and H for human in-
teractions. The operation best x (H) solves an optimization
problem based on an objective function Q) to identify the
best expression e* from a set E'y of possible expressions.
Note that both Qp and Ey are parameterized by human
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interactions, meaning that interaction with the tool can af-
fect both the optimization objective and the set of permitted
expressions. More formally, given ) and Ey where:

- Qu(X,e) is an objective function that assigns a score
to an expression e, applied to input data X, taking into
account human interaction H;

— Eg is a set of permitted expressions with respect to
human interaction H,

we define best x as solving an optimization problem:

bestx (H) = argmax ., Qu(X,e)

The objective function () needs to be defined individually
for each Al assistant. It typically uses a measure of how
clean the data is after applying the expression e. For datadiff,
Q is computed as a sum of distance measures between the
empirical distributions of the corresponding columns [6].
The optimization based on () is also implemented individu-
ally for each Al assistant and is discussed in the next section.

The fact that both Ey and Q)i are parameterized by H
makes the definition more flexible. One human interaction
can entirely prevent the assistant from generating certain
expressions (by removing them from Ep), while another
can make a particular expression less desirable (by decreas-
ing the score assigned to it by Qx). For example, human
interactions in datadiff restrict the set of allowed expressions
E, but do not affect the objective function Q g.

4 PRACTICAL Al ASSISTANTS

In this section, we show how to turn four existing non-
interactive data wrangling tools into interactive Al assis-
tants. An example of a newly developed assistant for outlier
detection is discussed in Appendix C (supplemental files).

4.1 datadiff: Merging mismatched data tables

We start by revisiting the datadiff Al assistant. The original
R package [6] implements a function that returns the in-
ferred best list of patches. We modify the package to support
restricting the optimization using constraints specified by
the analyst, and use it as the basis for an interactive Al
assistant. The following formal model explains how the Al
assistant uses the underlying optimization and generates
choices that the analyst can use to control the assistant.

Formal definition of datadiff. The input data for the assistant
is a pair of data tables Tj, T;. representing the input and ref-
erence datasets, respectively. The expression e is a sequence
of patches and human interactions H are lists of constraints
that restrict what patches can be generated. Patches P and
constraints c are defined as:

P = recode(k,[v; — vi,...]) |linear(k,a,b) |
delete(k) | insert(k) | permute(m)
¢ = nomatch(k,!) | notransfrom(k) | match(k, )

The recode(k, [v; +— v},...]) patch transforms categorical
values in a column k by replacing old values v; with new
values v}, linear(k, a,b) transforms values v in a numerical
column £ using a linear transformation v - a + b, insert(k)
inserts a new column at an index k, delete(k) removes a
column at an index k, and permute(r) reorders columns
according to a permutation .



Interacting with the assistant results in a list of con-
straints: notransform(k) prevents recoding or linear transfor-
mation in a column &, while nomatch(k,!) and match(k,)
prevent or enforce matching of columns k from the input
dataset to the column [ in the reference dataset.

The operations of datadiff follow the optimization-based
framework where bestx (H) finds a list of patches from the
set Ii that maximizes the objective function Q):

bestx (H) = argmax, ., Q(X,e) where
Ey ={(P1,...,PL) € E|Viel...Lvalidy(P,)}

The objective function, discussed below, is not affected by
human interaction, but human interactions do limit the set
of allowed expression Ef. This is captured by the validy
predicate defined in Appendix A (see supplemental files).
Briefly, a list of patches P is valid if it does not recode
or rescale any column specified in norecode and if the
permutation given in permute(r) is compatible with the
match and nomatch constraints.

The choicesx operation, also given in Appendix A,
offers constraints based on the best patch set obtained from
calling bestx. Each human interaction adds one additional
constraint to the current set of constraints /1. The constraints
allow the analyst to override some aspect of the generated
patch. For any recode or linear patch, we offer the notransform
constraint to block the transformation. For any matched
columns, we offer nomatch, and for any columns that were
not automatically matched we offer the match constraint to
manually match them. In the example discussed above, the
assistant recommends an incorrect recode patch. The first
interaction offered by choicesx is to add the notransform
constraint to prevent this matching.

Objective function optimization. We use the same objective
function @) as non-interactive datadiff [6]. Given the input
and reference datasets and a set of patches to apply, the
objective function sums the distances between the distri-
butions of the matched columns, using the Kolmogorov-
Smirnov statistic for numerical columns and the total varia-
tion (TV) statistic for categorical columns.

The optimization algorithm employed in datadiff first
computes the optimal patch for all pairs of columns produc-
ing a cost matrix. The optimal matching is then determined
by running the Hungarian algorithm [28]. Our modification
incorporates the constraints specified by the user by not
applying recoding where prevented by a constraint and
by setting the cost of columns that should or should not
be matched to zero and infinity, respectively. Details and
performance considerations can be found in Appendix B.

Example of using datadiff. Suppose we have two data tables
and we want to transform the input table T; on the left to
match the format of the reference table 7;. on the right. The
following shows the header and the first three rows:

City, Name, Count
Cardiff, Alice, 1
Cardiff, Bob, na

Edinburgh, Bill, 2

Name, City
Joe, London
Jane, Edinburgh
Jim, London

The original datadiff recommends three patches: delete(3),
permute(2, 1) and recode(2, [“Cardiff” — “London”]).
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Datadiff correctly infers that we need to drop the Count
column and that the order of Name and City has been
switched. It erroneously infers that the encoding of a cat-
egorical column City has been changed. This would be
useful for pairs of values like “true”, “false” and “yes”,
“no”, but it is incorrect in the case of cities.

Using the interactive datadiff, the analysts can specify
the notransform(2) constraint, which will prevent datadiff
from generating the recode patch for the column 2. The
interactive Al assistant makes such an intervention easy,
because it offers the constraint via the choicesx operation
and the analyst can simply select it from a drop-down menu.

4.2 CleverCSV: Parsing tabular data files

While parsing CSV files in the standard format [29] is easy,
parsing a file with non-standard column separators and
other formatting parameters often requires human insight.
CleverCSV [5] is an automatic tool that uses a data consis-
tency measure to determine formatting parameters, called a
“dialect”, consisting of the delimiter (e.g., , ), quote (e.g., ")
and escape characters (e.g., \). We adapt CleverCSV into an
interactive Al assistant that allows the analyst to guide the
tool in case the automatic detection fails.

Formal definition of CleverCSV. CleverCSV is an optimi-
zation-based assistant that takes a single string, repre-
senting the CSV file, as the input data X. The objective
function Q(X,e) is defined by the data consistency mea-
sure discussed below, expressions e represent dialects, and
Y = f(e, X) denotes the result of parsing the file using a
given dialect. Human interactions place constraints on the
characters that are considered for each parameter and can
either fix a dialect parameter to a specific value or block a
character from being considered:

(is_delimiter(d), is_quote(q), is_escape(a))
fix_delimiter(d) | fix_quote(q) | fix_escape(a)
| not_delimiter(d) | not_quote(q) | not_escape(a)

€

C =

The operations that define the CleverCSV Al assistant fol-
low the same structure as those of datadiff and are shown in
Appendix A (see supplemental files). The bestx operation
optimizes the objective function Q(X, e) over a set Ey, con-
sisting of dialects compatible with the current constraints
H. The choicesx (H) operation can take advantage of the
consistency score Q(X, e) computed for each dialect under
consideration to sort the suggested constraints.

Objective function optimization. The objective function Q i
for the Al assistant does not depend on user interactions and
uses the consistency measure of non-interactive CleverCSV
[5]. The measure is calculated by parsing the input file using
a potential dialect and taking the product of two scores: the
“pattern score” that captures how regular the structure of
the parsed data is (i.e., does the resulting table have the
same number of cells in each row?), and the “type score”
that captures the proportion of cells that have an identifiable
data type. The optimization involves iterating over each
possible dialect allowed by the constraints I, and identify-
ing the one that maximizes the objective function. Further
details on the optimization and runtime performance of
CleverCSV can be found in Appendix B.



Example of using CleverCSV. While the automatic dialect
detection proposed in [5] achieves 97% accuracy, one type
of failure arises when there are fwo delimiters that result in
consistent row lengths and interpretable cells:

"{""name"":""John"", ""age"":""28""}",22:34:00,01:16:40
"{""name"":""Sara"",""age"":""26""}",18:28:02,19:32:37
"{""name"":""Bill"", ""age"":""31""}",02:51:34,10:14:58
"{""name"":""Jane"",""age"":""18""}",13:06:36,16:59:47

A dialect with colon (:) as the column separator maximizes
the consistency measure even though comma (,) is the
correct separator. This happens because splitting the data
on the colon character results in regular row lengths and
because the JSON syntax in the first column is an unknown
data type for CleverCSV. The correct dialect receives the
second-highest consistency score and it differs from the
chosen dialect only in the delimiter character. This can be
corrected with single interaction. In fact, choicesx (H) could
automatically propose the constraint fix_delimiter(, ) first.

4.3 ptype: Inferring column types

After parsing data, the next step is often to identify the
data types for each column. This becomes challenging in the
presence of missing and anomalous data. The probabilistic
type detection package ptype [30] uses a Probabilistic Finite-
State Machine model to solve this problem with an overall
accuracy of 93%, but lower for data types like dates. We
recast ptype as an interactive Al assistant that allows the
data analyst to correct errors in those situations.

Formal definition of ptype. For simplicity, we consider input
data X with just a single column. The expression e repre-
sents inferred information for the column and consists of the
inferred column type 7 and sets of values which (conditional
on that type) are deemed missing and anomalous. Human
interactions H allow the analyst to constrain the type (7),
missing values (u), and anomalous values (v):

e = (r,{u,...,ux},{v1,...,u})
not_type(r) | not_missing(«) | not_anomaly(v)
The not_type(7) constraint marks 7 as an incorrect column

type, while not_missing(u) and not_anomaly(v) prevent
ptype from treating values u, v as missing and anomalous.

C =

Probabilistic model. The objective function for ptype is de-
rived from a probabilistic model that views expressions e as
parameters of the transformation f and human interactions
H as a meta-parameter that adjusts the likelihood of values
in the parameter space. The Q (X, e) function is derived
from two probability distributions:

- pu(X |e) denotes the likelihood of the input data X
given an expression e, which represents a type along-
side with missing and anomalous values

- pu(e) is a distribution over the expressions, repre-
senting prior beliefs about probabilities of expressions,
i.e., types with missing and anomalous values

The probability distributions are written as py because, in
general, a human interaction can change the shape of the
distribution as well as its parameters. In the case of ptype,
human interactions do not affect the probability distribu-
tions, but are used later when selecting the solution from a
distribution over types.
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The objective of a probabilistic Al assistant such as ptype
is to maximize the posterior probability distribution of the
set of expressions given the data. This is obtained from
the prior distribution over the expressions p(e) and the
likelihood model p(X | e) using Bayes’ rule:

Qu(X,e) =pu(e| X) o pu (X |e)pu(e)
The operation best x (H) then takes the type with the highest
probability according to Qp (X, e) that is compatible with
the constraints specified by the user. If there are no con-
straints, this is the maximum a posteriori (MAP) solution.

If the MAP solution is incorrect, the analyst can choose the
not_type constraint to obtain the next most likely value.

Implementation. Since non-interactive ptype [30] infers the
posterior distribution, our interactive tool only needs to
select the most likely solution compatible with the specified
constraints. Interestingly, this is a general approach which
can be implemented for any tool based on a probabilistic
framework, regardless of the particular problem it solves.
When generating constraints, choicesx allows the ana-
lyst to mark a type as incorrect, but also to mark values
inferred as anomalous or missing as valid. This forces the
assistant to choose the best type that considers them as nor-
mal. The formal model of the logic is given in Appendix A.

4.4 ColNet: Semantic type prediction

Annotating data with semantic information can further as-
sist data analysis. Tools like OpenRefine [10] and ColNet [31]
automatically annotate tabular data with semantic types
such as dbo:Company and dbo:Person obtained from a
knowledge graph [32] such as DBpedia [33]. This may fail
when data contain ambiguous values such as “Apple” or
“Virgin” or values that do not exist in the knowledge graph
(e.g., non-famous people [34]). We present an Al assistant
based on ColNet (currently under development) that lets
the analyst resolve such errors.

Formal definition of ColNet. ColNet is an optimization-based
Al assistant, but it has a different structure than datadiff
and CleverCSV. For simplicity, we consider a single-column
input X formed by a set of values v;. When inferring the
semantic type, ColNet uses a set of samples S1,.5s,...,5,
which each contain several individual values from the input
data. The sampling method is discussed in [31].

The expression produced by the assistant is a single
semantic type o, to be attached to the dataset. The analyst
can influence the result by specifying a list of constraints.
The constraints is_type(S,o) and not_type(S, o) override
the automatically inferred type for a given sample S.

In contrast to the constraints used in ptype, the con-
straints used by ColNet override the type of individual sam-
ples, rather than the overall type of a column. A constraint
does not fix a type of the column, but merely provides a hint
regarding one of several samples.

Objective function optimization. Non-interactive ColNet [31]
pre-trains a Convolutional Neural Network (CNN) model
for each (relevant) semantic type in the knowledge graph
and fine-tunes the model with information from the column
to be annotated. The CNN is then used to rank the possible
semantic types obtained by querying the knowledge graph.



Given a set of samples S from a given column, non-
interactive ColNet predicts a score pZ in [0, 1] for each
sample S € S and semantic type o. The score indicates
the likelihood that values in S have a type o. ColNet then
averages scores over given samples (i.e., pf = é > 5es P%)
and chooses the semantic type o with the largest score. In
interactive ColNet, human interactions affect the scoring of
samples. Assuming p% is the score given by non-interactive
ColNet, the interactive Al assistant uses g7 ¢ defined as:

1 whenis_type(S,o) € H
q%s=14q 0 whennot_type(S,o) € H
p% otherwise

The objective function Qg (X, e) is defined by the overall
score ¢ g, computed as the average of scores of individual
samples, i.e., ¢f; 5 = ‘§1| > ses s

The best x operation searches for a semantic type s (from
a knowledge graph () that maximizes the objective function
@ u. The constraints offered by choicesx allow the analyst
to mark any of the samples S € S as either having or not
having a predicted type and are generated as follows:

choicesx (H) =
{is_type(S, o), not_type(S,o) | S€S, 0 €G,p% >¢€}

To offer only relevant types, the constraint generation can
be limited to types with a score greater than a threshold e.

Example of using ColNet. One of the columns in the broad-
band quality data (Section 2) includes company names Vir-
gin, BT, Sky, and Vodafone. Non-interactive ColNet predicts
the semantic types (with an associated score in parentheses):
dbo:Work (0.6), dbo:Company (0.5) and dbo:Person (0.4).

The correct type dbo:Company is not in the top position.
This case is complex due to the use of acronyms (BT)
and ambiguous entries (Virgin). In the case of Virgin, the
expected entity is dbr:Virgin_media, but ColNet also finds
dor:Virgin_of_the_Rocks (a painting of type dbo:Work) and
dbr:Mary,_mother_of_Jesus (type dbo:Person).

To resolve the ambiguity regarding Virgin and obtain
the expected semantic type, the analyst can specify a con-
straint is_type({“Virgin”}, dbo:Company), which fixes the
semantic type for the sample S ={“Virgin”}. This constraint
indirectly decreases the likelihood that the types dbo:Work
or dbo:Person will be inferred as the best semantic type.

5 EVALUATION

The previous section shows that the notion of an Al assistant
captures a wide range of practical semi-automatic data
wrangling tools. In this section, we evaluate the specific
Al assistants that were presented. In Section 5.1, we use
three scenarios to compare our tools with the state of the art
systems. In Section 5.2, we quantify how many human inter-
actions are needed to obtain the correct result with Al assis-
tants in cases where the state of the art automatic tool fails.
Performance is discussed in Appendix B (see supplement).
For the evaluation, we use real-world datasets from var-
ious sources with manually identified ground truth (Clev-
erCSV, ptype) or synthetic dataset with ground truth known
by construction (datadiff). A summary of datasets used can
be found in Table 4 in the Appendix (see supplemental files).

TABLE 1
Comparing Ofcom broadband quality data for 2014 and 2015.

Name ('15) Col ('15) Name ('14) Col ("14)
UL24hrmean 18 Upload (Mbit/s)24-hour 13
Web24hr 32 Web page (ms)24-hour 28
DL24hrmean 14 Download (Mbit/s) 24 hrs 10
URBAN2 10 Urban/rural 4
Nation 11 N/A N/A
Latency24hr 30 Latency (ms)24-hour 24

5.1 Data wrangling scenarios

We first consider four real-world data wrangling scenarios
based either on a problem from the literature [5], [30], [35]
or earlier data analyses done by the authors.

5.1.1 datadiff: Merging Broadband data

For datadiff, we expand the example from Section 2. The
analyst wants to analyze the change in broadband quality
and needs to merge data for years 2014 and 2015. She
selects six columns from 2015 and uses datadiff to find cor-
responding columns from 2014. Table 1 shows the relevant
column names and indices, which have changed between
years. Note that “Nation” (a categorical column with values
England, Wales, Scotland) has been added in 2015. The
analyst obtains the correct result after three interactions:

1) datadiff matches Nation with LLU, a categorical col-
umn with three values (LLU, non-LLU and Cable). The
analyst chooses “Don’t match LLU and Nation”.

2) datadiff matches Nation with Urban.rural, another
categorical column with three values. The analyst se-
lects “Don’t match Urban.rural and Nation”.

3) datadiff matches Nation with Technology, yet an-
other categorical column with three values. The analyst
chooses “Don’t match Technology and Nation'.

4) datadiff correctly identifies that Nation has no corre-
sponding column in 2014 and generates an insert patch
to add a new empty column.

In all three interactions, the analyst immediately notices
that there is one incorrectly matched column and selects
a nomatch constraint. In non-interactive datadiff [6], the
analyst would have to manually edit the initial set of patches
(returned as an R object) or tweak one of the datadiff hyper-
parameters. Either of those is more complex than choosing
three constraint with informative labels.

In Trifacta [9], the same task can be solved by using the
“Add Union” operation. Here, the analyst chooses the 2015
dataset, selects the desired 6 columns and then adds the 2014
dataset. Choosing “auto align” invokes a proprietary algo-
rithm that attempts to find matching columns using column
names, column types, and similarity between sampled data.

At the time of writing, the algorithm aligned two of the
columns (“UL24hrmean” and “Latency24hr”) and provided
no mapping for the remaining four that have to be matched
manually using a graphical user interface. In other words,
Trifacta is less successful in guessing the initial matching
but, more importantly, it also only implements the onetime
interaction model where analyst invokes the automatic tool
once, but then has to correct all errors manually.



5.1.2 CleverCSV: Parsing large and messy CSV files

Dialect detection can seem a trivial task, but large CSV files
can hide problems that are difficult to detect manually. We
consider two scenarios: one where CleverCSV infers the
dialect correctly and one where a single human interaction
is needed.

First, consider the Internet Movie Database file!, which
contains descriptive statistics for 14,762 movies. A few rows
and columns from the file look as follows:
fn,title,imdbRating
titles01/tt0015864,Goldrausch (1925),8.3
titles01/tt0017136,Metropolis (1927),8.4

titles@1/tt0017925,Der General (1926),8.3
titles02/tt0080388,Atlantic City\,USA (1980),7.4

[ S T O

In this case, CleverCSV infers the correct dialect fully au-
tomatically. The standard R and Python functions fail to
identify the escape character (\) which is used for movies
with a comma in the title (line 5) and load 15,190 and 13,928
rows, respectively. Trifacta [9] also does not correctly handle
the escape character. It assumes the file has three columns
due to the first row and silently merges the additional
data into the last column. OpenRefine [10] instead adds a
fourth column due to the fact that the last row contains
three delimiters. Such failures can be very time consuming
to address and neither Trifacta nor OpenRefine provide
straightforward mechanisms to mitigate this problem.

In cases when CleverCSV does not automatically detect
the correct dialect, the Al assistant shows a preview of the
parsed CSV file to the analyst, who can steer CleverCSV in
the right direction. The following shows a few lines of a CSV
file that contains filenames and RGB color codes?:

1 1894_0.jpg  51,47,45 87,88,86 110,112,110
» 1895_0.jpg  37,25,24 87,59,47  105,88,88

s 1895_1.jpg  48,34,46 80,51,58  98,80,88

4 1901_0.jpg  45,46,55 100,96,91 115,139,129
s 1901_1.jpg  45,46,48 71,66,61  98,97,94

For this file, CleverCSV predicts the comma as the delimiter
even though the tab character is used. The analyst notices
the issue easily thanks to the provided preview and can fix
the parsing through a single interaction: by choosing the
fix_delimiter(\t) constraint to set the correct delimiter.

For the same file, OpenRefine chooses underscore as
the delimiter, whereas Trifacta uses the comma character.
While in this case the user can select the correct delimiter in
OpenRefine, this is not the case in Trifacta, where additional
manual interaction is needed to get the data to a usable state.

5.1.3 ptype: Annotating the Cylinder Bands dataset

For the type inference task, we consider the Cylinder Bands
dataset from the UCI repository [36]. The file contains
data on process defects known as “cylinder bands” in ro-
togravure printing. When analyzing the file, ptype fails to
correctly identify the type for some columns of this dataset.

For example, the “ESA Amperage” column contains
mostly the 0 value (480 out of 540 entries) and a small
number of other values (0. 5, 4, 6, ?). The initial type offered
by ptype is Boolean with 0.5, 4 and 6 incorrectly treated as

1. From: https:/ /www.kaggle.com/orgesleka/imdbmovies.
2. Available at: https://github.com/victordiaz/color-art-bits-.

TABLE 2
Interactions required to solve a wrangling task for each Al assistant.

Al assistant (dataset) Number of interactions Average
0 1 2 3 4+

datadiff (UCI) 052 020 012 0.00 0.18 3.25

datadiff (without Iris) 0.63 0.22 0.15 0.00 0.00 1.40

CleverCSV (GitHub) 020 0.70 0.05 0.04 0.00 1.17

ptype (Various) 0.33 051 0.16 0.00 0.00 1.24

anomalies and ? correctly identified as missing data. This is
perhaps unsurprising given the dominance of 0 values.

The analyst can obtain the correct type through a single
interaction, by choosing “ESA Amperage is not Boolean”,
which adds the not_type(Boolean) constraint. The assistant
then returns the correct, second most likely, data type Float
with no anomalies and ? as the missing data indicator.

State of the art tools face similar issues. Trifacta labels the
“ESA Amperage” column with the integer type rather than
float. It considers 4 and 6 valid values, but 0.5 and ? are
treated as mismatched values. The analyst needs to change
the assigned type to float through the user interface, by
clicking on the integer sign and then selecting the float type.
This interaction is specific to type inference in Trifacta and
requires familiarity with the graphical user interface.

OpenRefine does not directly address column-type in-
ference. Instead, it separately infers the type for each en-
try. It correctly identifies the data type for the entries of
“ESA Amperage” as it uses the numeric label rather than
separate float and integer types. However, user interaction
is required for many other columns in the same dataset
that are labeled correctly by both ptype and Trifacta. For
example, the “grain screened” column represents a Boolean
with values yes and no. Here, ptype and Trifacta correctly
infer the type as Boolean, whereas OpenRefine treats the
values as text. Changing the assigned type to Boolean
converts both yes and no to false. To get the correct
types, the analyst first needs to replace all values of yes
with true.

5.2 Empirical evaluation

For optimization-based Al assistants, we can evaluate how
many interactions are needed to arrive at the correct result.
As each assistant solves a different task, we need to use a
different dataset for each. Table 2 shows the results; for each
Al assistant, we show the fraction of cases that requires
a specific number of interactions. The “Average” column
shows the average over the cases where some human inter-
action is required. The datasets used are discussed below.

datadiff. Following the original datadiff evaluation [6] we
use a synthetic dataset obtained by corrupting five datasets
from the UCI repository [36] (Abalone, Adult, Bank, Car,
Iris). To corrupt a file, we randomly reorder columns and
apply two other randomly chosen corruptions.

The corruptions include inserting a numerical column
(with values from a uniform distribution U(0,1)), insert-
ing a categorical column (with two evenly distributed val-
ues), deleting a random column, recoding a categorical
column and applying a linear transformation (with a from
U(—0.5,0.5) and b from U (—27, 2v) where T is the mean of



the values in the column). We apply the corruption to a ran-
domly selected half of the data and attempt to reconcile the
two halves using datadiff. When datadiff does not produce
the expected result, we repeatedly add nomatch constraints
to prevent incorrect matchings inferred by datadiff.

Our corruptions and dataset are more challenging than
those used previously [6]. We note that datadiff performs
poorly on one of the five datasets (Iris), so the table shows
results for all five datasets as well as for the remaining
four (without Iris). Datadiff requires no human interaction
in 52% and 63% cases, respectively. Our evaluation models
the case where the analyst can easily spot an error and
inform the assistant, but the number of interactions could be
reduced further by choice of the explicit match constraint.

CleverCSV. To evaluate CleverCSV, we revisit the failure
cases of the non-interactive CleverCSV [5] and count in-
teractions needed to find the correct dialect. We apply the
assistant on 255 files from a corpus of CSV files extracted
from GitHub where the dialect was detected incorrectly
in [5]. We focus on this selection as the 97% of cases where
CleverCSV detects the dialect correctly are not relevant here.
Since the dialect considered for the CSV file consists of three
components, the maximum number of interactions is three.
For 20% of the 255 files no interaction is needed to find
the correct dialect. This can be attributed to improvements
in CleverCSV since publication of [5]. For the majority of
files (70%) a single interaction was needed, with an average
of only 1.17. This illustrates that as the human provides a
constraint to the Al assistant, the limits on the search space
allow CleverCSV to quickly arrive at the correct answer.

ptype. To evaluate the ptype Al assistant, we consider
43 (out of 610) data columns where the types were not
inferred correctly by the non-interactive ptype [30], using
a corpus obtained from various sources including the UCI
repository [36] and open government data sources. To guide
the assistant, we iteratively add the not_type constraint.

Although ptype recognizes 11 data types, we focus on
5 primitive types (Boolean, integer, floating-point number,
date, string) to allow comparison with other tools. Even with
5 types, identifying them correctly by hand remains difficult,
because ptype also detects anomalous and missing values,
which may not be easy to notice for a human analyst.

Of the 43 data columns, no interaction is needed for
33% of cases. As with CleverCSV, this is due to recent im-
provements in ptype. A single interaction was needed for a
majority of files (51%). In those cases, the assistant arrives at
the correct answer by choosing the second most likely type.
The remaining columns require two interactions, resulting
in an average of 1.24. Note that rejecting the offered type is
a simpler interaction than directly selecting a type, which
would reduce the maximum number of interactions to one.

Summary. The quantitative evaluation of three Al assistants
demonstrates that many data wrangling tasks can be solved
much more efficiently by creating opportunities where the
human analyst can nudge the tool in the right direction. This
approach obviates the need for tedious data manipulation in
spreadsheet applications or case-specific wrangling scripts,
and is significantly easier to implement than fully automatic
tools that need to cover numerous edge cases.

6 RELATED WORK

The problem of data wrangling has been studied by both
practitioners [1], [2], [37] and academics [12], [38], [39], [40].
These studies repeatedly mention the problems that moti-
vated our work. We believe that interactivity, and uniformity
are crucial. Interactivity allows incorporating crucial human
insights, and a common structure makes it possible for the
analyst to easily access a wide range of tools.

Programming and analytic systems. Data wrangling is often
done programmatically in the R and Python languages,
using libraries such as Tidyverse and Pandas [7], [8] in note-
book systems like RStudio and Jupyter. Our Al assistants
are available for the Jupyter platform through the Wrattler
extension [41], which enables polyglot programming.

Spreadsheets and business intelligence tools such as
Tableau and Power BI provide a complex set of features for
data analytics, often used through a complex graphical user
interface, while more focused data wrangling tools like Tri-
facta and OpenRefine [9], [10] provide similar environments
focused on data cleaning. As discussed in Section 5, those
tools address many of the specific problems addressed by
Al assistants, but lack uniformity and rarely implement the
powerful iterative interaction model.

Data wrangling and repair tools. A number of tools attempt
to solve a specific data wrangling problem automatically,
including the tools extended in this paper [5], [6], [30], [31]
as well as tools for data imputation [42], deduplication [16],
and parsing [15]. These tools often achieve a high accuracy,
but they lack an easy-to-use mechanism for incorporating
critical human insights in cases where the automatic answer
is incorrect. Automatic tools can also be guided by a manu-
ally written domain-specific data model, as in PClean [43].
A few systems utilize the flexible iterative interaction pat-
tern to suggest possible data transformations using machine
learning. Proactive wrangling [24] suggests data transfor-
mations to improve data structure based on a metric and
offers those to the user. In Predictive Interaction [18], inputs
provided by the analyst are used to generate a ranked
list of predictions from which the analyst can choose or,
alternatively, provide further inputs. This is similar to how
Al assistants work, but the way of specifying feedback is
domain-specific, e.g., highlighting substrings in textual data.
The problem of incorporating user input has been ex-
tensively studied in data repair tools for databases [44],
[45]. Tools for enforcing functional database dependencies
[19], [20], [46] work by asking analysts questions about the
data and using the answers to improve the model used for
data repair. Such tools could be recast as Al assistants; they
complement our examples in that they focus on working
with databases whereas our focus is on less structured data.

Programming language approaches. Numerous program-
matic tools offer a small domain-specific language for a
particular data wrangling task such as statistical analysis
or data visualization [47], [48]. A small domain-specific
language is also at the core of semi-automatic tools such
as LearnPADS and Predictive Interaction [15], [18]. Al as-
sistants follow the same approach in that the expressions of
individual AI assistants form small languages that are easy
to understand.



Al assistants can also be seen as a form of code com-
pletion. This typically focuses on offering available oper-
ations, possibly using machine learning to rank the rec-
ommendations [49]. Type providers [50], [51] are closer to
our approach in that the recommendations are generated
programmatically, similar to our choices operation.

Human-computer interaction. Two interaction techniques
used in data wrangling tools are direct manipulation and
programming-by-example. In the former, a program is spec-
ified by directly interacting with the output. This has been
used for data analysis and querying [52], [53], [54], [55], as
well as data wrangling [45]. In the latter, the user gives
examples of desired results, for example, to specify data
transformations in spreadsheets [14]. This results in an itera-
tive interaction mechanism, but one where the analyst needs
to specify more complex inputs as opposed to just choosing
from a list of options. Novel human-interaction techniques
for data wrangling also include touch-based editing [56],
natural language [57], and conversational agents [58].

Human in the loop. Our work contributes to the emerg-
ing field of human-in-the-loop data analytics [23], [59]. Al
assistants particularly implement the “efficient correction”
pattern [60]. We focus on supporting an individual analyst,
but a range of systems involve multiple users in addressing
data wrangling problems. In [61], data cleaning problems
are solved by assigning the tasks that cannot be automated
to human “detectors” and “repairers” and several data
cleaning tools rely on crowdsourcing [62], [63], [64].

7 FUTURE WORK

Allowing Al assistants to accept richer user inputs would
let us support programming-by-example. Programming-by-
example can be seen as ranking programs in an underlying
DSL that are consistent with a given set of training examples
[65], fitting well with our optimization-based Al assistant
structure. Alternatively, focusing on probabilistic Al assis-
tants would let the system leverage additional information,
such as the distribution of possible cleaning scripts, allow-
ing users to choose a desired solution more effectively. The
usability of Al assistants could also be improved by offering
possible choices in a more structured way than as a flat list.

The Al assistants presented in this paper solve individ-
ual data wrangling problems, but a typical data wrangling
workflow involves a combination of tools. An interesting
direction for future work is to recommend the entire data
wrangling workflow, composed of multiple Al assistant
invocations. This could be done by repeatedly predicting
the next step as in [18], [24]. Closer interaction between Al
assistants could also lead to better results. For example, the
consistency measure used by CleverCSV could incorporate
information obtained from ptype or ColNet, while datadiff
could prefer matching columns with the same data type, as
inferred by ptype or ColNet.

Finally, Al assistants do not currently learn from past
user interaction. Using the interactions with human analysts
to improve the models underlying the Al assistants as well
as learning the ways in which Al assistants are composed
could provide valuable information for improving the accu-
racy of the inference done by the assistants.
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8 CONCLUSION

Data wrangling is notoriously tedious and hard to auto-
mate. It has eluded the recent rise of Al because large
datasets hide corner cases that require human insight. We
have introduced the notion of Al assistants, which captures
the structure of semi-automatic, interactive tools for data
wrangling. We showed how the definition captures common
types of tools and makes them easy to use from notebook
systems. We developed four concrete Al assistants that are
flexible interactive versions of existing non-interactive tools.

This paper makes two claims. First, we argue that the
structure of Al assistants is a suitable abstraction for inter-
active data wrangling tools. Second, we argue that our inter-
active Al assistants are more practical than fully automatic
tools. To support the first claim, we present Al assistants that
cover a wide range of data wrangling tasks including pars-
ing, merging mismatched datasets, type inference, and the
inference of semantic information. To support our second
claim, we discuss three real-world case studies where a fully
automatic tool does not give the desired result, together
with an empirical evaluation that showed that users can
typically solve a wrangling task with 1-3 simple interactions.

While we cannot hope to reduce to zero the 80% of the
time that data analysts spend on data wrangling solely with
what we have described above, we believe that our frame-
work provides the right pathway. A growing ecosystem of
interactive unified Al assistants would allow data analysts
to fully leverage recent Al advances for the most tedious
and time-consuming aspect of their job and pave the way for
more equitable access to data science and machine learning.
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APPENDIX A

FORMAL DEFINITIONS

This appendix provides further details of the formal models
of the Al assistants discussed in the main text. The complete
descriptions provided here enhance the reproducibility of
our work and make it possible to reimplement Al assistant
as presented and evaluated in this paper. A summary of
symbols used in the formalization can be found in Table 5.

datadiff. The definition of the datadiff Al assistant given
in Section 4.1 shows patches, constraints, and the besty
operation. It omits the choicesx operation and the valid
predicate which identifies patches that are valid for a given
set of human interactions /. The operations of the datadiff
assistant, including the valid predicate, are defined as:
bestx (H) = argmax, ., Q(X,e) where
FEy = {(Pl, e ,Pk) <) | Viel.. kV3_|IdH(P7)}

validg (P) such that
valid g (permute(n)) iff
(Vmatch(i, j) € H. (i,5) € ) A
(Vnomatch(i, j) € H. (i,j) ¢ m)
validg (recode(s, [. . .])) iff notransform(i) ¢ H
validg (linear(i, a, b)) iff notransform(i) ¢ H
validy (delete(i))
validg (insert(i, d))

choicesx (H)
{H U {notransform(i)} | Vi.recode(i,[...]) € e} U
{H U {notransform(i)} | Vi.linear(i, a,b) € e} U
{H U {nomatch(i, j)} | permute(r) € e, Vi, j.(4,j) € 7} U
{H U {match(i, j)} | permute(n) € e, Vi, j.(i,5) ¢ 7}
where e = best x (H)

ptype. In the ptype Al assistant, bestx is obtained by
taking the maximum a posteriori of the posterior probability
distribution of the set of expressions determined by the
past human interactions. As in the case of datadiff and
CleverCSV, this is defined using the valid predicate. The
choices x operation allows the analyst to reject an inferred
type and mark an inferred missing or anomalous value as
non-missing or non-anomalous. More formally, the opera-
tions of ptype are defined as follows:
bestx (H) = argmax, cp, pr(X|e) pu(e) where
pr(Xle) = p(Xle) and pu(e) = p(e)
EFy = {6 ek | Va|IdH(€)}
validg (1, Vin, Va) iff
(not_type(r'Y e H = 7/ #71)V
(not_missing(v) e H = v ¢ V) V
(not_anomaly(v) € H = v ¢ V,)
choicesx (H) = {H U {not_type(t)}} U
{H U {not_missing(v;)} | j € J} U
{H U {not_anomaly(wg)} | k € K}
where best x (H )
(type(t), missing{v;}cs,anomaly{ws }rex)
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CleverCSV. The definition of the CleverCSV Al assistant
closely follows the example of datadiff. The best x operation
uses the pattern of the optimization-based Al assistants. The
choices x operation allows the analyst to reject a component
of a currently inferred dialect or to explicitly choose a
specific character for a dialect component. As before, the
valid predicate determines what is a valid dialect given past
human interactions. Formally:

bestx (H) = argmax, g, Q(X,e) where
Ey= {6 ekl ‘ Va|IdH(€)}

valid (is_delimiter(d), is_quote(q), is_escape(a)) iff
(fix_delimiter(d') e H = d' =d) Vv
(fix_quote(¢') e H = ¢ =q) V
(fix_escape(a’) e H = d' =a) Vv
(block_delimiter(d’) e H = d' #d) Vv
(block_quote(¢’) e H = ¢ #q) V
(block_escape(a’) € H = a’ # a)

choicesx (H) =
{H U {not_delimiter(cq)}, H U {not_quote(c,)},
H U {not_escape(ce)} } U
{H U {delimiter(c)} | Vc.C'} U
{H U {quote(c)} | Ve.C} U {H U {escape(c)} | Vc.C}
where (delimiter(c,), quote(c, ), escape(c.)) = bestx (H).

ColNet. The definition of ColNet differs from the other ex-
amples in that human interactions affect the objective func-
tion Q(X,e) rather than the set of possible expressions
Epr. The definition of the objective function is discussed in
Section 4.4. The following provides a full definition of both
of the operations of the Al assistant for completeness:

c = not_type(S, o) | is_type(S, o)
o = As defined in non-interactive ColNet
{ 1  whenis_type(S,0) € H
s = 0  when not_type(S,o) € H
p%  otherwise
Q?I,s = Khzqglﬁ

Ses

bestx (H) = arg max, . Qu (X, o) where
Qu(X,0) = qu,S

choicesx (H) =
{is_type(S, o), not_type(S,o) | S€S,0€G,p% >¢€}

APPENDIX B
PERFORMANCE CONSIDERATIONS

In general, interactive Al assistants obtained by adapting
an existing non-interactive tool (datadiff, ptype, CleverCSV,
ColNet) invoke the optimization logic of the non-interactive
tool, with small modifications, each time the user interacts
with the assistant. The performance is thus comparable to
the performance of the base tools [5], [6], [30], [31]. In
some cases, however, the interactive Al assistant can reuse
previously computed results and perform more efficiently.



In this section, we briefly discuss performance in typical
real-world scenarios as well as algorithmic complexity of
the optimization and possible performance improvements
for the four Al assistants discussed in the paper.

datadiff. The datadiff Al assistant uses the algorithm from
non-interactive datadiff [6]. This works in two phases. In
the first phase, the algorithm determines a cost matrix Cj;
by finding the best patch between each pair of columns. In
the second phase, the algorithm uses the Hungarian algo-
rithm to find the best bipartite matching. The interactive Al
assistant requires two modifications. First, after computing
C;j, we set C;; to 0 for each match(i, j) constraint and to
+oo for each nomatch(i, j) constraint. Second, we modify
the logic for finding the best patch to not use a recoding or
linear transformation when norecode is specified.

The algorithmic complexity of the first phase is O(n?) in
terms of the number of columns n, while the algorithmic
complexity of the second phase is O(n?). For real-world
datasets, however, most of the time is spent in the first
phase, generating and evaluating possible pairwise patches.
Reconciling the full broadband quality dataset for 2014 (31
columns) and 2015 (71 columns) takes 35 seconds on a
recent computer.’ Reconciling the full 2014 (31 columns)
with filtered 2015 (6 columns) dataset, as done in the case
study in Section 5.1, takes 5 seconds.

This makes the current implementation useable for
smaller datasets. There are two ways in which the per-
formance could easily be improved. First, the cost matrix
(phase one) could be determined on the first run and then
cached. This does not change between runs and would
significantly improve the performance on subsequent in-
teractions. Second, the cost matrix could be determined
based on a sample of the full dataset, possibly improving
the initial cost matrix in background after offering the first
recommendation.

ptype. The ptype Al assistant computes the posterior prob-
abilities over data types based on non-interactive ptype
[30] and updates the initially assigned types according to
the user feedback. This is achieved by storing the poste-
rior probability distributions rather than re-running non-
interactive ptype. Thus, assuming that the number of known
column types and therefore the maximum number of user
corrections is constant, the complexity of the ptype Al assis-
tant becomes identical to the complexity of non-interactive
ptype.

The computational bottleneck in type inference via ptype
is the calculation of probability distribution assigned for a
data column x by the kth PFSM denoted by p(x|t = k).
This calculation is carried out by taking into account only
unique data entries, for efficiency. Denoting the uth unique
data value by x,, the computation of p(x,|t = k) is
done via the PFSM Forward algorithm. This has complexity
O(MZ?L), where Mj, is the number of hidden states in the
kth PFSM, and L is the maximum length of the data entries.
Therefore, the overall complexity of the inference becomes
O(UK M?L), where U is the number of unique data entries,

3. Laptop with Intel Core i7-1185G7 processor, 15GB RAM, running
inside Docker container on Windows 11 OS.
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K is the number of types, and M is the maximum number
of hidden states in the PFSMs.

Notice that the complexity depends on data through U
and L, and does not necessarily increase with the number
of rows. The runtime for non-interactive ptype has been
shown to scale linearly with the number of unique values
U, handling around 10K unique values per second [30].
This makes the ptype Al assistant feasible in practice. It
would be possible to further improve its performance by
parallelizing the computations. For instance, the calculation
of the probabilities assigned for unique data values can be
calculated independently.

CleverCSV. The CleverCSV Al assistant uses the non-
interactive algorithm of [5] to identify the optimal format-
ting dialect for a given CSV file, X. The possible dialects
are generated by CleverCSV prior to the optimization, and
are based on the set, C, of unique characters in the file.
The optimization proceeds by computing for each dialect
a “pattern score” that captures how regular the structure of
the parsed data is (i.e., whether the resulting table has the
same number of cells in each row), and a “type score” that
captures the proportion of cells in the parsed file with an
identifiable data type. The product of these two scores forms
the objective function to be maximized. Since the type score
is in the range [0, 1], computing it can be skipped for dialects
with a small value for the pattern score (see [5]).

We distinguish three components of CleverCSV: con-
structing potential dialects, computing pattern scores, and
computing type scores. Constructing the dialects can be
done naively in O(|C|) time, with |C| denoting the number of
elements in the set C. In [5] two pruning steps are discussed
to remove unlikely dialects, which increases the complexity
for constructing potential dialects to O(|X| - |C|?). Theoret-
ically, the number of potential dialects is on the order of
IC|3. Computing the pattern score for each dialect is linear
in the size of the input file, O(| X |). If we write T for the set
of data types in the type score, then computing this score
can be done in O(|X| - |T]), as the number of cells in the
parsing result is linear in the size of the input. Combin-
ing these results gives a worst-case runtime complexity of
O(|X|:|T|-IC]?). However, as discussed in [5], the number of
potential dialects is in practice proportional to |C|, giving a
practical runtime complexity of O(|X|-|7|-|C]). The median
runtime for the files in Section 5.2 is 0.018 seconds.

Human interaction with the CleverCSV Al assistant pro-
vides constraints on the dialects considered for the file. By
storing the value of the objective function for each dialect
in a lookup table, interactions with the Al assistant need
only update the allowed dialects in this table, resulting in
interactions that are linear in the number of dialects.

ColNet. The non-interactive version of ColNet trains a CNN
classifier for each (relevant) semantic type in the knowledge
graph. The training is split into two phases [31]: pre-training
and fine-tuning. The pre-training is performed using the
information from the knowledge graph (typically a large
set of samples) while the fine-tuning is computed with the
data from the column to be annotated (typically a small set
of samples).

As described in [31], the classifiers were implemented in



Tensforflow and the pre-trained phase for each classifier was
completed within 2 minutes on a workstation with Xeon
CPU E5-2670. The computation time for the fine-tuning
phase was in the order of seconds. The interactive version
of ColNet relies on the same training phases, where the
pre-training can be run offline for each knowledge graph.
Fine-tuning only needs to be run before the first human
interaction and it is done using a sample drawn from
the input data. The sample size can thus be adapted to
meet given performance goals. For the cases of very large
knowledge graphs, one could also focus only on a subset of
relevant types.

The constraints used by ColNet, as described in Section
4.4, directly affect the score associated to a semantic type for
the involved sample and has an impact on the overall score
of a semantic type for the column. Constraints obtained
during the user interaction could also be used to further
fine-tune the involved classifiers and thus adapt their scores.
This would affect the performance, but could potentially
improve the quality of recommendations.

APPENDIX C
OUTLIER Al ASSISTANT

The AI assistants discussed so far are examples of tools
based on sophisticated machine learning methods. Such
tools allow the analyst to tackle the most challenging data
wrangling tasks. However, data analysts also regularly need
to complete more mundane tasks, such as identifying outlier
values based on standard deviation, removing exact dupli-
cates or correcting simple typos. Such mundane tasks would
typically be done without dedicated tool support. However,
the fact that Al assistants are very easy to build makes it
practical to develop dedicated interactive tools to support
mundane tasks that are based on a simple algorithms.

Formal definition
We first discuss a simplified formal model of an Al assistant
for removing outlier values based on the m-sigma rule.
Given a sequence of values z1,...,x, with a mean T and a
standard deviation o, the assistant identifies values outside
of the interval (T —mo, T +mo) for a multiplier m specified
by the analyst. It then offers the values outside of the range
to the analyst who can choose which of those should be
removed from the dataset. For simplicity, we describe a
version of the assistant where the input is a sequence of
values, corresponding to a data table with a single column.
The outlier assistant is not optimization-based. It offers
potential outliers as a result of the choicesxy operation.
The user can then choose values to be removed. A human
interaction H is thus a set of values selected by the user. The
expressions are likewise just sets of values to be removed.
The bestx operation does not perform any inference and
simply returns the values selected by the user. The f op-
eration then actually removes the values from the dataset.
Assuming O is a set of outliers o1, ..., 0, such that o; € X
and o; < T —mo or o; > T — mo, the assistant is defined as:

fle,X)={x; e X |z; ¢ e}
bestx(H)=H
choicesx(H) = HU{o1},...,HU{ox}

where 01, ...,0, =0\ H
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The expression e is a set of values that the user selected for
removal. To apply the expression, the f function removes all
values from X that are also in e. Since human interactions
H and expressions e are the same, the bestx function
simply returns the human interaction H it receives as an
argument as the best cleaning script. Finally, the choicesx
operation takes previously selected values to be removed
H. It generates a list of choices by taking all outlier values
that are not already selected, i.e., O \ H, and adds each to
the already selected outliers to be removed.

The value of this example is two-fold. First, it imple-
ments a simple yet practical operation that data scientists
in the real world actually use. For example, the anomaly
detection in the Tundra Traits case study discussed in [35]
uses this approach with an 8¢ threshold. Second, the ex-
ample shows the flexibility of our definition. It supports
optimization-based Al assistants, but also more manual
ones such as the Outlier assistant described here.

Removing aggregates

To illustrate the usefulness of simple Al assistants, we
developed a practical version of the Al assistant for outlier
detection based on the simple theoretical model presented
above. The assistant can be used for removing outlier rows,
for example when working with datasets that combine raw
and aggregate data. This example illustrates the possibilities
of the AI assistant ecosystem. It is a simple assistant that
solves a specific problem, but does so very effectively.

The assistant takes a data table with a mix of numerical
and categorical columns. It identifies rows that contain nu-
merical outliers (using a simple m-sigma rule) and collects
values of categorical columns in those rows. The user can
choose any of those as conditions for filtering rows in the
dataset. The user can choose to remove all rows where a
selected categorical column has a particular value that has
been found among the outlier rows.

Consider data on aviation incidents published by Euro-
stat* (Table 3). Each row shows the number of people injured
in accidents that involve an airplane registered in a country
specified by c_regis that occurred in a country given
in the c_geo column. However, the dataset also contains
aggregate rows. The last row in the sample shows the total
number of injuries in the EU, which is obtained as a sum
of all the other rows (some not shown). Such aggregate
rows are not uncommon in real-world datasets, and can
significantly affect an analysis if they are not identified.

To work with the data, the analyst first wants to remove
the aggregate rows. When she invokes the Al assistant for
outlier detection on the aviation accidents dataset, she gets
four recommendations related to the c_regis column and
three recommendations related to the c_geo column. The
assistant offers a choice of transformations that remove rows
where c_regis is EU28, FR, CH or NEASA and rows where
c_geo is EU28, OTH or FR. With two human interactions,
the analyst can choose the desired two filters and remove
all aggregates (either of the columns has a value EU28) from
the dataset. The other choices are not relevant, but indicate
regions that are worthy of further investigation, e.g., France

4. https:/ /ec.europa.eu/eurostat/web/transport/data/main-tables



TABLE 3
Subset of Eurostat data on aviation accidents.
c_regis c_geo 2017 2016 2015 2014
UK cz 0 0 0 0
UK IT 0 0 1 0
UK SE 0 0 0 0
UK UK 3 0 2 2
EU28 EU28 18 7 22 31

(with higher than average number of accidents) and planes
registered outside of the EU (denoted by NEASR).

In R or Python, the analyst could write code to identify
rows with values outside of the m-sigma range. She might
notice the EU28 value and write code to remove rows where
c_geo or c_regis are EU28. This is easy for a seasoned
programmer, but our Al assistant allows a non-programmer
to solve the problem with two simple interactions.

In Trifacta [9] the analyst can use the data quality bar
and histogram (automatically displayed for each column) to
locate unusual values in each column data. The “Column
Details” window also offers a list of outlier values (identi-
fied based on proprietary chosen quantile in each column).
Based on the outlier values, the analyst can construct a
filter for removing rows, e.g., where the value for the 2017
column is between 15 and 25. However, Trifacta operates
on individual columns and so it is not immediately obvious
that the outliers represent aggregates with a special value in
separate c_regis and c_geo columns.

APPENDIX D
SYSTEM OVERVIEW

Al assistants are available as an extension for the industry
standard JupyterLab notebook system. Figure 1 shows the
use of the datadiff Al assistant for solving the problem
discussed in Section 5.1.1.

As discussed in Section 3.1, the fact that Al assistants use
a unified interface means that a single extension provides
access to a wide range of Al assistants available in a single
data analysis environment. Our support for Al assistants
utilizes the Wrattler extension [41] for JupyterLab. In this
section, we discuss the system architecture and implemen-
tation of the abstract interface of Al assistants. The code for
the Wrattler extension and several of the Al assistants is
available at: https:/ /github.com/wrattler.

System architecture. Our implementation leverages Wrat-
tler [41], which extends JupyterLab with a new kind of
polyglot notebook that can contain multiple kinds of cells.
The Wrattler architecture, including the support for Al
assistants, is illustrated in Figure 3. Wrattler separates the
notebook (running in a web browser), from language run-
times and a data store (running on a server). Our extension
implements a language plugin for Wrattler that defines a
new “Al assistant” cell type and facilitates access to indi-
vidual Al assistants. The new cell type uses a graphical user
interface that allows users to choose the assistant they want
to invoke, as well as select the input data. When the cell is
evaluated, it invokes the Al assistant, previews the results
and allows the user to select one of the options generated
by the choices x operation of the Al assistant.
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Notebook Al assistants service
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Fig. 3. Al assistants in Wrattler (partly adapted from [41]). Wrattler keeps
all data in data store on the server. The notebook communicates with
language plugins and data store via HTTP (solid lines). We add a new
service that facilitates access to Al assistants, which communicates with
individual assistants using standard input/output (dashed lines).

Common interface and integration. Our implementation
aims to make it easy to create new Al assistants. For this rea-
son, Al assistants use a shared and easy-to-implement com-
munication interface—standard input and output—together
with a simple protocol that implements the abstract defini-
tion.

Definition 3.1 defines an Al assistant formally in terms
of operations f, bestx, and choicesx. In our implementa-
tion, Al assistants are command-line applications that read
commands (corresponding to the operations) from standard
input and respond via standard output. For example, our
JupyterLab integration calls datadiff to get completions
after the “Don’t transform LLU” constraint is selected by
the analyst as follows (> marks standard input, < marks
standard output):

> reference=/temp/bb15nice.csv,input=/temp/bb14.csv
> choices
> notransform(LLU)

Don’t transform ’Urban.rural’
notransform(LLU)/notransform(Urban.rural)
Don’t match ’Nation’ and ’Urban.rural’

<
<
<
< notransform(LLU)/nomatch(Nation,Urban.rural)

© ® N G R W N =

<

The first three lines invoke the choices x operation by spec-
ifying input data (line 1), operation name (line 2) and past
human interactions H (line 3). The response generates possi-
ble human interactions followed by a blank line. The actual
implementation returns multiple choices, but we list only
the first two in the above example. Each choice consists of a
name, followed by a new human interaction. Here, the hu-
man interactions are encoded as constraints, separated by a
slash. The analyst previously selected the notransform(LLU)
constraint, so the two offered human interactions include
this and add one other constraint. The first one, named
“Don’t transform Urban.rural” (line 5), is represented as two
constraints (line 6), the existing notransform(LLU) constraint
and a newly added notransform(Urban.rural) constraint. The
second human interaction (lines 7-8) similarly represents
two constraints, the existing notransform(LLU) constraint
and a newly added nomatch(Nation, Urban.rural) constraint.

We chose standard input/output as our interface, be-
cause it makes it possible to implement Al assistants in
any programming language. For example, the assistants pre-
sented in this paper have been implemented in R (datadiff),
Python (CleverCSV, ptype), and F# (Outlier).



TABLE 4

An overview of datasets used throughout the paper and their sources.
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Name Description Use Source Size

Broadband (2014) UK home broadband performance datadiff motivation Ofcom [25] 32 cols, 1971 rows
Broadband (2015) UK home broadband performance datadiff motivation Ofcom [25] 67 cols, 2802 rows
IMDB movies Classification and rating of 100 movies CleverCSV evaluation Kaggle (x) 44 cols, 100 rows

Colors File names and RGB color codes CleverCSV scenario GitHub (¥) 11 cols, 300 rows
Cylinder Bands Cylinder bands in rotogravure printing ptype scenario UCI [36] 40 cols, 512 rows
Corrupted UCI (1)  Corrupted (abalone, adult, bank, car, iris) ~ datadiff evaluation UCI [36] max 15 cols, 32,561 rows
Corrupted UCI (2)  Corrupted (abalone, adult, bank, car) datadiff evaluation UCI [36] max 15 cols, 32,561 rows

CleverCSV failures

ptype failures

Aviation accidents

Subset of data from Gov.uk and GitHub
Subset of data from Gov.uk and UCI
EU aviation accidents per year

CleverCSV evaluation CleverCSV [5] 255 files
ptype evaluation ptype [30] 43 columns
outlier scenario Eurostat (1) 32 cols, 3469 rows

(%) https:/ / github.com/alan-turing-institute /CleverCSV /blob /master/example /imdb.csv
() https:/ / github.com/victordiaz/color-art-bits-
() https:/ /ec.europa.eu/eurostat/web/transport/data/main-tables

TABLE 5

A glossary of symbols and special identifiers used throughout the paper.

Symbol Scope Explanation

e, e* Al assistants Expressions (cleaning scripts) recommended by Al assistants; e* denotes the best script
XY Al assistants Input dataset X and output dataset Y’

H, Hy Al assistants Past human interactions with the Al assistant; Hp denotes no prior interaction

fle, X) Al assistants Operation that applies the expression e (cleaning script) to the input dataset X

best x (H) Al assistants Operation that recommends the best expression for a given input, respecting past interactions
choicesx (H) Al assistants Operation that generates a sequence of options the analyst can choose from
Qu(X,e),Q Optimization Objective function that assigns a score to an expression, w.r.t. past interaction (Q )
Ey,E Optimization Set of permitted expressions; Ef; is restricted with respect to past human interaction
pu(X|e) Probabilistic Likelihood of the input data X given an expression e, w.r.t. past human interaction
p(e) Probabilistic Distribution representing prior beliefs about probabilities of expressions

P datadiff A single patch that can be applied to a column of the dataset

c datadiff, CleverCSV A single constraint that can be added to H in order to influence the inference

valid g datadiff, CleverCSV A predicate that determines if a patch or type respects past interactions (constraints)

T ptype Inferred primitive type such as Boolean, integer, floating-point number, date or string
o ColNet Inferred semantic type from a knowledge graph such as dbo:Company

S ColNet Set of sample values, drawn from a column of the input dataset

g ColNet Score of a sample S for a given semantic type ¢ in non-interactive mode

9% g ColNet Score of a sample S for a given semantic type o; w.r.t past interactions




