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Abstract

An expert system approach has recently been used in parameter selection for 
VSAM (Virtual Storage Access Method) file organisation [AL87a]. This system 
has been developed to aid in-house users to apply relevant facts and heuristics 
to optimise VSAM file design. Multi-dimensional physical database design is 
more sophisticated and complicated than VSAM file design. The expert system 
approach can be applied to select and tune physical database design for various 
applications.

A great deal of work has been done in developing diverse algorithms or access 
methods to organise automated information on secondary storage devices 
[FA86b] [FR86] [FR88] [GU84] [HU88a] [KS88a] [KS86] [L087] [NI84] 
[OR88b] [OR86] [OT85] [R081], etc. However, little work has been done to 
enable designers to select an access method which matches a projected 
application profile (features and requirements) and perceived strengths and 
weaknesses of candidate algorithms. This thesis considers a number of grid 
based algorithms and makes expert assessments of each according to its 
strengths and weaknesses. It analyses features of various access methods and 
using expert knowledge matches features for a range of m-d (multi-
dimensional) algorithms with corresponding characteristics of an application. 
The knowledge-based system presented in this thesis can be applied either 
manually or computerised to give a systematic approach to m-d algorithm 
selection. A system is proposed to (1) heuristically select an initial algorithm;
(2) describe how the selection process is evaluated against actual m-d algorithm 
performance and (3) show how the results of the evaluation can be used to 
refine expert knowledge embodied in the selection system. Heuristic 
assessments are given for several m-d access algorithms. Examples are 
presented to show how these heuristics are used to select a m-d access 
algorithm for a specific application. It is reasonable to suppose that the initial 
heuristic assessments are not entirely accurate. A tuning mechanism for the 
system heuristics is given in section 4.9. The system selection process is 
thereby, able to adjust to real world results. Finally, we present a simple 
example to illustrate how the proposed system works.

Key Words:
M-d Physical Database Design
Expert Systems
Matching
Tuning
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" There was a consensus that researchers should build automatic physical database 
design tools that would choose a physical schema and then monitor the 
performance of the schema making changes as necessary. This would include 
adding and dropping indexes, load balancing arm activity across a substantial 
number of disk arms, etc. Hence, tuning knobs should be removed from the 
domain of the database administer and manipulated by a system demon. "
- Further direction in DBMS research, M. Stonebraker 1988 -

" It is desirable to have pairs of data item which are required consecutively on some 
query access path to be physically stored near to each other. As the number of 
queries increases the complexity of arranging for this becomes clear, and so usually 
only the most prominent queries are privileged to be considered for optimisation 
of their placements. Clearly automated design aids are called for to supplement the 
human designer's skill and experience. "
- David A Bell, 1987 -
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Chapter 1. Introduction

As the size of a computerised database increases, the time taken to access required 
data item(s) becomes a bottleneck. This bottleneck results from intensive access to 
secondary storage. A question arises - how, in principle, can data be organised 
using secondary storage devices so as to allow speedy and efficient access? And 
how can this organisation be physically implemented? This thesis considers these 
questions for the case of databases including spatial data, i.e. a m-d (multi-
dimensional) data space.

A number of m-d search algorithms have been proposed [FA86b] [FR86] [FR88] 
[GU84] [HU88a] [KS88a] [KS86] [L087] [NI84] [OR88] [OR86] [OT85]
[R081], etc. They mainly differ in data space partitioning and the implementation of 
that partitioning. Partitions fall into two basic types: (1) partitioning a data space in 
its primary key dimension, dividing a data space in its primary key sequence, 1-d 
(one dimensional) approach; (2) partitioning a data space in a m-d (multi-
dimensional) attribute sequence - grid partitions, dividing a data space to preserve 
its geometrical proximity, a m-d approach.

An example of the former is the inverted file approach. Data are organised in 
primary key sequence and are stored near to each other in the primary key 
dimension. One result is that if the difference between two primary key values (Ikl - 
k2l) is small then the two data items are likely to be stored in linear proximity. This 
proximity is preserved solely by the primary key. When other keys are involved in 
the search of the storage location the proximity may no longer hold, (see Figure 
1.1. (a) primary key partition (inverted file )). Here, 2-d (two dimensional) data are 
stored by the inverted file approach. Points p i, p2, and p3 are data items. Note that 
along the horizontal axis (primary key dimension) points p i, and p2 are closer than 
p i and p3 so that p i and p2 are likely to be stored physically closer than points p i 
and p3. The vertical axis is significant when secondary key searches are required. 
From the diagram, pi and p3 are closer on the vertical axes (secondary key) than p i 
and p2, but as shown in the diagram, pi and p2 are stored nearer each other than p i 
and p3. The searching efficiency is different for a primary key and a secondary key 
because of the relative distances along the different axes. This asymmetry is an 
inherent source of a m-d searching inefficiency in the inverted file partition 
technique.
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An example of the latter is a grid rile partition. A data space is divided into grids 
(see Figure 1.1. (b) grid partition). Points p i, p2, p3 are geometrically close and 
they are in the same grid cell (RO) so that they are stored together.

(a) Primary key partition (b) Grid partition
secondary key y secondary key y

0 0 
0 o

R2

O  ©

O  Q 
R3

p2 RO 

p3

P.1 o

R i  G 
©

©  ®

primary key x

Figure 1.1 Search Space Partition

In the diagram each region Ri for i = 0, 1, 2, 3 corresponds to a data bucket.

An analysis for the inverted file partition and the grid file partition can be found in 
the Appendix A l. This analysis shows that the complexity of storage and retrieval 
relates to the query pattern. If in most cases only the primary key is dominant 
during the life span of a data set, inverted file partitioning can be an advantage. But 
when other attributes play an important role in the retrieval process, the grid file 
partition may be more efficient. Grid file partitioning is a better choice for exploring 
a potentially near-optimal physical database design because the tuning process 
allows us to adjust the partition depending on various factors including the 
dominant search attribute(s). Here "dominant attribute(s)" means those attribute(s) 
that are frequently used for data retrieval. Thus inverted file partitioning can be seen 
as a special case of the grid partition when the primary key is the dominant attribute 
because of its high search rate. The grid partitioning approach thus offers more 
flexibility than the 1-d partitioning approach.
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This flexibility of the grid partition, in its various forms [BU83] [FR86] [FR88] 
[KS88a] [KS88b] [KS86] [L087] [RU87], allows the possibility of matching the 
degree of symmetric partitioning with the query pattern for a m-d data space. With 
inverted file organisation, the data space is always partitioned in one dimension 
only; whereas with grid file organisation, partitioning can take place in all 
dimensions (symmetric partitioning). Thus grid partitioning aims at geometrical 
proximity for a spatial search space (a m-d search space) rather than (as with 
inverted file approach) for a linear search space (a 1-d search space). The grid 
partition method has been chosen here for physical data organisation because of its 
flexibility and efficiency in the searching of required data in a m-d search space.

There are various strategies for choosing and implementing grid partitioning, for 
instance, a scale-based or an interpolation-based grid partitioning [KS88a] and an 
indexed [FR88] [TA82] or a hashing function implementation [KS88b]. These 
strategies are application-oriented. If the data distribution is such that the number of 
data items in each non-empty grid cell is roughly equal then the EXCELL [TA82] 
scheme, which divides a m-d space into equal sized grid cells, may be used 
effectively. Note however, that an equal sized grid cell partitioning method can itself 
be implemented by an indexing approach or by a hashing function. Consequently, 
further tuning may be required based on the differences between these two 
implementation techniques.

When a number of empty grid cells are created by a partition, these two methods 
will differ in terms of storage utilisation and speed. In the case of the indexing 
implementation, extra index entries may be created for these empty grid cells, 
whereas for a hashing function a number of empty data holes may be generated for 
these empty cells in the data file.

The decision as to which approach to use is an intuitive judgment depending on a 
consideration of the index file storage and the amount of storage to be reserved for 
empty grid cells in the partition. If the number of empty grid cells is very small then 
the hashing approach will be a better choice because it offers faster speed and the 
small number of empty data holes can offset the amount of storage required for the 
index file itself. Note however that, following selection of a primary strategy, 
further tuning processes are required to achieve near-optimal performance. This is
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because the number of empty grid cells varies from application to application and 
changes during the course of database operations.

Research done in this area [LA88] suggests that for physical database organisation a 
specific implementation technique is usually suitable for a set of defined 
applications. If an application requires fast access time then it can employ a hashing 
algorithm to good effect. If, however, the response time is not critical and the 
volatility of data is high, a simple sequential file will be satisfactory. No single 
implementation will be the most-efficient for all applications because different 
applications may have different features, demanding individual consideration for 
their efficient use. It is proposed here that the expert system approach can be 
effectively employed in selecting a particular strategy of grid partitioning for a 
given application and further, that this approach can enhance the overall efficiency 
of the implementation.

This thesis considers a number of grid file algorithms and makes expert assessment 
of each according to its strengths and weaknesses based on an initial consideration 
of the various applications. These initial considerations fall into three categories: the 
data characteristics; the users’ requirements; hardware and software constraints.
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Chapter 2. Expert System Approach

Physical DB design is an extremely difficult task. Finding a good solution is 
difficult as the criteria for an optimal organisation cannot be exactly quantified. 
Database optimisers have been developed to reduce the computation and 
communication cost in a distributed environment. A variety of approaches have 
been mentioned in [SH91]. For example, the horizontal partitioning has been used 
in the context of distributed databases to increase the throughput and to save 
response time, the algebraic manipulations of query expressions transform a given 
query into an equivalent one that can be processed more efficiently; and the reorder 
of query conditions reduces the size of satisfactory relations for less complexity, 
etc.

An example of database optimiser is System R. System R performs optimisation of 
various operations over a database. In the optimisation process, System R makes a 
decision based on a cost estimation of different options. This estimation yields 
different computation and disk access costs. System R considers physical 
organisation of a relation which can affect the overall cost of a given query. The 
physical organisation of a relation provides information for the optimiser to take 
advantage of the indices. System R also allows relations to be stored according to 
its usage, providing storage flexibility so that logically related tuples can be 
accessed with low cost. System R* [MA86] is an extension of System R to the 
distributed environment. In addition to the strategies used in System R which 
optimises select, project, join and union, System R* has extra ability to handle 
replicated copies of a given relation in order to reduce transmission cost over the 
network. To perform the optimisation System R* [MA86] [M086] follows the 
following steps:

(1) generating all evaluation sequence;
(2) computing the best evaluation strategy;
(3) evaluating the cost of each option and
(4) selecting a strategy with the least cost.

The cost function used in System R* includes CPU, I/Os, and cost of transmission. 
In R* the transaction management uses two-phase locking protocol. Deadlock is 
allowed to occur and is resolved by deadlock detection and victim transaction abort.
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Another example is Starburst [LI87] [CH90]. Starburst is an extension to existing 
database management systems such as INGRES, R, R* etc. The objective of 
Starburst is to facilitate the implementation of data management for relational 
databases. It provides alternative ways of storing relations (storage methods) and 
access paths, integrity constraints or triggers (attachments) to relations. It also 
provides support for diverse applications, i.e. supporting user-defined abstract data 
types and functions for fields of database records.

From the brief description of the DBMS optimisers, it can be seen that the physical 
organisation of a relation can greatly affect the cost of operations. The reason being 
that the number of I/Os required for a database operation depends on how data is 
stored to secondary storage device. A number of algorithms exist for implementing 
the grid partitioning approach. Each algorithm has its own strengths and 
weaknesses and for each algorithm one makes different expert opinions - heuristics 
- in selecting an algorithm for a specific application. It is also very difficult to define 
and classify an application with a clear pattern of its data and its query because the 
knowledge about it is fuzzy ( it cannot be clearly quantified), dynamic ( size and 
features change) and uncertain ( changes cannot be predicted). The design of 
physical databases involves the determination of the data partitions, physical storage 
of data structures and access paths. These are based on a number of factors such as 
the block size, the types of query and the data distributions. Thus in practice, the 
selection of implementation algorithms is more likely done by heuristics whereby 
one matches the problem-dependent features of an application to the strengths of 
various grid implementation algorithms for a better solution. At the computer 
department of Erlangen-Nuemberg University, West Germany, an expert system 
has been built [AL87b] to support the configuration of VSAM (Virtual storage 
access method) file design. The objective of this system is to optimise VSAM file 
design by the implementation of a computer-aided file design system. In [AL87b], 
the author has recognised that VSAM file design is an application-orientated task. 
The expert system approach is used for the VSAM file organisation because the file 
designer needs to know a multitude of technical details in order to choose the right 
parameters, eg. bucket size, number of buffers, control area size, control interval 
size, etc. Tuning VSAM file design requires tradeoffs between various parameters. 
Further, how one chooses the values for these parameters depends upon the
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features of an application.

A m-d physical DB design can be more complicated than a VS AM file design. As 
with VS AM file design, a m-d physical database design is an application-oriented 
task. To achieve optimal performance knowledge is required about the applications 
such as data distribution, data volatility, data set size, dimensionality of a data 
space, types of query and dominant query attributes. In addition, information is 
required about the system constraints such as the bucket size, available memory 
space and access modes. Moreover, heuristics are needed so that a valid choice can 
be made between the various implementation algorithms and data space partitioning 
strategies.

This thesis investigates factors relating to physical organisation of m-d data for the 
improvement of database performance. It assumes that:
(1) The database considered in this thesis are not distributed databases. The factors 

which influence the performance of distributed databases include relation 
partitioning and tuple distribution to different nodes over the network in order to 
reduce the cost of database operations. We assume that the transmission cost is 
not relevant to the physical organisation of data but relevant to distributing 
relations and scheduling the sequence of database operations.

(2) Performance is evaluated without the consideration of locking factors. We 
assume that the major influential factor of locking is the number of users 
accessing the same parts of a database concurrently. This mainly relates to the 
locking strategies used, and functionally partitioning and distributing relations 
in a database.

(3) Features of different data sets are derived from an equal-sized grid cell partition,
i.e. the equal-sized grid cell partition is used to measure the features of all data 
sets for standardisation.

(4) Selecting one element from a group of tuples [BO90] which satisfy a query 
condition can be done by functional manipulations. For example, the author 
[FR86] has mentioned in his book (page 515) that basic sequence manipulating 

functions can be introduced to tackle the issue. The function a* ->  a  returns
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the first element of a sequence, we assume that the implication in the 
implementation of databases is the need of a control rule. This rule states that 
once there exists a tuple that matches the query conditions the result will be 
returned and the query operation terminated.

In the following chapter, the framework of a system model which uses heuristics to 
tune grid file design is discussed . We also show briefly how the system model 
works.
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Chapter 3. The System Model

An expert system approach has been used for VS AM (Virtual Storage Access 
Method) file organisation [AL87b]. This section introduces the scenario of how an 
expert system approach can be applied to select physical organisations for multi-
dimensional (m-d) data. A brief system framework is also described.

3.0. Introduction
The purpose of the system is to select an efficient implementation algorithm for a 
particular application and to provide monitoring and tuning facilities for a m-d 
physical database design. The requirements of the system are:
(1) to help users choose a near-optimal implementation of a physical database 

design;
(2) to monitor the performance of a database in order to satisfy users' 

requirements;
(3) to identify why a particular algorithm is chosen for a given application;
(4) to add new knowledge to the system, enabling the amendment and 

extension of the knowledge base and inference rules.

3.1. The Framework of the System Model
The characteristics of database applications are important factors which will 
influence the performance of databases. Researchers have developed various 
techniques for physical database organisation, catering for different applications 
[BU83] [EN88]. In practice, it is usually a mystery to the user why the 
performance deteriorates, eg. why the system gives a slower response at a certain 
stage. The reason is that the performance varies along with the changing 
applications (the pattern of the data and the frequency of queries change during the 
course of accessing and updating the database). The system model based on an 
expert approach is, therefore, designed to apply heuristics to match the 
characteristics of a given application to the strengths of an algorithm. It analyses the 
reasons behind any performance deterioration and works out what measures may be 
taken to improve the performance. In addition, it also takes the necessary actions to 
meet the users' requirements if possible.
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The system model is made up of a user-system interface, database profiles, a 
knowledge base and a rule base. The knowledge base consists of an algorithm 
base, an application abstract profile base, a performance evaluation unit and a 
similarity comparison model. Its framework is illustrated in Figure 3.1.

Figure 3.1 The System Framework.

10



A brief description of the system components
1. The User-System Interface (USI) captures the information from users 

about an initial knowledge of the database and system environment to 
construct an initial model of an application.

2. The Database Profile (DBP) stores information which describes the 
characteristics of an application.

3. The Algorithm Base (ALB) stores various alternative implementation 
schemes, splitting strategies, and merging strategies in terms of partitions and 
access paths.

4. The Similarity Comparison Model (SCM) carries out pattern matching in 
terms of data requirements and queries, in order to measure how closely a 
given application matches an existing application abstract profile.

5. The Application Abstract Profiles (AAP) store required information about data 
space partitions, data distributions, chosen implementation algorithms and 
query patterns. It assists in classifying applications. For instance, when the 
performance of the database falls to an unsatisfactory level in its performance 
the algorithm chosen for the AAP can be used to suggest a better 
implementation, provided a similar degree is identified to be satisfactory 
between the database profile and an application abstract profile (AAP).

6. The Performance Evaluation and System Validation (PESV) calculates speed 
and storage utilisation for a particular AAP. The system validation updates the 
rule base to achieve more accurate reasoning.

7. The Rule Base (RB) stores rules about algorithm selections and alterations to 
rules.

11



3.2. The Definition of the System Model
The system model is defined as:
S = {USI,DBP, K, RB}.
Where:
S - the System.
USI - User-System Interface.
DBP - the DataBase Profile stores relevant information about the

physical database to be tuned. It consists of database features, 
including a set of the estimated initial database features obtained from 
the USI and a set of dynamic features acquired during the operations 
of the database. It also contains a set of parameters for each data set 
in the database:
DBP = {DBPi I for i = 1, 2 ,..., x }
where x is the number of data sets which make up the database 
concerned.
The element DBPi (for i = 1 ,2 ,..., x) of DBP defines the 
characteristics of a data set i. These are the relevant properties of the 
database, including the initial and current database features - data 
patterns, query frequencies, system constraints, the chosen 
algorithm, and the corresponding performance.

K - the Knowledge required for the tuning process. This 
consists of the following:
K = (ALB, AAP, PESV, SCMs).
ALB - Algorithm Base.
AAP - Application Abstract Profile.
PESV - Performance Evaluation and System Validation.
SCM - Similarity Comparison Model.

RB - a Rule Base guides the system in deriving solutions or
recommendations for operations. It is constructed on the basis of 
expertise, experience, heuristics, judgments, and individual 
decision criteria.

All the above information is stored as either factual or procedural knowledge: the 
factual knowledge gives the system evidence as a basis to guide selection and
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matching processes; the procedural knowledge offers the system inference paths as 
an approach to deriving a solution.

Having defined the system, we now describe briefly how the system should work. 
As shown in Figure 3.1., when a new database is to be created, its initial data 
characteristics, such as the domain of the data space D, the data set size n, the 
dimensionality of the data space m, the users' requirements, hardware and 
software characteristics are obtained from the user-system interface via a dialogue 
between the system and users. Answers from users are validated and stored as 
initial characteristics of the application database system, producing an initial 
database profile. The database profile is used as the basis for selecting an 
implementation algorithm for the application concerned. The data characteristics are 
stored for a comparison of similarity between an application and an AAP. The 
users' requirements are employed as criteria by the system to trigger actions 
concerned with the monitoring of the database, and the hardware configuration 
indicates the constraints to the system. After an initial implementation algorithm has 
been selected the database will be physically stored on a secondary storage device 
according to this chosen algorithm. If the actual performance of a database does not 
meet the users' requirements at a certain stage it will trigger the system to either 
seek an alternative scheme to improve the situation, or indicate the relevant status of

the current system. When the constructed application profile matches an

application type in the AAP base with required similarity (defined in the rule base) 
then using the similarity comparison model, the rule base will be searched to find a 
system-suggested implementation algorithm. If, on the other hand, the application 
profile cannot find an AAP that matches it with required similarity, then the 
application will be analysed and a new type of application may be added to the AAP 
base. Different stored implementation algorithms in the algorithm base will be 
applied to this new application type to carry out the performance evaluation through 
which the best algorithm for this new application type is chosen. In addition, the 
system should be able to update rules by itself. This update applies experimental

* To compare similarity between the two, information about an application needs to 
be constructed in accordance with the AAP
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method and a “learn by expected result” approach. This is done by the Performance 
Evaluation and System Validation (PESV - see section 4.9 for details). The chosen 
implementation algorithm is then stored as knowledge in this new AAP as a system 
suggested solution. It is found that the data concerning the database may change 
during the life time of the database and so too may the characteristics of an 
application. These changes will be collected from the database optimiser (located in 
the DBMS), or the statistics of the database, or collected by the system itself. They 
are used to update the application database profile. When an unsatisfactory level of 
performance is detected, the system will extract the relevant information of the 
application profile, based on the new database profile, to compare the profile with 
the AAP. If an alternative solution is found in the system AAP then the system will 
adjust the database accordingly and take any necessary actions; otherwise, the 
system will display the hypotheses for the initial solution and the explanation of 
how the current database deviates from these hypotheses. We assume that the 
changing characteristics of the data as well as the query patterns are the source of 
any performance deterioration. By studying the dynamic behaviour of a database 
the causes of performance change may also be examined.
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3.2.1. User-system Interface
The user-system interface is a means of capturing knowledge, relating to initial 
information concerning an application, from users. When a new data set is to be 
created the system will ask questions about the following aspects: the characteristics 
of a data set; users' requirements regarding the performance of the data set; 
hardware and software characteristics affecting the physical organisation of the data 
set. Some of the knowledge may be obtained from the database definition, such as 
data item length, access mode, cardinality, etc. In this case we can view the 
database definition as a user in terms of capturing initial knowledge about an 
application. An outline of the user-system interface is shown in Figure 3.2. As an 
implementation consideration, windowing technology can be applied to assist users 
to enter application features. A brief windowing USI is shown in Figure 3.3., and 
an initial algorithm selection is illustrated in Figure 3.4. respectively.

Figure 3.2. An outline of the user-system interface.
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Figure 3.3 USI Implementation Consideration.
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Figure 3.4 A Framework of Initial Algorithm Selection.

A user-system interface (USI) is defined as

USI = {AC, DBP(S), REQ(S), H /W d s), S / w d s) }
Here:
AC - Application Classification gives categories of applications of the 

AAP in the system, each application class including an application 
domain and its functionalities (tasks), for users to choose. The 
purpose of AC is to provide the system with the facility to process 
incomplete information. When the class of the concerned application 
matches the existing application class ACi the missing information 
will be extracted from the ACi in the AAP base. If there is no 
matched class in the system, a new one can be added by the users 
with its definition. The AC has two levels: a menu level for a user to 
select the corresponding application class; a definition level for 
users’ reference. Each definition gives the meaning of an application 
class.
AC = { ACi I for i =  1,2, ..., x }

DBP(S) - Static Database Profile consisting of characteristics gained from the 

user-system interface.

DBPOO = { D B Pl(s), DBP2(S>, ...., DBPx(s) i

= { DBPi(s) for i = 1, 2, ..., x }
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DBPi(s> - initial assumptions about a data set that form the static features of 

the database profile.

r e q (s) - 

H / w d s) - 

s/wds) -

Users' Requirements.

Hardware Characteristics.

Software Characteristics: i.e. OS environment.

The detailed parameters for the above concepts are: 

DBPi(s)= {id, tm, n, m, R, D, Ds, Ir, Dr, Ns, Rs}

id data space identification. In a relational database, a number of data 
sets will be created depending on the number of tables required for a 
database system. Each table represents a data space in the database 
system and each data space needs to be identified by a system 
number as an identifier in the USI.

tm expected data set life span ( how tm is measured needs experience). 
Taking a relational database as an example: 
short - temporary and rarely used tables, 
long - frequently used tables.

n number of data items in a data set.
m number of major attributes concerned with conducting searches 

(dimensionality of a search space).
R
Ds

average length of data items in a data set. 
the data set itself:
Ds = { d l, d2, ..., dn}
di = (a il, ai2, ..., aim) for i = 1, 2, ..., n.
di is data item i which consists of m attributes in terms of search

D
space.
the range of each attribute concerned (i.e. the domain of the data 

space):
D = D1 X D 2 X  ... X D m  
Di = Dimax - Dimin for i = 1 , ..., m. 
where Dimax is the maximum value in the dimension i and 

Dimin is the minimum value in the dimension i.
In geometric interpretations D forms a finite or bounded super-
rectangle.
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Ir - percentage of data items to be inserted (i.e. file growth rate)
_____ /n ( %)

Dr - percentage of data items to be deleted (i.e. file shrink rate)
_____ /n ( %)

Ns - percentage of data items to be searched (i.e. access rate)
_____ /run

Rs - percentage of range searches to be conducted (i.e. range search 
rate)
_____ /n

REQ(S) -  {Se, Nsec, Am}

Se
Nsec

Am

H /W d s) = {Td, b, M} 

Td

b

M

b

expected storage utilisation (i.e. packing density), 
expected number of secondary storage accesses/per 
data item.
main access mode (from database definition):
random
sequential
random access dominant say, random access > 
50% of total queries.

device speed: 
seek time - st,
transfer rate - tr.
block size:
______ bytes or b data items
available memory for the data set ( for a decision o n ' 
whether an index can be accommodated in the 
memory or not)

S / w d s) = {b, Am} 
block size
_____ bytes OR b data items

The USI also provides facilities for user to ask system questions about reasoning 
regarding an application at different levels of details.
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3.2.2. Dynamic changes to the database profile
The dynamic changes to the database profile are summarised in Figure 3.5.

DataBase Management 
System (DBMS)

(«)
Database profile: DBPi = {id, tm, n, m , R, D, Ds, Ir, Dr, Ns, Rs }

(d) (u)
Data set dynamic features: Ds = {SPT, B, Nt, Ddis, qf} + Ds
SPT: partition type set Nt : actual number of slices produced by a partition
B : total number of grid cells in a partition Ddis: data distribution 
S : number of slices produced by a partition qf : query features

_  ,  (u) (u) (u) (u) (u) (u) (u) (u)
Ds = { n , m , Dr , Ir , Rs , Ns , Nt , T }
(u) (u)

n : actual number of data items in a data set Rs : actual range search rate

: actual dimensionality of a search space
(u)

Dr : actual data shrink rate 
(u)

Ir : actual data growth rate

(u)
Ns : actual number of total seaches

(u)
Nt : actual number of buckets used

(u)
: transaction properties

DataBase 
Profile (DBP)

Figure 3.5. The dynamic changes to the database profile.

We present these changes as follows:

DBP(d) = { D B Pl(d), DBP2(d>..., DBPx(d) }

= { DBPi(d) for i = 1, 2 ,..., x } 
where:

DBPi(d)= DBPi(s) + Ds(d) 

for i = 1, ..., m

DBPi(s) = {id, tm, n, m, R, D, Ds, Ir, Dr, Ns, Rs}, they are defined in 

section 3.2.1

20



D sW = { SPT, r, S, Nt, Ddis, qf } + D S(U)

SPT - selected partition type.

SPT e PT = {PTI, PT2, ... }

PTi - partition type i. Several partition types can be applied to a data set, 
but only one is in use at any time frame.

r total number of grid cells in a partition.

S - number of slices produced by a partition for each dimension:
S = { s i, s2, ... , sm }.
A slice is the area enclosed by a partitioning boundary.

Nt - total number of buckets actually used.

Ddis - data distribution.
Ddis is measured by { C[i] 1 for i = 1, 2 ,..., r  } 
here C[i] is the number of data items in the grid cell i.

C[i] - number of data items of a grid cell i in a partition, i is a z-code (it 
will be elaborated later) corresponding to the grid cell concerned.

Based on the value in C[i], the local data density can be calculated to guide a 
splitting process. The calculation is shown in Figure 3.6.
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Figure 3.6. Calculate the local data density for each slice.
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In this diagram there are four slices on the x dimension and three slices on the y 
dimension respectively. Consequently, x varies from 0 to 3 (4 slices) and y ranges 
from 0 to 2 (3 slices) in the calculations shown in Figure 3.6.

qf - query features.
qf = ( Qt, W = (Wi I for i = 1,..., m)) 
for a 2-d data space m = 2.
Where:
Qt - Query type;
W - Properties of attribute set by weighting;

The weighting is derived from the frequencies of each attribute, i.e. if attribute A is 
a dominant one for a set of queries then more splits may take place to increase the 
proximity along dimension A. We will discuss the frequency controlled partitioning 
in section 4.1.

Ds(u) = {n(u)5 m(u)> D(u)j Ir(u)> Dr(u)j R s ( u ) 5 N s ( u ) > Nt(u), X(u) j 

where

n(u) - the number of data items in the data space considered up-to-date.

m(u) - the number of dimensions of the search space up-to-date.

Ir(u) - actual data growth rate.

Dr(u) - actual data shrink rate.

Rs(u) - actual range search rate.

Ns(u) - actual number of total searches.

Nt(u) - actual number of buckets used.

T (u) - transaction properties.

Ds(u) is a set of parameters which reflects the current status of the data set. Whether 

the system should update when there is a change or store the changes separately is a 
system decision.

3.2.3. The D atabase Profile
The profile information about a database gives a complete picture about an 
application. This profile information, made up profiles of data, queries, constraints
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and performance, comes from three channels - user-system interface, performance 
evaluation, and database optimiser or statistics captured by the system itself. The 
framework of the profile is shown in ] 3.7. These parameters, which describe the 
profile, are given below.

Figure 3.7. The framework of the profile.

In the diagram, we have:
DBP = { DBP1, DBP2, ..., DBPx }

DBPi = { DBPiW , e c H  ap(c) } for i = 1, ..., x

DBPi(d) = Ds(s) + Ds(d)

DBPi(s) = {id’ tm’ n> m ’ D, Ds, Ir, Dr, Rs, Ns}

D s®  = { SPT, B, S, Nt, Ddis, qf } + Ds(u)

Ds(u) = (n(u)5 m(u)s D (u)> Ir(u)> Dr(u)5 Rr(u)> Rs(u); Nt(u),T(u)}

ec{'s-* - environment constraints.

ec(s) = { Nd, Se, M, b } 

ap(c) - application performance.
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ap(c) = { ALT[x], Tp, Tr, Su }

ALT[x] the chosen algorithm.
tl time estimated for point search.
t2 time estimated for range search.
Su storage utilisation.
T(u) transaction properties.

Here (d) indicates the dynamic characteristics of the database profile, "(c)" 
indicates the calculated features of the database profile, “(u)” indicates the update 
features of the database profile, and “(s)” indicates the static features of the 
database profile, which has been described in section 3.2.1. concerning the user- 
system interface.
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Chapter 4 The Knowledge Base

This section is the main part of this thesis. In this part the components of 
knowledge base are described. Firstly, various m-d access algorithms are analysed. 
Essential design features (speed, storage utilisation, flexibility of dealing with 
dynamic situations, ability of handling varied data distributions) of each are 
discussed. Desirable features for m-d hashing algorithms are matched with specific 
application characteristics, providing a rule base to drive the knowledge system in 
assisting database designers to choose a suitable algorithm for his/her application. 
Secondly, heuristically matching application abstract profiles to new applications are 
also discussed. Finally, performance issues are analysed.

4.0 Framework of Knowledge System
In order to tune physical database design the system is constructed to include 
several categories of knowledge which we describe below. The framework of the 
knowledge base is shown in Figure 4.1.

Figure 4.1. The knowledge base framework.
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4.1. The Algorithm Base
The algorithm base is a collection of the implementation schemes used to evaluate 
the performance for different AAPs. Hence, there are constructed in a way which 
facilitates the performance evaluation.

There are a variety of implementation algorithms for grid partitions. These 

algorithms are: k-d-Tree [R081], hB-Tree [L087], R-Tree [GU84], R+-Tree

[SE87], BANG file [FR86] [FR87] [FR88], EXCELL scheme [TA82], EXHASH 
scheme [TA82], quantile-hashing [KS88b] [KS87], PLOP-hashing[KS88a], Gray 
code z-ordering [FA86b], binary code z-hashing [HU88a], etc. Each algorithm 
performs the same task: organising data onto secondary storage in such a way that 
upon a given query the required data item(s) can be extracted from the stored data 
set. These algorithms mainly differ in the way they carry out data space partitioning 
(splitting and merging), where data structures are applied to represent (or to order) 
the relationship between individual components of the partitioning, also they differ 
in the way they store access paths. For example, the z-hashing and EXCELL 
algorithms share the same kind of partitioning strategy. However, they use 
different data structures for storing the access paths for the partitioning. The BANG 
file and hB-Tree algorithms employ the same type of partitioning strategy. Both 
techniques aim to increase the efficiency of dealing with non-uniform data 
distributions, in the mean time, they use different approaches to represent the 
partition and it’s access paths. Each of these algorithms differs in complexity as 
well as performance behaviour according to different characteristics of applications. 
The same partition with different access paths implementation, or the same paths 
implementation applying to different partitions, makes for the different algorithms. 
Essentially the partition is classified as a dimension-simultaneous (the Bang file and 
the hB-tree) partition and a dimension-alternate (the EXCELL and z-hashing) 
partition, each involving variants. The access paths implementation is mainly 
divided into two categories: hashing and indexing. We will choose combinations of 
five kinds of partitions and four types of access path strategies to be representatives 
from the above mentioned algorithms to construct our algorithm base. In addition, 
we will describe the heuristics used to select an algorithm for a particular 
application.

For simplicity, we will concentrate on the 2-d search space for all implementation 
algorithms so that they can be modelled by two axes, x and y. For higher
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dimensions, the algorithms can be generalised for all aspects except the 
performance evaluations. The performance feature can be changed dramatically 
when the dimensionality increases, similar to a relation in a relational database using 
a multi-attributes index, as the number of attributes increases heavy storage and 
access overhead is likely to be the resu lt.

Three aspects are considered here in order to describe an implementation algorithm: 
(1) the partition types, (2) the strategies for coping with insertions and deletions, 
and (3) the storage of data access paths.

(1) Partition types
PT1 Partitioning a data space into equal-sized grid cells
In this partition each split will double the number of the grid cells. Each grid cell is 

represented by a pair (i, j) where i is the i^1 slice on the x axis and j is the j^1 slice in 
the y dimension. These slices are created by the equal-sized grid cell partition. The 
partitioning process is shown in Figure 4.2.
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L= 0: there is only one grid cell in L = 2: there v ill be 4 grid cells in 
the partition the partition

Ncell = 2 L= 2 °= 1 Ncell = 2 *= 2 2= 4

L= 1: there are 2 grid cells in 
the partition

Ncell = 2 L= 2 1= 2

L= 3: there are 8 grid cells in 
the partition

Ncell = 2 L= 2 3= 8

y

S/3 R5 (0, 3) R7 (1, 3)

R4 (0, 2) R 6 ( l ,  2)

S y l R1 (0, 1) R 3 ( l ,  1)

SyO R0 (0, 0) R2 ( l  0)

s *0 S jso  S X1

Figure 4.2. Equal sized grid cell partition.
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In the diagram, each grid cell forms a rectangle numbered by z-code (Rz) such as 
RO = (0, 0), R1 = (0, 1), R2 = (1, 0) and so on. The z-code will become apparent 
when it is used later.

Since every grid cell created by the partition has to be equal in size a split in the k^1 

dimension ( k e  1 ,2 ,..., m ) will automatically produce another sk (numbered by 

0, 1 ,..., sk -1) slices in the k^1 dimension. Thus the number of slices in the k^1 

dimension is doubled. If we use Ncell(b), Ncell(a) to represent the number of grid 

cells before and after a split and s j ^  and sj(a) ( for j = 1, 2 ,..., m ) to represent 

the number of slices in the j tb dimension before and after a split respectively then, 

after a split in the j^1 dimension we get:

j=m

Ncell(b) = 11
j= l

j=m
Ncell(a) = n

j= l

j=m

= 2 x n 
j= l

= 2 x Ncell(b) = N cell^) + Ncell*»

Except that sk(a) = 2 x sk(b) other items remain unchanged after a split in the 
dimension and therefore, the number of grid cells added after a split is the second 
item in the above formula. A split doubles the number of grid cells.

PT2 Partially equal sized partitioning of a search space
In this partition at each split the number of grid cells increases at the rate of the
number of slices on the orthogonal dimension(s) of the split dimension. If a split

happens in the ktb dimension then the relation sk(a) = sk(b) + 1 holds. Thus we

sj (b)

sj (a)

sj (b) (every cell split into two cells)
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get:
j=m

Ncell(a) =  n  sj(a)
j=l

j=m

= ^  s j ^  x (sk + 1)
j=l
j*k

j=m j=m

11 sj(b)+ n sjO»
j=l j=l

j*k

j=m
= Ncell(b)+  n  sjCb) 

j=l 
j*k

The number of grid cells added after a split in the dimension is the second item in 
the above formula. This item indicates the number of grid cells affected by a split 
and the number of grid cells added has reduced comparing with PT1 especially 
when m is large. The partition process is shown in Figure 4.3.
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Figure 4.3. Partially equal sized grid cell partition.

32



PT3 Parameter guided partitioning of a data space
For each split in this partition, the local density or the frequency of the attributes is 
used to decide the partition position or split frequencies in each dimension.

There are two different groups of control rules for the same type of partition. The 
first group is applied without overflow handling. In this situation, when an 
overflow occurs there will not be enough room to accommodate all data items 
because the bucket size b is fixed. As a result, a split has to be triggered. The 
second group is used with overflow handling. In this circumstance, when overflow 
occurs those data items which cannot fit in the home grid cell may be stored in 
chained data buckets or stored according to some other overflow handling 
techniques. In such situations, an upper bound (threshold) is given to determine 
when a split is going to be triggered.

PT 3.1. Local density guided partitioning
The local density is denoted by Ld(i,j), which indicates the packing density in the 

j^1 slice and in the i^1 dimension. Two circumstances apply:

(a) without overflow handling
When overflow is not handled by the system then we are forced to split the grid 
cell if the required storage (indicated by the number of data items falling in a grid 
cell) exceeds the bucket size (i.e.block size b). The splitting process is fired by the 
rule:
if the added data item is in the grid cell identified by [al, a 2 ,..., am] and
if max (Ld(i,k) for i = 1, 2 , ..., m, k = a l, a 2 , ..., am) = Ld(i,ax) 

l<i<m
then divide on the (ax)^1 slice in the i^  dimension.
For instance, if m = 2 (say, with dimensions x, y) and the chosen dimension to be 
split is x then jk = sy; if m = 3 (eg. with dimensions x, y, z) and the chosen 
dimension is x then jk  = sy or jk  = sz. The geometrical meaning is shown in Figure 
4.4. (a), where C [il, i2, i3 , ..., im] is the number of data items within the super-
rectangle identified by [il, i 2 , ..., im]. Using [il, i 2 , ..., im] a z-code is generated 
as the subscript of each count. Hence the representation C [il, i2 , ..., im] is 
equivalent to C[z] where z = z-code for [il, i2 , ..., im]. The condition as to which 
slice to split next depends on the overflowed grid cell. In addition, it depends on the 
values of local density measured for these slices that intersect with this overflowed 
grid cell. Hence when the added data item causes an overflow in the grid cell
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identified by [al, a 2 , a m ]  there will be m alternative slices to choose from. 
Using the local density guided split strategy the one with the maximum value for its 
local density will be chosen. For example, in a 2-d data space if the inserted data 
item is within the range of grid cell [ax, ay] and, before splitting, there are sx and sy 
slices on the x and y axes respectively, then, to calculate the density in the x 
dimension, we need to choose y = 1, 2 ,..., sy to form the local density value for 
the slice sx. In the x dimension:

y=sy-i
£  C[ax, y]

y=0
Ld(ax) = ------------------------------------ -------

b x sy

Similarly, in the y dimension: 
x=sx-l

£  C[x, ay]
x=0

Ld(ay) = ......................................... —.......—
b x sx

For this example, the choice of a slice to split depends on the maximum function, 
max (Ld(ax), Ld(ay)). If Ld(ax) > Ld(ay) then the ax slice should be split in the 

xl<i<m
x dimension otherwise the slice ay should be split in the y dimension.

C[x, y] refers to the C[z-code], where z-code is the result of interleaving the binary 
form of x and y alternately. The partitioning process and its z-code numbering is 
shown in Figure 4.4.(a).

(b) with overflow handling
When overflow handling is considered, a value can be set to the local density level 
as a threshold to control the splitting or merging process. The splitting, therefore, 
can be triggered by the following rule:

If max (Ld(i,j) for j = 1, 2 ,..., sj) = Ld(i,k), where k e  (1, 2, ..., sk) and 
l<i<m
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j=sj

^  sj x b < Ld(i, k) x ( b x si) (the left hand side - LHS)
j=l
i*j

then a split will take place on the k^1 slice in the i1̂1 dimension (the right hand side
- RHS). We can see from the above formula that there are

k=m 
X sk 

k=l

alternative slices to choose from for a split or a merge.

For 1th slice, data density can be calculated as:
j l= s j l - l  j2=sj2-l...jm =sjm -l

Ld(i, k) x ( b x si) = X C [jl, j 2 , j k , j m ]
j 1=0 j2=0 ...jm=0

where jk  is a constant, jk  = i .

The item in the right hand of the equal sign is formed in a similar way to sum all 

elements in a multi-dimensional matrix for k“1 column, where each element is 

assigned to the number of data items in a grid cell which is numbered by [j 1, j2, 
...,i, ..., jm].

Here the sjk (for k = 1,2,..., m; k * i ) is the number of slices in the orthogonal 

dimension(s) to the i^1 dimension to be divided. For instance, if m = 2, then x, y 

are two dimensions and (sx, sy) are the number of slices in the x and y dimensions 
respectively. Thus in the x dimension:

y -sy -i 
2  C [l, y] 

y=0
Ld(l,y) = ...... .................................................. -

b x sy

where x always equals 1.
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y=sy-l 
2  C[2,y]

y=0
Ld(2,y) = ------------------ ------ --------

b x sy

here x always equals 2.

y=sy-i
Z C[sx,y] 

y=0
Ld(sx,y) = ---------------------------------

b x sy

where x is a constant sx.

and similarly, in the y dimension:

x=sx-l 
2  C[x,l]

x=0
Ld(l,x) = --------------------------------------

b x sx

x=sx-l 
I  C[x,2]

x=0
Ld(2,x) = ----------------------------- --------

b x sx

x=sx-l
£  C[x,sy] 

x=0
Ld(x,sy) = ---------------------------- —

b x sx

Figure 4.4. (b) shows the situation.
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(a) without overflow handling

y
2-d see

s y3 5 7 13 15

V 4 6 ij 12 j: 13

Syl 1 3 9 11

SyQ 0 2 8 10

Sx0 Sxl Sx2 Sx3 13

4 6 |j 12 i: 13 jj 12

9

iiiijjiji - C[ 12] > b
8

(b) with overflow handling

y

s y3
5 7 13 15

Sy2
4 6 12 13

Syl 1 3 9 11

SyO 0 2 8 10

S x0 Sx l s x2 SX3

Sx2

Figure 4.4. Local density controlled grid partition.

The split control for case (a) is: max ( Ld(sx2), Ld(sy2)). Where

i=si-1 
I  C[i] 

i=0
Ld(sij) = ---------- -™
i = x or y b x si 
3 = 2
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The split control for case (2) is: max ( Ld(sxj), Ld(syj) I for j = 0, 1, 2, 3 ). Where 
j=sj -1

I  C[i,j]
j=o

Ld(sxj) = -------- -------- ------------------
j=0, 1,2, 3 b x s j

i=si - 1
I  C[i,j] 

i=0
Ld(syi) = ------------------------------
i=0, 1, 2, 3 b x si

In Figure 4.4, for case (a) there are only two slices to be chosen from (sx2 and 
sy2) because no overflow is allowed. Thus it will force the grid cell 12 to split as 
C[12] > b, here b is the bucket size. For case (b) there are X sj = 4 + 4 = 8 slices 
to be chosen from. j=x, y

PT3.2: query frequency / attribute weight fWD guided partitioning
(a) with overflow handling

If ( max (Wi) = on j^1 dimension for i = 1, 2, ..., m) 
l<i<m

k=m
Z sk 

k=l
Wj k*j

and (sj < --------------  x ---------------------- )
Wmin m - 1

dimension.

then divide on the j^1

where Wmin -  min (W l, W2, ..., Wm).
Note though, when W l = W2 = ... = Wm the frequency control is no longer 

effective because this condition indicates the indifference of Wi.

(b) without overflow handling
The frequency guided partition, which is similar to the local density partition, has m 
alternative dimensions to choose from when a split occurs. If the added data item is 
located in the grid cell identified by [al, a 2 ,..., am] then the following rule can be

applied to guide the splitting. If ( max (Wi) = Wj in the j^1 dimension for i = 1,2,

l<i<m
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m) and
k=m
X sk 

k=l
Wj k*j

(sj < ............ — x ........................................... ) then divide the (a i)^  slice in the
Wmin m - 1

jrï* dimension.

We have seen that for both cases there are two conditions which must be satisfied 
when choosing a split strategy.

C l = (max(Wi) = j^1 dimension for i = a l, a 2 , ..., am) 
l<i<m

k=m
X sk 

k=l
Wj k*j

C2 = (sj < - ------------- x ........- .................. )
Wmin m - 1

The first condition is used to determine the dimension based on query frequencies 
and the second condition decides whether the number of splits (i.e. number of 
slices) in the chosen dimension has reached its required frequency for the partition. 
The partitioning processes are shown in Figure 4.5. (al, a2, b l, b2) respectively.
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Query frequency controlled grid file partition illustrations
(a) with overflow handling
2-d data space

Wy = 3
y

vi

sy0

W x- 3 Wx = 2
SxO Sxl

grid cell vhich needs to split

Figure 4.5. (al) The dimension chosen by the frequency function has not 
reached its split frequency.

In this diagram we have:
(a) max (Wx, Wy) = Wx 

min (Wx, Wy) = Wy 
sx = 2 (before a split)

Wx sy 3 2

Wy m - 1 2 1

<
Wx sy

Wy m - 1
The split is therefore, as follows: if Ld(sxO) > Ld(sxl) then split sxO else split sxl;
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(b) max (Wx, Wy) = Wy 
min (Wx, Wy) = Wx 
sx = 2 (before a split)

Wy sx 3 2

Wx m - 1 2
A  ,J ■ ■ - - 

1

Wy sx

Wx
A

m - 1

The split is therefore, as follows: if Ld(syO) > Ld(syl) then split syO else split syl.

2-d search space
Wy = 3

- grid cell vhich needs to split

Figure 4.5. (a2) The dimension chosen by the frequency function has already 
reached its split frequency.

In this diagram we have:
(a) max (Wx, Wy) = Wx 

min (Wx, Wy) = Wy 
sx = 4 (before a split)
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Wx sy 3 2

Wy
A  A

m - 1 2 1
thus

Wx sy
SX > -------------------X ......................... ...............

Wy m - 1
Even if Wx > Wy the next split should take place in y dimension, i.e. the split 
follows: if Ld(syO) > Ld(syl) then split syO else split syl.

(b) max (Wx, Wy) = Wy 
min (Wx, Wy) =W x 
sy = 4 (before a split)

Wy sx 3 2

Wx m - 1 2 1
thus

Wy sx
sy > .................x --------------------

Wx m - 1
Even if Wy > Wx the next split takes place in the x dimension, i.e. 
if Ld(sxO) > Ld(sxl) then split sxO else split sxl.

(b) without overflow handling
In the following diagram we have:
(a) max (Wx, Wy) = Wx 

min (Wx, Wy) = Wy 
sx = 2 (before a split),

Wx sy 3 2

Wy
A

m -  1 2 1

Wx sy

Wy
“ A  " " " ̂  _ J-

m - 1
The new split is in the x dimension.

(b) max (Wx, Wy) = Wy 
min (Wx, Wy) = Wx 
sy = 2 (before a split)

42



Wy sx 3 2

Wx m - 1 2
A

1
thus

Wy sx
sy < ------------ x ............... .......

Wx m - 1

The new split is in the y dimension.

2-d search space
Wy = 3

- grid cell that needs to split

Figure 4.5. (bl) the dimension chosen by the frequency function has not 
reached its split frequency.

In the diagram below we have:
(a) max (Wx, Wy) = Wx 

min (Wx, Wy) = Wy 
sx = 4 (before a split),

Wx sy 3 2

Wy m - 1 2 1
thus
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Wx sy

Wy m - 1
Even if Wx > Wy the next split should take place in y dimension.

(b)

thus

max (Wx, Wy) = Wy, 
min (Wx, Wy) = Wx, 
sy = 4 (before a split),

Wy sx 3 2

Wx m - 1 2 1

Wy
sy > ------------ x

Wx

sx

m - 1

Even if Wy > Wx the next split takes place in the x dimension.

2-d search space Wy = 3

y

V3

V2

yi

SyO

- the nev split line

x W x - 2

“xl

- grid cell that needs to split

Figure 4.5. (b2) The dimension chosen by the frequency function has already 
reached its split frequency.
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PT3.3 Query and density mix guided partitioning
(a) with overflow handling

If (max (Wi) = Wd, in the d1*1 dimension for i = 1 ,2 ,... ,  m) 
l<i<m

k=m 
£  sk 

k=l
Wd k*d

and (sd < .....................  x ------------------  )
Wmin m - 1

and ( max (Ld(d,j) for j = 1, 2 ,..., sj) = x) 
l<i<m

then divide on slice x of the j^1 dimension if possible otherwise determine the split 

on local density Ld.

(b) without overflow handling
If the inserted data item is in the grid cell of [a l, a2, a3, 
rule is applied:

If ( max (Wi) = Wd, in the d^1 dimension for d = 1 ,2 , 
l<i<m

k=m
£  sk 

k=l
Wd k*d

(sd < ----------------x ---------------
Wmin m - 1

)

am] then the following 

m)

then divide on the (ad)^1 slice of the j “1 dimension if possible, otherwise divide

based on the value of the local density:
max (Ld(i,j)) for i = 1, 2, ..., m; j = a l, a2, ... am. 
l<i<m
It will be evident that for all types of partition categorised in PT3, the dividing 
points in each dimension have to be stored because they may not be equal in range 
and frequencies (i.e. the grid cells may have different sizes and the number of 
divisions in each dimension may also differ). Thus, to obtain better partitioning the
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storage o f extra information is needed. Consequently, to choose between equal 
sized grid cell partition and local density or query frequency controlled grid partition 
there is a storage tradeoff to be made. Two situations have been discussed for these 
partitions - with and without overflow handling. Whether or not to use overflow 
handling is determined by data distribution. An even and high growth rate data set 
may be organised by applying no overflow handling, because the sparsely 
populated grid cells generated by a new split can be quickly filled; whereas an 
uneven and low growth rate data set may need to employ overflow handling.
Using an expert system to tune the physical database makes it possible for different 
strategies to be used for the same data set at different times.

PT4 Independent data distribution controlled partition
To describe this partition we assume that the data distribution is independent for 
each attribute. Let us consider a 2-d data space x, y. A data set can be represented 
by Ds = {dl, d 2 , ..., dn}, di = (xi, yi) for i = 1,2 , ..., n. If f(xi) and f(yi) are the 
distribution functions for these two attributes respectively then the assumption can 
be stated as f(xi x yi) = f(xi) x f(yi) for i = 1, 2 ,..., n. To split either in the x 

dimension or in the y dimension on i^1 slice the partition will divide the chosen slice 

into two equal slices, here equality is measured by the approximate number of data 
items in each slice. In essence, the method actually transforms a non-uniformly 
distributed data space into a uniform one by splitting the slice on a carefully chosen 
position. For instance, in a 2-d data space, if the slice sxi in the x dimension is to be 
split and the total number of data items in sxi is N(xi), then a split will divide the

slice into two slices, say, sxi^^ and s x i^ \  and the split results in N(sxi(l)) =

N (sxi^)). The position which the chosen slice will be split is determined by the 

following method.

Suppose we have chosen sxi in the x^1 dimension to split and there are sy slices in 

the y^1 dimension. To choose where to split we need to know f(xi), the data 

distribution within slice sxi in the x^1 dimension. To find the split position:

(i) calculate the total number of the data items in the i^1 slice IN(sxi)l and half its 

value:
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N(sxi)

2

(ii) calculate signatures for all grid cells in sxi: z(xi, y) for y = 1 ,2 ,..., sy;
(iii) order all grid cells on values of attribute x for all data items stored in sxi:

{dl, d 2 , ..., dk I x l  < x2 < ... < xi};
(iv) identify the middle data item in the sorted data set:

d|_N(sxi)/2j as the position to split slice sxi.

The advantage of this method is that the split is based on a chosen position which 
transforms a non-uniformly distributed data space into a uniformly distributed data 
space. However, the transformation is very complex, especially when m > 2. For a 
2-d space, as in the above example, sy data buckets need to be examined and there 
are sy x b data items or so that need to be sorted before the decision can be made. 
A brief explanation of the pattern is shown in Figure 4.6.

x

N(Sxo)=N(Sxl)
N (S yo)=N (syl)

Figure 4.6. Data distribution controlled partition.
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PT5 Partitioning the data space bv region/brick TL0871 where the embedded regions 
are allowed (the BANG file or hB-Tree partition')
All the partitions given previously carry out the split along each dimension 
alternately by a (m-l)-dimensional super-plane. Each split creates new boundaries 
for a chosen dimension, i.e. for a 2-d search space a split divides the search space 
by a line; in a 3-d search space a split partitions the search space by a 2-d plane. 
None of the above partitioning methods can form a m-d region in the search space 
by a single split.

The partition type PT5 divides the data space into bricks, Viz the super-rectangle 
regions. One split will create a m-d rectangle region in the data space. This method 
can partition the search space for a specific data distribution pattern which the other 
partition methods cannot deal with effectively. A typical example for this kind of 
distribution is shown in Figure 4.7
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(in binary)X = xlx2x3x4x5 
Y = yly2y3y4y5 
z -  xlylx2y2x3y3x4y4x5y5

For the give figures in the diagram ve have the following z-code for those points 
shovn ((7, 1 - 11), (1 - 13, 6) )

z (7 ,l) = 00101011  
z(7,2) = 00101110  
z(7,3) = 00101111  
z(7,4) = 00111010  
z(7,6) -  00111011  
z(7,6) -  00111110  
z(7,7) = 00111111  
z(7,8) = 01101010  
z(7,9) = 01101011  
z(7,A) = 01101110  
z(7,B) -  01101111

z(l,6 ) = 00010110  
z(2,6) = 00011100  
z(3,6) = 00011110  
z(4,6) = 00110100  
z(5,6) = 00110110  
z(6,6) = 00111100  
z(7,6) = 00111110  
z(8,6) = 10010100 
z(9,6) = 10010110 
z(A,6) = 10011100  
z(B,6) -  10011110 
z(C,6) = 10110100 
z(D ,6)= 10110110

z(7 ,l)  
z(7,2) 
z(7,3) 
z(7,4) 
z(7,S) 
z(7,6) 
2(7,7) 
2(7,8) 
z(7,9) 
2(7,A) 
2(7,B)

00
00
00
00
00
00
00
01
01
01
01

010
Oil
Oil
110

1110
m i

L11
no 
no 
n i

L 1|0 11

n
10
n
10
n
10
n
10
l i
10
11

z ( l ,6 ) ■ 
z(2,6) . 
2(3,6) : 
z(4,6) ■ 
z(S,6) ■ 
z(6,6) . 
z(7,6) ■ 
z (8 ,6 ) . 
2(9,6) 
z(A,6) 
z(B,6) 
2(C,6) 
z(D,6)

000 
000 
000 
001  
001  
001  
001  
loop. 
100 
100 
100 
101 

: 101

31
11
11
31
31

10 
CO 
10 
CO 
10 

ltllCO 
1110  
10100 

110

10

I C O
110
I C O
110

Figure 4.7 Special data distribution for a 2-d search space.
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When these points are coded the problem of identifying the distribution become 
pattern recognition. One can see from the coding that this kind of data distribution 
has certain bits unchanged in their z-codes.

To recognise this data distribution pattern the data space is partitioned into a number 
of equal sized grid cells and numbered by the z-code. The interpretation of the data 
pattern can then be obtained by manipulating the values of the z-codes. Meaningful 
information is extracted to identify this kind of distribution. Figure 4.7. shows the 
values of the z-code for this data pattern with sixteen grid cells. It can be seen that 
the pattern is reflected in the z-code values with certain bits unchanged. For such a 
data pattern, we see that it is difficult to use a line to divide the data space into two 
balanced regions which contain approximately the same number of data items ( 
points in the diagram ). However, using Bang file partitioning we can create two 
embedded rectangles to divide the data space into two balanced regions. A 
partitioning process for a BANG file is shown in Figure 4.8.

y

• R1

R2

R e g io n  id  ( r ,  1)
R1 — (3 , 2 )  R 2  = (0 , O) -  (3 , 2 )

Figure 4.8 Bang File Partitioning for a 2-d Search Space.
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(2) The strategies of coping with insertions and deletions
Insertions which cause splitting can be treated as a partitioning process 
(described above) and deletions can be dealt with as an inverse process to 
partitioning. When the local data density value becomes low, say, Ld(i,j) is less 
than required packing density, a merge process is activated which combines two 
slices into one.

(3) Storage of the access paths
To retrieve data items in each grid cell different methods can be used to store the 
access paths. We represent these methods as a set: SA = { SA1, SA2, SA3, 
SA4 }. Each of them is used to implement the access paths of a partition, 
establishing a relationship between a data item and its address of secondary 
storage. The meaning of each element in the set is explained by the following 
diagrams.
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SA1 stores a partition by using an index file (see Figure 4.9.).

Figure 4.9. Storing the access paths by an indexing file.
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In the diagram each non-empty grid cell corresponds to a data block on secondary 
storage and every grid cell (including empty ones) occupies an entry in the index.

SA2 stores a partition by a hashing algorithm (see Figure 4.10.).

no. of data items

no. of data  item s

Data block for cell 1 Data block for cell 15

X1 no. of data items xl5

data item 1 data item 1
data item 2 data item 2

•
•
• • • •

•
••

data itemxl data item xl5
/ / / / / / / / / / / / / .  
/ /F ree  sp a ced ///
V / / / /7 / / / / / / / .

yvFree Space
' 7 / / / / / / / / / / / /

Figure 4.10. Storing the access paths by a hashing function.

In the diagram by applying a hashing function to each grid cell, including empty 
cells, each cell maps a data block in secondary storage.
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Y1

SA3 stores PT5 by hB-Tree indexing (see Figure 4.11.).

Figure 4.11. Storing the access paths by hB-tree indexing.
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SA4 stores PT5 by the BANG file approach (see Figure 4.12.).

Level 2

01
1

01

1 3

00
0

00

0 2

00 00 01

Level 3

5 7

4 6

1 3

0 2

00 01

L evels

Data

R3 = (0,0) - (3 , 2) 
R2 = (3,3) - (12 ,4)

Index 

10 01, | 3.2| 
I3.3U 12.4|

Figure 4.12. Storing the access paths by Bang file approach.
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4.2. Various Implementation Algorithms and Their Features
Having extracted the feature information for m-d access algorithms - partitioning 
and implementing strategies - we can use different combinations of these features to 
describe an algorithm. For example, the "EXCELL" algorithm can be described by 
the partition PT1 and access storage SA1 as a pair ( PT1, SA1). The grid partition 
PT1 divides the data space into equal sized grid cells. The storage of access paths 
(SA1) then implements the partition PT1 by an index file. Each entry of the index 
file corresponds to a grid cell in the partition and stores the address of the grid cell. 
The relative position of the index entry is then derived from an array-like 
calculation. Every grid cell can be uniquely identified by a pair of values (x, y).
The index can thus be viewed as a 2-d array. As each grid cell corresponds to an 
entry in the index file empty grid cells will also have their index entries. Similarly 
we can describe the z-hashing algorithm as (PT1, SA2). We see that the EXCELL 
and the z-hashing algorithm use the same partitioning approach, but employ 
different strategies for storing access paths. The SA2 establishes a relationship 
between a grid cell and an address for that grid cell through a function, which 
produces a uniform address for each cell. Different combinations of partitions and 
storage of access paths can describe different algorithms and therefore, all 
algorithms can be simplified as algorithm types: ALTi = {partition: PTi, storage of 
access paths: SAj}, where i is within the range of available partitions and j is within 
the range of available methods for storage of access paths. For each algorithm type, 
we will identify which algorithms belong to it and analyse their strengths and 
weaknesses. We will also find out for which categories of applications each 
algorithm type is likely to provide better performance. All these judgments are 
based on current experience, heuristics, performance evaluation, an understanding 
of the available algorithms in literature and a set of chosen criteria. Further 
arguments are welcome to improve the selecting algorithms for a tuning process. 
The system will provide facilities to expand the system knowledge.

We have initially chosen the following algorithms for the model: the EXCELL 
[TA82], the z-hashing ( z-ordering by binary code [HU88a] and z-ordering by Gray 
code [FA86b]), quantile-hashing [KS87] [KS88b], the PLOP-hashing [KS88a], 
the hB-Tree [L087], the BANG file [FR87] and the R-tree [GU84], Each of these 
represents a different type of algorithm in terms of partitioning and implementation 
developed for m-d search spaces. The EX CELL algorithm employs equal sized grid 
cell partitioning and stores its access paths by an index.The z-hashing also
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partitions the data space into equal sized grid cells but implements the access paths 
by a hash function. The quantile-hashing and the PLOP-hashing use distribution 
controlled partitionings and implement these partitionings by a hash function. The 
BANG file divides the data space into m-d super-rectangles and realises the access 
paths by an indexing approach. The R-tree algorithm is designed for spatial object 
database and it uses an object-oriented partition implemented by an index approach,

This section describes how an algorithm is chosen if given a set of characteristics, 
and what the algorithm and heuristic judgments are. Our choice is based on the 
criteria of a group of characteristics or conditions against the features of a set of 
algorithm candidates. We study what kinds of application characteristics can match 
the nature of an algorithm by a comparison of these available algorithms.

4.2.1. The EXCELL Algorithm: ALT[1] = {PT1, SA1}
(1) The characteristics which make the EXCELL algorithm favourable 
The EXCELL method is briefly illustrated in Figure 4.13.

Data bucket

Figure 4.13. The EXCELL algorithm.
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In the diagram there are four grid cells in the partition and one of them is an empty 
one. Three data buckets are allocated for the partition and four index entries are in 
the index file for the partition, including one for the empty grid cell.

To set up the characteristics we will use Cij to represent conditions or constraints 
which make a boundary for these characteristics. Combined with each characteristic 
they form the basis of left hand side (LHS) of a production system.

(a) The number of empty grid cells produced by the partition does not exceed a 
“certain” limit: C l 1. The meaning of the word “certain” here relates to 
environment constraints and tradeoff between the indexing and the hashing 
algorithms. For instance, an index can be used to avoid data holes in the data 
file, but it needs storage space and retrieval time. In terms of speed, storing 
the index in main memory is preferable. If there is enough space in main 
memory for an entire index file then retrieving a data item through an index is 
comparable to doing so through a hashing approach, since otherwise an extra 
secondary storage access will be required. If the storage utilisation is 
considered and if the space used by an index is less than the space occupied 
by the data holes of a partition then storage space will be gained by using an 
index. To decide the limit C l 1 an estimation calculation can be found in 
Appendix A2.

(b) The life span of the data set is short: C l2. In relational databases, these data 
sets can be the temporary tables built up by join, projection, and other 
operations. They can also be intermediate data sets which are only used for 
a specific purpose. Once the purpose is fulfilled, the life of the data sets are 
terminated.

(c) The size of data set is “small”. Here "small" depends on the environment. It 
means that the available memory will have enough room to hold the entire 
index file for the data set of its grid cells (refer to Appendix A2 for its 
calculations): C l3.

(d) The rate of insertions and deletions is moderate: C14. If the index 
implementation is compared with the hashing implementation and when Cl 1 
and C l3 are satisfied, it copes with the dynamic situation better than 
hashing due to the complexity involved in rearranging the data set on 
secondary storage, i.e. when a split or a merge occurs the indexing method 
shuffles index records whereas a hashing algorithm shuffles the data
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buckets. Since the data set size is, in most cases, greater than the index file 
size, changing the index file will be more efficient than changing the data 
set. The way we make a decision on data volatility depends on the speed of 
performing an insertion or deletion operation as well as the effect on 
performance. The method for making decisions concerning C14 can be 
referenced in the Appendix A2.

(e) The response time allows for two secondary storage accesses to retrieve 
a data item: C15.

To make a choice based on these characteristics, it is preferable to employ 
the simplest conditions in the reasoning sequence and therefore, we can 
derive our rules for selecting the EXCELL algorithm as:
Rule set 1 (Rsetl)
(R l.l)  If C12 and C15 then ALT[1]
(R1.2) If C13 then ALT[1].
(R1.3) If C15 then ALT[1],
(R1.4) If (C ll and C14) then ALT[1] else Rset2.

(2) The reasons for setting these characteristics to choose the EXCELL 
algorithm are that the ALT[1] algorithm represents the simplest 
implementation among chosen algorithms. Since its partition divides the data 
space into equal sized grid cells the scale is fixed for every grid cell, 
implying an easy transformation between a data identification and 
corresponding slices. The access paths are implemented by a one-to-one 
mapping between each grid cell and the relevant index entry, implying that 
arbitrary addresses can be allocated to a data bucket as the address of the 
data item is recorded in the index file. Hence it does not require contiguous 
storage whereas the directoryless hashing algorithms do. We choose the 
EXCELL algorithm because its implementation is straightforward. When the 
above mentioned conditions are met, the index file can be stored in main 
memory or the index size can balance the reserved storage for empty grid 
cells, the method is compatible with a hashing algorithm in that it provides 
fast access. In addition, EXCELL copes with a dynamic situation in a 
simpler manner ( index level rather than data level). By keeping an entry in 
the index for every grid cell, the index can be addressed directly through an 
equivalent z-code formed from a given data item. The z-code, which is used
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as a hashing function to address the index file may also assist VLR (variable 
length record) data items because the index records have fixed lengths that 
facilitate applying a hash function.

(3) The strengths and weaknesses of the EXCELL algorithm
The purpose for the analysis of the strengths and weaknesses of each 
algorithm is to provide the system with knowledge that helps to eliminate 
unnecessary rule searching and rule matching. As the EXCELL algorithm 
divides the data space into equal sized grid cells and uses an index to store 
its access paths, every grid cell has an entry in the index file recording the 
addresses of data items stored in that grid cell. When searching a data item, 
the multi-keys are used to calculate the entry to the index file and then the 
data item is located by the content of address field in this index entry. The 
algorithm is pictured as in Figure 4.9. Conditions under which the 
algorithm is particularly strong or weak are listed below.
(a) Equal sized grid cell partitioning makes implementation simple, 

implying that with a data set which is small and has a short life span it 
will always be a good choice. The reason is that a small data set will 
automatically limit the size of the index.

(b) As the index file records the addresses of data, data items of various 
lengths can be handled.

(c) Every grid cell has an entry in the index, indicating that an increasing 
number of empty grid cells will increase the depth of the index and 
influence the search speed. On the other hand, it also removes the 
holes in the storage of the data set itself. Hence it can guarantee good 
performance for applications with a small data set. Small sized data 
sets naturally limit the height of the index even for a non-uniform data 
distribution.

(d) Speed and storage utilisation depends on the data distribution.
Namely, the algorithm is dependent on the size of the data set and data 
distributions.

(e) When the index file cannot be held in main memory the access speed 
will be influenced, but only by one extra secondary disk access for 
point data because the index record has a fixed record size and 
therefore only one probe by a hashing function is required to locate the 
index.
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(f) When there are very few holes in the file the index file will not be
necessary, since empty holes will occupy less space than an index file. 
This implies that for evenly-distributed data sets hashing will perform 
better than EXCELL if in addition, the insertion and deletion rate are 
not very high.

4.2.2. The z-hashing Algorithm: ALT[2] = (PT1, SA2}
The binary code z-hashing algorithm ALT[2.1]
The Gray code z-hashing algorithm ALT[2.2]

ALT[2] represents the z-hashing algorithms. Two types of z-hashing are 
considered here. One is the binary code ordered z-hashing ALT[2.1] (see Figure 
4.14.(a)), the other is the Gray code ordered z-hashing ALT[2.2] (see Figure 4.14. 
(b)). When using the same partition strategy as the EX CELL, the hashing 
algorithm, instead of mapping each grid cell to an entry address referring to an 
index file, creates a data bucket number (a relative address on secondary storage) 
which corresponds to each grid cell.
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Figure 4.14.(a) Binary code z-hashing algorithm.
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The binary code z-hashing algorithm ALT[2.1] divides the data space into equal 
sized grid cells and numbers these grid cells in the z-order. In addition, it tries to 
optimise performance by choosing the order in which grid cells will be split or 
merged next when dealing with dynamic situations. The idea is that the grid cells 
chosen will minimise the number of data buckets to be utilised. This is done by 
selecting the grid cells that produce the lowest z-code values among the unused 
bucket numbers. As the hashing function generates the bucket address number by 
mapping a chosen grid cell to a z-code, a split will introduce a new bucket number 

sequence (2^> 2^  + 1, ..., 2^  + 1), where L is the data set level before a split. 

Hence the split rule will select those grid cells which introduce the bucket 

numbers of 2^, 2 ^ + 1  as the first one to split. In a partition each dimension is 

divided into a number of slices. Every slice in the i“1 dimension is numbered by 

0, 1, ..., Sj. where Sj is the number of slices in the i^1 dimension. Each grid 

cell can thus be identified by these slice numbers as •••» iml, where ij is the 

(i+ l)th slice on the j^1 dimension for i = 0, 1 ,..., Sj _ j = 1, ..., m. The z-code 

of a grid cell identified by slices [ij,i2 im] is generated by interleaving the
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binary representation of each element in t1 •••> ^  alternately. The z-code 
then serves as an address (a bucket number) for the corresponding grid cell. A 
one-to-one relationship between a grid cell and a bucket number is established by 
the z-hashing function. From the current identification of slices in every 
dimension the grid cell that will produce the lowest new bucket number can be 
calculated by an inverse function, i.e. a function which transfers the lowest new 
bucket number into its corresponding grid cell slice identification \ i \ A 2 ..., im] .
By the splitting rule, the number of gaps among the buckets is minimised. An 
explicit illustration of the split rule for the process is illustrated in Appendix A3.

The special feature of z-hashing is that the splitting and merging processes aim at 
minimising the number of empty buckets so that the storage utilisation may be 
improved and the number of grid cells requiring to be rehashed may also be 
reduced. When the insertion pattern matches the order of the split rule the overall 
performance will reach the expected results. However, if the insertion pattern does 
not match the order set by the split rule then empty buckets cannot be avoided so the 
method will not perform as well as expected. Figure 2. in Appendix A3 shows a 
data space that originally had 16 grid cells and the corresponding changes of z- 
codes brought about by using the minimal numbering split rule.

To be aware of the type kind of insertion pattern that can be categorised as suitable 
for the z-hashing split rule, in terms of the expected performance, the order of 
insertions plays an important role. An analysis of the insertion pattern for this 
purpose can also be found in Appendix A3. The analysis will be especially useful 
when insertions are processed in a cumulative manner, such as a batch process. 
These data items can be sorted before they are added to the data set.

The Gray code z-hashing ALT[2.2] also utilises z-ordering to partition the data 
space. The difference lies in that it uses the Gray code to number slices in each 
dimension of the data space. The Gray code z-ordering is specially developed for 
heavy range searching problems [LA78]. The binary z-order transforms a m-d data 
space to a 1-d data space and preserves the geometric proximity locally in a Z shape 
(see Figure 4.15. (b)). Gray code explores the essence between the binary code and 
the geometric proximity, regarding the storage of the m-d data, by redefining the 
sequence of the binary codes. It reorders the binary code in a way such that that 
only one bit will be different from the next binary code followed. Ordering in this
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manner, the Gray code minimises the Hamming distance (the number of bits 
different in the sequence of codes) and increases the data similarity between the 
consecutive buckets. Data items with the same attribute values will more likely be 
stored together. For a partial range search, if each bit stands for an attribute value, 
then query operations for example, with a search pattern such as ??1? will require 
all data with the third position of value 1 to be stored as closely as possible. For a 
binary sequence and a Gray code sequence a set of 4-bits codes is shown in Figure 
4.16.
(a) Binary z-code

11

10

01

00

1 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1
10 11 14 15

1 0 0 0 1 0 0 1 1 1 0 0 1 1 0 1
8 9 12 I S

0 0 1 0 0 0 1 1 0 1 1 0 0 1 1 1

2 3 6 7

0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1
0 1 4 5

00 01 10 11

Figure 4.15. Comparison between binary z-code and Gray z-code.
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(b) Gray z-code

10

11

01

00

1000 1001 1101 1100
8 9 13 12

1010 1011 1111 1110
IO 11 15 14

0 0 1 0 0011 O l i i 0 1 1 0
2 3 7 6

0 0 0 0 0 0 0 1 0101 0 1 0 0
0 1 5 4

00 01 11 10

Binary code
0000
0001
0010
0011
0100
0101
0110
0111 
1000 
1001 
1010 
1011 
1100 
noi
1110
1111

Gray code 
0000 
0001 
0011 
0010
0110 
0100 
0101
0111 
1111 
Ilio 
noi 
1001 
1000 
1100 
Ilio 
1010

Figure 4.16. Binary code and Gray code.
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In a binary code sequence there are four discrete sections, whilst in Gray code 
sequences there are three discrete sections when the third position is 1. As a result, 
the Gray code achieves more efficient ordering than the binary code for data 
similarity. The effect of such reordering will improve the performance for range and 
partial range searching. An example is shown above in Figure 4.15. According to 
the Gray code z-ordering, the following grid cell only differs by one bit so that 
there are three bits matched. For the same partition, the binary code z-order will 
have two bits different in the following grid cell in the diagonal direction. The 
comparison of these two kinds of z-ordering has been illustrated in Figure 4.15 (a)
(b) respectively. The Z shape of the binary z-ordering has become the l_ and _l 
shape in the Gray code z-ordering.

Compared with the binary code z-ordering, the Gray code z-ordering changes the 
sequence for numbering the grid cells. As a result, it improves the proximity for 
range and partial range match accesses at the expense of transformation between a 
binary code and its equivalent Gray code. The Gray code z-ordering is more 
complex to implement, but it has all the strengths of the z-hashing and, in addition, 
it performs more efficiently for range and partial range searches than that of the 
binary one. Gray code provides an alternative to z-hashing algorithm where partial 
and full range searches are major factors in design considerations.

(1) Cases where the z-hashing algorithm is favourable
(a) The data set is large, implying that there is not enough memory for a whole

index file : C21.
(refer to Appendix A2 to decide C21).

(b) The application requires a quick response for point search : C22.
( C22 = Tsec ).

(c) The data distribution is relatively even. Here “even” means that the number of
data items in each grid cell will be roughly equal (refer to Appendix A2 for 
calibration) : C23.

(d) The order of the insertions matches the order of splitting or the insert and
delete rate is low : C24.
By " the order of insertions matches the order of splitting " above we mean 
that the data items to be inserted will fit in the range of corresponding 
expanded grid cells which are chosen by the splitting rule. Note that in z- 
ordering, each grid cell represents a fixed region of the data space (i.e. z-
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hashing function is a function of arguments: size and position in a search 
space) and therefore, if the chosen expanded grid cells are always those which 
correspond to the values of the lowest z-code among the unused ones after a 
split, there is a possibility of no data items being added which fall in the range 
of those newly created grid cells. This will result in empty grid cells so that 
the original objective of the z-hashing scheme of minimising the number of 
buckets required cannot be achieved. This observation of the order match 
indicates that the data distribution pattern favoured for using this method will 
relate to the order of the expansion. Based on the split rule, a sequence of grid 
cells can be calculated and compared with the order of the insertions. The 
detailed illustration of the order match shall be given in the Appendix A3.

(e) The range and partial range search rate and the partial range query rate are
high
The meaning of "high" is given in Appendix A2.

:C25.

(f) The required data packing density is relatively low ( eg. < 65%) 
This condition is determined in combination with other conditions.

: C26.

(g) The required data packing density is relatively high ( eg. > 80% ) 
This condition is determined in combination with other conditions.

C27.

Rule set 2 (Rset2)
(R2.1) If C25 then ALT[2.2].
(R2.2) If (C21 and C23) then ATL[2.1],
(R2.3) If C22 then ATL[2.1].
(R2.4) If (C23 and C26) then ATL[2.1],
(R2.5) If (C24 and C27) then ATL[2.1],
(R2.6) If C26 then ALT[2.1] else Rset3.

(2)  The reasons why these characteristics match the z-hashing algorithm
One of the reasons for choosing the z-hashing approach is that it provides 
good performance in terms of retrieval speed. Thus, in a situation where the 
requirement of response time is difficult to guarantee with the EXCELL 
(ALTf 1]) those rules of selecting the z-hashing algorithms can be examined. 
The Gray code z-hashing algorithm preserves better spatial proximity. This 
implies that the range and partial range search performance may outperform 
ALT[2.1]. With z-hashing the storage utilisation may also be improved 
compared with ALT[1] because the z-hashing considers the order for the next
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grid cell to be split; in particular when the sequence of inserting data items 
matches the splitting sequence, the z-hashing makes best use of the secondary 
storage and gives a fast response.

(31 The strengths and weaknesses of the z-hashing algorithms
(a) Storage utilisation is dependent upon the data distribution and the sequence of 

insertion. Some data distributions will perform well, some may result in a 
large number of data holes.

(b) Using the z-code to number the grid cells preserves geometric proximity for 
the data set.

(c) A hashing approach usually provides a fast search speed.
(d) The z-hashing algorithm maps a grid cell to a bucket number for data items 

within the range of the grid cell, implying that a split may create empty grid 
cells. The result is possible low storage utilisation and a large amount of data 
reorganisation.

To compare the EXCELL scheme and z-hashing algorithm, the former uses a 
hashing function to locate the index file whereas the latter uses a hashing function 
to locate a data item in a data bucket. The different decisions made between 
ALT[1] and ALT[2] lie in the required response time and the number of empty 
grid cells produced by the chosen partition. Thus if PT1 is chosen then selection 
between ALT[1] and ALT[2] will be based on two factors: (a) the main access 
mode; (b) the storage utilisation. When the main access mode is real-time (random 
access is the dominant access mode) ALT[2] may be preferable; otherwise when 
the number of empty grid cells multiplied by the size of data bucket which 
exceeds the size of the index file, ALT[1] will be favourable.

In sections 4.2.1. and 4.2.2. we have examined two implementation algorithms 
with the same type of partitioning. There is a break-even point for choosing one 
of these two implementations in terms of storage and speed. This has been 
described by limits C l 1.
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4.2.3. The Quantile-hashing Algorithm ALT[3] = {PT3, SA2}
{PT4, SA2}

The quantile-hashing algorithm [KS87] [KS88b] uses binary trees in each 
dimension to aid the implementation of the hashing scheme. An illustration of 
quantile-hashing is shown in Figure 4.17. These binary trees are used to keep track 
of the boundaries of dividing slices (quantiles) for each dimension. All branches of 
the binary trees are regarded as a digital tree to carry the values of Os on the left 
hand side and Is on the right hand side branches. These Os and Is from the root of 
the tree to the leaf of the tree form a binary string which uniquely represents the 
relevant slice in that dimension. Slices in every dimension divide the data space into 
super-rectangles. A super-rectangle is bounded by m slices. Each super-rectangle 
can thus be identified by these binary codes (in binary strings) which correspond to 
it. These binary codes then form the basis for a hashing function to calculate the 
bucket addresses for corresponding grid cells. Other than that the quantiles 
(splitting positions) can be decided by control functions (i.e. frequency /  density / 
data distribution), in essence, the hashing function is similar to the one used by z- 
hashing algorithm ALT[2], it only differs in partitioning search space.
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Figure 4.17. Quantile-hashing algorithm.
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The idea of the quantile-hashing is to apply a number of very small indices to 

support its hashing function, which allows control over the splitting process and 
takes non-uniform data distribution into consideration. As the boundaries of slices 
and local density values are kept in the binary trees the algorithm makes it possible 
to vary the sizes of grid cells and allows various split frequencies for different 
dimensions. However, every time an expansion occurs a split will cause a 
reorganisation of the data file for these affected regions, especially when m > 2. 
During a splitting process, the new addresses are calculated by a G-function 
[OT84], which organises grid cells in lexicographical order unlike the z-ordering. 
To achieve easy implementation and better geometric proximity the G-function can 
be replaced by the z-ordering function.

(11 Cases where the quantile-hashing algorithm is favourable 
(a) The required resolution is too high for a given bucket size so that it creates 

many empty grid cells due to equal-sized grid cell partition: C 31.
The reason is that the data distribution is non-uniform and thus the partition 
may create too many empty grid cells. As a result, the z-hashing method 
cannot cope with non-uniform data distribution efficiently.

(b) Fast response time for point search: C22.
(c) Insertion and deletion rate is low: C32.
(d) The range or partial range search rate is high: C25.
(e) The data set is large: C 21.

To preserve geometric proximity, we will assume that the address calculated 
in the quantile-hashing is produced by z-code transformation instead of the 
G-function [OT84]. This assumption simplifies the DBMS for physical DB 
organisation because the z-code and G-function would be required to be 
implemented and replacing the G-function reduces the number of functions 
supported by the system.

m
* small indices: a grid index needs Jt Sj entries in an index, whereas a quantile- 

m i=l
hashing requires X sj entries in an index. 

i= l
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Rule set 3 (Rset31
(R3.1) If (C31 and C22) then ALT[3].
(R3.2) If (C31 and C32) then ALT[3].
(R3.3) If (C31 and C25) then ALT[3].
(R3.4) If (C21 and C32) then ALT[3],

{2} The reasons for setting these characteristics to choose the quantile-hashing 
algorithm

ALT[3] offers flexibility for different splitting strategies. By recording the 
boundaries of these slices and local densities in binary trees for each 
dimension, it copes with non-uniform data distribution better than the 
previous algorithms. It also preserves the geometric proximity of z-ordering 
as the binary trees form the same numbering scheme as z-hashing.

(31 The strengths and weaknesses of the quantile-hashing algorithm
(a) Control can be introduced in the splitting process thus providing the 

flexibility of partitioning the data space.
(b) The geometric proximity of the z-ordering is preserved.
(c) Reorganising the data space for a split process is required.
(d) Each search has to consult these binary trees first before locating the 

required data items and the calculation of data address is more complicated 
than equal sized grid cell partition. When the number of dimensions is 
small, all binary trees can be easily stored in main memory. Otherwise, 
consulting these trees may have extra overhead.

(e) Quantile-hashing is a hashing algorithm such that there are holes in the data 
file for empty cells produced by the partition. Since the partition allows 
varied size, compared with EXCELL it reduces the number of empty grid 
cells.

4.2.4. PLOP-hashing Algorithm: ALT[3] = (PT3, SA2}
All the above mentioned implementation algorithms require a relatively large amount 
of data reorganisation when a split takes place. The reason is that with the z-hashing 
algorithm mapping both grid size and its position to a bucket number when a split 
occurs the resolution will change, implying the size of these grid cells will also 
change. This is undesirable for a highly dynamic data set. The PLOP-hashing tries
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to overcome this problem by introducing a dynamic numbering scheme to these grid 
cells.

The PLOP-hashing algorithm, like the quantile-hashing, uses binary trees for each 
dimension to record local data densities and boundaries of slices; but, unlike the 
quantile-hashing, the identification of each slice is not formed by defaulted Os and 
Is on the paths of these binary trees. Each number for a slice identification is 
dynamically produced and recorded in the leaves of these binary tree indices. 
Hence it improves the ability to cope with a dynamic situation. Moreover, rehashing 
is also localised to the affected areas for each split and merge. Non-uniform data 
distribution can be considered as in the quantile-hashing so that it is not necessary 
for a split to be a middle point in the data space for a split grid cell. However, to 
gain these properties extra information about dynamically formed slice numbers 
needs to be recorded in these binary trees. Comparing PLOP-hashing with the z- 
hashing approach these extra binary trees are required whilst comparing PLOP- 
hashing with quantile-hashing the tree size will be increased. A brief illustration is 
shown in Figure 4.18.
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Figure 4.18. The PLOP-hashing algorithm.
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The difference between the PLOP hashing and the z-hashing algorithm is that the 
PLOP-hashing can apply different scales to divide the data space and different 
dimensions can have a different number of slices. The unnecessary partition can be 
avoided. In addition, unlike the z-hashing and the quantile-hashing, the sequence of 
address calculation in the PLOP-hashing is dynamic in correspondence with the 
sequence of data growth so that the identification numbers given to a grid cell are 
not fixed. This can be shown by Figure 4.19. This feature implies that the indices 
used for address calculation are adapted for dynamic situations, thus the data 
reorganisation caused by a split is localised. Although it copes with dynamic 
situations better than other algorithms because less grid cells need to be rehashed 
during the growths or shrinks of the data set, the geometric proximity may not be 
preserved as the indices are formed dynamically and do not necessarily follow the 
expected z-order for neighbouring grid cells. As a result, it may give a slow 
response time for range searches.
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Figure 4.19. The PLOP-hashing address calculation.
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£JQ Cases where the PLOP-hashing algorithm is preferable
(a) The data distribution is non-uniform : C41.
(b) The fast response time for point search is required : C22.
(c) The data set is large : C21.
(d) The insertion and deletion rates are high and unpredictable which requires

the changing of resolution accordingly : C42.
(e) Range and partial range search rates are low : C43.
(f) There are large differences among local data densities : C44.
(g) Searches for attributes are at different rates : C45.

Rule set 4 (Rset4)
(R4.1) If (C22 and C43) then ALT[4].
(R4.2) If C41 then ALT[4].
(R4.3) If C43 then ALT[4].
(R4.4) If C44 then ALT[4].
(R4.5) If (C41 and C45) then ALT[4].

(2)  The reasons for setting these characteristics to choose the PLOP-hashing 
algorithm
The ALT[4] is a fast search scheme implemented by a hashing algorithm 
employing G-ordering. It provides fast access supported by the hashing 
algorithm and small size binary trees. It adapts different dividing intervals 
(resolution of the data space) so that it copes with dynamic situations 
efficiently. It supports PT3 and PT4 types of partition strategies. Hence a non- 
uniform data distribution may be transformed into an uniform distribution by 
PT4 (non-equal sized grid cell partition). The PLOP-hashing is selected 
mainly for its ability to deal with dynamic situations and its effective point 
retrieval.

(3) The strengths and weaknesses of the PLOP-hashing algorithm
(a) The PLOP-hashing algorithm provides flexible splitting and merging by 

recording indices in the binary trees.
(b) Fast response is achieved by a hashing function.
(c) Dynamic situations are dealt with effectively by an adapted numbering 

scheme for slices.
(d) The PLOP-hashing algorithm may lose geometric proximity as z-order is
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applied to insertion sequence rather than geometric data space.

4.2.5. BANG File and hB-tree Algorithm: ALT[5] = {PT4, SA1}
With reference to the partition type in Figure 4.7. we know that not all of the above 
mentioned algorithms can cope with specific data distribution efficiently. As shown 
in Figure 4.20., even applying the PLOP-hashing partition, which is developed to 
deal with non-uniform distribution, many empty buckets may still be introduced for 
this specific data pattern. Moreover, these algorithms cannot deal with overflow 
effectively. This is because each grid cell corresponds to a data bucket and, if the 
number of data items exceeds the size of the bucket, then it will either trigger a split 
or introduce an overflow area. As a result, if a split is triggered a number of new 
grid cells are created and the storage utilisation may become poor; if an overflow 
area is introduced then to retrieve data items in the overflow area an extra secondary 
storage access may be required. The Bang file partition divides the data space into 
m-d regions, avoiding the problem caused by other partitioning strategies.

b = 3

e1 e2

•
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•

e3 e4

•

•

•

Figure 4.20. Specific data distribution by parameter guided partition.
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The figure shows that, among nine grid cells four empty grid cells have managed to 
occur by PT3.

The BANG file is an interpolation-based grid partition which identifies grid cells of 
different sizes by different data set levels. The technique used for implementation 
has to record the data set level and thus the indexing approach has to be employed 
for this partition. A grid cell is represented by a region identifier and a data set level 
label pair (r, 1). The identifier is formed by concatenating the least significant bit of 
the newly-formed coordinate in dimension i at level 1 + 1 to the most significant bit 
of the corresponding region number at the level 1 [FR87a] [FR87b]. If a region 
encloses the other region then the embedded region will be the lowest level in the 
index. The region which has the higher level number will be searched after the 
lower level regions. This property guarantees that the higher level region equals the 
region identified by r minus those lower level regions embedded within it. This can 
be shown in Figure 4.21.
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The BANG file partition [FR87a] and hB-Tree partition [L087] are essentially the 
same. An embedded region in the Bang file is equivalent to a holey brick (bricks 
with holes in) in a hB-Tree. They both minimise the problems introduced by non- 
uniform data distribution. The difference between them is the access paths 
implementation. The hB-tree represents the partition by recording the boundaries of 
the bricks (regions) at different levels of a k-d-tree alternately; whereas the Bang 
file represents the partition by its region identifier and a data set level, which gives 
the location and size of a data item in the data space. The salient feature of this 
partition is that the dimension of a split equals the dimension of the data space so 
that it can compact non-uniform data distribution effectively. This feature leads to 
an implementation advantage: the growth rate of the index size will be at the growth 
rate of data. It also copes with the dynamic situation at high packing density by 
introducing no empty regions. Both the region identifier and the data set level are 
required to identify a grid region. In addition, to gain a better packing density it 
needs to keep extra information in each index record compared with the scale-based 
grid indexing method. The extra information is necessary for recording the data set 
level. This method may make range and partial range searches complicated and 
slow. The reason is that a data range involving multi-regions may demand the 
traversal of several branches in the Bang indexing tree. Comparing the the Bang file 
with the z-hashing algorithm, the Bang file has to use an index file for its access 
paths so that there will be a time when the break-even point is reached for storage 
utilisation. The formula for the break even point calculation is presented in 
Appendix A4.

The BANG file and the hB-Tree implementation were illustrated in Figure 4.11. 
and Figure 4.12. respectively.

(1) Cases that in favour BANG file algorithm
(a) The range search rate is moderate : C51.
(b) The point search rate is high : C25.
(c) The distribution of data is non-uniform : C41.
(d) The database to be created is region-data-oriented or object-oriented, i.e.

is explicit m-d data : C52.
The condition (d) needs rethinking in some situations because for an object in the 
middle of the data space the signature created by the z-code will fail to code the
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object. However, an alteration can be introduced so that the partition can be
identified by several layers. The alteration is discussed in section (4) below.
(e) High insertion and deletion rates : C42.

Rule set 5 (Rset51
(R5.1) If C41 then ALT[5].
(R5.2) If (C51 and C25) then ALT[5].
(R5.3) If C52 then ALT[5].
(R5.4) If (C41 and C42) then ALT[5],

(21 The reasons for setting these characteristics to choose the BANG file 
algorithm
The ALT[5] is designed to adapt to changes of data distribution. It achieves 
this objective by avoiding empty grid cells through a partitioning strategy. 
The adaptability implies that it can cope with dynamic and non-uniform data 
distribution well. On the other hand, it represents a region by an identifier 
which indicates the position and size so that it can represent some object data 
easily. However, to represent all spatial objects the alteration described in 
section(4) below needs to be introduced.

(31 The strengths and weaknesses of the BANG file algorithm
(a) The Bang file algorithm can cope with various data distributions.
(b) The Bang file algorithm can store certain ranges of spatial objects 

conveniently.
(c) The Bang file algorithm can provide high storage utilisation by 

redistributing the partition. An illustration is given in Figure 4.22.
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Figure 4.22. Redistribution by the Bang file partition.
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(d) The Bang file algorithm can provide fast access to exact search (point 
search).

(e) The Bang file algorithm may not be very efficient for range and partial range 
searches.

(f) The Bang file algorithm cannot efficiently store objects which overlap with 
the partition boundaries without further considerations. (However, all of the 
above-mentioned algorithms fail to do this).

(g) An index file has to be used to implement the Bang file.

(4) Alterations introduced to BANG file algorithm for spatial databases 
(development of existing algorithm)

(i) Analysis
The major problem with a m-d spatial object database is that two objects may 
be positioned in such a way that, for instance, in a 2-d data space, one cannot 
use a horizontal or vertical line to separate them without dividing one object 
into two parts. An example is shown in Figure 4.23. it can be seen that line x2 
keeps object 3 intact but cuts object 4 into two parts. One layer grid partition, 
therefore, will fail to identify such an object without cutting it into two or more 
sub-objects. However, if we imagine that one of the two objects is on the 
actual plane and the other one is on an imaginary plane, we can apply different 
lines to these two planes instead of the original one without dividing either of 
these objects. This method can be seen as a dimension extension approach 
(another dimension is introduced for identifying different layers of planes, 
allowing different objects to be mapped on different layers) - a multi-layered 
approach. Using this approach, whenever there is an object which intersects 
the boundaries of the grid partition over these existing planes, it will apply an 
imaginary plane or another layer of plane to avoid dividing the object. 
Meanwhile, the dividing position is still chosen according to the overall 
partitioning situation as if there is only one layer plane. An illustration of this 
method is given in Figure 4.24.
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Figure 4.24. Multi-layered 2-d grid partition.
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x l x2 x3

Object 1 in tersec ts  w ith dividing lines 
x l,y 3 .

Object 2 in tersec ts w ith dividing lines 
x2 ,y2 .

Object 3 in tersec ts w ith dividing lines 
x 3 ,y l.

Object 4 in tersects w ith dividing lines 
x l .y l .

Object 5 in tersects w ith dividing lines 
x3 ,y2 ,y3 .

L3 x2

Figure 4.23. A spatial object database in a 2-d space.
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(ii) Alterations
Based on the above analysis, a multi-layered grid partition can be introduced. 
To maintain the storage utilisation the multi-layer grid partition is constructed 
so that dividing positions on every layer form a complete partition as if there is 
only one layer.

Let be the set of dividing lines ( planes or super-planes if m > 2 )  for 
layer j for j = 1 ,2 ,..., x then the following relation is always true:

L®  n  L(i) = (J) for all i and j, where i *  j.

An object identifier calculation is briefly illustrated in Appendix A5 ( Figure 
4.). Unlike the point data (zero-sized object) space, storing the object depends 
on the chosen resolution. When a cube size (the minimal rectangle that 
includes the object) is determined, the number of buckets required can be 
derived. If the size of an object or the number of buckets used for storing the 
object is recorded in the index then the total number of the grid cells in the 
previous layers can be calculated. The result can then be used to adjust the 
calculation of the object identifier for the current layer. This adjustment is 
required because an object can occupy more than one data block. It is treated 
as a VLR data item as objects of different shapes and volumes require 
different descriptions or representations. The alternative way of dealing with 
such cases is to multiply the number of buckets required for an object as a 
weight function to the total number of grid cells. Adding a new object is 
briefly shown in Figure 4.25.
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Original data set has tvo layers Adding a nev object 5 and 6

The nev objects 5 and 6 vill intersect 
vith line yl in the first layer, but it 
vill not intersect v ith  the boundary 
in the thirs layer. It is thus added to 
the third layer.

The original object 2 intersects vith  
lines xl and yl in the first layer and 
therefore it is stored in the second 
layer.
LI: resolution = 4 
L2: resolution = 1 
L3: resolution = 2

Figure 4.25. Multi-layered grid cells: Adding new objects.
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The split heuristics are important to the performance of the algorithm and 
some rules have to be introduced to avoid ambiguity.

(iii) Multi-layered grid partition implementation considerations
To implement a multi-layered grid partition, a rule as to which layer an 
object should belong to, needs to be determined. Suppose there are k layers 
for an object data set and they are labelled from highest layer to the lowest 
one in sequence as ( 0, 1,..., k - 1). If the boundary of the object to be 
determined is { (ail, ai2) for i = 1 ,2 ,..., m } then the steps to follow are:
(a) choose the layer labelled by j starting from 0;
(b) if the object does not overlap with these partition boundaries of layer 

j then choose j as the home for the object, search or store the object 
at layer j and do (e); otherwise

(c) choose the layer labelled with (j + 1) and do (b) until all existing 
layers have been exhausted, i.e. current layer is: j = k - 1;

(d) add a new layer k to the data set to store this object and increase the 
number of layers;

(e) finish the process.
The same object can sometimes be fitted into different layers at the same 
time, i.e. it will not overlap with the partition boundaries of other layers. To 
enhance the overall performance, as many objects as possible should be 
presented at the highest layer for a given search.

(5) A brief comparison between the BANG-file and the grid file 
The major difference between the BANG-file and the grid-file algorithms lies 
in the partitioning approach. The BANG-file applies m-d cube partitioning to 
a search space and allows embedded regions in a partition, whilst the grid- 
file employs (m-l)-d superplane partitioning for a search space. The 
BANG-file algorithm also presents high storage utilisation for uneven data 
distributions. The beauty of the BANG-file algorithm is that the index grows 
with the rate of the data and in allowing the embedded regions in the BANG- 
file algorithm, it supports localised reorganisation. This locality shows high 
ability of dealing with dynamic situations. The grid-file displays a 
predictable performance in terms of access speed. It guarantees a two-disk 
access in the worst cases because of the one-to-one relationship between an 
index entry and a grid cell. However, this relationship can be maintained at 
the price of very large index file for an uneven distributed search space, i.e.
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the index file grows at the rates of partitioning.

4.2.6. R-tree and R+-tree Algorithm: ALT[6] = (PT5, SA1}
R-tree is designed for representing spatial objects - non-zero sized objects. 
The m-d data space is divided into a number of m-d rectangles. The salient 
feature of the R-tree is that the boundaries of a cell ( a region which includes 
an object) do not need to be predetermined. This feature distinguished R-tree 
scheme from the above mentioned grid partition methods. At the leaf level of 
the index, the atomic object is represented by its minimal closure boundaries 
and the location where the object is stored. At the higher level of the index, 
each node will contain m rectangles to be covered by this level. Like the B- 
tree, the higher level covers the range of the lower levels, i.e. the higher level 
nodes cover a larger rectangle in the data space. Each node in the R-tree is 
represented by a pair (I, p). Here I is an identifier, which indicates the range 
covered by the rectangle and p is the pointer to either a bucket number which 
stores the object at the leaf level or a pointer to the next level in the index at 
the non-leaf level. As the data space is divided by m-d rectangles represented 
by its boundaries the domain of a region in R-tree is flexible, in comparison 
with the Bang file. R-tree does not limit itself to fixed size boundaries. 
However, this flexibility is gained by storing more information about a 
region in the implementation, i.e. extra storage space is required. The reason 
is that the representation of a rectangle indicated in [GU84] uses RECT = 
{xlow, xhigh; ylow, yhigh} for a 2-d region. For m > 2 representing a 
rectangle requires even more information. Each dimension needs to specify 
high and low boundaries, as a result, the R-tree method needs information 
extracted from (2 x m) values to identify a rectangle.

The implementation may raise problems in that, at the higher level of an 
index, two different nodes may include the same object at the lower level, 
overlapping some regions. Consequently, one of them may be searched in a 
false drop. This indicates that if there are n overlapping regions then the 
possibility of a false drop during a search is (n - l)/n = 1 - 1/n, and 
therefore, the performance deteriorates. R+-tree has tried to reduce the 
overlapping by introducing more rectangles covering a smaller region, but it 
ends up with a higher tree index than that of R-tree. Figure 4.26. briefly 
describes R-tree algorithm.
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Figure 4.26. The R-tree algorithm.
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ALT[6] is suitable for representing a spatial object where the overlapping can be 
avoided by the nature of the data distribution pattern.

(1) The characteristics which encourage choice of R+-Tree algorithm

(a) The database concerned is a spatial database : C61.
(b) It is difficult to represent these spatial objects by a standard grid cell

: C62.
(c) A large proportion of these spatial objects occupy more than one

pages/buckets : C63.

Rule set 6 IRsetól
(R6.1) if (C61 and C62) then ALT[6]
(R6.2) if C63 then ALT[6]

(2) The reasons for setting these characteristics to choose the R+-Tree algorithm 
The ALT[6] provides a possible solution to various shapes of spatial object 
representation among chosen algorithms.

(3) The strengths and weaknesses of the R-Tree
(a) The R-tree caters for the spatial objects with varied shapes and 

positions.
(b) It provides an alternative to an object-oriented database.
(c) It adopts a B-tree as its access paths implementation so that it copes 

with dynamic situations efficiently.
(d) It represents identification of an object by its boundaries explicitly so 

that when m > 2 the object identification may occupy a large amount 
of storage and consequently, increase the index size.

4.3. The Application Abstract Profiles (AAPs)
The AAPs are abstract types of applications described by their properties. These 
properties are used to classify the types of applications in order to match them to a 
suitable implementation algorithm. They are built up by the expert system based on 
previous database applications. New knowledge of later applications can be added 
to the system when required. The knowledge is stored and used to find solutions to 
a new application based on the similarity comparison between features such as the
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main access mode, the main attributes used in the queries, and the data 
distributions. These features can have different emphasis for various applications. 
Since the knowledge of applications is complicated and plays an important role in 
choosing algorithms we will define these AAPs and describe how we can use them 
to tune and monitor the performance of a database.

As explained in previous sections, the premises in the rule base are application- 
oriented. We use the AAPs to represent knowledge about applications. To serve the 
purpose of tuning physical database design these profiles are utilised to classify a 
given application. These AAPs are thus designed for comparison with a real 
application. They will also be used as input data to performance evaluation to refine 
algorithm selection and adjust boundaries for various features which are employed 
to classify applications. These profiles are described by a set of abstract properties 
from the real data set. The collection will be expanded as new application profiles 
are added to it. After performance evaluation the results will be stored as part of the 
knowledge for these application profiles so that they can be reused after an 
approximate correspondence (similarity) has been identified between an application 
and an AAP.

The AAPs consist of a set of application classes AAP = {AC1, A C 2,..., ACx}. 
Each class is described by a set of properties. These properties have four aspects: 
application types (AT), data distributions (AD), query types (AQ) and performance 
evaluation (PE). They vary for different types of applications, especially data 
distributions and query types, and change during the life-time of a database. To 
form these properties major factors reflecting data distribution and queries have to 
be carefully chosen. An application type is defined as:
ACi = { ATi, ADi, AQi, PEi } for i = 1, 2 ,..., x, x is the number of data sets in an 
application.

ACi Application class
This defines application class, which includes an application domain and tasks to be 
performed.
ACi = { application area, definition }

Application area is identified by the nature of applications. 'Nature' means 
applications with the same underlying structures of a search space and query
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patterns. The dimensionality of a search space is determined by query frequencies 
and this depends on the experience of functionality for an application system. A 
search space also relates to the data pattern. An expert system can gather such 
experience and the data patterns. An example would be transportation applications. 
The transportation means can be different - by sea, by train, or by air. It does not 
make much difference for applications concerning scheduling, booking and 
cancelling seats and so forth. The definition gives data sets and functions involved 
in an application. An application class can be a library application with data sets 
about the book, the borrower and the supplier; with functions about lending, 
returning, querying, adding, deleting, and searching for a book. An ACi can also be 
a selling business application with data sets on stock, customer, staff, and supplier, 
with functions of distributing, purchasing an item, and order processing. It can also 
be an airline application with data sets for flight, traveller; with functions of 
booking, cancelling of seats and scheduling flights, etc. Each application class 
represents a set of ‘similar’ applications with either generic features or functions.
For instance, library A and B are the same application class with similar application 
characteristics ignoring whether they are video libraries; music libraries or book 
libraries or a mixture. Similarly, for the selling business and airline application the 
system will assume that selling companies A and B or airlines A and B belong to the 
same application classes, regardless of what goods the businesses sell or the 
destinations an airline serves. Once an application which represents an application 
class has been run on the system all necessary information in the form of an AAP 
will be recorded for the system to use. We will see later that an AAP can be used to 
derive data from incomplete information supplied, to guide the determination of 
dimensionality of a search space, to be a data resource for analysing salient features 
of applications, and to draw a similarity comparison.

AT Application Type 
AT= {ATi fo r i = 1, 2, ..., x}

AD A set of data distribution for an AAP 
AD = { ADi for i = 1, 2 ,..., y }
ADi = ( m, r, b, Ddis ) 
where:
m - dimensionality ( we may assume m = 2 ).
r - resolution measured by the number of grid cells in an equal-
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sized grid cell partition.
b relative bucket size is the bucket size that will satisfy a chosen 

resolution.
Ddis data distribution, relating to C = {C[i] for i = 1, 2 ,..., r } 

from which a group of parameters can be derived and some 
of them stored for system usage. These parameters will be 
described after a discussion of algorithm AD.

AO A set of query tvpe for an AAP
AQ = { AQi for i = 1 ,2 ,..., z }
AQi = ( Qi, F, Ps, Rs)
where:

Qi query type measured by query frequencies.
F properties of attribute set by a weight function f: 

F = f(A l, A2, ..., Am) = {fi for i = 1, 2, ..., m}
Ps point search rate
Rs range search rate

The function F is evaluated by the percentage of a particular attribute occurrences
in queries and the total number of queries made.

Dvn = fir. Dr 1 Dynamic Features 
where:

Ir - insertion rate
Dr - deletion rate

PEi = ( T. Su. ATUxI ^Performance evaluation 
where:

T - average time required for retrieving a data item.
Su - storage utilisation.
ATL[x] - an algorithm chosen for implementing the grid partition.

In the application abstract profiles m is relatively static whereas data set size n, 
data distributions Ddis and query properties Q have dynamic features; the bucket 
size b and partition resolution r are either set by a user or limited by the operating 
system as software constraints. Among these parameters, n and b indicate the size 
of the physical database. As will be mentioned below, the data pattern is size
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independent. Thus n and b are transformed to a system derived scale to form a 
standard scale for comparison. Different data distribution and query patterns are 
developed from applications to classify a 'new' application. Here 'new' has a 
double meaning: firstly, an application with the same class may be stored in the 
system as an AAP so that the application appears to be new ( although it is not new 
in the sense of an application class); secondly that the application type is not in the 
AAP so that relevant data have to be extracted to represent a new application class in 
the system. In the first situation, only brief information of the new application 
needs to be stored, such as data set size, the application name and dynamic features. 
Information about data distribution and query are inherited from the previous 
instance under the same class.

Data distribution Ddis reflects the pattern of data items in a given data space. A data 
space (region) can be divided into a number of data subspaces (subregions). If one 
data subspace contains more data items than the other then we say that the data is 
more densely populated in the former subregion than in the latter. The density can 
be measured by the number of data items in a standard partition of the data space. 
Now we define the partition and how we approximately measure the data 
distribution.

A partition which is used for distribution measurement is defined as an equal-sized 
grid cell partition over the data space. To facilitate the measurement we map the 
concerned space into a 1-d space by applying the z-code [OR86] to represent each 
grid cell in the data space. Based on the given parameters of data concerned, the 
resolution of the data space can be determined. With the given data set the 
distribution is modelled.

As soon as the resolution r is determined a one-to-one mapping is established 
between the z-code and the regions introduced by the equal-sized grid cell partition. 
In order to know the properties of a given set, the data items are used as input data 
to the profile, and as a result, the data distribution information will be the output. 
The data distribution will be measured using the following parameters:
Nover - the number of grid cells which have more than b data items;
Nempty - the number of grid cells which have no data items;
Nmax - the maximum number of required data blocks;
Nmin - the minimal number of buckets estimated for storing a data set.
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The algorithm of the data distribution profile AD
Research has been done to construct various data distribution profiles [RE84] to 
study the behaviour of performance of a database. Most of them are at a theoretical 
level with a chosen distribution profile containing assumptions such as uniform 
distributions or the binomial or Poisson distributions, or randomly generated data, 
etc. simulated for research purposes. In an actual database, however, data attributes 
usually have functional relationship or correlations so that the above assumptions 
may not represent the nature of the data set in use. The reason is very simple: a data 
item is a collection of property information about an object in the real world, 
categorised as something that an organisation is interested in. For instance, data 
kept for an airline business may be concerned with storing information about 
distances and prices. These two attributes follow certain distribution - as distance 
increases the price will also increase. An undergraduate student file tends to have a 
narrow age scope highly populated as most students are aged between 18 and 21. 
The levels of employee's position (top managers, middle level managers, and 
employees) may be strongly correlated to the size and the nature of an organisation. 
This indicates that data distributions of many cases, in practice, do correlate to the 
nature of an application, i.e. they are application-oriented. Similarly, the query 
pattern, in real databases, may be a function of time. A manufacturer storing 
customer information for order processing may relate the query pattern to seasons 
and this pattern would be a time function. The query pattern of a database used for 
financial applications may be influenced by the financial cycle. Data distribution and 
query patterns vary for different types of application, but they may also be close 
enough for similar business organisations where the differences can be ignored. 
Data distribution is usually determined by the nature of information required to 
carry out functions of an organisation; and query patterns often relate to the 
activities of an organisation. To allow the system to recognise the data distribution 
pattern different AAP profiles are stored as criteria for making comparisons. These 
profiles are constructed by abstracting features of applications and by classifying 
them thereafter. Comparisons are conducted by heuristics and judgement. The 
equal-sized grid cell partition is used to analyse and describe the data distribution of 
a m-d data space.

Information about AC
AC is defined as application classifications, which is a set of application classes
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ACi for i = 1 , 2 , x. Information about ACi and other elements in the AAP has 
to be collected from real applications and refined by the system. Limited by time, 
this task is beyond the scope of this project. The task involved is to investigate real 
applications of different kinds, carrying out an analysis which represents data and 
query patterns, algorithms, and performance gearing towards the AAP definition. 
ACi abstracts application classes and attaches a definition to each of them.

The algorithm for data distribution AD
In order to estimate the data distribution features of an application the data pattern 
needs to be captured. By pattern we mean the shape of a data distribution. One of 
the pattern recognition techniques involves having a set of standard shapes coded in 
a way which allows us to draw comparisons. Data, in the view of geometrical 
space, form a pattern. Different distributions can be seen as different patterns which 
form different shapes. To categorise data distribution we need information which 
allows us to recognise a shape at a specified resolution level. Here, the pattern is an 
abstract concept. Its size is irrelevant but it is associated with the resolution. A 
resolution is scaled in terms of the number of grid cells in a data space, and the 
space size can differ. When the resolution changes, the pattern we perceive will also 
change; whereas with the same resolution we perceive the same pattern with a 
different size as the same shape in each grid cell (a system unit). This phenomenon 
can be seen from Figure 4.27. For our purposes we use an absolute scale to 
measure similar patterns with different sizes, i.e. we view the shape as an absolute 
standard, producing a fixed number of grid cells, gearing it to different sizes of 
applications and the constraints for classification. These standard data patterns are 
created by generating the AAP from analysis of applications.
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Figure 4.27. Similarity Comparison.



For a given application we should know the dimensionality m, and an estimated n 
and b. The data set itself may need to be built up dynamically or it is an input at the 
data entry stage. Firstly an estimate of resolution is produced by n/b so that r can be 
chosen at the right level to start with. After choosing r we can then calculate the rest 
of the parameters to determine the application type for its data distribution features.

Here we set standards here for distribution comparison based on the idea of shape 
recognition. Each type of data distribution is added to the system from an analysis 
of real data. The AAP acts as a shell which allows classification knowledge to be 
added to it. The data distribution is measurable as follows.

(1) Resolution r
As defined above r reflects the number of grid cells for a 2-d data space. For an 

equal sized grid cell partition r = sx * sy, where sx is the number of slices in the x

dimension and sy is the number of slices in the y dimension. Initially the system can 
choose a set of ranges:
r = { 256, 512, 1024, 2048, 4096, 8192, 16384 } 
i.e.
(sx, sy) = { (16,16), (16,32), (32,16), (32,32),

(64, 32), (32, 64), (64, 64), (128, 64),
(64, 128), (128, 128) };

The resolution r can be chosen with different values for the same data set to reflect 
different levels of resolutions and only information about the highest level 
resolution (at the highest resolution value) needs to be stored. For other levels of 
resolutions required data can be easily derived from the highest level of r by 
summation. In practice, the value of resolution is function of bucket size b. i.e. 
similarity comparison has to be considered at the resolution level of bucket size b to 
be meaningful.

(2) Bucket size
b = { 512, 1024, 2096 ) (bytes).

(3) Number of grid cells which have more than b data items against the total 
number of grid cells, (overflows)
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Nover

r

(4) Number of grid cells which have no data item against the total number of 
grid cells, (data holes)

Nempty

r

(5) Storage utilisation estimation

Su = Nmin
Nmax

To compare an application we first estimate resolution level and choose the nearest 
one set by the system.

Given n, b we can estimate

(e)
r = ------------

b

Compared with r we will choose the resolution satisfying the following condition: 
r = { x where min {(x - re) for all x e  r } }

then we represent the real data space in the partition of a chosen r. Given m = 2, D 
= Dx X Dy, where Dx = Dxmax - Dxmin, Dy = Dymax - Dymin and r, a one-to- 
one mapping can be established between identification of a grid cell in the partition 
and the data space D. The mapping is carried out by the following calculations 
based on a given data set Ds: suppose Ds = {dl, d 2 , ..., dn} where di = (dxi, dyi) 
The length of the intervals in the x dimension will be:

Similarly, the length of the intervals in the y dimension will be
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Given a data item (dxi,dyi) its corresponding grid cell (xi, yi) can be determined as:

xi =
dxi - dxmin

lx
= x0xlx2x3xdx5x6x7x8/

y i =
dyi - dymin

iy
= >Oyly2y3y4y5y6y7y6

Subsequently, its corresponding z-code can be derived as: 
z(xi, yi) = x0y0xlylx2y2...x8y8 or 
z(xi, yi) = y0x0ylxly2x2...y8x8.

Depending on the chosen resolution r the maximum length of the z-code (Izl) is

Llog2rJ \ye win need r and the value in counters C[i] for i = 1 ,2 ,..., r to capture 

information about the data distribution. In order to transform the real data space we 

use the same resolution. The absolute space is the one which interprets each grid 

cell as a unit. Having decided the resolution the following algorithm can be used to 

estimate the data distribution.
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Algorithm
INPUT
Data set: 
Bucket size: 
Data space size:

Data space resolution:

Ds = {di Idi = (xi,yi) i = 1, 2 , n} 
b
Dx, Dy
Dx = Dxmax - Dxmin 
Dy = Dymax - Dymin
sx, sy ( number of slices in x and y dimension for the 

partition)

OUTPUT
BRIEF INFORMATION

Nover - number of overflow cells
Nempty - number of empty cells
Nd - overflow depth
Su - storage utilisation
d(even) - data distribution
Nmin - minimal storage
Nmax - maximum storage

Nmax
reflects the data distribution. I f ------------ is larger than r the data are less

b
evenly distributed. These parameters which are derived by approximate calculations 

such as Ld(xi), Ld(yj) for i = 0, 1,..., L k ^ r J  - 1, j = 0, 1, ..., L log2r J - 1, 

Nempty, and Nover from C[i]. They are calculated in the following algorithm.

DETAILED INFORMATION

The number of data items in each grid cell: C [ l ] , ..., C[r],

ALGORITHM (Pseudo code)
Suppose the number of grid cells created by the partition is r, and C [l], C [2 ],..., 
C[r] are counters used to calculate the number of data items in each grid cell.
AD = {

while (input data set is not empty)
{
read a data item from an input data set (x, y);
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X =
x - xmin

lx

* calculating the slice number in the x dimension *

Y =
y  - ymin

]y

* calculating the slice number in the y dimension * 
i = interleaving X and Y for their binary representation;
C[i] = C[i] + 1;

}
* initialisation *
Nover = 0;
Nempty = 0;
Nd = 0;
d(even) = 0;
for (i = 1; i < r; i++)

{
if (C[i] > b)
{

Nover = Nover + 1; 
d(even) = d(even) + C[i]; 
if (C[i] > Nd) then Nd = C[i];

1
if (C[i] == 0)
{

Nempty = Nempty +1;
}

}

Nmax = Sx x Sy + Ntot x min(Sx, Sy); 
Nmin = n / b  + 1;
d(even) = ( 2 x d(even)) /  (Nover x b);
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Nd = Nd/b;
Su = Nmin /  Nmax;
store Nover, Nempty, Nd, Su, d(even) Nmin and Nmax to DBPi for 
the data set;

}

For a given data set identified by its data set name, the detailed information of the 
profile can be stored as a separate layer of knowledge about an application. It 
reflects approximately how the data items are distributed in the data space. The 
value in each counter will be retrieved if the detailed information of the application 
profile is required. The set of values can also be used to draw the distribution 
pattern diagram ordered by the z-code as the horizontal axis and the value of each 
counter as the vertical axis. A sixteen grid cell diagram is shown in Figure 4.28. 
The pattern can be used to help experts or database designers to recognise different 
data distribution better so as to aid building new knowledge such as a new class of 
application into the system.
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The algorithm of the query type AO 
INPUT
The number of attributes or the dimensions of the data space: m.
Each occurrence of an attribute: Nj (j = 1, 2 , m).

OUTPUT
Frequencies of each attribute: Q[i] for i = 1 ,2 ,..., m.
Point and range search rates: Ps and Qs.

ALGORITHM
Assume that the DBMS can provide the number of times an attribute is requested 
for each operation (an operation can be a group of queries).
A Q = {

if the database status is new then initialise the counter used for the 
number of frequencies of each attribute: Q [l], Q [2],..., Q[m] and 
number of point search Pc, number of range search Qc, number of all 
search Ac;
calculate the query frequencies by accumulating the times of occurrences 
for each corresponding attribute;
if the query of an operation includes a search for attribute i Nj times then 
increase Q[i] by Nj;
calculate the point and range search rate by accumulting each type of 
seach Pc, Rc and all searches Ac; 
for every search 

{
Ac = Ac + 1;
if a search is a point search then Pc = Pc + 1; 
otherwise Rc = Rc + 1);
Rs = Rc /Ac;

}
}

The knowledge about the query frequencies provides data for query frequency 
controlled splitting. The frequencies can be described by weighting values. The 
weight can be calculated by the formula: fi = Wi /  Wmin for i = 1 ,2 ,..., m. Where 
Wi is the frequency for attribute i recorded by the system and Wmin = min { W l, 
W 2 ,..., Wm } = min (Q[i] for i = 1 ,2 ,..., m). If the performance deterioration is
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recognised by the system then the data about query frequencies can be referenced 
and used to choose a split strategy when required.

The algorithm for frequency weighting calculation
Suppose Q [l], Q [ 2 ] , Q [ m ]  are the number o f queries for attributes 1, 2 , m 
involved in the search respectively, the algorithm for weighting estimation is 
illustrated below

estimate-q-weight()

{
sort Q = { Q [l], Q [ 2 ] , Q [ m ]  } to be
Q' = { Q '[l] \ Q '[2 ],... Q'[m] I Q'[i] < Q'[j] if i < j };
* In set Q, the element Q '[l] = Wmin and we assume it is not equal to 0 
otherwise the attribute will be ruled out from the search space since it is 
irrelevant to queries. *
f[i] = Q '[ i] /Q '[ l]  fo r i = 1 ,2 , . . . ,  m;
* if max { f[ 1], f[2 ],..., f[m] } = f[x]} then the attribute x is the dominant 
attribute, i.e. the distribution chosen to be split by a frequency controlled 
function. *
store f[i] for i = 1, 2 ,..., m;

}

the algorithm of the performance evaluation for an application 
INPUT

Data set: Ds = {dl, d 2 , ..., dn Idi = (xi, yi) i = 1, 2, ..., n}.
Implementation algorithm: ALT(id).
Here id identifies an implementation algorithm.

OUTPUT
Average search time: T 
Storage utilisation: Su

ALGORITHM
PE = {

partition the data set based on chosen implementation algorithm; 
calculate r = n /  b; 
calculate Su = r /B ;
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* where B is the number of buckets actually used * 
generate a data item within the data space to be retrieved:

( d = { a l, a 2 , a m  });

record the point search time tl by benchmarking; 
generate a range search query:

(r = {(kl 1, k l2 ), (km l, km2) e  D } 

calculate the accuracy ac of the range search;
ac = no. of data items requested /  no. of data items searched which satisfy the 
query;
* calculate the number of buckets need to be covered by the partition for the 
range search *
store the total time used for the range search; 
store the total number of data items requested;
* calculate the average range search time for a data item * 
t2  =  total time used /  total items searched
* calculate the average search time *
T = (tl + 12) /  2;
* store the results in the database profile * 
store point search time: tl;
store range search time: t2;
store average time: T;
store range search accuracy: ac;
* ac reflects the quality of partition for a range search * 
store storage utilisation: Su;
* for different ALT[id] the calculation will be different *

}

The performance is evaluated for an application which has already been implemented 
by a chosen algorithm. The result is compared with a chosen AAP and the outcome of 
the comparison is used for adjusting rules. For different implementation algorithms the 
performance evaluations are detailed in Appendix A6.

The similarity comparison
To capture the features of a data set, the process is analogous to a m-d matrix. The data 
distribution can be reflected by the zero and non-zero elements if each element 
indicates the number of data items and the position in the matrix indicates the position
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in the given space. For an even distribution the condition is such that the value of each 
element in the matrix approximates to the size of buckets b or the number of elements 
which are over the value b and the number of zero elements are small. Based on this 
idea the degree of an even data distribution can be measured by the accumulated 
differences between the number of data items in a grid cell and the bucket size. 
Similarly, to represent a sparse matrix and a full matrix in the computer different 
methods have to be used in order to store a full matrix or a sparse matrix efficiently. To 
store data with different data distributions different partition strategies are considered 
to cater for different requirements. If we use the example shown in Figure 4.29. we 
can store the graphic diagram for a data distribution in an array:
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Figure 4.29. Array representaion for a 2-d search space.

To represent data distribution in such a way, matrix transformations can be applied to 
symmetric pattern recognition. The reason is that symmetric patterns can be regarded 
as having the same data distribution features.

The degree of similarity is defined in the rule base. The function of the similarity
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comparison is to derive the deviations between the data about the database and a 
chosen AAP and then inspect the rule base to identify the degree of similarity.

ALGORITHM:
The similarity comparison algorithm is invoked by a system trigger when an 
unsatisfactory performance is detected.

similarityO

{
search the database profile for the data set concerned; 
construct a profile for the application in the form of the AAP; 
search the AAP for an application type;
calculate the deviation of the chosen AAP from the application profile; 
search the rule base to decide the degree of the similarity; 
search the rule base for the recommended implementation algorithm if satisfied 
similarity is found;

}

The algorithm is a narrative which will be detailed by the rule base.
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4.4. The Rule Base
The rule base describes how the information stored about a database is used. It 
gives criteria to classify application types and provides means to choose a particular 
implementation algorithm or split strategy. Classification of an application is the 
basis for selecting an algorithm. The algorithm selection is similar to a medical 
diagnosis. The expert system needs to classify applications based on their features 
according to the stored profiles, reflecting past circumstances, in order to choose an 
algorithm of physical organisation. Similarly, a doctor needs to classify his patients 
based on their actual symptoms according to his stored knowledge, which reflects 
his experience and expertise developed in the previous cases, to give a prescription. 
For each application the system stores a set of data which indicates its 
characteristics. Those applications with similar features to a stored AAP are 
recognised by the system as the same application type. A new application can thus 
be identified by the system decision rules, classified as an existing application type, 
and processed accordingly.

4.4.0. Matching revisited
One of the heuristic problem solving techniques is heuristic matching. This 
matching process explores a solution by identifying similarities between features of 
a known problem (experience, learned domain) and that of a new problem (to be 
tackled). This approach is useful especially in situations where the features of the 
new problem cannot be determined when a solution is needed; or by analysing pros 
and cons of a particular solution against the features of the new problem, placing 
emphasis on salient features of the problem and tackling it by knowledge of a 
particular solution which is designed to cater for these features. There are a variety 
of matching techniques devised for pattern recognition and image processing 
problems [HE88] [H088] [PL84] [DE78] [SH78] [F088] [W078]. However, 
there are only a few schemes [WA84] [MI90] employed for problem solving. In this 
section, we review various matching techniques briefly and concentrate on how 
heuristic matching can be deployed for problem solving.

Several commonly used approaches to knowledge representation are: the logic 
representation [FR86] [JA89], production systems [VA89] [FR86], frames [VA89] 
[FR86], object-oriented representation [BU89] and semantic networks [FR86], 
Each representation approach is suitable for a range of problems. However, each 
approach involves the concept of matching, especially frame and object-oriented
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representations.

The concept of matching is based on the idea of discover similarities /distortions 
among two or more structures /objects /subjects /relations/ patterns, etc. The 
matching techniques are mainly used in image or pattern recognition and production 
interpreters [HE88] [F082] [F088] [H088] [SH87a]. For pattern recognition the 
problems to be solved are to find similarities between a set of shapes (known 
pattern) stored in a knowledge database and an object to be recognised (new 
pattern). These stored shapes are represented by their features and used as goal 
status or samples; and these objects are compared with these samples/shapes for a 
match. A match can be exact/clear and inexact/fuzzy. Here the word 'exact' depends 
on a set of goals. For example, match can be done on size, knowledge structures, 
topological structures, features, etc. Some patterns can be described accurately by 
mathematical formula, such as a rectangle, a circle, a polynomial curve, a sine curve 
and so forth. However, the difference between a mathematical representation and a 
pattern match is that the former cannot cope with distortions and irregular shapes 
efficiendy. This is because irregular shapes are difficult to represent accurately, 
distortion to a regular shape cause irregularity. The latter does better.

Few matching techniques have been employed extensively to A.I. problem solving 
[F082] [WA84] [MI90]. However, there are demands to develop such techniques 
in the domain of certain range of problems, where an efficient solution can be 
introduced by heuristic matching. For example, there are situations when an expert 
system is used to find a match between a set of known environment profiles and a 
unknown profile, where the match conditions are based on experience. In addition, 
a unknown profile is dynamic. In such situations, heuristic matching techniques can 
be effectively applied to implement the match process. The reason is that the 
complexity and dynamic features can be handled by introducing matching rules, 
which are based on heuristics. Heuristics avoid and eliminate extensive details and 
explore optimal paths to a solution. A real-time fault diagnosis system can involve 
combinations of various possible faults that are too complicated. In such a system, 
heuristic matching can be introduced to implement this diagnostic control. This is 
done by accumulating fault knowledge acquired previously and representing the 
knowledge as a known profile or by analysing critical fault conditions and storing 
this knowledge as a set of profiles in the knowledge-base. These profiles are 
deployed to match with a real-time collected sample data to predict if a similar fault
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is going to occur. Heuristic matching is carried out by analysing a profile ( a profile 
= features + relationships) of a problem domain and comparing this profile with a 
set of known profiles (either from real world or from results of simulations) in the 
knowledge-base to find one which satisfies a set of heuristic conditions for a match. 
This analysis distinguishes the salient features from other less significant features 
and treats them separately, either by attaching different weights to them or by 
searching structure construction, differentiating major factors from minor ones.

In this section we mainly review match techniques and discuss how matching can 
be applied to inference processes.

A brief literature survey
There are various matching strategies [F082] [G077] [M084] [DA88a] [DA88b] 
[H088] [MI86] [PL84] developed in the last decade. A particular strategy is 
suitable for a set of problem domains. Some problem-solving processes concentrate 
on the induction process. Some focus on the reasoning process. To perform 
problem-solving process as a variety of representations can be introduced 
depending on more or less the strategy to tackle the problem of interest. These are 
transformation - from initial state to a goal state; matching - mapping problem 
features to a solution space, etc. For example, analogical reasoning aims at the 
transformation from one status to another one in interest; approximate reasoning 
emphasises (1) inversion, (2) aggregation, and (3) cascading; and heuristic 
reasoning emphasises on experience, and educated guesses. In this section, we 
place emphasis on matching strategies.

Matching is mainly classified into several categories: template matching [G084] 
[H088] [M084] [DA88a] [DA88b], where the matching process is based on a 
predetermined profile - the representative/template frames; partial and best matching 
[WA84], where descriptions of two or more objects are compared; a feature 
extraction matching [LE88], where an object to be matched is decomposed into 
several sub-objects or primitives and extracted features of each sub-object are 
deployed for this matching process; probability matching is where probability 
function is introduced to implement the matching process, predicting the possibility 
of a pattern likely to satisfy a match condition; RETE matching [F082], applying a 
OPEN and a CLOSE set to match goal by removing an element from OPEN set to 
CLOSE set through evaluation of working memory of a production system to
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update conflict set; and TREAT matching, which is an improved variant of the 
RETE matching, removing redundancy introduced by RETE matching via a 
hierarchical layers based on operation types (addition and deletion). Heuristic 
matching can be a new candidate to this classification, which utilises the rule of 
thumb to implement the matching process, in contrast to the exact matching 
algorithms, to tackle problems with dynamic, complex, unpredictable features and 
allowable error rates (inexact/fuzzy match).

In recent research [BU89] on expert systems, matching mechanisms have been 
discussed in two contexts: first in a variety of research on pattern recognition and 
secondly in research on inference strategies. The author states that:
"Mechanism with pattern matching is a basic mechanism. In rule-based systems the 
inference engine uses it to apply a rule. In an object centred representation, 
matching is to be able to compute all the objects which are instances of a special 
class called filter. In mixed systems, matching is used to find objects on which the 
inference engine must apply a rule."

Pattern matching and image processing
Pattern matching techniques are mainly applied to pattern recognition. But the 
analogical reasoning problem solving can also use these techniques. Visualising a 
problem solving process, a solution can be based on: (1) an analysis of a known 
problem features, namely, a new pattern; (2) the objective for seeking a solution, 
i.e. allowable distortion; and (3) a satisfactory solution for a similar situation, that 
is, an existing pattern, which forms the basis of recognising the new pattern.

Template matching
Template matching [G084], developed for image processing, compares a targeted 
frame to a group of predetermined templates and calculates accumulated errors. A 
threshold is given to measure the acceptability of accumulated errors. Template 
matching is a calculation-intensive process. It can only be used in predictable 
situations where the likely image/pattem to be identified is known beforehand. It 
cannot handle unpredictable dynamic situations because the templates /  windows, 
which are used as criteria to identify an unknown image, have to be stored to do so.
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Partial and best matches
Partial and best matches and their application fields have been described and 
identified in [WA78] respectively. Partial and best matches are defined in [WA78] 
(page557) as " a comparison of two or more descriptions that identifies their 
similarities. Determining which of several descriptions is most similar to one 
description of interest is called the best-match problem". Furthermore, the author 
has stated that "Partial and best matches underlie several knowledge system 
functions, including analogical reasoning, inductive inference, predicate discovery, 
pattern-directed inference, semantic interpretation, and speech and image 
understanding". However, the author also pointed out that partial-matching is both 
combinatorial and ill-structured, admissible algorithms are elusive. Tree-matching 
[CH84] can be classified into partial and best matching category. Tree-matching 
represents the objects to be compared by tree structures. The matching is carried out 
by transforming one tree to the other. The similarity is measured by distance. A 
distance between two trees is defined as the minimum number of basic operations 
necessary to transform one tree to the other.

Example
Given two object patterns A and B, a partial matching is an A into B matching. A 
best partial matching is the matching which assigns the highest number of objects in 
A in to B. i.e. a maximum number of objects has been matched from A into B.

RETE matching
RETE matching [F082] is developed for production system interpreters. It is 
claimed that it is an efficient algorithm to find all objects which match each pattern. 
In a production system, RETE matches the content of the working memory with the 
rule set to change the conflict set. It represents the rule set as a tree structure and the 
LHS is SELECTED and JOINED as resulting set to update the conflict set. An 
example can be seen in [MI90] pages20-24.

TREAT matching
TREAT matching is a variant of RETE with performance improvement in terms of 
memory and search speed. TREAT aims at reducing redundancy of memory. 
Different levels of status in the working memory are categorised for old partition, 
add partition, delete partition. Delete is dealt with by matching the deleted element
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with the table in the conflict set. The table which contains the matched element is 
then removed. The algorithm is described in [MI90] page 30 and examples showing 
TREAT in action can be referenced from the same book on page 29-34.

From the above review we can see that matching, in essence, is to find EQUALITY 
among the concerned objects. This equality can be either measured by similarities or 
dissimilarity. Matching efficiency depends on a well-structured representation. For 
example, tree representation is suitable for waveform image [CH84] because the 
waveform has peaks corresponding to nodes of tree structure, but may not be 
efficient for others. A multiple template matching, which employs a tree structure 
[LI86] outperforms sequential matching in terms of speed. A transformation 
concept is easy to implement for small-scaled matching because a small matrix 
representing a structure could be easily stored in main memory for comparison, but 
it may be not that easy for a large-scaled matching.

An example:
Problem
Matching two small objects to find out distortion.

Representation
Two dimensional matrix for A and B respectively:

I aij = 1 if A has j^1 value for attribute i 
A = {aij I }

I aij = 0 otherwise

I bij = 1 if B has j^1 value for attribute i 
B = {bij I }

I bij = 0 otherwise

for i = 1, 2 ,..., n; j = 1, 2 ,..., m. Where n is the number of attributes, m is the 
maximum number of values the attribute i assigned.

To match A to B, i.e. to transform A to B, an algorithm can be applied:
(1) initialise i = 1, distance = 0 (distance is used to measure distortion);
(2) initialise j = 1;
(3) compare aij with bij
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if (aij = bij) then

{
if [(i < m) and (j < n)] then

{
j = j  + l
goto (3)

}
else
{

if [(i < m) and (j > n)] then

{
i = i + 1 
goto (2)

}
}
if (aij *  bij)
{

if [ (i < m) and (j < n)] then
{

j = j  + 1
distance = distance + 1 
goto (3)

}
else

{
if [(i < m) and (j > n)] then

{
i = i + 1
distance = distance + 1 
goto (2)

}
}
if [(i > m) and (j > n)] then 

goto (4)
(4) The distortion factor is value of the distance.
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Inference Matching
Inference matching applies heuristics to derive solutions by similarity identification 
and comparisons. In contrast to pattern matching, which is mainly based on 
topological structure, inference matching can be established on feature matching, 
relation matching, object matching, topological matching and the combination of 
these matching. All of these are further synthesised as heuristic matching, which 
forms the centre of this section.

Heuristic matching
Heuristic matching is suitable for a specific group of feature matching problems.
The features of these problems are that it is impossible represent the problem to be 
solved in a way so that every single case is taken into consideration, i.e. it is not 
practical to represent all cases either because the feature space become too large to 
implement or the complexity caused by the features' fuzziness increases. The 
characteristics of these features are: (1) they are used to determine courses of actions 
based on a similar previous example whose solution has been found; i.e. a 
solution is found by matching the feature of new problem to that of a solved 
problem rather than finding a solution from a scratch; (2) they cannot be represented 
and measured in accurate terms. That is to say, these features are either determined 
on the rules of thumb, or on the structures of problems, or according to the analysis 
of a particular situation. (3) these features are dynamic and may change if the 
requirements and environment changes. For example, a database query profile for 
determining the best access path is dynamically changing, one cannot predict an 
exact feature pattern for it. In addition, the number of features required can also be 
dynamic. Depending on the requirement emphasis, say storage utilisation or access 
speed, the courses of actions could differ. With these characteristics, one may ask, 
what are the implications of heuristic matching? Heuristic matching is applied to 
solve problems of the following characteristics:

(1) An expert system where using rules of thumb is efficient: for instance, an 
inference can be effectively conducted by searching the previous knowledge or 
successful examples to establish a solution for a new situation, i.e. a new 
problem P can be guided for a solution by using P', a solved problem. In many 
situations, feature values can be difficult to decide upon for a specific case. These 
situations require feature knowledge about their history to be kept. Instrument 
diagnosis, for example, belongs to this category. In such an environment specific
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values of usage period, temperature, pressure, when a fault is likely to occur can 
be very difficult to decide upon, especially when a number of combinations of 
these factors can play their role together, significantly different from considering a 
single factor. However, if a fault is diagnosed, feature information can be 
collected and stored for the specific moment when the failure occurred and can be 
used as a reference knowledge for latter diagnosis to prevent the occurrences of 
similar faults. That is to say, a knowledge-based diagnosis can employ the feature 
knowledge about the previous instance, matching a current instrument to be 
monitored, with the stored knowledge of a past similar instance to predict a likely 
fault.

(2) An expert system where features extraction for representing a possible solution is 
efficient. An analysis can be extracted from large number of resources for 
solving a complicated problem. This analysis can be features used for problem- 
tackling. Analogical reasoning, for instance, can be classified into such a 
situation, where a solution to a new problem is base on a solution applied to a 
'similar' problem. The dominant factors of feature extraction for an expert system 
relies heavily on features chosen and measurement adopted.

(3) Feature values of a problem to be tackled are dynamic (changing) and difficult to 
be predetermined or they are dynamically dependent on current environment or 
situations. In such situation rules cannot be determined by accessing specific 
feature measures. A set of profiles can provide a changeable framework for 
heuristic matching.

These profiles are provided in hierarchies: a meta-level which represents what a 
profile consists o f . They are relatively static, and include features as complete as 
possible. Measurement-level which support feature values.

An overview of heuristic matching
Using heuristic matching to solve a problem P can be described as follows.
(1) Describe P using its extracted features.
Example
An intelligent stock portfolio management system extracts credibility, 
recommendation grade, industrial, major market, annual sales growth rate, debt 
ratio, fixed ratio, current values, current ratios, past years' financial results,
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export amount, stage of life cycle (electronics, say, increase. Shipbuilding, say, 
decrease), etc. as feature information. A fault diagnosis system can collect 
pressure, temperature, environment parameters, etc. as its representative features.

(2) Assign priority to these features based on feature values and domain-oriented 
knowledge the problem possesses.

Example
A skill match system used for recruitment, for instance, can use the job 
requirements to assign priorities to various skills of a person. The job 
requirements may distinguish highly demanded skills, special skills from general 
skills. Highly demanded skill receives the highest priority to guide the skill match 
process. Assuming R = {rl, r2, ..., rx} is a set of requirement set, Sy = {Sy 1, 
S y 2 ,..., Syz} is a set of skills for person y, here y = 1 ,2 ,... ,  n, and n is the 
number of persons available for the skill match. Employing the knowledge of 
requirements, the highly demanded skills are firstly matched with each 
individuals' skill sets. The advantage is to achieve better match performance by 
eliminating individuals who do not have the highly demanded skills. For different 
tasks, the determinant factors would be varied.

(3) Find a "similar" problem in the knowledge base P' for P by feature matching, 
i.e. deploying knowledge of P'.
Example
In a fault diagnosis system, feature values in the previous case can be applied as 
sample data for monitoring similar situations. These similar situations are Ps and 
the previous cases are P's. P's are analysed and presented after analysis in the 
knowledge base and are used as reference features for new situations.

(4) Utilise the solution for P' to guide a solution for P.
Example
In the skill matching process, feedback from previous successful or 
unsuccessful matching can be analysed by recruitment consultants. The results 
of this analysis is represented in the knowledge base for reference. In this 
particular case, the knowledge may include effects of missing skills for certain 
jobs - both as successful or unsuccessful instances. A programmer’s job 
requirements may add a significant factor to hardware orientation; whereas the
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significance may be proved to be irrelevant by large amounts of previous 
successful match which ignore the hardware orientation, but the computer 
language skills. In addition, the length of experience in the required fields may 
prove to be insignificant for a dynamically changing environment, but may be 
significant for the initiative of facing new challenges with self-learning 
capability. As a result, newly added features and deleted features (stored as 
knowledge) improve the success rate of the matching process.

Heuristic matching is employed for problem-solving where it is possible to 
construct a profile. The profile can be represented at meta-level, which is 
relatively static, covering as wide as possible for a problem domain; and at the 
specific measurement level which is determined by individual cases and the rule 
of thumb and can change during inference process. For instance, in a computer 
hardware selection process, definition of scale (parameters of main frame, 
mini-computer, and macro-computer - CPU cycle, size of main memory, size of 
secondary memory, block size, e tc .) changes as hardware advances. The meta-
level profile contains a set of specific parameters which are used to describe 
features o f interest. The specific measurement is made up of a set of thresholds 
describing feature classes of a problem.

The meta-level profile is deployed to find all possible relevant features of a new 
problem - reflecting the nature of a problem structure. A database, which holds 
a set of abstract profiles, acts as standards/criteria for a heuristic match with 
new problems. A heuristic matching inference structure can be illustrated in 
Figure 4.30.
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r
Profile

p == {Fl, F2 r F n } - Meta level

FI - <S11, S12, ..., Sia} - Measurement Level
F2 = {S21, S22, ..., S2b}

Fn = {Snl, Sn2, ..., Snc}

Where P is a profile, made of a set of feature 
descriptions. Fi is a group of feature signatures, 
indicating the spectrum of a specific feature.

Matching rules

£  |Sij(AAP) - Si j (AP) | < Tij 
i = l

The rule is determined by heuristics for feature 
match. This match looks at the signature difference 
between an application abstract profile (AAP) and the 
abstract profile (profile j) in the KBS.

Abstract Profile

AP = {Tlx, T2y, . ., Tn z }
where x, y, z are variables depending on a specific
abstract profile. Usually there are a set of AAPs
stored in the KBS 
of applications.

representing di fferent categories

Figure 4.30 Heuristic matching inference structure.
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The components of a heuristic matching are: (1) an abstract profile base, which is 
used to store the meta-level profile and specific measurement; (2) a rule base, 
containing the similarity rules, incomplete information processing rules, and 
adjustment rules. From the diagram, it is clear that a successful heuristic matching 
mechanism must keep the abstract profile base minimal and make the similarity 
comparison simple and effective. This can possibly be realised by (1) merging 
common elements of KB to reduce redundancy (high-level abstraction); (2) 
embedding elimination rules whenever applicable (carefully choosing rule visitation 
order).

Abstract profile base - design considerations
The practicality of using heuristic matching to solve a problem, is dependent on the 
complexity of the abstract profile (size and representation). Size determines 
knowledge complexity; representation decides the inference structure by which 
paths a solution can be searched, based on known knowledge. To reduce the size of 
the reference objects - the abstract profile size is the motivation of applying 
heuristics. The reason is: (1) heuristics allow us to avoid the capture of a complete 
spectrum of the profile instances, (spectrum represents features). Only information 
about features at turning point (which influences solution) is recorded. (2) 
Heuristics facilitate varied solutions to be applied to different situations. Thus the 
construction of an abstract profile base involves educated guesses of a partition 
strategy and experience over the feature spectrum. The partition is determined by 
experience associated with the goals and employed as reference profile instances 
which the matching process is based on. For example, a feature of a concerned 
problem can be presented by a limited set of values, measuring the 
degree/significance of the impact on the problem solution when one of the values is 
presented.

The heuristic rule consideration
The key to a successful inference system is based on two aspects: accurate data, 
right knowledge to carry out the inference; and a well-constructed inference 
strategy. They both depend on acquisition and representation. For a heuristic 
matching the following criteria are introduced for constructing profiles:

(1) simplicity: simple for similarity identifications.
Simplicity aims at reducing size of features required for similarity identification,
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decreasing the steps involved for similarity identification (unnecessary matching 
paths eliminated), and efforts demanded for constructing a profile for a problem 
to be solved.

(2) generality: general enough to cover a range of problems (this also reduces the 
size of the known feature profile set).
Generality depends great deal on selected features, which depicts the profile, the 
meta-level representation of knowledge. Meta-level knowledge can be domain 
independent or dependent. The meta-level controls are usually domain 
independent, whereas, the meta-level features are domain-oriented. Hence a 
meticulous understanding is the determinant factor for choosing these features. 
In addition the taxonomy of the domain knowledge ameliorates this process.

(3) simple structure for easy implementation.
This criterion considers how to efficiently implement domain-knowledge by 
computer representation. In particular this includes inference structures. For 
example, a tree structure for wave representation is effective because the peaks 
of wave can match the nodes in the tree structure.

(4) explanatory: matching solution/problem structure for easy explanation.
A complete knowledge base needs to provide adequate explanation facility to 
users, allowing to ask WHY questions to the system. This implies that the 
inference steps involved for a specific situation need to be reserved in the 
system for reference.

A description of the heuristic matching
We introduce the following symbols before we describe the heuristic matching. 
These symbols are:
HM - the heuristic matching process, represented by extracted features

based on domain knowledge.
APB - an abstract profile base.
AP - a set of abstract profile.
F - a set of names representing concerned features of a profile (meta-

level).
P - a set of instances of the abstract profile, containing its feature

information presented by concrete boundary values distinguishing
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between various solution categories (measurement level).
V - specific value sets within the spectrum of features, indicating a

specific profile instance, measuring a specific instance (feature 
measurement level).

HR - set of heuristic rules.
Ax - an application /object /relationship /model/problem) identification
Cx - a set of category information of Ax, depending on measurement

level.
Ex - a set of data gained for a specific Ax of interest (measurement for a

specific profile instance).
? - a missing value in the spectrum of a feature/measurement. This

happens either as a specific value cannot be determined by the time it 
is required or user does not have any knowledge about it.
S - thresholds to measure the similarity between an abstract profile and a

considered profile.
W - the weights given to features in consideration.

Having defined the above symbols we have APB(meta) = {F,AP, HR} at the meta-
level:
where F = {FI, F2, ..., Fq},

HR = {HR1, HR2, ..., HRm},
AP = {API, AP2, ..., APx}; 

we then have APB(data) = {P, V, W, S} at the data level: 
where P = {PI, P2, ..., Pn},

V = {VI, V 2 ,..., Vn},
W =  {W l, W2, ..., Wq},
S = {SI, S2, ..., Sq};

we also have Ax = {Cx, E x} at the specific problem level: 
where Cx = {Cxi, Cx2, ..., Cxr}

Ex = {Exl, Ex2, ..., Exq}
in which Exj can have missing value ? for j = 1, 2 ,..., q.
The heuristic matching process can be described as: 

n
HMi(Vi,Ei) => min ( I  lExi - Pil) 

i= l
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n
HMi(Vi,Ei) => min ( X Wi lExi - Pil) 

i= l

where Wi x lExi - Pil = Sxi(Exi, Pi, Wi). Pi is an expected value for selecting a 
solution x in terms of attribute i, and Exi is an estimated value for problem to be 
tackled; and Wi is the weight value for feature i. If there are m attributes to be 
considered, i ranges from 1 to m.

Fuzzy information processing
The objective of employing the fuzzy set concept is to reduce the complexity of the 
world we are going to represent by introducing a way of representing the vagueness 
of information. This concept is used where a sharp line is difficult to draw or clarity 
does not exist. For example, it is difficult to define a degree of clear sky or cloudy 
sky; it is not helpful to answer the question Is it farther in distance from New 
York City to London or from Washington D.C. to London? " by how many centre 
meters between New York and London.

Vagueness in describing data distribution, for example, can be described as even, 
uneven, and relatively even, fairly even, almost uneven and so on. These terms are 
fuzzy because no clear boundaries can be drawn to distinguish between even and 
fairly even data distributions. Employing the fuzzy set concept, these fuzzy terms 
can be defined by a function, Deven, where 0 < Deven < 1. In addition, it is not 
clear what range of data distribution will match the ability of an access algorithm 
optimally. In description, we can confidently say that the quantile-hashing algorithm 
deals with uneven data distribution better than z-hashing algorithm; PLOP-hashing 
algorithm handles dynamic situations better than quantile-hashing algorithm. 
However, it is very hard to say in what circumstance an optimal match between an 
algorithm and an application is achieved because this knowledge has to be gained 
and built into the expert system by implementing and analysing a number of 
applications. Furthermore, features of a problem are dynamic, which implies that an 
optimal initial match will not mean an optimal match during the life cycle of an 
application. The dynamic features will be dealt with by performance tuning.
To deal with the fuzziness involved in the experimental system effectively, the fuzzy 
set concept has been introduced to represent features in their spectrums. This 
representation will be divided into two levels for introducing changes to knowledge
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stored for performing heuristic matching, selecting and tuning tasks.
The first level defines the relationship between fuzzy terms and their 
corresponding fuzzy sets, the second level defines measurement relates to a 
specific solution. The logical representation can be illustrated in Figure 4.31.

Figure 4.31 Fuzzy Information Logical Representation.

In the diagram, different types of lines represent varied degrees of fuzzy terms. A 
relationship is established between the spectrum of individual features and a 
particular solution which prefers a specific range of a feature specified by its value 
in the fuzzy set.
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Since matching is designed to find similarity or dissimilarity among more than two 
objects, sometimes, similarity can be measured quite accurately. For example, two 
rectangles can be measured by their length and width against each other; two circles 
can be measured by their radii against each other. Sometimes, the similarity is 
difficult to be represented accurately. For instance, two complicated images will be 
very tricky to be compared either due to the complexity of representing an accurate 
resolution or due to distortion among one of the images. Furthermore, the 
definition of similarity is very much objective-oriented: similarity could refer to the 
minimal difference introduced from one object to the other (an analogical 
similarity); similarity could allow symmetrical information to occur in different 
orders or positions from one subject to the other (a reflective similarity); similarity 
could also refer to structure equality without concerning the size (a topological 
structure similarity). Heuristic matching is developed to overcome the difficulties of 
incomplete and fuzzy situations and reduce complexity caused by constructing exact 
profiles. Rules of thumb are utilised to establish the matching process according to 
the goals of an application system.

4.1 Heuristic matching - the control strategy
To simulate heuristics, it is important to consider the control strategy. One of the 
major differences between thinking or solving problems based on rules of the 
thumb (experience) and based on an algorithmic approach is characterised by the 
control strategy - heuristic judgement. Applying rules to tackle a problem, the 
visitation order of rules makes differences in terms of efficiency to arrive at a 
solution. Moreover, the steps involved in heuristic matching are changeable, i.e. 
for different situation or requirements, some steps can be skipped (eliminated). An 
example of this is that, at a certain point of tackling a problem, the salient features 
of an instance considered, which meets a particular goal (solution), further 
judgement can be skipped. In other words, the control strategy states the following 
facts: if path i is satisfied then skip all the rest. Here path i is one of shorter paths to 
the solution in the inference engine.

When facing a set of feature information belonging to a problem to be considered, 
what is the best visitation order of an applicable rule set? In this section the answer 
to this question will be discussed.
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What respects should we consider to address the control strategy? The following 
will be considered before constructing a visitation order.
(1) analysing feature significance based on the value of a signature;
(2) analysing inter-relationship between features;
(3) analysing possibility of excluding visitation for some rules at early stage 

(eliminating rules).

Based on the analysis, a matching between the results of the analysis and the rule 
structure are used to determine the visitation order of the rule set. This 
consideration will allow the system to skip unnecessary parts of the rule set. The 
process can be shown in Figure 4.32.

Parameter«:

Rule set to be visited;

Weighting factor;

Segmentation factor; etc.

I
RULE SET TO DECIDE THE ORDER OF TH E VISITATION ORDER

I
Sequential Classification Weighting

Rule 1 Rule 1 Rule 1

Rule 2 Rule 2 Rule 2

Rule x Rule x Rule x

For small set of rules 

OR

For vary fast processors

For certain range of 
problems

OR

For parallel processing

Application-dependent 
order based on salient 
features.

The first one la pre determined;

the second is decided based on process speed and H/W;

the third is an application-oriented decision:
- frequency of a specific rule visited;
- importance of a particular feature of an application;
- significance of a specified group of core rules.

Figure 4.32 Constructing the order to visit the rule set.
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For any problems, rules concerning its scale and life span will be examined to 
determine whether further consideration is required. Following this step the 
possibility of elimination is further cared for. The salient feature of a problem is 
considered; paths leading to solutions which fail to satisfy the requirements by 
important features are eliminated. A high Wi (where Wi is the weight given to 
attribute i) indicates that rules relating to attribute i will be visited firstly. If one of 
the chosen abstract profiles matches the problems of interest the solution used for 
this profile is selected. If none of the other attributes are matched with the these 
profiles, the visitation of the attribute j with the next highest Wj is triggered.

Searching considerations
Search consideration concerns two issues: (1) the physical data structure for storing 
knowledge needed to tackle a range of problems; (2) a set of search algorithms that 
can be effectively applied to this structure to cope with changes, and to achieve 
necessary accuracy. The first issue depends on characteristics of a problem in hand; 
the second issue is analogical to physical database design.

Much literature in A.I. has been concerned with search strategies [RI88]. Heuristic 
approaches are also considered. Similar to any techniques for problem solving, the 
characteristics of problems are important factors to consider. A problem, which 
requires a large body of knowledge to tackle it, is favourable in the heuristic search 
approach (in order to achieve a near-optimal solution); the solution to a problem, 
that needs great accuracy, may introduce intensive searches to achieve that goal 
using the cluster technique, which gathers similar features together, and can reduce 
the efforts of an intensive search.

Conclusion
Matching techniques are widely used in information systems. A production system 
employs the matching concept to derive solutions from LHS and working memory; 
an image processing deploys the matching concept to compare a predetermined 
template with images to be recognised; a pattern recognition uses the matching 
concept to find similarities and distortions of a criteria and a pattern, using 
heuristics as part of the mechanism.
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4.4.1. Initial algorithm selection
To compare an application with an AAP the performance stored in the DBP is 
transformed into the same scale and categories of the AAP. In sections 3.2.1. and
3.2.3. an initial database profile from USI and a complete database profile DBP are 
defined respectively regarding the data and query features, environment constraints 
and application performance. An AAP concerns data distribution, query features 
and performance. The rules, which perform selection of an algorithm by application 
classifications, are introduced in several forms: initial algorithm selection rules, 
similarity comparison rules and heuristic decision rules. They aim at facilitating the 
selection of algorithms.

An initial database profile established by the system through the USI, provides 
information by itself, to identify its category. In section 3.2.1. the USI has been 
defined in terms of data requirements and environmental constraints. How do we 
use the information to recognise the characteristics of an application? The rules 
constructed here will guide the system to make use of the information gained from 
USI. The framework is pictured as:
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In the AAP base each application type is given a set of values for a number of 
parameters. They are used as the basis for a similarity comparison. To 
accommodate incomplete information supplied to the system, data about various 
applications needs to be collected and analysed. The results of the analysis are 
stored in the form of an AAP in the system. These AAP profiles are classified 
according to their application areas (applications with similar features are 
categorised as the same area, i.e. their features fall in the same range of 
measurement) and are used as a source of incomplete information supply for an 
initial selection of an algorithm. If a desired AAP, which is within the same 
application class, cannot be found in the system then the system will make 
assumptions to complete the missing data. These assumptions may be inaccurate so 
that the dynamic tuning and monitoring process will take care of it later. As this 
application develops it can gradually be formed as a new AAP profile being added 
to the system. The system mainly deals with two levels of tuning:
(1) static level - initial selection of an implementation algorithm;
(2) dynamic level - monitoring salient performance changes to the database.

The information concerned here is dimensionality m, resolution level r, bucket size 
b and information about data distribution. The values of m, r, and b are decided by 
the application search space and data set size. Other information is derived from 
partitioning the data space. As described before C[i] for i = 1 ,2 ,..., r are stored by 
the system. The information in a useful form will then be derived from the obtained 

data through the USI. It is described below.

r is used as an estimated resolution level for partitioning the data space.

data distribution: data distribution relates to C[i] for i = 1, 2 ,..., r from which a 
set of parameters (d(even), Nover, Nempty, p, Ld(si) for i = 1, ..., m, j = 1, ..., sj 
can be derived. They are defined in Appendix A7.

At this initial stage information is obtained from the USI. The application is not 
compared with the AAP for simplicity. The AAP, if found, is used to derive 
missing information. This is done by searching the AAP base for an ATx (see the

n x (1 + Ir)

b
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example in section 4.8.). If no ATx is found the system will generate a sample data 
space by a given n to derive required information under some assumptions, such as 
resolution r and a given bucket size b. Other alternative ways of deriving missing 
information can also be introduced. As required information is supplied the rules 
will classify an application according to an applicable algorithm. Each rule will have 
an explanation text associated with it. During the process the values of each 
parameter used for reasoning are recorded in a system template to assist the 
reasoning explanation. This will be discussed shortly.

Eliminating rules
A rule set should be constructed based on heuristic knowledge, which can make the 
reasoning simple. Making decisions on heuristics, a search path for a solution can 
be formed by using the most dominant factors (called salient factors) if they are 
known. For instance, considering physical database design, if the access time is an 
important factor to be considered and the size of a data set is large then the first rule 
set Rsetl (rules for selecting the EX CELL algorithm) can be skipped. The search 
for a solution thus uses the idea of elimination to skip unnecessary rule searches 
that are not likely to support the application. We classify these rules as 'eliminating 
rules'. Employing the same principle, matching working memory with the LHS can 
be implemented by given a set of salient factors, resulting in a dynamic sequence of 
rule match.

The eliminating mies:
ER1 = { lindexl < M - >  ALT[1] }
ER2 = { (tm <LS ) ~> ALT[1] }
ER3 = { ( (Td > 2 x Tsec) and (d(even) < d 2 )) —> ALT[1] }
ER4 = { ( (d(even) < d l) and (Dyn < d y l ) ) ~> ALT[2] }
ER5 = { ( (d(even) < d2) and (Rs < r l ) ) ~> ALT[3] }
ER6 = { (Dyn > dy2) ~> ALT[4] )
ER7 = { ( (Dyn > dy2) and (d(even) > d 3 )) ~> ALT [5] }
ER8 = { ( (Dyn > dy2) and (Ds = {obji for i = 1,..., n}) 
Initially we set:
M = 64K, LS = 1 week 
d l = 25%, d2 = 30%, d3 = 40% 
dyl = 10%, dy2 = 50% 
r l  = 50%

--> ALT[6] }
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i.e. we translate these rules as:
ER1 = { lindexl < 64K ~>
ER2 = { (tm < 1 week ) —>
ER3 = { ( (Td > 2 x Tsec) and (d(even) < 30% )) ~>
ER4 = { ( (d(even) < 25%) and (Dyn < 10%)) -->
ER5 = { ( (d(even) < 30%) and (Rs < 50% )) ~>
ER6 = { (Dyn > 50%) -->
ER7 = { ( (Dyn > 50%) and (d(even) > 40% )) ~>
ER8 = { ( (Dyn > 50%) and (Ds = {obji for i = 1 , n}) -->
As new knowledge is added to the system the values can be altered.
The meaning of these rules can be interpreted as:
Rule ER1
IF: lindexl < M
THEN: ALT[1]
REASON: if the index file can be stored in main memory then choose ALT[1] 

(the EXCELL algorithm)
Similarly for the other rules.
These eliminating rules are constructed based on the idea that the conditions 
(premises) spell out the critical factors that an algorithm (conclusion) is likely to be 
applied to its best advantage.

ALT[1] } 
ALT[1] } 
ALT[1] } 
ALT[2] } 
ALT[3] } 
ALT[4] } 
ALT[5] } 
ALT[6] }

For each eliminating rule there is an attached explanation:
EER1: since the index file size calculated according to the partition PT1 is

small the EXCELL algorithm is chosen and no further judgment is 
required.

EER2: since the life span is short (determined by the value of LS) we choose
EXCELL algorithm.

EER3: since more than one secondary device access is allowed, and the data
distribution is relatively even, the EX CELL can be chosen without 
further consideration.

EER4: since the data distribution is even the z-hashing can be selected and all
other rules are skipped.

EER5: since quantile-hashing can deal with a dynamic situation reasonably
well and it preserves the geometric proximity as the z-hashing it is 
selected without further consideration.

EER6: since the insertion and deletion rates are high the PLOP-hashing is
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chosen without further consideration.
EER7: since the insertion and deletion rates are high and the data distribution

is non-uniform the BANG file algorithm is chosen and no 
further rules need to be applied.

EER8: since R-tree can cope with an object database well, especially when
the size of the objects and the database may alter, it is chosen for a 
dynamic object database without further consideration.

The eliminating rules do not necessarily provide the best solution in terms of 
performance. They are used as the first set of rules for initial algorithm selection, 
where the considered application has a specific feature that matches a particular 
access algorithm, because an algorithm which provides the best performance may 
not offset the effort.

Initial algorithm selection rules
ATR = {ATR1, ATR2, ..., ATR6}

= {EXCELL, z-hashing, quantile-hashing, PLOP-hashing, BANG file, R- 
tree}

Rules for assigning weight for initial algorithm selection
There are four conditions to be examined; each one can be assigned a value from { 
0, 1, 2, 3 ,4 , 5 } according to its significance. The corresponding significance can 
be translated as {0 --> not concerned, 1 ~> not important, 2 — > little importance, 3 
—> leave to the system to decide, 4 — > important, 5 —> very im portant}. The 
following WRi for i = 1, 2, 3, 4 demonstrates the meanings of these assigned 
values. More values can be introduced to represent refined degree of various 
features.

W RI = {

WR2 = {

memory size is not concerned —> w3 = 0,

not important —> w3 = 1,
of little importance —> w3 = 2,

leave to the system to decide —> w3 = 3,

important --> w3 = 4,

very important —> w3 = 5

expected storage utilisation is not concerned —> w l = 0,
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not important —> w l = 1,
of little importance —> w l = 2,

leave to the system to decide —> w l = 3,

important --> w l = 4,

very important —> w l = 5 }

ability to deal with dynamic situation not concerned

--> w2 = 0,

not important --> w2 = 1,
of little importance —> w2 = 2,

leave to the system to decide —> w2 = 3,

important --> w2 = 4,

very important -> w2 = 5 }

fast range retrieval not concerned - >  w4 = 0,
not important --> w4 = 1,
of little importance --> w4 = 2,
leave to the system to decide - >  w4 = 3,
important --> w4 = 4,
very important --> w4 = 5 }

Note that the weight rules are mainly stored for associating meanings with each
weight value.

ATR1 - application type which chooses EX CELL as the implementation 
algorithm.

ATR2 - application type which chooses the z-hashing as the implementation 
scheme and so forth.

ATRA1 = { if status = 'missing' then action-1 }.
The rule says that if information is missing then execute action-1, which 
selects an AAP from the system and fills in the missing information for 
an application.

ATRA2 = { if priority = 'y' then action-2 }.
The rule tells us that if the user's requirements are to be considered then 
execute action-2 assigning weights to different conditions.

ATR1 = { (lindexl < M),
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ATR2

ATR3

ATR4

ATR5

ATR6

(dl < d(even) < d2),
(dy2 < Dyn < dy3),
(r2 < Rs < r3) —>
(lindexl > M) & (Td = 2 x Tsec),
(dl < d(even) < d2),
(dy2 < Dyn < dy3),
(r2 < Rs < r3) — >

{ (lindexl > M),
(d(even) < d l),
(Dyn < dyl) (Rs > r5) —>

{ (lindexl > M),
(d2 < d(even) < d3),
(Dyn < dyl), (Rs > r5) —>

{ (lindexl > M),
(d2 < d(even) < d3),
(Dyn > dy5), (rl < Rs < r2) —>

{ (lindexl > M),
(d(even) > d4),
(dy3 < Dyn < dy4),
(Rs > r5) —>

{(Ds = { o b jl,..., objn}) and (Dyn > dy5)
Initially we set:
Deven = { d l, d2, d3, d4 }

= { 20%, 25%, 40%, 50% }
DY = { d y l, dy2, dy3, dy4, dy5 }

= { 10%, 20%, 30%, 40%, 50% }
RS = { r l ,  r2, r3, r4, r5 }

= { 10%, 20%, 30%, 40%, 50% }
i.e. initially the rules are translated as:

ATR1 = { (lindexl < M),
(20% < d(even) < 25%),
(20% < Dyn < 30%),
20% < Rs < 30%)
(lindexl > M) & (Td = 2 x Tsec), 
(20% < d(even) < 25%),

ALT[1],

ALT[1] } 

ALT[2]} 

ALT[3]} 

ALT [4] }

ALT[5] }
-> ALT[6] }

-> ALT[1];
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~> ALT[1] }
(10% < Dyn < 30%),
(20% < Rs < 30%)

ATR2 = { (lindexl > M),
(d(even) < 20%),
(Dyn < 10%),
(Rs > 50%) ~> ALT[2] }

ATR3 = { (lindexl > M),
(25% < d(even) < 40%),
(Dyn < 10%),
(Rs > 50%) ~> ALT[3] }

ATR4 = { (lindexl > M),
(25% < d(even) < 40%),
(Dyn > 50%),
(10% < Rs < 20%) ~> ALT[4] )

ATR5 = { (lindexl > M),
(d(even) > 50%),
(30% < Dyn < 40%),
(Rs > 50%) --> ALT[5] }

ATR6 = { (Ds = {obj 1, ..., objn}) and (Dyn > 50%) ~> ALT[6] }

Using d(even), DY and RS to represent the boundaries allows us to change then- 
values without affecting rules.

The meaning of these rules can be interpreted as:
Rule ATR1:
IF: (lindexl < M) or

(20% < d(even) < 25%) or
(20% < Dyn < 30%) or
(20% < Rs < 30%)

THEN: select ALT[ 1 ] = EXCELL

REASON: if the index can be stored in main memory and the data distribution is 
reasonably even or the data set is not volatile or the range search rate is not high 
then the EXCELL algorithm is chosen. Similarly for the other rules.

Obviously, several conditions may be missing and different emphasis may be
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added to different factors. To determine which algorithm should be chosen we 
evaluate all six rules to see which is optimal. This is done by constructing a 
function h(ATRi). An example will be given in section 4.8 to show how a choice 
is made by the six rules.

For each given rule the explanation text is given and will be shown in response to a 
user's request and the reasoning process is stored in a template. For this set of 
rules, the values used to calculate h(ATRi) are kept. These values are used to extract 
relevant explanations.

Explanation 
explanation 1 for ATR1
EXCELL algorithm is selected
(a) the first rule is used as the conclusion,
(b) the second rule is used in the selection of the algorithm,
EX 1.1 (a) the index file can be stored in main memory so that the algorithm is 

selected for its simplicity,
EX1.2 (b) the index file cannot be stored in main memory, but the access time 

requirement allows two secondary storage accesses,
EX 1.3 the data distribution is moderately even so that the index entries for 

empty grid cells may offset the holes in the data file,
EX 1.4 the insertion and deletion rate is moderate and therefore the 

reorganisation is done mainly within the index file,
EX 1.5 the range search rate is moderate since the proximity is only guaranteed 

for the index file and not for the data set itself.

explanation 2 for ATR2
The z-hashine algorithm is selected

EX 2.1 the index file estimated for the EX CELL algorithm will exceed the
capacity of main memory so that an extra access is required for a point 
search if the EX CELL algorithm is chosen,

EX2.2 the data distribution is even. This implies that fewer data holes will be 
introduced by the z-hashing,

EX2.3 the insertion and deletion rate is low so that the possibility of 
deterioration and reorganisation is reduced,

EX2.4 the algorithm has good performance for the range search.

138



explanation 3 for ATR3
The auantile-hashine aleorithm i§ selected
EX3.1 = EX2.1,
EX3.2 the data distribution is relatively uneven and the algorithm allows 

controlled partitioning of the data space,
EX3.3 = EX2.3,
EX3.4 = EX2.4.

explanation 4 for ATR4
The PLOP-hashing algorithm is selected
EX4.1 = EX2.1
EX4.2 = EX3.2
EX4.3 the data set is highly dynamic (the insertion and deletion rates are high) 

and the algorithm caters particularly for such a situation
EX4.4 the range search rate is relatively low as the flexibility of coping with a 

dynamic situation may cause the loss of data proximity in the storage of 
data

explanation 5 for ATR5
The BANG file algorithm is selected
EX5.1 = EX2.1
EX5.2 the data distribution is uneven and the algorithm divides the data space 

into m-d cubes which minimise the performance deterioration caused 
by an uneven data distribution

EX5.3 by redistribution of data items the chosen algorithm deals with a 
dynamic situation reasonably well

EX5.4 = EX3.4

explanation 6 for ATR6
The R-tree al eorithm is selected
EX6.1 = EX2.1
EX6.2 = EX1.3
EX6.3 = EX1.4
EX6.4 = EX3.4
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Since each rule includes a multitude of conditions, and it is not realistic that all of 
them can be satisfied at the same time, a function is introduced to evaluate the 
"condition matching" degree of each algorithm. This can be done by assigning 
weights to each condition according to performance requirements. The above rules 
have four conditions. According to the requirements of an application different 
weights can be assigned to each of them, reflecting the priority of conditions. The 
weighted values are formed flexibly with regard to the nature of an application and 
performed by action-2 through to rules for assigning the weights.

An example
Suppose the information gained from USI is ATR = { lindexl > M, d(even) > 50%, 
Dyn > 50%, Rs > 50% }. The action-2 assigns the following weights to each 
condition: W = { w l, w2, w3, w4 } = { 1, 1, 5, 1 }. To make a judgment of 
applying these rules a heuristic function h(ATRi) for i = 1 ,2 , 3, 4, 5, 6 is 
constructed.

i=4
h(ATRi) = X xi

i= l
0 if the condition is not satisfied

where xi = {
wi otherwise

the weight wi is assigned according to the requirements and using rules WRi.

If max(h(ATRi) for i = 1 ,2 , ..., 6) = h(ATRx) then ALTx is selected as the 
implementation algorithm. For the data given above we get:

h(ATRl) = 0 + 0 + 0 + 0 = 0  
h(ATR2) = l +  0 + 0 +  l =  2 
h(ATR3) = l +  0 + 0 +  l =  2 
h(ATR4) = l +  0 + 5 + l =  7 
h(ATR5) = l + l +  0 + 0 = 2 
h(ATR6) = l +  0 + 0 +  l =  2

max(h(ATRi) for i = 1, 2 ,..., 6) = h(ATR4) and therefore ALT4 = PLOP-hashing 
is selected for the application.
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Explanation
All of the above explanations are given under the condition that h(ALRi) is not 
equal to zero. In the example, when ALT[4] is selected we can represent h(ALRi) 
as a matrix form and store the matrix for explanation.

1 2  3 4

i = 1 0 0 0 0 = 0
2 1 0 0 1 = 2
3 1 0 0 1 = 2
4 1 0 5 1 = 7  <— ALT[4] is the choice
5 1 1 0 0 = 2
6 1 0 0 1 = 2

The explanation numbered ij where xj is of non-zero value and ALT[i] is the chosen
algorithm to be shown, i.e. if an explanation for the PLOP-hashing is requested 
then the following information will be illustrated: 
the PLOP-hashing algorithm is the choice 
x l  = 1
EX2.1 the index file estimated for the EXCELL algorithm will exceed the capacity 
of main memory so that an extra access is required for a point search if the 
EXCELL algorithm is chosen.

Storage utilisation is of little importance. 
x2 = 0 
x3 = 5
EX4.3 the data set is highly dynamic (the insertion and deletion rates

are high) and the algorithm caters particularly for such a situation. 
Dealing with a dynamic situation is very important for the 
application (since x3 = 5)

x 4 =  1
EX4.4 the range search rate is relatively low as the flexibility of coping with 

a dynamic situation may cause a loss of data proximity in storage
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The ability to deal with the range search is of little importance.
If ATR = {  lindexl > M,

d(even) > 50%,
Dyn > 50%,
30% < Ps < 40%,
Rs > 50% } then we have:

i=4
h(ATRi) = I  xi 

i= l

0 if the condition is not satisfied
where xi =

wi otherwise

the weight wi is assigned according to the requirements and using rule WRi.

If max(h(ATRi) for i = 1,2, ..., 6) = h(ATRx) then ALTx is selected as the 
implementation algorithm(s). For a data set given we get:

h(ATRl) = 0 + l + 0 + 0 = l  
h(ATR2) = l + 0 + 0 + l = 2  
h(ATR3) = l +  0 + 0 +  l =  2 
h(ATR4) = l +  0 +  l +  0 = 2 
h(ATR5) = l +  0 +  l +  0 = 2 
h(ATR6) = l +  0 + 0 +  l =  2

max(h(ATRi) for i = 1, 2 ,..., 6) = h(ATRj) for j = 2, 3, 4, 5, 6 and therefore, 
further decisions have to be made. At this point the system can ask the users 
whether they wish to choose an algorithm by themselves or not. The choices given 
to the users will help to narrow the solution space. If no choice is given then the 
system will select the one with the simplest implementation. For an initial algorithm 
selection the choices will be given in the following manner:

Please choose an algorithm you think the best according to the features given, 
which may cause a problem:
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ALT[2]: Cannot deal with dynamic situation well,
cannot deal with unevenly distributed data well 
implementation is more costly than ALT[ 1].

ALT[3]: Cannot deal with dynamic situation well
implementation is more costly than ALT[2].

ALT[4]: Cannot deal with a range search well
implementation is more costly than ALT[3].

ALT[5]: Implementation is more costly than ALT [4].

4.4.2. Selecting an algorithm by a similarity comparison
Similarity comparison assumes that database applications can be classified into 
various categories by features affecting physical database organisation. Those 
features are used to derive a solution based on analogical reasoning. The 
reasoning process assumes that if a defined similarity can be identified between 
a new application (AP) and an existing application abstract profile (AAP), the 
access algorithm applied by the AAP can be selected for the AP.

As a database profile is established gradually at different stages of an 
application, a complete set of data about a database profile may not be available 
at the time of the similarity comparison. In addition, different applications 
emphasise different features and therefore, the system should allow flexible 
classification of an application based on the available information of a database 
profile. Furthermore, some parameters such as data distribution and 
performance are important factors in the selection of an algorithm. Hence they 
can be used to simplify tuning of a physical database by a weighting function.

The AAPs provide information about different characteristics of various data 
spaces as criteria for the system. The system classifies applications into different 
groups so as to give a basis for recognising the category of a current data set. If 
the similarity between an application and an AAP has been identified, all 
knowledge stored about the AAP such as the chosen implementation algorithm 
and the evaluated performance can be used to guide our decisions to a near-
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optimal storage of a data set. To recognise the similarity between an application 
and an AAP the relevant features need to be defined and quantified.

We have chosen several implementation algorithms in our system. To carry out 
the task of selecting these algorithms the criteria for classifying applications will 
be considered in terms of parameters which influence the performance.

The rationale for selecting an algorithm by the similarity comparison is to apply 
an algorithm successfully used for a similar application before a new one. 
Hence the process is to make a comparison between an application and an AAP 
and use the algorithm from an AAP upon a satisfied similarity degree. The 
process can be described briefly as:
S(x, ATx) ~> ALT(ATx)
S(x, ATx) -similarity degree for application x compared with ATx in the AAP. 
ALT(ATx) -the algorithm used for ATx.

In this section a set of parameters and rules are given for a similarity 
comparison. A similarity function s(x) is introduced to measure the result.

To conduct a similarity comparison we briefly review the AAP.

Application abstract profile
AAP = { ACi for i = 1, 2 ,..., x }

Application class
definition level
ACi = { application area, definition } 

detailed level
ACi = { ATi, ADi, AQi, PEi }

Data distribution
ADi = { m, r, b, Ddis }

Query type
AQi = ( Qi, F, Ir, Dr, Ps, Rs )
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Performance evaluation
PEi = (T, Su, ALT[i])

As an AAP is used as an image a database profile has to be of the same form as 
an AAP.

Transform a database profile to the form of AAP
An estimation on resolution of the data set: 

n(u)

r(U) = -------
b

n
r = ----------

b

r log2rl r log2r(u)l

if 2 = 2  then these parameters calculated from C[i] for i = 1, 2,
r can still be used for the data set in the DBPi, otherwise we may decide to 

introduce a new resolution level. As the database profile changes during 
database operations, alterations are made accordingly. If a data set is given 
previously then r is determined and C[i] are used for recording the data 
distribution. When an insertion or a deletion is made we will store the detail in 
the system log file or in some other way in order to update the data distribution 
information kept for the database profile. Similarly searches or retrievals will be 
recorded by the system to update query information stored for the database 
profile. An insertion will increase one to one of the C[i] for i = 1,2, 3 ,..., r of 
the data set; a deletion will decrease one by one of the C[i] for i = 1 ,2 ,..., r; 
keeping the Ddis data up to date. When there is a need to compare the database 
profile and an AAP the required information about data distribution can be 
deduced -Nover, Nempty, N(d), p and so forth. They are compared with a 
chosen AAP by the similarity comparison rules. Since with the same resolution 
the relative bucket size could be different from one data set to another a scale 
transformation is performed before the comparison. Alternatively, data is 
collected only at a critical point where a significant performance change has 
occurred.

145



After choosing an application type ATi from the AAP we will view the 
application type as an image and the application as an object. The similarity 
comparison is carried out between these two and we shall use " '"  to represent 
data from an AAP in the knowledge base.

Transform DBP to AAP scale before similarity comparison
b(AAP)

C(DBP)[i] = C(AAP)[i] x ---------------------  for i = 1, 2 ,..., r
b(DBP)

where C(DBP)[i] is the value obtained from DBP 
C(AAP)[i] is the equivalent DBP value in AAP scale 

b(AAP)
------------- is an image factor.

b(DBP)

after this scale transformation we can use C[i] for i = 1,..., r to represent the 
values gained from AAP for similarity comparison.

Deviation of data distribution 
i=r
X I C(o)'[i] - C(o)[i] I 

i= l
DD = .................-..........---------- --------------

r x b
where C'(o)[i] and C(o)[i] represent C'[i] and C[i] in an ordered sequence.

Deviation for even data degree 
I d'(even) - d(even) I 

ED = ............ ................. -..........

Deviation for the number of overflow grid cells
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I N'over - Nover I
OV =

Deviation of dynamic factor 
DF = IDyn - Dyn'l

Deviation of point search rate 
DP = IPs - Ps'l

Deviation of range search rate 
DR = IRs - Rs'l

Deviation for the number of empty grid cells 
I N'empty - Nempty I 

OE = ---------------------------------------------

Deviation for local data densities 
x=sx
I  I Ld'(x) - Ld(x) I 

x=l
LD = ..................................................

sx x b

Deviation for query frequencies 
F = { fx l, fx2, fxm }
F  = { f x l ,  fx2 , fxm  }

F, F' are ordered frequency functions for the application and an AAP 
respectively. 

i=xm
FD = I  Ifi - fil 

i=xl
For the similarity comparison the above parameters are assessed on a set of 
given thresholds. Similarity is measured by the degree of deviations defined by

y=sy
I  I Ld'(y) - Ld(y) I 

y=i

x b
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the following rules.

Similarity comparison rules
SRI = {DD > 50%, < 5%, < 10%, < 20%, < 25%,< 50%}
SR2 = {ED > 50%, < 5%, < 10%, < 20%, < 25%, < 50%}
SR3 = {OV > 50%, < 5%, < 10%, < 20%, < 25%, < 50%}
SR4 = {OE > 50%, < 5%, < 10%, < 20%, < 25%, < 50%}
SR5 = {LD > 50%, < 5%, < 10%, < 20%, < 25%, < 50%}
SR6 = {FD > 50%, < 5%, < 10%, < 20%, < 25%, < 50%}
SR7 = {DF > 50%, < 5%, < 10%, < 20%, < 25%, < 50%}
SR8 = {DR > 50%, < 5%, < 10%, < 20%, < 25%, < 50%}
SR9 = (DP > 50%, < 5%, < 10%, < 20%, < 25%, < 50%}

A similarity function is constructed according to the actual values gained from 
the above deviation range and an AAP. For each range in the rule we assign 
values corresponding to its meaning and measure the degree of similarity. This 
is denoted by s(SRi) = { 0, 5, 4, 3, 2, 1 } i = 1, 2 ,..., 8. The similarity 
function is defined as:

i=m i=m s(SRi)
Z  si(x) y

i=l mii=l

m m

m -the number of rules (m = 9)
mi -number of boundaries defined with non-zero value in each rule 
s(x) indicates the degree of similarity in terms of the average percentage to 
which the application agrees with a chosen AAP. Its value is between 0 and 1. 
Each rule gives boundaries to measure the difference between two parameters of 
an ATx in the AAP and an application values represented by s(SRi) for the 
result. The greater the value of s(SRi) the closer an application approaches the 
chosen ATx.

To explain the similarity degree assigned by s(SRi) = { 0, 5, 4, 3, 2, 1 } we
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use SRI as an example:
SRI = {DD > 50%, < 5%, < 10%, < 20%, < 25%,< 50%} 
s(SRl) = { 0, 5, 4, 3, 2, 1 }

IF: DD > 50%
THEN: s(SRl) = 0 sl(x) = 0
REASON: if the deviation is greater than 50% then the similarity is identified as 

0 (insignificant similarity).

IF: DD <5%
THEN: s(SRl) = 5 sl(x) = 1
REASON: if the deviation is less than 5% then the similarity is identified as 5 

(significant similarity).

IF: DD < 10%
THEN: s(SRl) = 4 sl(x) = 0.8
REASON: if the deviation is less than 10% then the similarity is identified as 4.

IF: DD < 20%
THEN: s(SRl) = 3 s l(x )= 0 .6
REASON: if the deviation is less than 20% then the similarity is identified as 3.

IF: DD < 25%
THEN: s(SRl) = 2 s l(x )= 0 .4
REASON: if the deviation is less than 25% then the similarity is identified as 2.

IF: DD < 50%
THEN: s(SRl) = 1 sl(x) = 0.2.
REASON: if the deviation is greater than 50% then the similarity is identified as

1.
Since the comparison is done in the order listed in the SRi, DD >50% will be 
exclusive.

Several AAPs may be employed for a similarity comparison. The 
implementation algorithm that matches the one with the maximum value of s(x)
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will be chosen as an image for a given application. Performance measured and 
the s(x) will be kept as the system knowledge to guide better search paths for 
the rule base. For instance, if s(x) > 0.5 and the performance measured for a 
given set of applications according to the AAP is satisfied for more than 0.8 of 
chances, then s(x) = 0.5 can be used as a threshold to eliminate further 
comparison. As soon as a degree of s(x) > 0.5 is found the search for the AAP 
can stop. The reasoning process for an algorithm chosen by a similarity 
comparison is a pattern recognition process. The decision is made by identifying 
the way a similar application was processed in the past and the process is used 
to deal with the new situation.

If the user asks why an algorithm was chosen then the system will show the 
similarity degree, the ACi chosen for the application and the application class 
including application area and definition, application type. The system can also 
give details about the properties of the ACi if required. This is done by 
searching both the recorded similarity and the AAP base. The logical 
construction of the knowledge base is shown in Figure 4.33. It illustrates the 
relationship between a conclusion, its reasoning structure, the facts and the 
heuristics used to perform the reasoning.
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RULES
(a) Eliminating rules (b) Initial alg. seL rules (c) Similarity comparison rules (d) heuristic rules

real data set estimation
performance for

each algorithm

Figure 4.33. The logical structure of the knowledge base.
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The symmetric patterns consideration
To organise data we consider that the symmetric patterns are the same in terms of 
similarity measurement concerned and therefore, in the AAP we only store one type 
of each pattern once. A transformation from the real data set into the form 
represented in the AAP is performed before the similarity comparison. An AAP 
stores a pattern according to its accumulated local data density values, from the 
lowest slice number to the highest, in the descending order of the value of local data 
density. An application with a different local density order will be transformed by 
changing the sequence of the slice numbers from ascending to descending order. A 
2-d data space with Sx = ( s i, s2, ..., sx ) and Sy = (si, s 2 , ..., sy) can be 
transformed into S'x = (s 'l, s'2, ..., s'x) where s’l = sx, s'2 = s(x-l), ..., s'x = 
s i and the z-code is formed by S'x and S'y to perform the similarity comparison. 
An illustration for all possible transformations is shown in Figure 4.34.

Ld(xO) = 0 
L d(xl) = 6 
Ld(x2) -  0 
Ld(x3) -  8

Ld(yO) -  4 
L d(yl) -  3 
Ld(y2) -  4 
Ld(y3) -  3

0 1 2  3

(c) .
Ld(xO) -  0 
L d(x l) -  6 
Ld(x2) -  0 
Ld(x3) = 8

Ld(yO) -  3 
L d(y l) -  4 
Ld(y2) -  3 
Ld(y3) -  4

0 1 2  3

(b) Ld(xO) ■= 8 
L d(x l) -  0 
Ld(x2) -  6 
Ld(x3) -  0

Ld(yO) -  4 
L d(y l) -  3

3 • •

2 ♦ *•

1

0 • * • •
Ld(y2) -  4 
Ld(y3) -  3

0(3) 1(2) 2(1) 3(0)

(d)
Ld(xO) -  8 
L d(x l) -  0 
Ld(x2) -  6 
Ld(x3) -  0

3 (0 ) • * • •

2 (1 )

1(2) •• • ♦ Ld(yO) -  3 
L d(y l) - 4  
Ld(y2) -  3 

----  Ld(y3) -  4
0 (3 ) • • •

0 (3 ) 1 (2 ) 2 (1 ) 3 (0 )

For simplicity, Ld is calculated v ithou t being divided by (b x  sx ) o r  (b x sy ). 
(a) (b) (c) (d) are regarded as the same pattern for their symmetrical properties

Figure 4.34. Symmetric patterns.
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Selecting algorithms by similarity comparison is based on the idea that application 
features such as data distribution and queries are difficult to describe by a 
mathematical equation or a mathematical model. In addition, a number of database 
applications are similar in nature and structures that they should be able to be dealt 
with in a similar way for optimum efficiency. Moreover, as the number of 
applications through the system increases better heuristics and measurements can be 
obtained.

4.4.3. Algorithm selection by heuristics
To select an implementation algorithm several factors are involved.
(1) The distribution of data.
The distribution of data influences the selection of partition strategy. A good 
partition will achieve a better storage utilisation. The data distribution is of a 
dynamic property. We use a parametrised method to measure data distribution. We 
abstract Nempty, Nover, etc. to represent the data features. The partition strategies 
have been described in section 4.2.

(2) The access mode
The access mode can be measured by the percentage of data accessed in a run or in a 
query or by the users' specification of application types whether it is real-time or 
not. It reflects the volatility of the data usage. The calculation on what kind of data 
organisation is to be used is described in Appendix A9.

(3) The query pattern
The query pattern is measured by frequency function F, insertion rate, deletion rate 
and search rate. Different partitions, which are geared towards different attribute 
frequencies, can reduce the physical distance between relevant data so as to optimise 
the performance as a whole. The algorithm has been given in section 4.3.
In section 4.4.1, we have discussed various rules used for different implementation 
algorithms separately. To make use of these rules, the priority and the search paths 
need to be decided. As shown in the decision grid (Table 1). different 
algorithms vary in implementation complexity. The table is shown in an increasing 
order of complexity. The algorithm appearing at the last entry of Table 1 tends to be 
more difficult to realise. Bearing this in mind, we aim to choose the easiest one if 
the requirements can be met. Therefore the search strategy is selected considering
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this factor. The table represents heuristic ideas to match properties of an application 
to an available algorithm. To implement the idea we construct a heuristic function 
h(x), which is a function of selecting an algorithm based on the properties of an 
application. The heuristic function is used when there is no existing chosen ATi in 
the AAP that matches the application.

possib le  
case ->

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2 3 24 25 26 2 7 2 8 29 30 m

tm i  1 v k Y N N N N N N N N N N N N N N H N N N N N N N N N N N N N N

lm i ,5ijr Y Y Y Y Y N N N N N N N N N N N N N N N N N N N N N N N N

n < 10K Y N N N N Y Y Y Y Y Y Y N N N N N N N N N N N N N N N N N

n < 5 0 K Y Y Y Y Y Y Y Y Y Y Y N N N N N N

d i s l 2 0 * Y N N N Y N N N N N N Y N Y N Y N N N N N N Y Y Y Y N N

d is i4 0 SB Y N Y N Y N N N Y N N N Y Y Y N N N N N

d y n i 2 0 * N N N N N N N

iy n i4 0 S 5 Y N N N N N Y N N Y N N Y N N N Y Y

d yn i70SB Y N N

R s i3 0 9 5 Y N N Y N Y N Y N Y N Y N

P s i5 0 5 K Y N

S u i 5 0 * Y Y

Choices

EXCELL XX XX X X

Z-hash X X X X X

Quantile X X X X X X X X X

PLOT X X X X X X

BANG X X X X

Table 1. Matching the application properties to implementation algorithms

For conditions, “Y” indicates a satisfied condition; “N” represents an unsatisfied 
condition and “ “ states unconcerned condition.
For choices, “X” indicates a selected algorithm.
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Construction of h(x) on heuristics
Available algorithm set
ALT = { ALT[i] for i = 1, 2, x}

Property set
PRT = { Pj for j = 1, 2, y }

= {d(even), Rs, Dyn, Ps, Ds}

Heuristic function
h(x) = j where max( hi(x) for i = 1, 2 , y) = hj(x)

if there are more than one hi(x) which have the same value and happen to be the 
maximum then we can choose the simplest one among them.

Pj=x
hi(x) = X hPj (ALT[i])

P H

fo r i  = 1, 2, y

0 if Pj is irrelevant to ALT[i]
hPj(i) =

w(j) if Pj has j degree significance to ALT[i]

Decision rules on hpj(ALT[i])
Deven = { d l, d2, d3, d4 }

= { 20%, 25%, 40%, 50% )
DY = { dy l, dy2, dy3, dy4, dy5 }

= { 10%, 20%, 30%, 40%, 50% }
Ps ={ p l,p 2 p 3 ,p 4 , p5}

= { 10%, 20%, 30%, 40%, 50%)
Rs = { r l ,  r2, r3, r4, r5 }

= { 10%, 20%, 30%, 40%, 50% }
(1) The degree of even distribution 
Deven = { d l, d2, d3, d4 }

= { 20%, 25%, 40%, 50% } is equivalent to
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d(even) = { < d l, < d2, < d3, < d4, > d4 }
= { < 20%, < 25%, < 40%, < 50%, > 50% }

hDeven (EXCELL) 
^Deven(z-hashing) 
^Deven(quan tile-hashing) 
^Deven(PLOP-hashing)

hDeven(BANG)
^Deven(R-tree)

Interpretation

= { 4, 5, 3, 2, 1 }
= { 5, 4, 3, 2, 1 }
= { 3, 4, 5, 2, 1 }
= { 3, 4, 5, 2, 1 }
= ^Deven(quantile -hashing) 
= { 1, 2, 3, 4, 5 }
= { 0 } irrelevant

d(even) = { < 20%, < 25%, < 40%, < 50%, > 50% } 

hDeven(EXCELL) = { 4, 5, 3, 2, 1 }

IF: d(even) < 20%
THEN: h = 4
REASON: if the data are evenly distributed then the z-hashing is the best choice 

that leaves the EX CELL as the second choice.

IF: d(even) <25%
THEN: h = 5
REASON: if the data set is more or less evenly distributed then the EX CELL

performs the best.

IF: d(even) < 40%
THEN: h = 3
REASON: if the data set is less evenly distributed then the Quantile- and PLOP- 

hashing can deal with it better than the EXCELL.

IF: d(even) < 50%
THEN: h = 2
REASON: if the data set is not evenly distributed then the Quantile- and PLOP- 

hashing and BANG file can deal with it better than the EXCELL.
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IF: d(even) > 50%
THEN: h = 1
REASON: if the data set is non-uniformly distributed then the EXCELL can not

The value is assigned by a relative comparison with other algorithms, i.e. a set of 
properties of a feature can be selected to reflect a spectrum, a particular algorithm 
should have an optimal position along this spectrum, which is determined by 
experience and performance evaluation. Similarly for other parameters.

The values in hpj(ALT[i]) are given based on the judgement of how an algorithm is 

capable of dealing with a property and they are assigned corresponding to the order 

in the property list. For property d(even) there is a set of upper and lower 

boundaries given in the property list. If an algorithm, say the EX CELL, deals with 

non-uniform distribution reaso n ab ly  well then it means that the EXCELL handles

uneven data distribution better than some algorithms, but some other algorithms 
cope with uneven data distribution better than EX CELL. By referencing the ability 
of other algorithms we give the highest value to hpj(ALT[i]) for the case of d(even) 

< 40%. If x, y represents other algorithms and x does not handle uneven data as

well as EXCELL whereas y can handle it better, then hd(even)(x) < 
hd(even)^(EXCELL) < hd(even)(y). So the h(x) value is determined by evaluating 
the most suitable range of a feature that an algorithm can perform. For instance, if 
algorithm A handles unevenly distributed data better than that of algorithm B,

algorithm A gain a higher score for unevenly distributed data than that of algorithm 

B. Here we assume that the higher the score, the more suitable is an algorithm.

(2) Range search rate Rs
Rs = { r l ,  r2, r3, r4, r5 }

= { 10%, 20%, 30%, 40%, 50% } is equivalent to 
r(s) = { < r l ,  < r2 , < r3 , > r5 , > r4  }

deal with it well.

hRs(EXCELL)
hRs(z-hashing)

={ 3, 4, 5, 1 ,2  } 
= { 1 ,2 , 3, 5, 4}
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hRs(quantile-hashing)

hRs(PLOP-hashing)
hRs(BANG-file)
^Rs(R-tree)

= hRs(z-hashing)

= {3 , 5, 4, 1 ,2 }  
= hRs(z-hashing) 
= { 0 } irrelevant

(3) Insertion or deletion rate
Dyn = Ir + Dr
DY = { dy l, dy2, dy3, dy4, dy5 }

= { 10%, 20%, 30%, 40% 50% }
Dyn = { < dy l, < dy2, < dy3, < dy4, > dy5 }

hDyn (EXCELL)

hDyn(z' hashin&)
hDyn(quantile-hashing)
hoynCPLOP-hiishing) 
hDyn(BANG file)

hDyn(R‘tree)

= { 4, 3, 5, 2, 1 } 
= { 5, 4, 3, 2, 1 } 
= hDyn(z-hashing) 
= { L 2, 3, 4, 5 } 
= { 1 ,2 , 3, 5,4}
= { 0 } irrelevant

(4) Point search rate 
Ps = {pi, p2, p3, p4, p5}

= {10%, 20%, 30%, 40%, 50%} is equivalent to 
p(s) = {< p i, < p2 , < p3, > p4, > p5}

= {<10% , < 20%, < 30%, > 40%, > 50%}

hPs(EXCELL)
hps(z-hashing)
hps(quantile-hashing)
hps(PLOP-hashing)
hPs(BANG-file)
hps(R-tree)

= { 5, 4, 3, 2, 1 } 
= { 1 ,2 ,3 , 4 ,5  } 
= { 1 ,2 ,  3, 5,4} 
= { 1 ,2 , 5 ,3 ,4  } 
= { 4, 5, 2, 3, 1 } 
= { 0 } irrelevttnt

(5) Dttra set size 
IDsI = { 1, 2, 3, 4, 5 }
IDsI is defined by five degrees from small to large because the data set size is a 
machine dependent factor ( a data set which is considered to be large in a PC 
environment may not be considered to be large in a mainframe environment) so that 
we leave the decision until the system is being installed.

h IDsl(EXCELL) = { 5, 4, 3, 2, 1 }
h|Dsl(z-hashing) = { 1, 2, 4, 5, 3 }
h|Dsl(quantile-hashing) = { 1, 2, 3, 5, 4}
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h|Dsl(PLOP-hashing)
hIDsl(BANG-file)
^IDsl(R-tree)

= hlDsl(quantile-hashing) 
= { 1, 2, 3, 4, 5 }
= { 0 } irrelevant

(6) Differences among local data densities
To obtain a measure of the difference we evaluate the following:

y=sy
Ldxl = X C [l, y]

y=i

y=sy
Ldx2 = X C[2, y] 

y=l

y=sy
Ldxsx = X C[sx, y]

y=i

Ldy2 = X C[x, 2] 
x=l

x=sx
Ldysy = X C[x, sy] 

x=l

Lx = { Ldxi for i = 1, 2 , sx }
Ly = { Ldyi for i = 1 ,2 ,... ,  sy }
Lx' = { Ldx'i for i = 1 ,2 , ..., sx }
Ly' = { Ldy'i for i = 1 ,2 , ..., sy }

Lx' and Ly' are two sets that are arranged in an ascending order. The degree of 
local density differences can be calculated by Dxy as follows.

x=sx
Ldyl = X C[x, 1] 

x=l

x=sx
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Dxy =

i=sx-l i=sy-l
Z  Ldx'i + Z  Ldy'i

i= l i= l

(sx + sy) x b

Here sx and sy are the number of slices on the dimension x, y respectively. 
Dxy = {dxl, dx2, dx3, dx4, dx5 }

= { 10%, 20%, 30%, 40%, 50% } 
d(xy) = { < dx l, < dx2, < dx3, < dx4 < dx5, > dx5 }

hDxy(EXCELL)
^Dxy(z-hashing)
^Dxy(quantile-hashing)
^Dxy(PLOP-hashing)
hDxy(BANG-file)
^Dxy(R-tree)

= { 5, 6, 4, 3, 2, 1 }
= { 6, 5, 4, 3, 2, 1 }
= { 1 ,2 , 3, 4, 5, 6 }
= hDxy(quantile-hashing) 
= hDxy(z-hashing)
= hDxy(quantile-hashing)

(6) If the database is a non-zero sized object one ALT[6] may be chosen. The R-tree 
algorithm is especially suitable for dynamic object data because the size of a 
region can be changed accordingly, without difficulty.

To make a decision the heuristic function h(x) used is based on these parameters 
obtained from a given application. Different weights can be assigned to different 
parameters according to requirements and the algorithm concerned. For each 
parameter value a h(x) is calculated. For example, if an application has properties of 
PI: 20% < d(even) < 25%, P2: 20% < Rs < 30%, P3: 30% < Dyn < 40%, Ps not 
concerned,P4: IDsI = 3, P5: Dxy < 40 then we get:

EXCELL z-hashing quantile PLOP 
-hashing -hashing

BANG

hPl(x) 5 4 4 4 2
hP2(x) 5 3 3 4 4
hP3(x) 2 2 2 4 5
hP4(x) 3 4 3 3 3
hP5(x) 3 3 4 4 3
hi(x) 18 16 16 19 17

thus h(x) = max(hi(x))

1 6 0



= PLOP-hashing for hpL 0 P-hashing(x)

= 19.

There may be cases where more than two algorithms bear the same value of the 
heuristic function hi(x) so that either the algorithm with the least complexity will be 
chosen or a choice is made by the users.

ALT[ 1 ]: Cannot deal with range search well,
cannot guarantee one secondary storage access for very large data set.

ALT[2]: Cannot deal with dynamic situation well,
cannot deal with unevenly distributed data well, 
implementation is more costly than ALT[1].

ALT[3]: Cannot deal with dynamic situation well,
implementation is more costly than ALT[2].

ALT[4]: Cannot deal with range search well,
implementation is more costly than ALT[3].

ALT[5]: Implementation is more costly than ALT[4].

Explanation of the heuristics
For each property of an application we have given a range of values. They are used 
to determine the category of an application for that property. We have also listed the 
corresponding values (created by heuristics) given to to each of these ranges for 
each algorithm. These values indicate the ability of an algorithm to deal with the 
concerned property. They are assigned on the basis of heuristic judgement by 
comparing different algorithms. The explanation is derived from the interpretation 
of the property list and the capability of each algorithm. For each property list and 
heuristic list a fuzzy set can be established to represent the corresponding meaning. 
The values given in the list are by no means accurate and the resolution may not be 
high enough. The high resolution means that the number of values in a list 
increases. They are given to form a system framework. Further tuning can be 
introduced by monitoring the system performance and observing the critical
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changes. Tuning will be discussed in section 4.5.

An example
d(even) = { < 20%, < 25%, < 40%, < 50%, > 50% }
ex(even distribution) = { highly, more or less, average, less, un- }

To explain an application, say, d(even) = 20%, the system will generate:" highly 
even distribution

Since we create heuristic values by assigning the highest to represent high 
capability, the explanation corresponds to the position and the value assigned.

ex(hpj(x)) = { > 5 —> very well,

= 4 —> well,
= 3 —> not so well,
= 2 —> not well,
= 1 —> badly,
= 0 —> irrelevant }

The list hd(even) (EXCELL) = { 4, 5, 3, 2, 1 } will be explained by referencing
ex(even distribution) as:
The EXCELL algorithm deals reasonably with highly evenly distributed data; very 
well with more or less even data distribution; not so well with average evenly 
distributed data; not well with less evenly distributed data; and badly unevenly 
distributed data.

We have to be aware that the heuristics are applied by a comparison of different 
algorithms. The explanation " to deal with highly even distribution well, but not 
very well" seems nonsense otherwise, for we know that evenly distributed data can 
always be dealt with well. The reason that the explanation says "well" is that the z- 
hashing can deal with evenly distributed data better than the EXCELL.



4.5. Dynamic monitoring and tuning of a physical database
As we stated in chapter 3 the system should be able to monitor the performance of a 
database in order to satisfy users’ requirements. The users’ requirements are 
obtained from USI and stored as part of DBP for an application. During the running 
of a database a chosen algorithm may not satisfy the requirements. The reason is 
twofold: (a) the incomplete information supplied by the system or user is inaccurate 
so a wrong AAP algorithm has been chosen to process the data set; (b) the dynamic 
changes to the data set have changed the properties of the application. To deal with 
both situations, the application properties need to be reevaluated. Depending on the 
system implementation, either the data about the previous estimation is printed, or 
kept in the system to compare with the current database status. If a different AAP 
can be found with required similarity then the data set is reorganised accordingly, 
otherwise the system will display how an algorithm is chosen for the application. 
The reasoning process will be discussed in the following section.

To monitor the performance the system will use the database profile and consult a 
set of rules to decide on what to do. The data required for a decision are derived 
from the information stored for the database profile about the concerned data set. 
These data are transformed into the same format as AAP in order to carry out the 
similarity comparison. These data include data space resolution r, even data degree 
d(even), dynamic factor Dyn, range search rate Rs, number of empty grid cells 
Nempty, number of overflow grid cells Nover, local data density Ld, and query 
frequencies F. They are calculated from the current database profile and then used 
for similarity comparison and selection of an implementation algorithm. If needed 
the data can also be used to compare with the original database profile.

Dynamic tuning for the database
There are two aspects to be considered in the tuning process. One is to apply 
different control functions and heuristics to partition the data space and to optimise 
the advantages of a chosen algorithm, i.e. tuning by improving an individual 
algorithm; the other is to reorganise the data set by a new implementation algorithm, 
that is, tuning by changing the implementation.

4.5.1. Tuning by improving the individual algorithm
The purpose of tuning an individual algorithm is to increase storage utilisation, to 
reduce processing time and to relax constraints imposed on the system. For
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example, a hashing algorithm may require contiguous storage space.

With the EXCELL algorithm the problem is likely to arise that a split may make the 
condition lidxl < M invalid and therefore, one more secondary storage access is 
required for a retrieval. Consequently it may be desirable to change the 
implementation if the access speed is critical.

With the z-hashing algorithm several tuning strategies may be introduced. These 
strategies improve the performance as a whole to maintain the fast access speed and 
maximise the storage utilisation.

Tuning an individual algorithm is done by a set of control functions and heuristics, 
geared to different applications. To perform the task, the application is analysed and 
rules are derived for the above mentioned goals.

Tuning the z-hashing algorithm bv overflow handling
Since uneven data distribution may introduce data holes tuning can be done by 
making use of the space reserved for these holes. When there are a number of data 
holes for a data set the corresponding data buckets can be used to hold overflow 
data. Thus the storage utilisation can be improved. In addition, a choice can be 
made as to whether overflow handling is necessary or not. When there are few 
overflow grid cells, removing overflow by splitting will be more economic than 
overflow handling; otherwise separate overflow handling may be applied to gain 
better performance.

Using buckets for empty cells to hold an overflow record.
OVR1 = { Nempty/B > 10% —> overflow tuning}.

To implement such an idea the following data structure is designed.
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z-code status

•

•

•

where a z-code gives an empty cell address and the status indicates whether it is 
used or not. An insertion to the table is made when an empty grid cell occurs; a 
deletion from the table is made when an empty cell becomes non-empty.

The rule for the z-hashing overflow processing 
OVR2 = { Nover/B > 20% —> overflow handling }
OVR3 = { d(even) < 10% — > without overflow handling }

explanation
The rule OVR2 determines when the empty buckets are to be utilised for overflow. 
When the premise condition is satisfied the overflow tuning will be invoked. The 
tuning will create necessary data structures and extract required information to 
improve the storage utilisation for the z-hashing.

The rule OVR3 determines when the overflow handling is necessary. For a fairly 
evenly distributed application the number of overflow grid cells is small, so that the 
splitting can be minimal, to remove these overflow grid cells.

Improving the z-hashing algorithm by data space segmentation 
As analysed before the z-hashing algorithm cannot cope with uneven data 
distribution well and has less flexibility to deal with a dynamic situation. However, 
it does offer a good performance in terms of access time for both point and range
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searches. To gain its advantage of fast access time the entire data space may be 
divided into a number of smaller subspaces, each subspace may apply different 
resolutions. Such an improvement will reduce the number of empty holes and make 
the data rearrangement localised; but this improvement can only be made for certain 
data distributions. The ideal situation is that each subspace has a different data 
density so that it naturally fits the purpose of dividing the entire data space into 
several subspaces. The implementation idea is illustrated in Appendix A7.

In this section we turn our attention to how these rules will be derived to support 
this idea. To analyse the data distribution different levels of resolutions are used to 
calculate C[i] for i = 1 ,2 ,..., ri. To measure the data distribution for this purpose 
we introduce resolution difference RD.

RD =

i = ri
I

i=  1
C[i]

min (C[j] I C[j] > b)
j = l

An example
ri = 4: b = 10, C [l] = 40, C[2] -  40, C[3] = 80, C[4] = 320. 
j=ri
min (C[j] I C[j] > b ) = 40

j= l
RD = (40/40 + 40/40 + 80/40 + 320/40 ) = 12
where b is the expected bucket size for the data set, i.e. if b= 512 bytes and the 
record length R = 50 then the expected b will be 10.

Rules for the z-hashing data space segmentation
ZR1 = { (ri = 4: RD > 4  + 2 = 6) —> strategyl }
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Z R 2 = { (ri = 
ZR3 = { (ri = 
Z R 4 = { (ri = 
ZR5 = { (ri =

8: RD >
16: RD >
32: RD >
64: RD >

8 + 4 =  12)
16 + 8 = 24) 
32 + 16 = 48) 
64 + 32 = 96)

—> strategy2 } 
—> strategy3 } 
--> strategy4 } 
—> strategy5 }

Explanation
EZR1

When the resolution is 4 we calculate the resolution differences RD. The 
lower bound is to use a four entry index file is RD > 4 + 2 = 6, the first item 
4 catering for the balance of introducing an index and the second item 2 is an 
average number of grid cells which are likely to have the same minimum data 
items in them.

EZR2
When the resolution is 8 we calculate the resolution differences RD. The 
lower bound is to use a eight entry index file is RD > 8 + 4 = 12, the first 
item 8 catering for the balance of introducing an index and the second item 4 
is an average number of grid cells which are likely to have the same 
minimum data items in them.

Similarly we have the same explanation text for the other rules. To store these 
explanations efficiently we can store the text once with the changed part supplied, 
i.e. the following data are kept:
xi yi zi for i =
EZRI 4 2 6
EZR2 8 4 12
EZR3 16 8 24
EZR4 32 16 48
EZR5 64 32 96

EZRi when the resolution is ri we calculate the resolution differences RD. Further 
reduction of storage can be introduced by merging common parts of each rule. The 
lower bound to use a eight entry index file is RD > xi + yi = zi, the first item xi 
catering for the balance of introducing an index and the second item yi is an average 
number of grid cells which are likely to have the same minimum data items in them.
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Improving the Quantile-hashing and the PLOP-hashing bv partitioning control 
As illustrated before both quantile- and PLOP-hashing allow partitioning control. If 
one of these two algorithms is chosen, the tuning process will mainly depend on 
selecting the dividing position when a split is triggered. These controls can be 
divided into several categories and used according to the properties of an 
application.

Rules for partition control 
sij=simax

PCR1 = { max (Ld(sij) = sa) ~> split on slice a in the i1*1 dimension) } 
sij=l

ki=km f(kb)
PCR2 = {(( max (f(ki) = kb) & (sbmax < --------------------------------  x scmax))

ki=kl ki=km
min (f(ki))=kc 

ki=kl
> split in b^1 dimension}

PCR3 = { split sij into sij(l) and sij(2) <=> IN(sij(l))l ~ IN(sij(2))l }

Tuning the R-tree algorithm bv representation
A useful property of the R-tree is that its region boundaries are not determined in 
advance. Thus dynamic changes can be easily made. However, the flexibility is 
obtained by recording boundary ranges for each dimension of a region. A region 
identifier is represented as I = {(li, ui) for i = 1,..., m, where li is the lower bound

in the i*  dimension and ui is the upper one. The representation may become a

problem for the R-tree method because it may occupy too much space which means 
increasing the index height and consequently increases the search time, especially 
when m is large.

To tune the R-tree method several alternative representations are introduced.
Representing a region by a starting point and an offset
representation
obj = { (si, li) for i = 1,..., m }
where: si -- starting position

li — offset from the starting position
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This representation is suitable where the boundary si needs more space than the 
offset li. The maximum value of the boundary can be estimated according to the 
range of space; and the maximum value of an offset can be estimated by the largest 
object or region. When Isil > llil the representation can be applied. The gain can be 

n
measured by X (Isil - llil), where n is the number of regions. 

i = 1

Representing a region by relative position
representation
SP = {sp 1, sp2, ..., spm}
where SP is a set of starting positions of the data space.

LP = {lpl, lp2, ..., 1pm}
where LP is a set of offsets relative to the starting position.

A region is represented as:
obj = { (lpil, lpi2) for i = 1, 2, ..., m }

This presentation is similar to the coordinate transformation used in algebra by 
moving a data space to the coordinate origin. The method is suitable if the starting 
value is large and n is significant. The gain can be measured by

i=n j=m i=n
2 x  X (Ispil - llpil) - X Ispjl = 2 x  X (Ispil - llpil) - m x Ispll 

i= l j= l i=l

where n is the number of grid cells and m is the dimensionality.

As the knowledge of each algorithm develops new tuning rules can be added to the 
system for the best use of each algorithm.

4.5.2. Tuning by changing implementation
When little improvement can be gained by tuning the individual algorithm, a new 
algorithm may be required to replace the current one. The database profile is 
examined and the rules concerning selection of algorithms are inspected to arrive at 
a new solution. This process is carried out by eliminating rules, similarity 
comparison or the heuristic functions. After a new algorithm is selected the relevant 
parts of the database profile are updated.

169



4.6. Adding new knowledge to the system
When a new class of an application is added to the system new knowledge needs to 
be added. Adding new knowledge to the system is performed by the following 
rules.

Recording the similarity
RSR1 = { 50% < s(x) < 60% < ->  idk(ATj) for k = 1, 2, ..., y l 

j = 1, 2, ..., x l }
RSR2 = { 60% < s(x) < 70% < ->  idk(ATj) for k = 1, 2, ..., y2 

j = 1, 2, ..., x2 }
RSR3 = { 70% < s(x) < 80% < ->  idk(ATj) for k = 1, 2, ..., y3 

j = 1, 2, ..., x3 }
RSR4 = { 80% < s(x) < 90% < ->  idk(ATj) for k = 1, 2, ..., y4 

j = 1, 2, ..., x4 }
RSR5 = { 90% < s(x)< 100% < ->  idk(ATj) for k = 1, 2, ..., y5 

j = 1, 2, ..., x5 }

The set of rules tells us the similarity degree of existing data set idk compared with 
the application type ATj for the database, i.e. if a data set idk is within the range of 
similarity used in the premises (LHS) then it is recorded as the conclusion part in 
these rules or vice versa. It implies information (idk, ATx, s (x )). Similarly the 
following rules will record the heuristics used and the performance evaluated for 
these data sets.

Recording the heuristics
HBR = { h i, h2, h3, h4, h5 } -  { 5, 10, 15, 20, 25 }
HBR records the heuristic function boundaries, since the boundary may change it is 
beneficial to record them separately for easy maintainability.

for applications
HR1 = { h i < h(x) < h2 < ->  idk(ALT[j]) for k = 1, 2, ..., y l

j = 1, 2, ..., xl}
HR2 = { h2 < h(x) < h3 < ->  idk(ALT[j]) for k = 1, 2, ..., y2

j = 1, 2, ..., x2 }
HR3 = { h3 < h(x) < h4 < ->  idk(ALT[j]) for k = 1, 2, ..., y3
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j = 1, 2, x3 }
HR4 = { h4 < h(x) < h5 < ->  idk(ALT[j]) for k = 1, 2, ..., y4

j = 1, 2, x4 }

for system
HR5 = { h i < h(x) < h2 < ->  ATk(ALT[j]) for k = 1, 2, y l

j = 1, 2, x l }
HR6 = { h2 < h(x) < h3 < ->  ATk(ALT[j]) for k = 1, 2, y2

j = 1, 2, x2 }
HR7 = { h3 < h(x) < h4 < ->  ATk(ALT[j]) for k = 1, 2, y3

j = 1, 2, x3 }
HR8 = { h4 < h(x) < h5 < ->  ATk(ALT[j]) for k = 1, 2, y4

j = 1, 2, x4 }

The set of rules stores a value for heuristic function h(x), for a data set idk or for
an ATx that employs algorithm ALT(j), i.e. {idk, ALT[k], h(x)} and {ATx, ALT[k],
h(x)}.

Recording the performance 
(a) access speed 
for applications
PR 1 =  { T sec < - >  idk(A L T [j]) fo r k  = 1, 2, y l j  = 1. 2 , ..., x l  }

P R 2  = { 2  x  Tsec < - >  idk(A L T [j]) fo r k  -  1, 2, y2 j = 1, 2, ..., x 2  }

P R 3  =  { 3 x Tsec < - >  idk(A L T [j]) fo r k  = 1, 2, y3 j  =  1 , 2 , . .., x3  }

P R 4  =  { 4  x  Tsec < -->  idk(A L T [j]) fo r k  = 1, 2 , y4 j =  1, 2, .- ,  x 4  }
P R 5  =  {(T > 4 xTsec) < -->  idk(A L T [j]) fo r k  = 1, 2, y5 j = 1, 2, ..., x5  }

fo r the  system

P R 6  =  { T sec < - >  A Tk(A LT[j]) fo r  k  =  1, 2, y l , j  = 1, 2 , ..., x l  }
P R 7  = { 2  x  Tsec < - >  A Tk(A LT[j]) fo r k  =  1, 2 , . . . ,  y l j  =  1, 2 , ..., x 2  }

P R 8  =  { 3 x  Tsec < - >  A Tk(A LT[j]) fo r k  = 1, 2, ..., y3 j  =  1, 2 , ..., x3  }

P R 9  =  { 4  x  Tsec < - >  A Tk(A LT[j]) fo r k  = 1, 2, ..., y4 j =  1, 2, .... x 4  }

P R a  =  {(T  > 4  xT sec) < - >  A Tk(A LT[j]) fo r k  = 1, 2, ... >y5 j  =  1, 2 , . ..., x5  }

(b) storage utilisation 
for the application
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UR1 = { 50% < Su < 60% < ->  idk(ALT[j]) for k = 1, 2, y3 j = 1, 2, .
UR2 = { 60% < Su < 70% < ->  idk(ALT[j]) for k = 1, 2, y3 j = 1, 2, .
UR3 = { 70% < Su < 80% <--> idk(ALT[j]) for k = 1, 2 , y3 j = 1, 2 , .

UR4 = { 80% < Su < 90% < ->  idk(ALT[j]) for k = 1, 2, y3 j = 1, 2,.
UR5 = { 90% < Su < 100% < ->  idk(ALT[j]) for k = 1, 2, .... y3 j = 1, 2,

for the system
UR6 = { 50% < Su < 60% < ->  ATk(ALT[j]) for k = 1, 2, y3

j = 1, 2, x3 }
UR7 = { 60% < Su < 70% < ->  ATk(ALT[j]) for k = 1, 2, y3

j = 1. 2, x3 }
UR8 = { 70% < Su < 80% < ->  ATk(ALT[j]) for k = 1, 2, y3

j = 1, 2, x3 }
UR9 = { 80% < Su < 90% < ->  ATk(ALT[j]) for k = 1, 2, y3

j = 1, 2, x3 }
URa = { 90% < Su < 100% < ->  ATk(ALT[j]) for k = 1, 2, y3

j = 1, 2, x3 }

Rule for relating the AT and the ALT
RLRi = { ALT[i] < ->  ATI, AT2, ATxi }
for i = 1 ,2 ,..., z where z is the number of algorithms.

For this set of rules they record all application types that use ALT[i] as the 
implementation algorithm.
These above rules record information which can be summarised as:
Similarity
(idk, ATx, s(x))

heuristics
{idk, ALT[k], h(x)}
{ATx, ALT[k], h(x)}

access speed 
{idk, ALT[k], T}
{ATx, ALT[k], T)

., x3 } 

., x3 } 

., x3 } 

., x3 } 

.... x3}
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Storage utilisation 
{idk, ALT[k], Su}
{ATx, ALT[k], Su}

These rules establish relationship between an AAP(ATi) and a data set (ID) for an 
application, between an AAP and an ALT, as well as between ID and ALT. It is
shown briefly as:

This relationship builds up a reasoning path. If an instance in one set is known then 
the related instances in other sets can be derived. We now describe how to use the 
information to refine the system.
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Inspecting performance
IRi = { if Su(idi) within the range of URi premise then get all action /  conclusions 

(RHS) from URk for k = 6, 7, i }

This set of rules tell us that for the expected storage utilisation all satisfied data sets 
are extracted from rule URik for k = 6 , a. If the data set idi is not in the 
extracted set IRi then idi is of lower storage utilisation than that expected. The other 
URk for k = i + 1 , a can be examined to see which URi idi belongs to in order 
to work out the differences between the expected storage utilisation and the actual 
one. Similarly for an ATi in the AAP.

lRj = { if Nsec within the range of PRj premise then get all conclusions from 
PRk for k = 1 ,2 , ..., j }.

This set of rules tell us that for the expected number of secondary storage accesses 
all satisfied data sets are from rule PRik for k = 1 ,2 ,..., 5. If the data set idi is not 
in this extracted set IRi then idi is of slower access speed than that expected. The 
other PRk for k = 6 ,..., a can be examined to see which PRi idi belongs to so to 
work out the differences between the expected access speed and the actual one. 
Similarly for ATi in the AAP.

Adding new information
Using heuristics and experience involves tuning. Heuristic judgement may not 
necessarily be correct all the time and therefore, the system should provide facilities 
to refine rules used for judgement to enable new knowledge to be added.

As the performance, range of heuristics, and similarities have been recorded in the 
system for a specific application the probability of success can be derived from the 
recorded information. For instance, if an application requires 70% storage 
utilisation (Su = 70%) and one secondary storage access (T = Tsec) then after 
selecting an algorithm for the data set idz the relevant PRi, URi and HRi rules are 
checked. If an algorithm is selected by the similarity comparison and ATx is the 
chosen image then PRi, URi and RSRi rules will be examined; if an algorithm is 
selected by heuristics then PRi, URi and HRi rules will be inspected. For the 
former situation the performance of ATx can be obtained for the application with the 
same range of similarity.
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The reasoning process is:
(a) s(x) --> idk(ATz) for k = 1, a; z = 1, b (RSRi rule)
(b) ATx ~> ALT[j] (RLRi rule)
(c) idk(ALT[j]) - >  Su (URi rules)
(d) idk(ALT(j)) ~>  T (PRi rules)

From the reasoning processes a set of data can be derived.
{s(x), ATx, Su, T} --> ppl
where s(idz(ATx)) is the value of the similarity degree for the current application 
related to ATx; ATx is the application type chosen for deriving the solution for idz; 
Su and T are the performance values; ppl is the percentage of all applications, 
which achieve a performance at least as good as Su or T, or (Su and T) against the 
total number of applications. They are based on the solution by similarity 
comparison with ATx (ppl(T), ppl(Su), ppl(T, Su)). Furthermore, pp l gives the 
degree of confidence for using ATx as an application type to derive a solution. 
When the value of ppl is low the relevant parts of the rule base will be examined; 
whereas when the ppl is high the value of the similarity degree can be used as an 
upper threshold to speed up the rule search. Similarly for the algorithm chosen by 
heuristics we can derive:
{idz, h(x), ALT[j], Su, T} —> pp2. An illustration of relationship between 
applications and various indices (similarity, speed, storage utilisation) is shown in 
Figure 4.35.
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j All data sets v ith  s(x)that require less than T time to access a data item (id2, id 3, id4)

| All data sets v ith  s(x) that have storage utilisation higher than Su (id 1, id2, id3)

All data sets v ith  s(x) that have storage utilisation higher than Su and speed < T 
are (id 1, id3).

Figure 4.35. Relationship between applications and relevant indices.

In the diagram, we have:
s(x) - a particular similarity degree range
idi - all data sets with s(x) as their similarity degree range. There are five data set 

in this example (i = 1, 2, 3, 4, 5)
Su - a particular storage utilisation threshold 
T - a particular access time threshold

Refining rules
Having derived ppl and pp2 an analysis can be carried out when ppl or pp2 is low. 
The low value indicates where refinement may be desired.
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When selecting an algorithm by similarity comparison the upper bound needs 
refining.

When selecting an algorithm by a heuristic function upper or lower bounds used in 
the heuristic rules need refining. This refinement is done by evaluating performance 
of the algorithm through sensitivity analysis of major parameters.

Furthermore, the AAP with different application types may have similar properties. 
The system can classify them as the same application type if the similarity degree of 
various application features is within the acceptable range among ATi for i = 1, ..., 
x; even if they appear to be different application classes.

4.7. Reasoning process
After a decision has been made the user may want to know the reason as to why the 
implementation algorithm was chosen. In response the system should be able to 
display the reasoning procedure for an application. The reasoning process is 
supported by storing relevant information during the similarity comparison about 
properties of the chosen AAP. In the system this function is carried out by the 
following rules.

The reasoning rules
RRj = { ALT[j] <—> id l, id2, ..., idyi }
for j = 1, 2 ,..., z where z is the number of algorithms

For this set of rules they record all data set in a database profile that use ALT[i] as 
the implementation algorithm.
STR = { ( (Su(idi) I Nsec(idi)) = unsatisfactory) —>

(3 idi(ATi) — > similarity range) I
(3 idi(ALT[j]) —> heuristic value) I
(3 idi ~> ALT[j] }

If performance status in terms of storage utilisation and access time for a data set idi 
is unsatisfactory then rules numbered as RSRi, HRi and RRj are inspected.
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4.8. A complete example
Here follows an example which explains how the problem of a given data set using 
m-d algorithm is solved by the system. In this example, we first illustrate the steps 
taken to arrive at the solution, then we illustrate by means of a diagram the decision 
making sequence.

Initial algorithm selection
The USI acquires information to construct an initial profile for a data set. The 
information contains the following aspects.

Initial algorithm selection
ACi
data set
search space
average length of the data items
the access mode
data set life span
bucket size
packing density
the domain of the data space
estimated average data item size
range search rate
available memory size

an application class
Ds = { d l, d2, ..., dn }
di = (ail, ai2) for i = 1 ,2 ,..., n
R
random access
tm
b
p > 75%
D = D l X D2
Re
Rs
M (estimated)

The derived parameters are
number of buckets required : Nreq
number of buckets to be used (estimation) : Ntot
data distribution : Nover, Nempty

If any information is missing from a user then the USI will assign the data set with 
a status of "information missing". Within the system there are a set of application 
classes and under each class there will be a number of application types. As defined 
before the application class is: ACi = { application area, definition }. For instance, 
a theatre booking or a film booking application, and an airline booking application 
may be classified as class ACI = { ticket booking, ( booking, cancelling, reserving, 
scheduling ) } and with different types ATI 1, AT12, AT13. A new application,

178



say, an airline booking system, will be classified as class AC1, containing AT3. 
Classifying an application is done by selecting the definition and the functions 
shown on the screen. The screen may first show the high level as:

Screen 1
Application areas
Selecting the correspond application class 
AC1. ticket booking
AC2.' employee/student management
AC3. CAD: computer aided design
AC4. CAI: computer aided instruction
AC5. traffic control system

If AC1 is chosen then the next level is shown as:
Definitions
Selecting the relevant functions and data sets for your application 
D l. customer FI. booking
D2. seat F2. cancelling
D3. flight/programme F3. reserving

F4. scheduling

Do you want to see the application types? Y/N
If the answer is Y then the following screen will be shown

Application types
Choose a correspond application type 
AT 11. theatre booking system 
AT 12. cinema booking system 
AT 13. airline booking system

The AT13 will be selected and all missing information will be gained from the 
stored AAP profile for ATI3. However, if the new application is a student 
management application and the similar application class is AC2, then missing 
information may be obtained from AT21 (where AT21 is the only application type
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which belongs to AC2, and AT21 is an employee management system). If, on the 
other hand, there is no application class matches to the new application, then the 
system should be able to generate some information for the missing bits. The 
system has to deal with three situations respectively:
(a) An application type is in the AAP.

As shown above when AT 13 is selected we transform the new application to 
AAP scale and then work out the missing information;

(b) An application class is in the system but not the same type.
In such a situation the functions are ticked for the system to determine which 
ATij can be chosen to derive the missing information;

(c) There is no such application class in the system.
If there is no reference available in the system for missing information then the 
system will choose the implementation algorithm according to eliminating 
rules. When no eliminating rules are suitable the system has to make a choice 
on incomplete information. The differences from complete information will be 
shown in arriving at a conclusion. Incomplete information reduces the 
accuracy of a solution.

After gaining all the necessary information from the USI the following steps are 
performed:
(a) Examination o f the eliminating rules.

There are six such rules in the system and they are examined one by one. If 
one of them derives a solution to the application then the rule search 

terminates and an algorithm is chosen. The rule number (ERi for i e {1,2,

..., 6}) is recorded as part of reasoning trace in a template. All information is 
recorded as assumptions from which the solution is derived. If none of the 
eliminating rules work then the initial selection rules are triggered.

(b) Inspection of the initial algorithm selection rules.
If a choice is made then the initial selection is completed. The rule number 
and chosen algorithm are stored as a reasoning path for the user to reference 
when needed. If no decision is made then lindexl, d(even), Dyn, Ps, Rs are 
calculated. As explained before, these parameters may be missing. When 
they are omitted the system will assign 0 to its corresponding heuristic 
function, indicating ignorance of the parameter concerned.

In our example let us assume that the data set has a long life span, the access time is
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less than 2 x Tsec and { lindexl > M, d(even) < 20%, Dyn = ?, Rs = ? } then
referring to ATRi rules we have:
h(ATRl) = 0 + 0 + 0 + 0 = 0
h(ATR2) = l + l +  0 + 0 = 2
h(ATR3) = l +  0 + 0 + 0 =  l
h(ATR4) = l +  0 + 0 + 0 =  l
h(ATR5) = l +  0 + 0 + 0 =  l
h(ATR6) = l +  0 + 0 + 0 =  l

The max(h(ATRi) for i = 1 ,2 ,..., 6) = h(ATR2) and therefore, the z-hashing 
algorithm is initially chosen. If the user asks why the z-hashing is chosen, the 
system will select the explanation from explanation text numbered as EX2.1 - 
EX6.1 and EX2.2.

the z-hashing algorithm is selected 
x l = 1
EX2.1 = EX3.1 = EX4.1 = EX5.1 = EX6.1

The index file estimated for the EXCELL algorithm will exceed the capacity 
of main memory so that an extra access is required for point search if the 
EXCELL algorithm is chosen.

x2 = 1 
EX2.2

The data distribution is even. It implies that fewer data holes will be 
introduced by the z-hashing.

x3 = x4 = 0
Not irrelevant.

In making this selection data about insertion and deletion as well as range searching 
are ignored.
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Dynamic tuning and monitoring of the performance.
During the running of the database a tuning process is triggered when a 
performance deterioration is detected. As soon as this happens the database profile 
is examined for the relevant data set. There are two types of tuning: one is to 
improve the current chosen algorithm - an individual algorithm tuning; the other is 
to re-examine the properties of the data set to see if a new algorithm needs to replace 
the current one - thus changing the implementation.

(a) Tuning the current algorithm
Let us assume that the z-hashing algorithm is chosen for the data set. When 
the performance becomes unsatisfactory the tuning process is initiated. For 
the z-hashing algorithm implementation C[i] for i = 1 ,2 ,..., r are stored in 
the system so that the number of data items for resolution level r = 8, r = 16 
can be evaluated and the z-hashing data space segmentation rule ZRi for i =
1, 2 ,..., 5 ( see page 165) can be applied to see if any improvement can be 
made by introducing a small sized index file for segmentation. If so the 
measures are taken and the system will treat each subspace as an independent 
data set, which will apply different resolutions catering for the data 
distribution. By segmentation the need for continuous space is relaxed, and 
by applying a different resolution, the number of empty data holes will be 
reduced. Hence the performance will be improved.

(b) Changing the implementation
When the characteristics of the data set including both data and the operations 
over it have changed to gear towards an algorithm that is not in use, the 
performance will be improved by applying a new implementation algorithm. 
The database profile is re-examined and the similarity comparison or the 
heuristic rules are used to select a new solution.

When the algorithm is not an initially chosen algorithm but determined by the 
similarity rules then the degree of similarity and the ATi selected are recorded as the 
rule performance. It reflects the possibility of correctness in terms of similarity 
degree and the adopted algorithm. After storing rule performance data an AAP is 
selected on its class and types. Scale transformation is performed and parameters of 
DD, ED, OY, DF, DR, OE, LD and FD are calculated for similarity comparison. 
Assume that using ATI in the AAP we get: DD = 10%, ED = 25%, OV = 10%, OE
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= 5%, LD = 15%, FD = 15%, DF = 5%, DR = 50%. The degree of similarity is 
derived as:
s(x) = ( 4 + 3 + 4 + 5 + 3 + 3 + 5 + 0 ) /(8  x 5 ) = 27/40 = 67.5%.

Assume using AT2 in the AAP we get: DD = 10%, ED = 10%, OV = 5%, OE = 
5%, LD = 15%, FD = 15%, DF = 5%, DR = 5%. The degree of similarity is 
derived as:
s(x) = (4 + 4 + 5 + 5 + 3 + 3 + 5 + 5 ) /(8  x 5 )=  34/40 = 95%.

In such a situation we will choose AT2 as the image for the application and thus the 
recorded algorithm for AT2 (ALT[AT2]) will be chosen for the application. There 
are two possibilities. One is that the algorithm is the same as the initial one selected 
for this application so that there is no improvement to be made by the tuning and the 
results are displayed at the levels of details requested; the other is that the algorithm 
is changed to a new one. The data is reorganised according to the new algorithm 
and the degree of similarity, algorithm and the data set is recorded by the system in 
SRi rules. If there is no ATi in the AAP that matches the application then heuristic 
rules will be applied to choose an algorithm. To use these rules the properties of 
d(even), Rs, Dyn, IDsI and Dxy are calculated. An example has been given in 4.4.
A logical picture for the example is illustrated in 4.36.
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( END )

Figure 4.36. An illustration for an example.
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From this example we realise that:
" The choice of a representation is not clear cut. It depends on the problem domain 
and the task to be perform ed."

4.9 Expert system tuning and validation.
A flexible deductive inference is desirable in all knowledge base systems. The 
reason for this is the nature of knowledge is evolutionary and no perfect solution 
exists for problems that involve decision making. Particularly in dynamic situations, 
human knowledge is under development throughout problem- solving process. 
However, a knowledge system implies a strategy to improve the ability to solve 
problems and to derive a solution as valid as possible and at the same time, to adapt 
to a varying environment. For instance, in a fast-moving, competitive environment, 
a high accuracy may have to be traded for speed; and high performance may be 
traded for simple implementation for a short-lived data set. This is performed by 
application of knowledge to a problem to be tackled and continuous adjustment 
according to specific circumstances. Knowledge can thus be refined during system 
evolution for more accurate inference to problem-solving. This is done by assessing 
the deviation between the results achieved by system inference and those expected. 
In this section, a brief literature survey is presented. The main focus is on tuning 
and validating the expert system for m-d physical database design. However, tuning 
and verification of an expert system is a project in its own right. As a result, we 
only discuss specific aspects of tuning and verifying our expert system.

4.9.1 Introduction
Knowledge base systems are attracting more and more attention from the I.T. 
industry in recent years. The viability, however, of an expert system depends very 
much on its cost against the benefit, user-system interface and validity. Especially 
for expert systems, the problem-solving process applies heuristics which feature 
inexact inference, educated guesses, experience, instinct of an expert, and 
approximate evaluations. This feature of expert systems demands a different 
verification approach from that of non-expert systems. Very often, statistical 
information is collected for evaluating and verifying an expert system. In this 
section, we mainly examine the validity of an expert system. A lot of research work 
has been done in the field of validation of non-expert systems [BE89a] [BE89b]. 
However, not much has addressed for the validation of expert systems [WE83].
The salient difference between a non-expert system and an expert system is
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determined by the system nature. Generally speaking, the former has static and 
definite features in respect to getting results - the knowledge to solve a problem is 
embedded with procedures; whereas the latter possesses dynamic and uncertain 
characteristics in terms of obtaining solutions - the knowledge for problem-solving 
is treated as data which can be changed during processing and that can influence the 
expected results (eg. the alteration of a quantity can lead to changes of problem 
nature, alteration in environment and goals can affect the inference paths). In the 
author's opinion, to validate a non-expert system the emphasis is based on an 
application of all possible DD-paths (Decision-to-Decision paths) which are likely to 
occur in various runs. In addition to specific application knowledge the inference 
approach is a kernel element in validating an expert system, i.e. how a solution is 
derived has to be examined. The inference approach needs to apply the new 
knowledge obtained from a dynamic environment. Furthermore, an element which 
resolves the inaccuracy of reasoning, i.e. the system tuning, has to be introduced in 
an expert system to improve the accuracy during the live system cycle. This tuning 
is based on known and machine-learned knowledge.

4.9.2 Literature survey
Validating and tuning/refining expert systems has been examined by several 
authors. However [WE83], the two approaches are referred to as : (1) the anecdotal 
approach and (2) the empirical approach. The former evaluates a program by its 
cases. If a specific program performs poorly, attempts are made to correct the 
program which can cause problems, since unused cases can be affected by this 
change. The latter places emphasis on the empirical evaluation over many problem 
cases. Using this approach, many cases have to be generated to test the system, 
i.e.this provides enough representative coverage for validation. Considering 
reliability of expert systems, the author [H089b] suggested various criteria in an 
expert system evaluation. These criteria include: (1) correctness of final decision,
(2) accuracy of final decision, (3) correctness of reasoning techniques, (4) 
sensitivity analysis, (5) robustness, (6) quality of USI and (7) cost effectiveness.

4.9.3 Expert system tuning
This section focuses on tuning and verification of m-d physical DB design expert 
systems. Tuning in m-d physical DB design is divided into two levels:
(1) modifying existing knowledge;
(2) adapting inference rules to modified knowledge and adding constraints to

1 8 6



refine rules.

Tuning performance for a specific application is carried out based on specific 
knowledge, which is collected dynamically. It concerns response time (speed) and 
storage utilisation features for performance. To apply heuristics and reduce system 
overhead, the feature values at the performance tuning points, i.e. dramatic changes 
in performance, are stored.

System tuning considers the performance of the expert system. The major factors 
considered here are reasoning validity and correctness of a final decision. The 
former improves inferences behind various rules; the latter enhances the success rate 
of the whole system.

4.9.3.1 General considerations
There are two major aspects in which an expert system can be validated and 
verified: (1) behaviour of an expert system, (2) ontology of an expert system. 
Behaviour covers granularity, capability, correctness, optimality and USI issues; 
while ontology includes structure suitability, consistency, validity, completeness and 
accuracy issues. As an experimental expert system, the focus is on ontological 
issues.

The experimental KBS is constructed based on heuristics. Consequently, accurate 
terms for correctness of the system cannot be defined, i.e. the tuning and validating 
process itself has to apply heuristics. In this system, a heuristic approach is based 
on historical data and the system evolution process. The data records summary 
information about individual application cases and stores this information in the 
knowledge base for rule performance analysis. The outcome of this analysis enables 
the validation and verification of the system in order to achieve better results. The 
system evolution process analyses various factors which may influence decisions, 
and with additional historical data, the performance of the reasoning process can be 
further improved. Similar patterns are extracted and cluster analysis is applied to 
perform the task. In this section we limit ourselves to specific aspects of the tuning 
and validation process, as this topic alone could be a project in itself.

4.9.3.2 Information about rules in general
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To verify an inference process, the summary information about application cases in 
which rules are applied successfully, is recorded. This information is kept by 
relating the inference process to performance, recording the rates on the number of 
successful instantiation and the total number of all instantiation. In addition, the 
inference structures of failure cases are also stored. This information is employed to 
analyse the validity of the rule base. The logical structure of tuning and verification 
is illustrated in Figure 4.37.

Figure 4.37 Logical structure of tuning and validation.

The diagram illustrates that tuning and validation mainly takes inputs from abstract
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profiles (data set profiles) and performance results from each individual profile. 
Logically all these abstract profiles that lead to the same solution ( or falling in the 
same performance spectrum) are linked ( data set uses the same access algorithms) 
together, providing a basis for the comparison unit. The comparison unit is applied 
for tuning and validation. Information kept for profiles is logically classified into 
salient features, and application environment. The result of this comparison is used 
to adjust heuristics and rules concerning dynamic features. The adjustment can be 
done either by updating boundaries of various feature spectrums which form the 
basis of a particular solution; or by modifying rules set to include new constraints.

Comparison unit
In our particular situation, the comparison unit takes profiles from those 
applications which employ the same algorithm and ranks their performance. This 
task is straightforward. The ranking, as a result from the comparison unit, then 
relates to individual profiles which the adjustment unit can pursue further. 
Alternatively, the comparison unit takes performance criteria and the performance of 
applications as inputs, analyses features of applications which show satisfied 
results, and passes the analysis to the adjustment unit.

Adjustment unit
The adjustment unit separates features for a group of profiles, examining the 
difference between them, producing exceptions and making necessary adjustments 
by using expert knowledge (heuristics). For instance, feature 1 and feature 2, 
according to the system knowledge, are two correlated features with different 
weights. Analysing their values in these k profiles can produce suggested 
modifications on weights. For the profiles considered, we have:

weight-1 feature-1 weight-2 feature-2
profile-1 w ll f l l w l2 f 12 (best performance)

profile-2 w21 f21 w22 £22

profile-k wkl fkl wk2 fk2 (worst performance)
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As the system knows the meaning of these ranks (weights) among these profiles, it 
heuristically adjust the value of w21 to w kl, w22 to wk2 to that of w l 1, w l2  for 
f l  1, fl2 . The system adjusts according to the following heuristics, in which the 
w l 1 and f l  1 is used as criteria for other profiles:
(1) from w l 1 /  w l2  = wzl /  wz2 where z = 2, 3 ,..., k, we get adjusted values: 

w l l  x wz2
w zl(a) = ----------------------

w l2

w zl x w l2
w z 2 ^ a )  = ------------------------------------------- —

w l l

where wzl^a) or fzl^a) is the result from adjusting the weight or boundary.

Consequently, if in due course, a better performance is obtained from another group 
of profiles, this adjustment process can be repeated. The same principle applies to the 
results gained from analysis of those satisfied applications.

During the above described process, if however, a contradictory situation occurs, 
exception rules are to be added to cope with this situation. Adding exceptions to the 
rule base involves human intervention and analysis.

Modification unit
The modification unit performs an update operation over the knowledge and rules 
based on the results from the adjustment unit. Weights and boundaries may change 
and exception rules can be added. Modification and adjustment can also be performed 
by tuning individual features (e.g. expanding boundary set, and applying high 
resolution) when required.

4.9.3.3 Feature information
Based on stored historical data, modification can be done for a specific feature over its 
spectrum. For example, a feature spectrum of a profile is initially set to be F = {fl, f2, 
..., fm}, a solution set for a specific problem domain is S = {si, s 2 , ..., sn}. Here fi, 

where i e 1 ,2 ,..., m, is a feature spectrum, representing a range from, say, a to b.
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Each i feature fi e F is mapped to the solution set, say, fi -> sj. Since F is set by

applying heuristics, the mapping fi -> sj can have f  i -> sj as an improved version to
the initial setting, i.e. tuning is aimed at achieving better solutions. The tuning process
can be described as follows:
the goal - modify fi -> sj to be f i  -> sj;
where the latter has better performance;
method - obtain historical data within spectrum fi
f i=  {fil, fi2, ..., fix};
fi is obtained by ordering values within the range from a to b, i.e. extract fil, f i2 ,..., 
fix from APs in the knowledge base, calculate performance for each value of fi: 
pi = {pil, pi2, ..., pix};
or alternatively, get performance from the knowledge base if they are already recorded 

and work out the optimal one among pi optimal(pi) = pij, j e  1 ,2 , ..., x replace fi 

with fij, i.e. set f i  = fij.

Modification can also be done on a set of features. This is done by grouping high 
correlated features together to work out the effects. The tuning process is as follows: 
the goal - replace fi -> sj with f(I, J) x fi -> sj 
I and J are other features used to present the profile respectively, 
where the latter achieves better results
method - obtain historical data for I, J to get the spectrum value:
I = {II, 12, ..., Ix}
J = {Jl, J2, ..., Jy} 
evaluate influence of I, J
(1) p(I, fi) = {pil, pi2, ..., pix}
(2) p(J, fi) = {pil, pi2, ..., piy} 
work out the effect of I and J; 
replace fi with f(I, J) x fi.
where f(I, J) is a correlation coefficient. It is calculated by referring to performance, 
i.e. when a summation is used as the heuristic to score a preference, a lower score will 
be given to I if J happens to have a tendency to deteriorate the performance and thus 
the heuristic is used to reduce the total scores (f(I, J) = 0.8 -> f(I, J) = 0.5, for 
instance). The negative accumulation effect is, therefore, considered.
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4.9.3.4 Information about applications
As mentioned above, feature values at performance turning points are kept for an 
application. Initial feature information is compared and analysed in order to work out 
what are the influential factors for performance change. This analysis is then stored as 
knowledge for later use. If incomplete information is supplied, instead of ceasing the 
system function, the expert system guesses the missing bit by referring to the 
knowledge stored in the system. Alternatively, it generates information for the missing 
part using its best knowledge. This is done by accessing a similar application stored in 
the knowledge base to provide a good guess.

4.9.3.5 Extract information for similar applications
Extracting information for similar applications is based on the solution, i.e. the access 
algorithm employed. If applications use the same algorithm then they will be 
categorised as the similar applications. We can show this in Figure 4.38. This 
information will later become part of the knowledge base, which derives an abstract 
application profile.

Figure 4.38 Similar application.
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This diagram indicates that a bitmap can be effectively utilised to extract information 
from similar applications. This data structure is illustrated in Figure 4.39.

algorithm 1 2 3 4 5 6 7 8

data set 1

2
1

3 1

4
1

5 1 1

6 1 1

7 1 1

8 1 1

Figure 4.39 Bitmap for similar applications.

In the bitmap, each bit of the row indicates an application processed by the system. 
Each bit in the column corresponds to a selected access algorithm. The position of a 
bit tells which algorithm is employed for a specific data set.

4.9.3.6 The impacts over change of search space size 
Partitioning strategies are influenced by dimensionality. As mentioned before, 
partitioning mainly affects storage utilisation. When dimension increases, the storage 
utilisation can be decreased under a m-d partition. As a result, it is desirable to control 
the increase of search space dimensionality. This can be handled by distinguishing the 
granularity of various features. The granularity here means the size of the domain for
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the feature concerned. The dimension with a small sized domain can be dropped from 
the search space if dimensionality increases unexpectedly. A typical relational database 
can have a large number of relations of 1-d and 2-d search space; medium number of 
relations of 3-d and 4-d search space; and a small number of relations with higher m-d 
(m > 4) search space.

4.9.3.7 The impact over the domain size
As mentioned above the size of domain can play a significant role in tuning the 
physical database design. The size of domain of a particular feature can also affect 
access paths, which can be formed dynamically. From experience, when a retrieval is 
conducted on several attributes (that is what the m-d search space is designed for) with 
different size of domains, it is obvious that tuning effort should be given to a large 
domain. The size of a domain is the number of different values in it, i.e. if domain Di 
= {Dil, D i2 ,..., Dix} then the size of the domain is IDil = x. This feature depends on 
the individual data set. The reason is that the large domain is likely to have more splits 
than that of the smaller ones. Therefore, it tends to become a dominant dimension. An 
illustration is given in Figure 4.40.

Figure 4.40 A 2-d search space.
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In this diagram, dimension x has a larger domain than that of dimension y. The x 
dimension is the dominant feature in this 2-d search space.

4.9.4 The results of tuning analysis
The system tuning concerns mainly two aspects: (1) knowledge information; (2) 
inference process. The first aspect determines the relevant category of profiles; the 
second one constructs the reasoning process based on the knowledge information.

In the consideration of the physical database design, knowledge information is 
allowed to be modified by a refining process. This refining process gathers feature 
information from various applications and evaluates the performance of the current 
knowledge to produce modifications to improve the success rate of the system. In 
addition, the reasoning process is adaptable to the modified knowledge information.

Example
Modifying knowledge information.
Originally, a data distribution can be divided and measured by the following heuristics: 
Measurement -D(even)
Ddis = { d l, d2, d3, d4, d5 }
= { even, fairly even, relatively even, not even, uneven }
= { < 15%, < 25%, < 40%, < 50%, > 75% }
When selecting an algorithm, considering storage utilisation, we should consider the 
size of the data set because the size is correlated with the data distribution. As a result, 
a large sized data set may trigger a modification over the knowledge information. This 
modification adds a multiplicity factor to the Ddis measurement and refines the 
meaning of varied categories of data distribution. For this particular circumstance, we 
first assign the factor as 0.8. And therefore, we have:
Ddis = { < 12%, < 20%, < 32%, < 40%, > 60% }.
Similarly, if a smaller sized data set is the case, the factor can be assigned as 1.2, 
which results:
Ddis = { < 18%, < 30%, < 48%, < 60%, > 90% }.

The reasoning process is adapted to suit this change by adding a decision rule, which 
judges the size of a data set concerned, to refine data distribution measurement. This is 
done by considering correlated factors of data distribution, i.e. data set size.
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This example is over-simplified for illustration. To refine knowledge information, 
decisions need to be made on historical information stored for various applications, 
especially those with unsatisfactory results.

4.9.5 Examples
Information about performance (access speed and storage utilisation) and the 
reasoning process require to be stored for tuning the system heuristics. The result of 
this tuning is employed to adjust rules and knowledge information. The framework 
is shown in Figure 4.41, which is based on Figure 4.37. Several examples are also 
presented.

V APi

I A P I  I I A P 2  I .. . I A P n  I [a P'1 | [a P '2 | . .. [A P ’n  |

Knowledge Base

A LT ll) \LT12] ... ALT (mi

Perforrnace E valu ation

^ 1 FE2 ... FEm P E I PE* 2  ... PEVn

1 f 1 r r r r
Tu n in g  and Va lida tion  U nit

V PEI V PE2 ... yPErn

A

Figure 4.41 The Framework for System Tuning.
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Here
APi - initial application profile for application i, for i = 1 , 2 , n.
AP’i - application profile after changes made to the original ones.

VApi - differences between APi and AP’i.

ALT[i] - algorithm i, for i = 1, 2,..., m.
PEi - performance evaluated for application profile APi, for i = 1, 2 ,...,

m.
PE’i - performance evaluated for application profile AP’i.

VPEi - differences between PE’i and PEi (i.e. PEi - PE’i)

In this framework the profile about those applications which apply the same access 
algorithm is recorded. The profile is then used to evaluate the performance. The 
heuristic rule is tuned based on the differences in the performance.

Example 1 - tuning by heuristics gained from different types of applications: 
Suppose application “A” has the following features:
Deven <20%
Rs < 30%
Dyn < 20%
Ps < 30%
IDsI = 3 (data set size rating)
and application “B” has the following features:
Deven < 30%
Rs < 30%
Dyn < 20%
Ps < 40%
IDsI = 5 (data set size rating)

According to the heuristic function in section 4.4.3 the result calculated for 
application “A” is:

hEXCELL
^z-hashing
^quantile-hashing
hpLOP-hashing

— 4 + 5 + 3 + 3 + 3 = 18 
= 5 + 3 + 4 + 3 + 4 =  19 
= 3 + 3 + 4 + 3 + 3 = 16 
= 3 + 4  + 2 + 5 + 3 =17
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hBANG-file = 1 + 3 + 2 + 3 + 3 =12

For application “B” the calculated results are:

hEXCELL = 5 + 5 + 3 + 2 + 1 == 16

^z-hashing = 4 + 3 + 4 + 4 + 3 == 18

^quantile-hashing = 4 + 3 + 4 + 5 + 4 == 20

hpLOP-hashing = 4 + 4 + 2 + 3 + 4  == 17

hBANG-file = 2 + 3 + 2 + 1 + 5 == 13

As a result, access algorithm “z-hashing” is selected for application “A” and 
“quantile-hashing” is chosen for application “B”. However, as data are added to, or 
deleted from, application “B” the feature Deven is changed to be within the 
spectrum of < 20%, thereby approaching feature of application “A”. At this point, if 
the performance of application “A” is worse than that of application “B”, then an 
adjustment can be introduced.
Assume after dynamic changes to application “B” the features are near to those of 
“A”, and become:
Deven < 20%
Rs < 30%
Dyn < 20%
IDsI = 4  (data set size rating).
For those features the performance measured for application “B” is better than 
application “A”.

Say, for those two applications we have the following results:
A: point search Tp = 2 x Tsec

storage utilisation Su = 65%
range search accuracy a = 65%

B: point search Tp = 1.5 x Tsec
storage utilisation Su = 70%
range search accuracy a = 50%

This indicates that quantile-hashing is a better choice under the initial condition of 
application “A” than that of z-hashing. As a result, we can change the heuristic rule
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by increasing its weights to Deven for the quantile-hashing algorithm, i.e.
Deven = {< 20%, < 25%, < 40%, <50%, > 50% } 
hdCeven/Ou^tite-hashing) = (3, 4, 5, 2,1) can be refined to be:
^ ’d(even)(quantile-hashing) = (6, 8, 10, 4, 2)
Here

h ’d(even)(cluant^e'^ as^^n§) derived by the following calculation: 

h ’d(even)(quantile-hashing) = Tp/ql x hd(-even^(quantile-hashing) 

where p = 5 is the weight assigned to z-hashing for Deven < 20%,
q = 3 is the weight given to quantile-hashing before changing for Deven <
20%.

After refining the rule, the initial selection for application “A” becomes:

hEXCELL = 4 + 5 + 3 + 3 = 15

^z-hashing = 5 + 3 + 4 + 4 = 16

^quantile-hashing = (6)+  3 +  4 + 3 = 16
where (6) is value given after refinement

hpLOP-hashing = 3 + 4 + 2+ 3 = 12

hBANG-file = 1+3 + 2 + 3 = 9

It means that quantile-hashing has become one of the candidates to be chosen. This 
is an over-simplified example. Here the refinement is based on heuristic learning, 
i.e. the system learns from the performance evaluation and updates the initial rule 
for a better initial selection. In real situations, however, the system tuning needs 
human intervention, especially at the beginning. The system gives comprehensive 
data to users, to assist them in analysing the interrelation between various factors 
which influence the decision. As a result, this relationship can be built into the 
system learning mechanism so that less human intervention is required later on.

Example 2 - tuning by evaluating performance for an application 
As shown in Figure 4.42 we assume the following features.
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Figure 4.42 2-d search space for a sample data set (original).

Data distribution 
b = 4
Ds = { (1,1) (1,3), (1,4), (1,5), (2,2), (2,4), (3,3), (4,2),

(4,6), (5,1), (5,3), (5,7), (6,0), (6,1), (6,6), (7,3) } 
the equivalent z-code for the data set is:
Ds(z-code) = {3, 7, 18, 19, 12, 24, 15, 36, 52, 35, 39, 55, 40, 41, 60, 47} 
and z-order for the data set is:
Ds(z-order) = { 3, 7, 12, 15, 18, 19, 24, 35, 36, 39, 40, 41, 47, 52, 55, 60 }
The data distribution can be derived from the following steps:
(1) derive the number of data points in each grid cell

From z-code the equal grid cell partition generates a boundary set d, d = { 15, 
31, 47, 63}. Here d divides the search space into four partitions and each
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partition has its own data items:
G [0 ]= { 3 , 7, 12, 15}
G [l] = {18, 19, 24}
G[2] = {35, 36, 39 ,41 ,47}
G[3] = {52, 55, 60}
Hence the size of each grid is derived as:
I G[0] I = 4  I G[ 1] I = 3
I G[2] 1 = 6  I G[3] I = 3

(2) calculate resolution 
r =  IDsl/b = 1 6 /4  = 4

(3) calculate Deven
i=r
I  I C[i] - b l 

i=l
Deven = ---------- --------

b x r

Query
We use x and y to represent two different key attributes since the dimensionality of 
this example is two (m = 2). The query frequency is then assumed to be: 
query on the dimension x 

Qx < 40% 
query on the dimension y 

Qy < 60%
point search by involving both dimensions 

Ps < 30%
range search on the dimension x by changing y (fixed x value)

Rs(x) < 20%
range search on the dimension y by changing x (fixed y value)

Rs(y) < 20%
range search involving both dimensions:

Rs(x,y) < 30%

4
---------= 25%
4 x 4
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Dynamic features
Let us assume that dynamic features follow a time sequence, i.e. they change during 
the life of a data set.
Case Deletion rate Insertion rate

(1) 18.75% 12.5 %
(2) 18.75% 18.75%
(3) 25 % 50 %
(4) 25 % 62.5 %

First stage (initial feature
According to the given features, the following factors are considered:

Deven =25% (measured under the condition r = 4)
Dyn < 35% (estimated at initial stage)
Rs < 70% (estimated at initial stage)
Ps < 30% (estimated at initial stage)
IDsI = 3 (estimated at initial stage)

Employing heuristic function described in section 4.4.3 we have:

hEXCELL = 5 + 2 + 2 +  1 + 3  = 13

^z-hashing = 4 + 4 + 2 + 5 + 4 = 19

^quantile-hashing = 4 + 4 + 2 + 4 + 3 = 17

hpLOP-hashing = 4 + 2 + 4 + 4 + 3 = 17

hBANG-file = 1 + 4 + 5 + 1 + 3 = 14
Hence z-hashing algorithm is initially selected.

P erfo rm a n ce  eva lu a tion  

Point search average speed Tp
(1) With overflow handling ( assuming only when n >  1.5 x r x b next split will be 

triggered and the resolution r = 4 )  
i=r-l
I  T(G[i])

i—0 4 + 3 + 8 + 3
Tp = ........ ................. = ...........................— = 1.125 x Tsec

r 16

Here T(G[i]) is the total number of secondary storage accesses required by
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individually accessing each data item (a point) in grid cell [i]. For example, there 
are six points in the grid cell 2. Assuming four points are stored in home bucket 
and two points are stored in the overflow bucket. The total number of disk 
accesses is calculated as 4 + 2 x 2 = 8, where the first item 4 is the number of 
accesses for home points and the second item 2 x 2 = 4 is the number of 
accesses for the overflow points.

(2) Without overflow handling the hashing algorithm always needs 1 access to 
locate the required data at the cost of storage space. As a result the calculation 
is insignificant.

Range search accuracy a
(a) select (x,y) where x < 5 and y > 5

number of points satisfy search condition 2
a = -------------------------------  = -------------= 25%

total number of buckets searched x b 8

(b) select (x,y) where 2 < x < 6 and y < 4
number of points satisfy search condition 6

a = —- ......... -......................—........ -..................... - = ................. = 37.5%
total number of buckets searched x b 16

(c) average of case (a) and (b) 
a = (2 /4+  6/16) /2 ~ 31.25%

Note: in a real situation a great number of cases will be utilised to calculate the 
average range search accuracy.

Storage Utilisation
(1) With overflow handling (r = 4)

minimal requirement Nmin = |~n/b] = 1 6 / 4  = 4 blocks

i=r-l
actual requirement Nmax = £  i~G[i]/b 1 = 5  blocks

i=0

Su = Nmin/Nmax = 4/5 = 80%

(2) Without overflow handling (r =8)

203



minimal requirement = |~n/b ] = 1 6 / 4  = 4 blocks

actual requirement = N - Nempty = 8 - 0  = 8 blocks
here N is the number of grid cells required for z-hashing without overflow
handling.
Su = 4/8 = 50%

Second stage (introduce changes)
C a se  (1 )

From the original data set delete (4, 6), (6, 6), (7, 3) and inset (2, 7), (3, 5) we 
have the following diagram:

C a se  (1 )

m ©

© El
© o 1 3

o °© 2 ©

© o

© © o
o

0  1 2 3 4  5 6 7

Figure 4.43 The 2-d search space after 18.75% deletions and 12.5% insertions 
(the squares are inserted data points and the circles are original data points).
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Using the same method as in the initial case for C a se  (1 ) the following Deven and
performance information are derived:
Deven = 33.3%

P erfo rm a n ce  eva lu a tion

Point search average speed Tp
(1) With overflow handling ( assuming only when n > 1 . 5 x r x b  next split will be 

triggered and the resolution r = 4 )
Tp ~ 1.13 x Tsec.

Range search accuracy a
(a) Select (x,y) where x < 5 and y > 5 

a = 25%

(b) Select (x,y) where 2 < x < 6 and y < 4 
a = 37.5 %

(c) Average of case (a) and (b) 
a =31.25 %

Storage Utilisation Su
(1) With overflow handling (r = 4)

Su « 66.7 %

(2) Without overflow handling (r =16)
Su = 4/8 = 50%

C a s e  (2 )

From the original data set delete (2, 2), (3,3), (4,6) and inset (3, 7) (5, 6), (7, 1)
we have the following diagram:
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Case (2)

7 m ©
6 ©

5 ©

4 o © i 3

3 © 0 2 © ©
2 o
1

o © O 0

0 ©

0 1 2 3 4 5 6 7

Figure 4.44 The 2-d search space after 18.75% deletions and 18.75% insertions .

i=r-l
I  1 C[i] - bl

i=0 3 + 2 + 1
After the change Deven becomes: Deven = ......................... = --------------- = 37.5%

r x b 4 x 4

P erfo rm a n ce  eva lu a tion  

Point search average speed Tp
(1) With overflow handling ( assuming only when n > 1 . 5 x r x b  next split will be 

triggered and the resolution r = 4 ).
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i=r-l
X T(G[i])

i=0 4 + 2 + 3 + 10
Tp = ------------------- = — ........................- = 1.1875 x Tsec

r 16

Range search accuracy a
(a) Select (x,y) where x < 5 and y > 5 

a =37.5%

(b) Select (x,y) where 2 < x < 6 and y < 4 
a =31.25 %

(c) Average of case (a) and (b) 
a * 34.3 %

Storage Utilisation Su
(1) With overflow handling (r = 4)

Su = 4 /  5 = 80%

(2) Without overflow handling (r =8)
Su = 4/8 = 50%

C a se  (3 )

From the original data set delete (4, 6), (5, 1), (6, 6), (7, 3) and insert (0, 7), (2,
5), (3, 1), (5, 2), (5, 5), (6, 3), (6, 5), (7, 2). See Fig 4.45 for C a se  (3).
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Case (3)
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Figure 4.45 The 2-d search space after 25% deletions and 50% insertions.

Deven = 37.5%

P erfo rm a n ce  eva lu a tion  

Point search average speed Tp
(1) with overflow handling ( assuming only when n > 1 . 5 x r x b  next split will be 

triggered and and the resolution r = 4 )
Tp = 1.25 x Tsec

Range search accuracy a
(a) select (x,y) where x < 5 and y > 5
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a -  16.7 %

(b) Select (x,y) where 2 < x < 6 and y < 4 
a =40%

(c) Average of case (a) and (b) 
a = 28.3 %

Storage Utilisation Su
(1) With overflow handling (r = 4)

Su =71 %

(2) Without overflow handling (r =16)
Su = 2 5 %

C a se  (4 )
From the original data set delete (1, 1), (5, 1), (5, 3), (5, 7) and insert (0, 4), (0,
5), (0, 6), (2, 6), (4, 7), (6, 2), (6, 3), (6, 7), (7, 2), (7, 5). See Fig 4.46 for
C a se  (4 ).

C a se  (4 )

□ E3

Q □ o O

□ O E3

□
O o 1 3

O °c 2 EJ ©

o o □ □

©

o

O 1 2 3 4  5 6 7

Figure 4.46 The 2-d search space after 25% deletions and 62.5% insertions.
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Deven = 50%

P erfo rm a n ce  eva lu a tion

Point search average speed Tp
(1) with overflow handling ( assuming only when n > 1.5 x r x b next split will be 

triggered and and the resolution r = 4 )
Tp ~ 1.32 x Tsec

Range search accuracy a
(a) Select (x,y) where x < 5 and y > 5 

a -  33 %

(b) Select (x,y) where 2 < x < 6 and y < 4 
a = 25 %

(c) Average of case (a) and (b) 
a ~ 29.1 %

Storage Utilisation Su
(1) With overflow handling (r = 4)

Su -  86 %

(2) Without overflow handling (r =16)
Su -  37.5 %

A nalysis of perfo rm ance results
Case Deven Tp average accuracy Su(O) Su(W) Dyn
(0) 25 % 1.125 31.25% 80 % 50 %
(1) 33.3% 1.13 31.25% 66.7% 50 % 21.25 %
(2) 37.5% 1.1875 34.3 % 80 % 50 % 37.5 %
(3) 37.5% 1.25 28.3 % 71.3% 25 % 75 %
(4) 50 % 1.32 29.1 % 86 % 37.5% 87.5 %
Here Su(O) is the storage utilisation with overflow handling; and Su(W) is storage 
utilisation without overflow handling.
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( Is) Feature measurement refinement
The performance shows that the initial feature measurement for Dyn is not accurate. 
A better measurement for dynamic situation Dyn should be Dyn = Hr - Drl. 
Therefore the rule for calculating Dyn is modified from Dyn = Ir + Dr to Dyn = Hr - 
Drl. The results are changed to be:
Case Deven Tp average accuracy Su(O) Su(W) Dyn (a fter ch an g e l)
(0) 25 % 1.125 31.25 % oo o sR 50 %

(1) 33.3% 1.13 31.25 % 66.7% 50 % 6.25 %

(2) 37.5% 1.1875 34.3 % 80 % 50 % 0 %

(3) 37.5% 1.25 28.3 % 71.3% 25 % 25 %

(4) 50 % 1.32 29.1 % 86 % 37.5 % 37.5 %

As Dyn relates to Deven, it is found that the Dyn value gained from each individual 
grid cells is more valid than if gained from the entire search space. That is, Dyn can 
be further refined as: 

i=r-l
Dyn = X Hr[i] - Dr[i]l /  (r x b), where Ir[i] and Dr[i] are insert rate and delete rate 

i=0
for grid cell i. The results after this refinement for case (4) are:

Case Deven Tp average accuracy Su(O) Su(W) Dyn (afte r change2)
(0) 25 % 1.125 31.25 % 80 % 50 %
(1) 33.3% 1.13 31.25 % 66.7% 50 % 31.25 %
(2) 37.5% 1.1875 34.3 % 80 % 50 % 25 %
(3) 37.5% 1.25 28.3 % 71.3% 25 % 25 %
(4) 50 % 1.32 29.1 % 86 % 37.5%  50 %
The formula 

i=r-l
Dyn = X llr[i] - Dr[i]l /  (r x b), where Ir[i] and Dr[i] are insert rate and delete rate 

i=0
will replace the previous definition of Dyn as the result of refinement.

(2) Algorithm selection analysis
The initial selection shows very good performance in point search Tp, and range 
search accuracy for selected searching conditions. By examine the performance for

2 1 1



the above cases it can be learnt that Dyn is correlated to Deven and to the average 
point search performance Tp. With a different Dyn value the correlation can be
derived as:
Dyn ADeven ATp
21.25 % 8.3 % -  0.005
37.5 % 12.5 % * 0.0625
75 % 12.5 % -  0.125
87.5 % 20 % » 0.195

From this example the results show that the initial selection is quite reasonable. 
However, the performance of other algorithms can be evaluated for various 
situations during the dynamic changes of the data set to see if z-hashing is the best 
one for this application.

(3) Alternative algorithm for case (4)
Features for algorithm selection 
Deven <45%
Rs < 70%
Dyn < 50%
Ps < 30%
IDsI = 3
Heuristic functions (refer to section 4.4.3 )

hEXCELL = 2 + 2 + 3 + 3 + 3 == 12

^z-hashing = 2 + 4 + 2 + 3 + 4 == 15

^quantile-hashing =  2 + 4 + 2 + 3 + 3 == 14

hpLOP-hashing = 2 + 2 + 4 + 5 + 3 == 16

hBANG-file = 2 + 4 + 5 + 2 + 3 == 16
According to the heuristic function, either PLOP-hashing or BANG-file algorithm 
can be applied. Here we notice that BANG-file was given a greater weighting for 
the Dyn feature than that of quantile-hashing (which is the major changing factor for 
performance deterioration). As a result, BANG-file algorithm is chosen.

P erfo rm a n ce  eva lu a tio n  f o r  B A N G -file  a lg o rith m

For C a s e  (4 )  there are 22 points in the search space. We have assumed b = 4.
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Therefore 6 partitions can be applied or 4 partitions with overflow handling. The 
BANG-file partition is pictured in Figure 4.47.

0 1 2 3 4 5 6 7

Figure 4.47 BANG-file Partition for C a s e  (4).

Region Level number range (z-code equivalent)
rO 2 0 0 ~  15
r l 2 1 1 6 -3 1  - 1 6 -1 9
r2 4 4 1 6 -1 9
r3 2 2 32 -  63 - 44 -  47 - 52 -  63
r4 4 11 4 4 -4 7
r5 3 7 5 2 -6 3

Point search rate
Tp = lx  Tp (index in memory)
Tp = 1.5 (index on secondary storage)
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Range search accuracy a
(a) Select (x,y) where x < 5 and y > 5 

a « 57% (rl and r5 are accessed).

(b) Select (x,y) where 2 < x < 6 and y < 4
a = 42.857 % (rO, r l ,  r3 and r4 are searched).

(c) Average of case (a) and (b) 
a = 50%

Storage Utilisation Su

minimal requirement = [~n/bl = T 22 / 4 ~] = 6  blocks

actual requirement = number of partitions + lindexl = 6 + 1 = 7
Here we assume one bucket is required to store the index. In a real situation this is a
much clearer case.
Su = minimal requirement /  actual requirement - 6 / 1  =  85.8%

(4) Applying BANG-file algorithm to the original data set
Performance evaluation for the original data set applying BANG-file algorithm is 
shown below. The partition can be seen in Figure 4.48.
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Figure 4.48 Applying BANG-file algorithm to original data set. 

Point searçh
Tp = 1 x Tsec (index in memory)
Tp = 1.5 x Tsec (index on secondary memory)

Range search accuracy a
(a) Select (x,y) where x < 5 and y > 5 

a ~ 33% (rl and r4 are accessed)

(b) Select (x,y) where 2 < x < 6 and y < 4 
a = 37.5 % (rO - r5 are searched)
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(c) Average of case (a) and (b) 
a = 35%

Storage Utilisation Su

minimal requirement =|~n/bl = 1 6 / 4  = 4 blocks

actual requirement = number of partitions + lindexl = 5 + 1 = 6
Here we assume one bucket is required to store the index. In a real situation this is
a much clearer case.
Su = minimal requirement /  actual requirement = 4/6 = 66.7%

(5) comparison between initially selected algorithm and BANG-file algorithm
Algorithm Case Deven Dyn Tp accuracy Su
z-hashing (0) 20% 1.125 35.0% 80.0%
BANG-file 1 or 1.5 35.0% 66.7%
z-hashing (4) 45% 50% 1.32 30.3% 66.7%
BANG-file 1 or 1.5 50.0% 85.8%

The comparison shows that the heuristic functions are reasonably accurate. This is 
indicated by better performance gained for case (0) of z-hashing algorithm, the 
heuristically chosen algorithm; and better performance gained for case (4) of 
BANG-file algorithm, which is again, selected by heuristic functions based on 
features of case (4).

From above examples, we learnt that inaccuracy exists because the initial perception 
of knowledge can be inaccurate. For instance, the calculation of Dyn was based on 
the assumption that any changes either insertions or deletions influence the data set 
and the effect is measured by summation of the changes, i.e. Dyn = Ir + Dr. This 
measurement can be accurate when all insertions belonging to one region of search 
space, say, Ri, and all deletions belonging to another region, say, Rj, where Ri *  Rj 

and Ri n  Pj = 0 .  However, as the system proceeds, it learnt that Dyn is related to

Deven. As a result, Dyn measurement needs to be refined. The learning process is 
this. From original case (0) to case (4), we have:
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case insertion deletion Deven original Dyn change 1 change 2
grid [0] [1] [2] [3] [0] |[1] 1[2] [3] 25.0%

0->l 0, 0, 2, 0 0, 1, 0, 2 33.3 % 21.25% 6.25% 31.25%
l->2 0, 1, 1, 1 2, 0, 0, 1 37.5 % 37.50% 0.00% 25.00%
2->3 1, 2, 3, 2 0, 0, 2, 2 37.5 % 75.00% 25.00% 25.00%
3->4 0, 4, 3, 3 1, 2, 0 , 1 50 % 87.50% 37.50% 50.00%

As a learning process the system has knowledge of expected correlation between 
Dyn and Deven. This knowledge indicates that the dynamic factor Dyn directly

influences data distribution Deven. It is very accurate to say that heuristically ADyn

«  ADeven, where indicates a proportional relationship.

The system also knows that Deven is calculated on the resolution level of a search 
space and therefore, the accuracy will be at that level. When the system gets the 
results from each case, it sees no expected relation between Dyn and Deven, for the 
original Dyn given by the following calculation:
case Deven

25.0%
original Dyn

0->l 33.3 % 21.25%
l->2 37.5 % 37.50%
2->3 37.5 % 75.00%
3->4 50 % 87.50%

When comparing ADyn and ADeven the system can detect that from case (2) to (3),

ADeven = 0 whereas ADyn = 75%; which is double the value of the previous case. 

The reason is that Deven is not changed as the final effect over the Deven is the 
same compared to the previous case. Consequently, Dyn = Ir + Dr only partially 
reflects the dynamic change of the application. The system therefore, uses Dyn = Hr 
- Drl to calculate dynamic factor. The result becomes:
case Deven after change 1 Dyn
0->l 33.3 % 6.25%
l->2 37.5 % 0.00%
2->3 37.5 % 25.00%

217



3->4 50 % 37.50%

After the first change, the system can again detect that from case (2) to (3), ADeven 

= 0 so that ADyn for case from (1) to (2) and from (2) to (3) should be the same.

As Dyn for case (1) to (2) are 0% whereas ADeven = 4.2%, the system learnt that 

the inaccuracy is caused by calculating the dynamic factor over the entire search 
space. As mentioned before, Deven is measured at resolution level. To maintain the 

expected relationship between ADeven and ADyn, Dyn has to be calculated at the

resolution level. As a result another change has been introduced for calculating Dyn, 
which is changed to: 

i=r
Dyn = X I Ir[i] - Dr[i] I, 

i=0
where Ir[i] and Dr[[i] are insertion and deletion rates for grid [i].

The result is:
case Deven

25.0%
0->l 33.3 %
l->2 37.5 %
2->3 37.5 %
3->4 45% %

after change 2 Dyn

31.25%
25.00%
25.00%
50.00%

Now the expected relation is established. The system will use the formula for Dyn 
from change 2 to estimate the Dyn feature.

In this section several examples are given to show how the expert system refines its 
ability to reason more accurately. This validation is based on both experimental 
method and “learning by expected result” approach. The experimental method 
allows the system to modify and adjust its original knowledge based on 
applications, so that new knowledge can be incorporated with the knowledge 
system. The “learning by expected result” approach, enables the system to reason 
on its original knowledge by comparing the result, it gets from an application with
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the expected result to refine knowledge.

4.9.6. Conclusion
No knowledge is perfect. "The world is not a fixed, solid array of objects, out 
there, for it cannot be fully separated from our perception of it. It shifts under our 
gaze, it interacts with us, and the knowledge that it yields has to be interpreted by 
us. There is no way of exchanging information that does not demand an act of 
judgement. " [BR73]. An expert system is not an exception in terms of perfection. 
It simply simulates an expert using programs. The computer has the advantage of 
speed, but it can misinterpret knowledge and therefore, a tuning and verification 
element in the system is a must.
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Chapter 5 Conclusion
The problem addressed by this research effort was to apply heuristics in selecting 
and tuning m-d (multi-dimensional) algorithms for physical database design. 
Efforts in computer applications have been directed at finding various algorithms 
for efficient organisation and use in database design. However, most of these 
algorithms are application-oriented and technical and therefore, difficult to use to 
their best effectiveness. Choosing an algorithm for an application requires 
consideration of the characteristics of applications. Identifying an implementation 
algorithm which will be the near-optimal choice becomes a challenging problem to 
tackle.

Given several algorithms and an application to derive a better solution, a physical 
database designer may start by analysing the application characteristics, hardware 
and software environment, and the requirements; analysing the features of available 
algorithms before determining an optimal implementation algorithm. There are a 
variety of applications using database technology and many of them have similar 
characteristics which influence the choice of implementation algorithm. Hence the 
same algorithm may be applied, to those which are categorised as the same 
application type, successfully with high probability. On the other hand, given a 
group of application types (different types have different characteristics) and a 
number of algorithms, by analysing the strengths and weaknesses of each 
algorithm, a heuristic judgement can be applied to determine which is more 
appropriate for an application type. The choice of an implementation for a data set 
in a computer is a fuzzy area; it depends on the application domain - the data 
distribution and the way these data are used and updated. Thus the selection is 
made based on analysis of both the algorithms and the applications.
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Appendix A1

The analysis of the inverted file partition and the grid file partition
For simplicity, we assume that the size of a data item is equal to the size of a bucket. 
(1) Inverted file
(a) The model of the inverted file partition:

Data set Ds = { d l, d 2 , d n }
Suppose kj 1 for j = 1 ,2 ,..., n is a primary key set:
dj = (kj 1, kj2, ..., kjm) for j = 1, 2, ..., n
The data set is stored in a sequence so that k il < k jl if i < j.
For kji where i * 1 (not a primary key) and j = 1, 2 ,..., n there are (m - 1) 
key sets created for the search purpose:
Kj = { kij I (i = 1, 2 ,..., x) and (j = 2, 3 ,..., m) and ( kij < klj if i < 1) }

(b) The complexity of the model for the inverted file partition:
Storage complexity
The main data set requires storage of IDsI = O(n).
The non-primary key sets.
Suppose the number of different values for non-primary keys are N2, N 3 ,..., 
Nm so that the average storage requirement Savg for Kj where j = 2, 3 ,..., 
m, can be derived as:

N2 + N3 + . . . + Nm
Savg = ------------------------------

( m - 1 )

In the formula, the complexity of Ni for i = 1, 2 ,..., m is O(n). 
The storage required for non-primary keys are:
(m - 1) x Savg = O(m) x O(n) = 0 (m  x n) and 
the total storage required for the data set is:
S = IDsI + (m - 1) x Savg = O(n) + 0(m  x n) = 0 (m  x n)
The complexity of the storage, therefore, is 0 (n  x m).
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The time complexity
The time complexity is related to the geometric proximity. If the data items are 
stored closely together, in terms of a retrieval query requirements, then the time 
complexity can be reduced. If we view a query as a classification function which 
generates a result space, and the partition over the data set as a number of data 
regions, then the complexity is evaluated by two factors: (i) The access paths, (ii) 
How closely a result space matches the data region(s) by the partition over the data 
set, i.e. if the minimum number of data regions required to include the result space 
is small, then it is close a match. The time complexity, therefore, depends on both 
the result space generated by a query and the data region generated by the partition.

(2) Grid file partition
(a) The model of the grid file partition.

Data set Ds = { d l, d 2 , ..., dn}
dj = (k jl, kj2, ..., kjm) for j = 1, 2, ..., n
The data set is stored in a sequence so that di before dj if z(Ii) < z(Ij).

(b) The complexity of the model for the grid file partition.
Storage complexity
The main data set requires storage of IDsI = O(n).
If the grid partition is implemented using an indexing approach then the 
complexity of the index will be O(n).
Therefore the complexity of the storage is 0 (2  x n).

The time complexity
The time complexity is related to the geometric proximity which is the same as 
in the inverted file partition. It depends on the characteristics of an application.

(3)  Comparison
For storage complexity when m > 2 the grid file partition outperforms the 
inverted partition. For time complexity, if most queries only involve the 
primary key, then the inverted file partition will be a better choice, otherwise 
the grid file partition will generate a smaller result space which involves fewer 
storage accesses.
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Appendix A2

Application features calibration
Deciding the limit of C ll, C13, C21 and C31

The choice between an indexing or a hashing function to implement PT1 in 
terms of storage and speed is determined by the following estimation. For ease 
of discussion, we shall assume that available main memory for the data set is

M, the number of total grid cells is 2^ ( L is the level of the data se t), the 
number of empty grid cells is Nempty, the index record length is Sidx, and the

bucket size is b. Our discussion is based on the consideration of speed and 

storage utilisation.

(i) Speed
The speed is mainly influenced by the storage of access paths. There are 
two cases for the indexing implementation shown in Figure 1. (a) and (b) 
respectively. In case (a) the entire index can be stored in main memory so 
that we can get the address of the required data item(s) from the index file. 
Only one secondary storage access is required to get the data item. There is 
no difference between an indexing method and a hashing method. In case 
(b) there is not enough main memory for the entire index file and therefore, 
to get the address of a data item we have to read the index file into main 
memory first, then perform another read to get the required data item. An 
extra secondary storage access is needed to compare the indexing algorithm 
with a hashing algorithm. Thus for the indexing approach the speed 
depends on where the index file is stored.
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(a) the index file can  be sto red  in m ain  m em ory

To re trieve  a  d a ta  item :

( 1 ) g e t th e  a d d r e s s  f ro m  th e  in d ex  file in  m a in  m e m o ry  

(2) a c c e s s  th e  d a ta  item  on  th e  se c o n d a r y  s to r a g e

T  =  T m em o ry  + T se c o n d a ry  =  T se c o n d a ry  

(b) th e  in d ex  file c a n n o t  be  s to r e d  in  m a in  m e m o ry

T m em o ry : tim e fo r  m a in
m e m o ry  a c c e s s

T se c o n d a ry : o n e  a c c e s s
to  se c o n d a r y  
s to r a g e

To retrieve  a  d a ta  item :

(1) g e t th e  a d d r e s s  fro m  th e  in d ex  on  th e  se c o n d a r y  
s to r a g e

(2) a c c e s s  th e  d a ta  item  fro m  th e  se c o n d a r y  s to ra g e

T -  T se c o n d a ry  + T m em o ry  + T se c o n d a ry  »  2  x se c o n d a r y

Figure 1. Indexing implementation.
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The storage requirement for an index file can be expressed as Sidx x 2^-

When Sidx x 2 ^  < M, the entire index could be stored in main memory. 

In order to find a data item, an array-like calculation determines an entry to 
the index file. Based on the content of the index entry the data item can be

located in secondary storage. When Sidx x 2^  > M the index has to be 
stored on the secondary storage and as a result, an extra access will be 
needed to get the required data item(s).

(ii) Storage utilisation
The storage utilisation is determined by the extra amount of space required 
to store access paths of a data set for retrievals. An indexing implementation 
needs extra space to store an index file. A hashing approach needs extra 
space to maintain regularity, which is a one-to-one mapping between a grid 
cell and a data bucket, to carry out a grid-cell-address (or a signature- 
address) calculation. Hence the extra space required for an index file is

Sidx x 2^> and a hash mapping is N em pty x b. If ((Nem pty x b) >

Sidx x 2^) and  (Sidx x 2 ^ <  M) then the index method is preferable. 
If speed is not an important factor then the condition can be relaxed to be

(Nem pty x b) > Sidx x 2^» otherwise the hashing method is 
favourable.
C l 1 is decided on the basis of requirements. If speed is not important for an 
application then C l 1 can be determined by the storage. If speed is important 
then C l 1 can be decided by both the storage and speed. Hence the meaning 
of storage utilisation is determined by the requirement of an application and 
hardware/software limitations. Based on the above analysis we can derive 
the following conditions.

(1) Storage is the main factor for the requirement:

C l l  = (Nempty x b)> Sidx x 2^)
(2) Speed is the main factor for the requirement:

C l l  = (Sid x 2^) < M) and (Nempty x b)> Sidx x 2^)

We can also derive conditions:

C13 = (Sidx x 2l  2) < M)
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C21 = (Sidx x 2l ) > M)
C31 = ( Nempty / r > 50% )

Determine conditions of C14 and C25
The dynamic insertions can be described by the database state transformation.

Let Sb represent the current state of the database and Sa represent the state after an 

insertion. We can define Sb as:

Sb = (Nempty(b), N fu ll^ ,  Ncell(b)}

A split results from adding a data item to the data space. It may change the system 
state.
(1) A data item is added to one of the empty grid cells

Sb ~> Sa = { N e m p t y - 1, Nfull(b), Ncell(b) + 1 }

When a new data item is added to an empty grid cell, a new data bucket will 
be allocated to the data set by an indexing implementation. An index entry 
needs to be updated and its address will refer to a new bucket.

(2) A data item is added to one of the non-full grid cells

(a) Sb - > S a = S b OR

(b) Sb --> Sa = { Nempty(b), Nfull(b) + 1, Ncell(b)}

In the above two cases the insertion does not cause a split and the time 
required to insert an item is equal to the sum of the block access time 
and a block write time.

(3) A data item is added to one of the full grid cells, resulting in a split:

Sb --> Sa = { Nempty(b), Nfull(b) - 1, Ncell(b) + 1}, for an indexing 

method OR

Sb —> Sa = { Nempty(b), Nfull(b) - 1 ,2  x Ncell(b) } for a hashing method 

Here the number of grid cells added from the split is equal to N c e ll^  and the 

level of the data set L has been increased by 1, i.e. L(a) = L(b) + 1 where

L(b) indicates the data set level before an insertion and L^a) is the data set 
level after an insertion.

Using an index file the number of index entries will be doubled and the contents of
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the index need to be rearranged in order to be located by L^aX This process includes 

setting pointers and ordering the index records in the z-order. This reflects the 
complexity of the insertion. The C ll  condition will be re-examined as the index size 
has been doubled; but in physical data space (physical data space refers to the space 
in secondary storage which corresponds to the partitioned data space) only the grid 
cell that causes the split needs to be reorganised. Adding one data item will cause 
these data items, in one data bucket at most to be reorganised and one more new 
bucket to be allocated in the physical data space.

Using a hashing function the number of data buckets requiring reorganisation will 
be equal to the number of data cells before the split. It has the same complexity as 
reorganising the index, but instead of an index, the reorganisation takes place within 
the data file itself. There is a requirement to order the data buckets in z-order.

For the state, the probability of a data item being added to the full bucket is 

Nfull(b)/Ncell(b). in cases (1) and (2) it does not cause a split, so the effort 

involved is insignificant. When a split occurs, which is the case in (3), we need to 

choose between available implementation algorithms.

(b) full
(a) N

C14 = ( (N x Sidx) < M) and (Dyn x --------------------  < 3 0 % ) )
(b) cell 

N

The condition C14 is determined by heuristics. Heuristics that make a decision on 
the basis that the indexing method copes with a dynamic situations better than the z- 
hashing and the PLOP-hashing is better than the indexing approach. The decision as 
to which approach should be applied is difficult to make. In construction of 
heuristic function we have assigned the value by a comparison with other 
algorithms, that is by comparison with other algorithms to see where a particular 
algorithm stands.

A range search in a m-d data space retrieves a group of data items which satisfy a 
certain condition. These conditions quantify a geometric closure enclosing those 
required data items. It can be described as " search all data items that fall within the 
boundaries of [a^, ai2] for i = 1, 2 ,..., m ". A partial range search means that if T
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= aja2...a m represents a tuple and the query is in the form of Q = ??ax a(x+l)??’ 

implying that if only the x^1 and (x+1)^1 attributes are concerned during a search 

then Q is a partial range query. Alternatively, it can be described as " search all data 
items within a set of boundaries of [ail5 ai2] for i = 1, 2 , k and k < m The 
data items that satisfy the range or partial range search usually result in accesses to 
several grid cells, that is, several data buckets need to be consulted in order to get 
the required data items. To improve the efficiency of a search it is desirable to 
arrange data items in secondary storage according to the geometric distance between 
data items. The z-hashing provides a better geometric proximity for organising data 
on secondary storage than the EX CELL algorithm. This is due to the fact that the 
EXCELL algorithm keeps the addresses in the index file, where the index records 
are ordered in z-order; but it does not necessarily guarantee that the data items are 
also held in z-order. When a range search is required frequently in an application, 
the z-hashing improves the performance as a whole by accessing the data set in 
physically consecutive buckets. To quantify the level of frequency for the range and 
partial range searches information about their frequencies needs to be recorded. In

the section " dynamic changes of database profile " we have introduced R s ^  as 
the range search rate. This can be evaluated by counting the number of range and 
partial range searches conducted over a data set. The initial value Rs can also be 
estimated by users and supplied from the USI. Hence, the high range search rate 
can be defined as:

C25 = Rs > 50%
To identify the different effects between various implementation algorithms we can 
analyse their likely performance for range and partial range searches. For the 
EXCELL algorithm, as analysed above the performance for range searches cannot 
be guaranteed. For the PLOP-hashing algorithm, which copes with the dynamic 
situation well, the geometrical proximity can be lost by numbering the slices 
according to the growth order.

Deciding the condition of C24, C33 and C42
The expected insertion pattern depends on the current state of a data set. A split will 
increase the data set level L by 1 and consequently it will change the resolution of

the data space and create a set of unused bucket sequence numbers [ 2^, 2 ^ + 1 ’

..., 2^  + * ]. To match the order set by the split rule the order of insertions can be 

worked out in terms of which sequence of the grid cells should be split, i.e. the
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ranges given by these grid cells form a sequence of data items expecting to be 

inserted. Suppose the sequence of the grid cells is (Gj, G2, Gx) € (0, 1,

2l  '  !), the range of each grid cell is R[Gj] for i = 1, 2 , x,  and data items to be 
added are (dj, d2, dy) . Firstly we transform these data items into their 
equivalent z-codes: d = (dl5 d2, dy) -> Z = (z(d1), z(d2), z(dy)) belonging 

to (0, 1, 2L '  1). Secondly we order Z = ( z ^ ) ,  z(d2), z(dy)) -> Z' =

(zXdj), z'(d2), z'(d )) corresponding to(Gj, G2, Gx) where z'(di) e  Gj 

and z'(d(i+l)) belongs to Gk and i < k. Elements in Z' represents the insert 
sequence. The insertion pattern can be expressed as:
C24 = ( ( the z-code for the elements in the insertion set matches the order of

Z ') or (Dyn < 10%))
C32 = ( Dyn < 10% )
C42 = ( Dyn > 50% )

Determine C23
Even data distribution (EDD) measurement.
Suppose that the number of data divided into m grid cells and the number of data 
items in each cell is stored in C[i] for i = 1,2, 3 ,..., r.
The EDD meets the condition for packing density p, 

m
C23 = X IC[i] - bl < (1 - p) x r x b 

i=l

229



Appendix A3

An explicit illustration of the split rule

Suppose a split is a state transformation From data space level L to
(L + 1), the state can be described by bucket sequence numbers as:

S(b> = ( 0 ,  1,2,  ..., 2l - 1 )

S<a)=  (0 , 1, 2, ..., 2l  -1 , 2l , 2l + 1, ..., 2(L+ ! ) - 1 )

The first grid cell to be split will be the one which produces the number of 2^, 2^  + 

1. Assuming that the grid cell k within the range of s (b) is the chosen grid cell then 

the next grid cells to be split will be the one which produces the z-codes 2 b + 2 and

2b +3. This process can then be described as a recursive process, until a full split is 
reached.

First split:

Choose x which produces numbers among the available bucket numbers 2b

to 2^  + 1 so that the produced numbers are the minimum number among the 

available unused numbers.

Second split:

Choose y which produces bucket numbers 2b  + 2, 2^  + 3.

Third split:
If x, y can be derived from a bucket number in use, i.e. the grid cell z, 
which belongs to the used z-number, can produce x, y then we choose z to

split, otherwise we choose the one which produces bucket number 2^  + 4,

and 2^  + 5 and so forth. An example which illustrates the process is given 

in Figure 2.
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Figure 2. z-hashing splitting sequence.
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Appendix A4

Bane file and z-hashing storage utilisation
For the z-hashing the storage utilisation depends on the data distribution and is 
measured by the packing density for each grid cell. If the number of data items in 
a grid cell is C(z) for z = 1 , 2 , Ncell and the bucket size is b then the average 
storage utilisation Su for the data set will be:

i=Ncell 
I  C[i]

Su = ___ iz l __________
b x Ncell

The extra space, ladditional spacel, required for the data set, therefore, is 

ladditional spacel = (1  - Su ) x Ncell

If the index record length is Ridx then the storage required for the index file, 
lindexl, by Bang partition will approximately be:

|indexl = Ridx x T n / b ] x  Su

where n is the number of data items in the data set.
Therefore, we can derive the formula for the break-even point calculation as: 

ladditional spacel - lindexl < 0

If the condition holds the z-hashing is preferable otherwise the Bang file partition 
is favourable.
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Appendix A5

Calculation for a multi-Iavered m-d identifier
Let G = {Gl, G 2 , G k }  be k-layers of a grid partition for an object data set. Let 
obj = {objxl, o b j x 2 , o b j x k )  be the entire object data set and objxi for i = 1, 2, 

k refer to a subset of objects in layer i, i.e. objxi = {objil, o b j i 2 , o b j i x i } .  
For each layer the element is represented by oblxi = {idij, Wij for i = 1, 2 , k; j 
= 1 ,2 ,..., xi}, where idij is the object identifier formed by z-code and Wij is a 
weight function which decides the number of buckets each object occupies. Initially 
Wij = 0. A total number of buckets (Ni for i = 1 ,2 ,..., k) used for each layer is 
kept for easier formation of the identifier. An identifier for an object in layer i can be 
calculated by:

x=(i-l) y=(j-D
idij = X Nx + X Wiy 

x=l y=l
Wiy = number of buckets required to store the object.

Having used this method to calculate the object identifier we noticed that when 
variable length objects are allowed an insertion may cause changes to these 
identifiers, implying high complexity of change ( n/2 = O(n) in average). Hence it 
cannot cope with dynamic situations efficiently. Alternatively, we can keep the 
address of an object stored in the index without changing the object identification. 
This means that objects stored in different layers can have the same identifier 
distinguished by their layer and the address. An object is identified by its minimal 
enclosure in a partition for a layer. This is shown in Figure 3.
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in  layer i. Nx is the number of buckets 
occupied in layer x. v ij  is ve igh t given for 
a correspond object.

x=0 y -0
id l 1 -  2  Nx + 2  v l y - 0

x — 1 y-1

x -0 y-t
id 12 - 2  Nx + 2  v l y  = 2

x — 1 y-1

x -0 y-2
id 13 = 2  Nx + 2  v l y

x— 1 y-1

= v l  1 + v l 2  -4  
N1 = v l l  + v l 2  + v l 3  = 8

x— 1 y -0
id21 -  2  Nx + 2  v 2 y

x-1  y-1

= v l l  + v l 2  + v l3  -  8

N2 = N1 + v21 = 11

x=2 y - 0
id 31,- I  Nx + 2  v 2 y  -  n

x=l y=l

Figure 3. Object identifier calculation for a multi-layered grid partition.
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Appendix A 6

Performance evaluations for different applications 
(1) The EXCELL algorithm 
ACCESS TIME ESTIMATION 
(a) Index file is stored in main memory 

POINT DATA ACCESS 
T = Tsec
T - time estimated for a point search.
Tsec - time required for an access to secondary storage.

RANGE SEARCH
avg (C[i]) x k avg(C[i])

a = ------------------------= ---------------
b x k  b

a - an estimation of access accuracy of a range search.
avg(C[i]) - the average number of data items in a grid cell:
avg(C[i]) = n /  B
where B is the number of buckets actually in use.

Let Dreq = ([Dxl, Dx2], [Dyl, Dy2]) be the range covered by the query, lx 
be the interval length in the x dimension, Iy be the interval length in the y 
direction. We can calculate the number of blocks require to be retrieved, 
b - bucket size.
k - number of grid cells a range search covered.

Dx2 - Dxl
4-

Dy2 - Dyl

lx

T

iy

INSERT A DATA ITEM
T = one read + one write = 2 x Tsec when there is no split
T = one read + two writes = 3 x Tsec if there is a split
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To insert a data item the maximum time required is when an insertion causes 
a split; thus one data block needs to be read and split into two data blocks. 
Subsequently, these two blocks need to be written to the secondary storage, 
requiring two write operations. Moreover, the complexity of reorganising 
the index file is O(r), r is the current file resolution.

DELETE A DATA ITEM
(i) no merge

T = one read + one write = 2 x Tsec
(ii) there is a merge

T -- two reads + one write = 3 x Tsec

(b) Index file cannot be stored in main memory 
POINT DATA ACCESS 

T = 2 x Tsec
one access to the index file and one for the data block.

RANGE SEARCH
avg(C[i]) x k avg(C[i])

a = ......... .....................  = ------- --------------
1.5 x b x k 1.5 x b

k - number of grid cells a range search covered. The
factor 1.5 indicates the average index accessed is 0.5 
of the total number of secondary storage access 
required.

INSERT A DATA ITEM
T = two reads + one write = 3 x Tsec when there is a split
T = two reads + two reads when there is a split
A read to the index is added to the previous case in (a).

DELETE A DATA ITEM
(i) there is no merge

T = 2 x reads + one write = 3 x Tsec
(ii) there is a merge

T = three reads + one write = 4 x Tsec
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(2) the z-hashing algorithm 
ACCESS TIME ESTIMATION 
(a) With overflow handling 

POINT DATA ACCESS
With overflow handling to the z-hashing method an access to a data 
item depends on two factors.
(i) Whether the data item to be accessed is in the home area or in the 

overflow area.
(ii) The technique used to handle the overflow. In our system the 

overflow is handled by a separator table. The details are in the 
Appendix A8.

For overflow handled by the separator table we assume that the table can be 
stored in main memory otherwise a split is triggered to resolve the table. 
Under this assumption we get:

T = Tsec
A data item to be accessed by a query will relate to a specific grid cell 
represented by its z-code. The separator (overflow) table in main memory 
will be searched and there are two situations:
(i) The z-code is in the table. This implies that the required data item may 

be in the overflow bucket so that the separator is compared with the 
relevant attribute value in the query. It can be determined that either the 
data item is stored in home or in the overflow areas and therefore, a 
secondary storage access is required to read the block into main 
memory for examination.

(ii) The z-code is not in the table. One secondary storage access is needed 
to read the block which may contain the data item.

RANGE SEARCH 
avg(C[i]) x k

a = .................— ............
b x k ’
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where
k - the number of grid cells covered by the range query
k' - the number of data blocks needed to be accessed by the range

search. There are two cases:
(i) Every grid cell covered by the query is in a home grid so that k = k'.

(ii) Some of the grid cells covered by the query need overflow areas to 
store data items falling in the range specified by the query. As data 
items for a range search domain are beyond the storage capacity for a 
grid cell, both home and the overflow blocks have to be accessed to 
get these required data items, and therefore k' > k. The exact value of 
k' depends on the number of grid cells which demand overflow areas 
and the depth of an overflow area. It can be estimated by the 
following formula.

k' =

ie  DRs

C[i]

b

where DRs is the domain of the range search, i.e.
DRs = (Dxl, Dx2) X (Dyl, Dy2)

INSERT A DATA ITEM
There are several cases to be dealt with when inserting a data item.
(i) insert a data item into a non-full grid cell 

T = one read + one write = 2 x Tsec
(ii) an insertion results in an overflow

T = one read + two writes = 3 x Tsec

(iii) A split is triggered by an insertion
When a split is triggered the resolution of the data set changes and 
the file needs a reorganisation 

T = r(b) reads + re w rite s  = (r(b) + r(a)) x Tsec

= 3 x r(b) x Tsec = 3 x r x Tsec
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where r is the simplified form of r(b).

r(b) . resolution before a split

r(a) - resolution after a split r(a) = 2 x r ^ )

DELETE A DATA ITEM
(i) a deletion empties the overflow bucket 

T = one read = Tsec
and a deletion is needed for the separator table,

(ii) a deletion empties a home bucket
there is an overflow area corresponding to the home block
T = two reads + one write = 3 x Tsec
where
one read to home bucket 
one read to the overflow bucket 
one write to the home bucket 
otherwise
T = one read = Tsec
and an insertion to the empty grid cell table,

(iii) a deletion is one of the data items in the home or overflow bucket 
T = one read + one write = 2 x  Tsec,

(iv) a deletion causes a merge operation
In this situation a file reorganisation is triggered.

T = (r(b) + r(a)) x Tsec = 1.5 x r x Tsec 

where r(a) = 1/2 x r^X

(b) Without overflow handling 
POINT DATA ACCESS 

T = Tsec

A given data item uniquely corresponds to a grid cell and a grid cell 
uniquely corresponds to a data bucket, and thus only ONE disk access is 
required for a point data access.

RANGE SEARCH
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avg(C[i]) x k
a = -----------------

b x k

avg(C[i])

b

Dx2 - Dxl Dy2 - Dyl
k = +

lx iy

k - the number of data blocks covered by the range search, i.e. the 
number of data blocks needed to be retrieved. 

n(req) = avg(C[i]) x k
n(req) - an estimation of the number of data items required.

INSERT A DATA ITEM
T = one read + one write - 2 x  Tsec if there is no split

T = 3 x r(b) x Tsec = 3 x r x Tsec if there is a split

where r(^) is the resolution before a split.
When there is a split the whole data file needs to be reorganised in order to 
establish a one to one relationship between the grid cell in the new 
resolution and the block number. We can see that a large amount of I/O 
accesses are required and so the z-hashing cannot cope with dynamic 
situations efficiently.

DELETE A DATA ITEM 
T = one read + one write 

T = r(b) reads + 0.5 r(b)

= 2 x Tsec if there is no merge

writes = 1.5 x r ^ x  Tsec if there is a merge
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(3) The quantile-hashing algorithm 
POINT DATA ACCESS 

T = Tsec
RANGE SEARCH 

ni
a = ----------

b x k

k - number of grid cells a range search covered, 
nj - number of data items searched.

INSERT A DATA ITEM 
T = one read + one write

= 2 x Tsec when there is no split

T = r(b) reads + r(b) write

= ( r(b) + (r(b) + sx(b))) x Tsec

= (2 x r + sx) x Tsec 
(if there is a split in the y dimension)

T = r(b) reads + r(b) writes

= ( r(b) + (r(b) + sy(b))) x Tsec

= (2 x r + sy) x Tsec 
(if there is a split in the x dimension)

DELETE A DATA ITEM
(i) A deletion does not cause a merge operation 

T = one read + one write = 2 x Tsec

(ii) A deletion causes a merge

T = r(b) reads + r(b) writes

= ( r(b) + (r(b) - sx(b))) x Tsec

= (2 x r - sx) x Tsec 
(if there is a merge in the y dimension)

241



T = r(b) reads + r(b) write

= ( r(b) + (r(b) - sy(^))) x Tsec

= (2 x r - sy) x Tsec 
(if there is a merge in the x dimension).

(4) The PLOP-hashing
POINT DATA ACCESS 
T = Tsec

RANGE SEARCH
ni

a = ............... —
b x k

nj = I  avg(C[i])

Ri e RxXRy

0 if the region is not in RxXRy
R i=  {

1 if the region is in RxXRy

k - number of regions covered by the range search.

INSERT A DATA ITEM
T = one read + one write = 2 x Tsec when there is no split
T = sx reads + 2 x sx writes = 3 x sx x Tsec if there is a split in the y

dimension
T = sy reads + 2 x sy writes = 3 x sy Tsec if there is a split in the x 

dimension

DELETE A DATA ITEM
(i) a deletion does not cause a merge operation 

T = one read + one write = 2 x Tsec,
(ii) a deletion causes a merge operation in the y dimension 

T = sx reads + 1/2 sx writes = 1.5 x sx x Tsec 
similarly in the x dimension, T = 1.5 x sy x Tsec.

(5) The BANG file
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POINT DATA ACCESS 
T = Tsec.

RANGE SEARCH
avg(C[i]) x k avg(C[i])

a = ..........................-— = -----------------------
b x k b

k - the number of regions covered by the range search.

INSERT A DATA ITEM
T = one read + one write = 2 x Tsec when there is no split
T = one read and two writes = 3 x Tsec if there is a split

DELETE A DATA ITEM
(i) a deletion does not cause a merge operation 

T = one read + one write = 2 x Tsec
(ii) a deletion causes a merge operation in the y dimension 

T = two reads + one write = 3 x Tsec
similarly in the x dimension, T = 1.5 x sy x Tsec

STORAGE ESTIMATION 
(1) EXCELL algorithm

S = lindexl + r x b
where

lindexl = Sidx x r = laddressl x r

(2) Z-hashing
(a) With overflow handling 

S = (r + Nover) x b

(b) Without overflow handling

S = 2

log N(d)

x r x b

N(d) is the depth of the overflow.

(3) Quantile-hashing
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S = lindexl + sx x sy x b 
where

lindexl = Sidx x Vr

= (Iseparatorl + laddressl) x Vr

(4) PLOP-hashing
S = lindexl + sx x sy x b 
where

lindexl = Sidx x Vr

= (Iseparatorl + laddressl + lindexl) x V r)

(5) BANG file

S = lindexl + Vr x b 

where

lindexl = Sidx x Vr

= (llevel nol + Iregion nol + laddressl) x V r )
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Appendix A7

Information about distribution

the grid cell set which has more than b data items 
C(over) = { C[zi] I (C[zi] > b) for i = 1, 2 ,..., x } 
the number of grid cells with more than b data item 
Nover = IC(over)l
the depth of the overflow

N(d) =
max (C[zi] I C[zi]eC(over))

b

the grid cell set which has no data items 
C(empty) = { C[zi] I (C[zi] = 0) for i = 1 ,2 ,..., y }

the number of grid cells without any data items 
Nempty = IC(empty)l

the storage utilisation estimation (or storage utilisation) 
Nmin

P = ---------------
Nmax

the minimum number of buckets required for a data set. 
Nmin = r

the maximum number of buckets required for a data set 

|~ log N(d)

Nmax = 2  x r
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the degree of even data distribution

i=r
Z IC[i] - bl

d(even) = — — ----------
r x b

alternatively we can express d(even) as: 
o=x
Z 2 X (C[o] - b) 

o=l
d(even) = <i>

r x b

when (n - Ln / bj ) = 0, here C[o] e C(over) and
C(over) = { C[o] IC[o] > b and o = 1,2,..., x }.

Let us prove the above expression <i>. 
i=r i=r

known (a) n = Z b, (b) Z C[i] = n, and 
i= l i= l

proving
i=r o=x
I  IC[i] - bl = I  2 x (C [o ] -b )  <ii> 
i= l o=l

PROOF
i=r

from (a) and (b): Z (C[i] - b) = 0
i=l

dividing C[i] for i = 1,..., r into two groups C l[i] for i = x l , ..., xi and C2[j] for 
j = y l , ..., yj where all Cl[i] > b, all C2[j] < b and I { x l , ..., xi, y l, ..., y j}I = r. 
Let us look at: 
i=r
Z IC[i] - bl <iii>

i= 1
representing Cl[i] and C2[j] in the following manner:
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Cl[i] = cl[i] + b, C2[j] = b - c2[j]
according to the definition of C l [i] and C2[j] that c l [i] and c2[j] are greater than 
zero.We need to prove: 
i=r j=yj
I  IC[i] - bl = Z  2 x (C2[i] - b) <iv>

i= l j=yi

The formula <iii> can be represented as:

i=r
Z IC[i] - bl

1=X1
= Z  (Cl[i]

j=yj
- b ) +  Z (b - C2[j])

i=l i=xl j=yi
i=xi j=y.i

= Z  (c 1 [i] + b - b) + £  (b - (b -
i=xl j=yi
i=xi j=yj

= Z  Cl[i] + Z  c2[j]
i=xl j=yi

the formula can also be represented as:
i=r i=xi j=yj

+ Z  (b - C2[j])Z IC[i] - bl = Z (C l[i]-b )
i= l i=xl j=yi

i=xi j=yj
= Z (C l[ i]-b ) + Z  (b - C2[j])

i=xl j=yi

j=yj j=yj
+ Z  (C2[j] - b) - Z  (C2[j] - b)

j=yi j=yi
i=xi j=yj

= [ Z  (Cl[i] - b) + Z  (C2[j] - b)]
i=xl j=yi

j=yj j=yj
+ Z (b - C2[j]) - Z  (C2[j] - b)

j=yi j=yi

j=yj j=yj
= Z  ([0] + (b -C 2 [ j] ) -Z  (C 2[j]-b)

j=y! j=yi
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(b - C2[j] - C2[j] + b)= jFj
j=yi 

j=yj
I  2 X (b - C2[j])

j=yi

j=yj
I  2 x (b - (b - c2[j])

j=yi

j=yj
= 2 x £  c2[j] <d>

j=yi

from <c> and <d> we know that:
i=xi j=yj
I  cl[i] = I  c2[j] 
i=xl j=yl

that is, we can present formula <c> as:
i=r
£  IC[i] - bl = 

i= l

1=X1 j=yj
£ ( C l [ i ] - b )  + I  (b - C2[j])

i=xl j=yi
i=xi j=yj
£  (c 1 [i] +  b - b) + £  (b - (b -

i=xl j=yi
i=xi j=yj
I  cl[i] + I  c2[j]

i=xl j=yi
i=xi
£  2 x cl[i]

i=xl

i=xi
£  2 x (Cl[i] - b)

i—xl
therefore <iv> is proven.

When d(even) < x% the upper bound for the number of the empty grid cells will 
be x%  x r. This is easily proved by the definition of d(even).
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As far as the z-order is concerned four grid cells make up a combination to extract 
the features from a data space. Hence when a resolution r is chosen, information

on a resolution with r /  (21) where i = 1 ,2 ,... ,  log2r - 2, is easily derived. If the 

resolution is r/2 then the grid cell will grow to twice the size as for resolution r. 
When at resolution r, sx = 2 x sy is the case, we assume that every two slices in 
the x direction will be merged to one, and similarly if sy = 2 x sx, we assume that 
every two slices in the y direction will be merged to one. When sx = sy we can 
choose any one of them to merge. Suppose the resolution set is R = {rO, r l , ..., 
rx} where rO = r, r l  = r/2, ..., rx = r /  (log2r ). The rule given for d(even) is 
represented by a set of upper or lower bounds: d(even) = { < 20%, < 25%, < 
50%, >50% } and the rule implies: (a) the comparison order is to be taken from 
left to right upon the set of upper bounds given; (b) the reason behind the values 
given is that the upper bound indicates the maximum number of empty grid cells 
for the data set. If an application has close upper bounds, say <25%  for all 
d(even) values of different resolutions, then the accuracy of estimation of even 
distribution to be bounded by 25% increases. The result is easily represented in 
the knowledge base by a bit matrix of (x) x (y), where x is the number of 
resolution levels and y is the number of upper bounds given in the rule. A rule as 
given above, has 4 upper bounds, and when there are also four levels, of 
resolution to be considered in an AAP, the following bit matrix is explained.

matrix explanation
levelrO 1 0 0 0 at rO d(even) < 20%
levelrl 0 1 0 0 at r l  d(even) < 25%
levelr2 0 1 0 0 at r2 d(even) <25%
levelr3 0 0 1 0 at r3 d(even) < 50%

For an AAP the information on d(even) once derived can thus be stored as a bit 
matrix for system to use. Information gained at different resolution levels, such as 
C[i] for i = 0, 1, 2, 3 (the lowest resolution level), can also be used to tune the 
physical organisation under the system’s control.

An illustration of using Cfil at resolution level of r = 4
By analysing information at different resolution levels a very small sized index file 
may be introduced into the system to allow varied resolution levels for different 
regions within the data space. An example is illustrated below.
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Data space r = 4

R l
r=64

R3
r=8

RO
r=4

R2
r=64

It is possible that among these four regions {RO, R l, R2, R3} in the data space 
that RO and R3 have sparsely populated data items, and R l and R2 have a 
densely populated data distribution. To tune the physical organisation we may 
wish to apply different resolutions to differently populated regions. A small sized 
index thus can be used for this purpose. In each entry the resolution and the 
starting address is recorded for calculating an address by a z-hashing function. 
The tuning process is especially useful for a large data set with strong correlated 
data. An illustration is shown in Figure 4. Each region is treated as if it is an 
independent data set using the z-hashing implementation. We can see from Figure 
4 that by introducing the index file, the reorganisation caused by a split may also 
be localised.
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C h an gin g  reso lu tion  m ay  
in troduce index file 
alteration .

r  s t a r t  a d d r e s s  r  s t a r t  a d d re s s
0 8 0 0 8 0
1 1 8 1 1 8

2 1 9 2 2 18
3 8 10 3 8 10

3
10 11 12 13

14 15 16 17

To localise the  c h a n g e s  to  d a ta  b u ck ets 
bucket 9 is  re leased  after a  sp lit.

Figure 4. Tuning by different resolution.
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The local data density Ldfsiil
The algorithm for calculating local data density 
INPUT
C[i] for i = 0, 1, r - 1 

OUTPUT

Ld(xi) for i = 0, 1 , (sx - 1) =Llog2rJ  _ ^

Ld(yj) for j = 0, 1 , (sy -1 ) =Llog2rJ  . x

ALGORITHM 
L D ()

{
initialise Ld[xi] and Ld[yi] to be 0; 
for (y = 0; y++; y < sy)

{
for (x = 0; x < sx; x++)

{
z = interleaving x and y;
Ld[y] = Ld[y] + C[z];
}

}
for (x = 0; x++; x < sx)

{
for (y = 0; y < sy; y++)

{
z = interleaving x and y;
Ld[x] = Ld[x]+C[z];
}

}
for (x = 0; x++; x < sx) 

store Ld(x);
for (y = 0; y++; y < sy) 

store Ld(y);

252



i=r-l
dynamic factor: Dyn = X Ir[i] - Dr[i]

i=0

access mode: random access or no special requirement

depth of overflow grid cells:

(C(o) - b)_
N(d) = max (

b
) forC(o) eC(over)

packing density:

N(d)

[Log2N(d|]
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Appendix A8

Overflow Handling
Overflow usually needs an extra access to the secondary storage device. The main 
purpose of applying a hash algorithm is to gain fast response. Naturally it is 
desirable to handle overflow without an extra access to the secondary device. In our 
system we handle the overflow by utilising an overflow table in the main memory 
for a hashing algorithm. When inserting a data item the grid cell which causes an 
overflow will be divided into two. The original z-code of the grid cell will be kept in 
the overflow table along with the dividing dimension chosen. A retrieval will 
always look up the overflow table to decide if the required data item is in the home 
or in the overflow bucket. The key to the method is to calculate the z-value for a 
data item, which is to be stored in as the first one in the overflow bucket, the 
separator.

The overflow/separator table

z-code separator dimension layer address

z-code

separator

dimension

layer

address

corresponding to the grid cell at current level which has 
caused an overflow.
recording the position where the home and overflow area 
boundary value is in a specified dimension, 
indicating the direction in which the boundary has been 
recorded as a separator.
a grid cell can have more than 2 x b data items, so that within 
an overflow, another overflow may be embedded, 
the address of the overflow area. To improve z-hashing 
storage utilisation the address can be a z-code for an empty 
grid cell. Using empty grid cells to accommodate overflow 
all z-codes for empty grid cells need to be recorded as free 
storage for the system to use.

An example
Suppose the grid cell x is a home grid cell which causes an overflow. In the current
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grid cell x there are k items I = {il, i 2 , i k }  where (k > b) have the same z-code 
x. An overflow process will split the set I into two sets: II = { i l , i m - 1 }, 12 =

{ i m , i k }  in which case we store II in the home grid cell (x^1 data bucket) and 12 
in an overflow bucket with address <addr 1>. Assume that grid cell x is the first to 
be split by an overflow and it chooses dimension 1 to split, the separator table will 
be:

z-code separator dimension layer address

X im 1 0 <addr1>

Now if 12 changes to be 12 = {im ,..., ih} where h > b, i.e. it needs to be divided 
into two grid cells: 121 = { im ,..., ij-1} and 122 = { ij,..., ih}. In order to make a 
comparison with the separator for the same grid cell z-code, we always split it in the 
same dimension. If 122 is stored in <addr 2> then the table becomes:

z-code separator dimension layer address

X im 1 0 <addr1>

X ij 1 1 <addr 2>

where layer = 1 indicates that an overflow has occurred in the first overflow area. 

Search a data item ix
Given data item ix the z-code is calculated as z(ix). According to the value of z(ix) 
the separator table is inspected and the separator is compared with ix. There are 
three possibilities:
(a) no z-code in the separator table matches z(ix) so ix is in the home grid cell;

(b) when layer = 0, if the j^1 attribute of ix (j is the dividing dimension) is less

than the j *  attribute of the separator, then ix is stored in the home grid cell 
otherwise ix is stored in <addr 1>;

(c) when layer = 1, if the j 1*1 attribute of ix (j is the dividing dimension) is less 
than the jth attribute of the separator, then ix is stored in <addr 1>, 
otherwise it is stored in <addr 2>.
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Appendix A9

Selecting data organisation
(a) Sequential or indexed sequential

When the activity is high the data can be organised by a sequential access 
method ordered on the dominant attribute identified (usually the primary key). 
The level at which the system will go to the sequential organisation is a break-
even problem. To determine the break-even point the following algorithm is
used.
INPUT = { n, m, R, b, k, a }
where
k: the length of the key.
a: address referring to a data item.
R: the average length of the record length.

OUTPUT = { break point: percentage of the activity }

ALGORITHM:
Assume that the activity of a data set is x (%) then the unnecessary access of data 
in a sequential organisation will be: (1 - x) x n x R (bytes). If we use an index to 
store the file and the key length in the index is k then (x) x (k + lal) bytes will be 
accessed for the index file. Here lal is the length of the address of the index. Each 
access to the index results in an access to a data block and therefore, the total extra 
accesses will be (x) x n x (k + lal) + (x) x n x (b - 1) x R. The interpretation for 
the formula is that the first part is the number of bytes to be accessed for the index 
and the second part is the number of bytes accessed to the required data block 
minus the wanted one (R). To decide the break-even point for a sequential 
organisation we have the inequality:
(1 - x) x n x R < (x) x n x (k + a) + (x) x n x (b - 1) x R 
That is:
(1 - x) x R < (x) x (k + a) + (x) x (b - 1) x R 
R - (x) x R < (x) x k + (x) x a + (x) x b x R - (x) x R 
( x ) x ( k  + a + b x R ) > R  
Solving the equation, we get:
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Bp 1 = (x >
R R

k + a + b x R  c + b x R

Here C is the index storage overhead.

The Bp 1 is a break-even point condition. If Bpl is true and the access mode is 
not crucial then sequential organisation can be used. If Bp 1 is not true then index 
organisation is to be used.

This is the function for making a decision on a sequential file if real-time mode is 
not required by the user.

Thus the rule is:
if (bpl = true) and (access mode * real time) then sequential.

Ib) Indexed sequential or hashing
When access time is important either the hashing or indexed sequential algorithm 
can be chosen. The decision relies mainly on the following factors: (1) available 
min. memory M; (2) data vitality Dyn; (3) data distribution Ds. Rules governing 
the decision can be described as:
if ( (lindexl < M) and ( Ds is even) )then indexed sequential;
if ( (lindexl > M) and (Ds is even) and (Dyn is low )) then hashing;
if ( (lindexl > M) and (Dyn is uneven) then further factors have to be considered.
The factors can be the application requirements such as storage utilisation Su and
access speed.
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Appendix 10 
Examples 
Example 1
Rules regarding the algorithm selection have been described in section 4.1. Here, we 
illustrate how those rules will work by giving some examples. In the following two 
simple examples, we shall demonstrate the usage of the system by applying elimination 
rules for the selection of an access algorithm.

Assumption
memory size : M = 1,024 K,
short lived data set : tm < 4 weeks.

(1) Given features of an application
Data set 
Life span

D = { d l, d2, ..., dn}, 
tm < 2 weeks.

Selection
According to elimination rule ER2, ALT[1] (EXCELL algorithm) is selected.

(2) Given features of an application :
Data set 
Life span

D = { d l, d2, ..., dn}
tm > 4 weeks

The derived features 
index file size llndexl < 1,024 K 

llndexl = IKeyl x IGI
where
IKeyl is the length of the key
IGI is the number of grid partitions for the data set without 
causing overflow.
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Selection
According to elimination rule ER1, ALT[1] (EXCELL algorithm) is selected.

Explanation
Elimination rules are constructed to select an access algorithm matching data sets with 
salient features. These features are dominant factors in the selection of a specific access 
algorithm. The justification of the elimination rules is to avoid intensive rule searches 
simply because a further examination is not cost-effective (for example, the data set is 
small or the data set is short-lived), or the suggested algorithm does match those salient 
features of the considered data set (for example, the z-hashing is suitable for data sets 
with even data distribution and static features, the BANG file is extremely good for 
dynamic data sets).

Choosing an algorithm by initial selection rules 
Example 2
The following is a more complex example to explain how an initial algorithm selection is 
made using the system.
(1) Given features of an application:

data set D = { (0, 1), (0, 2), (0 ,3), (1 ,6 ), (2, 2),
(2, 3), (2, 7), (3, 1), (3, 2), (3, 3),

data distribution 
dynamic factor 
range search rate

bucket size
index and memory size

(3, 6), (3, 7), (4, 3), (6, 3), (6, 5) }
b = 4
llndexl > M
Deven = (4 + 0 + 3 + 2) /  16 = 56.25 %
Dyn < 40%
Rs < 30%
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Figure 5. The given data set uses the BANG-file algorithm.

Using initial algorithm selection rules we will get:
h(ATRl) = 0 + 0 + 0 + l = l
h(ATR2) = 1+  0 + 0 4 - 0 = 1
h(ATR3) = l +  0 + 0 + 0 =  l
h(ATR4) = l +  0 + 0 + 0 =  l
h(ATR5) = 1 + 1 + 1 + 0 = 3
h(ATR6) = l +  0 + 0 + 0 =  l
thus the BANG-file is chosen.

Performance evaluation for the BANG-file access algorithm

260



Storage utilisation

minimal requirement = [  n/bl = [~15 / 4 ] = 4

actual requirement = IRI = 4
where R = {RO, R l, R2, R3 }
Hence Su = minimal requirement /  actual requirement = 100%

Sneed
Point search :
assume 50% of the times the required index is in main memory and other 50% in the 
secondary storage (disk):

Tp = 1.5 x Tsec

Range search accuracy :
range search accuracy depends on the individual selection criteria. In this evaluation we 
assume a few selections and calculate the average.

number of data item required
accuracy a = ......... ..................... — ................................. ................................

actual number of data buckets searched x bucket size b

(1) select (x, y)
al

(2) select (x, y)
a2

(3) select (x, y)
a3

average a

where x < 5 and y < 5 
= 9 /  (4 x 4) = 56.25 % 

where x < 5 and y > 5 
= 4/ (2 x 4) = 50%

where 2 < x < 3 and y < 3 
= 3/ (2 x 4) = 37.5%
= (al + a2 + a3 ) / 3  = 47.92%

C om paring  w ith o ther algorithm s
(1) P erform ance evaluation for EX CELL algorithm
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(a) with overflow handling

(b) without overflow handling

In d e x  F i le

< a tk ir e s s  U >
1 ■Cacklress 1 >
2 c a c k lre s s  2 >
3 C ack lress  3 >
4 <NULL>
5 C a d d re s s  5 >
6 < a ck ire s s  6 >
7 < a ck lre s s  7 >
8 <NULL>
9 <NULL>
10 < a d d re s s  10 >
11 < a d d re s s  1 1 >
12 <NULL>
13 < a d d re s s  1 3 >
14 <NULL>
15 <NULL>

Figure 6. The given data set applies EXCELL algorithm.
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Notes:
the EXCELL needs more space to store the index than the BANG-file.

Storage utilisarion
(a) with overflow handling

minimal requirement = T n/bl = [~15/4~| = 4

actual requirement = 5 (1 for overflows, 4 for the partition)
Hence Su = 4/5 = 80%

(b) without overflow handling
actual requirement = 9 
Hence Su = 4/9 = 44%

Speed
Point search:
assume 50% of the times the required index is in main memory and other 50% on the 
disk:

Tp = 1.5 x (4  + 1 + 2 + 4 + 4 x 2) /  15 = 1.9 x Tsec

Range search accuracy:
(1) select (x, y) where x < 5 and y < 5

al = 9 /  (5 x 4) = 45 %
(2) select (x, y) where x < 5 and y > 5

a2 = 4/ (2 x 4) = 50%
(3) select (x, y) where 2 < x < 3 and y < 3

a3 = 3/ (2 x 4) = 37.5% 
average a = (al + a2 + a3 ) /  3 « 44.17 %

(2) Performance evaluation for the z-hashing algorithm
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Figure 7. The given data set employs the z-hashing algorithm.

Notes: z-hashing needs no index.
Storage utilisation

minimal requirement = n/b] = |~ 1 5 /4 l = 4

actual requirement = 16  
Hence Su =4/16 = 25%

Speed
Point search :

Tp = 1 x Tsec

Range search accuracy:
(1) select (x, y) where x < 5 and y < 5
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al = 9 /  (9 x 4) = 25%
(2) select (x, y) where x < 5 and y > 5

a2 = 4/ (3 x 4) -  33 %
(3) select (x, y) where 2 < x < 3 and y < 3

a3 = 3/ (2 x 4) = 37.5% 
average a = (al + a2 + a3 ) /  3 = 31.83 %

(3) Performance evaluation for the quantile-/PLOP-hashing

Figure 8. The given data set uses the quantile-/PLOP-hashing algorithm. 

Storage utilisation

minimal requirement = [  n/bl = [*15/41 = 4
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actual requirement = 7 
Hence Su =4/7  = 57%

Speed
Point search:
(1) assume indices are stored in main memory the point search is fast, i.e.

Tp = 1 x Tsec
(2) if those indices cannot be stored in main memory, extra disk access is required, on 

average:
Tp = 1.5 x Tsec

Range search accuracy:
(1) select (x, y) where x < 5 and y < 5

al = 9 /  (5 x 4) = 45 %
(2) select (x, y) where x < 5 and y > 5

a2 = 4/ (2 x 4) = 50%
(3) select (x, y) where 2 < x < 3 and y < 3

a3 = 3/ (2 x 4) = 37.5% 
average a = (al + a2 + a3 ) /  3 = 44.17 %

Notes: when PLOP-hashing destroys the z-order the range search accuracy may 
deteriorate.

Comparison Su Tp a
BANG-file 100% 1.5 47.92%
Excell 67% 1.9 44.17%
Z-hashing 25% 1 31.83%
Qantile-/PLOP-hashing 66% 1/1.5 44.17%/< 44.17%

This example shows that range search is a desirable feature of the data set (as Rs < 30%) 
and Su is an important factor (since Deven > 50%). Furthermore, the dynamic factor 
Dyn is relatively high (Dyn < 40%). Consequently, BANG-file offers excellent
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performance both in storage utilisation and range search accuracy. In addition, BANG-file 
copes well with dynamic situations. The performance evaluation has shown a match 
between the near-optimal performance among available algorithms and the one chosen by 
the “initial selection rules”, i.e. by performance comparison. By comparison the BANG- 
file is the near-optimal solution. This process heuristically validates these rules used in the 
algorithm selection process. It can be noticed that z-hashing has excellent point search 
ability but the cost of dealing with dynamic situations is high and the storage utilisation, 
low.

Selecting an algorithm by a similarity comparison 
Example 3
The following example exercises the similarity comparison element of the rule base. 
Assumption
Abstract Application Profile (AAP) has the following features (see Figure 5.)
(1) Data set

D ’ = { (0 ,1), (0, 2), (0, 3), (1, 6), (2, 2), (2, 3), (2, 7), (3, 1), (3, 2), (3, 3),
(3, 6), (3, 7), (4, 3), (6, 3), (6, 5) }

(2) Data distribution by number of overflowed data items in each grid cell (r = 4)
C’(o)[0] = 4
C ’(o)[l] = 0
C’(o)[2] = 0
C’(o)[3] = 0

(3) Even data degree
d ’(even) = (4 + 0 + 3 + 2 ) /1 6  = 56.25%

(4) Number of overflow grid cells
N ’over = 1

(5) Dynamic factor
D ’yn < 40%
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(6) Point search speed
P ’s < 70%

(7) Number of empty grid cells
N ’empty = 0

(8) Range search rate
R ’s < 30%

(9) Local data density
L’dx[l] = 12/2 = 6 L’dx[2] = 3/2 = 1.5
L’dy[l] = 10/2 = 5 L’dy[2] = 5/2 = 2.5

(10) Query frequency
F ’x = 55% F ’y = 45%

(11) The access algorithm used is BANG-file.

(12) The stored performance 
Storage utilisation

Su = 100%

Speed
Point search :
(1) the index that can be stored in main memory:

Tp = 1 x Tsec
(2) the index that cannot be stored in main memory

Tp = 1.5 x Tsec

Range search accuracy:
average a = (al + a2 + a3 ) /  3 = 47.92%
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The given application profile (AP)
(1) Data set

D = { (0 ,2), (0, 3), (1, 1), (1, 3), (1, 4), (2, 2), (2, 3), (2, 7), (3, 2), (3, 3), 
(3 ,7 ), (4 ,1), (4, 3), (4 ,4), (6, 4), (6, 5) }.

(2) Data distribution
C(o)[0] = 4
C(o)[l] = 0
C(o)[2] = 0
C(o)[3] = 0

(3) Even data degree
d(even) = (4 + 2 + 1 + 1 ) /  (4 x 4) = 50%

(4) Number of overflow grid cells
Nover = 1

(5) Dynamic factor
Dyn < 40%

(6) Point search speed
Ps < 70%

(7) Number of empty grid cells
Nempty = 0

(8) Range search rate
Rs < 30%

(9) Local data density
Ldx[l] = 11/2 = 5.5 Ldx[2] = 5/2 = 2.5
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Ldy[l] = 10/2 = 5 Ldy[2] =6/2  = 3

(10) Query frequency
Fx = 55% Fy = 45%

0  1 2  3  4  5  6  7

Figure 9. The given data set deploys the BANG-file algorithm.
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Similarity computation
Calculated deviations 
(1) Data distribution 

i=3
I  I C’(o)[i] - C(o)[i])l 
i=0

DD = ........ --------------------------
r x b

(2) Even distribution degree

Id’(even) - d(even)l
ED = ......... .............. .............

r x b

(3) Number of overflow grid cells
OV = IN’over - Noverl /  r = 0

(4) Dynamic factor
DF = ID’yn - Dynl = 0

(5) Point search rate 
DP = IP’s - Psl = 0

(6) Range search rate
DR = IR’s - Rsl = 0

(7) Number of empty grid cells
OE = IN’empty - Nemptyl = 0

(8) Local data density

=  0

1.56 %
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y=S
Z  y ILd’(y) - Ld(y)l

y=i
............. - ............. -—  = 25%

syx b

(9) Query frequency 
xm

FD = Z  If’i - fil = 0 
i=xl

X=sx

Z  ILd’(x) - Ld(x)l 
x=l

LD = ..................................  +
sxx b

(10) Similarity degree 
s(x) = 0.78

Assuming that s(x) = 0.78 is a satisfactory similarity degree, the BANG-file algorithm 
will be employed for the application profile AP.

Performance evaluation using the BANG-file algorithm for an AP
Storage utilisation

minimal requirement = [ n/bl = [ 1 6 / 4 1  = 4

actual requirement = 5 
Hence Su = 4/5 = 80%

Speed
Point search :
(1) index which can be stored in main memory

Tp = 1 x Tsec
(2) index which cannot be stored in main memory

Tp = 1.5 x Tsec

Range search accuracy:
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(1) select (x, y) where x < 5 and y < 5
al = 1 1 / ( 5 x 4 )  = 55%

(2) select (x, y) where x < 5 and y > 5
a2 = 3/ (2 x 4) = 37.5%

(3) select (x, y) where 2 < x < 3 and y < 3
a3 = 3 /  (2 x 4) = 37.5% 

average a = (al + a2 + a3 ) /  3 = 43.3%

Comparing with other algorithms
(1) Performance evaluation for EXCELL algorithm
(a) with overflow handling

y
©

9

©

2 3 © G

© O © O  0 ] ©

© ©

O © ©

0  1 2  3 4  5 6  7
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(b) without overflow handling

0 ©

3
10 11 14 15

8 9 12 13 A 0

© 0

o © 0 o ©

2
O3 o 6 7

©  °
1

© © 4 5

0 1 2 3 4 5 6 7

Index File

1 ) ' <address 0>
1 <address 1>
2 <address 2>
3 <address 3>
4 <address 4>
5 <NULL>
6 <address 6>
7 <NULL>
8 <NULL>
9 <NULL>
10 <address 10>
11 <address 11>
12 <address 12>
13 <address 13>
14 <NULL>
15 <NULL>

Figure 10. The given data set applies EXCELL algorithm.

Storage utilisation
(a) with overflow handling

minimal requirement = [ n/bl = [~16 / 4 1 = 4

actual requirement = 5 
Hence Su = 4/5 = 80%

(b) without overflow handling 
actual requirement = 10  
Hence Su = 4/10 = 40%
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Speed
Point search:
(1) the index is in main memory

Tp = 1 x Tsec
(2) the index is not in main memory

Tp = 1.5 x Tsec

Range search accuracy:
(a) with overflow handling
(1) select (x, y) where x < 5 and y < 5

al = 9  /(5 x 4) = 45%
(2) select (x, y) where x < 5 and y > 5

a2 = 3 /  (2 x 4) = 37.5%
(3) select (x, y) where 2 < x < 3 and y < 3

a3 = 3/ (2 x 4) = 37.5% 
average a = (al + a2 + a3 ) /  3 * 40 %

(b) without overflow handling
(1) select (x, y) where x < 5 and y < 5

al = 9  /(7 x 4) ~ 39%
(2) select (x, y) where x < 5 and y > 5

a2 = 3 /  (2 x 4) = 37.5%
(3) select (x, y) where 2 < x < 3 and y < 3

a3 = 3/ (2 x 4) = 37.5% 
average a = (al + a2 + a3 ) /  3 = 38 %

(2) Performance evaluation for the z-hashing algorithm
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Figure 11. The given data set uses the z-hashing algorithm. 

Storage utilisation

minimal requirement = [  n/b] = [”1 6 / 4 1  = 4

actual requirement = 16
Hence Su =4/16 = 25%

Speed
Point search :

Tp = 1 x Tsec

Range search accuracy:
(1) select (x, y) where x < 5 and y < 5
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al = 1 1 / (9 x 4 )  -3 0 .6 %
(2) select (x, y) where x < 5 and y > 5

a2 = 3/ (3 x 4) = 25%
(3) select (x, y) where 2 < x < 3 and y < 3

a3 = 3/ (2 x 4) = 37.5% 
average a = (al + a2 + a3 ) /  3 = 31 %

(3) Performance evaluation for the quantile-/PLOP-hashing algorithm

Figure 12. The given data set applies quantile-/PLOP-hashing algorithm. 

Storage utilisation

minimal requirement = [  n/bl = T16 / 4 1 = 4 

actual requirement = 9
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Hence Su = 4/9 -  44%

Speed
Point search :
(1) assuming indices are stored in main memory, the point search will be fast, i.e.

Tp = 1 x Tsec
(2) if those indices cannot be stored in main memory, extra disk access is required, on 
average:

Tp = 1.5 x Tsec

Range search accuracy:
(1) select (x, y) where x < 5 and y < 5

al = 1 1 / ( 6 x 4 )  » 4 5 .8 %
(2) select (x, y) where x < 5 and y > 5

a2 = 3 /2 x 4 )  = 37.5 %
(3) select (x, y) where 2 < x < 3 and y < 3

a3 = 3/ (2 x 4) = 37.5% 
average a = (al + a2 + a3 ) /  3 « 40.25 %

The performance comparison between AAP and AP:
Su Tp a
100% 1/1.5 47.92%

B A N G -file 80% 1 /1 .5 43 .3 %
EXCELL 40%/80% 1/1.5 38%/40%
z-hashing 25% 1 31%
quantile-/PLOP-h ashin g 33% 1/1.5 40.25

Here we illustrated a simple example which uses the similarity comparison to choose an 
access algorithm. The principle is tha t, if the similarity is identified between a given 
application profile and the abstract application profile, the algorithm used for the AAP will 
be used for this application.
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Several examples have been given to illustrate how an algorithm is chosen by applying 
the rule base. Performance is evaluated for various access algorithms. The evaluation 
results have shown that the selected algorithm is a near-optimal algorithm. Hence the 
heuristics applied to the rule base are justified.
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