IT City Research Online
UNIVEREIST;]OggLfNDON

City, University of London Institutional Repository

Citation: Honing, H. (1991). Music and the representation of structure: From issues to
microworlds. (Unpublished Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/29143/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

MusiCcand
THE REPRESENTATION OF STRUCTURE

From issues to microworlds

Henkjan Honing

AL W\

B**

Submitted for the degree of Doctor of Philosophy in Music
City University, London
July 1991

MusiCand
THE REPRESENTATION OF STRUCTURE

From issues to microworlds

Henkjan Honing

fymt bjmamm

W WA

Submitted for the degree of Doctor of Philosophy in Music
City University, London
July 1991

MusiCand
THE REPRESENTATION OF STRUCTURE

From issues to microworlds

Henkjan Honing

I certify that all the material in this thesis which is not my own work has been

identified and that no material is included for which a degree has been previously been

Statement of co -authorship

Four of the six articles included in this thesis are co-authored by Peter Desain. They are
the result of collaborative research over long periods of time in which we had numerous
discussions, exchanged ideas, problems and solutions, tried them out together in programs
and wrote the resulting articles by exchanging edited versions frequently before a final
version emerged. Therefore the ideas, expressed in these four collaborative articles, are

difficult to assign to either one of the authors.

We hereby declare that both "Tempo Curves considered harmful" and "Towards a
calculus for expressive timing in music" are 70% the work of Henkjan Honing and 30% the
work of Peter Desain. "LOCO: A composition microworld in Logo" and "Time functions

function best as functions of multiple times" is 50% the work of Henkjan Honing and 50%

the work of Peter Desain.

Signed Utrecht, September 10,1991

Henkjan Honing

Peter Desain

Co pying

I grant powers of discretion to the City University Librarian to allow this thesis to be
copied in whole or in part without further reference to me. This permission covers only

single copies made for study purposes, subject to normal conditions of acknowledgement.

Preface

The body of this thesis consists of six articles written in the last four years. They
encompass research in the fields of the psychology of music, artificial intelligence and
computer music. Over these years, a lot of people gave their advice, help and support.
They all should be thanked here, but I will refer to the acknowledgements at the end of
the respective articles for their proper credit.

Special thanks to Peter Desain, who has been an inspiring friend and colleague in the last
seven years of our collaborative research. And special thanks to Eric Clarke. Firstly, as
an outstanding supervisor during the writing of this thesis, and secondly, because of the
support and insights he provided in the field of the psychology of music, so new to me
when I started my work as a research fellow at the City University in 1988. Thanks for
all the help!

Henkjan Honing
Utrecht, July 1991

Abstract

This thesis is concerned with the representation of music. It investigates the issues that
must be tackled when constructing a formal representation (or representational system) for
expressing musical knowledge. The central problems are pointed out by examining existing
proposals for the representation of music and studying models from the fields of the
psychology of music and computer music research for their use of explicit or implied
representations. These discussions adopt both psychological and technical perspectives
and provide the essential groundwork for the formalisation of concrete solutions of a
representational system for music. Partial solutions are expressed as small programs, or
microworlds, that facilitate further exploration and understanding. This methodology
resulted in two concrete proposals that describe seperate aspects of such a
representational system. The first microworld describes a generalized representation of
the continuous aspects of music with respect to time. The second microworld embodies a
calculus for expressive timing defined in terms of structure. Finally, two larger systems are
presented that functioned as the experimental gardens of the microworlds described

previously.

Contents

Statement of co-authorship

Copying 1
Preface 111
Abstract v
Contents v
Structure of the thesis 2

I Introduction

II Issues

Honing, H. (1991). Issues in the Representation of Time and Structure in Music. In
Proceedings of the 1990 Music and the Cognitive Sciences Conference, edited by L
Cross and 1. Deliege. Contemporary Music Review. London: Harwood Press,
(forthcoming).

Desain, P. & H. Honing. (1991). Tempo curves considered harmful. In "Music and time",

edited by J. D. Kramer. Contemporary Music Review. London: Harwood Press,
(forthcoming)

IIT Microworlds

Desain, P. & H. Honing (in press). Time functions function best as functions of multiple
times. To appear in Computer Music journal. Cambridge. Mass.: MIT Press.

Desain, P. & H. Honing (1991). Towards a calculus for expressive timing in music.

Research report. Utrecht: Centre for Knowledge Technology. Submitted to
Psychology of Music.

IV Two examples of larger systems

Honing, H. (1990). POCO: An Environment for Analysing, Modifying, and Generating
Expression in Music. In Proceedings of the 1990 International Computer Music
Conference. San Francisco: Computer Music Association.

Desain, P. & H. Honing (1988). LOCO: A Composition Microworld in Logo. Computer
Music lournal 12(3). Cambridge, Mass.: MIT Press. 30-42.

V Conclusion

Structureofthe thesis

This thesis is divided into three pairs of two articles preceded by an introduction and

followed by a conclusion.

I Introduction

II

The introduction gives, besides a description of the subject and the aim of this thesis, a
detailed discussion on the methodology of building microworlds that was applied in this
research. It stresses the importance of the use of a computational approach in music

research, reaching from musicology to the psychology of music.

Issues

The first pair is concerned with bringing out the issues in the representation of music.

"Issues in the representation of time and structure in music” gives a global overview of the
field and the central problems that have to be solved, serving as a proper introduction to
a thesis dedicated to this subject. Most of the issues are presented as controversies, using
extremes to clarify the underlying problems. Associating time intervals and their
constraints with the components of musical structure turns out to be essential. These
constraints on time intervals model an important characteristic of musical knowledge and

should be part of the representation, i.e. part of the syntax.

"Tempo curves considered harmful” is a critique of a widespread representation of time. It
evaluates well-known models stemming from the literature of musicology, computer music
research and the psychology of music. In this work timing or tempo measurements are
mostly presented in the form of continuous curves. The article warns against the notion of
'tempo curves' as giving the false impression that a continuous concept of continuous
temporal flow has an independent existence -has a musical or psychological reality- and
that time can be perceived independent of the events carrying it. It is shown that when
one bases a transformation or manipulation of timing on the implied characteristics of
such a notion, the results do not make any musical sense.

The insights that were developed during this research yielded a second group of concrete

proposals.

Vi

I11 Microworlds

The second pair of articles propose two concrete solutions, presented as microworlds.

"Time functions function best as functions of multiple times " is dedicated to a proposal for
a representation of time. It introduces control functions that have multiple times as
arguments. This generalized concept of a time function can support absolute and relative
kinds of time behaviour. The possibilities of composition and transformation of time
functions themselves are retained.

A microworld version of the time functions is included as an appendix.

"Towards a calculus for expressive timing in music” describes a calculus that enables
expressive timing to be transformed on the basis of structural aspects of the music. The
behaviour of musical material under expressive transformations is determined uniquely
by its structural description and the type of expression. Although the calculus separates
different kinds of behaviour, it entails no musical knowledge of the transformations
themselves. It does not model music cognition, but it will hopefully prove to be a solid
basis for formalised theories of music cognition.

A microworld version of the calculus is included as an appendix.

IV Two examples of larger systems

The third pair of articles describes two larger systems that formed the basis for the four

preceding articles.

"POCO: an environment for analysing, modifying, and generating expression in music”
describes a system that formed an important basis in comparing different existing models
of expressive timing, and brought out the numerous problems that had to be solved in
realising a more general representational system for music. The system integrates existing
models of expression which made it possible to compare and combine these models using
the same performance and score data. POCO is developped as a workbench to be used in a
research context. Several tools were developed for specific "micro-surgery” on expression
(including an early version of the calculus presented above). A lot of attention was given

to the openness, integration, and extendability of the system.
"LOCO: a composition microworld in Logo” describes the experimental garden of the

microworld approach. It was developed in the years from 1984 to 1988, and was

implemented on a whole range of small machines for use by both novices, music students,

vii

and composers. The ideal of making a composition microworld, consisting of a small set of
primitives from which all kinds of higher-level compositional ideas could be constructed,
is nicely illustrated in this discrete "choice-principles" microworld. The score system and
the time-structuring principles that were designed for it, also proved to be valuable in
later work (see Microworlds).

A more detailed description of the score system and the final descisions on a consistent set

of primitives is described in the LOCO manual. It is added as an appendix.

Conclusion

The thesis is concluded with a discussion of how the "explicit, formal, and modular

strategy” can serve in working towards a general representational system for music.

viii

Introduction

Introduction

LoNng-term @iml.....ociiiiiiiiicicicicice e 2

Overview of apProach.........e e 2
MICTOWOTLAS ..ot 3
Building microworlds as methodology.......ccooiiiiiiii, 4
Moving knowledge from control structure to data structure..........c.cccoevvvivvinininnenne. 5
Is a microworld more or less than a theory ... 6
CONCIUSION. ...ttt 7

RS () <) A Lol 7

Introduction

This thesis is concerned with the representation of music. It investigates the issues that
must be tackled when constructing a formal representation (or representational system) for
expressing musical knowledge. The central problems are pointed out by examining existing
proposals for the representation of music and studying models from the fields of the
psychology of music and computer music research for their use of explicit or implied
representations. These discussions take both psychological and technical perspectives
and provide the essential groundwork for the formalisation of concrete solutions for a
representational system for music.

This thesis is about applying computational modeling and artificial intelligence
techniques to music. These methods and techniques are used to evaluate and understand
related research in the psychology of music and computer music research and its
(partially) formalised theories. Partial solutions are expressed as small programs, or
microworlds, that facilitate further exploration and understanding. They play a key role
in this research. Each microworld models an isolated aspect of a representational system
of music, making a certain set of issues even more explicit and broadening our

understanding of it.

It is important to point out here that computational modeling is considered a powerful
methodology in music cognition research, although it is clear that there are important
aspects, normally associated with music, that are ignored in such an approach (e.g. the
problem of embodiment). Nonetheless I will ignore the mind/machine debate. Central to
this thesis is the definition of a representational system, not the construction of a
computational model of music cognition and the possible internal representations used.
Since the construction of a complete and general representation of music is still far ahead
of us, if not fundamentally impossible, gaining understanding of what can and what
cannot be represented using certain types of formal representations, is far more important.
The methodology of constructing microworlds and micro-version programs has turned out
to be a successful strategy in building these formalised components of a representational
system, components that are well-understood and generalized in such a way that
maintenance and extension is guaranteed. In the end, these formalised parts of a
representational system will turn out to be a solid basis for theories of musicology, music

perception and cognition.

Introduction 1

LONG-TERM AIM

The long-term objective of this research is to develop a formal and computational
representational system of music that, on the one hand, can serve as a basis for higher-
level formalisms or theories, such as formalisms from musicological research intended to
express specific musical knowledge (e.g. style or performance practice), theories that are
based on grammars, rule-systems or stochastic formalisms, or theories of music cognition
describing diverse and often isolated domains of, for instance, harmony and metre. Since
all these models are based on a specific set of primitives, they will benefit from a level of
abstraction that incorporates musical knowledge about these primitives (and to which
new musical knowledge can simply be added). On the other hand, this anticipated
representational system could make the link between lower-level models of a more
perceptual and psycho physical nature, like models of rhythm and pitch perception.
They could provide the "bottom-up" information to this knowledge representation layer.

The possibility of realising such a representational system for music will be investigated,
and the following questions will be asked. What is an effective methodology and a good
strategy in realising such a system? Is it possible at all? Can we learn from experiences in
other fields, e.g. knowledge representation in general? This introduction and, in more

detail, this whole thesis, tries to answer these questions.

OVERVIEW OF APPROACH

The material presented in this thesis is based on experience gathered during research in
computer music. What started out as an approach in designing composition systems
(Desain & Honing, 1986), influenced by the work of the Logo community, developed over
the years into a methodology that accompanied us in different areas of music and Al
research. In this work the computer took a central position, performing different roles at
the various stages of the research process. First of all, we concentrated on the construction
of 'microworlds’, a small and closed set of procedures and data structures. In these
microworlds it is easy to experiment with ideas, vague as they are, to gain more insight
into the problem to be understood and modeled. Secondly, we constructed theories in
computational form. These new microworlds made the theory explicit and allowed for
tests on completeness and internal consistency. Thirdly, we found much profit in
(re)constructing 'micro-versions' of larger programs (or models), particulary when they
were made to share the same data abstraction. In trimming these computational theories
down to a "bare minimum", they allowed for better and easier comparison (Desain, 1990;
Desain & Honing, 1991), that brings a real understanding of the theory with, more than

once, the emergence of more abstract or general notions as a result.

Introduction 2

A lot can be said about the advantages, disadvantages, and implications of building
microworlds and micro-version programs, as a methodology. The next paragraphs look at

some of the explicit and implied characteristics of this methodology.

MICROWORLDS

"What characterizes the period of the early seventies is the concept ofa microworld - a

domain which can be analysed in isolation.” (Dreyfus, 1981)

Many of the microworld ideas stem from the Logo project (Papert, 1980/1984) and other
people working at MIT in the seventies (e.g. Abelson, Minsky, Winograd, Sussman). The

notion of a ‘microworld' has been described by Marvin Minsky and Seymour Papert as:

"Each model - or 'micro-world’ as we shall call it - is very schematic; it talks about a
fairyland in which things are so simplified that almost every statement about them would
be literally false if asserted about in the real world. [...] Nevertheless, wefeel that they
[the micro-worlds] are so important that we are assigning a large portion of our effort
toward developing a collection of these micro-worlds and finding how to use the
suggestive and predictive powers of the models without being overcome by their
incompatibility with literal truth.” (internal MIT memo Minsky & Papert, 1970; quoted
in Dreyfus, 1981)

Papert and his colleagues developed several microworlds for use in an educational
context, inspired by the cognitive development theory of Jean Piaget (Papert, 1981/1984).
These microworlds were designed to facilitate learning, and were based on a new
programming language called Logo (based on Lisp) embodying the educational
philosophy of "learning without being taught."

The most prominent example of one of these microworlds is the 'turtle-world' which
models a world of turtle-geometry (Abelson & diSessa, 1980). Children learned about this
world by giving commands to a turtle robot, or a turtle image on a computer screen, and
building procedures from them. They gained knowledge and understanding of (turtle)
geometry by just exploring the possibilities of this object. These ideas had a major
influence on the development of educational research and formed the basis of a

widespread curriculum in computer science in primary and secondary schools.

Another, often referred to, example of the microworld notion is Winograd's block-world
for natural language understanding (Winograd, 1972). Here, by contrast, the domain is not
central; the microworld just serves as a toy problem to test the possibilities of a certain

approach to natural language processing. This kind of microworld approach, and the

Introduction 3

optimism that these microworlds could simply be combined and extended into a general
knowledge representation, prompted a heavy critique (e.g. Dreyfus, 1981) that gave the
notion of microworlds a bad press (causing Winograd to take the side of his critics, see
Winograd & Flores, 1986). This critique, though, should be placed in the perspective of
using microworlds to model human knowledge, instead of seeing them as part of a
methodology that brings out the isolated problem under study and make it explicit (in the
case of Winograd's microworld, the representation and processing of natural language).

There are still strong arguments for the design and use of microworlds.

Besides these ideas normally associated with microworlds (i.e. to model a toy problem, or
to facilitate "learning without being taught"), there are much broader implications that
make it a valid and important notion in computational modeling and artificial

intelligence research. Several aspects are involved, which will be described below.

Building microworlds as methodology

"The best way o ffinding out the difficulties o fdoing something is to try to do it.” (David
Marr, 1985; p. 108)

This near-cliché has, as every cliché, the reality of the obvious. But the quote illustrates
well an important characteristic of Al research that stands for trying out ideas in the
form of programs. Vague formalisms, parts of theories, and "poorly understood and
sloppily formulated ideas" (as Marvin Minsky calls them) come up against a tough
discipline in programming, the language of Al Minsky promoted "exploratory
programming"” to avoid having to start with a complete and detailed specification: "an
excessive preoccupation with formalism is impeding our development” (Minsky, 1987).
This exploratory programming (using microworlds) was one of the key concepts in the
beginning of Al in the early seventies, a newly emerging methodology, and an alternative

to empirical research.

In my own work I have frequently found that actually programming a certain idea can
provide new insights. It brings out other aspects of a possible solution because the program
forces you to answer questions you didn't think of, or it suggests a way of programming it in
another way (e.g. choosing a different data abstraction or control mechanism). A
microworld, because of its relatively small dimensions, invites you to do things
"completely differently" because not all the work (as in a larger system) is dependent on
the abstractions chosen. Experimenting with the resulting ad hoc formalisation or

program may bring out further insights, providing a real understanding, that, in turn,

Introduction 4

possibly provides for a new formalisation, and a new theory. In making problems concrete,
deciding what is essential and what isn't, and moving knowledge and understanding from
being implicit (e.g. in the control structure) to being explicit (e.g. as data structures),
problems become objects, objects of thought, that facilitate thinking about them - just as
the turtle gave children "an object to think with" (Papert, 1980/84), helping them to

understand more about geometry.

Moving knowledge from control structure to data structure

People grasp simple problems better than complex ones. Therefore computer languages
have been developed which allow for convenient ways of arranging information (i.e.
algorithms and data) in simple chunks that facilitate the readability and understanding
of it by human beings. The complexity of a problem can be reduced by encapsulating
complex notions in simple abstractions; it helps to have an overview and to see the
implications of a theory. The problem here is, as Terry Winograd puts it, "one of human
understanding - the ability of a person to understand how a new situation experienced in
the world is related to an existing set of representations, and to possible modifications of

those representations” (1990, p. 179/180).

I often start with a procedural description of a problem, that specifies how to obtain a
certain result. Hereby all the knowledge was implicitly represented in the control
structure (i.e. ways of processing the data) of the program. In subsequent phases the
concrete and stable information would crystallize and become more and more explicit,
finally moving to the data structure (i.e. the data objects themselves), reducing the
amount of information that Tiides' in the control structure. For example, a list of numbers
is a data structure. Its cardinality is not represented explicitly in the data structure. One
can describe an algorithm that calculates its cardinality. It this case the control structure
has implicit ways of determining the cardinality of lists. This information or knowledge
can be made explicit by moving it from the control structure (i.e. the algorithm calculating
the cardinality of a list) to the data structure, turning it into an attribute of the list itself
(i.e. a number describing the cardinality of a list becomes part of the data structure). The
process of understanding a problem by balancing between procedural and declarative-

styled programming proved to be very fruitful.
In a lot of cases, by factorizing the procedural information and distributing it among the

data components, the resulting knowledge representation was made to contain its own

special built-in behaviour. Such a kind of knowledge representation can be envisioned as

Introduction 5

Is

a collection of small mechanical machines that have an obligatory behaviour that is
completely determined by their type or character. The operations acting on these
‘'machines' get this behaviour for free; the machines always perform their fixed and
simple routine in the appropriate place. This real integration of knowledge into a

representation is thus an important aspect of the methodology.

a microworid more or less than a theory?

After this first exploratory phase of constructing and using a microworld, hopefully the
understanding of the problem domain is improved. The next stage can then be to construct a
theory. Here again a computational version of the theory in the form of a microworld has
a number of advantages. After this formalisation we can recapture the implications of the
theory, and in the process better understand how to achieve abstractions and true
generalizations. To build and, even more important, to use such a microworld
formalisation brings out aspects never foreseen during the design of a theory. It makes the
theory concrete and verifiable. The construction process itself may even influence its
design by revealing flaws and missing aspects. "The electronic computer gave new
embodiment to mechanical rationality, making it possible to derive consequences of
precisely specified rules" (Winograd, 1990, p. 169). As such, a microworld is more than a

theory.

But there are also some dangerous aspects that can be associated with the construction of
programs or microworlds. One frequently sees, in a computational approach to music, that
a class of problems is described, followed by a description of a program and a description
of the results obtained from sample problems. Often this is just one of a small set of
problems with an unclear relation to the class of problems the program or the methods
embody. This is the well-known "bulky program - this is the theory"- mistake. It is
unclear what the limitations are, which aspects are generalizations, which aspects are
specific to a particular problem, and which can be attributed to a whole class. If these
limitations are not stated along with the program, the program is more or less a 'black
box'; the program works in a particular case, but we don't know precisely why, and even
more important, we have no idea when it doesn't work. There is a danger of starting to
live in the self- created microworld, rigourosly explaining all other problems in terms of
this world, instead of retaining flexibility and awareness of a certain set of un-treated

problems. As such, a microworld is far from a theory.

Introduction 6

CONCLUSION

I have argued for the importance of the use of a computational approach in music
research, reaching from musicology to the psychology of music. The construction of
microworlds plays a key role in different stages of the research. In this process three
phases can be distinguished: the exploratory phase, where a problem is explored to gain
understanding and make it concrete; secondly, a phase where a program implements the
theory in a computational form that makes it explicit and open to further inquiry, and
allows for tests on completeness and internal consistency; and finally a third phase where
computational theories are trimmed down to their bare essence, i.e. stripped of
unnecessary detail, where one is forced to make generalisations and abstractions.

This process of reducing problems to their bare essence does not come for free. The
methodology does not help in taking the right decisions. So a philosophy or strategy has
to be there in stepping through these phases, to help to decide what is and what isn't
important. The most important characteristics of a microworld are, besides its
exploratory strength - the way it makes makes abstract problems concrete, the relative
ease of finding and making new abstractions and generalisations within and between
related microworlds.

Finally, every theory and program will have its limitations. These should be understood
and known at all times, and have to be clearly set out alongside the description of the
microworld. Since they only model a very small aspect of the real world, it is important

to provide all the information about how to extend and maintain them.

REFERENCES

Abelson, H. & A. diSessa (1980) Turtle Geometry: Computation as Medium for Exploring
Mathematics. Cambridge, Mass.: MIT Press.

Desain, P. & H. Honing (1986) LOCO, Composition Microworlds in Logo. In Proceedings of
the 1986 International Computer Music Conference, edited by P. Berg. San Francisco:
Computer Music Association.

Desain, P. & H. Honing (1991) The Quantization Problem: Traditional and Connectionist
Approaches. In Musical Intelligence, edited by M. Balaban, K. Ebcioglu & O. Laske.
Menlo Park: The AAAI Press, [forthcoming).

Desain, P. (1990) Parsing the Parser. A Case Study in Programming Style. Computers and
Music Research.Vol. II, Fall 1990.

Dreyfus, H. (1981) From Micro-Worlds to Knowledge Representation: Al at an Impasse. In
Mind Design, edited by J. Haugeland. Cambridge, Mass.: MIT Press: 161-204.

Honing, H. (1991) Issues in the Representation of Time and Structure in Music. In
Proceedings of the 1990 Music and the Cognitive Sciences Conference, edited by I. Cross
and L Deliege. Contemporary Music Review. London: Harwood Press. [This thesis).

Introduction 7

Marr, D. (1985) Vision: the philosophy and the approach. In: Issues in Cognitive
Modeling, edited by A. M. Aitkenhead and J. M. Slack. London: Lawrence Erlbaum Ass.

Minsky, M. (1987) Form and Content in Computer Science. In: ACM Turing Award Lectures.
edited by R. L. Ashenhurst & S. Graham. Reading, MAss. Addison-Wesley.

Papert, S. (1984) Computers en Kinderen. Ontstaan en werking van de programmeertaal
LOGO. Amsterdam: Bert Bakker. Originally published in 1980 as Mindstorms. New
York: Basic books.

Winograd, T. & F. Flores (1987) Understanding Computers and Cognition. A New
Foundation for Design. Reading, Mass.: Addison-Wesley.

Winograd, T. (1972) Understanding Natural Language. New York: Academic Press

Winograd, T. (1990) Thinking machines: Can there be? Are we? In: The Foundations of
Artificial Intelligence. A Source Book, edited by D. Partridge and Y. Wilks.
Cambridge: Cambridge University Press.

Introduction 8

CONCLUSION

I have argued for the importance of the use of a computational approach in music
research, reaching from musicology to the psychology of music. The construction of
microworlds plays a key role in different stages of the research. In this process three
phases can be distinguished: the exploratory phase, where a problem is explored to gain
understanding and make it concrete; secondly, a phase where a program implements the
theory in a computational form that makes it explicit and open to further inquiry, and
allows for tests on completeness and internal consistency; and finally a third phase where
computational theories are trimmed down to their bare essence, i.e. stripped of
unnecessary detail, where one is forced to make generalisations and abstractions.

This process of reducing problems to their bare essence does not come for free. The
methodology does not help in taking the right decisions. So a philosophy or strategy has
to be there in stepping through these phases, to help to decide what is and what isn't
important. The most important characteristics of a microworld are, besides its
exploratory strength - the way it makes makes abstract problems concrete, the relative
ease of finding and making new abstractions and generalisations within and between
related microworlds.

Finally, every theory and program will have its limitations. These should be understood
and known at all times, and have to be clearly set out alongside the description of the
microworld. Since they only model a very small aspect of the real world, it is important

to provide all the information about how to extend and maintain them.

REFERENCES

Abelson, H. & A. diSessa (1980) Turtle Geometry: Computation as Medium for Exploring
Mathematics. Cambridge, Mass.: MIT Press.

Desain, P. & H. Honing (1986) LOCO, Composition Microworlds in Logo. In Proceedings of
the 1986 International Computer Music Conference, edited by P. Berg. San Francisco:
Computer Music Association.

Desain, P. & H. Honing (1991) The Quantization Problem: Traditional and Connectionist
Approaches. In Musical Intelligence, edited by M. Balaban, K. Ebcioglu & O. Laske.
Menlo Park: The AAAI Press, [forthcoming].

Desain, P. (1990) Parsing the Parser. A Case Study in Programming Style. Computers and
Music Research.Vol. II, Fall 1990.

Dreyfus, H. (1981) From Micro-Worlds to Knowledge Representation: Al at an Impasse. In
Mind Design, edited by J. Haugeland. Cambridge, Mass.: MIT Press: 161-204.

Honing, H. (1991) Issues in the Representation of Time and Structure in Music. In
Proceedings of the 1990 Music and the Cognitive Sciences Conference, edited by I. Cross
and I Deliege. Contemporary Music Review. London: Harwood Press. [This thesis].

Introduction 7

Issues

Issues

Issues in the representa tion of

TIME AND STRUCTURE IN MUSIC
Henkjan Honing

December 1990
edited July 1991

Will be published as: Honing, H. (1991) Issues in the representation of time and structure in
music. In Proceedings of the second Music and the Cognitive Sciences Conference 1990,
Cambridge, edited by I. Cross and 1. Deliege, Contemporary Music Review. London:

Harwood Press.

© copyright 1990, Henkjan Honing

CONTENTS

K@Y WOTAS. ..ottt 3
INtrOAUCHON. ...t e 3
Different perspectives..........iiiiiciece e 4
Music analysis and production...........cceeeiceeieiiceeiee e, 4
MUSICOLOZY ...evviiiiicti ettt 4
ComMPULET MUSIC..uiuieiiieiiiiiiie s 5
Music publishing and retrieval systems..........ccccoueueiieieiiiiicneecceee, 5
Al and cognitive MOdeling..........ccccccuiuiiiiiiiiiiiiiiiii e 6
Al and knowledge representation.............ccoceeveiccieieiniccieiecce e 6
Cognitive and computational psychology.........ccccocueueieiiiieiiiiiiiccaes 6
Music perception and COGNItION.........c.ceveiicieieieicciee e 6
General approaches to representation..........c.c.ooeeeeeveiceieieiniccecee s 7
Knowledge representation hypothesis.........cccooioiiiiiiiie, 7
Procedural and declarative approaches.........c..ccooooviviiviiiininiicec, 8
Mixed and multiple representations............cccccooeveiiiiiieieiicieice e 9
Issues in music representation..........eiiiiiiicec e 9

The primitives: building blocks of a representation.............c.ccoooeeieieicireininnes 10

® Decomposability ... 10

® ContinuOUS OF diSCIete?.........ceviviiiirieiiicicie e 10

The relations: issues in StrUCHUTING..........ccoooveiiiieiiiiicce e 11

The representation Of tMe.......ccccooiiiiiiiiiiiiiiiee 12

Tacit time StrUCtUTINgG ...t e 12
Implicit ime StruCtUrING........cocoueviiiieieiee s 12

¢ Primitives: points vs intervals........coinie 12

¢ Time base: absolute vs relative..........c.ocooeeieiiiiiiiice 13

¢ Granularity: discrete vs continUOUS.........ccoveviiieieiiiiciecc e 13

Explicit time Structuring........coooviciiieiiic s 13

¢ Controversy: declarative vs procedural...........ccccoooiiiiiiiiiiniiic 14

The representation of StrUCIUTE........cccooiviiiiiiiiiiiii e 14

Tacit structural relations..........ccoovveveiieie e, 14

Implicit structural relations..........cooiiiiiioiiiiii e, 14
Explicit structural relations..........ccceeviiiieiiiiiic 15

* What kinds of structural types are needed?..........ccccccooemiieiiiiinnnnn. 15

¢ Relations between musical constructs: generalization vs dedication.......... 16

¢ Direction: bottom-up, top-down orboth?...........cccoooii, 16

* Musical structure: association with time intervals and

their constraints essential.............ooiiiiiiii 20

* Multiple representations: power vs coordination and consistency.............. 20

® Modularization: musical knowledge vs annotation............ccccceeuevviciereicnnen. 21
CONCIUSION. ..ttt 21

Acknowledgements...........coiiiii 23
REfETIICES......viiiectit e 23

Issues in t he re presentation of

TIME AND STRUCTURE IN MUSIC

Henkjan Honing

Centre for Knowledge Technology, Lange Viestraat 2b, NL-3511 BK Utrecht
Music Department, City University, Northampton Square, UK-London EC1V OHB

This article discusses the issues in the design of a representational system for music.
Following decisions as to the primitives of such a system, their time structure and general
structuring is discussed. Most of the issues are presented as controversies, using extremes to
clarify the underlying problems. Associating time intervals and their constraints with the
components of musical structure turns out to be essential. These constraints on time
intervals model an important characteristic of musical knowledge and should be part of the
representation, i.e. part of the syntax. It is concluded that a representation of music should,
in the short run, be made as declarative, explicit and formal as possible, while actively
awaiting representation languages that can deal with the presented issues in a more flexible

way.

KEYWORDS

Representational systems, music representation, knowledge representation, temporal

representations, structure

INTRODUCTION

This article describes a number of important issues in the representation of music with
respect to the structuring of musical information. The set of issues presented is in no way
complete, but indicates the most influential decisions that have to be taken in the
representation of structure. The identification of the problems is central and there will
be no speculation on possible solutions. The discussion will be restricted to the descriptive
issues of music representation, concentrating on its primitives and their structuring. Of
course, a purely technical description of a representation of music is not sufficient; its
cognitive aspects should be incorporated as well. Although a discussion on the modeling
of the "musical mind" is not the aim here, a cognitive viewpoint will add an essential
perspective in the identification of the issues in the design of a general representation of
music. Since a representation of the real world (represented world) has to do with

cognition, the image (representing world) will have most of cognition's characteristics.

Representing time and structure 3

In the cognitive sciences, and in particular subfields like computational psychology and
artificial intelligence, the use of computational models (or representational systems) is
central. Their merits, together with the proposal of the term "cognitive science", were

described by Christopher Longuet-Higgins as:

[...] it sets new standards of precision and detail in the formulation of models of
cognitive processes, these models being open to direct and immediate test. (Longuet-

Higgins, 1973)
The hope is that these formulations will contribute to a new theoretical psychology.
Apart from the discussion whether a computational psychology is possible at all, a
computational theory sets an important foundation: by describing a theory in terms of a
formal system, together with its interpretation, it can be used to define what is faulty or
inadequate (i.e. it can be falsified) and might help us in defining what kind of

theoretical power we actually need. Or, as Margaret Boden states:

It provides a standard of rigour and completeness to which theoretical explanations
should aspire (which is not to say that a program in itselfis a theory). (Boden, 1990, p.
108)

Representation is an essential part of such a formal system and decisions made in its
design will undoubtedly influence the behavior of the computational model, embodying
the theory. It is these decisions, to be made with regard to a representational system of

music, that this article is aiming at.

DIFFERENT PERSPECTIVES

A number of different areas of research have a direct interest in specifying an
appropriate representation of music. The latter either forms the basis of their studies or
is a subject of study in itself. In the following short overview the different viewpoints
and their specific demands will be described. The main difference is contained in the
distinction between representations of a technical nature and representations of a

cognitive nature (conceptual or mental representations).

Music analysis and production
Musicology
Notation has always played a central role in musicological research. The design and
adaptation of notations or representations have been developed along with the specific
theories of analysis. Different overlapping or contradicting theories have been proposed
(Schenker, 1956; Meyer, 1973; Narmour, 1977; Lerdahl & Jackendoff, 1983). Most theories

agree that there is more in music than what is written in the score. In this sense, the

Representing time and structure 4

opinion of the philosopher Nelson Goodman (1968) that a piece can be characterized as
the set of performances in conformance with its score is an exception. The question here is
whether a piece of music resides in the notation, in the air, or in people's minds, or in

other words, whether music is cognitive or not.

Computer music

In the field of computer music there is an interest in the design of appropriate data
structures for music systems that form the basis of , for example, composition tools,
interactive systems, and notation systems. Several projects have proposed different
kinds of representation, suited to the specific demands of the particular problem or even
to the software or hardware used (see Loy, 1988 for an elaborate survey of computer music
systems). A distinction can be made between representations designed for real-time
systems that are process-oriented (e.g. Puckette, 1988), and non-real-time systems that
have a static global view of the music (e.g. Dannenberg, 1989). They differ,respectively,

in their tacit and explicit representation of time (see below: The representation of time).

All systems have their own way of representing music and share little common ground.
The only widespread standard is the industry proposed MIDI standard: a communication
protocol (described in Loy, 1985) and file format. It is a very low-level stream-like and
structureless representation (criticized in Moore, 1988) designed for communication
between electronic instruments and computers. Within the computer music community
several initiatives (Dannenberg et al, 1989; ANSI, 1989) have been taken towards a more

general and high-level representational standard.

Music publishing and retrieval systems

In music archiving the need for the standardization of notated music has resulted in
several proposals for the storage and printing of music (Erickson, 1975; Byrd, 1984;
Gourlay, 1986). Most of them are based on a visual description (e.g. notes positioned on
staves) and are not very general in their applicability. The ANSI standardization
committee for music representation (ANSI, 1989) is a recent attempt to make a technical
and methodological specification for a standard music description language, useful in
areas such as music publishing, music databases, computer assisted instruction, music
analysis, and music production. In general, these standards seem to concentrate more on
pragmatics (e.g. efficiency, in terms of size and speed requirements) than on generality

and consistency.

Representing time and structure 5

Al and cognitive modeling

Another large area of research is artificial intelligence (Al) and the cognitive sciences.

Both have their own specific goals and demands. I will describe them here briefly.

Al and knowledge representation

In AI the concern is to notate descriptions of the world in such a way that an intelligent
machine can come to conclusions about its environment by formally manipulating these
descriptions. In knowledge representation, a subfield of Al, research is focussed on the
development of representation languages and the design of inference schemes (e.g. to
model reasoning about knowledge). Both are based in the tradition of (predicate) logic
while more recent languages can be classified as structured object representations (e.g.
frames; Minsky, 1975), associational representations (e.g. semantic networks; Quillian,
1968), and procedural representations and production systems (Newell, 1973). It is
important to note that Al and knowledge representation are about feasible ways to build
intelligent systems and not so much about modeling cognitive behavior.

Al and music is also an important field of research where representation is becoming one

of the central issues (Balaban et al., 1991).

Cognitive and computational psychology

In the cognitive sciences, mental and knowledge representations are important subjects of
study. It seems impossible to imagine a cognitive system in which a representation does
not play a central role (Anderson, 1983; Fodor, 1983; Johnson-Laird, 1983). There is,
however, no general agreement on the assumption that mental activity is mediated by
internal or mental representations, and when there is, there is still some discord on the
precise nature of these representations. Proposals for knowledge representation can be
grouped into three categories: propositional representations (discrete symbols or
propositions), analogical representations (use of images), and procedural representations
(i.e. modeled as processes or procedures). To this last category also belong distributed

representations (e.g. connectionist networks).

Music perception and cognition

In the psychology of music, alongside research in music production and comprehension,
the majority of work has consisted of describing the nature of musical knowledge and its
representation. Elaborate studies have been done in the domains of pitch (Krumhansl,
1979; Shepard, 1982), thythm (Povel & Essens, 1981; Longuet-Higgins & Lee, 1984;
Desain & Honing, 1989) and timbre (Grey, 1977; Wessel, 1979). But here also, there is no
general agreement on the precise nature of these representations (see McAdams, 1987 for

a more complete overview or Sloboda, 1985; Dowling & Harwood, 1986).

Representing time and structure 6

GENERAL APPROACHES TO REPRESENTATION

This paragraph will outline the main approaches to representation. Identifying the
problems of representation in general will be shown to be of direct benefit to the debate

concerning music representation.
Knowledge representation hypothesis

An important assumption in a formalist approach to representation is the knowledge

representation hypothesis . It is summarized by Brian C. Smith (1982) as follows:

Any mechanically embodied intelligent process will be comprised of structural
ingredients that a) we as external observers naturally take to represent a propositional
account of the knowledge that the overall process exhibits, and b) independent ofsuch
external semantical attribution play aformal but causal and essential role in engendering

the behavior that manifests that knowledge.

Such a "mechanically embodied intelligent process” is presumed to be an internal process
that manipulates a set of representational structures, in such way that the intelligent
behavior of the whole results from the interaction of parts. It is presumed only to react to
the form or shape of these representations, without regard to what they mean or
represent.

As an illustrative example one can use a technique that is sometimes used in making
enlarged copies of pictures, for instance, by artists who make large chalk drawings of
well-known paintings on the street. They copy these paintings from a small reproduction,
holding the it upside-down. This minimizes the distorting influence a perspective has on
the copying of the actual proportions: an unwanted interpretation that imposes
'meaning' not present in the picture. This example shows that one has to watch out for
interpretive knowledge, so easily added by human observers, not present in the
representation itself. A representation is only syntax and should have all knowledge

embodied in this syntax, independent of the interpretive system.

A representational system can be defined as "a formal system for making explicit certain
entities or types of information, together with a specification of how the system does
this" (Marr, 1982). In the formalist definition entities in a formal system might have
complex mechanisms.1 In deciding on any particular representational system and its
entities, there is a trade-off; certain information will become explicit at the expense of

other information being pushed into the background making it possibly hard to recover.

Representing time and structure 7

Procedural and declarative approaches

There is a classic distinction between declarative and procedural ways of representing
knowledge: declarative being the knowledge about something, while procedural
knowledge states the knowledge in terms of how to do something. Declarative
knowledge tends to be accessible: it can easily be examined and combined. Procedural
knowledge tends to be inaccessible, guiding a series of actions but allowing little
examination. We seem to have conscious access to declarative knowledge whereas we do

not have this access to procedural knowledge (Rumelhart & Norman, 1985).

Declarative representations have the merit of being composable i.e. the meaning of a
complex expression is based on or can be derived from the meaning of its parts and their
combinations. There are no interactions between separate entities, which makes the
representation extremely modular. Knowledge can simply be added as long as it keeps

the system consistent. All knowledge is open for introspection.

In procedural representations the emphasis is on interaction. Procedural representations
are, not surprisingly, very powerful in modeling knowledge that is procedural by nature.
There is no separation between facts and processes. Interactions are strong but deriving
semantics is very hard (if not impossible). Addition or change is only reached by
modification (and a resulting debugging process). Introspection and reflection is
impossible. The problem, here, is the way in which procedures can be represented so that
they can be interpreted. The question becomes what they do, instead of how they do it

(see Table 1 for an overview).

Declarative knowledge Procedural knowledge

accessible inaccessible

modular (no interaction) interaction (no separation between
facts and processes)

composable semantics impossible (or hard) to derive
semantics

open to introspection and reflection closed to introspection and reflection

knowledge can easily be added, if addition only by modification

consistent

control structure obscure control structure explicit

Table 1. Procedural and declarative knowledge representations compared.

Representing time and structure 8

Mixed and multiple representations

In general, the distinctions between procedural and declarative representations are about
efficiency, control, modularity, and the accessibility of knowledge. For computer science
the first two are most important, while cognitive psychology is most interested in the
last two.

Terry Winograd (1975) emphasized the duality between modularity and interaction,
interaction being a strong characteristic of procedural representations and modularity of
declarative representations. Many complex systems can be viewed as "nearly
decomposable systems", a notion introduced by Herbert Simon (1969)" A single module
can be studied separately without constant attention to its interaction(s) with other
modules. Interactions among these subsystems are weak but not negligible. In
representational terms, this forces us to have representations that facilitate these weak
interactions. Mixed representations (i.e. both modular and interactive), as described by
Winograd and others, have been further developed in the design of object-oriented
languages (e.g. Minsky, 1975; Hewitt, 1975). In mixed representations different parts of
the represented world are described in different ways. Some parts might be described

procedurally, while others are described in a declarative way.

Another approach is to have multiple representations of the same 'world', each
describing the represented world completely. Instead of a mixture of, for example,
procedural and declarative representations, describing different parts of the world,
there is a procedural representation describing the whole world and a declarative
representation describing the whole world in parallel. Here the trade-off is extra power
against the problem of coordinating the information in the separate representations:
when a change is made, all structures have to be kept consistent so as to reflect the same

represented world.

ISSUES IN MUSIC REPRESENTATION

The remainder of this article will address issues specific to the representation of music.
Three sub-areas will be discussed: the primitives of a music representation, time
structuring and general structuring. The notion of structuring depends on the possibility of
decomposing a representation into meaningful entities, so we must first answer the

important question: what are we structuring?

Representing time and structure 9

The primitives: building blocks of a representation

* Decomposability

How to decompose a representation of music into the appropiate parts? What are the
building blocks, the primitives of such a representation? As described earlier, this
decision is essential and has implications on what kind of information will be lost and

what information will clearly be represented.

There seems to be a general consensus on the notion of discrete elements (e.g. notes, sound
events or objects) as the primitives of music. It forms the basis of a vast amount of music-
theoretical work and research in the psychology of music, but a detailed discussion and
argument for this assumption is missing from the literature. In music theory, as Robert
Erickson (1982, p. 533) points out, there is no clear definition of what such a primitive
object might be. In the psychology of music, John Sloboda (1985, p. 24), for example, just
states "the basis phoneme of music is a note", and Diana Deutsch (1982) founds her
discussion on grouping mechanisms in music on a 'given' set of basic acoustic elements. Yet
the essential question of what these elements or 'phonemes' are is not answered.
Research in psycho-acoustics on streaming shows how difficult it is to decide on such
elements from a perceptual point of view (McAdams & Bregman, 1979; Bregman, 1990). A
distinction has to be made between natural and artificial discretization of dimensions,
or, in other words, the existence of possibly innate perceptual mechanisms and a learned
division of continuous signals. In going from a continuous acoustic signal to a discrete
signal one loses information. This quantization process should be looked at as a
separation process instead: both types of information, the continuous and the discrete,
are needed, and probably interact with each other (cf. Desain & Honing, 1989, with
regard to this separation process in rhythm perception). So, next to decomposition, the
issue of the characterization of the primitives of a representation, as continuous, discrete

or a combination of the two, is very important.

* Continuous or discrete?

By way of illustration, imagine Billie Holiday singing "I cried for you.” How can the
sound be represented in such a way that all expressive and structural information is
incorporated? What is the relation between the actual perception and the notes
originally notated in the score? Consists the sentence as sung of several discrete entities,
or should it be described in a continuous way? Or a combination of both? For example,
discrete phonemes, syllables or notes, continuous expression over these discrete structural
elements, continuous fluctuations of pitch and amplitude within them, etc. combined into

several levels of discrete and continuous types of information that are closely related.

Representing time and structure 10

In music cognition, the assumption of discrete elements finds a lot of support (McAdams,
1989). Stephen McAdams makes a distinction between three auditory grouping processes
that organize the acoustic surface into musical events, connect events into musical
streams, and 'chunk' event streams into musical units (simultaneous, sequential and
segmentational grouping, respectively); and perceived discrete qualities that are based
on learning (e.g. scale, meter, harmony) (McAdams, 1989, p. 182). These discrete elements
of music are assumed to carry structure, while the continuous aspects carry expression
(Clarke, 1987). Mary Louise Serafine (1988) stands quite alone in arguing for a continuous
basis. She blames music perception research for reducing music to false elements such as
discrete pitches, scales and chords: "[they] are not the elements or building blocks of
music" (p. 52). She accounts for these elements as an after-the-fact notion of music. But,
as David Huron (1990) observes, these are speculative claims with no empirical support.
It is clear that there is still quite a lot of discussion and research needed, especially on
the rules of the segregation of acoustic signals, before we can decide on the discrete

elements of a general representation of music.

Currently, most music representation systems use either notes or sound events/objects as
the building blocks of their descriptions. In these systems, the distinction between
continuous and discrete is normally between sound generation and the discrete events
which describe the sound in several attributes, or, in other words, between the instrument
and the score. This division rests on the assumption that sound is continuous by nature
(e.g. signals, wave forms), whereas the score is mainly a collection of discrete events.The
continuous aspects of the score (e.g. timing and dynamics) are often taken care of by
different kinds of procedures or 'modifiers' (e.g. Pope, 1989; Dyer, 1990) acting on the
score: their descriptions are not part of the score representation (see below: Granularity).
The trade-off made in these decompositions is very little discussed or even

acknowledged.
The relations: issues in structuring

When we have decided on the primitives of the representation, their structuring becomes
of great importance. This structuring will be described in two separate sections. Since
time and its structuring is an important factor in music, with its own specific issues
related to it, it will be discussed separately from the issues in general structuring.
However, in the end it will be shown that they are not very different. Time structuring

will be discussed first.

Representing time and structure 1

THE REPRESENTATION OF TIME

A number of distinctions need to be made in trying to narrow down discussion of the
representation of time. There are three different areas of interest: temporal
representation, temporal logic or reasoning, and planning and scheduling. All of them

influence the design of a representation of time. This section will concentrate on the first.

The representation of time can be subdivided in three categories: 1) tacit (time is not
represented at all); 2) implicit (time is represented, but explicit time relations are not);
and 3) explicit (time is represented with explicit time relations). The issues will be

spread over these categories.
Tacit time structuring

Some real-time systems can be called no-time' systems (e.g. Bharucha,1987; Puckette,
1988). Because time is not explicitly represented in the primitives, there is only the
notion of now. There is no explicit formulation of the systems dependence on time and no

information regarding time (except now') can be derived or manipulated.
Implicit time structuring

In this category, time is represented without explicit time relations. Time is expressed in
an absolute way (e.g. note lists (Matthews, 1969)) or relative to an arbitrary point of
reference. Time relations (e.g. this note occurs before that note, or, these notes are
overlapping) have to be calculated since they are not explicitly stated in the

representation.

¢ Primitives: points vs intervals

The decision to represent time as points or intervals is not arbitrary, even when they,
theoretically, can be expressed in terms of each other (an interval is a collection of
points, a point is a very short interval3). A point-based representation (McDermott,
1982) implies the occurrence of only one event at a time and lacks the concept of an event
'taking' time. As Allen (1983) argues, there seems to be a strong intuition that, given an
event, we can always "turn up the magnification" and look at its structure. He therefore
proposes an interval-based representation. Intervals form a strong basis for the
computability of meaningful relations, i.e. time intervals that overlap, meet, are during,

before, and after each other, etc.

In music representation there are examples of both choices. Mira Balaban (1989), for

instance, describes a representation based on pairs of a sound object and a time point, and

Representing time and structure 12

Desain & Honing (1988) use sound objects with a duration (i.e. time interval) as the basis

of a representation of time.

* Time base: absolute vs relative

The time base that can be chosen is either absolute or relative, or, in other words, real-
time (e.g. in seconds) or proportional time (e.g. a quarter note). With an absolute time
base, (onset-)time is an attribute of the musical object, whereas with a relative time base

it isn't.

Some music representation systems (Smith,1972; Schottstaedt, 1983) use lists of notes
with absolute times, whereas later systems tend to describe time in terms of a relative
time base or relative to the enclosing time context, i.e. expressed as a function of this
context (Dannenberg, 1989; Balaban, 1989). But both time bases seem to be needed. For
example, in representing a trill as being twice as long as another trill, one has to decide
whether to stretch or to extend the description of this related trill, i.e. is the new trill
half the speed (using relative time) or is the speed the same (using absolute time) and
are there just more notes added (or any other particular way of extending a trill). Both
types of behavior, using both time bases, need to be represented to allow for both

representations of time.

* Granularity: discrete vs continuous

What is the grain or grid size of the time bases mentioned above? Is time expressed as a
discrete value labeling events, or is it expressed as a continuous function? As well as
discrete time, a continuous way of representing time is needed, for example, when
representing an accelerando or rubato over a series of notes.4 Most representational
systems make these notions available as global operations acting wupon the

representation instead of making them part of the representation.

Explicit time structuring

An example of explicit time structuring in music is the use of two basic structuring
relations called 'parallel' and 'sequential' (Desain & Honing, 1988). These two time
relations, and combinations of them, can express many constellations of discrete sound
events. Similar time structuring is proposed by several other authors (e.g. Rodet &
Cointe, 1984; Dannenberg, 1989). Allen (1983) describes a list of thirteen possible
relationships. A set of basic explicit time relations forms a solid basis for higher level
notions of time structuring and make operations on time, or operations depending on time,

very elegant (Desain, 1990).

Representing time and structure 13

* Controversy: declarative vs procedural

The controversy over declarative and procedural representations is also very important
in the representation of music. Take the example of a trill - a sequence of notes,
alternating in pitch, filling up a certain time interval. This "filling up" is most
naturally represented in a procedural form. But, as discussed previously, this type of
representation has quite some disadvantages. Problems occur when there is, for instance,
a nesting of these trills defined in terms of each other (e.g. a higher-level trill composed
by combining the definitions of some other, i.e. lower-level trills): the definition of the
high-level trill depends on the result of the low-level trills, a result that is only
available after execution of the procedural description of these low-level trills. There is
no way in which the duration of the high-level trill can be decided upon without
evaluating the definition of the low-level trills since this knowledge is represented in a
procedural form. The declarative representation (a low-level trill of a certain length)
has to be replaced by the result (a sequence of notes adding up to a certain length) and
information is lost (e.g. knowledge on how the trill was composed). Both kinds of
representation seem to be needed in the representation of music. The marriage of both

types of knowledge is, as described before, still a topic of research.

THE REPRESENTATION OF STRUCTURE

Structural descriptions of music can be divided into two areas. One is the description of
musical structure independent of psychological considerations, based on an analysis by a
musicologist. The other is the description of the structural properties of mental
representations of music: the goal of music psychology research. The described issues are
relevant to both areas. In describing general structuring, we can employ the same division
used in the subfield of time structuring: 1) facit structural relations, 2) implicit structural

relations, and 3) explicit structural relations.
Tacit structural relations

When no structure is represented, we are left with only the primitives of the
representation. This is the case in the earlier mentioned MIDI protocol that represents a
piece of music as a structureless stream of note-onsets and offsets (with as attributes an

integer key number, a velocity value and channel number).

Implicit structural relations

Implicit are those structural relations that have to be calculated from the
representation. As an example, from a MIDI file format the following structural

information can be obtained: all notes on channel 1 belong to one unit called a 'track’;

Representing time and structure 14

every two seconds there is a bar and all notes within that time span are part of it; etc.
The structural relations that can be derived from a representation (with only implicit

structuring) depend heavily on the choice of primitives and their attributes.
Explicit structural relations

Structure is the denominator for a large class of possible relations made between the
entities of a representation. One can say that almost everything, except the entities
themselves, is structure. Very few representational systems for music supply explicit
structuring mechanisms, and even when they are available, they only represent specific
kinds of structure (e.g. meter, bars, instrumental parts) or support annotation (e.g. "this is
an important note"). The following paragraphs discuss the issues in the design of a

general structuring mechanism.

* What kinds of structural types are needed?

One way of describing different kinds of relations -so as to have a handle to talk about
them in a general way- is to divide them in binary and n-ary relations. A special kind of
binary relation is a tree or hierarchy. A part-of relation defines such a hierarchical
relation between objects. It propagates behavior between objects. A part-of relation could
denote relations such as "all notes part-of chord", or the often-used bar, beat, and note
hierarchy. They are quite general and flexible in describing musical structure (see
Honing, 1990).

Another hierarchical relation, orthogonal to the part-of relation, is the is-a relation. It
defines inheritance of behavior and characteristics, specifying a generalization
hierarchy of objects: a structure of concepts which are linked to those of which they are
specializations. Examples are: a dominant chord being a special kind of seventh chord, a

chord being a kind of cluster, a cluster being a kind of collection of notes, etc. (see e.g.
Pope, 1989).

A great number of music theories use hierarchies as their only kind of structuring
(Lerdahl & Jackendoff, 1983). Hierarchies are very useful in relating local and global
information, but other kinds of relations are needed as well. Other binary relations like
associative relations are useful in relating, for example, a theme with its variations.
Functional relations are also needed (e.g. the function of a particular chord in a scale) as
well as referential relations (e.g. a theme referring to a previously presented or already
known motif).

Representing time and structure 15

N-ary relations can structure more complex types of relation: for instance, the
dependency of a certain chord on scale, mode and the context in which it is used is a

ternary relation.

The structural types described here are the ones most relevant to music, though a
complete overview of all musical constructs and their expression in these structural types

would take considerably more space.5

* Relations between musical constructs: generalization vs dedication

Not everything is said about musical structure by simply assigning one of the structural
types described above. Within one type of structure (e.g. defined in terms of part-of
relations) refinement is needed to distinguish between the different musical constructs
described by means of this type (e.g. what is the difference between a chord and a bar
when both are described in terms of part-of relations?). There are two extremes in
approaching this problem. One approach is dedication: all the well-known or often used
musical constructs (chord, arpeggio, bar, beat, trill, grace note, etc.) are described, more or
less ad hoc, as primitives with their own specific relations (and resulting behavior),
with little or no hierarchy. The other approach is generalization and is based on
parsimony: there are no special musical constructs defined as primitives, all constructs
being based on some very general primitive (e.g. a time interval). The bias is on
generality: new musical constructs have to be defined in terms of existing ones, in a

hierarchical way.

The first is a popular and pragmatic approach. For instance, in a computer composition
system a reasonable set can be provided that takes cares of most needs. The main
drawback is that extensions have to be made in an ad hoc fashion and often need to have
their own processes (or transformations) defined for the user to be able to access or

manipulate them.

In the latter approach the choice of the right generalities is the problem. But when they
are available, extensions are simply defined in terms of these generalities or higher-
level constructs. There is no need to 'tell' the processes, acting on the representation,

about these new constructs.

* Direction: bottom-up, top-down or both?

In expressing one of the above mentioned relations, it is important to note how the

information flow is supported by the representation. In music theory and the psychology

Representing time and structure 16

of music, different directions are proposed: from the conceptual level down (top-down;
Schenker, 1956), and from the low-level data up (bottom-up; Narmour, 1977), or in both

directions, as in modeling tonal hierarchies with interactive activation networks
(Bharucha, 1987).

Representing time and structure 17

Figure 1. A 'bars' structure with part-of relations (a), its associated time intervals and constraints (b).

Representing time and structure

Figure 2. A 'progression’ structure with part-of relations (a), its associated time intervals and constraints (b).

Representing time and structure

* Musical structure: association with time intervals and their constraints essential

In what way is musical structure different from any general structure mechanism (e.g. the
part-of and is-a relations we described before)? Since time is an influential factor in
most, if not all types of structure in music, musical structure can be described as a
collection of structuring mechanisms that have time intervals associated with their
components (i.e. structural objects). It is the constraints on these time intervals that

specialize the different types of structuring.

As an example, let's look at two simple part-of relations: bars, a bar, note (see Figure la),
and a progression, chord, note hierarchy (see Figure 2a). In the first hierarchy it is clear
that the structural object bars' and its parts have a duration: they hold for a certain
time interval. This is also the case for the 'progression' object and its parts. Both
constructs have the same part-of structure but differ in the kind of constraints they have
on their associated time intervals. In a 'bars' structure, if one bar becomes longer, the
other one has to become shorter: they have to satisfy the meet constraint (using Allen's
(1983) terminology). In the 'progression’ structure, the comparable structural objects have
a before relation. The musical constructs are characterized by the specific constraints on

these time intervals associated with their structural objects (see Figure 1b and 2b)6.

These constraints should be part of the representation, i.e. part of the syntax, so that
operations on the representation produce the behavior resulting from these restrictions
for free; the semantics of musical constructs (e.g. what does an arpeggio mean, and how
does it differ from a chord or a run of notes) should be moved to the syntax. In this way
the representation has embedded knowledge of how to deal with particular kinds of
structure. These musical constructs can be compared with small machines: they have a

clear and accessible behavior that cannot be altered.

* Multiple representations: power vs coordination and consistency

Multiple representations are needed in a complete description of music, i.e. several
structural descriptions being applied to the same primitives (e.g. a note is part of a meter
and a tonal hierarchy at the same time). One could think of multiple structural
representations as analogous to a ring binder: the spiral resembles the primitives, the
pages the different kinds of structural relations. As described before (see General
approaches to representation), the consistency and coordination of the information

between the pages is the problem here.

Representing time and structure 20

Inconsistencies may occur when two structural descriptions clash (i.e. the constraints on
both structural descriptions can't be solved or unified) and exceptional or preferred
behavior has to be provided. It seems that in these situations, the demand for
consistency is too strong (e.g. a slowed-down chord structure might turn into an arpeggio).
It may not be possible to formalize a representation of music in a way that guarantees
consistency.8 More research is needed in the formalization of musical constructs (i.e.
definition and behavior) and their combination that might result in exceptional or

preferred behavior.

* Modularization: musical knowledge vs annotation

Here the issue is whether structuring is used to add musical knowledge or just used as
annotation. Structure can be used as an annotation of the basic elements of the
representation assigning different kinds of information, but it can also be interpreted as
musical knowledge. Using structure in both ways facilitates modularity: not all
knowledge about music has to be part of the representation, since structure can be used as
a hook to import information from outside the system. This improves the modularity of
the system considerably (as advocated by Simon (1969) in technical terms, and by Fodor
(1983) in cognitive terms).

CONCLUSION

Representational systems have a central position in the cognitive sciences, especially in
the fields of computational psychology and artificial intelligence. A formalist
approach to representation, as summarized in the "knowledge representation
hypothesis", applied to the representation of music has turned out to be beneficial.
Representing musical knowledge in syntactical terms, makes a theory within the
psychology of music explicit and verifiable. Discussing the issues in the design of such a

representational system for music is what this article has aimed at.

Before talking about structuring, the question "what are we structuring ?" was asked. The
decomposability of a representation of music was discussed as well as the expression of
its primitives in either discrete or continuous terms (or a combination thereof). Research
in the segregation of acoustical signals (Bregman, 1990) is essential in deciding on the
primitives of a general representation of music. Currently, most research is based on the

assumption that the basic elements of music are discrete.

The discussion of time structuring, as a special case of general structuring, showed that

the choice of either points or intervals, a relative or absolute time base, discrete or

Representing time and structure 21

continuous representations, and the use of procedural or declarative descriptions of
musical knowledge are controversies where solutions through combining these polarities

have to be found.

Several types of general structuring were discussed. An important point is the
observation that structure in music is often associated with a time interval (for which it
'holds')- The constraints on these time intervals model specific musical constructs and
their behavior. Time structuring and general structuring differ in the sense that time
structuring makes these constraints explicit: they are represented as structural objects
(e.g. 'parallel' and 'sequential' relations), while in general structuring they are implicit:
they are used to restrict the behavior of the specific structure, but are not explicitly

represented as structural objects.

In conclusion:
1) A representation should be as formal as possible. Even when the meaning is removed
from the formal system it must be possible to prove its correctness (i.e. not dependent on

knowledge outside the the formal definition).

2) A representation should be as declarative as possible. Declarative representations
were shown to have preference over procedural representations, even though some

information is more naturally represented in a procedural way.

3) A representation should be as explicit as possible. All relations and knowledge should

be explicitly stated in the representation.

4) All the controversies presented above need combined solutions in which both extremes

can be expressed. The idea of having multiple representations of the same 'world' seems
useful.

5) Musical structure should be associated with time intervals. Constraints on these time
intervals model the specific musical constructs and their behavior. These constraints
should be part of the representation, i.e. part of the syntax, so that operations on the

representation get the behavior resulting from these restrictions for free.

In the short term, it is concluded that it would be best to construct representations of msuic

so as to be as declarative, explicit and formal as possible, while actively awaiting

Representing time and structure 22

developments in representation languages or schemes that can deal with the issues

presented here in a more flexible way. 9

ACKNOWLED GEMENTS

Thanks to David Huron, Christopher Longuet-Higgins, Steve McAdams, Stephen Pope,
Maria Ramos, and my colleagues at City University, Music Department and the Centre
for Knowledge Technology for useful discussions and advice. Special support by Johan den
Biggelaar, Ton Hokken and Thera Jonker is highly appreciated. Thanks for proof-
reading and valuable suggestions and improvements on earlier versions to Eric Clarke,
Joop Ringelberg, and an anonymous referee. The research was in part supported by an
ESRC grant under number A413254004. Finally, special thanks to Peter Desain for his

encouragement, insights, and generous sharing of ideas.

REFERENCES

Allen, J.F. (1983) Maintaining Knowledge about Temporal Intervals. In: Communications
of the ACM, 26(11).

Anderson, J.R. (1983) The Architecture of Cognition. Cambridge, Mass.: Harvard
University Press.

ANSI (American National Standards Institute) (1989) X3V1.8M/SD-6 Tournal of
Development Standard Music Description Language (SMDL). San Frandsco: Computer
Music Assodation.

Balaban, M. (1989) Music Structures: A Temporal-Hierarchical Representation for
Music. Musikometrika, Vol. 2.

Balaban,M., K. Ebcioglu & O. Laske, eds (1991) Musical Intelligence. Menlo Park: The
AAAI Press, (forthcoming).

Bharucha, J.J. (1987) MUSACT: A Connectionist Model of Musical Harmony. In
Proceedings of the Cognitive Science Society. Hilsdale, New Jersey: Erlbaum.

Boden, M. A. (1990) Has Al helped psychology? In: The foundations of artificial
intelligence. A source book, edited by D. Partridge and Y. Wilks. Cambridge:
Cambridge University Press.

Bregman, A.S. (1990) Auditory Scene Analysis: The Perceptual Organization of Sound.
Cambridge, Mass.: Bradford books, MIT Press.

Byrd, D. (1984) Music Notation by Computer. Ph. D. Dissertation, Computer Science
Department, Indiana University. Ann Harbor: University Microfilms.

Representing time and structure 23

Clarke, E.F. (1987) Levels of structure in the organisation of musical time. In "Music and
psychology: a mutual regard", edited by S. McAdams. Contemporary Music Review.
2(1).

Clarke, E.F. (1988) Generative principles in music performance. In Generative processes
in music. The psychology of performance, improvisation and composition, edited by J.
A. Sloboda. Oxford: Science Publications.

Dannenberg, R. (1989) The Canon Score Language. Computer Music Toumal 13(1).

Dannenberg, R., LM. Dyer, G.E. Garnett, S.T. Pope, & C. Roads (1989) Position papers. In
Proceedings of the 1989 International Computer Music Conference. San Francisco:
Computer Music Association.

Desain, P. & H. Honing (1988) LOCO: A Composition Microworld in Logo. Computer
Music Toumal 12(3).

Desain, P. & H. Honing. (1989) Quantization of Musical Time: A Connectionist
Approach. Computer Music journal 13(3). Reprinted and updated in Todd & Loy
(1991).

Desain, P. & H. Honing. (1991a). Tempo curves considered harmful. In ‘Music and Time",
edited by J. D. Kramer. Contemporary Music Review. London: Harwood Press,
(forthcoming).

Desain, P. & H. Honing. (1991b). Towards a calculus for expressive timing in music.
Research Report. Utrecht: Centre for Knowledge Technology.

Desain, P. & H. Honing, (in press) Time functions function best as functions of multiple
times. To appear in Computer Music Toumal.

Desain, P. (1990) Lisp as a second Language. Perspectives of New Music, 28(1).

Deutsch, D. (1982) Grouping Mechanisms in Music. In The Psychology of Music, edited by
D. Deutsch. New York: Academic Press.

Dowling, W.]. & D. Harwood. (1986) Music Cognition. New York: Academic Press.

Dyer, L. (1990) Ensemble. Proceedings of the 1990 International Computer Music
Conference. San Francisco: Computer Music Association.

Erickson, R. (1975) The DARMS Project: A Status Report. Computers and the Humanities,
9(6).

Erickson, R. (1982) New Music and Psychology. In The Psychology of Music, edited by D,
Deutsch. New York: Academic Press.

Fodor, J. (1983) The Modularity of the Mind: An Essay on Faculty Psychology.
Cambridge, Mass.: Bradford Books, MIT Press

Goodman, N. (1968) The Laneuages of Art: An Approach to a Theory of Symbols.
Indianapolis: BobbsMerill Co.

Representing time and structure 24

Gourlay, J.S. (1986) A Language for Music Printing. Communications of the ACM, 29(5).

Grey,].M. (1977) Multidimensional Perceptual Scaling of Musical Timbres. Journal of the
Acoustical Society of America. 61.

Hewitt, C. (1975) How to use what you know. Proceedings of the Fourth International
Joint Conference on Artificial Intelligence. Los Altos, CA.: Morgan Kaufmann.

Honing, H. (1990) POCO: An Environment for Analysing, Modifying, and Generating
Expression in Music. Proceedings of the 1990 International Computer Music Conference.
San Francisco: Computer Music Association.

Huron, D. (1990) Book review of Music as Cognition by M.L. Serafine. Psychology of
Music, 18.

Johnson-Laird, P.N. (1983) Mental Models: Towards a Cognitive Science of Language,
Inference, and Consciousness. Cambridge, Mass.: Harvard University Press.

Krumhansl, C.L. (1979) The Psychological Representation of Musical Pitch in a Tonal
Context. Cognitive Psychology, 11.

Lerdahl, F. & R Jackendoff (1983) A Generative Theory of Tonal Music. Cambridge,
Mass.: MIT Press.

Longuet-Higgins, H.C (1973) Comments of the Lighthill Report. Artificial Intelligence -
A Paper Symposium. London: Science Research Council. Reprinted in Longuet-Higgins
(1987).

Longuet-Higgins, H.C (1987) Mental Processes. Cambridge, Mass.: MIT Press.

Longuet-Higgins, H.C. & C.S. Lee (1984) The Rhythmic Interpretation of Monophonic
Music. Music Perception, 1. Reprinted in Longuet-Higgins (1987).

Loy, G. (1985) Musicians Make a Standard: The MIDI Phenomenon. Computer Music
Tournal 9(4). Reprinted in Roads (1989).

Loy, G. (1988) Composing with Computers - A Survey of Some Compositional Formalisms
and Music Programming Languages. In Current Directions in Computer Music Research,
edited by M. V. Matthews & J. R. Pierce. Cambridge, Mass.: MIT Press.

Marr, D. (1982) Vision: A Computational Investigation into Human Representation and
Processing of Visual Information. San Francisco: W.H.Freeman.

Matthews, M.V. (1969) The Technology of Computer Music. Cambridge, Mass: MIT Press.

McAdams, S & A. Bregman (1979) Hearing Musical Streams. Computer Music Journal
3(4). Reprinted in Roads & Strawn (1985).

McAdams, S. (1987) Music: A Science of the Mind? In "Music and Psychology: A Mutual
Regard", edited by S. McAdams. Contemporary Music Review, 2(1).

Representing time and structure 25

McAdams, S. (1989) Psychological constraints on form-bearing dimensions in music. In
"Music and the cognitive sciences", edited by S. McAdams and I Deliege.
Contemporary Music Review, 4(1).

McDermott, D.V. (1982) A Temporal Logic for Reasoning about Processes and Plans.
Cognitive Science. 6.

Meyer, L.B. (1973) Explaining Music: Essays and Explorations. Berkeley: University of
California Press.

Minsky, M. (1975) A Framework for Representing Knowledge. In The Psychology of
Computer Vision, edited by P. Winston. New York: McGraw-Hill.

Moore, F.R. (1988) The Dysfunctions of MIDI. Computer Music Tournai 12(1).

Narmour, E. (1977) Beyond Schenkerism: The need for Alternatives in Music Analysis.
Chicago: University of Chicago Press.

Newell, A. (1973) Productions systems: models of control structures. In Visual Information
Processing, edited by W.G. Chase. New York: Academic Press.

Pope, S.T. (1989) Modeling Musical Structures as EventGenerators. Proceedings of the
1989 International Computer Music Conference. San Francisco: Computer Music
Association.

Povel, D.J. & P. Essens (1981) Perception of temporal patterns. Music Perception, 2

Puckette, M. (1988) The Patcher. In Proceedings of the 1988 International Computer Music
Conference. San Francisco: Computer Music Association.

Quillian, M.R. (1968) Semantic Memory. In Semantic Information Processing, edited by
M.L. Minsky. Cambridge, Mass: MIT Press.

Roads, C (ed.) (1989) The Music Machine. Cambridge, Mass.: MIT Press.

Roads, C. & J. Strawn (eds.) (1985) Foundations of Computer Music. Cambridge, Mass.:
MIT Press.

Rodet, X. and P. Cointe. (1984) FORMES: Composition and Scheduling of Processes.
Computer Music Tournai 8(3). Reprinted in Roads (1989).

Rumelhart, D.E. & D.A. Norman. (1985) Representation of Knowledge. In Issues in
Cognitive Modeling, edited by A. M. Aitkenhead and J. M. Slack. London: Lawrence
Erlbaum Ass.

Schenker, H. (1956) Der Freie Satz. Vienna: Universal Edition

Schottstaedt, W. (1983) PLA: A Composer's Idea of a Language. Computer Music Tournai
7(1). Reprinted in Roads (1989).

Serafine, M.L. (1988) Music as Cognition: The Development of Thought in Sound. New

York: Columbia University Press.

Representing time and structure 26

Shepard, R.N. (1982) Structural approximations of musical pitch. In The Psychology of
Music, edited by D, Deutsch. New York: Academic Press.

Simon, H. (1969). The Architecture of Complexity. In The Sciences of the Artificial.
Cambridge: MIT Press.

Sloboda, J. (1985) The Musical Mind: The Coenitive Psycholoev of Music. Oxford:
Clarendon Press.

Smith, B. C. (1982) Reflection and Semantics in a Procedural Language. Ph.D.
dissertation. Technical Report MIT/LCS/TR-272, Cambridge, Mass.: MIT.

Smith,L. (1972) SCORE - A Musician's Approach to Computer Music. Toumal of the
Audio Engineering Society, 20.

Todd, PM. & D.G. Loy (Eds.) (1991) Music and Connectionism, Cambridge, Mass.: MIT
Press.

Wessel,D. (1979) Timbre space as a musical control structure. Computer Music Tournal
3(2).

Winograd, T. (1975) Frame Representations and the Declarative/Procedural
Controversy. In Representation and Understanding: Studies in Cognitive Science,
edited by D.G. Bobrow and A.M. Collins, New York: Academic Press.

Representing time and structure 27

NOTES

~ Distributed representations (e.g. connectionist networks), in this sense, manipulate symbols of an
unusual kind. An individual unit of such network does not implement an identifiable symbol; a
meaningful representation only exist at a level made up of a number of units.

2 Simon (1969) describes nearly decomposable systems as having the property “the short-run
behaviour of each of the component subsystems is approximately independent of the short-run
behaviour of the other components” (p. 100).

J Allen’s theory (1983), describes points as intervals that are durationless, i.e. a duration less than a
value £, adjusted to the reasoning task.

~ It has been shown that structure is essential in the performance of the continuous and discrete
aspects of musical time (e.g. Clarke, 1987, 1988). Therefore a complete representation of time should
facilitate the expression of these aspects in terms of structure to be of any perceptual or musical
relevance (see Desain & Honing, 1991a).

~ A complete overview of all musical constructs will quite likely turn out to be a large, if not infinite
collection, but they probably can be grouped into a considerably smaller set of proto-typical
relations, with their specific characteristics being modeled as refinements of a particular structural type
(see issue on Musical structure: association with time intervals and their constraints essential).

~ The constraints on the time intervals, as shown in Figure lb and 2b, give a raw characterization of
the example structures, just for comparison. For a more complete characterization of such structures
the logic-based constraints of Allen (1983) are not enough. Other kinds of constraints are needed as
well to be able to express relations like, for example, all bars have the same length, or, a bar is half
the length of ‘bars’.

~ These pages could be of different shapes and material, standing for structural descriptions of a
completely different nature. This analogy was suggested by Morris Halle in a seminar at Sussex
University in 1987 when talking about conceptual representations of linguistic structure.

8 Recent work done in the field of artificial intelligence on non-monotonic logic and truth-
maintenance might therefore be applicable to music.

ASince this article was written (autumn, 1990) work has been done on partial solutions of the issues
presented above. Some of the issues on the representation of time have been resolved in a generalized
concept of time functions (Desain & Honing, in press). A proposal for a specification and
transformation formalism of expressive timing described in terms of structure is published as Desain &

Honing (1991Db).

Representing time and structure 28

Tempo curves considered harmful
Peter Desain & Henkjan Honing

MARCH 1991
Edited may 1991

Will be published as: Desain, P. & H. Honing. (1991). Tempo curves considered harmful.
In "Music and Time", edited by J.D. Kramer. Contemporary Music Review. London:
Harwood Press.

© copyright 1991, Peter Desain & Henkjan Honing

Center for Knowledge Technology
Lange Viestraat 2b

3511 BK Utrecht

The Netherlands

Contents

ADSITACE ...t 3
K@Y WOTAS et 3
In which we decided to have a good time, invited an expert, and had our first
diSaPPOINIMIENT ...t 4
Tempo, Metre and Beat 6
Tempo, Timing and Structure........cccoooviiiiiiiie, 9
Wherein we looked at multiple performances, learned from a conductor and tried
different hierarchies but had no success...........ccccceeuviiiiiiiiiiiiii 9
Timing and Tempo, Patterns and Curves 1
Generative models 15
In which we investigated discrete patterns and continuous curves, tried
interpolation and failed again........ccocooeiieiiiiieiiic 15
Subjective Time, Duration and Tempo Magnitudes 16
Objective Time, Duration and Tempo Measurements...........ccceueueennnes 20
EPIlOGUE. ... 20
AcKkNOWledgements. ... 22

Abstract

In the literature of musicology, computer music research and the psychology of music,
timing or tempo measurements are mostly presented in the form of continuous curves. The
notion of these tempo curves is dangerous, despite its widespread use, because it lulls its
users into the false impression that a continuous concept of temporal flow has an
independent existence, a musical or psychological reality, and that time can be
perceived independent of events carrying it. But if one bases a transformation or
manipulation of timing on the implied characteristics of such a notion, one is doomed to

fail.

KEYWORDS

representation of time, tempo curves, expressive timing

Tempo curves considered harmful
Peter Desain & Henkjan Honing

In which we decided to have a good time, invited an expert, and had our

first disappointment.

Not so long ago we decided to spend a Christmas holiday studying music and its
performance. One of us is an amateur mathematician (M) and the other one likes to
delve into old psychology textbooks (P), and because we enjoy impressing each other
with new facts and insights, we often find ourselves in vehement discussions. Therefore
we thought we might have a pleasant and peaceful time by putting our beloved hobby
horses aside and embark upon a subject about which neither of us knew much: the timing
aspects of music. We became interested in this field because we had noticed, while
playing with the computer, our favourite toy, that adding just a bit of random timing
noise to a program that played a score in an otherwise metronomically perfect way,
made the music much more pleasant to listen to. It seemed as if we could make more
sense of it. But we suspected that there was more to timing and expressive performance
than adding bits of noise, so we invited a mutual friend who is a retired professional
pianist to spend Christmas in our small but well equipped laboratory. Our friend has a
great love for the piano and its music, but is completely ignorant of the advances of
modern technology. To demonstrate to him our latest sequencer program we asked him to
play the theme from the six variations composed by Ludwig van Beethoven on the duet

Nel cor piu non mi sento, the score of which we had lying around (see Figure 1).

Tempo curves considered harmful 4

Even though he was somewhat disturbed by the touch and harpsichord-like sound of
the electronic piano, he was quite fascinated with the possibility of recording and
playing back on the same instrument. Enthusiastically we told him that this system
was more than just a modern version of the pianola: 'You can examine and change every
detail you want; for instance, inspect the timing , accurately to the millisecond, add and
remove notes, make notes longer or shorter, or louder or softer, and so on and so forth.'
Our friend became quite excited and asked : 'Could your machine play my performance
in a minor key?' We were a bit put off by the simplicity of his demand, but patiently
demonstrated the key-change feature. After hearing his performance with the key
changed to G minor our friend was not impressed. 'O dear, I'm afraid this sounds much
too hasty. For example, the "dramatic" e-flat in bar 3 needs more time. Let me play it in
minor for you." When we looked at the timing data of his new performance it indeed
showed a different pattern. Upon noticing our disappointed faces our friend remarked
'this was not a minor change; it really turns it into another piece. We did not expect
your device to know about that, did we? We kept silent. 'But your machine can
undoubtedly play the same piece at a faster tempo." That set us in motion again. We
changed the setting of the tempo knob to a tempo one-and-a-half times as high and
pushed the play button. The face of our friend again did not show the expression we had
hoped for. T'm awfully sorry, but this is not right! It sounds like a gramophone record
played at the wrong speed, but without changing the pitches.' Suspiciously, we wanted
some proof for his crude statement and asked him to play it the way he thought it
ought to be performed. His version at the higher tempo was indeed different. We had
to admit that it sounded more natural than our artificially speeded-up version. What
made it sound so much better? We tried to unravel this mystery by examining the timing
of the onsets and the offsets of the notes, since these were the variables that could be

altered with our electronic keyboard, just like a real harpsichord.

Tempo curves considered harmful 5

Tempo, Metre and Beat
Temporal pattern is a series of time intervals, without any interpretation or structure.

Rhythm is a temporal pattern with durational and accentual relationships and

possibly structural interpretations (Dowling & Harwood, 1986).

Beat refers to a perceived pulse marking off equal durational units (Dowling &
Harwood, 1986, p. 185). They set the most basic level of metrical organisation. The
interval between beats is sometimes called a "time-span" (Lerdahl & Jackendoff, 1983),
or, less abstract, beat duration, beat period or metrical unit (Longuet-Higgins & Lisle,

1989).

Metre involves a ratio relationship between at least two time levels (Yeston, 1976). One
is a referent time level, the beat period, and the other is a higher order period based on
a fixed number of beat periods, the measure. It imposes an accent structure on beats,

because beats initiating higher level boundaries are considered more important.

Tempo refers to the rate at which beats occur (often expressed as beats per minute), and

is therefore closely linked to the metrical structure.

Density is used to refer to the average presentation rate taken across events of different
duration (i.e. events per second) when a piece has events of different durations and the

beat is hard to determine unambiguously, if at all (Dowling & Harwood, 1986).

It is important to note that rhythm, tempo, metre and density can be conceived
independently: it is possible to maintain the same tempo while changing density; for
example, a musical fragment can have a lot of embellishments (i.e. have a high
density) and still be perceived as having a slow tempo. Furthermore, rhythm can exist
without a regular metre and any type of rhythmical grouping can occur in any type of

metrical structure (Cooper & Meyer, 1960).

Tactus is the tempo expressed at the level at which the units (beats) pass at a moderate
rate (Lerdahl & Jackendoff, 1983). This rate is around the "preferred" or "spontaneous"
tempo of about 100 beats per minute (Fraisse ,1982).

Our sequencer, a very recent version, had a separate tempo track. In this track, the
tempo can be changed from fragment to fragment, even from note to note. With this
feature we could put the original score on one track and the timing of the performance,
expressed as tempo changes per note, on the tempo track, although it took quite a bit of
calculating and editing by hand. After a while we had completely recreated the

original performance, but now as a score plus a separate track of expressive timing

Tempo curves considered harmful 6

information. This tempo track looked like the graph in Figure 2a (for clarity we show
only the timing of the melody). We could now compare the timing of this performance
with the one played at tempo 90 (see Figure 2b). Their form was quite different even by

visual inspection, although our ears were, of course, the only valid judges.

Figure 2. Tempo deviations in the performance of the theme at tempo 60 (a) and at tempo 90 (b).

What had happened? The sequencer had speeded everything up by the same amount
(which we all agreed sounded awkward), while in the performance the expressive
timing appears not to scale up everywhere by the same factor. Our friend adapted his
rubato according to the tempo, which he explained to us as: 'My timing is very much
linked to the musical structure and what I want to communicate of it in an artistic
manner to the listener. If I play the piece at another tempo, other structural levels
become more important; for instance, at a lower tempo the tactus will shift to a lower
level, the subdivisions of the beat will get more "in focus", so to say, and my phrasing
will have much more detail." After some scratching with pen on paper, M found a quite
elegant way of representing these changes using simple mathematics. We took the time
interval between the onsets of every two succeeding notes and calculated the ratios of
these time intervals in the two tempi. If the expressive timing pattern would scale-up
linearly, we would find the ratios for all the notes to be around the ratio between the
two tempi, and most ratios were indeed around 1.5. There was some variance around
that factor, though, and we thought that could be explained by the more elaborate
short-span phrasing at the lower tempo. But, even more noticeable was the fact that for
some notes the ratio was close to 1. We found that these notes were notated as grace
notes in the score. They did not change at all when performed at an another tempo. We
also found that not all grace notes behaved like this. For example, the two grace notes
that cover an interval of a sixth, in bar 7 and 19, were timed like any other note: they
were actually played in a metrical way. Our pianist got really excited about our

observations. He pointed at grace notes in the score that were notated in the same way,

Tempo curves considered harmful 7

but that needed a different interpretation, and he started to lecture about the different
kinds of ornaments, so popular in the eighteenth century, the difference between
acciaccatura and appoggiatura , 'ornaments that "crush in" or "lean on" notes', about
their possible harmonic or melodic function changing their performance, and so on and so
forth. When he noticed that we were getting bored with his lengthy historical
observations, he woke us up again with a new, sharp attack on our beautiful sequencer
program: 'It might be forgivable that your program cannot play the onsets of ornaments
correctly, but it also murders the articulation of most notes, especially the staccato ones.
And have you heard what the program did to my detailed colouring of the timbre of
chords?' Well, in fact, we had not, but we could well understand that the timbral aspect
brought about by the chord spread (playing some notes in a chord a tiny bit earlier or
later than others) was not kept intact when all timing information is just scaled by a
certain factor. And we did not even dare to play the performance again at a lower
tempo, afraid that each chord would turn into an arpeggio.

So our sequencer was not so wonderful after all. It could not be used to change
something, not even such a minor thing as the key in which the piece was played.
Again our pianist explained that a change of key was not a minor thing. The minimal
variation that he could think of was the repetition of bars 5-8 at the end of the theme.
‘The only difference between them is the fact that the second segment is a repetition of
the first, and I even expressed that minimal aspect by timing. This problem is
exacerbated if the difference between two sections is the overall tempo. Then detailed
knowledge about structural levels, articulation, timing of ornamentations and chords, is
indispensable." We had to agree. How dumb of us, after all, to assume that a tempo knob

on a commercial sequencer package could be used to adjust the tempo.

Tempo curves considered harmful 8

Tempo, Timing and Structure

In principle, timing can be linked to any musical structural concept. The most concrete of

those are the following.

Although the most obvious metrical units are bar and beat, this strictly hierarchical
structure may extend above and below these levels. Special expressive marking of the
first beat in the bar, either by timing, dynamics or articulation, is a common

phenomenon (Sloboda, 1983).

Phrases may not be ordered in a strict hierarchy, and may cut across metrical structure.
Phrase final lengthening is the most well-known way in which they are treated (Todd,

1989)

A large proportion of the timing variance can be attributed to rhythmical groups
(Drake & Palmer, 1990). Some standard rhythmical patterns, like triplets, seem to
have a preferred timing profile (Vos & Handel, 1987).

Small timing asynchronies within a chord (called chord spread) are perceived as an

overall timbral effect - the actual timing pattern is hard to perceive.

Ornaments, like grace notes and trills, can be divided in acciaccatura, so called timeless
ornaments, and appoggiatura, ornaments that take time and can have a relatively
important harmonic or melodic function. The former normally falls outside the metrical

framework, the latter tends to get performed in a metrical way.

The independent timing of individual voices is sometimes hard to perceive because
their components are immediately organised by the perceptual system in different
streams (Bregman, 1990). This is not the case with (almost) simultaneous onsets that
result in clear timbral differences. This can be heard in ensemble playing where often

the leading voice takes a small lead of around 10 ms. (Rasch, 1979).

Any associative relation, e.g. between a musical fragment and its repetition, can be

given intentional expression by using the same or different timing patterns.

Wherein we looked at multiple performances, learned from a conductor

and tried different hierarchies but had no success.

But we were convinced we could make our friend happy, and proposed to program some
additions to the sequencer ourselves. We showed him a video tape about research done
at MIT by Barry Vercoe and his collaborators on computer accompaniment of a real
musician. In this project the computer is given a score and several performances of the

piece. With that information it can be "trained" to follow and accompany the musician.

Tempo curves considered harmful 9

Not that we were trying to do that, but we could use the idea to annotate each note in
the score with its deviation in the performance, in our case in different tempi. Our
friend friendly agreed to perform the Beethoven theme at four different tempi that
were musically acceptable to him. We saw again that some notes exhibited a large
change when tempo is changed, while others were less influenced by the tempo. But we
could now use statistical methods to derive the right timing information for each tempo
from this data. Our friend, who started to develop a little bit of suspicion, asked: 'Will
that solve playing at different tempi then?' We were not quite sure. We definitely had
more information now, but the representation of the music was still flat; no structural
information was provided. It seemed we could not avoid incorporating some
organisation above the note level into our program. Our friend agreed with a smile that
was almost saying: 'are you stupid or am I?' We got a bit nervous. But after some
discussion he agreed to concentrate on the timing of simple structural units like beats
and bars only, leaving the note by note details aside for the moment.

Then we remembered Max Mathews working at CCRMA, Stanford University, who
does important work in conductor systems (sort of the opposite of what Vercoe is doing).
He made a system where one can conduct a sequencer on the beat level, which was just
what we needed. The idea of a conductor shook our friend up; that sounded a much
better approach than all those statistics we tried to explain to him before. We gave our
friend an electronic baton, connected to our sequencer, and asked him to conduct the
piece. In the score in the sequencer the beats were marked. The program followed the
conductor by aligning each conducted beat with the corresponding mark in the score, and
it tracked the tempo indicated by the conductor in doing so. At the high tempo, beating
the baton very quickly, it seemed all right, but at the moderate tempo it was impossible
to steer the timing deviations within the beat. 'It sounds too jumpy/ our friend
complained. Since the beat level of the system of Mathews is arbitrary (he calls it
'generalised’), we annotated the score with marks at a lower metrical level, which
alleviated the problem a bit. But, as our friend was still complaining about the
controlability, we eventually ended up by marking each note in the score. This gave
complete control at last, though our poor pianist, out of breath by the acrobatics needed
to draw each note out of the sequencer by means of a single baton, made a cynical remark
about the wonderful invention, which we may have heard of, called a keyboard. We
became a bit vapid and proposed to help our conductor by connecting three MIDI batons
to the computer, the first two used by us to time the bars and the beats, and the third to
be used by our friend to fill in the details, using batons inter-connected with a complex

mechanism of wires, to keep the timing at all levels consistent. We fantasized for some

Tempo curves considered harmful 10

time about a whole orchestra of conductors, leading one pianist before them. It was

clearly time for a tea break.

Timing and Tempo, Patterns and Curves

In studying timing deviations a first distinction should be made between non-intended
motor noise and intended expressive timing or rubato. The first category deviates in the
range of 10 to 100 ms; the latter can deviate up to 50% of the notated metrical duration

in the score.

Expressive timing is continuously variable and reproducible (Shaffer, Clarke & Todd,

1985) and clearly related to structure (Clarke, 1988; Palmer, 1989).

It is important to note that there is interaction between timing and the other expressive
parameters (like articulation, dynamics, intonation and timbre). For example, a note
might be accented by playing it louder, a fraction earlier than expected or by
lengthening its sounding duration. Which method of accentuation is used is difficult to

perceive, even when the accentuation itself is obvious.

To refer to expressive timing, in computer music the term micro tempo is often used,
comparable to the term local tempo used in the psychology of music (the tempo changes
from event to event, expressed as a ratio of a performance time interval and a score time
interval). For clarity, the term timing would be more appropriate here. It specifies the
timing deviation on a note-to-note basis and is often referred to as the expressive timing
profile (Clarke, 1985; Shaffer, 1981; Sloboda, 1983), timing pattern or rubato pattern
(Palmer, 1989).

In these patterns, points are often connected, either stepwise with straight line
segments or with a smooth interpolation, yielding a timing curve. Only the first
representation maintains a proper relation with the time map in which points are
connected with line segments. These continuous time maps are used by Jaffe (1985) and
most people of the computer music community. Time maps can be superimposed, using one

for each voice.

Time maps can also be constructed for uniformly spaced units in the score like bars or
beats. The corresponding duration patterns form a true tempo pattern. The points in
these patterns can be connected by line segments, yielding so called tempo curves. Some
authors insist on stepwise tempo changes, like Mathews (Boulanger, 1990), in which

they are linked to one level of the metrical structure.

Tempo curves considered harmful 1

Over tea our friend told us about a series of programs on BBC radio, presented by the
English conductor Denis Vaughan, on the composer's pulse he used in conducting. The
pulse is a hierarchical, composer specific way of timing the beats. This pulse was an
idea proposed and actually programmed by someone working in Australia. We went to
our library and looked for some references that might tell us more on this composer's
pulse. We ran into a collection of articles by Manfred Clynes who had invented the
notion. This pulse, coincidentally, had precisely the characteristics we were looking
for: hierarchical tempo patterns linked to the metrical structure. It basically entailed a
system of automated hierarchical batons, and reduced the complexity further by
postulating a fixed pattern for each baton. We took a final sip of our tea and hurried
back to the lab and added Clynes' Beethoven 6/8 pulse as tempo changes in the tempo
track to our sequencer. It divided the time for each bar into two unequal time intervals
for the first and second half-bar and divided each half-bar into 3 unequal parts, one for
each beat. With some adjustments here and there, we had our program running in no
time. We called in our musical friend from the library to provide some professional
judgements. He was definitely not unhappy with the result. 'This sounds much better

than the things I've heard before," he said.

N i* gL U
o= = = i [9 oyl Ui S = H Ml f v i TTieeaePFF=VA
3 A — »--y °1— =_ N _ = - mmmmmmeeeeo

Figure 3. Score of the first variation of Nel cor pili non mi sento.

Tempo curves considered harmful 12

'Let's do the first variation, and see how our system performs it/ our friend said, far
more optimistic now. He was talking about "our" system. This was a good sign. 'This
variation is written in an ornamental style,' our friend explained, while we loaded the
score of the first variation (Figure 3) into our system and created the tempo track
containing the Beethoven pulse for this material. The metrical and harmonic structure
is the same for both theme and the first variation. The only difference is that there are
more "ornamental” notes added,' he said in a patronizing tone. When everything was
set we played him the result. 'Well, this is disappointing,' was his short and decisive
answer. After seconds of uncomfortable silence he added, 'it lacks the general phrasing
and detailed subtlety I think is essential to make it an acceptable performance. The
rhythmical materials of the theme and the first variation are different. The sixteenth
notes of the variation ask for a different kind of timing than the mainly short-long,
short-long, short-long rhythm of the theme. This pulse plays only with the metrical
structure, but musical structure has far more to offer than that." So the composer's pulse
could not just be mapped onto any rhythmic material. Furthermore, it only linked
timing to the meter, and, as our friend made clear, phrasing and other musical structure
was ignored.

That rang a bell. We remembered one of the articles by Neil Todd on a model of
rubato, linked to phrase structure. His proposal is very similar to Clynes; it explains
timing in terms of a hierarchical structure, but now phrase structure is the basic
ingredient. The beat is again the lowest level; below that no timing is modelled. The
abundance of mathematical notation in Todd's articles did not put off our amateur
mathematician. Quite the contrary. 'This, on first sight, will give us a solid basis to
work with. What he states here is that, if you remove all the constants from the
formula, it is actually quite simple,’ M said. 'Todd proposes to attach a parabola to
each level of the hierarchical phrase structure, and sum their values to calculate the
beat length.' He simplified a formula, found an error on the way and finally the model
became easy to implement. We were quite conscious of the fact that we were the first
really to hear Todd's model (he himself had never listened to it). It did not sound very
pleasing because this model was expressed in terms of the phrase structure only (based
on the idea of systematically lengthening the end of a phrase in a hierarchical way),
and because it lacked all expressive timing below the level of beats.

Longing to show our collaborator that the computer could, in principle, also calculate
detailed note-by-note timing, we looked for a model that would provide these.
Happily we found masses of rules for those subtle nuances in the articles of Johan

Sundberg and his colleagues. These rules formulated simple actions, like inserting a

Tempo curves considered harmful 13

small pause in between two notes or shortening a note. The actions had to be performed
if the notes matched a certain pattern, such as constituting a pitch leap or forming part
of a run of notes of equal duration. In fact there were so many rule sets proposed in his
articles that we got a bit lost in the details, but it has to be said that some rule-
cocktails really seemed to work for our piece. Especially if their influence was adjusted
to effect a subtle change only, the music gained some liveliness. But because these rules
are based on the surface structure of the music only we could predict the judgement of our
musical expert by now. And indeed he did not even bother to comment on the artificially
produced performances. Instead he kindly reminded us that we might give up looking
for a system that enabled us to generate a "musically acceptable” performance, given a
score (that is what Clynes, Todd and Sundberg are aiming at), for the simple reason
that we already had an "acceptable" performance, namely his own. It was true, the
initial aim of our endeavour was to find ways of manipulating the timing in a musically
and perceptually plausible way, given a score and a performance. Because the simple
representations we had used proved unsuccessful, we had been sidetracked by studying
even simpler representations that could at most model a small aspect of our friend's
performances. We decided to close the session, look for more details in the literature,

and give it another try the next day.

Tempo curves considered harmful 14

Generative models

Clynes (1983; 1987) proposes composer specific and metre specific, discrete tempo
patterns. This so called composer's pulse is assumed to communicate the individual
composer's personality. E.g. in the Beethoven 6/8 pulse the subsequent half-bars span 49
and 51% of the bar duration and each half bar is divided again in 35, 29 and 36%.
Clynes is opposed to analysis of performance data: the pulses stem from his intuition.

Repp (1990) has undertaken a careful evaluation of this model.

Todd (1985; 1989) proposes an additive model in which beat duration is calculated as a
summation of parabola shaped curves, one for each level of hierarchical phrase
structure. He complemented the model with an analysis method that calculates phrase

structure from beat durations.

Sundberg et al. (1983; 1989) proposes a rule system to generate expression from a score
based on surface structure. His research was done in an analysis-by-synthesis paradigm
and captures expert intuition in the form of a large set of these rules. An example of a
rule is "faster uphill”: A duration of a note is shortened if it is preceded by a lower
pitched note and followed by a higher pitched one. Van Oosten (1990) has undertaken a

critical evaluation of this system.

In which we investigated discrete patterns and continuous curves, tried

interpolation and failed again.

We found all kinds of references in the literature and read a lot that evening. It was
amazing to find how much work actually was done on a problem that we had thought
was not a problem at all. We became a little bit more conscious of the whole thing. It
looked as if P's hobby horse, psychology, had to be given a chance. He explained that
the perception of time had been modelled postulating a certain (often exponential)
relation between objective time and experienced time. But this research had all been
done with impoverished stimulus material, often consisting of just one time interval
marked-off with two clicks. 'Other research,’ P added, 'found that duration judgment
depends on the way the interval is filled with more or fewer events, so unfortunately
these simple laws cannot be directly applied to more complex material like real music.'
Even P was disappointed with the results of his beautiful science. 'But psychology has
something to offer to us here’, he spoke in a defensive tone. Take a look at all the
articles that present timing or tempo measurements in the form of continuous curves
instead of just a scattergram of measurements. These curves more or less imply an

independent existence, apart from the rhythmic material where they were measured

Tempo curves considered harmful 15

from. But psychological research has shown that one cannot perceive timing without
events carrying it." He found this convincingly argued in an article by the psychologist
James J. Gibson called "Events are perceivable but time is not". 'Can you imagine
perceiving a rubato without any notes carrying it?' P asked. 'And vise versa: "filling
up" time by adding an event between two measured points is problematic, isn’t it?'

There seemed to be no possible argument.

Subjective Time, Duration and Tempo Magnitudes

Most psychophysical scales for time intervals are described by Stevens' Law, that
relates the physical magnitude of a stimulus to its perceived magnitude as perceptual-
time = a-constant.physical-time * constant_The & value differs from one dimension to
the other. For time duration b is commonly found to be 1.1, slightly over estimation of
the interval. However, for intervals shorter than 500 ms it is found that b is around 0.5,

the square root of its physical duration (Michon, 1975).

Humans seem to have a relatively poor ability for time discrimination of intervals
presented without context. The just notable differences (JND) are in the range of 5-10%
(Woodrow, 1951) with an optimum near 600 ms intervals. However, in the context of a

steady beat, the JND’s are around 3% with the same optimum interval (Povel, 1981).

Much research was done on the existence of a spontaneous tempo, preferred rate or
natural pace (Fraisse, 1982). This tempo should occur as a preferred rate of spontaneous
tapping, and material presented at that rate should be easy to perceive and remember.
There is weak, but converging evidence for the existence of such a rate, again with
intervals around 600 ms. There is no consistent evidence for physiological correlates like

heart rate.

There has been quite some research done on the influence of different dimensions on time
perception, mainly in the fifties. Evidence was found that, in general, the higher
pitched the sound the longer the percept (Cohen et al., 1954), and the same holds for
louder sounds (Hirsch et al, 1956). Evenly divided intervals seem longer than irregular
divided ones (Ornstein 1969).

Time intervals shorter then 120 ms, preceded by a physically shorter neighbour time
interval, are underestimated to such a remarkable degree that one can speak of an

auditory illusion (Nakajima et al., 1989).

We decided to do the acid test using a feature of the sequencer program. In this

program it was possible to copy tempo tracks from one piece to the other. We applied

Tempo curves considered harmful 16

the tempo track of the original performance of the theme (see Figure 2) to the score of
the first variation. The result was poor; even we could hear that. The timing made
sudden jumps, like a beginner sight-reading and hesitating at unexpected points because
of a difficult note. The expressive timing pattern found in the theme did not "fit" the
variation. Our friend's performance of the variation was much smoother and had
gestures on a larger scale, as far as we were able to judge (Figure 4). Also, the other way
around, taking the timing data from the variation and applying it to the score of the
theme had the same awkward effect. It seemed impossible to just add or remove notes
using these stepwise tempo curves. We felt stupid again for having assumed that the
independence of tempo tracks in the sequencer made musical sense. But it made us look in

the literature for alternatives.

Figure 4. Tempo deviations in the performance of the variation at tempo 60.

The answer was not far away. In the field of computer music research continuous
rubato curves were used almost by default. We decided to take the path of the
continuous timing functions, hoping it would get rid of this awkward "jumpiness". Thus
M's hobby horse was brought out again. 'Functions are far easier to handle. One can
calculate, given the right kind of function, a good timing curve for every piece,)’ M
argued convincingly. This combined approach of formality (in the mathematical sense)
and pragmatics reminded us of a method developed by David Jaffe of CCRMA to model
the timing of different parts of a computer orchestra. Jaffe wanted the different
instruments to have their own timing, but they had to synchronise at specific points as

well. By using a time map, instead of tempo changes, coordination and synchronization

Tempo curves considered harmful 17

became possible. 'What he actually does is to specify the timing for each event by
means of a function from score time to performance time/ M explained, 'a blatantly
simple idea indeed: to integrate velocity or one-over-tempo, as Jaffe calls it, to get
time. This of course restrains the possible functions one can use to make up such a time
map; they have to increase monotonously and one must be able to calculate a first
derivative." This was again a method, among many others, in which different authors
presented their ideas of tempo curves (see Figure 5). We tried to bring some order to the

ways the different representations were used.

Figure 5. A typical so called "Tempo Curve” with duration factors for each note as a function of
metrical time.

Soon M gave up, stating that it was a hopeless mess; no two authors used the same
dependent and independent variables and measurement scales. And while in the end all
the information needed could be extracted from most presentations, it was a difficult job,
the more so because of the confusion in terminology. We decided to return to the
practical application of the time map. We adapted the sequencer's tempo track to
contain a time map (composed of line segments) instead of the discrete tempo changes
we had used before. We then applied this continuous curve to the variation and had our
pianist judge it. He thought it was much better than the direct application of the
discrete curve of the theme to the variation. The interpolation (with line segments) did
improve the smoothness of the timing, but he still complained about the sudden tempo
jumps at the junctions of the curve. M remarked that one could restrict the allowed
tempo map functions further or smooth the existing function, for instance, with splines.
This brought us to an article describing work done at IRCAM by David Wessel and

others, which indeed proposes the use of splines. We took an algorithm we had lying

Tempo curves considered harmful 18

around that did splines and added it to our tempo track algorithm. And there it was:
with some twiddling of the parameters we could interpolate the timing pattern of the
theme for its use on the variation. We almost thought that with this interpolation we
had proven Gibson wrong. There was a smooth sense of timing in between events, and if
one is smart enough one can tap it and hook new events onto it in a reasonable way. But
our musical friend did not agree 'Reasonable?' he reacted angry, 'it sounds reasonable,
yes, but your numerical calculations have nothing to do with the way I played it,
whatsoever. The musical structure, my dear friends, remember the musical structure.
How often do I have to repeat this. Timing is related to structure!" We suggested to him

a cup of tea, in the hope that this would calm him down.

Tempo curves considered harmful 19

Epil

Objective Time, Duration and Tempo Measurements

When an event happens (an onset of a note) one can measure the real time elapsed since
the beginning of the piece (called performance time) and also the point in the score
where this onset was notated (called score time). The latter can be measured either in
seconds (taking the tempo marking in the score serious, or normalising the total score
length to the performance), in metrical units like beats or quarter notes (called metrical
time), or as an event count (called event time). The last loses so much information that

the timing pattern cannot be reconstructed without reference to the score.

Performance time can be shown as a function of score time (called a time map), or vice
versa. In these representations it is easy to spot (a)synchronies between voices because

they depict points in absolute time.

Calculating differences between subsequent performance times in a time map makes the
step from time to duration. Because in such a representation it is difficult to compare
notes of different nominal duration, a proportional measure is better. It makes the step
from duration to relative duration by dividing two corresponding durations. In case a
performance duration is divided by a score duration, this forms a series of duration
factors (often misleadingly called tempo). This measure is mostly notated in a graph
with the independent axis labelled with metrical or event time. In the case of the

inverse calculation, the ratios form the velocity, the local speed of reading the score.

In both cases the measured points are often filled in with line segments - implying the
existence of a tempo measurement in between events. This is misleading - the more so

because integration does not yield the original time map again.

Gabrielsson (1974) uses note duration expressed in proportion to the length of the bar.
This allows for comparison with exact note values in different meters. The method

might be generalizable to study timing at different levels of structure.

Tempo is sometimes presented on a logarithmic scale; this is a first step towards the use

of subjective magnitudes.

An interesting hypothesis was given by Brown (1979). He argues that a musician makes
use of a collection of discrete tempi: a collection of discrete physically possible tempi,

where the choice is defined by musical and performing factors.

ogue

What this partly fictitious story (the characters are fictitious, but the examples and

arguments are real!) shows is that we have to be aware of the Tempo Curve. Of course

Tempo curves considered harmful 20

one should be encouraged to measure tempo curves and use them for the study of
expressive timing. But it is a dangerous notion, despite its widespread use and
comfortable description, because it lulls its users into the false impression that it has a
musical and psychological reality. There is no abstract tempo curve in the music nor is
there a mental tempo curve in the head of a performer or listener. And any
transformation or manipulation based on the implied characteristics of such a notion is
doomed to fail.

That does not mean that generic models that represent timing in terms of some sort of
structure, even when they describe just a fraction of the many aspects of expressive
timing, do not constitute a valuable contribution to the field. They only have to be seen
in a proper perspective in which their limitations are understood as well. It also does
not mean that certain features in computer music software and commercial sequencers
should be forbidden. Their mere existence at least makes the realisation of their
limited worth evident.

It should be noted here that the views expressed in this article comply more or less
with the British school of expressive timing research (E.F. Clarke, H.C. Longuet-
Higgins, L. Shaffer, J. Sloboda and N. Todd), in which the link between structure and
timing is paramount. There are alternative views developing at the moment, denying
such a strong link (Kendall & Carterette, 1991). We hope this controversy will
eventually lead to more understanding of this wonderfully complex aspect of music
performance.

In reality the experiments were done using POCO, an environment for analysing,
manipulating and generating musical expression (Honing, 1990), which took a bit longer

to build than one Christmas.

The holiday was almost over now and we felt that we had not found out many useful
things. Our musical friend announced that he would go back to his own piano. He
thanked us for the interesting sessions, from which he had learned a lot. But
underneath these friendly remarks we could hear the cynicism. He advised us in a
fatherly way to get rid of our research papers and start reading biographies of famous
composers, in which the true facts about music and its performance could be found. This
made the feeling of disappointment even more pronounced. But in a last irrational
attack of bravery, we decided not to give in yet and we invited him to come back next
Christmas, and to bring his biographies if he wished.

To be continued...

Tempo curves considered harmful 21

Acknowledgements

Thanks to Boy Honing and Mariken Zandvliet for their performances of Beethoven.
Thanks to Bruno Repp for information on Clynes' model and to Shaun Stevens for his
help with the English language. We would like to thank also all the researchers
mentioned, for their contribution to the field of timing in music. We are very grateful to
Eric Clarke who made it possible for us to work for two years on research in expressive
timing which allowed us to gain an insight into timing through our numerous
discussions, and the British ESRC for their financial support throughout these two
years (grant A413254004).

References

Boulanger, R. (1990) Conducting the MIDI Orchestra, Part 1: Interviews with Max
Mathews, Barry Vercoe and Roger Dannenberg. Computer Music Toumal 14(2).

Bregman, A. (1990) Auditory Scene Analysis: the Perceptual Organisation of Sound.
Cambridge, Mass: Bradford Books.

Brown, P. (1979) An enquiry into the origins and nature of tempo behaviour. Psychology
of Music 7(1).

Clarke, E.F. (1985) Some Aspects of Rhythm and Expression in Performances of Erik
Satie's "Gnossienne No.5". Music Perception. 2(3).

Clarke, E.F. (1987) Levels of structure in the organisation of musical time. In "Music and
psychology: a mutual regard", edited by S. McAdams. Contemporary Music Review.
2(1.

Clarke, E.F. (1988) Generative principles in music performance. In Generative processes
in music. The psychology of performance, improvisation and composition, edited by J.
A. Sloboda. Oxford: Science Publications.

Clynes, M. (1983) Expressive Microstructure in Music, liked to Living Qualities. In:
Studies of Music Performance, edited by J.Sundberg . Stockholm: Royal Swedish
Academy of Music, No. 39.

Clynes, M. (1987) What can a musician learn about music performance from newly
discovered microstructure principles (PM and PAS)? In Action and Perception in
Rhythm and Music, edited by A. Gabrielsson. Royal Swedish Academy of Music, No.
55.

Cohen, J.,, CEM. Hansell, &].D. Sylvester. (1954) Interdependence of temporal and
auditory judgements. Nature. 174 .

Tempo curves considered harmful 22

Cooper, G. & Meyer, L. B. (1960) The rhythmic structure of music. Chicago: University
of Chicago Press.

Dowling, W. J. & D. L. Harwood (1986) Music Cognition. London: Academic Press.

Drake, C. and C. Palmer (1990) Accent Structures in Music Performance, manuscript.

Fraisse, P. (1982) Rhythm and Tempo. In The Psychology of Music, edited by D.
Deutsch. New York: Academic Press.

Gabrielsson, A. (1974) Performance of rhythm patterns. Scandinavian journal of
Psychology. 15.

Gibson, J. J. (1975) Events are perceivable but time is not. In The Study of Time. 2, edited
by J.T. Fraser & N. Lawrence. Berlin: Springer Verlag.

Hirsch, L]., R.C. Bilger & B.H. Deathrage (1956) The effect of auditory and visual
background on apparent duration. American Journal of Psychology. 69.

Honing, H. (1990) POCO, An Environment for Analysing, Modifying and Generating
Expression in Music. In Proceedings of the 1990 International Computer Music
Association. San Francisco: CMA.

Jaffe, D. (1985) Ensemble timing in Computer Music. Computer Music journal. 9(4).

Kendall, R.A. and E.C. Carterette (1990) The Communication of Musical Expression.
Music Perception. 8(2).

Lerdahl, F. & R. Jackendoff (1983) A Generative Theory of Tonal Music. Cambridge,
Mass.: MIT Press.

Longuet-Higgins, H.C. & E. Lisle. (1989) Modelling musical cognition. In "Music, Mind
and Structure”, edited by E. Clarke and S. Emmerson. Contemporary Music Review
3(1).

Michon, J.A. (1975) Time experience and memory processes. The Study of Time, 2, edited
by J.T. Fraser & N. Lawrence. Berlin: Springer Verlag.

Nakajima, Y., T. Sasaki, R.G.H. van der Wilk, & G. ten Hoopen. (1989) A new illusion
in time perception. Proceedings of the First International Conference on Music
Perception and Cognition. Kyoto, Japan: The Japanese Society of Music Perception
and Cognition.

Oosten , P. van (1990) A Critical Sudy of Sundbergs' Rules for Expression in the
Performance of Melodies. Proceedings of the Music and the Cognitive Sciences
Conference, Cambridge.

Omstein, R.E. (1969) On the Experience of time. London: Pinguin.

Palmer, C. (1989) Mapping Musical thought to musical performance. Journal of
Experimental Psychology. 15(12).

Tempo curves considered harmful 23

Povel D.J. (1981) Internal Representation of Simple Temporal Patterns. Journal of
Experimental Psychology: Human Perception and Production. 7(1).

Rasch, R. A. (1979) Synchronization in Performed Ensemble Music. Acustica 43(2).

Repp, B. (1990) Further Perceptual Evaluations of Pulse Microstructure in Computer
Performances of Classical Piano Music. Music Perception. 8(1).

Shaffer, L.H. (1981) Performances of Chopin, Bach and Bartok: Studies in motor
programming. Cognitive Psychology. 35A.

Shaffer, L.H., E.F. Clarke, & N.P. Todd (1985) Metre and rhythm in piano playing.
Cognition, 20.

Sloboda. j. (1983) The communication of musical metre in piano performance. Quarterly
journal of Experimental Psychology. 35.

Sundberg, |., A. Askenfelt & L. Fryden (1983) Musical Performance: A synthesis-by -rule
Approach. Computer Music Tournal, 7(1)

Sundberg, J., A. Friberg & L. Fryden (1989) Rules for Automated Performance of Ensemble
Music. Contemporary Music Review, 3.

Todd, N. (1989) A Computational Model of Rubato. In "Music, Mind and Structure",
edited by E. Clarke and S. Emmerson. Contemporary Music Review 3(1).

Todd, N.P. (1985) A model of expressive timing in tonal music. Music Perception, 3.

Vos. P. & Handel, S., (1987) Playing Triplets: Facts and Preferences. In: Action and
Perception in Rhythm and Music, Edited by A. Gabrielsson Royal Swedish Academy
of Music. No. 55.

Woodrow, H. (1951) Time Perception. In Handbook of Experimental Psychology, edited
by S.S. Stevens. New York: Wiley.

Yeston, M (1976). The stratification of musical rhythm. New Haven CT: Yale

University Press.

Tempo curves considered harmful 24

I11

Microworlds

Time func tio ns func tion best

AS FUNCTIONS OF MULTIPLE TIMES
Peter Desain & Henkjan Honing

MARCH 1991
Edited May 1991

Will be published as: Desain, P. & H. Honing. Time Functions Function Best as
Functions of Multiple Times. Computer Music Journal. Cambridge, Mass.: MIT Press.

© copyright 1991, Peter Desain & Henkjan Honing

Center for Knowledge Technology
Lange Viestraat 2b

3511 BK Utrecht

The Netherlands

CONTENTS

INtrodUCHON. ..o 3
Framework of discrete musicalobjects..........ccocooeuiiiriiiiiiicieiiceec, 5
ContinUoUS CONETOL.....ciuiiiiiiiiiiiii e 7
The PIODIemML........oceii e 7
A SOIULION. ..o 8
Control over compound ObJECtS..........ceveviiueieiiicieiece e 13
Time function COMPOSITION........coeuiiiiiicieieieicct e 15
Specification by means of transformation.............cccoooeeeiiiiiiiciencceene 18
MICTOWOTId. ... 19
EXEENSIONS. ...ovieiiictceiiictctc e 20
ATHCULAtION. ..o 20
Real-time CONEIOL.......cccoviviiiiiiiiiiiiiiii s 20
Rubato functions and time mMaps..........ccoceueierieiiiiceieice s 21
Advantages of "Time functionsof multiple times"..........ccccoooeinoiiiniiiene, 21
AckNOWIEdEEMENLS........ccoiiiiiiiii s 21
REfEIENCES......oiiiiiiiiiic s 2
APPENAIX..iiiiiiiiiiiiiiiiiii 24

Time functions of multiple times

Time functi ons func tion best

AS FUNCTIONS OF MULTIPLE TIMES
Peter Desain & Henkjan Honing

Center for Knowledge Technology
Utrecht School of the Arts

Lange Viestraat 2B

NL-3511 BK Utrecht

COCO Foundation
P.O.Box 1037
NL-3500 BA Utrecht

This paper presents an elegant way of representing control functions at an
abstract level. It introduces control functions that have multiple times as
arguments. In this way the generalized concept of a time function can support
absolute and relative kinds of time behavior. Furthermore the possibilities of
composition and transformation of time functions themselves is retained. The
proposed solution has three main advantages. Firstly, for the human user the
language is transparent, and no unforeseen interactions or side effects take place.
Secondly, it is independent of host language and composition system and can be
used in a variety of known environments (even in real-time systems). Finally,
the method is easy to adapt to ran on parallel architectures: each note can be
handled by a different processor, without the need for information passing
between them

INTRODUCTION

In the early history of computer music composition (Loy, 1988) the systems
available took either a monolithically continuous, signal processing inspired
approach (Mathews & Moore, 1970; Berg, 1979), or used a discrete, note or event
based technique (Hiller, Leal & Baker, 1966; Koenig, 1970). Although some early
work stressed the importance of hybrid systems (Mathews, 1969; Buxton,
Sniderman, Reeves, Patel & Baecker, 1978), this division became even more obvious
once the rich domain of hardware and software, that became available for MIDI,
had lured designers into building composition systems close to this note-based

protocol. While MIDI allows for some rudimentary continuous control (i.e.

Time functions of multiple times 3

polyphonic aftertouch), most parameter changes affect either all sounding notes or
all notes on a specific channel. With the recent advent of cheap signal-processing
hardware that allows a more natural continuous control over parameters during
each note's evolvement, the quest for elegant constructs for composition languages
supporting both worlds is on again. During this whole history some researchers
foresaw these developments and made attempts to bridge the gap between both
worlds, by stating the problems (Dannenberg, Dyer, Garnett, Pope & Roads, 1989;
Huron, 1990; Honing, 1991) and proposing solutions to them (Dannenberg,
McAvinney & Rubine, 1986; Anderson & Kuivila, 1989).

The main problem that arises is how continuous control functions should behave
under specification and transformation of the discrete structure. A notorious
example is the vibrato problem: a vibrato should not slow down if the note itself is
elongated, but some extra vibrato cycles should be added to the pitch envelope. A
discrete analogy of the vibrato problem is the drum roll, which should be extended
by adding more hits, but its rate should not slow down. However, a glissando,
specified by the same means of a continuous pitch envelope, should be stretched
along with the note duration. A third example is an ornament (e.g. a mordant) that
is invariant under transformation of the duration of the note.

Several solutions for these problems have been stated, but all are unsatisfactory.
We will name a few. In Canon (Dannenberg, 1989) a collection of transformations on
a fixed set of attributes is used, together with a way of communicating environment
information to new transformations. With these constructs he explicitly solves the
"drum roll problem", though in a non-trivial, almost procedural way. Dannenberg
(1986; 1989) proposes the term "behavioral abstraction” for the ability to express
these complex parametrized behaviors. Anderson & Kuivila (1989) describe a
solution based only on global time, prohibiting the composer to think in terms of
local constructs (most real-time composition systems have, besides actual time, no
sense of time at all; see Desain & Honing (in preparation)). Solutions proposed for
object-oriented composition systems (e.g. Pope 1987; 1989) suffer from a
declarative/procedural confusion whereby transformations and musical objects form
no orthogonal sets (each new transformation added has to take all object types and
all existing transformations into account). This inevitably leads to the situation
whereby some transformations cannot be done twice or some combinations cannot be
done in an arbitrary order.

In this paper we will present an elegant and -once understood- obvious way of

representing control functions at a more abstract level that simply evades all these

Time functions of multiple times 4

problems and yields a transparent specification of (discrete) musical structures
with continuous control over their parameters. To be able to illustrate this
approach, a simple framework language for discrete musical objects and their

ordering in time is given, expressed in Common Lisp (Steele, 1990).

FRAMEWORK OF DISCRETE MUSICAL OBJECTS

Let us start by assuming a basic note object, and a basic rest object (called pause, to
avoid clashing with the Common Lisp primitive rest) with some parameters

specified by keywords:
(note :duration 2 :pitch 60 :amplitude 0.8)

(pause jduration 1)

The syntax is taken directly from Lisp, i.e. prefix notation with the function name
before the arguments, the whole enclosed in brackets. Each argument is specified as
a pair of a keyword and a value. The actual parameters allowed are irrelevant for
the present introduction; a MIDI-based composition system might need other
parameters than a signal-processing approach. Furthermore, the discussion on the
magnitude scales for these parameters is ignored here. A simple assumption of a
duration scale in seconds, a pitch scale in MIDI key numbers (with fractional part),
and a [0,1] scale for amplitude is assumed in the examples. Even the semantics of
such expressions; whether they initiate processes, deliver data-structures that
represent musical objects (i.e. event-lists), or are the actual procedures that output
the material directly, is immaterial here. In the Appendix one possible
implementation is given. We assume that not-mentioned parameters are defaulted
to reasonable values (duration 1 second, pitch 60, and amplitude 1) for ease of use in
the examples.

It must be possible to specify the timing of the basic musical objects, either by
passing parameters for start time and duration directly (as is used here for the
duration parameter) by means of parameters that place or move objects in time
(Abbott, 1981; Dannenberg et al, 1986; Balaban, 1989), or by constructor functions
that build or play musical objects in a distinct time order (Smoliar, 1980;
Dannenberg,1989). For the sake of simplicity, we will use the last approach with
the Sequential and Parallel constructs that we used in the LOCO composition
language (Desain & Honing, 1988) and which were elaborated as a basis for
transformations in (Desain, 1990). These constructs mirror the sequential and

parallel execution primitives originating from parallel language design. S stands

Time functions of multiple times 5

for a sequential ordering of its components, the whole structure ending after the last
one, and P stands for a parallel structuring ending at the end time of its longest
component. As an example, consider the following musical object. Its graphical
piano-roll like representation is shown in Figure 1, where time is represented on
the x-axis, pitch is represented on the y axis, and the amplitude of a note is

represented by its shading.

(s (p (note :duration 2 :pitch 62 :amplitude 1.0)
(note jduration 4 :pitch 65 jamplitude 0.7))
(note jduration 5 jpitch 58 jamplitude 0.3)))

Figure la. Example of a time structured musical object.

0 1 2 3 4 5 6 7 8 9 10
time ->

Figure 1b. Graphical notation of the musical object given in Figure la.

An extension of this approach allows for high level timing control for defining
non-standard musical objects like grace notes. As these constructs are not essential
for the present argument we refer to Desain and Honing (1988) for more details. For
naming complex musical objects, forming parametrized families of objects and
defining musical transformations we will use the standard procedural abstraction
(function definition) facilities of the host language. An example of a compound

musical object built by those means is shown in Figure 2.

Time functions of multiple times 6

{defun major-chord (duration key)

(p (note [duration duration :pitch key)
(note :duration duration :pitch (+ key 4)))
(note [duration duration :pitch (+ key 7))))
(s (major-chord 2 57) (major-chord 5 58) (major-chord 2 57))

Figure 2a. Use of procedural abstraction in defining a compound musical object.

Figure 2b. Graphical notation of the musical object given in Figure 2a.

We introduce one basic transformation on the timing of fully constructed musical
objects, that we can use to demonstrate the behavior of the time functions when the
duration of the object they are linked to, is changed. The stretch transformation

multiplies each duration of the enclosed objects by a factor.
(stretch (note :duration 1 :pitch 60 [amplitude 1) 2)

(note jduration 2 [pitch 60 [amplitude 1)

These preliminaries constitute a world rich enough to introduce continuous time
functions and their problems, but it has to be kept in mind that the same solution
can be used in most present composition systems, however different their notion of
musical objects and collections thereof, and in whatever way the time relations

between them are specified.

CONTINUOUS CONTROL

The problem
A most natural thought, when bored with note-based discrete systems, is passing to
each note a continuously variable function of time as parameter for say pitch or

amplitude instead of a constant value. The functions passed are functions of the

actual time, and elegant ways can be given to build and transform them. Often

Time functions of multiple times 7

though, these functions have been regarded as control signals (resembling audio
signals) even up to the point where a list of data points, interpreted at a fixed
(low) sample rate has been called a function (e.g. Schottstaedt, 1983; Puckette,
1988), obscuring the highly abstract powerful possibilities of functions in their
mathematical sense (exceptions are Rodet & Cointe, 1984; Dannenberg, McAvinney
& Rubine, 1986; Anderson & Kuivila, 1989). But even when the full power of
function specification is used, time functions are considered to be functions of actual
time. This complicates the coupling of these functions to discrete objects and gives
rise to the problem described before: the notorious vibrato problem and its discrete
counterpart, the drum roll problem.

A related concern is the use of a relative or absolute start-point for the time base
used. The use of an absolute time scale is sometimes preferred by composers because
of the (false) impression of total control. However, it implies an envelope to be
redefined each time it is used at another absolute point in time. This can simply be
avoided by using a time base relative to the object under construction. This, of
course, does not mean that the notion of absolute time control can be ignored. It is
indeed indispensable when time relations with events outside the musical piece
(say the midnight church bells) are to be taken into account, or, as is the case more
often, when relations between different and independent musical objects have to be

maintained (e.g. a synchronized vibrato between different voices).

solution

The solution we propose is to make each control function a function of more
parameters - each parameter reflecting a different aspect of time. As an example,
we will develop this notion for time functions of three parameters: the absolute
start time of the discrete musical object it is controlling; the absolute time duration
of this musical object; and a relative progress, expressing in how far time has
elapsed since the start time, relative to the duration (a number in the range [0,1]).
Other choices are of course possible here (e.g. start time, end time and actual time).
All these parameters will be passed their appropriate values automatically by
the interpretative system. With this definition of a time function, the user can now
choose to use some time parameters and ignore others to make time functions that
behave differently when used for musical objects with different duration or start
time.

As a first example, let us define an elastic ramp control, independent of an

absolute start time, taking the full duration of the musical object to reach its final

Time functions of multiple times 8

value. We will use it to control the pitch of some notes, creating glissandi. The
function ramp produces a linear time function of the three time parameters
mentioned before. It ignores the absolute start time and duration parameters,
depending only on the progress of the evolving note (a number between 0 and 1) to
calculate its value. Figure 3 shows how the same ramp construct is used for notes of
different duration -yielding an appropriate glissando- and how the musical idea is

kept intact under a stretch transformation.

(defun ramp (from to)
#' (lambda (start duration progress)
(+ from (* progress (- to from)))))

(defun glissando-example ()
(s (note jduration 1 jpitch 58)
(p (note jduration 2.5 :pitch (ramp 64 61))
(s (pause jduration .5)
(note :duration 2 jpitch (ramp 61 60))))))

(s (glissando-example) (stretch (glissando-example) 2))

Figure 3a. Definition of a ramp time function and a musical object using it.

0 1 2 3 4 5 6 7 8 9 10
time ->

Figure 3b. Glissandi that extend when stretched in time given in Figure 3a.

Now let us construct, with the same means, a vibrato function, parametrized by
the fundamental pitch it is to be applied to, and the frequency and depth of the
vibrato itself. It only depends on the actual time elapsed during the musical object:
the multiplication of duration and progress. Now the application of the vibrato
function to notes of different duration will not alter the vibrato rate, nor will the
stretch transformation applied to the compound musical object (see Figure 4b).

If we make a similar sinusoidal glissando function, expressed in terms of relative
time (progress), a stretch of the musical object will slow-down the rate (see Figure
4¢).

Time functions of multiple times 9

Absolute time can also be used to make time functions that are not influenced at

all when they are applied to musical objects with a different duration. An

ornament could have such character; a sinusoidal ornament will keep its absolute

timing when stretched (see Figure 4d).

(defun sine-oscillator (offset frequency depth)
#' (lambda (start duration progress)
(+ offset
(* depth

(sin (* 2 pi duration progress frequency))))))

(defun sine-glissando (key depth)
* M (- ambda (start duration progress)
(+ key
(* depth (sin (* 2 pi progress))))))

(defun sine-ornament (key count)
n' (.ambda (start duration progress
Saux (relative-time (* duration progress)))
(+ key

(if (< relative-time count)
(sin (* 2 pi relative-time))

0))))

(de fur vibrato-example 0
(s note rduration 1 rpitch 58)
(p (note rduration 2.5 rpitch (sine-oscillator 64 1 .5))
(s (pause rduration .5)
(note rduration 2 rpitch (sine-oscillator 61 1 1))))))

(de fur glissando-example ()
(s (note :duration 1 :pitch 58)
(p (note rduration 2.5 :pitch (sine-glissando 64 .5))
(s (pause rduration .5)

(note rduration 2 rpitch (sine-glissando 61 1))))))

(de fur. ornament-example 0
(s note rduration 1 rpitch 58)
p (note rduration 2.5 rpitch (sine-ornament 64 .5))
(s (pause rduration .5)

(note rduration 2 rpitch (sine-ornament 61 1))))))
(s (vibrato-example) (stretch (vibrato-example) 2)) ; Figure
(s (clissando-example) (stretch (glissando-example) 2)) ; Figure
(s (ornament-example) (stretch (ornament-example) 2)) ; Figure

Figure 4a. Definition of musical objects using vibrati, glissandi and ornaments.

Time functions of multiple times

4b
4c
4d

10

Figure 4b. Vibrati that elongate when stretched in time.

57

0 1 2 3 4 5 6 7 8 9 10
time ->

Figure 4c. Sinusoidal glissandi that extend when stretched in time.

Figure 4d. Sinusoidal ornaments not affected when stretched in time.

The abstract vibrato, glissando and ornament time functions can be depicted
nicely in a three dimensional surface plot, as is shown in Figure 5. Relative time
(duration * progress) and the duration are used as dependent variables. For any note

duration, the actual time function used will be a cross-section of these surfaces.

Time functions of multiple times 1

Figure 5. Surfaces representing a) vibrato, b) glissando, and c) ornament time functions as

a function of duration and relative time.

Using the absolute start time parameter enables full control over timing with
respect to a global clock. This can be used to specify the phase of a vibrato among
parallel notes, such that they can be synchronized as is shown in Figure 6 (compare

with Figure 4b).

Time functions of multiple times 12

(defun sync-oscillator (offset frequency depth «.optional (phase 0))
*' (lambda (start duration progress)
(+ offset
(* depth
(sin (* 2 pi (+ phase
(* start frequency)

(* duration progress frequency))))))))

(defun synchronized-vibrato-example ()
(s (note :duration 1 :pitch 58)
(p (note jduration 2.5 :pitch (sync-oscillator 64 1 .5))
(s (pause jduration .5)

(note jduration 2 jpitch (sync-oscillator 61 1 1))))))

(s (synchroni zed-vibrato-example)
(stretch (synchronized-vibrato-example) 2))

Figure 6a. Example of a musical object using a synchronized vibrato.

Figure 6b. Graphical notation of the musical object given in Figure 6a.

This finalizes the examples of the use of time functions with multiple parameters
as control functions for individual basic objects. It shows how problems of
synchronization and time modification are elegantly evaded by lifting the concept
of a time function to a more abstract level. Of course the control functions used are
rudimentary in their musical value as much more elaborate envelopes are needed,
but they can all be based on the same idea and a further section will show how
simple time functions can be combined into complex ones. First we want to tackle the

problem of time functions extending over a collection of several musical objects.

Control over compound objects

In composition the use of time dependent control specified over a collection of
musical objects is abundant. The most simple example specifies the same control

information to be applied to each basic object. Naming a control function (as done

Time functions of multiple times 13

with the le t local binding construct of Common Lisp) is a natural way (see Figure
7).

(defun envelope-example 0
(let ((envelope (ramp 0 1)))
(s (note jduration 1 :pitch 58 jamplitude envelope)
(p (note jduration 2.5 jpitch 64 jamplitude envelope)
(s (pause jduration .5)

(note jduration 2 jpitch 61 jamplitude envelope))))))

(s (envelope-example) (stretch (envelope-example) 2))

Figure 7a. Example of applying the same local envelope function to the individual note

objects.

°g 65

c« Im&m

63
62
61
60

59

-m

57

0 1 2 3 4 5 6 7 8 9 10
time ->

Figure 7b. Graphical notation of the musical object given in Figure 8a.

A different method has to be used to pass time functions evolving over a compound
musical object, to each basic musical object. An example of such a construct is a
crescendo from a certain loudness level to another, starting at the start of the
musical structure it is applied to, and extending over its total duration. We need to
introduce a new construct in the language to enable the passing of information from
collections of musical objects to such envelopes. It follows the same syntax as the
let construct but modifies the time functions bound such that they will behave
appropriately. In Figure 8 the definition of a crescendo is shown using the same

ramp function and the same musical structure as used in Figure 7.

Time functions of multiple times 14

(defun crescendo-example ()
(let-time-fun-over-compound ((crescendo (ramp 01)))
(s (note :duration 1 :pitch 58 :amplitude crescendo)
(p (note :duration 2.5 :pitch 64 :amplitude crescendo)
(s (pause :duration .5)
(note -.duration 2 :pitch 61 jamplitude crescendo))))))

(s (crescendo-example) (stretch (crescendo-example) 2))

Figure 8a. Example of applying a global crescendo function to the individual note

objects.

5 65

0 1 2 3 4 5 6 7 8 9 10
time ->

Figure 8b. Graphical notation of the musical object given in Figure 8a.

Time function composition

Building a comprehensive set of musically useful time functions can best be done by
supplying some simple, basic time functions and some ways of building complex ones
by transforming and combining them. The function time-fun-compose is one of
the higher-order functions that can be thought of, that supports this. It generalizes
any operation to the corresponding combination of the results of time functions. The
example in Figure 9 shows both an additive combination of an oscillator and a ramp
time function for pitch, and one using a multiplicative combination for the
amplitude parameter. An object oriented approach here, packaging time functions
in their own class and overloading the standard arithmetic operations for them,

will of course simplify the syntax.

Time functions of multiple times 15

(defun compose-example ()

(note jduration 7
ipitch (time-fun-compose #'+ (oscillator 58 1 1) (ramp 5 0))
jamplitude (time-fun-compose #'*
(oscillator .5 1 .5)
(ramp 1 0))))
(s (compose-example) (stretch (compose-example) .5))

Figure 9a. Example of combining time functions

Figure 9b. Graphical notation of the musical object given in Figure 9a.

Another useful combinator is the concatenation of two time functions, with an
extra argument expressing the proportion of the duration handled by the first,
implying the remaining time for the second one. In Figure 10 the concatenation of
two ramp envelopes is shown, one used locally for the pitch, the other used

globally for the amplitude parameters.

Time functions of multiple times 16

(defun crescendo-decrescendo-example ()

(let-time-funs-over-compound

((cresc-decresc (time-fun-concatenate (ramp 0 1) (ramp 1 0) .2)))
(let ((glissando

(time-fun-concatenate (ramp 58 59) (ramp 59 58) .8)))

(s (note :duration 1 :pitch glissando jamplitude cresc-decresc)
(p (note jduration 2.5 jpitch 64 jamplitude cresc-decresc)
(s (pause jduration .5)
(note jduration 2
ipitch 61

jamplitude cresc-decresc)))))))

(s (crescendo-decrescendo-example)

(stretch (crescendo-decrescendo-example) 2))

Figure 10a. Example of concatenating time functions

57
time ->

Figure 10b. Concatenations of a crescendo and a decrescendo, and up- and downwards

glissandi.

An ever richer world of possibilities opens up when time functions accept time
functions as arguments, their parameters may then change over time as well. In the
example we use a sine oscillator that changes its frequency over time, controlled by
a ramp time function. A new definition of an oscillator, that takes functional
arguments, can easily be constructed. In Figure 1la such a sine oscillator time
function is defined (it uses the function tim e-funcall, and the function make-
sine that supplies a sine function that remembers its state over time).

It has to be stressed here again that these combinations of time functions preserve
-in a compound way- the different ways in which their constituent components deal
with time. For instance, the composition of a glissando and a vibrato, as in Figure
9b, can still be stretched in time consistently: the vibrato gaining cycles at the
same rate and the glissando slowing down. This composibility of behavior is an

important characteristic of this solution.

Time functions of multiple times 17

(defun sine-osc (frequency)
(let ((sine (make-sine)))
#' (lambda (start duration progress
&aux (time (+ start (* duration progress))))
(funcall sine time
(time-funcall frequency start duration progress)))))

(defun new-oscillator (offset frequency depth)
(time-fun-compose #'+ offset
(time-fun-compose #'* depth
(sine-osc frequency))))

(defun new-vibrato-example 0
(s (note jduration 1 :pitch 58)
(p (note jduration 2.5
:pitch (new-oscillator 64 2 (ramp 0 1)))
(s (pause :duration .5)
(note jduration 2
.*pitch (new-oscillator 61 (ramp 0 1) 1)
jamplitude (new-oscillator .5 (ramp 0 1) .5))))))

(s (new-vibrato-example) (stretch (new-vibrato-example) 2))

Figure 11a. Example using an oscillator taking functional arguments.

Figure 1ib. Graphical notation of the musical object given in Figure 1la.

Specification by means of transformation

Finally, the reader might wonder how transformations on a complex musical object
can be taken care of. Because of the abstractions chosen, this comes with little extra
effort (in contrast to other systems; see closing remarks in Dannenberg, 1989 and
Rahn, 1990). Transformations are just another way of specifying complex musical

objects. A set of transformations and their equivalents are shown below.

Time functions of multiple limes 18

(stretch
(amplitude
(s (note) (transpose (note) 2))
(ramp 10))
2)

(let-time-funs-over-compound ((envelope (ramp 1 0)))
(s (note :duration 2 pitch 60 :amplitude envelope)
(note :duration 2 pitch 62 j;amplitude envelope)))

Of course, a free mix of direct specification and transformation can be used. In Figure
12 two examples of simple transformations are given. An attribute-transform
function supports these kinds of transformations on the attributes of the notes. It
takes, besides the musical object applied to, a keyword identifying an attribute, a
time function or constant, and an operator used in combining the results of the time

function with the time functions or constants found in the musical object.

(defun transpose (object interval)

(attribute-transform jpitch interval #'+ object))

(defun amplitude (object amplitude)
(attribute-transform jamplitude amplitude #'* object))

(s (transpose (new-vibrato-example) -1)
(amplitude (stretch (new-vibrato-example) 2)
(ramp 10)))

Figure 12a. Examples of attribute transformations.

0 1 2 3 4 5 6 7 8 9 10

time ->

Figure 12b. Graphical notation of the musical object given in Figure 12a.

MICROWORLD

To enable the reader to check and experiment with these ideas, a rudimentary
implementation of a language with these capabilities is given in the Appendix,

the full implementation of which will be part of the COCO composition system.

Time functions of multiple times 19

The basic and compound musical objects are defined procedurally. Because at the
time of their call their context is still unknown (i.e. their start time) they will
deliver functions (called event-list generators) of this context that will, when
given a start time and a scale factor, return an event-list together with its end time.
A draw procedure is available to transform such musical objects into the graphical
representation that was used in drawing the figures. Low-level draw routines for
the users' window system or plotter, implementing the draw -air-brush
primitive still have to be supplied. The incorporation of a play primitive to sort
event-lists and send data to a MIDI driver is left as an exercise to the reader. Note
that this is a non-trivial task since some technical tricks (e.g. allocating notes to
different MIDI channels) must be used to allow continuous control of the individual

note parameters.

EXTENSIONS
Articulation

Some parameters are not continuously variable by nature (like the articulation of a
note: the proportion of its duration that it is actually sounding), but they can be
modelled well by using continuously variable time functions extending over
compound musical objects, sampled once automatically by the interpretive system
at the start time (as in Dannenberg, 1989). It is even possible to supply this
information as an extra argument to all time functions (on the risk of becoming
circular: articulation time functions themselves should not be allowed to use the
articulation parameter). This elegantly solves the specification of, for example,
different attack, decay and release sections of envelope functions in terms of an

articulation factor.

Real-time control

There is no reason why this approach could not be used in real-time control. If it is
possible in the host system to specify the start of a musical object (e.g. a note-on)
without its end, then the set of parameters passed to time functions has to be
adapted (e.g. to absolute start time, and absolute time elapsed after the start).
Time functions can naturally depend upon incoming (real time) parameters if their
evaluation is postponed to the last possible moment. Note that in that case time
functions are not strictly functional any more, reading control signals from input

ports.

Time functions of multiple times 20

Rubato functions and time maps

It might be possible to add flexibility to the common rubato functions and nested
time maps used for composition systems (Jaffe, 1985; Desain & Honing, 1991) by
supplying them with multiple time arguments as well. To avoid circularity a
division in score and performance time has to be made. This could then be a basis for
meaningful specifications and transformations of expressive timing. The

possibilities have yet to be investigated.

ADVANTAGES OF "TIME FUNCTIONS OF MULTIPLE TIMES"

The proposed approach has three main advantages. Firstly, for the human user the
language is transparent, and no unforeseen interactions or side effects take place.
Secondly, the musical objects, time functions, and transformations on musical objects
are orthogonal constructs. They serve as a solid and extendible basis for further
design, independent of the host language or the composition system. Finally, from
the hardware perspective this approach has the distinct advantage of being easy
to adapt to run on parallel architectures: each note can be handled by a different
processor, without the need for information passing between them (see Walker
(unpublished) for the argument that note-based parallelism is the most promising

distribution of labour for most parallel architectures).

ACKNOWLEDGEMENTS

Thanks to Stephen Pope for the enlightening discussions on music representation
during his visit at the Center for Knowledge Technology in the summer of 1990, and
Shaun Stevens for his corrections on an earlier version of this text. Roger

Dannenberg deserves special thanks for his very useful comments.

Time functions of multiple times 21

REFERENCES

Abbott, C. (1981) The 4CED Program. Computer Music Journal 5(1). Reprinted in
Roads (1989).

Anderson, D. A. & R Kuivila. (1989) Continuous Abstractions for Discrete Event
Languages. Computer Music Journal 13(3).

Balaban, M. (1989) Music Structures: A Temporal-Hierarchical Representation for
Music. Musikometrika, Vol. 2.

Berg, P. (1979) Pile, A Language for Sound Synthesis. Computer Music Journal 3(1).
Reprinted in Roads & Strawn (1985).

Buxton.W., R. Sniderman, W. Reeves, S. Patel & R. Baecker. (1978) The Use of
Hierarchy and Instance in a Data Structure for Computer Music. Computer Music
Journal 2(4). Reprinted in Roads & Strawn (1985).

Dannenberg, R. (1989) The CANON Score Language. Computer Music Journal 13(1).

Dannenberg, R., L. M. Dyer, G. E. Garnett, S. T. Pope, & C. Roads. (1989) Position
papers. In Proceedings of the 1989 International Computer Music Conference. San
Francisco: Computer Music Association.

Dannenberg, R., P. McAvinney & D. Rubine. (1986) Artie: A Functional Language for
Real-time Systems. Computer Music Journal 10(4).

Desain, P. & H. Honing. (1988) LOCO: A Composition Microworld in Logo.
Computer Music Tournal 12(3).

Desain, P. & H. Honing. (1991). Tempo Curves Considered Harmful. In "Music and
Time", edited by].D. Kramer. Contemporary Music Review. London: Harwood
Press, (forthcoming)

Desain, P. & H. Honing, (in preparation) Must "Real-time" Equal "No-idea-of-
time" in Composition Systems? Research Report. Utrecht: Center for Knowledge
Technology.

Desain, P. (1990) Lisp as a second language. Perspectives of New Music 28(1).

Hiller, L., A. Leal & R. A. Baker. (1966) Revised MUSICOMP manual. Technical
Report 13. University of Illinois, School of Music, Experimental Music Studio.
Honing, H. (1991). Issues in the Representation of Time and Structure in Music. In
Proceedings of the 1990 Music and the Cognitive Sciences Conference, edited by L

Cross. Contemporary Music Review. London: Harwood Press, (forthcoming)

Huron, D. (1990) Design Principles in Computer Based Music Representation. In
Computer Representations and Models in Music, edited by A. Marsden and A.
Pople. London: Academic Press.

Jaffe, D. (1985) Ensemble timing in Computer Music. Computer Music Journal 9(4).

Time functions of multiple times 22

Koenig, G. M. (1970) Project 2. Computer programme for calculation of musical
structure variants. Electronic Music Reports 3. Utrecht: Institute of Sonology.

Loy, G. (1985) Musicians Make a Standard: The MIDI Phenomenon. Computer Music
Tournai 9(4). Reprinted in Roads (1989).

Loy, G. (1988) Composing with Computers - A Survey of Some Compositional
Formalisms and Music Programming Languages. In Current Directions in
Computer Music Research, edited by M. V. Mathews & J. R. Pierce. Cambridge,
Mass.: MIT Press.

Mathews, M. V. & E. R Moore. (1970) GROOVE: A Program to Compose, Store and
Edit Functions of Time. Communications of the ACM 13(12)

Mathews, M. V. (1969) The Technology of Computer Music. Cambridge, Mass: MIT
Press.

Pope, S.T. (1987) A Smalltalk-80-based Music Toolkit. Proceedings of the 1987
International Computer Music Conference. San Francisco: Computer Music
Association.

Pope, S.T. (1989) Modeling Musical Structures as EventGenerators. Proceedings of
the 1989 International Computer Music Conference. San Francisco: Computer
Music Association.

Puckette, M. (1988) The Patcher. In Proceedings of the 1988 International Computer
Music Conference. San Francisco: Computer Music Association.

Rahn, J. (1990) The Lisp Kernel: A Portable Software Environment for Composition.
Computer Music Tournai 14(4).

Roads, C (ed.) (1989). The Music Machine. Cambridge, Mass.: MIT Press.

Roads, C. &]. Strawn (eds.) (1985). Foundations of Computer Music. Cambridge,
Mass.: MIT Press.

Rodet, X. & P. Cointe. (1984) FORMES: Composition and Scheduling of Processes.
Computer Music Tournai 8(3). Reprinted in Roads (1989).

Schottstaedt, B. (1983) PLA: A Composer's Idea of a Language. Computer Music
Tournai 7(2). Reprinted in Roads (1989).

Smoliar, S.W. (1980). A Computer Aid for Schenkerian Analysis. Computer Music
[ournal 4(2).

Steele, G. (1990) Common LISP: The language (second edition) Bedford, Mass.:
Digital Press.

Walker, W. (1990) Programming models for digital audio sample generation.
Unpublished.

Time functions of multiple times 23

APPENDIX

; TIME FUNCTIONS MICROWORLD

; (0 1991, Peter Desain & Henkjan Honing
;;; Part of the COCO composition system

; In Common Lisp (uses loop macro)

;77 basic musical objects

(defun note (&key (duration 1) (pitch 60) (amplitude 1))
"Return an event-list-generator of a note"
#' (lambda (start factor &aux (stretched-dur (* duration factor)))
(values (list (list rstart start

:duration stretched-dur

rpitch pitch

ramplitude amplitude))

(+ start stretched-dur))))

(defun pause (&key (duration 1))
"Return an event-list-generator of a pause"
#' (lambda (start factor &aux (stretched-dur (* duration factor)))

(values nil (+ start stretched-dur))))
;7 compound musical objects (time structuring)

(defun s (&rest elements)
"Return an event-list-generator of a sequential compound musical

tr' (lambda (start factor &aux event-list (end start))
(loop for element in elements
do (multiple-value-setqg (event-list end)
(funcall element end factor))
append event-list into result-list
finally (return (values result-list end)))))

(defun p (Srest elements)

object™"

"Return an event-list-generator of a parallel compound musical object"

' (lambda (start factor &aux event-list end)
(loop for element 1in elements
with event-list and end
do (multiple-value-setg (event-list end)
(funcall element start factor))

append event-list into result-list
maximize end into end-time
finally (return (values result-list end-time)))))

;77 time transformation
(defun stretch (object new-factor)

"Return an event-list-generator of a stretched musical object"

#' (lambda (start factor)
(funcall object start (* factor new-factor))))

Time functions of multiple times

attribute transformations

(defun attribute-transform (keyword attribute-time-fun operator musical-object)

"Return an event-list-generator of a transformed musical object"
#' (lambda (start factor)
(multiple-value-bind (event-list end)
(funcall musical-object start factor)
(loop for event 1in event-list
do (setf (getf event keyword)
(time-fun-compose-local-global operator

(getf event keyword)
attribute-time-fun
start

(- end start))))
(values event-list end))))

(defun time-fun-compose-local-global
(operator local global global-start global-duration)
"Return time-function
composed of operator applied to local and global time-fun"
#' (lambda (start duration progress

&aux (global-progress (/ (+ (- start global-start)

progress duration))
global-duration)))

(*

(funcall
operator

(time-funcall 1local start duration progress)

(time-funcall global global-start global-duration global-progress))))

;77 use of time functions over compound musical objects

(defmacro let-time-funs-over-compound (bindings expression)
"Establish bindings of time-functions over compound object"
(let* ((start (gensym)) (end (gensym)))

(let* (,start ,end

,8 (loop for binding in bindings

collect (make-binding binding start end)))
, (make-body start end expression))))

(defun make-binding (binding start end

"Return binding of time-function using global

start and end time"
(, (first binding)

#' (lambda (local-start local-duration local-progress)
(let ((local-time (+ local-start (* local-duration local-progress))))
(funcall , (second binding)
/start

(- ,end ,start)

(/ (- local-time ,start) (- ,end ,start)))))))

(defun make-body (start end expression)

"Return an event-list-generator with time-functions

over compound object"
"#' (lambda (start factor)
(multiple-value-bind (event-list end-time)

(funcall ,expression start factor)
(setf ,start start ,end end-time)

(values event-list end-time))))

Time functions of multiple times 25

;77 time function utilities

(defun time-funcall (time-fun-or-constant start duration progress)
"Return constant or result of applying time-function to its arguments"
(if (functionp time-fun-or-constant)

(funcall time-fun-or-constant start duration progress)
time-fun-or-constant))

(defun time-fun-compose (operator Srest time-funs)

"Return time-function composed of operator applied to results of time-funs"

#' (lambda (start duration progress)
(apply operator
(mapcar # ' (lambda (time-fun)
(time-funcall time-fun start duration progress))
time-funs))))

(defun time-fun-concatenate (time-fun-1 time-fun-2 proportion)
"Return time-function concatenating two time-functions given a proportion"
#' (lambda (start duration progress)
(if (<= progress proportion)
(time-funcall time-fun-1

start (* duration proportion) (/ progress proportion))

(time-funcall time-fun-2
(+ start (* duration proportion))
(* duration (- 1 proportion))
(/ (- progress proportion) (- 1 proportion))))))

(defun make-sine ()
"Return sine function with state"
(let ((phase 0) old-time)
#' (lambda (time frequency)
(when old-time
(incf phase (* 2 pi (- time old-time) frequency)))

(setf old-time time)
(sin phase))))

;77 graphical score output

(defun draw (musical-object Skey (resolution 1/10))
"Draw a musical object"
(loop for note in (funcall musical-object 0 1)
do (apply t'draw-note resolution note)))

(defun draw-note (resolution &key start duration pitch amplitude)
"Draw a note using the time-function or constant of the attributes”
(loop as old-pitch-val = (time-funcall pitch start duration 0)
then pitch-val
as old-amplitude-val = (time-funcall amplitude start duration 0)

then amplitude-val

as old-time = start then time

as progress = (/ (- time start) duration)

as pitch-val = (time-funcall pitch start duration progress)

as amplitude-val = (time-funcall amplitude start duration progress)

for time from start by resolution to (+ start duration)
do (draw-air-brush old-time old-pitch-val time pitch-val
old-amplitude-val amplitude-val)))

(defun draw-air-brush (x1 yl x2 y2 shadel shade2)

;; draw-air-brush has to be provided by the user,

;; draws a diamond shape with vertical left and righthand sides

s (x1l,yl) is mid 1left, left shadel, (x2,y2) is mid right, right shade2
)

Time functions of multiple times

26

;77 examples of use (draws pictures as shown in Figure 4b, 4c and 4d)

(defun sine-oscillator (offset frequency depth)
#' (lambda (start duration progress)
(+ offset
(* depth
(sin (* 2 pi duration progress frequency))))))

(defun sine-glissando (key depth)
#' (lambda (start duration progress)
(+ key
(* depth (sin (* 2 pi progress))))))

(defun sine-ornament (key count)
#' (lambda (start duration progress
Saux (relative-time (* duration progress)))
(+ key
(if (< relative-time count)

(sin (* 2 pl relative-time))

0)))

(defun vibrato-example ()
(s (note jduration 1 :pitch 58)
(p (note :duration 2.5 :pitch (sine-oscillator 64 1 .5))
(s (pause jduration .5)

(note :duration 2 :pitch (sine-oscillator 61 1 1))))))

(defun glissando-example ()
(s (note jduration 1 :pitch 58)
(p (note :duration 2.5 .-pitch (sine-glissando 64 .5))
(s (pause :duration .5)

(note jduration 2 jpitch (sine-glissando 61 1))))))

(defun ornament-example ()

(s (note jduration 1 jpitch 58)

(p (note .-duration 2.5 jpitch (sine-ornament 64 .5))
(s (pause jduration .5)
(note jduration 2 jpitch (sine-ornament 61 1))))))

(draw

(s (vibrato-example) (stretch (vibrato-example) 2))) ; Figure
(draw

(s (glissando-example) (stretch (glissando-example) 2))) ; Figure
(draw

(s (ornament-example) (stretch (ornament-example) 2))) ; Figure

Time functions of multiple times

4b

4c

4d

27

Towards a calculus

FOR EXPRESSIVE TIMING IN MUSIC

Peter Desain & Henkjan Honing

JULY 1991

Submitted to Psychology of Music

© copyright 1991, Peter Desain & Henkjan Honing

Center for Knowledge Technology
Lange Viestraat 2b

3511 BK Utrecht

The Netherlands

CONTENTS

INEPOAUCHON. ... 1
Overview of the calculus.......coiiiiiiniiiii e 3
CharacteristiCs......ooiiiiiiiii e 3
Representation.........iiiic e 5
Implementation...........occeieiiiiieicc s 6
MUSICAl ODJECES.......vieet e 8
Basic musical ODbjJeCtS.......ccooimiiiiiiiiiic e 8
Structured musical ODJECES.........oveuruiiiicicii 9
Multilateral Structures.........ccocovviviviiiniiiiiiiiiii 9
Collateral structures (ornamented objects)..........ccccceeueviiiiiiiiiiiiiiiiiiienes 10
S, amultilateral SUCCESSIVE STIUCIUTE......occvieeieeeeiecteecteeeee e 11
P, a multilateral simultaneous StrUCUTe...........ccoceeeevieeeeeieieeeeeeeeereeeneeenne 12
APPOG, a collateral successive StrUCIUTE........ccccoeeeeeeerieeeeereeeieeereeereeens 13
ACCIA, a collateral simultaneous StrUCEUTC.cooevivevveeiveieeeeeeeeieeeeeeeenne 14
Example of the representation of a musical Object...........ccceeviviiininiiniiiinniiiiine, 15
Representing @XPIeSSION........iieieieueuiieieteteieieiete ettt as 16
EXPIessive tempPo......ccciciciiiiieicicictc e 16
EXPressive asynChIONYcccoceieiiiiieiiiiiiieieccte et 16
Expressive articulation..........ccoiiiiic 17
Definition of articulation.............., 17
EStimate ONSEtS.......cceiviiiiiiiiiicccc s 18
Articulation INVarianCe............ii 18
EXPIeSSION IMAPS..c.ciiiiiiiiiniiiiiiticite s 18
Onset tHMING.....c.ooveiiii s 18
Articulation @XPreSSION.......ccceiiuiucieiiecieie e 20
Operations 0N eXPpression MAPS.........ceveveiieieieinieinininiei s 21
5Cale MNAPS...ciiiiiiiict s 21
Scaling eXpressive temMPO........cccccvviviviviiiiinininiiiir s 21
Scaling the expressive tempo of an S section.........cccccvicriiiiicicnnne. 2
Scaling the expressive tempo of an APPOG section..........cccceeueerueieiiicnnnnnne. 24
Scaling expressive asynchrony..........c.ccooeeeieiceieieiicceece e 25
Scaling the expressive asynchrony of a P section..........cccccceeuvucuviciviiinicnninne. 26
Scaling the expressive asynchrony of an ACCIA section...........ccccovvurununee. 28
Scaling expressive articulation............ccceeeiceiiiccec 29
Scaling the expressive articulation of a multilateral section...................... 30
Scaling the expressive articulation of a collateral section..............cccccuucee. 32
Keeping articulation consistent in the scaling of expressive timing................. 33
SHrEtCh MNAPS ..t 35
Interpolate MaAPS......cocieveiiicii s 35
Transfer MaAPS. ..o s 35
Transformations. ... 35
Scale HMING ..o 37
Keeping articulation cOnSistent..............cocoveueieieiiiiiiiiciccece e 4
Scale INtervoice eXPreSsiON.........ccoiiiicieieiiciee s 41
CONCIUSION. ...t 43
AcKNOWIEdGEmMENtS...........oouiiiiiiciicee 43
REfOIEINCES......oviiiiiiii e 43

Microworld expression calculus.........ccoooiiiieiiiiiciiic 45

Towards a calculus

FOR EXPRESSIVE TIMING IN MUSIC

Peter Desain & Henkjan Honing

Center for Knowledge Technology
Utrecht School of the Arts

Lange Viestraat 2B

NL-3511 BK Utrecht

This paper presents a calculus that enables expressive timing to be transformed on the basis
of the structural aspects of the music. Expression within a unit is defined as the deviations of
its parts with respect to the norm set by the unit itself. The behaviour of musical material
under expressive transformations is determined uniquely by its structural description and the
type of expression. Although the calculus separates different kinds of behaviour, it entails no
musical knowledge of the transformations themselves and it also does not model music
cognition. The algorithmic simplicity of the calculus combined with its elaborate knowledge
representation mirrors the common hypothesis that the complex expressive timing profiles
found in musical performances can be explained as the product of a small collection of
simple rules linked to a relatively complex structure. The calculus (and the program
implementing it) will hopefully prove to be a solid basis for formalised theories of music

cognition.

INTRODUCTION

In Desain and Honing (in press, a) we argued that a simplistic notion of a tempo curve of a
musical performance is a dangerous and harmful theoretical construct. Although the use
of a tempo curve to describe time measurements is perfectly sound, the notion itself is
often presented as a cognitive or musical concept. And tempo curves do not have any right
to exist in those domains. In the above article, this was concluded from the fact that
when it is used as a basis of transformations, inevitably the results make no musical
sense. The cause of this failure can often be attributed to the lack of structural
information in the tempo curve. For example, in changing the overall tempo of a
performance, by manipulating the tempo curve alone, all time intervals of equal length
between two notes are scaled in the same way. But some notes may constitute a particular
kind of ornamentation, whose duration should be more or less unaffected by tempo. As a
result the timing of the piece becomes unmusical. And there are many more examples of
transformations that cannot be done on isolated tempo curves. Because the article had an
essentially negative tone - identifying the problems and their causes - we felt compelled

to follow it up with a study of possible solutions.

Calculus 1

This paper is an attempt to identify ways in which structural knowledge can be used to
enable expression transformations on musical performances that do make musical sense.

In past research we considered expression merely as deviations of attributes of performed
notes from their value notated in a score. This definition, however useful in the initial
study of expressive timing, soon lost its attractiveness. In general, listeners can
appreciate expression in music performance without knowing the score. And a full
reconstruction of the score in the form of a mental representation is often impossible. Take
for instance the notion of loudness of notes. Should a listener be required to fully
reconstruct the dynamic markings in the score before it is possible to appreciate the
deviations from this norm as expressive information added by the performer? Such a
nonsensical conjecture indeed follows from a rigid definition of expression as deviations
from the score. But it is possible to find ways of defining expression on the basis of
performance information only. The more so since it became possible to model the
quantization of performed note durations into discrete categories (Desain & Honing,
1991), and therefore even the extraction of performed tempo is possible directly from the

performance itself.

In this paper we will base expression on the notion of structural units in a working
definition: expression within a unit is defined as the deviations of its parts with respect
to the norm set by the unit itself. An example might make this more clear. Lets take, for
instance, a metrical hierarchy of bars and beats; the expressive tempo within a bar can be
defined as the pattern of deviations from the global bar tempo generated by the tempo of
each beat. Or, take the loudness of the individual notes of a chord; the dynamic
expression within a chord can be defined as the set of deviations from the mean chord
loudness by the individual notes. Using this intrinsic definition, expression can be
extracted from the performance data itself, taking more global measurements as reference
for local ones, assuming that the structural units themselves are known. Thus the
structural description of the piece becomes central, both to establish the units which will
act as a reference, and to determine its subunits that will act as atomic parts whose
internal detail will be ignored. A generalization of this concept can also deal with
expression arising from the interplay of two or more voices.

It will be clear by now that any other connotations of the concept of musical expression,
its link to human affect and extra-musical indexicality, however interesting, will be

ignored here completely.

Before the details of the calculus are presented it might be fitting to give some
explanation for undertaking for this work. First of all, we think that the research of
expression in music is in need of measurement instruments that can cope with the enormous
complexity of performance data and that are much more sophisticated than tempo

curves. Some of the proposed transformations can be used as an "auditory microscope" by

Calculus 2

exaggerating expression at certain structural levels, like amplifying the timing lead, the
melody often has over the accompaniment. Some of the tools presented can be used as
"expression scalpels" for trimming away certain kinds of expression that might obscure
other phenomena, like removing the tempo deviations within each beat, but holding the
timing patterns of the beats themselves invariant. Other tools can "transplant” musical
expression from one piece of music to the other, say from a theme to its variation. The
availability of this 'machinery’ will deepen our understanding of the intricacies of music
performance expression.

A further motivation is the practical applicability of this work in systems for computer
music. Especially the music editors and sequencer programs that are commercially
available nowadays which are in need of better ways to treat musical information in
musical ways. Expressive timing should not be considered a nasty feature of performed
music, as it is in nowadays multi-track recording techniques where tempo, timing and
synchronization are treated as technical problems. Instead expressive timing has to be
regarded as an integral quality of performed music whereby the performer communicates
structural aspects of the music to the listener (Clarke, 1988). We hope that our work can

inspire new music software based on this view.

OVERVIEW OF THE CALCULUS
Characteristics

The calculus has the following important characteristics:

The calculus is described here only for different brands of expressive timing. Dynamics
could be formalised along the same lines, but for clarity we restrict ourselves to the
domain of expressive timing. Other attributes that carry expression, like intonation,

vibrato and timbre mav require a different treatment.

The types of expression have to be computable to be within reach of this calculus. One
must be able to calculate the expression at every level of the structural hierarchy, given
the expression of their components (e.g. the timing of a chord must be computable when
the timing of the embedded notes is given). One also must be able to state ways to
effectively set the expression of the components once the expression of the whole is given
(i.e. propagate a shift in timing down the hierarchy, to the basic objects carrying the
expression). Types of expression that do not have this characteristic - or are not vet

formalised as such- cannot be described.
Both performance and "score" timing of individual notes are clearly defined. Notes

require attributes that can be measured more or less directly from the performance data

like the note onset time and the offset time. At least the onset time must be clearlv

Calculus 3

specified, which makes the calculus less appropriate for expressive performances by
instruments for which onset times are not so clear cut. Secondly, the metrical note
duration (the timing of the note as notated in the score) must also be available as a note
attribute - either via quantization or by matching a performance to a known score. These
processes are considered preprocessing here. Although the reference to score duration,
score onset and score offset times is less appropriate in the context of our definition of

expression - we will use this terminology, for lack of better terms.

The "score" timing of rests is clearly defined. Perhaps surprisingly, the rest plays a key
role in some transformations. So we assume that it either can be inferred from the
performance timing (Longuet-Higgins, 1976 shows a way of doing so), or it is recovered

via the matching of a performance and a known score.

All proposed transformations are structure preserving. This means that the calculus is
restricted to true expressive transformations: the score timing of the notes is known and

fixed, and transformations will leave this and the structural description invariant.

The behaviour of musical material under expressive transformations is determined

uniquely by its structural description and the type of expression.

The transformations are defined on a hierarchical structural description uniquely linking
all material. Ambiguous structural descriptions (e.g. two or more possible structural
descriptions) or incomplete descriptions cannot be dealt with. The obvious need for
knowledge representations containing multiple structural descriptions (metrical, phrase,
and rhythmical grouping structures, different analysis etc.) is not denied. We just require
that such representations be preprocessed to select only one complete structural
description. This is not a real restriction since transformations based on different kinds of
structural knowledge of the same piece can always be done in sequence. Re-inserting the
trimmed structural descriptions into a transformed piece is trivial because the

transformations preserve the structure.

Naturally, the higher-level structural description of the piece must be consistent with
the performance timing. For example, a structural description of the piece in which two
notes are given a certain sequential time order (one after the other) - can only fit a
performance in which at least the onset of the corresponding notes obey the same order.

The precise rules will be given when the structural descriptions are introduced.
The transformations are defined to apply to a certain level of the hierarchical structural

description, ignoring details from lower levels and keeping higher levels invariant.

Means to select such a level are assumed. In sophisticated realisations of the calculus

Calculus 4

this may entail a match language ("the first bar of the piano solo that begins with a C")
or a graphical representation. In this paper we will simply assume that each musical
object has a name as attribute and defines a structural level as the set of objects with a

certain name.

Although the calculus separates different kinds of behaviour, it entails no musical
knowledge of the transformations themselves. Accordingly, the proposed knowledge
representation docs support for example, arbitrary descriptions of the metrical structure
of a piece, but has no knowledge of "the best structural analysis". To give a second
example: the proposed knowledge representation does support ways to modify timing
(a)synchrony between voices, but it has no knowledge about correct or effective ways of

using this in musical performance.

The calculus also does not model cognition. It does not state how, for example, voice-
leading helps auditory streaming, how phrase final lengthening beyond a limited range
disables rhythm perception, or how structure is communicated by the expressive timing
profiles. However, this work constitutes a solid basis for formalised theories about these

issues, providing a powerful representation in which they can be expressed.

Representation

Several concepts are used in the calculus:

Musical objects are either of a basic nature or form a structural description of a collection
of musical objects. Basic musical objects consist of notes and rests. Notes are the only
musical objects that carry the expressive information. Structural descriptions form
collections of musical objects. They may describe hierarchical time intervals like
metrical-, phrase- or rhythmical grouping, they can group the notes of chords and
ornaments together, or form large horizontal slices through the piece, describing the
separate voices etc. Mere collections (sets) of objects are too meager a basis for most
transformations, therefore, structural descriptions specify the intended relations in time
between these objects as well (Honing, 1991). Most transformations can be defined if two
orthogonal characteristics of the structural description are given: the temporal nature
and the ornamenting quality. The first describes whether a sequence or a parallelism (a
so called successive or simultaneous construct) is represented. The second describes
whether the musical object is considered an ornament attached to another object or not.
Ornaments are shielded from certain modifications and refer to another object for certain
attributes. These two binary characteristics result in four concrete types of structural

description that will be described in detail later.

Calculus 5

Expressive magnitudes are values of expressive measurement on a certain scale. The
scales themselves are of course crucial in modeling effective transformations, in cognitive
and musical senses. For example, a tempo scale on which a transformation to make
something twice as fast actually yields a double perceived tempo is quite useful. But for
the sake of simplicity we abstract from the perceptual processes and the instruments that
generate the sound, and will just assume simple physical measurements of time and other

expressive attributes.

Expression maps describe the expressive patterns of structured musical objects at a certain
structural level. They consist of a section for each musical object at that level. A section
lists the expressive values for all components of that object. They come in different brands
- consistent with the type of musical structure where they were extracted from.
Expression maps can be extracted from and applied to musical objects, with possibly a

modification of the map in between.

Expression types are sets of procedures to extract a particular type of expression map from
a musical object, to impose it on a musical object, and to modify the map. They capture the
difference between expressive tempo, asynchrony, and articulation. They may become
fairly sophisticated, like a brand of expressive tempo that knows how to keep the
articulation of an individual note invariant when the timing of the note onsets is

changed.

Modifications are defined as operations on expression maps. They may scale, interpolate,
or do any other operation on the map. They are often designed such that certain
characteristics are kept invariant, e.g. the total duration of a section while changing the

timing of the parts.

Transformations are defined as operations on musical objects. They are often direct
generalizations of the expression map modifications - first extracting the map, applying
the modification and imposing the modified map. They also handle the selection of the
level of structural description on which to apply the transformation. Furthermore, they
may have means to maintain consistency among the affected level and other musical
material, e.g. making an accompaniment obediently follow the transformation in

expressive tempo applied to the melody.

Implementation

Part of the work described in this paper was done in the design of the POCO system
(Honing, 1990) for which a scaling operation of expressive timing linked to structural
descriptions was implemented. But, in evaluating this rather complex piece of software,

better abstractions arose. Especially the design of a set of data structures for music that

Calculus 6

capture the differences in behaviour under transformation proved beneficial. Which

again illustrated the adage:

"Get your data structures correct first, and the rest of the program will write

itself.” (David Jones, quoted in Bentley, 1988)

Because the constructs interact heavily, and because it should be easy to add unforeseen
new constructs (like a new type of expression), musical objects, expression maps and
expression types arc implemented as classes in an object-oriented language. In that way it
is easy to express modifications and transformations as polymorphic operations that will
behave according to the type (the class) of their arguments. The slicing-up of knowledge
in classes means answering questions like: which part of the extraction procedure of an
expressive tempo map of a sequential musical object is specific for expressive tempo only
and should be stated within the expression type; which part only depends on the
sequential nature of the musical structure, and should be part of the class for sequential
musical objects; and which part describes the creation of an expression map and belongs to
that class?

Although a good Object-Oriented Language (we used CLOS, a Lisp-based system)
provides one with the programming-constructs needed to express these concepts, the
actual process of factoring knowledge into these polymorphic procedures is still a
difficult one, especially because during the design of the best structure of the classes -
allowing for the most elegant factoring of the procedures - cannot be completely foreseen.
This forced us to go through several re-design rounds before the concepts stabilized in
their present form.

The following CLOS (Keene, 1989; Steele, 1990) constructs were used heavily in the
implementation: multiple inheritance (forming class dependencies that are more complex
than simple hierarchies), multi-methods (functions that are polymorphic in more
arguments), mix-in type of inheritance (grouping of partial behaviour in an abstract class
that must be mixed in with other classes to supply that behaviour to their instances),
method combination (providing ways of combining partial descriptions of behaviour of
one method for more classes). Together they make it possible to extend the system by
adding program code only, instead of rewriting it.

The calculus will be incorporated in POCO. The other tools available in POCO, like
score-performance matchers, multiple structural descriptions, storage and retrieval from
standard MIDI-files, playback and editors for music text formats etc., will support a
comfortable use of the calculus with real performance data. An implementation in the
form of the microworld is given in the appendix and aimes at conciseness and elegance.

Luckily, this goal only occasionally conflicts with computational efficiency.

The following five paragraphs will describe the calculus in more detail. The reader
interested in the more general aspects of the calculus is advised to continue reading below

Transformations.

Calculus 7

MUSICAL OBJECTS

Musical objects come in different brands. Some types are specific enough to describe an
object completely (the instantiatable or concrete classes). Other types are used as a
descriptive grouping of likewise behaviour (the abstract classes). The types of musical

objects and their interrelations are shown in figure 1.

Figure 1. Classes of musical objects and their interrelations.

Basic musical objects

Basic musical objects are notes and rests (In the program we use the word PAUSE to avoid
the name clash with the Common Lisp primitive REST). In examples we will use notes
with clearly observable onset and offset times (called PERF-ONSET and PERF-OFFSET)
measured in ms. from the beginning of the performance. Both notes and rests have as a
property a time position in the score (called SCORE-ONSET and SCORE-OFFSET)
measured in any kind of (beat)-count (a rational number). These score times are calculated
automatically from the supplied score durations of notes and rests via the structural
descriptions. This facilitates easy creation of large scores.

Rests are essential and cannot just be ignored, as is done in some low-level representations

(e.g. the Midi-file standard). They are central e.g. in dealing with articulation - a short

Calculus 8

note followed by a rest behaves differently under transformation than a longer note

played in a staccato way.

Structured musical objects

Multilateral structures

In research on music perception and cognition a distinction is often made between
successive temporal processes that deal with events occurring one after another, and
simultaneous temporal processes that handle events occurring around the same time (e.g.
Bregman, 1990; Scrafine, 1988). For the first type of events of the expressive means can be
rubato - the change of tempo over the sequence. In the second one the expressive means can
be chord-spread and asynchrony between voices, both more timbral aspects. These
processes work differently in perception. Since we want to imply differences in behaviour
mainly by differences in structural description a way should be found in which both these
constructs can be represented.

We propose to use for this purpose the simple time structures S and P that functioned well
in (Desain & Honing, 1988; Desain, 1990; Desain & Honing, in press, b). If a collection of
musical objects is formed such that they occur one after another they are described as a
successive structured object named S (for Sequential). If a collection of musical objects occur
at the same time they can be collected in a simultaneous structured object called P (for
Parallel). These structures serve as a general way to represent a collection together with
the temporal relation between the components, as stated in the score. We call the objects
multilateral because their components are considered to be of equal importance, and are to
be treated as such in expressive transformations.

The score times of a structured object and its parts are constrained by consistency rules.
They are described separately in frames 1 and 2. These constraints are enforced by
specifying only notes and rests with a score duration. The constraints propagate these
automatically when a structural description is created and set all score onset and offset

times.

In calculating expression, the previous and subsequent context of musical objects is
sometimes needed. For instance, consider articulation: possibly defined as the overlap
between the sounding parts of a note and the next one, i.e. the time difference between the
offset of the note itself and the onset of the "next" note. Besides "next material" a link to
"previous material" is foreseen to be needed as well, e.g. in the calculation of local accent
patterns. To formalize and generalize this notion of "previous" and "next" material a
definition of the left and right context of a musical object is given. This notion also
reflects the fact that some expressive values cannot be calculated because some contexts
are not available or carry no expression e.g. the tempo of the last note in a piece, or the
performance onset of a voice that starts with a rest. Expressive transformations must thus

expect to come across missing values in an expression map. The notion of context is

Calculus 9

explicitly represented in the program as attributes of the objects themselves. This is
possible because the structural description is invariant and so are the contexts. Another
possibility would be to represent them implicitly, recovering them by search via a bi-
directional part-of link between musical objects. Alternatively, they could be represented
tacitly, i.e. supplying them by a general control structure that walks through structured

musical objects.

Collateral structures (ornamented objects)

Some musical objects contain components that should maintain a dependency relation to
one another. If such a collateral pair is transformed, the transformation should be carried
out on the main component only, the submissive one obediently following the main
component's transformation, but not being transformed itself. An ornamented musical
object like a graced note (a note preceded by a grace note), is a good example of a
collateral object. For example, in the scaling of the expressive tempo of a melody which
contains a graced note, the data on which the expressive transformation is carried out (in
this case the performance onset) stems from the main object. The grace note is ignored.
When in the actual transformation the graced note pair is stretched or compressed and
moved to an other point in time, only the main note will undergo that operation. The
ornament will just follow its shift in time.

A second use of this concept is made when the relation of an ornament to its main object,
within such a collateral couple, is considered to be expressive, and a potential source of
expressive transformations. In this case, the main object stays invariant, and only the
ornament undergoes transformation. Take for example the asynchrony between the
performance onset of a grace note and the note it is attached to. This time interval can be
modified by appropriate means, resulting in local changes of the timing of the grace note

- but keeping the timing of the main note invariant.

Collateral (ornamented) objects can again have two kinds of temporal nature: successive
or simultaneous. The first one is called APPOG (for appoggiatura). It describes a "time-
taking" ornament where the ornament is considered to finish when its main object starts
(all in terms of score times). The second is called ACCIA (for acciaccatura). It can
represent a so called "time-less" ornament that is supposed to start at the same time as
the object it is attached to. Note that both parts of a collateral pair are musical objects
themselves and can have internal structure. The concepts of APPOG and ACCIA
ornamented objects are an elaboration of the PRE and POST objects that were introduced
in (Desain & Honing, 1988). Consistency rules for score times and context are described in

frames 3 and 4.

Calculus

5, a multilateral successive struckure

San Gaff

L € Cc, <« C o« a@mC P R

— = conlext

—> spare Hmes

Figwre of § vhect

Consldes an 5 sbroctueg of noeomponcits O wath DZi<2-1 .
Assumne that component 5 has score onget tima Somg, soore offset time Soff; and that the

whole struchare has score onset time Son and score offzet e Soff. Then the following

st hold:

Som = Sony)
Solf = Solly,q

Su:hl:fi = &:-|1._+-||. for i< -2

Assurme that compoenent O has pertormance onsot time Pong and that the whole siruceore

has performance omses time fon. Then the fallowing muos! hald:

Tor = TPang

Pong = Tong 4y, for = i< 02

Azsume Lhat companent 5 b left comtone Ly and right context Bj and thas the whole

structure ks left context Loand right conloxt R Then the following halds:

=1y
F=F4
F‘i =C:ﬁ_,_:, fnrdl <i<n-d

L= . fae [2i<n-]

Framie 1. Description of a4 5 shredture.

Caleiylus 11

P, a multilateral simulkancous struckure

Samn Soff

n-1

W CconTexk

= goomo Hsios

Figure of I abjec?

Corsider a I' sructure of noomoonants U with 0= <n-1.
Aggume that component O kas scare angot tima Son; and score offser gme Soff and that

the whole stroctuase has senre anset Lme Son and scare offset time Scff Ther the

fallowing mouast hald:

Sy = San, for 58 = n-1
Soff; = Zoff, for G <0 < n-l

Aggume that component O has performance onsct Hme Pong and that the whnle structore

hivs performaence onset s Pone Then the fallowing helds:

Fom = 31

o
0<icnd | om

Assume that romponent O has left context L and right context I and that the whole

structure has laft contoxr L and right comteat B Then the fallowlng holds:

L=L;tor0£i<a-l

E=R,fordsisn-l

Frame 2. Dhescefobioer of @ F sfracferd.

Calculus t2

APPOG, a collateral successive structure

Son Soff

Figure of APPOG object

Consider a APPOG structure of a ornament component CQand a main component Cm.
Assume that component CG has score onset time Son(} score offset time Soff(QQ) that

component Cni has score onset time Sonm and score offset time Soffm and that the whole

structure has score onset time Son and score offset time Soff. Then the following must

hold:

Sonm = Son
Soffm = Soff
SoffQ= Sonm

Assume that component CD has performance onset time Pon(y component Cm has

performance onset time Ponm and that the whole structure has performance onset time

Pon. Then the following holds:

Pon = Ponm

Pon0 < Ponm

Assume that component C0 has left context L0 and right context R0, component Cm has

left context Lm and right context Rm and that the whole structure has left context L and

right context R Then the following holds:

R=Rjp

Ro="m

LO= undefined

Frame 3. Description of an APPOG structure.

Calculus 13

ACCIA, a collateral simultaneows steucture

Som Soft

ACCIA

m

— - OrHIREE
@ noconboxl
—= e Himies

Fianvee af ACCIA nbiecl

Comsider o ACCLA smectume of a ormameat ¢ woparent f',n and a man LTb-:‘:’lPt:u‘.E::l: ’:m.

Azsume thal component O, has soore omset time Song,, score offser tme Soft, that
coanpsin et Ty has sooee ounses bne Son,, ard scove offsel lime ':“--::-me and that she whole
struchire has soore anset seme Senamd sonee offsed tuna Sofl. Thoz the following must

hold:

Sy, =5am,, = 5o
Sty = Soif

Assume that componene Cp nas performance anscr ime Pang, ceanponent Cp, has

performanrce enset time Porg, and that the whole siroclura has perlormance crset timae

TFon. Then the following holds
Tor = Ton,

Assume that compurent O, bas lofs oontext Ly, and right context Ry, comvponent S, hes
Jelt conlext Ly, and right contoxs By and shist the wehale stracture nas left context L and

rigrt eonbext B Thon Lhe Sallowing bolds;

En =& r:d'.r‘.:lrl'l.'rlli

Frdnger . Dpscreiption of an ACCLA structure.

Cakewlus 14

EXAMPLE OF THE REPRESENTATION OF A MUSICAL OBJECT

In figure 2 a fragment of a score is shown that will serve as a basis for the examples at the

end of this article. It is the score of the last bars of the theme of six variations over the

duet Nel cor piu non mi sento, by Ludwig van Beethoven (with some adaptations), which

is the same material used to study tempo curves in (Desain & Honing, in press, a). It

contains examples of several kinds of musical structure: chords, voices, sequences, bars and

beats, phrases and two types of ornaments. Figure 3 shows a graphical notation

indicating two structural descriptions: a metrical hierarchy and a separation into voices.

The way these structures are specified in Lisp is given in the appendix.

Ludwig van Beethoven.

P bar P bar

S lop voice

APPO AcCIA
PAUSE NOTE APPOG

NOTE I NOTE
NO
NOTE £ TE

PAUSE NOTE NOTE NOTE NOTE NOTE

PAUSE NOTE o NOTE NOTE NOTE

>accompaniment

Figure 3. a) Structural description of the metrical hierarchy of the score in figure 2, and b)

description of the wvoices in that piece.

Calculus

Structural

15

REPRESENTING EXPRESSION

There are three kinds of expressive timing: expressive tempo, expressive asynchrony and
expressive articulation. The first two are based on performance onset times only, the

third is based on performance onset and offset times (see figure 4).

expression

expressive
timing

mixin class C instantiable class

vV IS-A

abstract class ..
mixin

Figure 4. Expression type hierarchy.

One could imagine sophisticated algorithms that calculate the onset of a note and of
parallel structures on the basis of their perceptual onset (P-center; see Vos & Rasch,
1981). But for clarity vve use a very simple definition of onset times, which was already
given in the frames 1 to 4. In that way, all musical objects have performance onset times

and so can be used as units on which tempo and asynchrony measures are built.

Expressive tempo

The notion of tempo is relevant only for successive structures. It is defined as the ratio of
score duration and performance duration. This velocity-like notion the inverse of the

notion of a tempo factor, as is used in the psychology of music literature.

Expressive asynchrony

The notion of asynchrony is relevant only for simultaneous structures. It is defined as the

difference of performance onsets. It is thus independent of score times.

Calculus 16

Expressive articulation

Expressive articulation uses the performance offsets of individual notes. It simply
assumes that they are given. A definition of performance offset of structured musical
objects is not needed. Articulation is also independent of score times.

Articulation can be defined in several ways - but it is hard to find a way that will suffice
in all circumstances. In the legato range the absolute overlap time of the sounding part of
a note and the next one seems a good candidate for an articulation scale. In the staccato
range the absolute sounding duration of the note seems the most prominent perceived
aspect. In the intermediate range the relative sounding proportion is a good measure. For
the moment we cannot do better than to supply these three concepts of articulation
expression (overlap-, duration- and proportion-articulation) - leaving it for the user to
choose the most appropriate one (see frame 5). For a multilateral structure the expressive
articulation value is taken to be the average articulation of its parts. For a collateral
structure the expressive articulation value is defined to be the articulation of its main

part.

Definition of articulation

Consider a note with performance onset Pon, performance onset Poff and performance

onset of its right context Ponr. There are three alternative definitions of articulation A

given:

overlap articulation A = Poff - Ponr
duration articulation A = Poff - Pon

. . . Poff - Pon
proportion articulation A =
Ponr - Pon

If a multilateral structure with articulation A has components Q for 0 <i<n-1, and Q

has articulation A; then:

A=MEANg, |2 A

If a collateral structure has articulation A, and its main component Cm has articulation
Am then:

Frame 5. Definition of articulation expression.

Calculus 17

Estimate onsets

Because sometimes the performance onset of missing objects (like the virtual note after
the end of the piece) or the performance onset of a rest are needed, we devised a set of
procedures that estimates these missing values on the basis of performance onsets that
can be found in the context, using a linear interpolation or extrapolation method. The set
of procedures forms a mix-in class that can be combined with any expressive timing type
enabling that kind of expressive timing to deal - in all operations - with missing values.
Estimation is derived from the same structural level as the transformation itself. For
example, a transformation on a beat structure in need of a missing expressive value at the
end of the piece (cf. the onset the final barline in a score) will be estimated on basis of the
two previous beats -not on the basis of any internal detail. In the case of extreme tempo
variations, as occur in a final retard, the estimation feature cannot work well. In this case

it is better not to use it.

Articulation invariance

When moving the onsets of notes around (e.g. in modifying the performance onsets) it is
quite annoying that the articulation of the individual notes also changes - an effect that
is very easy to perceive and which may well overshadow subtle modifications of onset
timing. Therefore a set of procedures can be mixed-in with expressive tempo and
asynchrony. They are given a chance to calculate the articulation of individual notes
before onsets are changed and to reinstall it afterwards. This will insure that

articulation is kept invariant under transformations of onset timing (see figure 12).

EXPRESSION MAPS

An abstraction of the expression of an object is useful for many operations because it can
hide the irrelevant details of the structure and provides a means to transfer expression
from one object to another. Therefore expression maps were introduced. They describe
expression of musical objects at one level of a structural description. All objects at the
level described must have the same structural type. Maps contain a list of sections, one for
each of those musical objects. A section lists the expressive values of the components of
that musical object. Of course maps may be partial - consisting of several sections with

gaps in between, or even have missing values within a section.

Onset timing

The application of a (modified) map of performance onsets on an object works as follows.
First, all objects at the indicated level are found, paired with their corresponding
sections. Then each section is applied to its object. This means that the components of

that object are provided one by one with a new onset from that section.

Calculus 18

This setting of onsets is handled differently according on the structural type of the
component. If this component is a note, the onset is set directly. For S components the
whole structure is stretched between that onset and and the next onset (the onset of the
succeeding component). A P component is set to the provided onset, but keeps its internal
asynchrony invariant and truncates at the next onset. In the case of a ACCIA component,
the main structure is set to the onset, with the ornament following the displacement of
the main structure. Finally, for a APPOG component, the main structure is stretched
between that onset and the next onset, with the ornament also simply following the

displacement of the main object.

Now we have indicated how an expressive timing is applied to components of structured
objects - it remains to be shown how such a change propagates when these components
again are embedded structured objects themselves. This fairly complex process depends on
the type of the embedded structured object and mirrors the decisions given above: S
components are stretched, P components are shifted and truncated, and ornaments follow

the shift of their main components.

Calculus 19

Figure 5. Propagation of change of onset within an S structure for different component types. This figure
shows the propagation process for an S structure containing different types of structural components. We
assume the components are moved around by an arbitrary transformation, parametrized by a factor. In
this figure it is shown how this change is propagated to the internal structure of different kinds of
components. The first component is an S structure and the onsets of its internal parts (lines marked with
white circles) are stretched along proportionally. The second sub-structure is an APPOG structure and one
can see that the onset of its ornament (line marked with upward pointing white triangles) shifts along
with the main object. The third sub-structure is an ACCIA structure and the onset of its ornament behaves
likewise. Note that the onset of the ornament is allowed to shift freely (line marked with downward
pointing white triangles), even the order of notes is allowed to change here . The fourth sub-structure is a
P structure and the onset of its components (lines marked with squares) are shifted and truncated at the
end (the right context note; line marked with x's).

Articulation expression

In comparison, to set the articulation expression to a structured object is much simpler.
When a section of an articulation map is applied to a multilateral or collateral structure
the articulation of its components are set to their respective values from the section.

The propagation of a (modified) articulation value to a component works as follows. If
that component is a note, a new offset is calculated from the articulation value and set
directly, taking care to maintain reasonable offset times (e.g. not shifting before its

onset). If that component is a multilateral structure, its articulation is calculated (the

Calculus 20

mean articulation of its components) and the difference with the required articulation is
propagated as an increment to all components. If it is a collateral structure, its
articulation is calculated (the articulation of its main component) and the difference
with the required articulation is propagated as an increment to both main and ornament

components.

OPERATIONS ON EXPRESSION MAPS

Operations on expression maps work section by section. In each section the expression of a
structured musical object is represented. The operations delivers a new section to be
applied to that object. Care was taken to maintain structural consistency in all
operations even in case of extreme parameter values. Of course expression transformations
are intended as subtle changes and truncation or extreme normalization should in practice

never occur.

Scale maps

Scaling expressive tempo

Scaling tempo is done in an exponential way. Inverse tempi are considered to be related
by a scale factor -1; twice as slow is considered to be the mirror image of half as slow.
This exponential scaling of expressive tempo mirrors the exponential nature of notated

note durations.

Calculus 21

Scaling the expressive tempo of an S section

The scaling of the expressive tempo of a multilateral successive structure works as

follows. Assume the structure has n components named Cj with 0 <i< n-1 . Assume
component Cj has score onset time Son, and performance onset time Ponj. Assume the
right context of the structure (and thus the right context of component Cn_]) is object Cn.
It has score onset Sonn and performance onset time Ponn. A section of the expressive
tempo map of the structure contains all Sonj and Ponj including Sonn and Ponn. The scale

operation on such a section delivers a new section with performance onsets Ponj'

according to the following rules:

Define the score inter-onset interval ASonj and the performance inter-onset interval

APonj and the local tempo Tj for 0 < i< n-1 (a better term would be velocity) as:

ASonj = Sonj+j - Son;
APonj = Ponj+j - Pom
ASonj
~ APonj

This ratio is scaled bv an exponential factor f.
Then new raw performance durations APonj" are calculated:

ASonj
APonj' = .
1i

These are re-normalised such that the total performance duration is kept invariant.

Por.n-PonQ
- "k
APon,1 APOI{[i

y APonj"
i=]

Starting at the same point, the new performance times are given as:
1-1

Ponj' = Pong + y*APor.j'

j=0

f'jfflc 6. Scaling the expressive tempo an S section.

Calculus 22

Figure 6. Scaling the expressive tempo of an S section. This process is shown for a specific set of
performance onsets Ponj .In this figure the horizontal axis is the performance time P. On the vertical axis

the scale factor f is given. Thus at the horizontal line at scale factor 1 the performance times Ponj' are
shown as markers on the line; they are identical to the original performance times Pon:. This operation

(with scale factor 1) is the identity transformation with respect to the performance timing. At the
horizontal line at scale factor 0 the performance times Ponj' are identical to the score times Son; (modulo

normalization to the total performance duration). This operation (with scale factor 0) effectively
removes the expressive timing of the performance. At factor .5 a diminished expressive timing profile
will result, and at factor 2 an exaggerated rubato can be obtained. At negative values of the scale factor
the expressive profile is inverted: a slower tempo becomes faster and vice versa. At extreme values of the
scale factor the note that is played at the slowest tempo in the performance will gain almost the whole
performance time interval spanned by the structure, pushing other notes to zero duration.

When the performance onset Ponn is not available, the scale transformation uses Ponn_| instead, and

scales the tempo of the section with regard to the onset of the last component in the section - instead of
the onset of the right context. This tempo scaling method works well for S constructs with many
components and small tempo deviations.

Calculus 23

Scaling the expressive tempo of an APPOG section

The scaling of the expressive tempo of a collateral successive structure works as follows.

Assume this structure has a main component with score onset time Sonm and performance
onset time Ponm and a preceding ornament component with score onset time SonQ and
performance onset time Pon0. Assume the right context of the structure (and thus the
right context of component Cm) is object Cr. It has score onset Sonr and performance onset

time Ponr. An APPOG time map section contains this score and performance data. The

scale operation on such a map delivers a new map with performance onsets according to

the following rules:

Define the main and ornament score inter-onset interval ASonm, ASon0 and the main and

ornament performance inter-onset interval APonnv APonQas:

ASonm = Sonr - Sonm
ASon0 = Sonm - SonG
APonm = Ponr - Ponm

APon0 = Ponm - Ponn

The ornament tempo TO and the main tempo Tm are calculated as:

ASonQ
APon0
ASonm

“m “ APonm

TO/m 's tempo of the ornament relative to the main tempo. This factor is scaled by an

exponential parameter f, and a new ornament tempo T0’ is calculated:

to/m ~ £
Im

T0 = Tm * TO/ir/

This gives a new performance duration APO', which yields the new performance times
Ponm' and PonQ:

ASon0
APon0'= - .
*o
P°rm =P°nm
PonQ@ = Ponm - APon0Q'

Frame 7. Scaling the expressive tempo of an APPOG section.

Calculus

Figure 7. Scaling expressive timing of an APPOG section. This process is shown for a specific set of
performance onsets. Note that only the performance timing of the ornament is affected. At scale factor 1
the timing of the ornament is identical to the original timing. At scale factor 0 the ornament is performed
at the same tempo as the main object (in this particular example the score duration of the ornament is
half that of the main component). This operation (with scale factor 0) effectively removes the
expressive way in which the ornament is performed, relative to the main component. At factor .5 a
diminished expressive timing effect will result, and at factor 2 an exaggerated effect will be obtained. At
negative values of the scale factor the expressive timing is inverted: a performance of the ornament at a
lower tempo than the main component becomes one at a faster tempo and vice versa.

Scaling expressive asynchrony

Asynchrony occurs when two or more simultaneous musical objects - prescribed to happen
at the same score time - have unequal performance onsets. The differences can be scaled

linearly but care has to be taken not to disrupt the timing of higher levels.

Calculus 25

Scaling the expressive asynchrony of a P section

The scaling of the expressive asynchrony of a multilateral simultaneous structure works

as follows. Assume the structure has n components named Cj with 0 <i<n-1. Component
Cj has performance onset time Pon;. Assume the right context of the structure (and thus
the right context of all components) has performance onset Ponn. A parallel time map of
the structure contains all Pon; including Ponn. The scale operation on such a map delivers

anew Ponj' according to the following rules:

Let the global performance onset Pon and the performance onset asynchronies APonj be

defined as:

Pon = MINfl<j < n_i Ponj

APonj = Ponj - Pon for 0 <i<n-1

The asynchronies are scaled by an multiplication factor f:

APonj'= APon; *

New performance onsets Ponj' are calculated, shifting such that the global performance
onset is kept invariant (min (Ponj') = min (Ponj) = Pon). The result is truncated such that

the onsets never move beyond Ponn. Of these two safeguards the first applying in case f

is negative, the second applying in case f is large compared to the ratio of the
asynchronies and performance duration of the whole structure. Together they ensure
consistency with higher-level structural descriptions by keeping the components within

the bounds of the structure.

Ponj' = MIN (Ponn, Pon + APonj' + MIN (APonj'"))

Frame S. Scaling the expressive asynchrony of a P section

Calculus 26

Figure 8. Scaling expressive timing of a P section. This figure shows this process for a specific set of
performance times P; (say a chord performed with some spread). At scale factor 1 the performance onsets
Pon;' are identical to their original Pony At scale factor 0 all Ponj' occur synchronously at the minimum of
their originals (i.e. removed chord spread). At factor .5 a diminished chord spread will result, and at
factor 2 an exaggerated chord spread can be obtained. At negative values of this factor the spread is
inverted: first notes becoming last and vice versa. At extreme values of the scale factor the notes are

restrained from moving out of the chord structure into the next musical object by truncation. Note that the
whole operation is independent of score times.

Calculus 27

Scaling the expressive asynchrony of an ACCIA section

The scaling of the expressive asynchrony of a collateral simultaneous structure works as

follows. Assume the structure has a main component with performance onset time Ponm
and an ornament component with performance onset time PonQ. A time-map of the

structure contains PonQ and Ponnv The scale operation on such a map delivers new

performance onsets according to the following rules:

Let the performance onset asynchrony APon be defined as:

APon = PonQ- Ponm

The asynchrony is scaled by a multiplication factor f, and a new performance onset Pon0'

is calculated:

APon' = APon * f

Pon0'= Ponm + APon'
Pornmi = Porm

Frame 9. Scaling the expressive asynchrony of an ACCIA section.

Calculus 28

Figure 9. Scaling expressive timing of a ACCIA section. It shows this process for a specific set of
performance times (a note preceded by an acciaccatura). At scale factor 1 all performance onsets are
identical to their original. At scale factor 0 the ornament occurs synchronously with the main note
(removed asynchrony). At negative values of this factor the order of onset of ornament and main note is
inverted. Note that the ornament is allowed to shift freely - even outside the bounds of the whole
ACCIA structure.

Scaling expressive articulation

The articulation of a note is interpreted (scaled) relative to the articulation of the
structure that it forms part of. For multilateral structures this is the average
articulation. If thus the first note in a bar is played with more overlap than the other
notes, a removal of the overlap articulation expression (a zero scale factor) will set the
overlap of all notes to the mean overlap of the notes in the structure. And exaggerating
the articulation expression (a scale factor larger than 1) will move the individual
overlaps away from the mean - but maintaining the average overlap of all the notes in
the bar. Of course all articulation types maintain reasonable performance offsets in the

case of extreme values (i.e. note offsets will not shift before their onsets).

Calculus 29

Scaling the expressive articulation of a multilateral section
Assume a multilateral structure has n components C; with 0 <i <n-1. Component Q has

articulation Aj (see frame 5 for the calculation of Aj). A section of the expression map of

the structure contains all Aj. The articulation A of the structure itself is defined as:

A =MEANq <j<n-i Aj

Let the expression deviations be

AAj = Aj- Afor0<i<n-1

The deviations are simply scaled by a multiplication factor f

AAj =f * AAj

The scale transformation delivers new articulations Aj' by adding the new deviations to
the reference articulation A such that the articulation of the whole structure is kept
invariant (mean Aj' = A).

Aj —A + AAj

Keeping the expressive values in a reasonable range can only be done while applying

them to the individual notes.

Frame 10. Scaling the expressive articulation of a multilateral section

Calculus 30

overlap

articulation
2.5 3 3.5 4
pafomencetine =+
duration
articulation
proportion
articulation

A perfomrencetine —
A

Figure 10. Scaling of an S section with three different kinds of articulation. It shows the scaling of three
types of articulation for a multilateral structure, in this instance an S structure with a specific set of
performance onset and offset times. Here, at scale factor 1 articulations A;' are identical to the original

performance. At scale factor 0 all Aj' are scaled to the mean articulation A. At a scale factor above 1 the
deviation of each with respect to A is exaggerated, with negative values constituting an inverse

deviation: legato notes become more staccato and vice versa. Note that the mean articulation A is always
kept invariant.

Calculus 31

Scaling the expressive articulation of a collateral section
Assume that a collateral structure has ornament and main components CQand Cm.

Component Cc has articulation AQand component Cm has articulation Am (see frame 5

for the calculation of A0 and Am). A section of the expression map of the structure

contains these values. The articulation A of the structure itself is defined as:

Let the expression deviation be

AA=A0-A

The deviation is scaled by a multiplication factor f

AA'= f* AA

The scale transformation delivers a new articulation for the ornament by adding the

new deviation to the reference articulation A.

Aq = A+ AA

= Am

Keeping the expressive values in a reasonable range can only be done while applying

them to the individual notes.

Frame 11. Scaling the expressive articulation of a collateral section.

Calculus 32

performance-time —»

Figure 11. Scaling of an APPOG section with three different kinds of articulation. It show's three types of
articulation scaling for an ornament (here an APPOG structure). At scale factor 1 the articulation AQ is

identical to the original articulation of the ornament. At scale factor 0 AQis identical to the articulation
of the main component Am At a scale factor above 1 the deviation of AQ with respect to the main
component Am is exaggerated, negative values constituting an inverse articulation: legato ornament

articulation become more staccato and vice versa.

Keeping articulation consistent in the scaling of expressive timing

In the scaling of timing of onsets we ignored the influence it should have on its offsets. To
obtain some sort of articulation consistency we can use the three types of articulation (as
described above) when scaling expressive tempo and expressive asynchrony. In figure 12,

we use expressive tempo scaling for an S section as an example in illustrating the

different types of articulation consistency.

Calculus 33

* keep proportion

articulation
Covrererenene
2.5 3 3.5
Pon porformanco-time —
k Pon
Pon2
Pon

Figure 12. Scaling of an S section that keeps a particular type of articulation consistent. Shown for

the same, set of performance onsets as used in figure 6.

Calculus 34

Stretch maps

Sometimes it is useful to be able to keep a consistency in performance timing between
voices when modifying one of them. Naming the modified material as the foreground and
describing the rest as the background, the consistency requires that a series of
performance onsets, at a selected background level, that happen between two
performance onsets in the foreground are "stretched along" with the changes in the
foreground. This feature is implemented by first extracting a timing map from the
background, and "stretching" this map between the old and modified foreground map
before it is reapplied to the background. The fore- and background must be parallel (must
happen during the same score time interval) and have to be S structures. Maintaining the

consistency between other kinds of structure remains a problem.

Interpolate maps

A more sophisticated notion of expression entails the difference in expression between
two structured objects. The best known example is voice leading in ensemble playing
(Rasch, 1979) whereby the leading instrument often takes a small but consistent timing
lead (around 10 ms). Inter- or extrapolation between two extracted timing maps yields

the possibility to scale this kind of expression.

Transfer maps

Sometimes it is useful to apply an expression map extracted from one object, to another
object, possibly with a different structure, e.g. boldly applying the expressive timing of
the melody to the accompaniment. This is supported via an operation on timing maps

that uses the structure of one map but imposes expressive values of the other.

TRANSFORMATIONS

Transformations of musical structures are generalizations of the operations on expression
maps. They handle the selection of a level of structural description, extract a map, do the
operation and re-impose the map. However, they often become quite sophisticated
because they also take care of maintaining consistency with a background (material that
is not affected directly). The application of the modified map has its own complexity,
whereby changes are propagated to lower levels depending on the types of musical
structure encountered. Finally, in the setting of new performance onsets of the notes, also
the offsets may change in order to keep the articulation invariant. Out of the wealth of
possibilities we choose some examples to be illustrated further by means of figures. In the
figures the performance onsets and/or offsets of the individual notes at different

parameter settings are given. The structure of the musical objects transformed are shown

underneath.

Calculus 35

In the following examples the same performance of a Beethoven theme is used (the
fragment as shown in figure 2), allowing for comparison of the different transformations
and to see the effect of applying the same transformation to different levels or types of
structure. Note that for all the transformations the indentity transformation is shown at

scale factor 1

Calculus 36

Scale timing

S bars
P bar P bar P bar P bar
1S lop-voice S lop-voice S lop-voice

APPOG accia

ys N
JRAUSE nore 6 note 0 note Q uote £ NOTE
£ NOTE ot
(£noT @ fworej
S boiiom voice ® chord ® chord
PAUSE pHOTj O.NOTE; O NOTE;- O note O note
Q ote o t
o o

Figure 13. Scaling the expressive tempo of bars in the Beethoven fragment. Underneath the figure a
structural description of the fragment is shown in bars. Imagine what would happen if we asked a
performer to emphasize his/her timing of the bars? One possibility would be to play the onsets of the
bars, that were played slightly early, even earlier, and ones that were played late, later still. This
particular transformation can be read from figure 12 as the lines with the black markers, indicating the
component in the bar that carries the expressive timing. Both the performance onset of the first and the
last bar of the enclosing bars' structure are not changed; the transformation is done at the level named
"bars", with its timing kept invariant. The lines with white markers show the embedded material that
follows the change of the performance onset of each bar. Note that the timing of the ornamented notes
does }?Ot change (they keep the same distance with respect to the note they cling to), as does the spread of
the chords.

Calculus 37

Figure 14. Scaling the expressive asynchrony of each bar in the Beethoven fragment. It shows the
expressive transformation we might expect to happen when a performer is asked to exaggerate the
asynchrony between the top-voice and bottom-voice at the onset of each bar. The figure shows the scaling
of the asynchrony of the bottom voice onsets (the black squares), without changing the timing of the bars
(lines marked with black circles and triangles). The embedded notes of the bottom voice (lines with
white squares) just shift along with the expressive timing of their embedding structure. Here again, the
ornament timing and the chord spread stay invariant.

Calculus 38

P bar P bar

S lop VQICP S lop voice

Qloe . Q note O noit o NoTE
Qnote D NU!i
'fN\“TE
Jtvo tell
S boilom voice P chord P chord
O note O;NOTE O note ~ NOTE ONOTE
a O note
a t Q note

Figure 15. Scaling the expressive asynchrony of each chord in the Beethoven fragment. It shows another
expressive transformation that exaggerates the chord spread, turning them almost into arpeggio's at
high scale factors. At scale factor 0 the chord spread is completely removed. The timing of the rest of the

fragment stays unaltered.

Calculus 39

0 5 1 1.5 2 2.5 3
performance-time —»

,

¢ m Q[Ie 0" ote O note $ note
r+Norgj)rHOt &
Pe-o-6 (I‘Kl
PE [N CH Qute Ry od
|n-‘i | o>
O note O note

Figure 16. Scaling the expressive tempo of the melody in the Beethoven fragment, a) without and b) with
"stretching" the accompaniment. It shows that the timing of each note of the melody becomes
exaggerated with a higher scale factor. Here the accompaniment (lines marked with white squares) is
not affected at all. Figure 16b, on the other hand, shows a musically more reasonable transformation: the
accompaniment follows the movements of the transformed melody, e.g. slowing down when the tempo of
the melody slows down. Here the accompaniment is kept consistent with respect to the original
performance (compare with the onsets at scale factor 1). Note that note order can change between melody
and accompaniment, because of the structural description in two parallel voices.

Calculus 40

Keeping articulation consistent

In the above examples we showed the scaling of onset times and neglected what
happened to the offset times. But, as we showed before, this cannot just be ignored in
musically relevant transformations. We can select one of the described types of
articulation to keep consistent, but we do not show this here (see figure 12 for a simple

example).

Scale intervoice expression

When the expression between voices is scaled, two parameters are used. The first one
selects a reference level of expression (0 designates the expression of the first, 1
designates the expression of the second, 0.5 is the mean of the two etc.). The second
parameter determines in how far the voices are removed from that reference level (0
means completely on reference level, 1 means as in original performance, 2 means

exaggerated with respect to the reference etc.).

Calculus 41

Figure 17. Scaling the intcrvoice timing between the melody and the accompaniment in the Beethoven
fragment, a) with the melody as reference, and b) with the mean of the melody and the accompaniment
as reference. In figure 17a intcrvoice timing (one type of intervoice scaling) is scaled with the melody
voice as the reference. It shows the scaling of the asynchrony between the accompaniment and the
melody, as found in the performance (see the horizontal line where the scale factor is 1). Notes that are
not synchronous (i.e. don't have the same score time) interpolate their change with respect to their
surrounding performance onsets that are considered parallel (have the same score time). Note that the
timing of the melody does not change because it is used as reference.

In figure 17b the mean of the melody and accompaniment timing is used as reference, resulting in
displacements (with respect to this invisible reference) of both voices.

In both figures, the first event in the melody voice is unaffected since there is no measurable timing in the
accompaniment (only a rest).

Calculus 42

CONCLUSION

In this paper we have presented a proposal for a calculus that enables expressive timing
to be transformed on the basis of structural aspects. The program implementing the
calculus, will hopefully prove to be a solid basis for formalised theories of music
cognition. A micro version of this program is included in the appendix, open to further
inquiry and immediate test. The proposed representation constructs allow for easy
maintenance and extension. An object-oriented programming style proved a good choice
for this kind of modelling. The algorithmic parts became reasonably simple, but the
program can still be considered as quite complex, especially its elaborate knowledge
representation. This algorithmic simplicity combined with structural complexity
mirrors, in this respect, the widespread hypothesis that the complex expressive timing
profiles found in musical performances arc more readily explained as the product of a
small collection of simple rules linked to a relatively complex structure, than as the
result of a large collection of interacting rules, with hardly any structure.

This research again confirmed that music is a very rewarding field for experimentation

with knowledge representation concepts.

ACKNOWLEDGEMENTS

We are very grateful to Eric Clarke who made it possible for us to work for two years on
research in expressive timing at City University in London, and the British ESRC for

their financial support (grant A413254004) during this period.

REFERENCES

Bentley J. (1988) More Programming Pearls, Confessions of a Coder. Reading, MA: Addison-
Wesley.

Bregman, A. S. (1990) Auditory Scene Analysis: The Perceptual Organization of Sound.
Cambridge, Mass.: Bradford books, MIT Press.

Clarke, E. E (1988) Generative principles in music performance. In j. A. Sloboda (Ed.)
Generative processes in music. The psychology of performance, improvisation and
composition. Oxford: Science Publications.

Desain, P. & H. Honing (1988) LOCO: A Composition Microworld in Logo. Computer Music
lournal 12(3): 30-42.

Desain, P. & H. Honing (1991) Quantization of Musical Time: A Connectionist Approach. In P.
M. Todd & G. J. Loy (Eds.) Music and Connectionism. Cambridge, Mass.: MIT Press.

Desain, P. & H Honing (in press, a) Tempo curves considered harmful. To appear in

Contemporary Music Review.

Calculus 43

Desain, P. & H Honing (in press, b) Time functions function best as functions of multiple times.
To appear in Computer Music [ournal.

Desain, P. (1990) Lisp as a second language. Perspectives of New Music 28(1).

Honing, H. (1990) POCO: An Environment for Analysing, Modifying, and Generating
Expression in Music. In Proceedings of the 1990 International Computer Music Conference.
San Francisco: Computer Music Association.

Honing, H. (1991) Issues in the Representation of Time and Structure in Music. In Proceedings of
the 1990 Music and the Cognitive Sciences Conference, edited by I Cross and I Deliege.
Contemporary Music Review. London: Harwood Press, (forthcoming).

Keene, S. E. (1989) Object-Oriented Programmine in Common Lisp: A Programmer's Guide to
CLOS. Reading, MA: Addison-Weslcy.

Longuet-Higgins, H. C. (1976) The Perception of Melodics. Nature 263: 646-653.

Rasch, R A. (1979) Synchronisation in performed ensemble music. Acoustica 43, 121-131.

Serafine, M.L. (1988) Music as Cognition: The Development of Thought in Sound. New York:
Columbia University Press.

Steele, G. L. (1990) Common Lisp, the Language. Second edition. Bedford, MA: Digital Press.

Vos, J. & R. A. Rasch (1981) The perceptual onset of musical tones. Perception & Psychophysics
29(4): 323-335.

Calculus 44

Appendix
MICROWORLD EXPRESSION CALCULUS

R R I S i R i I I S I I R e I I I S I S S S S S S S S S S

*

* A CALCULUS FOR MUSIC PERFORMANCE EXPRESSION
:(*_ (c) 1991, Peter Desain & Henkjan Honing *>(-
*

* in CLOS (Common Lisp) , uses loop macro
KA KA AR A A A AR A A A A A A A A A A AR AR AR A AR A AR KK

Kok kkkkkkkhkkhkkkhkhkkhkkkhkkhkhkkhkkkhkhkkhkkkhkkkhkhkhkhkhkhkkhkhkhkkohkkhkkhkdhkokhkkhkkhkkkokkkhkkkhokkokkokhkkkhkkkokkkhkkkkkxk
Kok kkkkkkkhkkkkkhkhkkhkkkhkkkhkkhkk Ak hkkkkkhk ok kkkhkhkhhkkhkhkhkkokkhkkhkkkokkkkkhkkokkkhkkkhokkokkokhkkkhkkkokkkhkkkkkkxk
MUSICAL OBJECTS

Kok kkkkhkkkhkkhkkkhkhkkhkkkhkkkhkhkkhkkkhkhkkhkkhkhk ok khkkhkhkhkhkkhkkhkdhkhkokkhkkhkdhhkokkkkhkkhkokkkkkhkkkokkokhkkkhkkokkkhkkkkkkx*

hohkkkkkhkkkhkkhkkkhkhkkhkkkhkkhkhkkkkkhkkkhkkkk Ak hkhkhkkhkkhkhkkkhkkhkkhkkkkkkkkkkkkkkkkkokkkkkkkokkkhkkkkxkkkx

abstract classes of musical objects

(defclass musical-object ()
((name jreader name jinitarg jname jinitform 'no-name jtype symbol)
(score-onset jreader score-onset jtype rational rinitform O0)
(left jreader 1left jinitform nil)
(right jreader right jinitform nil))

(jdocumentation "Musical Object"))

(defclass structured (musical-object)
((score-offset jreader score-offset jtype rational))

(jdocumentation "Structured Musical Object"))

(defclass multilateral (structured)
((components jreader components jinitarg jcomponents))

(jdocumentation "Multilateral Musical Object"))

(defclass collateral (structured)
((main jreader main jinitarg jmain)
(ornament jreader ornament jinitarg jornament))

(jdocumentation "Ornamented Musical Object"))

(defclass successive (structured)

0

(jdocumentation "Successive Musical Object"))

(defclass simultaneous (structured)

0

(jdocumentation "Simultaneous Musical Object"))

(defclass basic (musical-cbject)
((score-offset jreader score-offset jtype rational jinitarg jscore-dur))

(jdocumentation "Basic Musical Object™))
B S R I T L e e e *IHH*****k************************

; instantiatable classes of musical objects

(defclass S (multilateral successive) () (:documentation "Sequential"))
(defclass P (multilateral simultaneous) () (:documentation "Parallel"))
(defclass ACCIA (collateral simultaneous) () (:documentation "Acciaccature™))
(defclass APPOG (collateral successive) [§] (:documentation "Appoggiature"))

(defclass NOTE (basic)
((dynamic :accessor dynamic :type float :initarg :dynamic)
(perf-onset jaccessor perf-onset :type float :initarg :perf-onset :initform nil)
(perf-offset jaccessor perf-offset jtype float jinitarg :perf-offset jinitform nil))
(jdocumentation "Note"))

(defclass PAUSE (basic) () (jdocumentation "Rest");

Calculus 45

;Ihllllhiil..lili.lliilllii.liiil#liii#iiii#liiiiiliiiiiliiiilIiiiii.liiii#liiiiilliiiii-

; moeatore for musical abjects

ldefurn 5 (name freek coppanimnks]
(mabe-inatance 'S iname DaRe feoRpanenbs companenba)

leg2un B oiname 4rcst conpancrbs
frakp-instanca ' zname mamw conmpaner ke compenenke |

lg=2un RCCIN (map= SEDAmEnT mainl
dmasesiREanse "RACGGTA nanm samE tarnAatmnt o sroamecl o smAain main])

jdafor RFFOE (name arnanent mainl
(maka - InzLance "EPPOS cfears daoe 1O0rnanenkt arbdent thain padn) |

fedmlue MGTRE Cekey aare pearl-aoact operf-affsaen score-dur (dynamic 21
imaka-inekance '"NOTE :name nane
tnert-snsct perf-ansct
ipmrf-aiferat perf-alles
froorg-dur soorpg-dur
selypmamia dynanisg |

idmfur 28U5F 1Lkay name acscsedor)
frake-'natance "2RUSE rname names rscape-dur sooss-dard

.FFwwdd v hbrrn b rrraatirn bbb kbbb radkddnahd e n A A na A A E AR A A A dn A AARFE R R EErERL T AT R R
‘

) extra gocsss fractliors feor moeical chiscls

'detrebhod comoornenzs {dobdect basicli aili
eLhad corgorante {lablieal ool lataralll
iabk forrament abdcot) inaln obgectill

lge2methad all-noces | lopdect maslcal-chisctl)
tloop far oogprn-eat in (eompanmclys ob ject] ef@ersd (&ll-nates camporzatil]

leefmethod 2ll-noces liekject naseid [Tinl sbjastl)

[defun has-name? {acest nares)
A anbda {oTims=l Brmsl lgeocew] eseoler (Dane 2bdeck) namsslll

e s s st
11 1fun
$15m
!laap far commonent in loompansnks ohijess
|- Fdnlh [Fird-pastn seagunect predp| 11

wdemarta [losdeck maslcal-obiect | proedl
all zred chiect!
Jmesi |

I T e e R I e Y P P E E T PN R T T R R R A R E b a il b Bl b

; imicialization at score bimes and context af pemigal shjmcha

tgm el o] intoialize-inscance rafter {l(ob{=ct mueical-ushiesl) Eresc igQnore)
fablgat-choos coheck)
firlclalize-=coom-cimee ol o]
finlciallza-contoxs objock))

method ehgesi -ctmck (lobject wualcal-obfoctil nill
e EF TR R EFFITFra s r b r kb rna kb T R A AR R R AAA P R AL EE TR NI R C TR b r s a kbbb A AR R A AAE AR N T AR
7 oinizlalizatian of score-orest and aoffaet ol aualcal abjeoots

idefree bixd irintalize-sococe-bimes | dobdest bamisk]

idefra<hod pit-aliresscsra-tives |fabiect E1)
jawif fjuloc-va_ce abdest 'soope-cif=si)
Iglar-yslioe (Eirmt {esmgoments obijeck]l) *scoce-of famc]])

Caleulus 46

(defmethod initialize-score-times ((object S))
(loop with onset = 0
for component in (components object)

do (shift-score component onset)

(setf onset (slot-value component 'score-offset))

finally (setf (slot-value object 'score-offset) onset)))
(defmethod initialize-score-times ((object collateral))

(setf (slot-value object 'score-offset)

(slot-value (main object) 'score-offset)))

(defmethod initialize-score-times rafter ((object APPOG))

(shift-score (ornament object)

(- (slot-value (ornament object) 'score-offset))))

(defmethod shift-score ((object musical-object) shift)

(incf (slot-value object ‘'score-onset) shift)

(incf (slot-value object 'score-offset) shift)

(loop for component in (components object) do (shift-score component shift)))

33 3 O O O O X 33 3 3 30 0 Ok O 3k X 3 3 3 3 3 3 O3k b b X 3 3 3 3 3 3 3 3 Ok b X X 3 3 3 3 3 3 3k Ok 3 % X % % 3 3 3 3 3 Ok 3 X X % X 3 3 3 3 3 Ok X X X X X N Ok Ok kX XX

Xir

; initialization of context of musical objects

(defmethod initialize-context ((object musical-object)))
(defmethod initialize-context ((object S))
(loop for component in (components object)

for next-component 1in (rest (components object))

do (set-contexts component next-component)))
(defmethod initialize-context ((object APPOG))
(set-context (ornament object) (main object) 'right))
(defmethod set-contexts ((left musical-object) (right musical-object))

(set-context left right 'right)
(set-context right 1left 'left))

(defmethod set-context ((object musical-object) (context musical-object) dir)
(setf (slot-value object dir) context))

(defmethod set-context rafter ((object P) (context musical-object) dir)
(loop for component in (components object)

do (set-context component context dir)))
(defmethod set-context rafter ((object S) (context musical-object) dir)
(if (eel dir 'left)
(set-context (first (components object)) context dir)
(set-context (last-element (components object)) context dir)))
(defmethod set-context rafter ((object collateral) (context musical-object) dir)
(set-context (main object) context dir))
(defmethcd set-context rafter ((object ACCIA) (context musical-object) dir)

(when (eel dir 'left)
(set-context (ornament object) context dir)))

Calculus 47

-

prddbdwwhdprragtprrvdidrrdddrrvatdrndarani i FT AR T R AR A r TR AV Y NAR AR TR R Y VAR AR Rk W N AR AR E Y
L R L S LR R e S R R s
: MAPS
RIS L LT L LY

LR RS L LR L adddrndbwankdbdrrhitbrrritr vy

LR R AL RS LR LEREE S LRERS DL L

ERLREL

Add R A Addeah LER R ahhdd kb nhdddwhdd sadddinhdhdinhhddddinnahddddin

; abmtract ciamses=e of maps

jdefclass map §)
ldasch inax ramcm=ans =smclions zinilarg wsat ioos] |
|'dacunenzaclan "Expression Map”l

(defslass maleilateral-map (reapd |
fdefclass collateral-nag (jmapl 133
(delzla=xs w_pellansoae-rap (rapl i
(delzlass auccesslvo-nags (mapl {7

R LRI LRI LRSS R R RN SR RS RRERISEERERRENREREREIERRERISEREEISERELISEREEETRREELITRNENENERETSENNE]

;7 Instanciable coczzas of maps

(Bafaiass P—pas dmulzilateral -map sinpcltancovs—-map) 01
ldefcolacs 5-nagp imuliilasteral-rap muccsasive-mapl {0
[HuTelann AOCTR-rap (cal lateral-wap simcltancous—-map) ()
ldefzioss AFEOC-rap (collaseral-rap mocemsesiws-mapl {0

PR e e N e R L R R R R E R R L L R R RN L S R RN L RN S R S L R R R R S R R R E L NN NN
'

;o crEatns o oTaps

lgefan nake-mag Imecioorse
1wt dardaras-zastlons (st sccklors B'< tkey #'scors-areet!] |
icord llrull oodered-sectiansl nili

and Jearm-sesl ! oe-Lype? avaared-sootlons)]
Irct=ovezlapplag? coderad-=echion=ll

[matm-dnatarnss jsaslian-La-nan (Tizat ordercs-ascctbianst i
rppztliones orsercsd-mestinne;

IL fmrra® "atCamgh Lo rFerge lnzompabisle scctlons into cxpoessisn map™litld

kR FE T T Trr AR s R n kb nak b rh b e A A AR A A A AP R AL A R A AR R R EF A AT F T T T IO FSTRR T TF TR R TR F
poszeotlions of Toaps
R e AR F R R Rl bRl bbb

; Abatrachk classws =7 sectlofs @ nats

[el:]la=n wEEhion)
al_—scare-iipee jaccessor al_ —rrcare-kimma inilasg tall-sosea-Tivag]
fmll wrpresaione Gaccraior all-eNsrossions (inttang sall-espressicns]
|rdamumanzakian "Exzressoon Sactica”l

fdetclacs malcllaseral-sestion {(mmgbian] ()]
aral-seccian Jsacticon) i)
fdefclass successive-gaction lmeciion! (11
ddmlN=zlans aircicancovd-gacckion jsectlonl 1))

idmlMzlaszs =all

EFENTTEFERT TR R TTT T At trnh b rnaddd it rah AR n A A A A R VIR FETRFTF T s i v rrwvnck b b dwnan bkt b nwnm ki

Poinstantlab_oc classes af sectlons of mep=

ldme:lana S-scctien tguccessive-seckisn mulbilabteral =aaaticn) []]
|ngtolass E=gacoicT deimanltsaEnpp=-=rclion neultllacaral-gacceianl 1)
|gdefciamn ACSTE apakion (eimcltanscus-seotiorn collatepal -semcbiznl 1))

[AaTsiass AFFOS-sesbian (succossive-seckion oollabw: s’ =wactTlon] ()

ewyrrrsarrrwtrrswvhddbbvabbrnd At b e h AR e R AARA RN EFEE R b e rah kb wah bk rn kA AR AR TN ET

: cpmmazlpi_icw relation betwesn pomical shiwmcls, e@dpeesslion maps and sectiora Lheoasd

(dmfruthed ablest-co-sectian l{oejeck moamios’=abject]]
i=hizd 1fisd o a=m—name (slama o of cbiject)) lobiect-retworkl chey BFQicar]l]

e fpeLhaon seociin=to-map 4 (Eschicn aestlon))
isecpnd {find (olama-nuapa (class-of sesticny! iskject secwsrk| tkey A'Ehicdld]

Caleulus 4d

=

(defun ablect-netwoes)
"1{5 S=map S-=mction]
{F P-pap P-sectianl
sz 18 R Th—map BCCTE=swih ian]
INEPCG RPFOG—map AEFDG-sectionl il

PR A R AR R AR A AR ST RAR T TR AR YA FYI R R FYNAR AR TR NARE T T TR b b prRdar bbb bbby

i wrmatnze ot omsctizns of maps

jd=iun make-section {secticn-class all-score-times all-expressicns
matm-inrtance meckian-rclans
zell-score-times all-score-tipcs
:all-exprespions A0l —eepre=sion=))

|defmeshed make-rew-mection [(lsechkion s=ction! expoessicnsl
fmake—-sasrlon folamu-al aastlond
ignoc (scoTe-tipes seckion] {score-offsek sectlonld)
janac @Rereasions (nexb-axpresslon aectize])]

ldotmechod mete-pod-section-fron-pairs § (aectian sash!ar) palra)
inake-rection dzlacs-af soctlon)
farme fmapeear §'ficwy pair=)] (=core-affeet secticond)
jamoc {mapecar ¥'aesand palral Inexl-aspraas’an sestionl b)
:.iiii-l'-'-iirr--'Iii-l--r-i-il-r-'I-il-i-'r‘-il-i-i-‘-i'l-i-'-i‘l-i-r-i‘l-'l-i-i-'i-'.i+tr'r'r'|-11ﬁtgg'r'.11xr"i FEENN R R NAAS
i

mxtra accessors for sections of maps

lfmfmmthed =ooze-anset | lsectlon seckdoali
frivar dall-ashre Limss aecLizng |l

fdaliatlcd seva ol Mfasl lireckinn =eckiand)
(last-zlement (ell-score-Tlmes aecCianl)

fdalipebhad exprsmaxiczax | {escticn =eckionll
thutlast lall-cxoresslons aachlan))]

fdcEpcbhod next—cH¥praasisn [jawaliocr wachianll
Ilank-alpmmnt |all-sgpreassicns section))

(defrethas azara-Limm= {inmmcbion eectiopd;
Ihetlase (all-scare-bimes sostlon))]

[dmfrat ol score-cnset | (secblan esllataral-a#aseinrdh
[sooEe-Railn aachicnl)

ldefrethol malssexprazaion (f=ectisn ocllateral-sectiang)
leecond sall-pxoressiens aastlon)!|

ldetmzthor crhamanTl—axpreaaian {{aeckicn oollateral-scckian) |
iTirar {ali-mupreseicns sactlonl il

ldefrmthe: acera-valpn fisection calloaceral-saecicn)!
|mmcond (a_l-scare-times awetizal |l

|Zfefmached score-arnasmat § (amckion rmeollakeral—pectd anl
1 Ticwr fmll-ascre-times secclcn! ||

|€alan za-m-zrctlon-kymes (seckians|
feEpery " llarndae {aaciicn) |Elame-nf =mckianll saeotlonal |

{d=iun rot-overlagping? |asciicnal
{loop for =section in sccoctlons
far puxl-seszkion in |Tesi secbions)
naver (* |scoce—cffsct sececlon) |acarm-cneec raxt—-sectdlent| 1]

Caleulys)

SRk Smram T

;****T'HHHHI’T'\":FF!’TEII.! shhAdrahhddahdhdnnhhddinhdddnhdddnhdbdddrnrhddddradhbbdddwnahddratised

f Tind sectian {santalnine mcars Lipe) In expre=aion megp

|:iin Tmmthed lonkup-smckion-cantaining {imap mapl score-timed
(loop ftor seckdon in (sccbiana map)

when [«= [=enrea-arest sectlon) socce-tipe (=cosce-offssc seckionild
g (rektucn seckion))]

:iil‘rl‘iil‘il‘iiil‘l IEER S AR LR R AR LER SRR RN SRR RS IRLRRERLR RIS LRl RRER Sl RRE LR RS RRERLL.)

i laookup sxoression walue {wia scare Lipc) in cepressian map

R inaThed lookdg-deaTiaad-arpreaaion [lndp rapl aoara-Tin)
flaokup-detfined-cxpzescion |loakup-sectlan-containing map score-kimel scoce-timmil

tde fmezhod lookup—detined-sxpression (scocbion scoce-kEimel]
{and =action
|logop tor expressicon in fall-expressions secktianl
Fee map=asare=Line in (Al samcra-Lirms saoiloe)
whan = map-scarc-Eime soarc-timel
an (psbyza exprassizn] 11

{dofreched lopkum—expression | iman succes=sive-nap) =core-bims]
(loniup-expren=_on (lockyp-=ectinr-corl aining map asare-Lims] =coss-Timag)

lao *method lookun—expression lsection scoze|
{and =eotior
[less Fer exprosslen 'n fall-pepressions soectlan!
for expression-nexk in doest (s8] —pxpreasion= asction]]
For aeora-tlma 'n dall-acarc-Cimes scorclend
for scorm-time-nexk 1o dcesr dalT cmmaresLimAz ana
ERERT =108 o
firally Jzetvrn Iirterpolate ssore-Lime acorm sacrast i smornesl
wMpression essression—nexk) (|11

fanld

wlhile |2 wowie "Howp-u-T

c R LAAE W RN EFF R T IR T RN E T TR A ryw kb rvv b rwv et b rrw bbb n kv i vh b bbb e v nhbk b rvhhAd b s s ndh i e A AN
1

5o loobap sosre Lima le & moaatoes Plaiag eeaccssian mag

|gefm=thed in-mecst or-inws-ped {lemclion aastlon) exprasslon)
land cxprescion 1€ (Elrst |ewprespions macsien)|
wEpiasal on
far f{nexk-sxpression mecbian]
tlast-alanent {axzrezsians sectioniil]

|Znfmmthed Tackug-.varae §(Fap S-mapy expeessliong
|legn for section Iin l=ect:oneg mapl therais [leakdp-ioWersa aection cxpressiond)l

[defmethod lookup—inwes=se {{smckicn asaticn] wapieaslon)
japd lip-macriz=r lrnvaras? aacbtichn aexprossionld
[loge for expression-nexk in (ze=t (sxpreasions aecCico) |
(mr woorw Lime in {uasaig-Lines soccelanl
for soarg-tlpe-nadk in jzast eonre-Limes sacciong)
whilm |2 sepraasion axseesalon-next])
,

Firally {zeturn [list scoce-bimm =eocs bims-redc])

cFTRAtErad s b dbdddahb A bk i aRA S e R Frairrrrwhitdrrnhbddwnaddd ki b A AT AR AAEFFFRTEREEEE

¢ rmapplng through axpression maps

{deEpethad map-map (fun (rap mapll
(rakmsmap $loop for section in {sections mapd cellmclt (funcall Ian sectaonl g

crrFFsITETTRTTrTRhA b bbb nh b i rhh b AR A A TR AL ATV FT Ak e r b h b bbb rhhAAA F AR ARE YRR

; mappirg Thrzagh flltered expoessicn paps

jdefmeshed with=fllogred-noil-exeression (fun {map oagpl]
Juntilbee-null-sxpressicn [[enasll fun (2llcer-null-expression naph|
[tilter-niasl-=xpresnian=cul wap) ji

jdafyethos fLlbec—-null-sgpres=sicn | [nas map |
lnap-rap 'Filtersncll-eepressicn nas| |

Calculue i

(defmethod filter-null-expression ((section section))
fnake-new-section-from-pairs section
(loop for expression in (expressions section)
for score-time in (score-times section)
when expression
collect (list score-time expression))))

(defmethod filter-null-expression-out X (map map))
(mapcar #'filter-null-expression-out (sections map)))

(defmethod filter-null-expression-out 1 (section section))
(loop for expression in (expressions section)
for score-time in (score-times section)
for index from 0
unless expression
collect (list index score-time)))

(defmethod unfilter-null-expression ((map map) rejections)
(make-map (mapcar #'unfilter-null-expression (sections map) rejections)))

(defmethod unfilter-null-expression ((section section) removed)
(if removed
(make-new-section-from-pairs section
(loop with expressions = (expressions section)
with score-times = (score-times section)
for index from O
while (or score-times removed)
when (and removed (= index (caar removed)))
collect (list (second (pop removed)) nil)
else collect (list (pop score-times)
(pop expressions))))
section))

Calculus

51

I S S—

STRTRE

R TR YA R T AR YN AT R NA N R A PR AL E R AR AP A AR A a kAL AR AR A A A AR AAR AR A A
JRAF SR Akl dhhb b rad b b rad bbb rahd b ad bbb nah bbb rddd b ad bbb rrd kb v a kb b e R dd bbb r kbbb
5 EXFREGS1IUH

rhdddinadddnhhdddnahdbddvahdivhdbddvahdivahddrnnia bbb vhkdbriak b r bbb rwh kb whdk i wa by
L

R R T T Y R I R T NN I N T NN N AN P RN A RN AR TN AT F A AN A R AT A W R AR T A A A

ldofclass cxpression 1110

ISR R R R IR R R EE R R R R LR R R SRR R SRR SRR Sl EREN S SO RERN FaRER NS LSRR NSRS LR RN NS RN N EE L.
H

1 mil and rests ecarry no exprossion, nll expressions and sections ace met sek

ldafrmethad geb-axprasalon Clobjast puill jessrassion expression)] mil]
ldefrethaod gek-pext-expression (lobject nulll lexpreeselsn expecessicnt | rill

|defrethad geb-cxpression | lobqeos PARUSE) (expressian cxpressianll rill
ldufrmtbad =mel-mspransine [Inhjsact PEUSE) (sxpreasion assrasaianl valusl alll

ldefrethad set-axpression |iockject muxical-obiect) smxpreas=isa dalsm-ar-aastion) nll)
l[duTmrathad gal sneal -aepreasalon [lobjeet wislcal -sxfeck) lexpression expresst ord)
fqet-eraressian jright ab<ect]! cxpresszianll

Lhddwwhtdbrahd i nah kb dnahb ik na kA d r AR A r R A A LA RN AR R R EFFY RN TR N A TR AR R R R TR ey
H

! ot expreszian of notes

lgatirackad geb-notes-expreaslon | lobdiect masical-abieck] |expressmicn esxprassisnl|
(locgp far mote in fall-notes shiech]
sallecn (Teceh-exprassian pate axpressicnjll

ldafmatkad =el-nates-sspreaslen | |ebject musical-abfect] lexpressicn espressinni waluss |
{locn far rcke in fali-pnates ak-ect
Tar walua In valuad
da lzpt-cxprossicn nobe expoessicn waloe! b

kA A r A Ak A A A R R RN R TrErsvitdFvnhdrve ek rddvnndd v nnb bbbk bbb b

i pragagate expressizn linterpolaced, cronoalicg shi L oand saliT]

|emtnechad przaagacc-lncnupalatcd Iiob-ect 31
sid=begin rmw Dagic ald-end now-cnd cxpressiand
flaop far ceom@monent 1o (components obfectl
da |pratagata-lrterpolated corponent
sid-bagin meW-zegin ald-end new-end expressian|ll

lGefrecbsd propagate intarpnlatad {{aklact PI
cld-begin newehmmgic ald-and new-end arazressianl
{laog far cemponenl i fcompoownCa abjest]
da lpropagate-truncating-shift cempanmnt
|save== pow-begin old-Segind new wod @apzeaaslon ||

|dmfrmsbod propagale-intessalabed | iakfacE eollatseall
cld-besin new bagin ald-and now-ond cxpressianl
tlat= Jdpeml (Fatch-axpraaaion (rain abjezt] expressicn) |
{anltt (mawp-- {interpclace old-begis ref ald and ead-Begle now-codl sedl |
(propagsT H-i1|.nrp::'|n| Az lmAain uLljlul:'_l tld-boglin l‘lE'h'-'D-E'l:Ilr sld-mrd naw-and I-'R!":t'ﬂi--'i-il’--'l'
{zropagate-shits formamens oblack) =shlft mwpreswion)))

(dmFrathod propagate-iaterpolizced [lobjact ROTE|
ald wwgin ned-begin old-snd new-erd mapraaalon
[mmb sepraiaalan
abjact ewrressian
linterpolate nld-bmein |Fatch-odacrcssion cbhisct esprezaiond
pld-zng new-bagin new—-end! ||

{defrethod propagara-labarpolated {(ablect PALSE)
rld=huyin nws-eegln ald-end oew-and scpoessian])

Calculus g2

ekkkkkkhhkhkkhhkhkhhhkhhkhkhkhhkhkhkhhkhhkhhkhkhhkhkhhhkkhhkkhhkhhhkhhhkhhhkhhhkhhkkhhkkkhkkkhkkkk

; propagate-truncating-shift

(defmethod propagate-truncating-shift :around ((object musical-object)
shift end expression)
(when shift (call-next-method)))

(defmethod propagate-truncating-shift ((object multilateral) shift end expression)
(loop for component in (components object)
do (propagate-truncating-shift component shift end expression)))

(defmethod propagate-truncating-shift ((object collateral) shift end expression)
(propagate-shift (ornament object) shift expression)
(propagate-truncating-shift (main object) shift end expression))

(defmethod propagate-truncating-shift ((object NOTE) shift end expression)
(set-expression object
expression
(save-min (save-+ (fetch-expression object expression) shift) end)))

(defmethod propagate-truncating-shift ((object PAUSE) shift end expression))

—kkkkkkkkkkkkhkhhkhhkhkkh kg X hhhkhkhhkkhhkkhhkh ok hkkhkkkhhkhhkhkhhkhhhkhhhkhhkhhhkhhkhkhkhhkkhkhkk ok &k

; propagate-shift

(defmethod propagate-shift :around ((object musical-object) shift expression)
(when shift (call-next-method)))

(defmethod propagate-shift ((object structured) shift expression)
(loop for component in (components object)
do (propagate-shift component shift expression)))

(defmethod propagate-shift ((object basic) shift expression)
(set-expression object
expression
(save-+ (fetch-expression object expression) shift)))

—kkkkkkkkhkhhhkhhhhhhhhhhkhyy

; onset timing
Rk kkkkkkkkhkkkkhkkhkkkhyyxx

defclass expressive-tiding (expression)

(0)
(defclass onset-timing (expressive-timing) ()
(defclass basic-asynchrony (onset-timing) 0)
(defclass basic-tempo (onset-timing) 0)

(defclass estimate-onset-timing (onset-timing estimate-mixin) ()

Lk kkkkkkkkkkkkkkkkkkhyxxx Kk hkhkhkk kX hhhhhhkhhhkkhhk kX hhhhhhkhkhhhkhhhhghhhhhhhhhkhhhhhkhhkkhhk

; get expressive timing

(defmethod get-expressic ((object NOTE) (expression onset-timing))
(perf-onset object))

(defmethod get-expression ((ooject S) (expression onset-timing))
(get-expression (first (components object)) expression))
(defmethod get-expression ((object P) (expression onset-timing))

(loop for component in (components object)
when (get-expressior. component expression)
minimize it))

(defmethod get-expression ((object collateral) (expression onset-timing))
(get-expression (main object) expression))

Calculus 53

kkkkkkkkkkkkhkhhhhhhhhkhhhhhhkhkhhhhhhhhhhhhhhhhdhhhhhhhhhhhhdhhdhdhhhhdhdhrhrhddhbhrhd

; set expressive timing

(defmethod set-expression ((object NOTE) (expression onset-timing) value)
(setf (perf-onset object) wvalue))

(defmethod set-expression ((object S) (expression onset-timing) (section S-section))
(loop for new-expression in (expressions section)
for next-new-expression in (snoc (rest (expressions section))
(next-expression section))
for component in (components object)

do (propagate-interpolated component
(fetch-expression component expression)

new-expression

(fetch-expression (right component) expression)
next-new-expression

expression)))

(defmethod set-expression ((object P) (expression onset-timing) (section P-section))
(loop for new-expression in (expressions section)

for component in (components object)

do (propagate-truncating-shift component
(save— new-expression

(fetch-expression component expression))

(get-next-expression object expression)
expression)))

(defmethod set-expression ((object ACCIA)
(expression onset-timing)
(section ACCIA-section))
(propagate-shift (ornament object)
(save— (ornament-expression section)
(fetch-expression (ornament object) expression))

expression))

(defmethod set-expression ((object APPOG)

(expression onset-timing)

(section APPOG-section))

ornament object)

fetch-expression (ornament object) expression)

(propagate-interpclared (

(

(ornament-expression section)
(

(

fetch-expression (right (ornament object)) expression)
main-expression section)
expression))

R B I e I T I I S

; scale expressive-timing

(defmethod scale-expression ((section P-section)
(expression basic-asynchrony)
factor)

(if (expressions section)
fmake-new-sect iar.

section
(scale-P-expression-points (expressions section) factor))

section))
(defmethod scale-expression ((section S-section)
(expression basic-tempo)
factor)
(cond ((and (expressions section) (next-expression section))
scale-S-sec:ion-] section factor))

rest (expressions section))
scale-S-secrion-> section factor))

(t section)))

(
(
((
(

Calculus 54

(defmethod scale-S-section-] (section section) factor

(make-new-section section (seale-S-expression-points
(snoc (score-times section) (score-offset section))
(snoc (expressions section) (next-expression section))
factor)))
(defmethod scale-S-section-> ((section section) factor)

(make-new-section section
(scale-S-expression-points (score-times section)
(expressions section)
factor)))

(defmethod scale-expression ((section ACCIA-section)
(expression basic-asynchrony) factor)
(make-new-section section
(scale-ACCIA-points (main-expression section)
(ornament-expression section)
factor)))

(defmethod scale-expression ((section APPOG-section) (expression basic-tempo) factor)
(make-new-section section

(scale-APPOG-points (ornament-expression section)
(main-expression section)
(next-expression section)
(score-ornament section)
(score-main section)
(score-offset section)
factor)))

RR R R I S S b b b b b S S S S b I I I I I I I I I Ik I I 2k Ih I Ik I I I I 2 I Ik I I Ik I Ik b b 2k b b b b b b I I Ik IE Ik IE Ik b 2h dh b b 2k Ik b 3 I b b I I Ik I Ik ki

(defun scale-P-expression-points (perf-onsets factor
(let* ((perf-begin (apply #'min perf-onsets))
(perf-iois (mapear #' (lambda (onset) (- onset perf-begin)) perf-onsets))
(raw-new-perf-iois (mapear #' (lambda (perf) (scale-expression-1lin perf factor)
perf-iois))
(shift (- (apply #'min raw-new-perf-iois)))
(new-perf-onsets (mapear #' (lambda (ioi) (+ ioi shift perf-begin))
raw-new-perf-iois)))
new-perf-onsets))

(defun scale-S-expression-points (score-times perf-times factor)
(let* ((perf-iois (mapear #'— (rest perf-times) perf-times))
(score-iois (mapear (rest score-times) score-times))
(perf-begin (first perf-times))
(perf-end (last-element perf-times))
(raw-new-perf-iois (mapear #' (lambda (score perf)
(scale-velocity score perf factor))
score—-iois
perf-iois))
(new-perf-iois (normalise raw-new-perf-iois (- perf-end perf-begin)))
(new-perf-times (integrate new-perf-iois perf-begin)))
new-perf-times))

(defun scale-ACCIA-points (main-expression ornament-expression factor)
(let* ((expression-interval (- main-expression ornament-expression))
(new-expression-ornament (- main-expression
(scale-expression-lin expression-interval factor))))
(list: new-expression-ornament main-expression)))

Calculus 55

(defun scale-APPOG-points (ornament-expression main-expression next-expression

(let* |

score-ornament score-main score-end
factor)

score-ornament-ioi (- score-main score-ornament))

expression-ornament-ioi (- main-expression ornament-expression))
score-main-ioi (- score-end score-main))
expression-main-ioi (- next-expression main-expression))

main-tempo (/ score-main-ioi expression-main-ioi))

relative-tempo (/ ornament-tempo main-tempo))

new-ornament-tempo (* main-tempo (expt relative-tempo factor)))

new-expression-ornament-ioi (/ score-ornament-ioi new-ornament-tempo))

(new-expression-ornament (- main-expression new-expression-ornament-ioi))
(list new-expression-ornament main-expression next-expression)))

(
(
(
(
(ornament-tempo (/ score-ornament-ioi expression-ornament-ioi))
(
(
(
(

Kk ok ke k ok ok ok ok ok ke sk ok ok ok ok ok ke sk ok sk ok ok ok ok sk ok ok ok ok ok ok sk ke sk ok ok ok ok sk ke ok ok ok ok ok sk ke ok ok sk ok ok sk ke ok ok ok ok ok sk ok sk ok ok ok ke k ke ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

; expression scale methods

(defun scale-velocity (score perf factor)
"Exponential scaling”

(/ score

)

(/ score perf) factor)

(defun scale-expression-1lin (perf factor)

"Linear scaling"
(* perf factor))

KA Ak Ak A kA A Ak Ak Ak kA Ak Ak Ak Ak kh ok ok h ok h ok ok h ok ok ok ok ok ok ok ok ok ok ok ok ok ok kkkkhkkhkhkhkhkhkkkk

; stretch expressive-timing

(defmethod stretch-expression

section S-section)

old S-map)

new S-map)

expression onset-timing))

(make-new-section

section

(loop for perf-time in (expressions section)

as

collect

Calculus

(score-begin score-end) = (lookup-inverse old perf-time)

(if (and score-begin score-end)
(interpolate (lookup-expression old score-begin)
perf-time
(lookup-expression old score-end)
(lookup-expression new score-begin)
(lookup-expression new score-end))
perf-time))))

56

chddb b rahh b b E R A AN AAAFENARFETVAREFYARET TN TR v a sk b vd bbb b raddd b b e nhd bbb b A AA A
¥

; nixin *n eebtimate sepreassion in case of absence, by lincar inter- oo sxtrapolation
shahb b el A AL AR VRAREFFARET TR bR p s vk v h bbb rrrd bbb hd b bbb ah kbbb d R

[defelamm mxkimstm-mizin] |11

(Admimelhad Fabeh saprsaaxics tarcusd {{abiest mosizal-obqeot] Joxpression escipate-plaind
lor iqet-cxpression ob{ect expoassiasnl
lmablraba-axprasalon obleck cxpressiconl bl

(darlmethad fatch-wxpresalen [lobjest nulll (expresaion exsresslen)) nil)

fedmmethad elch-sxpreasion [lobjacst noaleal ok ecl) jespression aegieassian] |
(qut-axgressicon abjaat axgresslan] |

(dafimethad gei-radl-wxpraeaian taround [lobiest mesical-sbiject)
|rupreexinn astinstm mixing|
icord §ioall-pext-pethod) |
firight ok jesk)
festimate—cxpression Irlghs chijeck) cxprossiond)
T
festimate-next-cupression obfoot exproessianl (1)

fdetmebnad teboch-ansal faveund (fabjest miaica’ ohject] (mepreasion sebimabe-nixinl)
Ifekch-eepression ochicck Iflpd-cxpressicn "estimate-sraec-timiogl (]

[defmathod pibimace-exprassion {(abjact mialeal cnhfeck) lexpreesion sepressicnd |
|petimase-context (contawt-with-egpressiaon obieoct expeEcssicn b loft)
LR
{oartast-with-expression obioct expressicn 4right
cEpresslon
£l

ldetrathos esLimala-mmul-aaprannine [nhjeact neeical -oE eck)] (expression cxpressicond]
1al™ [{lefs |oontest-wich-expression oodeckt exscessian £'1arci)
He*ter land lafn
1laic laiz

il exl-with-sxpression (Loft lefr) oxsmressien &' Laftp!l)l]
(wher {and left -etter)

lirCarpalale [scpre-onees lefter]
[score—offses objeck)
[=enre—nnams. 1eft|
IqocE-cxpresslion lafbar expraasion)
Iget-mypression left expressionl)i}

idefmethed @atinate-eontect (Isfk ghiect right lexpresslon eEpresdian] Tiratobhryd
{=ond {dand left cightl

finterpslate {aco-w on=sk lefk)
(score-onset abiest|
{pcooe-oneet rlaht)
(get-exprasaion 1aft egpressizn]
fgek-oxprossion ight waxurasaian]l]
Eland 147t [Ta™n lafn] [ices-kewl
fmstimate—context [contest-wibh-axpressinn (1=fk imFz)| ekpressiaon k" letfb)
ak: imel
late
EmEpression nilll
(land right {eight right) flrar-=ryd
(=l inate-centemat right

obicchk
[enpkext-with—expEcssicn (F ight. right) mepresgsion 1'riqghtl
caprasalon nill)

1% millhl

(Hefnathod context-with-prpressian |{akiec=l mosical-ob{ect]
(exproegaion asksrmezaion] Si-ection)
{cood ligot-axprasnal or -::hjﬁr:r. HI’pr-FHEll:hn:
nbject|
{ituneall direcbkion shkimck]

loconzext-wich-axpragsion {funcall diroction abdcck) a¥prezaicn dicectiand)
EL millld

- —

-

Caleuluz £

S ok ok ok kS ok Ak ok ko ok ok Ak ok Ak ok Ak Ak kA A& A A KA XA A

keeping articulation invariant: mixin for expressive timing expression

(defclass keep-articulation-mixin (()

(defclass keep-overlap-articulation-mixin (keep-articulation-mixin) ())
(defclass keep-duration-articulation-mixin (keep-articulation-mixin) ())
(defclass keep-proportion-articulation-mixin (keep-articulation-mixin) ())

(defmethod articulation ((expression keep-overlap-articulation-mixin))
(find-expression 'basic-overlap-articulation))

(defmethod articulation ((expression keep-duration-articulation-mixin))
(find-expression 'basic-duration-articulation))

(defmethod articulation ((expression keep-proportion-articulation-mixin))
(find-expression 'basic-proportion-articulation))

(defmethod set-map :around ((object musical-object)
map
(expression keep-articulation-mixin)
ground)
(when map
(let* ((parts (find-parts object ground))
(articulation-collections
(loop for part in parts
collect (get-notes-expression part (articulation expression)))))
(call-next-method)
(loop for part in parts
for collection in articulation-collections
do (set-notes-expression part (articulation expression) collection))))
object)

Lk kkkkkkkkkkkkkhkhk ok gk ok hhkhhkhhkkhk ok k* o 3k ks k sk sk sk ok ok ok sk sk sk sk sk sk sk sk ok ok 3k sk Sk ok ok sk ok sk ok ok ok ok ok ok ok ok

; resource for expression instances

(defvar *expression-ir.stances*)
(setf *expression-instances* nil)
(defvar *use-expression-resource¥*)
(setf *use-expressior.-resource* t)
(defun find-expressicr. (class)
(or (and *use-expression-resource*
(cdr (assoc class *expression-instances¥*)))
(make-expressicr.-instance class)))

(defun make-expressicr.-instance (class)
(let ((instance (make-instance class)))
(when *use-expression-resource*
(push (cons class instance) *expression-instances¥*))
instance))

— —1>EX DIDAHH
; averaging expression

KKk Kk kK kA kAR A kPRI KA Ak kkkkkkk ok ko kkkkhhh ok ok kkhkkkkkhhkkkhkhkhkkkkhhhhkkkkkkkkk kg k& & & %

(defclass averaging-expression-mixin () ())

Lk kkkkhkkkkkhkhhhkhh kg hhhhhhkhkkkhhhkhhhkhkhhkhh Ak hkhkhkkkhhkhkhhkhkkhkhhhhkhhhkhkhkhhhhhhhhhhhhhhhh ! | kk

; get averaging expression

(defmethod get-expression ((object multilateral) (expression averaging-expression-mixin))
(loop for component in (components object)
when (get-expression component expression)

sum it into total
finally (return (/ total (length (components object))))))

(defmethod get-expression ((object collateral) (expression averaging-expression-mixin))
(get-expression (main object) expression))

Calculus 58

LT IS R R R Y Y SR A s R RN ATl A AR A R R R R R RS L AR ESELEREEIERESLIIEARERERRELERNRL L EERENRLRELR.]
H

=ul. avarasing mapseaslon

(dalmeLhen] asl=axpraasion [(obiech moalbilateeall
lexpreassion sveraqing-expressian-mixzinl

(ract o AclLl lakaral —@aenloe! |

lcarporents obj=ck)

Ilopp #or cammancnk 1o
Jadpransiank daatlan)

Far cad-aEpreaaian in
da lpropagaze-shift componanc
(mawn MER HEpTHARLOR
[fekch-guprecssion compancnt o¥mressiand

mEGreanian])

imlmalbkoed mel —sgpras=icn (o ject callal=rall
lexpeesslion averaging-cxpoosalaon-mixln

[mpction ceollatessl-zoctiond
gropagate-shift (arcamant onject)
[Eawa—— jocmamert-expression scckiand

ifetoch-mepreesion dscnament obiecti exwcessian) |

expraaalsnl]

ihddn bbb rahd bbb dndbdrrd b dd R ra et Atk rs kv AN e WL A A N E AN A T e e A A A e A Ak
;o moale avaraging ewmprossion
ldefpetbod scale-cxprossion §(scction melollatsral asmes jond
(mwpression averaging-eXarcssian-nixin
facCorh
[(rpan-sxpreesion (moan (BXRLessions scecian) |l
exprasalon-dawidlicons {nspoas (' {lambdasexpression)
[wmzpras=isn mean-sxpressionll

1Twr*

laNDroSsiang aeoCisalll
IMew —cr s res s i ars
imapcar 2'{lankda jekprassi sn-davialinn)
11 mEAar-eEpCPRS1an
(ooale-cepreaslen il wepreanion-gaviacion factoz)i))

exmrCession-govictiang| |

imake-rau—meckion sootlon nod-cHpraksiansa] 1)

1 janaiinmg ol lateral -=seakianl
EERression averasing-mzprussinn pixin
Factorl

leEnamanl mzpreszicn sectionl

Imaipn—exsressian sest!iorl] |

|defr=thor scalo-oMpeasaian

Hme™ {devpression-deviazien (-

(New-oInament -CEErasaian
I+ imaip-esprecssian sectlion)

lacalu-wxpraamion=1in syprescign-deviatlion factes)) ||

|haka naw-pection e=ction
(1=l mmw-nrnaperk-syprassion
Imalrn-cxprasal on amcLlicn) |11

LR L L LR T e e S Y T T R R R

i sbraksh aversglopn expression

(daTmwthod stpetch-supression |{aastion S-mectiopd
tald E-mapl
(o 5 -mapl
(expresalor avargging—escression—nixin])

imake—-new-scotl on
seotlon
{loop for expression in
ter smope-Lipe in {scaocc-cimes saaiere)
ar old-sMpressicn = (lookop-mxprsssion ald ssera-Cimal
25 new-sxpreselan - (lookop-cxpresslor —Ee poare-time|
an mbretched-ewzresaion = JiF [aad old-sxprossion naw-espressicn sspressiosl
I+ expressian {- new-sxpregeian old-espraasd on)
map-es=ion)

collesl alretchesd-expressianl i)

larpruexiane pesTion)

Caloufus Eq

R R T e y T T e R T L e L]
J ARTICULATION

P L

fdmirmlane offsst-timing fexpreanies—timirerd 01

fdeteclass artisulakcian taftfseb-tining averajlny-expression-mizing 11)
fdefclass bapic-overlap-arciculatlor articulatieni (11

fdefelass basie~duralion-&rLiznlacisn tartloclazlon) (1]

fdefolass basic-preoporzion=articulakbion facticelatien) (11

thahhhddnhhddddna bbbl r kAR R AR AA PR RNAS T YRS FRNALEF e W NAEFF VAR p R T p e r s Ry e

tdelnuliod gat-axpressicen |{object KOTE) (expression atfset-zimingll
Iperf-offeest abiecsti|

T e ey ., ETLE

tdefpethod fetch-onpeat [(abiest mo=ical —olrjecl)] (Rapras=icn arCisiacicond |
(et -axpresaion ebject (flpd-cmpression "onset-timingl i)

AL EE LN LI ERNEE SRR LRSI RN ISR RIS ERELELEREEELNEEERELNS BB ERES A RN R i

$ oget articelation

timlnetnad gab-aEprassion | loebjeet KOTE] (expreossion fasic-overlap-artisalabispl)
[wkan (rlght obdectl
lmgvm=— (perl-nllawl ableel)
{tetah-onsez (right abiect! expressioalli}

I Srabhod gub-axgresaion [(oblect WOIZ| {cxpression basic—duratizn-arbis=ulacioe))
i- lperi-offzet obd=czh
|Fetch=mnmet objas, wxgrmasian] il

Iéefmashed get-eppremnian (ab sl BNOTE] {edsression basic-proporktian-articuiatinnh|
twan fand Tebtch-orscer abjock cxpression)
lriaht ohymzt)

[TRLch-weaat (Fight sofooi) cupoessionl |
0F 1=~ fparf-siisct abjoct]
{fazoh-snsel abjest sxpressisall

I- dla.eh-snaet (Tlght abieztl cxpression
{tezoh-pnoet abtect expressicallll)

A RNEFF T NANRAFFERARNE A TS s w e w ® AREA AT ES R EEEE R R R R A ranh A Al AR NN FER Y s s r s A s Ea o w
;

mul ar=loedlatlon

(dalpathiod set-cxpressinn f{opdeck NOTE)] |emyp-#a=mmicn camic-ove:lap-arbticualaciand value!

Iwkmn larni (right okia=t] {(Iwlekh-s0@et (Clght obdcctl expressiaonll
vactlb {porpf-ottsec ooleck)
Inax |1fetzh-commt o jEcl axp:asslon)

[+ {fotcr-onset (rignt ckjeck] sxpressinnd
walueil 1]
tdafmathiod set-cxpression |dchject EOTD) (maxpréanslos sasis-doration-articsistian] wa,ca)]
[=ebf [pmrf-cFff=ze!. oX’acl]
- {fotch-cnses ablect axpress=®oa
Jma¥ O waluzl)]])

lZeinmbhad maL-sxgreazalen | lobfezt KOTEI
Irzpreesicn baaic-preparzian-arkiculatian]l valual
iwen fand lright oh’eszz) [perf-ansct Iright chjeczl)
[agLT (perf-atfset opjeoc]
{+ {fetch-sneel abjacl sxprassion]
|* ¢= |ferch-anset (eighs objest| sdprasaian]
lfetco-onsmt chircl mapXasalion) |
dmax C walaa] |11}

Calculua a0

:\'\’-E"fl\"l'\"ﬂfl"ﬂ\ll AR RTINS RETRA N REI ISR RN RNSRERN I SRR LN RIS RRERELEL RN IS LEREREELERENNE S LR LT

Poanply expreaglon (Lo rweaorss anly eseorce | ipesd
R T

Idefclass empty-expressiaon lexzcessianl 4]

IdmfmweLhod gel-expressicn | loblect Fisical-obicst) [axprassics arply sspressionl) oill

L e R L o T Lo L e e e p e P

v
Foniking instantlable classes al sxpra=zaian
puadddd e ek R TR R AR F I AT AR AAd A bl kbbb ra kb b w ek R R TR TR A F P AR LA PR RN S A n ks

Idefmacrn class=nlxer {Lrost class-cocklLsl]-pairs
iligt= ‘pragl oo
laosp fer tuples o elasa-cackba’l-paics by §'oddde
am narme - (firsc kbuples)

as Jdoc = [sacand Lagles)
an oncktail = |Fhicd Euples)
collect " idsfolass ,maas msckblail 48

fromumentabion dacl113)

Lralzulus &1

(class-mixer
tempo " n
(basic-tempo)

asynchrony " "
(basic-asynchrony)

estimate-tempo n "
(basic-tempo estimate-mixin)

estimate-asynchrony " "
(basic-asynchrony estimate-mixin)

keep-overlap-articulation-tempo " "
(basic-tempo keep-overlap-articuiation-mixin)

keep-duration-articulation-tempo " n
(basic-tempo keep-duration-articuiation-mixin)

keep-proportion-articulation-tempo " "
(basic-tempo keep-proportion-articuiation-mixin)

keep-overlap-articulation-estimate-tempo " "
(basic-tempo keep-overlap-articulation-mixin estimate-mixin)

keep-duration-articulation-estimate-tempo " "
(basic-tempo keep-duration-articulation-mixin estimate-mixin)

keep-proportion-articulation-estimate-tempo " "
(basic-tempo keep-proportion-articulation-mixin estimate-mixin)

keep-overlap-articulation-asynchrony " ”
(basic-asynchrony keep-overlap-articulation-mixin)

keep-duration-articulation-asynchrony " "
(basic-asynchrony keep-duration-articulation-mixin)

keep-proportion-articulation-asynchrony " "
(basic-asynchrony keep-proportion-articulation-mixin)

keep-overlap-articulation-estimate-asynchrony " "
(basic-asynchrony keep-overlap-articulation-mixin estimate-mixin)

keep-duration-articulation-estimate-asynchrony " "
(basic-asynchrony keep-duration-articulation-mixin estimate-mixin)

keep-proportion-articulation-estimare-asynchrony " "
(basic-asynchrony keep-proportion-articulation-mixin estimate-mixin)

overlap-articulation " M
(basic-overlap-articulation)
duration-articulation " ”
(basic-duration-articulation)

proportion-articulation " "
(basic-proportion-articulation)

estimate-overlap-articulation " "
(basic-overlap-articulation estimate-mixin)

estimate-duration-articulation " "
(basic-duration-articulation estimate-mixin)

”

estimate-proportion-articulation "
(basic-proportion-articulation estimate-mixin))

Calculus

62

PERENNAREY e e R I e T L e T T P R R T RN T AR R R R R T A RS A s
sETEAA R R R b b ek kb A AAd s Al A AL AR R AR EF YN IARFTFFTRE R TTEI v i stk b b wh bbb b
: ENTRACTING AND ITHEDSING EXFRESSICN MARS OF MUSICAL GRIRCTS OSTHEG REFRTESION

JEFERRRE R b b r Ty kb i b e a b b kA R R R A A A A R AR TR AR AL B RN E NIRRT YRR
phbEa kA AN A VAR R AT (AR RS RS AR LA ER RS A LR RSl bl bl L L

- a = - 4 o
H +|'|:.r|-||-l.|.||:'| A HELETHAE AN 35

|im fpmchiod get -map | iekjact maeical ab:jest] adpraeseisa grocnd)]
imakc-nap [loop Zor part in (Elmpd-marts aob{ect ground]
collast {gel-secl ian pac. eapees=ionl |

|fefmmthind ges-epectoon ((obiect romnical -ohimck) sxpressionl
{make-secklon edjock-to-soatlion sedect)
{En00 imapoas rUsoocce-orEet loomomonents obd{ect]
fuonra afPael ok lecl] |

fnoc fmapoar U llamoda {component]

ilmich-mepression comporent sEpreEsLIon))
(compancnbs ablest] |
fgml cnxlemxprmssian nhjsct expreas=ionii||

LR R L R e R L R e Ry e Ry L Ry
i lmpose 3 SEpISSSLOR Tap

jdmfmethod set-maz Hickdcoct mosical-obiect] man exprasslon groon)
(laop Tar pask in {Tind paris shject qroord)
far section in lseotlons miaz: |

do |mel-mwprepsion gart SEprossion soctlon))
ab ook

Caleulus 61

e Ll e Rt AR R R R e Rt S R e R R R L o R e T T P T T
H
B A AR TR

OFERARTIOKE CN EXFRESEICHN MARPS

R R R E SRR R RN IR R SRR R SRR E R R LR ER NI RN LR ER R EEE R NN EEN RN EEFE N NENERENEERERN NN EEL T NN L

AR A A A R AR A A A AL A LA E NP FE AR A FE IR A FFR AR TRy Tk r e va bt e w Ak ra v r v wa

; =male mxpreasxinn map

(defmethod scale-map liman map) ewpoeseion fastard
[wiLth=CilLared-pul i -paprazaian 4' (lank=la [TilTeracd-mapl
tseale-tilbtered-mae [llterced-map expoessicon Eackoc!
mapl

{detmetbnad sca_e-filtered-map (imap map) =xpres=ion factm=)
Imap-map #'(anksis [=esiiord
Iscale-cxproessioan sectlon
F':':Ilr“:'.ﬂ 1EIri
lget—pacancetss factar lecoce—orest =ectiondll]
nawl |

.k wnhdddrsahhdraahd i s ahb i a R A A AR AR F AR A EFRAR A AT TR R T Yi bbb v s kbbb aa b b e a kbbb a kb an

3 Anteczpolabe S—-exproessicn naps

fdetnetnad interpolate-mage §imapl S-mapl Imap? S-magp] Taztar)
Irap-map &' [lank=la jasctleor) (Anberpolazc-secticon sectdan
ITilTrar-mlli-eapEasslon mipd)
tackac) |

manll)

{dalfmetniad interpolate-seetlon [isectior S—sectior) dmag S5 omagl Tastorn)
Imaka-new=macsinr
sarzk i¢h
Ilecp Emr =moare-bilme im mesraec-bimes geetion
tor exgrcssion 1n lexpoescions eection
collazt lip-mebuassan wxsrass Tan
Hlaoxup-ecxpoessior Fap sasare Cinal
yut-paranater factor scare—kEim=1 11313

fulewLhad morcTond sa-map [((Map S—-pap! |
(map-maz A'meanrorimam—asatine map)

lgeimekbhod monctonlee-seckion {imactian S-aastian] |
dmatm=naW-mmecL Ian
soation
(laop [oe expEcsslion 1n (expresslons =echbiang

wheEn F'E'p"F!AI::'I
warhfl2e cxpressicn into sTaks
ard collect =lalw
wlae collecs nloi1)

e e e Y e e A e LR R R R L R T R R R T RN R AT A R A Rl bl el

} qek S-sxprassion mape st omprs peinTe

ldulmabnad cat-syrc-map {(mapl S-mapl Ipapd S-=apl)
(rap-man #'(lapbda (=ection) (gel=syns-sectlan section magd|] mazt|)

lufmacked gec-sync-section Llsectior Sesasbior] [nap E-mapl)
Imake—ped-section-fram=paica sactleon

Neap For acsre-iime Ln fall-scare Limas aeczion)
for mxp-eareinn la {all-oXprossions S8 iznl
Ay NaM-aETression fans expression

fiookup-defisei-sxpre=aicn oap score-tlped!l
wh#n nar-wRpIEEEL0N collect |limt m=cre-Eime cxpressicondill

Calowius 64

ThhhkFrhhdgvirrdddddbrdd b rhhd b b AT VAT T TR R ET TAARETTI AT A dd A bbb rhdd bbb Fr AR A S

H
: abyalol G¥prossion map

ldmFfrathad dtracsh-mep | (map succe=ssive-paph
faid mmcasslira—-mapd
{n=w succe=s=lve—-mapl
skpraaaicn
flet {(fLltercd-map [(Ellte=r-nuall-mxpreszicn mapll
[Eiltermd-nld (fliltef=mia] l=agpraaslon ald])
(fiitutad-maw [Fllter-mull-cxpression new))
{cmpoved [(fllter—null-mzpraanlsh=aE baplll
[onfiltar-null-axpEsssian
|map-map
1" {larbda (Eackian]
[stretch-expre=sslan smotlan filtemred-old filkeoed-new expressienl)
Flltermd-magl
ramcvad] 1)

Al A F AR AT AT AP T A AR SIS AET TR ASET IS AR TR EET AT TR ARE TN I NE T LTI AAR T WY
R e R R e R R R R
1 TIME-CHARAGIKG FARRMETERE

AR R R R R R R A A A A A A e e R R R R A A R R e e A A R A R R R R R R R A A R R R R R e .

AP T NIRRT T I AR R T T A R E T TN R T TV A AR AN T TR E T VI AR AT IR F T T AN Er T VAR IR WA A AR W T A AR T T Y TAREF YT IY

{d=fun gqet-paramcker [factar scoro—-ime)
[iF {numbarp CASCES)
factac
|Tithaall Tackar acorea-tiom]i)

(daflan maka-—ramg |21 %2 ¥yl y21 : ag E-sactlom 77
#* lambda {xh |imterpolata N1 ¥ ®¥2 ¥l w2110

Cakouius &5

KKK A AR A A A A AR AR A A AR AR A A A A A A A A A A A A A, K

KKK A A A A A A A A AR AR A A A A A A A A A A A A A A A A A AR A A, K

TRANSFORMATIONS ON MUSICAL

OBJECTS

R R I I I R R R R R e R I I I I I S e I I I e S S S S S S I I S S S S S S S S

KKK KA AR A A A A A A A A A A AR AR A A, K

transfer expression transformation

(defmethod transfer ((object

musical-object) expression foreground background)

(let* ((foreground-map (get-map object expression foreground))
(background-map (get-map object (find-expression 'empty-expression) background))

(new-background-map

(interpolate-maps background-map foreground-map 1)))

(set-map object new-background-map expression background))

object)

R e e e i I I i S I I I I I e I I I I S e S I I I I I S S S S S S S e S S S S S S S S S S

; scale expression transformation

(defmethod scale ((object musical-object) expression foreground background factor

(let* ((old-foreground-map
(new-foreground-map

(old-background-map

(new-background-map

(when new-foreground-map

(get-map object expression foreground))
(when old-foreground-map
(scale-map old-foreground-map expression factor)))
(when background
(get-map object expression background)))
(when old-background-map
(stretch-map old-background-map
old-foreground-map
new-foreground-map
expression))))

(set-map object new-foreground-map expression foreground))

(when new-background-map

(set-map object new-background-map expression background)))

object)

R R Rk I I kb b b b b dh b b b b b h b b b b b b b b b b I b b b b b b b 2 b b b b 2h b I I 2k 2 b I I I Ik 2k b I b Ik b b b b O i

; scale intervoice expression transformation

(defmethod scale-intervoice

((object musical-object) expression
voicel voice2 factor ref)

(let* ((mapl (get-map object expression voicel)
(map2 (get-map object expression voice2)))

(when (and mapl map2)

(let* ((original-sync-mapl (get-sync-map mapl map2))
(original-sync-map2 (get-sync-map map2 mapl))

(new-sync-mapl

(new-sync-map2

(monotonise-map (interpolate-maps
original-sync-mapl
original-sync-map2
(* ref (- 1 factor)))))

(monotonise-map (interpolate-maps
original-sync-map2
original-sync-mapl
* (- 1 ref) (- 1 factor)))))

(new-mapl (stretch-map

mapl

original-sync-mapl new-sync-mapl expression))

(new-map2 (stretch-map

map2

original-sync-map2 new-sync-map2 expression)))

(set-map object new-mapl expression voicel)
(set-map object new-map2 expression voice2)))

object))

Calculus

66

e AR A A A A A AR A A A A A A A A A A A A A A A A A R A A A A A A A AR A AT A AT A A A AR A AT AAR T AN AR AT A A RN oW
i

- *“‘QI.*‘**'*ﬁ"'*"""”****‘..'l‘*"i',*"***"""*****t*t**.'**‘f*t*t****l‘l“’*“i**
H

¢ LIS? OTILITLIEES

1k Kk Kk K ok ok ok ok ok ok ok ok ok ok ok K Kk ok ok ok ok ok ok 3k ok ok ok kK Kk ok ok ok ok ok ok ok kK kR ok ok ok ok ok ok ok ok ok ok ok kK Kk Kk K K K K K ok ok ok ok ok K k K
;

« % Kk Kok Kk ok Kk Kk kK ok k% %k Kk sk Kk sk ok ks kK s ok K ok ok Kk ok ok Kk %k %k kK %k %k ok ko ok ok kK ok sk ok ok ok ok ok ke ke ke ok ok ok ke ok ok ok %k ok ok k% kK ok ok ok ok ok ok ok
7

(defor lasc-elercnt [list)
1firet Ilamt Tiabbl]

{defun snoc {list iteml
[epperd Lisk (ilsk Sfzem)}|

(dafun mean rumbesa)
F lapply 4'1 ounb=c=l {lenabth ounbecs] 1)

id=fun save-nin (fzest listt
(las flmaw=lisT {rarouva nil 1iat]1)
lard new-list Japply 2'min new-list) 1)

ldefan save-mas (sTost Llst)
(lams finew-lim: {cemows oil limtll]
(angd maw=list lapply 2'max pew=11aK001)

lda®un sava-— Jaraat 1iac)
tand instany f'muall lisk)
lagaly 2'- liat}]l

|4 fun sava—+ fermal I1imL)
{apply r'- Jzemove nil lisciig

tdmfun enforce-1i=its inlniman & maxioamd
[rax minfnom (clp ¥ maximunil}

{edmfun intemzate {list =tarck)
(LE daull limid
1li=t =start!
lEone xLarl
linte=graze Irost list] |+ (@lxat Lisb) scart| (1))

(dalen moarpalies (L=t darl
Ilek (Ifactar §F dior (apply 837+ li&c)h})
{mapzar #* 1la-mda{iten] {* fackor ikbembl liszill

[delun lAteaszolace (a2l x xF y1 v
joond 1{eql oyl w1 wl]
[4ag” =7 =31 pnill
Idnal =) mil)
1dend &l 1= u xIli wil
fdand %3 (= = k7|1 w@|
{dand xI =3I
tin-booweer ¥1 5 0F - = =Ll - w2 xLI111)
fL nilidas

ldafun ir=meiwees {yl w2 a)
lcond [d= & D1 7]
li= =& 11 w1
[dand ¥l w3l
f+ wl 4% a §- pE ¥l}l1]
fE allld

Caleulis 67

;iri*tI‘I"&'ﬁii*tiftt‘tiiitiiii*i*tt*tttwttttiitwti*

AR A I A A A A A A A A A A A A AT A A AT I A A AT AR AR TR AR T * &

prhddddnhhhdbdnahbddddnhddahdddiddabhdd b dd b A A AT s A AR P AR M s AR R AANEF IS RAFF A

;: FXBMOLES

FREEE AR R ERE R R R AR R R R A R LA R A R S R o]

’-'liiil'i-'ri'lil-i'r'l'liii'i"r'Iii'i"Iiil'i'i"i"liii‘l'l+l'r'i'liii‘l‘i‘i‘iil‘i"li'iii-i"l'iiii'iii“iiii‘l“iiiiii‘l‘iii‘l Tl

[|
jdefun metro-cxanple |1
15 "sar=
i "har
15 "melody

EPRUSE :mname "gauas z=cors ciar DA
{NOTE 'namc E4 tscorc-dir 10H
iparf-sneet VA0 rperfenfizer [

1% ' aocoppanincnt
(PRUGE snarme 'pavnae sennomedis 30810
i "bax
[5 "meslmdy
{RPEOL 'appoggiakura

(HCTE zpamm B4 raparwe cbuir 10H

-5

sdvnanis U1

:

rmert-oaset (55l rperf-affeek (G080 sdynanis -TE)

IHOTE :nampe 55
rpErf-unset
smenra-doy
tpocf=-onses 1,123
% 'mnsampagnimenl

IHOTRE tiama Th TIE

igerf-af el

imoare-dur 144
RN smmrT-alfael T.13

rdymamiz . 7))

t.47h RN]

spnaric

|IKOT2 rpams J0 1scoro-dur 108
ipeci-oness V330 cpwerl-aTPaec (93 :dynanmlc .k
IBITR srmame 43 2acore-dur 172
rpecf-a-eamt (55 spec-leonllawt 1.3 coyeanlc . B]
[RITE crhamw L7 facore-duc 1052
rperf-arzat L LS) rperfocffeet 1,873 sdyrianic (0110
I "har
{5 "peolady
IADTIR 'acclacoaburs
VHAT? eams 29 i seose-dor 1714
ipecE-onset L AOD sparl ol fser 1.7 fdynanla LB
|HATE irumm 57 sacora-dos 152
iperf-nrmaat 1 R2E ipucl-olfser 1.220 1dynanic 711
[HOTE ®namz 55 :score-dar 108
spmrFoaraal T EED iperf-ofisec 2,258 1dynamdlz - Rl
[HOTE ®name 57 1score-dur 176
sparl comat 7UFEE rparf-pffses 20647 idynamic . 6510
15 "aocemmagnlmenc
iF 'chard
JRCTE rrname 0 1scooe-dus 3058
rpur Comnwwl. 1,723 cqect-giffsck 2.500 sdyramic .7
|ESTE rrave 42 zscors-cdus 358
rparfemnunt 1,775 sparb-sitoer 2 500 sdyramic &3]
|EZTE inaTe 4B :scoro-dier 308
rpes S -mnaat T LOR0D narP-offoer 2.500 1dypamis .TI130
(P '"bat
152 "melody
(HETE :name b9 rscore-doe 300
ipmrE-camml. FLAFS cipmof-affsel o rovnanic Tl
(S 'ascompagqnliEent

‘chozd
(HOTF. 2mare O3

P
rgeare-dar 170

iperf-an=et 2 500 zpuef-aflsct 4 sdynamis -6

(SOTE :mama &7 iscope-dar 3140
rparf-gnEee 2,550 zparT-affaet 4
IHOTE iname 00 tacora-cur 108

rdynanlc .7

rporf-oneet 3,580 cpmrT-aflfaer 6.5 rdyoamic LES113011

Caloulus

6B

(defun background-example ()
(P 'fragment
(S 'melody
(PAUSE :name 'pause :score-dur 1/4)
(NOTE :name 64 :score-dur 1/8
:perf-onset 0.3 :perf-offset
(APPOG 'appoggiatura

0.5 jdynamic .7)

(NOTE :name 64 :score-dur 1/8
:perf-onset .550 :perf-offset
(NOTE :name 55 :score-dur 1/4

:perf-onset .675 :perf-offset 1.133

(NOTE :name 55 :score-dur 1/8

.680 :dynamic .75)

:perf-onset 1.125 :perf-offset 1.475 :dynamic

(ACCIA ‘'acciaccatura

(NOTE :name 59 :score-dur 1/16

:perf-onset 1.600 :perf-offset 1.700

(NOTE :name 57 :score-dur 1/8

:perf-onset 1.625 :perf-offset 1.880

(NOTE :name 55 :score-dur 1/8

:perf-onset 1.880 :perf-offset 2.256

(NOTE :name 57 :score-dur 1/8

:perf-onset 2.256 :perf-offset 2.647

(NOTE jname 55 jscore-dur 3/8

iperf-onset 2.425 ;perf-offset 4

(S 'accompagniment
(PAUSE iname 'pause jscore-dur 3/8)
(NOTE jname 38 jscore-dur 1/8

iperf-onset .725 jperf-offset

(NOTE jname 43 jscore-dur 1/8

iperf-onset .950 jperf-offset 1.2

(NOTE jname 47 jscore-dur 1/8

:dynamic .7))

)

jdynamic .65)

:dynamic .7))

:dynamic .6)

:dynamic .65)

jdynamic .7))

.90 jdynamic .6)

iperf-onset 1.150 ;perf-offset 1.475

(P 'chord
(NOTE jfiame 38 jscore-dur 3/8

iperf-onset 1.725 jperf-offset 2.

(NOTE jflame 42 jscore-dur 3/8

iperf-onset 1.775 jperf-offset 2.

(NOTE jflame 48 jscore-dur 3/8

iperf-onset 1.800 ;jperf-offset 2.

P 'chord
(NOTE jfiame 43 jscore-dur 3/8

iperf-onset 2.500 ;perf-offset 4

(NOTE jflame 47 jscore-dur 3/8

iperf-onset 2.550 jperf-offset 4

(NOTE jflame 50 jscore-dur 3/8

iperf-onset 2.580 jperf-offset 4

;data at factor 2 in figure 13
(scale (metre-example)

(find-expression 'tempo) (has-name? ‘'bars)
2)
;data at factor 2 in figure 14
(scale (metre-example)
(find-expression ’asynchrony) (has-name?
2)
;data at factor 2 in figure 16a
(scale (background-example)
(find-expression 'tempo) (has-name? 'melody)
2
;data at factor 2 in figure 16b
(scale (background-example)
(find-expression 'tempo) (has-name? 'melody)
2
Calculus

ijdynamic .6)

jdynamic .7)

500 jdynamic .7)

500 jdynamic .65)

500 jdynamic .7))

idynamic .6)

idynamic .7)

.5 jdynamic

nil

'bar) nil

nil

(has-name?

.65)))))

'accompaniment)

69

TWO EXAMPLES OF LARGER SYSTEMS

IV

TWO EXAMPLES OF LARGER SYSTEMS

POCO:

An Envir onm ent for
Ana lysing, Modifying, and Gen er at ing
Expression in Music

Henkjan Honing

© copyright 1990, Henkjan Honing

Published as: Honing, H. (1990). POCO: An Environment for Analysing, Modifying, and
Generating Expression in Music. In Proceedings of the 1990 International Computer Music
Conference. San Francisco: Computer Music Association.

CONTENTS

TNEEOAUCHON. ...ttt ettt ettt e et eaaeeebeeeaeeeeteeesesebeeesneensesenreensneennes 3
Dreams and VISIONS......c.eccveieeeeereeieeeereeeteeeeteeeteeeereeeeeeereeeseeeseeesseenseeeseseeseeesseeseesseeeseeses 3
DIESIZIL....tttttetetett ettt 5
L/ O ettt e e ettt e te e eaeeeateebeentaeertseabeeereeeteeenreeneeans 5
Data representation...........iiiii 8
MUSICal ODJECES......ueeeeiiicictete e 8
SEIULCEUT . .o ettt et e e et e e e te e e eta e e e taeeeeaaeeeeseeeesseeeseeeeenseeeenneeas 8
USET INEETTACE.veeeveieerieeeeeteeeteeete ettt ettt et ettt et eeteeeteeeaeeeteeeaseenseeesseenseeeseseseennneenes 8
B =N 013 (0] o8 4 =1 4 () 1< TR RO USROS 9
A typical path.... s 9
ANALYSES....oiiiiii s 10
CONCIUSION. ...t eeeectee ettt ettt ee e et e eeeeeteeeaeeeeseeesaeeeseeeseeeseeessseseeesseenseenseeenssenseseseenseeens 10
AckNOWIedZmENts...........cooueuiiiieieiic s 1
RELOIOIICES. ..ottt ettt e e et ete e et e e e eeteeeaaeeaeeeteeeseeeseeenseeesseenreensseenseenes 11

POCO

POCO:
An Enviro nment for
Ana ly sing , Mo difying, and Gen erating
Expres sio n in Music
Henkjan Honing

POCO is a workbench for analysing, modifying and generating expression in music. It is
aimed to use in a research context. A consistent and flexible representation of musical objects
and structure was designed. The integration of existing models of expression made it possible
to compare and combine these models using the same performance and score data. New tools
were developed for specific "micro surgery" on expression. A lot of attention was given to the

openness, integration, and extendibility of the system.

INTRODUCTION

As part of our research on the modelling of expression in musical performance at City
University, London, we developed a workbench named POCO. It consists of a collection of
tools that can be used for the analysis, modification, and generation of expression in a
research context. The research project combines three perspectives: musicological aspects
(what are the rules of expression used in different styles of music), cognitive aspects (how
does a good performance or interpretation facilitate the understanding of the music by the
listener), and computational aspects (the design of appropriate data structures and
development of programs dealing with expression). The latter will be described in this
paper.

Before describing the system, the next section will give the reader a flavour of some of

the problems and ideas related to this research.

DREAMS AND VISIONS

When starting a project like this there are various directions one might take. This is the
moment to fantasize about the ideal system, as later on one's thoughts will probably tend
to be directed by their feasibility. We will sum up a collection of dreams that we would
like to see realised.

First of all, the system should incorporate existing computational models related to
expression in music. These should share the same data structures so that they can be

evaluated and compared. Combining these models should also be possible.

POCO 3

We are interested in studying a number of issues in expressive performances. For instance,
how do the magnitudes, that are used in the different expressive parameters, behave in
time and at different tempi, and how do they relate to the musical structure (Clarke 1988).
Because a listener cannot detect all the subtle expressive details of a performance we need
some help. We envisage the possibility of "zooming-in" at the different structural levels
of a musical performance (e.g. examining the expressive timing only at bar level or only at
phrase level), as well as looking at its various structural units (e.g. chords or grace notes)
or inter-structural relations (e.g. voice leading).

Besides analysis, we would like to perform "micro surgery" on performances: change
expressive detail and shape of structural units, or, in other words, generate modified
performances that have have been transformated depending on particular structural units.
To give some examples: we would like to exaggerate the timing of chords without changing
their spread (or the reverse), change the tempo of a piece without altering the timing of
grace notes and trills, modify the timing of the melody without changing the timing of the
accompaniment, remove all expressive timing except on beat level, scale specific structural
elements of a performance using different magnitudes, or make a solo voice lead with
respect to the rest of the music. The results of these adjustments (i.e. modified
performances) could then be used in experiments where listeners have to judge the
modified performance on the basis of their perceptual effectiveness.

In order to study expression in a performance a score is essential. When scores are not
available (in the case of e.g. improvisations) we are helped by an automated score
generator.

When scores are available, computer assistance is indispensable in mutually adjusting
the performance and the score (e.g. taking care of performance errors, order of notes within
chords, ornaments in the performance etc.), since we have to compare them on a note-to-
note basis. It should also assist in transfering structural information from the score to the
performance (e.g. left and right hand parts), instead of having to annotate each new
performance.

Of course the possibility of recording and playing back performances of different types of
instruments is an important requirement, next to having access to libraries of (expert)
performances and scores, and employing graphical and textual editors in editing the
musical and structural information.

All the means described should be embedded in a programming environment in order to
gain maximum flexibility and extendibility. The environment should support version
management (keep track of different versions of data and how it was created), assistance

in repetitive work (e.g. when doing the same analysis over all the data of an experiment),

POCO 4

and the automatic generation of documentation about the system. These are just a few
demands on system support.

Finally, both first-time and advanced users should feel comfortable working with the
system. First time users should be able to make use of menu's and dialogs, and have
explanatory information on the actions that are performed. More advanced users probably
want to bypass the menu’s and dialogs using a programmed way of manipulation. The user
interface should be multi-modal, both simple and flexible, and it should be easy for
advanced users to extend the environment and have their programs well integrated.

We will try to give shape to this hotchpotch of dreams and visions in the following
paragraphs. The described "ideal" system is simplified into a conceptual description in

Figure 1.

DESIGN

Earlier work on composition systems (Desain & Honing 1988) gave us enough confidence in
the importance of building POCO by using a workbench approach: a collection of tools that
can be combined in a flexible way. This resulted in an architecture that embodies a
relatively empty shell consisting of a closed data representation at one end and the user
interface at the other. In between there is a layer of commands (or transformations) that is
extendible. Communication with the outside world (e.g. sequencers and statistical
packages) is supported by an i/o layer and is extendible as well (e.g. when a new medium
is added or a new format is needed). This architecture is shown in Figure 2.

In the remaining half of the article we will describe this architecture layer by layer.

Communication with the outside world is implemented as transparent as possible and is
modelled as streams, a combination of a medium (e.g, a file, a window, a Midi-port) and
its associated i/o-type(s) (e.g. formats, protocols). The system provides different i/o-types
(e.g. music-text-files, standard Midi files). All information generated by the system is
encoded in the specific format or protocol used, so there is always completeness of
information. A new medium and its i/o-type(s) can easily be added by providing a set of
read and write functions.

We support the Midi standard to be able to use commercial software for capturing and
play-back, facilitating the exchange of performances and scores between systems, and
making use of the growing range of Midi based instruments and interfaces. The format was
extended to sustain completeness of information. Within the system the musical

information is encoded into a more general data representation.

POCO 5

Figure 1. Conceptual design.

POCO

user

POCO

Figure 2. Functional design.

POCO

DATA REPRESENTATION

A consistent and flexible representation of musical objects within the environment is

essential because all operations take place on this representation.

Musical objects

There are two kinds of basic objects in this representation: time-points and time-intervals.
Time-intervals are note, rest, and segment (denoting structure). Time-points are midi (e.g.
Midi controller information), comment (for representing comments and other timed textual
information), and begin-of-stream and end-of-stream (to model upbeats, to calculate the

length of a piece, to cut séchons out of performances, to merge and concatenate them etc.).

Structure

One of the main deficiencies of low level representations of music (e.g. Midi files, note
lists) is the absence of structural descriptions. In our representation we use a simple and
flexible way of representing structure called segmentation or collections. The basic musical
objects can be grouped using a general "part-of relation to build hierarchical, horizontal,
vertical, associative or even mutual ambiguous structural units. This representation proved
to suffice in rebuilding wildly different models.

Each unit is named to be able to provide a hook onto which any other knowledge (outside
the definition of the musical representation) can be attached. When constructing a
complete model of expressive timing, information is needed from a harmonic or metrical
nature. Although it is tempting to incorporate musical knowledge, as done in most Al
approaches to modelling of musical knowledge, it specializes the model and makes it less
modular. With structural annotation there is no need to incorporate all this domain (i.e.
style) specific information in the system, because it can be communicated through a layer

of structural information (see also Honing 1990).

USER INTERFACE

POCO is implemented in Allegro Common Lisp making use of program generators. They
facilitate the easy integration of user code. When a new command is added to the system,
it automatically propagates information to the right menu's and dialogs and provides
information for the automatic documentation generator (a facility that is almost
indispensable in a larger system).

The user interface supports multiple modes of communication, consisting of menu's and

dialogs, Lisp program equivalents, and natural language descriptions (see figure 3). The

POCO 8

system keeps a history of all actions that took place. They are available as normal Lisp
expressions that can be re-evaluated and edited. Data files generated by the system
contain information describing what transformations were used and their parameters (i.e.

the Lisp expression that generated it).

TRANSFORMATIONS

Transformations are a (still growing) collection of tools that generate new or modified
musical information. There is a matcher for comparing, cleaning-up, and mutually
adjusting scores and performances, a filter system (using a general pattern language) to
retrieve special information (e.g. all notes that are part of a chord, the whole piece except
the ornaments, all notes in the left hand of a piano performance in the second phrase etc.),
tools that allow scaling of timing, articulation and dynamics of musical objects (e.g.
amplifying, translating or inverting the expressive timing profiles), and transformations
to merge or concatenate performances or scores.

Another set of tools embodies some well-known models of expression. Longuet-Higgins'
metrical parser (1987), Todds model of rubato (1989), the Sundberg (1989) expression
generating rule system (Van Oosten 1990), and the Desain and Honing connectionist

quantizer (1989) are examples of transformations that are available.

A typical path

To give an idea of both the complexity of an expressive transformation, which might seem
simple at first sight, and the support given by the system in the realisation of such
transformation, we will describe a typical path from an original piano performance to a
new version with a modified expressive timing profile depending on the musical structure.
To be able to look at the expressive timing of the performance we need a score. Either we
use a score available in one or the other standard formats or we can make a new one from a
recorded performance using one of the quantizers (Desain & Honing 1989; Longuet-Higgins
1987) resulting in a first version of the score. Then we probably need to do some editing of
the score, for instance, add (more) structural information, correct errors etc. This can be done
by using the editors outside the system, after converting the score to a convenient format.
But before we can do any transformation the score should be matched to the performance
under examination (removing errors in the performance, altering order of notes within
chords etc.). All non-note (e.g. rests, comments) and structural information annotated in the
score is merged into the performance and vice versa. The result is a matched performance
and score, both with all the available structural information. These form the basic input

to our transformations. We can now, for instance, exaggerate the timing of the bars,

POCO 9

without changing the timing of the other structural units (e.g. chords and phrases). The
modified performance is written to an external file that can be played by a sequencer.
The environment offers different kinds of help that makes traveling along this path,

with all its intermediate steps, easier and repeatable (see User Interface).

ANALYSES

Analysis is a category of transformations that generates statistical data (instead of
musical information). The analyses comprises special analytical methods that provide
the user with textual or numerical information. It will be written to a selected medium (e.g
file, window) and can be used by programs outside the system (e.g. statistical packages),
were additional analysis can be done, graphs can be plotted etc.

Examples of analyses provided are the use of autocorrelation in analysing expressive
timing (Desain & De Vos 1990), analysis that produce tables of timing data related to
structure that facilitate the study of e.g. voice-leading and chord timing. These are among

other more straightforward analyses.

CONCLUSION

Although we, of course, didn't succeed in realising all the dreams of a ideal system, we
provided a sound basis for further development. We do think to have made the right
decisions in what should be inside and what outside the system. The possibility to use
structure in examining and manipulating expression proved to be very powerful. The
facilities described in User Interface turned out not to be just luxurious, but improved the
usability and maintainability of the system.

POCO is currently used by the institutes involved in the project, but is still in development.
We now work on stabilising the system. A version for distribution is not yet available.

Our own use of the system is directed towards understanding the relation between
expression and structure, hopefully resulting in more insights of how to model expression in
music. This would enable us to design editors that can manipulate musical information in a
more psychologically and perceptually relevant way. In the end we hope to contribute to
the design of composition and interactive computer systems in need of models for the

production and perception of musical performance.

POCO 10

ACKNOWLEDGMENTS

Both design and realisation of POCO was done in collaboration with Peter Desain. The
research was done together with Eric Clarke at City University, London and was made
possible by an ESRC grant under number A413254004.

Thanks to Steve McAdams for fruitful discussions during the development of the system.
Also thanks to Peter van Oosten, Klaus de Rijk, Jeroen Schuit, Siebe de Vos, and our other
colleagues at the Centre for Knowledge Technology for their help and advice. And
especially Johan den Biggelaar, Ton Hokken and Thera Jonker for their special support.

é File Edit Eual Tools LUIndoais POCO 2 19

TOCO command history
;POCO <27/6/90)
DATE : THURSDAY 12 JUL 1990 12:42:88
USER: henkjan

(TRANSFORM 1< (SCALE-EXPRESS IUE-TIMINO 'BRR T T 0.5)>
(READ-STRERM ‘FILE
(STANOARO-MIDI-FILE 1>
“POCO; examp Ies :performance")
(REAO-STRERM °’FILE
(STANDARD-MI ©1-FILE 1) =1 I L} MTH/nutpiit % == S
“POCO;examp Ies :score”)

ti type
(URITE-STRERM 'NEU-UINDOU ime noytpe dur ey velo ch mo
(MUSIC-TEXT-FILE *(NOTE REST))
rest dur ch

“MTX/output") nidi data

NIL) H
'
USERI Eval_ done. 0.000 begin
5.000 beg in BAR (BERT) n =]
Listener 5.000 begin BERT (1)
5.000 note ©.500 Cl 0.52 1
Performance in file (In standard MIDI format with track = 6.621 note ©0.500 (2 0.52 1
6.856 note ©.500 C3 0.52 1
POCO;examples:performance, and s s d
Score in file (in standard MIDI format with track = 1): .24 en . BERT
POCO;examp Ies:score 8,248 beg in BERT (1)
3 8.248 note ©.500 (4 0.52 1
are transformed in: + 2.500 5
Performance in neui window (in music text format with whol< 8.797 note 6.566 ce .52 1
MTX/output 9.785 note . 0.52 1
10.993 end BERT
by: 10.993 begin BERT (1)
scale expressive timing with 16.993 note ©.560 D1 0.52 1
onsets which are part of (* = all) : BAR, 11.895 note ©0.560 D2 .52 1
stretch onsets in between : T, 12.897 no;e gEsge b3 .52 1
sealing rule T, 14.e00 en
express ive magnitude : 0.5 14.000 end BRR
T 14.000 end
>
USER 1 Killed region saved 1$I<>
USERI Idle

Figure 3. A snapshot of the system.

REFERENCES

Clarke, E.F. 1988. "Generative principles in music performance." In J. Sloboda (Ed.)
Generative Processes in Music. Oxford: The Clarendon Press.

Desain, P. and H. Honing. 1988. "LOCO: A Composition Microworld in Logo" Computer
Music Journal 12(3), Cambridge, Mass.: MIT Press.

Desain, P. and H. Honing. 1989. "Quantization of Musical Time: A Connectionist

Approach." Computer Music Journal 13(3). Cambridge, Mass.: MIT Press.

POCO n

Desain, P. and S. de Vos. 1990. "Autocorrelation and the Study of Musical Expression.”" In:
Proceedings of the 1990 International Computer Music Conference. San Francisco:
Computer Music Association.

Honing, H. 1990. "Issues in the Representation of Time and Structure in Music". To be
presented at the Music and the Cognitive Sciences Conference, 16-21 September 1990,
Cambridge.

Longuet-Higgins, H.C. 1987. Mental Processes. Cambridge, Mass.: MIT Press.

Oosten, P. van. 1990. "A Critical Study of Sundberg's Rules for Expression in the
Performance of Melodies". To be presented at the Music and the Cognitive Sciences
Conference, 16-21 September 1990, Cambridge.

Thompson, W., J. Sundberg, A. Friberg, and L. Fryden. 1989. "The Use of Expression in the
Performance of Melodies" Psychology of Music and Music Education 17.

Todd, N.1989. "A Computational Model of Rubato" In: "Music, Mind and Structure". EF.
Clarke and S. Emmerson (Eds.) Contemporary Music Review 3(1).

POCO 12

Peter Desain and Henkjan Honing

LOCO Foundation

P.O. Box 1037
NL-3500 BA Utrecht, The Netherlands

Center for Art, Media, and Technology
Utrecht Academy of Arts

P.O. Box 1520
NL-3500 BM Utrecht, The Netherlands

Introduction

Ideally, a system for music composition should en-
able a composer to express ideas in a direct way.
Most such systems are limited to a certain style

of music, using known aesthetics. These programs
are not very useful for creative purposes. It is, of
course, impossible to implement all musical criteria
and rules one can think of. If the focus is not on a
music production system but on a composition sys-
tem, things become easier. Such a system must be:

User extendible: the user can define new func-
tions that have the same status and possibil-
ities as the already provided, built-in ones.

Modular: functions and objects are isolated and
protected from each other and can be studied
and used separately.

Orthogonal: functions and objects can be repre-
sented in such a way that any future extension
will still fit in the system and make use of all
the features.

The system should also have these qualities:

Good mechanisms for naming: coding of musi-
cal parameters and objects is as close as pos-
sible to normal use (so mezzoforte instead of
"67," if the user is accustomed to these terms,
or -10 db, or "ear-splitting," in their respective
cases).

Good mechanisms for abstraction: allowing
families of related objects to be defined, differ-
ing in one or more parameters.

These design objectives closely resemble the objec-

Computer Music Journal, Voi. 12, Xo. 3, Fall 1988,
© 1988 Massachusetts Institute of Technology.

30

LOCO: A Composition
Microworld in Logo

tives for a general programming language, and in-
deed a good language would suffice. But to provide
only a general programming language, thus asking
composers to become programmers, is not reason-
able. The present generation of computer music
composers acknowledge the cumbersome indirect-
ness of expressing ideas in programs, especially
when working, out of habit or need of calculation
speed, with low-level languages.

There is another approach. By providing a set of
powerful tools in an integrated composition en-
vironment, composers are freed from the need to
program ad hoc solutions for their ideas. In special
cases they, of course, must be able to make use of
the power of a programming language, but then the
tools are still of great help. In this way the distinc-
tion between programming and using already exist-
ing programs disappears.

The tools provided take the form of program gen-
erators, which do much of the work for the com-
poser. To be able to implement program generators
(a common practice in artificial intelligence re-
search) we needed a symbolic language like Lisp
(Anderson, Corbett, and Reiser 1987). Logo, based
on Lisp, would also suffice (Harvey 1985). This lan-
guage, however, had the enormous advantage of
being easy to learn, enabling composers to write di-
rectly in Logo. It is also widely available on differ-
ent microcomputers. This gives its creative possi-
bilities to a much broader user group (Beckwith
1975). A final reason to choose Logo was that it
enabled us to use machines at both ends of the
processing-power spectrum, from Lisp machines
to small personal computers. Development work
could be done with all the power of the program-
ming environment of the Lisp machine, while
we are still able to port the programs to cheaper
computers.

Computer Music Journal

Music System Architecture

At the end of the 1950s and in the early 1960s the
first computer music systems came into existence.
One of the first revolutionary aspects of these ex-
periments were the algorithmic composition pro-
grams. The computer-generated score had to be
played by human musicians. But soon computers
became fast enough to generate sound themselves.
This was such a fascinating aspect of computer mu-
sic that it took about a decade before a revival of
interest in the compositional processes reappeared
(of course there were a few happy exceptions). Prof-
iting from the development of higher, more ab-
stract programming languages, compositional sys-
tems were designed (Koenig 1971; Berg 1979; Fry
1984; Jones 1981; Schottsteadt 1983).

The goal of defining any architecture — any sys-
tem design— should be splitting complex problems
into simpler ones. Although often real world sys-
tems are only nearly decomposable, a system de-
signer should look carefully where to make an arti-
ficial division—or decomposition— of a system.

In general most music can, from a production
viewpoint, be looked at from two sides: the view of
the composer and the view of the interpreter. Or to
put it in another way, the composition and the in-
strument. The composer makes a piece according
to all sorts of rules, conventions, intuitions, and
tastes. A composition can result in a score meant
as the best, or one of several possible representa-
tions of the compositional work. A score could be
anything left over from the composition phase for
the interpreter or instrument, ranging from codes
to control a signal processor to a traditional printed
score. This score is decoded by the interpreter with
more or less freedom into an audible form. In com-
puter music such a division in three (composition,
score, and instrument) turns out to be a convenient
one. It is often used implicitly. So one can define
three languages. The language of the composition
system, the language in which the resulting score is
expressed, and the instrument language. These lan-
guages can vary between a general programming
language and a simple data representation. The in-
formation flow can be in both directions, as is the
case with interactive composing and music analysis.

Architecture of the Loco System

Our first concern was to design a flexible score lan-
guage that would always behave as a convenient
communication vehicle between any devisable
composition and instrument system. Given enough
power, the score language can be used for express-
ing intermediate composition results, and can func-
tion as the main data representation in the com-
positional part of the system. It should indeed be a
general representation language for musical objects.

The Score: Representation of Musical Objects

This language is described as a set of primitives
(basic building blocks) and ways of structuring small
objects into bigger ones. In defining languages one
is often tempted to start creating primitives. This is
reflected in the huge lists of features often pre-
sented in programming language advertisements.
But general and powerful ways to build objects out
of smaller ones is the central issue. So in defining a
score language we chose not to prescribe any primi-
tives, but we do provide the mechanisms for cre-
ating them. Anything an instrument system can
handle on its own, will, by definition, be a primi-
tive musical object. This ensures that the composi-
tional system is as much as possible independent of
the instrument, in the way that good programs are
machine independent. Let's first give some ex-
amples of interesting instruments and their
primitives.

Primitives

If the instrument system is an interface to a me-
chanical percussion installation, it will know about
materials, place, and pitches, and can be sent a
primitive object like:

[HIT "quarter "metal
east "high-pitched]

"north-

This looks like a subroutine call (in prefix notation)
with HIT being the subroutine's name and some ar-
guments that are constants here (shown by the

Desain and Honing 31

Logo quote character (") which means: Take the
next thing as a literal, do not handle it as a pro-
gram). This example shows the use of one of the
primitives we made for the instrument system con-
trolling Ringo: a large percussion installation by
Floris van Manen and Trimpin of the Klankschap
Foundation (Manen and Trimpin 1986). The only
other primitive needed was a rest:

[REST "whole]

For other instrument systems, different primitives
would have to be designed. To give some examples:

[PHONEME "short "ooaAAH '"low-
pitched "very-loud]

[NOTE-ICON "eighth "G# "staccato]

[TAPE-RECORDER "A-77 "record
(B -10)]
[SINE (ms 100) (Hz 440)]

The first being appropriate for a phoneme syn-
thesizer, the second for a score printing program,
the third for a studio remote control system and the
last for a digitally-controlled sine oscillator. Notice
again the absence of arbitrary coding in the parame-
ters. Scaling of parameters and decoding can be
done in the primitives themselves as in the first ex-
ample, or in a Logo function call, as in the last two,
whichever is more appropriate. The primitive musi-
cal objects are not defined in the score but rather in
the instrument part of the system. The only as-
sumptions we make about primitives is their be-
havior with respect to time.

They are stretched out in time; but there is no
specification in the primitives themselves as to
when they have to take place. The start time is not
a parameter of the basic musical objects. So we con-
sider a sound now, and the same sound some time
later as being the same musical object. The time-
extent of a primitive is, however, predefined, and is
computable from its call.

Time Structuring

We state that a score is a set of musical objects plus
their timing relations. Specifying these relations is
the task of our structuring functions. Only two

32

timing relations are needed. We must be able to ex-
press that musical objects take place at the same
time, and we must be able to order them one after
another. We call the first basic time order PARAL-
LEL and the second SEQUENTIAL. A score can
now be expressed in a nested structure of paral-

lel and sequential musical objects. To give some
examples,

[SEQUENTIAL theme improvisation theme
coda]

means that there are musical objects called theme,
improvisation, and coda combined in a sequence to
make up a piece. We can make a small Logo pro-
gram to represent this newly constructed musical
object and give it a name:

TO jam

OUTPUT [SEQUENTIAL theme improvisation
theme coda]

END

In which TO binds the program name jam to the
program that, when run, will output the musical
object. Now in its turn we can define theme as a
layered musical structure:

TO theme

OUTPUT [PARALLEL bass-part piano-
part saxophone-part]

END

Which defines theme to have a bass-part, a piano-
part, and a saxophone-part all starting at the same
time. The parts can be defined as sequences of
chords, notes, and rests. Chords can be described as
parallel notes, etc. If these notes are primitive ob-
jects (are known by the instrument) we can stop
here. A graphical representation of the defined ob-
ject jam is shown in Fig. 1

In the score system, SEQUENTIAL and PARAL-
LEL can be looked upon as functions, as programs
that create a time structure. But they can also be
seen as data, representing the timing relations be-
tween several parts. This two sided approach, repre-
senting knowledge as a program and as data, gives
the best of both worlds (the procedural and the de-

Computer Music fournal

Fig. 1. Time structure of
the object jam.

Jam

Theme Improvisation

Saxophone
part

Piano
part

Bass
part

clarative one). Only in Lisp-like languages this is
possible. The process scheduling mechanism of
FORMES (Rodet and Cointe 1984) uses the same
time-structure functions, but they cannot be looked
upon as data, so transformations on these struc-
tures are impossible. To summarize the score lan-
guage properties:
Primitives are not given.
Time structures are made by nesting PARALLEL
and SEQUENTIAL constellations.
Modularity and naming is achieved by the Logo
function definition mechanism.

Advanced Timing Control

As an illustration of the power of not using absolute
start times, we show two examples of advanced
timing control. The first one, called PRE, shifts the
start time of its argument. The "magical" musical
object produced, will already be finished when
asked to start. This is useful for constructing things
like grace notes, upbeats, and the start of a tape re-

Theme Coda

Saxophone
part

Piano
part

Bass
part

> Time

corder some seconds before it has to record. This
mechanism prevents the cluttering of higher-level
descriptions with low-level details. The second
function, called POST, shifts the end time of a mu-
sical object to its start time (see Fig. 2). The object
produced behaves like a sort of secret tail to the ob-
ject it clings to, always coming after it but invisible
to the outside timing. In this way grouping objects
can be done on logical or musical grounds. Modify-
ing PRE or POST objects does not change the gen-
eral timing. It should be noted that the functions
PRE and POST are polymorphic: they can be ap-
plied to objects on any level of our hierarchical
score representation.

The Composer

A composition system should not reflect implicit
views of composition. We do not want to enforce
compositional ideas on users of the system. The
system should give access to different techniques
and styles. We avoided making choices about "the

Desain and Honing 33

Fig. 2. The use of PRE and
POST primitives.

[SEQUENTIAL a bj

[SEQUENTIAL a c b]

[SEQUENTIAL [SEQUENTIAL a [POST c]] b]

best way of composing," but instead made available
a range of compositional techniques that are other-
wise only available in different programs and in-
stitutions. Users can see for themselves, experi-
ment with, and eventually make their own choices.
Because the ways of composing are myriad, and
handling them all at once is very confusing, we se-
lected a number of broad Helds and covered them
each in a separate package. We constructed each of
these packages as a kind of complete workbench on

34

which a compositional approach can be experi-
mented with. In the Logo community these pack-
ages are called microworlds. A microworld is a
small set of powerful tools that constitute a more
or less complete, or closed system (so there is no
need of more or other tools within this world). This
enables the user to learn about and make use of the
knowledge domain expressed in these tools. The
following paragraphs describe one of these music
composition worlds.

Com puter Music fournal

"Composing is Making Choices"

Choices can be made by the computer or by the
composer. This microworld focusses on the range
of control a composer wants to have over the musi-
cal material. It enables the composer to prescribe
the rules of possible choices to the computer. The
computer makes the actual choices according to
the rules. LOCO remains silent about the musical
value of the choices; this is for the composer and
the listener to decide.

Discrete Choices

In this section we focus on choices from a finite set
of possibilities. Discrete or quantized choices re-
flect the concept of scales (be it in loudness, pitch,
or duration) in which not all values are permitted.
Our first-choice principle describes total control by
the composer. All subsequent interpretations of the
piece will be the same. This choice mechanism is
called CONSTANT.

CONSTANT "instrument "si tar

generates a program called instrument. When it is
run it outputs the word sitar. Our next choice prin-
ciple is a simple aleatoric choice — as often used by

different composers.

ALEATORIC "timbre
rumbling ringing]

[hollow fat

The program generator ALEATORIC is called with
two arguments. The first argument is the name of
the program to be created and the second is the list
of possibilities (the event space) of this choice.
After the program named timbre is created, it can
be called anywhere in a Logo program and produces
a random timbre. Of course, the Logo interpreter
can be used directly to check its workings.

?ALEATORIC "timbre
rumbling ringing]

? timbre

fat

? timbre

ringing

[hollow fat

(Note that the computer output is printed light, and
the question mark is the Logo prompt.)

Neither ALEATORIC itself, nor the program
timbre knows about the actual timbres mentioned;
they just handle words. These words only receive
an interpretation at a later stage. In this way it is
possible to make use of the same choice mecha-
nisms for different types of musical objects.

ALEATORIC "piece [part.l part.2
part. 3 part. 4 part. 5]

This realizes parts chosen at random. Using al-
eatoric choices for the pitches in a melody yields a
so-called white melody. It lacks, like in white noise,
any structure or predictability. A natural extension
to ALEATORIC is the possibility of assigning dif-
ferent probabilities to the elements of its event
space, like loaded dice. The generator WEIGHTED
provides such a feature. It has the same argument
structure as ALEATORIC but the elements of the
event space are paired (in a list) with the proba-
bility that they will be chosen. Probabilities are
specified as real numbers between 0 and 1
WEIGHTED "instrument [[snaredrum 0.5]
[timpani 0.2]
[cymbal 0.3]]

When instrument is called, 50 percent of the time
it outputs snaredrum, 20 percent of the time it out-
puts timpani, and the rest of the time it will
produce cymbal.

Sometimes there is a large number of numeric
elements to choose from. Writing them all in a list
for ALEATORIC would be too cumbersome. For
this we can use the generator SCALED instead.

SCALED "pulse 1/4 2 1/8

The program pulse will return values between 1/4
and 2, in a scale with a resolution (grid) of 1/8.

The preceding choices are made without a mem-
ory. That is, a choice does not depend on the out-
come of previous ones. We now introduce choice
processes that have a memory — an internal state.
Instead of the term stochastic variable to refer to

Desain and Honing 35

Fig 3 Rhythmic structure
resulting from the program

Duration.

V

ol 1 1

the outcome of a choice, we have to use the term
stochastic process now. Our first most well-known
stochastic process is called SERIAL. Each time a
choice is made the event space is reduced by the
chosen element, so that in a next choice this ele-
ment is excluded. Once the event space has been
emptied, it is reestablished to its initial value. This
constitutes a generalization of the twelve-tone prin-
ciple. For example:

SERIAL "duration [eighth quarter
sixteenth sixteenth]

A rhythmic structure produced by this procedure is
shown in Fig. 3. Sometimes the composer wants to
have complete control over a time ordering. In that
case ORDERED can be used. The elements of its
event space appears in the predefined order.

ORDERED
none]

"accent [heavy none light

This produces heavy none light none heavy none
light ... ad infinitum. There are different ways in
which primitives, choices, and time orderings can
be combined. For example, the arguments of primi-
tives can be the result of choice programs.

SERIAL "duration [whole half quarter
quar ter]

ALEATORIC "pitch [c d f g a]

CONSTANT "loudness '"pp

If we had a primitive musical object NOTE that
takes a duration, a pitch, and a loudness as argu-
ments, then:

[NOTE duration pitch loudness]
results in a note of a random pitch (in a pentatonic

scale) and a random duration (with a serial struc-
ture) in a constant pianissimo.

36

P,

Choices can also be embedded in choices as in
the next example:

ORDERED "element
[[NOTE duration pitch loudness]
[REST duration]]

This produces an alternating sequence of the previ-
ously mentioned notes and rests.

Also time orderings can be embedded in choices
and vice versa:

ALEATORIC "structure
[[PARALLEL element element]
[SEQUENTIAL element element]]

The results of choices can be used in calculations
like the following:

SERIAL "error [small-positive zero
small-negative]

Adding error to the duration, of a musical object,
constitutes a first experiment in forming a rubato.
For further hierarchical nesting of choice principles,
we need a "dereferencing” mechanism, which we
call EVALUATED. Let us start with three value
generators, high, mid, and low.

ALEATORIC "high [400 500 600 700]
ALEATORIC "mid [200 250 300 350]
ALEATORIC "low [100 125 150 175]

When we want to choose the generator to use for
the choice in a fixed order, we can construct the
expressions:

ORDERED "register [high mid low]
EVALUATED "pitch "register

Register will just produce the words high, mid, and

low, in that order. Pitch produces the high, middle,
low, and frequency value itself.

Computer Music Journal

A different way to produce the same result is to
make a program that generates a list of possible val-
ues at a time, and to use that program as an argu-
ment for ALEATORIC:

ORDERED "possibilities
[[400 500 600 700]
[200 250 300 350]
[100 125 150 175]]
ALEATORIC "pitch "possibilities

Each time that pitch is called, it first evaluates pos-
sibilities and then picks a random value from the
list that was produced by possibilities.

Linking choice principles in a network, each one
choosing a next one to use, can be done by a gener-
ator called TRANSITIVE. Like all generators, it has
the name of the program to be generated as its first
argument. The second argument is a starting state.
Besides TRANSITIVE we need the definitions of
some choice programs that produce the name of
other choice programs.

TRANSITIVE "word "janice

ALEATORIC "janice [meant said wanted]
ALEATORIC "doris [meant said]
ALEATORIC "nelson [said wanted]
ALEATORIC ‘meant [that]

.ALEATORIC "said [that]

ALEATORIC "wanted [that]

ALEATORIC "that [doris nelson janice]

Each time word is called, it returns its current state,
starting with janice, and uses that state as a choice
principle to calculate its next state. So calling word
several times produces something like janice said
that nelson wanted that janice meant that. . . . The
flow of control implemented by the programs is
called a transition network. It looks familiar in its
graphical representation (Fig. 4).

By using WEIGHTED instead of ALEATORIC as
the basis of a transition network, the well-known
Markov chains can be modelled. Probabilities are
then not assigned to the event space but to the tran-
sitions from one event to the next. This powerful
tool, which is able to model all discrete stochastic

Fig. 4. Transition network
of the object Word.

processes, can be depicted by labelling the arcs of a
transition network with probabilities. Our way of
constructing Markov chains has the added advan-
tage of dividing data in manageable pieces, instead
of using huge matrices. Furthermore, by incorporat
ing other choices (like SERIAL or ORDERED) in a
transition network, many new musical experi-
ments are possible.

A way of constructing a stochastic process from
a simple stochastic variable is to accumulate (or in-
tegrate) its previous values. CUMULATIVE is a
program generator that defines a program that ac-
complishes this.

ALEATORIC "interval [123 -6]
CUMULATIVE "pitch "interval 60

In this way a program named pitch is generated
that outputs 60 when it is called for the first time.
Each subsequent time it is used, it yields a value
produced by adding 1, 2, 3, or -6 to its previous
value. Such series of pitches fall into the class of
brownian melodies in which a new state is calcu-
lated by incrementing a present state with a small
value. Brown melodies can be compared to white
ones and are easily distinguished from them by ear.
Different kinds of these random walk algorithms
can be experimented with by changing the input of
CUMULATIVE (the interval choice mechanism).
CUMULATIVE can also be used to produce values
that change with a constant linear slope.

Desain and Honing 37

CUMULATIVE “count.down -1 10
Countdown indeed counts down from 10, one at
a time.

Since duplication of values (using the same value
for a second time) is encountered so often, we con-
structed a generator ITERATIVE that can handle
this mechanism.

ITERATIVE "repeated.value "value 3
If the user has defined or generated a program named
value (of any kind), the program repeated.value
yields the same subsequent results as this program,
but now each value will be repeated three times.
Repeated.value can return something like low, low,
low, high, high, high, mid, mid, mid. . . . This
mechanism gives us a simple way to construct

a program for generating 1//melodies (Voss and
Clarke 1978).

SCALED "fast.value 20 26 1
ITERATIVE "mid.value "fast.value 2
ITERATIVE "slow.value "fast.value 4

While fast.value yields a new number between 20
and 26 each new round, mid.value produces a new
value in the same range only once in two rounds,
and slow.value comes up with something new every
four rounds. We add the three produced values and
use fast.value + mid.value + slow.value as a pitch
number. Once in a while there can be a big jump in
pitch because all three values change in the same
direction. When there are two values changing,
which happens more often, the jump is smaller.
Most of the time there will be only a small jump
because only one value is changing (see Fig. 5). The
resulting pitch pattern is a raw approximation of a
1// melody. The possibilities for modification and
refinement are enormous. The values can be scaled
properly to give the higher-frequency components
less amplitude. The repeat values 2 and 4 could be
calculated — or used elsewhere to produce a rhyth-
mic structure related to the melody. The aleatoric
choice could be replaced by another process and so
forth. Experimenting with these melodies, compar-
ing them to brown and white ones, will be made

38

Fig. 5. Pitch changes pro-
duced by a Voss algorithm.

much easier by using our open and simple imple-
mentation instead of awkward Basic programs
(Dodge and Bahn 1986).

Formal languages and grammars have received at-
tention in music research. They were used as a
model to describe different musical domains or as a
mechanism for new (computer) compositions. (For
an excellent review of their possibilities and use,
see [Roads 1985].) fust as choice principles can be
built on other ones, they can also refer to them-
selves (Desain and Honing 1988).

ALEATORIC "answer [low. note
[SEQUENTIAL note answer]]

Answer results in a low note or a note followed by
an answer. The last answer produces a low note or
a note followed by an answer. In this way, when the
system is asked to interpret an answer, it plays a
sequence of notes ending with a low note. To ex-
pand our grammar:

ALEATORIC "dialog [nothing
[SEQUENTIAL ques tion answer dialog]]

ALEATORIC"question [high.note
[SEQUENTIAL note answer]]

ALEATORIC "answer [low. note
[SEQUENTIAL note answer]]

This context-free grammar generates series of
question-answer pairs. Of course, the programs
note, high.note, low.note, and nothing have to be
supplied. These programs function as terminals

Computer Music Journal

Fig. 6. Rhythmic structure
resulting from the program
Note.

), 0o

%,* a A A g

of the grammar (they are not expanded further by
rules of the grammar).

Changing the choice principle used to choose the
grammar rule, from ALEATORIC to WEIGHTED,
will yield a so-called programmed grammar. The
individual probabilities assigned to the rules can be
used to control the average size, and amount of ap-
pearance of the produced substructures. Assigning a
high probability to production rules containing
only terminals produces small objects and so forth.

Here we give an example of a grammar for sym-
metrical rhythmic structures.

ALEATORIC
[nothing
[SEQUENTIAL quarter note quarter]
[SEQUENTIAL eighth note eighth]
[SEQUENTIAL sixteenth note
sixteenth]
[SEQUENTIAL note quarter.rest note]]

"note

This program could produce the rhythmic structure
in Fig. 6.

Grammars will produce highly structured music,
and are most useful in describing such music. An
example of a grammar for chord progression in tra-
ditional twelve-bar blues is described by (Steedman
1984). Because the grammar capability is implied
by the total structure of the LOCO system, it can
be intermingled in various ways with the other
mechanisms. Note the restriction to context-free
grammars.

Continuous Choices

Traditional scales have been overused, so that for
some composers they represent a restriction to be
eliminated. In electronic and computer music one
can specify a continuum of frequencies in Hertz or
cents, and a continuum of loudness in decibels, for

example. Probability distributions of continuous
variables are well researched. They inspired a new
branch of music that called itself stochastic music
(Xenakis 1971).

The main tool for describing stochastic variables
is the probability density function. It relates an in-
terval to the chance that a variable will be in this
interval. In Fig. 7(a) an arbitrary probability density
function F[x) is drawn. The probability that x is be-
tween a and b is the (shaded) area below F between
a and b. This means that all probability density-
functions will be nonnegative functions with a
total surface area of 1. A commonly used proba-
bility density is the normal or Gaussian distribu-
tion (Fig. 7(b)). It is characterized by a mean value
M (the position of the peak in the function), and a
deviation value S that signifies how wide the peak
is. There is also the uniform distribution (Fig. 7(c))
in which any value between a specified minimum
and maximum has an equal chance to occur. For
our microworld we implemented these distribu-
tions as program generators called GAUSSIAN and
UNIFORM. They can create a program that picks a
value according to its distribution.

GAUSSIAN "frequency.a 1000 200
GAUSSIAN "frequency.b 1000 2
UNIFORM "loudness -80 0

When the program frequency.a is called (e.g., typed
into the Logo interpreter), it returns a value. The
probability density of this value will be the normal
distribution with mean of 1000 Hz and deviation of
200. The program frequency.b also returns values
around 1 KHz. But they are more in the neighbor-
hood of 1000 compared to the values produced by
frequency.a, owing to its smaller deviation. The
generated program loudness produces values be-
tween -80 and 0. There is no neighborhood in
which they are likely to fall (except of course the
interval from -80 to 0 itself).

Desain and Honing 39

Fig. 7- Continuous distri-
butions. (a) Arbitrary
probability function, (b)
Normal or Gaussian dis-
tribution. (c) Uniform
distribution.

F(x)

Frequency.a and frequency.b are mutually inde-
pendent: knowing the value produced by one does
not help in estimating the unknown value pro-
duced by the other. Sometimes we want to describe
two stochastic variables that are not mutually inde-
pendent. Perhaps we want to create random pitches
on two instruments, which must have a tendency
of one pitch being high, if the other one is also
high. Then there is a need for a two-dimensional
distribution function. We'll just describe one.

40

JAWACINILX — V».uADLVIOLV—W id.

The two dimensional normal or Gaussian distri-
bution has five parameters. A mean value for the
first variable, and a mean for the second. Also two
deviations are needed, one for each variable. The
last parameter, called the covariance, describes
how much both variables are correlated. If the co-
variance is high, an educated guess can be made at
the second variable when the first is known. The
generated programs will return a list of two values
that are drawn according to the parameters.

GAUSSIAN.2D
GAUSSIAN.2D
GAUSSIAN.2D

"independent 01 010
"small.corr. 0101 . 3
"large.corr. 0101 .9

The plots in Fig. 8 were made by plotting these two
values as x and y coordinates. It is simple to gener-
alize this process to other distribution functions
and more dimensions. The continuous distribu-
tions can be combined in various ways with other
objects. We can, for example, vary the parameters of
a distribution.

ALEATORIC
GAUSSIAN

[125]
"mean 1

"mean
"near

The resulting distribution of near is shown in Fig. 9.
Each time the program near is run, it first draws a
mean value. This value is used in the normal distri-
bution of near. So it results in a value around 1, 2,
or 5. This stacking of random choices yields, in a
conceptually simple way, stochastic variables with
sophisticated probability densities.

The same method can be used to construct ten-
dency masks in only a few lines.

CUMULATIVE "min -10 1
CUMULATIVE "max 20 -2
UNIFORM "value "min "max

The program value produces values from a per-
mitted range, this range extends from -10 to 20,
gradually diminishing (Fig. 10). Combining the pro-
posed building blocks in slightly different ways
gives us an enormous field of possibilities (tendency
masks with internal time-changing distributions,
distributions with time-changing parameters, etc.).

Computer Music fournal

Fig. 8. The use of a two-
dimensional probability
distribution with different
correlations.

@) Independent

(b) Small correlation

(0) Large correlation

Fig. 9. Distribution of Fig. 10. Tendency mask of
Near. Value,

Fig. 9

Fig. 10

If we had adhered to the traditional way of defining
mechanisms, we would have surely defined one sort
of tendency mask, thus forcing the user to use our
concept of it. We hope we have proved that making
small but powerful mechanisms that can be com-
bined in any thinkable way is a better approach.

Conclusion

We have used LOCO in a number of courses and
workshops. It has proven to be a rich, motivational
context for different kinds of participants. After a
short explanation they were able to start using
LOCO and soon were expressing their own ideas,
depending on previous knowledge and experience in
the field of traditional or computer music. The sys-

Desain and Honing 41

tem is currently used at the music faculty of the
recently founded Center for Art, Media and Tech-
nology (CKMT) for courses in computer music
composition.

We are still continuing our search for more mecha-
nisms used in different (computer) music styles,
and their expression in LOCO microworlds. Cur-
rent work on composition systems is done in Com-
mon Lisp, so LOCO becomes COCO (Desain 1988).
The research is directed towards transformations,
pattern matching, parallelism, graphical interfaces
(Desain 1986) and real-time interaction.

Implementations

We have available an implementation for the Apple
lie with Terrapin Logo V3.0, one for the Macintosh
and Macintosh II with Microsoft/LCSI Logo, and

a Dutch version for the Yamaha CX5M-II with
Philips/LCSI MSX-Logo. The cost of a disk and

a manual is S50 (postage and handling included).
Checks should be made payable to the Center for
Art, Media and Technology, Utrecht Academy of
Arts, in American dollars drawn on a Dutch bank.

Acknowledgments

We would like to thank Janet Cornish, Floris van
Manen, Martin Seeley, and Marjon de Kleine for
their valuable comments on earlier versions of this
paper and all our colleagues at CKMT for support
and facilities.

References

Anderson, J., A. Corbett, and B. Reiser. 1987. Essential
Lisp. Reading, Mass.: Addison-Wesley.

Beckwith, S. 1975. "The Interactive Music Project at York
University." Available on microfiche from ONTERIS,
Ministry of Education, Toronto.

42

Berg, P. 1979. "PILE — A Language for Sound Synthe-
sis." Computer Music Journal 3(1):30 —41. Reprinted
in C. Roads and J. Strawn, eds. 1985. Foundations
of Computer Music. Cambridge, Mass.: MIT Press,
pp. 160-190.

Desain, P. 1986. "Graphical Programming in Computer
Music, A Proposal." In P. Berg, ed. Proceedings of the
1986 International Computer Music Conference. San
Francisco: Computer Music Association, pp. 161-166.

Desain, P. 1988. "LISP as a Second Language, Functional
Aspects." Submitted to the International Computer
Music Conference, 1988.

Desain, P, and H. Honing. 1988. "LOCO: A Composition
Microworld in Logo." Computer Music Journal 12(3).

Dodge, G., and C. Bahn. 1986. "Musical Fractals." Byte
(6): 185-196.

Fry, C. 1984. "Flavors Band: A Language for Specifying
Musical Style." Computer Music Journal 8(4): 20-34.

Harvey, B. 1985. Intermediate Programming. Computer
Science Logo Style, Vol. 1. Cambridge, Mass.: MIT
Press.

Jones, K. 1981. "Compositional Applications of Stochastic
Processes." Computer Music Journal 5(2): 45—61.

Koenig, G. M. 1971. Project Two. Utrecht: Institute of
Sonology.

Manen, F. van, and Trimpin. 1986. "Ringo: A Percussive
Installation." In P. Berg, ed. Proceedings of the 1986
International Computer Music Conference. San Fran-
cisco: Computer Music Association, pp. 193-196.

Roads, C. 1985. "Grammars as Representations for Mu-
sic." In C. Roads and J. Strawn, eds. Foundations of
Computer Music. Cambridge, Mass.: MIT Press,
pp. 403-442.

Rodet, X., and P. Cointe. 1984. "FORMES: Composition
and Scheduling of Processes." Computer Music Journal
8(3): 32 48.

Schottstaedt, W. 1983. "PLA: A Composer's Idea of a Lan-
guage." Computer Music Journal 7(1): 11 —20.

Steedman, M. J. 1984. "A Generative Grammar for Jazz
Chord Sequences." Music Perception 2(1): 53-77.

Voss, R. F,, and J. Clarke. 1978. "Music from 1// Noise."
Journal of the Acoustical Society of America 63(1):
258-263.

Xenakis, I. 1971. Formalized Music. Bloomington: In-
diana University Press.

Computer Music journal

LOCO MANUAL

1 INTRODUCTION

loco is asystem for (music) composition. It is built on the general programming
language Logo. It can be used as a workbench for experimenting with musical
structures, both for beginners and professionals. It is a non-realtime system,
which means that composing and playing don't take place at the same time. LOCO
consists of three subsystems: the composition system, the score system, and the
instrument system (see figure 3). The composition system consists of a set of
program generators, programs that write programs. They can be used to create the
so-called choice systems that will make a composition according to the rules
provided by the composer. The connection between the composition system and
the instrument is via the score system. The instrument system uses standard MIDI
codes to control any kind of MIDI synthesiser.

The scope of this manual is a step by step introduction to 1 o ¢ o . It is not intended
as a demonstration of the full power of 1 o c 0, nor to explain theories about music
composition. The underlying philosophy and design decisions, as well as some
other examples of 1 0 c 0 are given elsewhere (Desain/Honing 1986,1988).

2 GETTING STARTED THE VERY FIRST TIME

This chapter explains the configuration actions needed to start LOCO for the very
first time at your site. For most users, this will already have been done by
someone else, so they can skip this chapter and start reading chapter 3.

21 Needed Equipment

. An Apple Macintosh computer: Macintosh 512K, Ed, Plus or IL

. MIDI interface (i.e. Apple, Applica, Opcode)

. MIDI cable.

. MIDI synthesizer - any kind of MIDI synthesiser will do, even a synth without
a keyboard can be used (like the Yamaha TX-7 or FB-01 expander). Other
MIDI driven equipment (like drummachines) can also be used.

. Audio equipment - a simple headset will do for most experiments.

. Microsoft/LCSI Logo

the 1 o co disk.

. Empty disks - for storing your compositional work and scores.

= W N

o N

Note: LOCO runs only under the Finder (Don’t use the Multifinder).

For workshops and classes in computer music composition it is often wise to
concentrate first on 1 o c o itself, not being distracted by all kinds of fascinating
audio equipment. For the same reason we advise to use synth's without a
keyboard.

LOCO Appendix 1

2.2 Step 1: Make a Working Copy of Your LOCO Disk

Make a copy of the 1 0 c o disk in the normal way (See your Macintosh manual).
Store the original disk savely and use the working-copy for the configuration
process.

Making copies of Locofor other than backup purposes is prohibited.
They can be traced back to the original purchaser who will be held responsiblefor
all.

2.3 Step 2: Connecting a MIDI Interface and Synthesiser

Connect the MIDI interface to the modem port. For primitives adjusting the
default settings see 6.8.

Now connect the MIDI-out of the interface to the MIDI-in on your synthesiser
with a standard MIDI cable. Make sure the synthesizer can receive MIDI
information on channel 1 (see your synthesiser manual). Additional synthesisers
may be "daisy chained". They can receive MIDI on subsequent channel numbers.

24 Step 3: Configuring Your LOGO

Make a new copy of your Microsoft Logo application and call it LOCO Logo (see
page 204 of the Microsoft Reference Manual).

After this startup the Preferences Program on your Microsoft disk. (If you use a
Macintosh with HFS, make sure both the Preferences Program and a copy of the
Logo application are not inside a folder. The Preferences Program is affected by
the HFS system and can not find primitive sets that are in folders, see Addendum
Microsoft Manual).

Next, copy the LOCO primitive set called LOCOPSET.P into your LOCO Logo
using the Primitive Set Mover (see page 214/217 of the Microsoft Reference
Manual).

Finally, if you want to adjust your copy of Logo to your personal needs (i.e.
more workspace) select Memory & Font Preferences in the Preferences Program
to adjust the allocation of memory and default font (see page 207/210 of the
Microsoft Reference Manual).

The configuration phase is now done. You can quit the Preference Program and
copy LOCO Logo to your working copy of the Loco disk. Place them in the
same folder.

You can now continue with chapter 3.

LOCO Appendix 2

3 GETTING STARTED

In this chapter it is assumed that your Macintosh is connected to a synthesizer,
receiving MIDI data at channel 1, and the 1 o c o disk is assumed to be configured
appropriately.

You can then startup 1 o c o by double-clicking on the file called
"LOCO startup".

Feel free to stop reading the next chapters at any time and do some experiments of
your own - doing is the best way of learning.

LOCO Appendix 3

NOTE

WRITE
PLAY

REST

4 THE SCORE SYSTEM

After starting 1 o c 0, a score writing and playing system is available. This score
system is to be considered as a tool - it is in itself not so interesting (see figure 3).
But with this tool you can make programs that write music on the score in their
own (slow) way. After that the score can be played as fast as you like by your
synthesiser.

On a score you can write simple and compound musical objects. An example of a
simple musical objectis anote:

[NOTE duration pitch loudness]

It has 3 inputs: a duration, a pitch and a loudness. The duration signifies how
long the note is going to last. The pitch is a number counting the semi-tone steps
of an equal-tempered scale, middle C has pitch number 60 (see chapter 6.7 for a
table of MIDI pitches). The loudness is a number between 0 and 1. Later we will
define translations from well-known names (like middle C and pianissimo) to
these numbers. Let's first write one simple short loud middle C note to the score
and play it.

WRITE [NOTE 1 60 1]
PLAY

(In all examples plain text is user input and italic is computer output.)

In Microsoft Logo there is no prompt. You can type text everywhere in a text
window. To let the interpreter actually do the instruction, press the Enter key after
each command line (see page 11/12 of the Microsoft Reference Manual).

If we write more notes they will be added one after another to the score. Let's try
some other inputs:

WRITE [NOTE 2 60 1]
WRITE [NOTE 1 58 1]
PLAY

Of course we also need rests:

WRITE [REST 1]
WRITE [NOTE 2 58 0.7]
PLAY

When you make a typing error you can use the common Logo cursor keys and
line editing commands (see page 9 of the Microsoft Reference Manual).
Clover-S stops the playing of the score and clover-H for Help information also
works for LOCO primitives.

Also other Logo constructs like repetition are usable within LOCO:

REPEAT 4 [WRITE [NOTE 1 67 1]]
PLAY

If you are bored with such repeated notes or with typing all these notes yourself,
and want to let the computer compose the piece for you, you should start reading
chapter 5 and come back later to hear all about the facilities of the score system.

On the other hand, if you like to explore one thing at a time just continue reading.

LOCO Appendix 4

POSITION
POSITION?

TEMPO
TEMPO?

SA VE.SCORE
ERASE.SCORE

Let's talk about polyphony now. We can start from the beginning of the score
(position o) and add a second layer of notes. Or we can see were we are in the
score, go to a specific position, and continue from there.

POSITION 0O

WRITE [NOTE 3 51 1]
WRITE [NOTE 1 52 1]
PLAY

POSITION?

4

POSITION 2

WRITE [NOTE 1 50 1]
PLAY

The created score in a pianoroll notation looks like this:

The score can be played at different tempos. A tempo number gives the number of
time-units per minute. So our little score of 11 time-units will last for 11 seconds
when played at tempo 60:

TEMPO?

60

PLAY
TEMPO 120
PLAY
TEMPO 60

A score can be saved to disk, erased and retrieved at a later time, save.score
will open a Save dialog box and asks for a filename.

SAVE .SCORE

ERASE .SCORE

PLAY

WRITE [NOTE 1 60 1]
PLAY

LOAD .SCORE

PLAY

LOCO Appendix 5

LOAD.SCORE

TIMEUNIT
TIMEUNIT?

load.scor e overwrites the current score. So if you want to keep it, save it
before reading a new score from disk, 10ad.score opens a Load dialog box
and lets you select the file that has to be loaded.

Next to make multiple layers of notes on the score by writing layer per layer and
using position, we can make compound musical objects at once (note that later
these objects will be calculated by some kind of program, but for the moment we
will type them in). Musical objects that will sound at the same time are constructed
using p for Parallel. A parallel object will last as long as its longest component.

ERASE .SCORE

WRITE [P [[NOTE 4 60 1] [NOTE 8 63 1]]]

PLAY

WRITE [P [[NOTE 4 57 1] [NOTE 4 59 1] [NOTE 4 63 1]]]
PLAY

You can make a sequential ordering of musical objects into one compound object
by using s for Sequence.

ERASE .SCORE
WRITE [S [[NOTE 1 60 1][REST 1] [NOTE 1 61 1]]]
PLAY

P and s are functions that have a list of musical objects as argument.

Sometimes you want to use notes with smaller durations. Although it is permitted
to use fractional durations, a change in the meaning of the time-unit is often more
effective. The default value of time-unit is a sixteenth, each note of duration 1 will
be a sixteenth note - lasting for 0.25 seconds. If you set the time-unit to a quarter
note, and since at tempo 60 you will have 60 of diem each minute, a note of
duration 1 will last for one second. Changing the time-unit will only affect the
writing of the score (way of notating) and not the actual playing. If this all seems
too complicated to you, just remember the following. If your tempo has to be set
at an unreasonable high value to get the result you want, then it is better to write
the score with a smaller time-unit and vise-versa. TIMEUNIT is usually set before
you write the score, t empo while playing it (see figure 3).

ERASE .SCORE
TIMEUNIT?
1/16
TIMEUNIT 1/4
WRITE [NOTE 1
WRITE [NOTE 1
PLAY

ERASE. SCORE
WRITE [NOTE 1 60 1]
WRITE [NOTE 1 61 1]
PLAY

n
1 11

Note that 1oad.score and er ase.score reset timeunit to its default value
1/16. That is why in the example after er ase.scor e the written notes sounded
shorter, timeun it was set to its default value.

Most MIDI synthesisers are equiped with different sounds called instruments,
timbres or voices. The playing instrument can be changed using instrument. It
has a number as input. This is the same number you'll have to use when selecting
the instrument manually on the synthesiser itself.

LOCO Appendix 6

INSTRUMENT
INSTRUMENT?

PART
PART?

ERASE .SCORE
WRITE
INSTRUMENT 3
PLAY
INSTRUMENT?

3

INSTRUMENT 22
PLAY

If you have a synthesiser that can handle more instruments at once (this is called
multi-timbral), or if you have more synthesisers connected in a "daisy chain",
each receiving MIDI information on a different channel, you can write music that
has more then one part. If you do not have this, skip the explanation of PART.
PART changes the current part of the score you are writing (i.e. the MIDI channel
the notes will go to when played). And INSTRUMENT changes the instrument

[NOTE 4 54 1]

playing the current part.

ERASE .SCORE
PART?

1
WRITE [NOTE1
WRITE [NOTE2

INSTRUMENT 3
PLAY

PART 2
POSITION O
WRITE [NOTE2
WRITE [NOTE1

INSTRUMENT 11
PLAY

PART 1
INSTRUMENT 10
PLAY

The resulting score can be visualised as follows:

ekesks = part 1, payed by irstrunert 10
=t 2, peyed by st 11

Figure 2. Pianoroll notation of the given score.

LOCO Appendix

60
63

55
56

1]
1]

1]

PRE

POST

Note that 1oad.score and er ase.scor e reset par t and timeunit to then-
default values, 1 and 1/16 respectively.

Advanced control of timing achievable with the 10¢co system will be
demonstrated next.

When writing scores the position in the score can be manipulated by the musical
objects themselves. [PRE object | will be written to the score just before its
current position without changing it. This is useful for objects like grace notes.

ERASE .SCORE
REPEAT 4 [WRITE [NOTE 1 60 1]]

PLAY

POSITION 3

WRITE [PRE [NOTE 0.2 50 1]]
PLAY

The PRE object is prefixed to the current position in the score, i.e. it already
happened when it's asked to start at position 3 (you can hear that the PRE note is
not on the same beat as the first layer).

pre can also be combined in S.

POSITION 4

REPEAT 4 [WRITE [S [[PRE [NOTE 0.15 70 1]][NOTE 1 62 1]]]1]
PLAY

POSITION?

8

pr e behaves like a prefix attached to [note 162 1], but it does not change the
duration, nor the timing of the s object.The po st object is postfixed to the
position in the score. This means that it can be written to the score at the current
position without changing it. Mind that writing a PRE object at position 0 of the
score is an error (This is like writing a musical object on your desk instead of on
the music paper).

The next example will yield a chord:

ERASE .SCORE

POSITION?

0

WRITE [POST [NOTE 1 70 1]]
POSITION?

0

WRITE [NOTE 4 60 1]
POSITION?

4

PLAY

WRITE [POST [NOTE 1 70 1]]
POSITION?

4

PLAY

To make clear the information flow in the score system we summarize the
commands in a picture:

LOCO Appendix 8

REST

PRE
POST

Figure 3. Information flow in the score system.

LOCO Appendix

ALEA TORIO

5 USE OF CHOICE SYSTEMS

Composition can be looked at as the making of choices. Choices can be made by
the composer or by the computer. In the last case the composer (you!) will have to
give the rules to the computer. One of the possible rules is a random choice from a
fixed set of possibilities. We create such a program, a so-called "choice system”,
by means of the program generatoraieator ic

ALEATORIC "COLOR [RED GREEN ORANGE]
SHOW COLOR

RED

SHOW COLOR

ORANGE

REPEAT 4 [SHOW COLOR]

GREEN

GREEN

ORANGE

RED

Note that the program co lo r isjust a normal Logo program, except that it is
created by a program (by aleatoric), color can be used as any Logo
program, like in the example where its result is printed repeatedly. (If you do not
know about r epeat you should have a quick look in the Logo manual here.)
Note also that color does not know anything about colors, it just gives you a
word as result.

The name of the program (e.g. color) can be chosen freely, but mind not to use
LOCO primitive names as listed in chapter 10, or any logo primitives (see
Microsoft Reference Manual). Also the use of names starting with a dot is
discouraged: loco uses them internally.

In the window called "LOCO Work" an overview of all currently available choice-
systems is displayed.

Now we are going to use aleatoric to construct a musical example, creating a
melody with pitches chosen randomly from a fixed set of possibilities.

ERASE .SCORE

ALEATORIC "PITCH [60 65 67 69 70]
REPEAT 12 [WRITE [NOTE 1 PITCH 1]]
PLAY

Until now, we have been supplying a number as the second argument of NOTE.
Now the program pit ch calculates such a pitch number for us. Those of you
who know about scales, and like to experiment with them, can immediately start
creating random melodies in major, minor, or other scales, by selecting a suitable
list of possibilities for pitch (For MIDI pitch/key numbers see chapter 6.7).
Note that when you PLAY the score a second time you will hear the same notes,
while when you repeat the previous example (writing a new sequence of notes
with a random pitch) you will hear a different score.

We also can make random rhythms using aleatoric:

ERASE .SCORE

ALEATORIC "DURATION [124]

REPEAT 12 [WRITE [NOTE DURATION 60 1]]
PLAY

REPEAT 12 [WRITE [NOTE DURATION PITCH 1]]

LOCO Appendix 10

ERASE.WORK
ERASE.CHOICE

ORDERED

RESET.WORK
RESET.CHOICE

PLAY

In the last example we combined the two mechanisms of choosing random pitches
as well as durations, 10 c o supports lots of ways of combining very simple
mechanisms into complex ones. We encourage the free experimenting with these
combinations. They are so manifold that it is impossible to describe them all, just
like describing all possible Logo programs is an infinite task.

When you want to start all over with a new composition you can use
erase.wor k. It will erase all choice systems, erase.choice can be used for
erasing just one choice system.

ERASE .WORK
SHOW COLOR

J don't know how to color

If you have a predefined order in mind, in which the choices have to appear, you
can use the generatororder ed instead ofateatoric,order ed would make
the right traffic light, compared to the co10or example we did with ateator ic,
but we will give a musical example here:

ERASE .SCORE

ORDERED "PITCH [60 61 64]

REPEAT 9 [WRITE [NOTE 1 PITCH 1]]

PLAY

ORDERED "DURATION [1 2]

REPEAT 12 [WRITE [NOTE DURATION PITCH 1]]
PLAY

In the second part of the example we put a duration order of two elements against
a melody line of three elements. Can you figure out what goes on?
We can use loudness to accentuate one of the patterns:

ORDERED "LOUDNESS [1 0.7]

REPEAT 12 [WRITE [NOTE DURATION PITCH LOUDNESS]]
PLAY

ORDERED "LOUDNESS [1 0.7 0.7]

REPEAT 12 [WRITE [NOTE DURATION PITCH LOUDNESS]]
PLAY

Select an instrument on your synthesiser that is sensitive for loudness (for which
0.7 and 1 are distinguishable).

Sometimes you need the possibility to reset a choice system in its initial state, as if
you never used it. You can use r eset.choice here (OI‘ reset.wor k that
resets all choice systems).

(In the LOCO Work window you see how 1oudness was generated:

ORDERED "LOUDNESS [1 0.7 0.7]).

SHOW LOUDNESS

1

SHOW LOUDNESS

0.7

RESET.CHOICE "LOUDNESS
SHOW LOUDNESS

1

A third principle of choice used by many composers is serial choice. A serial
choice of a given set of possibilities will first use all of them before one can be

LOCO Appendix T

SERIAL

EVALUA TED

chosen again. Think of a serial choice as a bucket full of possibilities (written on
little pieces of paper). Each time a new value is needed, one piece of paper is
taken out of the bucket at random without putting it back. Only when the bucket is
empty all of the possibilities (pieces of paper) are put back in the bucket and the
process is continued.

ERASE .SCORE

SERIAL "PITCH [60 63 65]

REPEAT 12 [WRITE [NOTE 1 PITCH 1]]

PLAY

ERASE .SCORE

SERIAL "DURATION [1 2 3]

REPEAT 24 [WRITE [NOTE DURATION PITCH 1]]
PLAY

POSITION 0

REPEAT 24 [WRITE [NOTE DURATION PITCH -12 1]]
PLAY

When we use a serial choice for making rhythms, as we did in the second part of
the example above, a kind of feeling for measure is created. This happens because
after each 1+ 2 + 3 = 6 time-units we can be sure a note will start. This even
becomes more apparent when a second layer of the same kind of notes is added.
This second layer is transposed down by an octave (12 semitones) by using just
plain Logo arithmetic. Everywhere in 1 o c o the full power of Logo is available
for these kinds of calculations.

Our next example will give a demonstration of the orthogonal nature of 1oco:
everything can be coupled to everything. We will use a choice system to generate
a list of possibilities that another choice system can choose from.

ALEATORIC "DIVISION [[3 3][4 2]1[5 1]]

SHOW DIVISION

4 2]

SHOW DIVISION

[3 3]

SERIAL "DURATION "DIVISION

SHOW DURATION

2

SHOW DURATION

4

SHOW DURATION

5

RESET.CHOICE "DURATION

ERASE .SCORE

REPEAT 12 [WRITE [NOTE DURATION 50 1]]

PLAY

POSITION 0

REPEAT 12 [WRITE [NOTE DURATION 61 1]]

PLAY
In this example serial choice system dur ation only consults division when the
previous list of possibilities is exhausted. Note that when you use these kind of
stacked choices the name of the choice system must be quoted when it is used as
an input to another choice system. Otherwise, Logo considers it just a program,
calculates its result and gives that as a constant value to the second program
generator.

The next example shows another way of stacking choice systems. One choice
system can choose the name of another one that has to be evaluated.

ERASE .SCORE

LOCO Appendix 12

CONSTANT

TRANSLATED

WEIGHTED

ERASE . WORK

ALEATORIC "HIGH [60 61 62]
ALEATORIC "LOW [50 51 52]
ORDERED "REGISTER [HIGH HIGH LOW]
EVALUATED "PITCH "REGISTER

SHOW REGISTER

HIGH

SHOW PITCH

61

REPEAT 24 [WRITE [NOTE 1 PITCH 1]]
PLAY

register will return the name of a choice system, pitch will use that name and
run it once (in this example it produces a pitch number).

To make your programs more readable you can use CONSTANT to give names to
your musical structures, as in the following two examples:

ERASE .SCORE

ALEATORIC "PITCH [60 61 62]

CONSTANT "LOUD.NOTE [NOTE 1 PITCH 1]

CONSTANT "SOFT.NOTE [NOTE 1 PITCH 0.6]

CONSTANT "CHORD [P [[NOTE 4 60 1] [NOTE 4 63 1][NOTE 4 64 1]]]
REPEAT 12 [WRITE [S [CHORD LOUD.NOTE SOFT NOTE]]]

PLAY

ERASE .SCORE

ERASE WORK

CONSTANT "MINOR [60 62 63 65 67 68 70]
CONSTANT "MAJOR [60 62 64 65 67 69 71]
ALEATORIC "PITCH "MINOR

REPEAT 24 [WRITE [NOTE 1 PITCH 1]]
PLAY

ALEATORIC "PITCH "MAJOR

REPEAT 24 [WRITE [NOTE 1 PITCH 1]]
PLAY

If you want to use an element by element translation of names you can use
transiated that has a list of pairs (a kind of dictionary) as its third input.

ERASE .SCORE

ERASE .WORK

ALEATORIC "TONE [CD E F G A B]

TRANSLATED "PITCH "TONE [[C 60] [D 62] [E 64] [F 65] [G 67] [A 69] [B 71]]
SHOW TONE

E

SHOW PITCH

69

REPEAT 12 [WRITE [NOTE 1 PITCH 1]]
PLAY

When you need choices with different probabilities, you can use w eighted. It
works like ALEATORIC, but assigns to each possibility a different probability.
The next example shows the use of weighted durations. Half of the choices will
be of duration 1, the rest will be of duration 2 or, with a slight chance, of duration

8.

ERASE .SCORE
WEIGHTED "DURATION [[1 0.5][2 0.4][8 0.1]]

REPEAT 12 [WRITE [NOTE DURATION 55 1]]
PLAY

LOCO Appendix 13

SCALED

ITERATIVE

Sometimes you want to choose from a (very) large number of possibilities. It
then can be much easier to give only the borders in between which can be chosen.
With scal ed you need a minimum, a maximum, and a resolution defining the
size of the scaled steps in between (as if we used al eator ic with alist of equal
spaced numbers between a minimum and a maximum). The larger the resolution,
the less possibilities there are within the given range.

ERASE .SCORE

SCALED "WHOLE.TONE.PITCH 60 72 2

SHOW WHOLE . TONE . PITCH

72

SHOW WHOLE . TONE . PITCH

62

SHOW WHOLE.TONE.PITCH

66

REPEAT 12 [WRITE [NOTE 1 WHOLE.TONE .PITCH 1]]
PLAY

A whole tone scale has equal steps between every preceding note. You maybe
want to compare the sound and making of this scale with the ones you made with
ALEATORIC.

When you want to use negative values, mind that Logo is weak in handling
negative numbers. Be sure to put parentheses around them, so they will be
interpreted in the right way (e.g. (-2)).

The next is an example using pre for precise timing control of a grace note
attached to a regular beat, while the duration fluctuates.

ERASE .SCORE

SCALED "DURATION 0.1 0.5 0.01

CONSTANT "GRACE.NOTE [PRE [NOTE DURATION 50 1]]
CONSTANT "BEAT [NOTE 2 52 1]

WRITE [REST 1]

REPEAT 12 [WRITE [S [GRACE.NOTE BEAT]]]

PLAY

The first r est is to prohibit the writing of a GRACE.NOTE before the beginning
of the score (see explanation of pr e).

Now we arrive at what we can call higher order choice systems. They are only
useful when build on top of other choice systems. A very useful one is
iter ative which can repeat results a number of times. An example:

ERASE .SCORE

ORDERED "PATTERN [64 62 64 67]
REPEAT 16 [WRITE [NOTE 2 PATTERN 1]]
PLAY

ITERATIVE "DOUBLE.PATTERN "PATTERN 2
SHOW DOUBLE .PATTERN

64

SHOW DOUBLE .PATTERN

64

SHOW DOUBLE .PATTERN

62

SHOW DOUBLE.PATTERN

62

RESET . WORK

POSITION 0

REPEAT 32 [WRITE [NOTE 1 DOUBLE.PATTERN + 12 1]]

LOCO Appendix 14

CUMULATIVE

TRANSITIVE

PLAY

Well, in this example a lot of things happened. Let's look at them step by step.
The first thing you played was a simple repeated pitch pattern or melody of four
notes. The second time the same pattern is doubled, as well as in tempo as in
notes. The double tempo is defined by a smaller duration value, but, what is much
more interesting, the doubled notes were derived from patter n by taking its
result and repeating every new value two times. Because we checked out
DOUBLE.PATTERN on the monitor half way, we used RESET.WORK to reset
double.pattern to its initial state. Otherwise both patterns wouldn't be that
synchronous (double.patter n, would start half-way).

pattern and double.patter n could also be called Balungan and Pekingan,
respectively, if it was a first step in making a simulation of a Javanese gamelan
styled composition.

Construct for yourself an iterative choice system that lets another choice system
take care of the repetition input (the third input of iter ative).

Another higher order program generator is cumui ative. Next to the name of the
program to generate it has an increment and a start value.

ERASE .SCORE

CUMULATIVE "CHROMATIC.PITCH 1 48
SHOW CHROMATIC.PITCH

48

SHOW CHROMATIC.PITCH

49

SHOW CHROMATIC.PITCH

50

REPEAT 12 [WRITE [NOTE 1 CHROMATIC .PITCH 1]]
PLAY

Although this is not a very shocking example, cumuliative is a strong principle.
It, as its name suggests, cumulates all inputs, beginning with its starting value (48
in the example above). The next values are determined by the increment value.
That can be a number (as in the previous example), but also, and more interesting,
a choice system, as is thir d in the next example:

ERASE .SCORE

ALEATORIC "THIRD [3 4 -3 -4]

CUMULATIVE "BROWN.THIRD.PITCH "THIRD 60
SHOW BROWN.THIRD.PITCH

60

SHOW BROWN.THIRD.PITCH

57

REPEAT 24 [WRITE [NOTE 1 BROWN.THIRD.PITCH 1]]
PLAY

Brown melodies, as made here with cumui ative, have a more flowing nature
compared to aleatoric or white melodies.

The next program generator to introduce is tr ansitive. With this you can link
choice systems in a network, each one choosing a next one to use. Like all
generators it has the name of the program to be generated as its first argument.
The second argument is a starting state.

ERASE WORK

ERASE .SCORE

WEIGHTED "I [[II 0.2][IV 0.6] [V 0.2]]
WEIGHTED "II [[I 0.7][IV 0.3]]
CONSTANT "IV "V

LOCO Appendix 15

CONSTANT "V "I
TRANSITIVE "PROGRESSION "I

SHOW PROGRESSION

I

SHOW PROGRESSION

IV

SHOW PROGRESSION

v

SHOW PROGRESSION

I

TRANSLATED "CHORD "PROGRESSION [[I @l [II D1 [IV F] [V G]]

CONSTANT "C [p [[NOTE 2 48 11 [NOTE 2 52 1] [NOTE 2 55 1]]]

CONSTANT "D [p [[NOTE 1 50 1] [NOTE 1 53 1] [NOTE 1 57 HI]

CONSTANT "F [p [[NOTE 2 48 1] [NOTE 2 53 1] [NOTE 2 57 1]]]

CONSTANT "G [p [[NOTE 3 50 1] [NOTE 3 53 11 [NOTE 2 55 17] [NOTE 3 59 1]]]
REPEAT 12 [WRITE CHORD]

PLAY

Figure 4. Graphical representationof PROGRESSION.
SA VE. WORK
LOAD.WORK
After all this typing you can save the compositional work by using savew or k.

load.wor k reads it back in again, (savework andioad.work are in fact
quite like the Logo primitives save and 1oad, you can use the File menu items
as well (see page 6/7 of the Microsoft Reference Manual). Only 1oad.work
also refreshes the LOCO Work window).

SAVE .WORK "PROGRESSION

ERASE .WORK

LOAD.WORK "PROGRESSION

SCALE

The last two program generators are used when lists of values are needed instead
of isolated values.
Sometimes it's useful to have available a scale of values (as used implicitly in
scaled). This can for example be used as argument for ser ia1. The arguments
of scale are a minimum, a maximum, and a resolution (like SCALED).

LOCO Appendix 16

COLLECT

ERASE .SCORE

ERASE . WORK

SCALE "WHOLE.TONE.SCALE 60 72 2

SHOW WHOLE .TONE .SCALE

[60 62 64 66 68 70 72]

ALEATORIC "WHOLE.TONE.PITCH "WHOLE.TONE .SCALE
SHOW WHOLE.TONE.PITCH

70

SHOW WHOLE.TONE.PITCH

64

REPEAT 12 [WRITE [NOTE 1 WHOLE.TONE.PITCH 1]]
PLAY

Of course, the arguments for scal e can also be calculated by another choice
system.

ERASE .SCORE

CUMULATIVE "MAXIMUM 1 60

SCALE "PITCHES 60 "MAXIMUM 1
SERIAL "PITCH "PITCHES

REPEAT 24 [WRITE [NOTE 1 PITCH 1]]
PLAY

This example produces a constantly widening serial melody.

If you want to collect a certain number of outcomes from a choice system into a
list, it can be passed as an argument to another choice system, using coitect.In
the next example a number of trills are made.

ERASE .SCORE

ALEATORIC "PITCH [60 62 64 65 67 69 72]
COLLECT "PITCHSET "PITCH 2

SHOW PITCHSET

[69 62]

SHOW PITCHSET

[60 67]

ITERATIVE "REPEATED.PITCHSET "PITCHSET 4
ORDERED "TRILL "REPEATED.PITCHSET
REPEAT 36 [WRITE [NOTE 0.5 TRILL 1]]
PLAY

LOCO Appendix 17

6 SUMMARY OF COMMANDS
6.1 Writing Scores

ERASE.SCORE
Deletes the entire score
PART number
Sets the current part to number. Number is between 1 and 16 and
corresponds to MIDI channels
PART?
Prints the number of the current part
POSITION number
Sets current position in the score to a point number time-units from the start
POSITION?
Prints the current position in time-units, measured from the start of the score
TAMEUNIT note-value
Sets the reference unit of time to note-value, a fraction of a whole-note
TIMEUNIT?
Prints the current reference note-value
WRITE object
Writes object into the score at the current position, in the current part

6.2 Playing Scores

INSTRUMENT number

Assigns the instrument to the current part of the score
INSTRUMENT?

Prints the instrument number for the current part
PLAY

Performs the score
TEMPO number

Sets the playing tempo to number time-units per minute
TEMPO?

Prints the current tempo

6.3 Storing Scores

SAVE.SCORE

Saves the score to disk. Opens a Save dialog box
LOAD.SCORE

Loads a previously saved score. Opens a Load dialog box

6.4 Musical Objects

[NOTE duration pitch velocity]
A note with given duration (in time-units), pitch (in MIDI
numbers), and intensity (between 0 and 1)
[REST duration]
A rest (silence) lasting duration time-units
[S [objectl .. objectnl]]
A S(equence) of objects starting one after another
[P [objectl ... objectn]]
A P(arallel) structure of objects starting at the same time
[PRE object]
A prefix object
[POST object]
A postfix object

LOCO Appendix 18

6.5 Program Generators

ALEATORIC name list-of-posslbilities
Name will return a randomly chosen element from the list of
possibilities
List-of-possibilities is evaluated each time name is called

COLLECT name source number
The program name will return a list of number values from source
Source is evaluated once for each number of calls of name

Number is evaluated each time name is called
CONSTANT name value

The program name will return value

List-of-possibilities is evaluated each time name is called
CUMULATIVE name increment start-value

Each new value that name will return is increment bigger than the
previously returned value. The first value returned is the start-value
Increment is evaluated each time name is called

Start-value is evaluated at the first time name is called
EVALUATED name source

Name will run the choice system given by source once

Source is evaluated each time name is called
ITERATIVE name source number

Name will repeatedly return a value from source a number of times
Source is evaluated once for each number of calls of name

Number is evaluated when all its elements are used
ORDERED name list-of-possibilities

Name will return one of the possibilities in the given order

List-of-possibilities is evaluated when all its elements are used
SCALE name minimum maximum resolution

Name will return an ordered list of random values between minimum and
maximum with the given resolution

Minimum, maximum, and resolution are evaluated each time name is called
SCALED name minimum maximum resolution

Name will return a random value between minimum and maximum
with the given resolution

Minimum, maximum, and resolution are evaluated each time name is called
SERIAL name list-of-possibilities

Name will return one of the possibilities, excluding it in future
choices, until all are chosen. Then it starts all over again with the full
list of possibilities
List-of-possibilities is evaluated when all its elements are used

TRANSITIVE name initial-program-name
Each new word that name will return is the result of running its
previous result as a program. The first result is its initial-program-name

Initial-program-name is evaluated at the first time name is called
TRANSLATED name source list-of-original-translation-pairs

Name will return a value from source translated according to the
table (list-of-original-translation-pairs)
Source is evaluated each time name is called

List-of-original-translation-pairs is evaluated each time name is called
WEIGHTED name IllIst-of-possibility-probabillty-pairs

Name will return one of the possibilities according to the assigned
probabilities
List-of-possibility-probability-pairs is evaluated each time name is called

LOCO Appendix

6.6 Choice Systems Management

ERASE.CHOICE choice-system
Deletes the choice system

ERASE.WORK
Deletes all choice systems

LOAD.WORK file
Retrieves all choice systems previously saved infile. (Identical to the
standard Logo primitive 1 0 ad, except that it also refreshes the LOCO Work
window)

RESET.CHOICE choice-system
Resets a choice system to its initial state

RESET.WORK
Resets all choice systems to their initial states

SAVE.WORK file
Saves all choice systems to afile. (Identical to the standard Logo primitive
SAVE)

6.7 MIDI Pitch Numbers

Figure 5. MIDI pitch/key numbers

6.8 MIDI Interface Primitives

MIDIOUT byte

Sends a byfe to the MIDI interface
MIDI.PORT name-of-port

Sets the port for the MIDI interface to name-of-port (Modem or Printer)
MIDI.PORT?

Prints name of current MIDI interface port (Modem or Printer)
MIDI.SPEED speed

Sets the speed of the MIDI interface to speed Mhz (0.5,1 or 2)
MIDI.SPEED?

Prints the current speed of the MIDI interface (0.5, 1 or 2 Mhz)

LOCO Appendix 20

7 SEPERATE USE OF LOCO COMPONENTS

71 Separate Use of the Choice Systems

Choice systems can be used separately e.g. for creating pictures or poems. Load
both the files LOCO General Primitives and LOCO Program Generators.
Two short examples are listed below.

LOAD "LOCO\ General\ Primitives
LOAD "LOCO\ Program\ Generators

SERIAL "ANGLE [-30 -70 -10 20 50 40]
Define in the Editor:

TO STRANGE.LINE

REPEAT 6 [RIGHT ANGLE FORWARD 4]
FORWARD 12

END

Now you can type in the text window
REPEAT 100 [STRANGE.LINE PU FORWARD 50 PD]
Another example with text:

ORDERED "SPEECH [I STUT T ER SOME TIMES, AND SOMETIMES NOT]
ALEATORIC "NUMBER [112]

ITERATIVE "MAX.HEADROOM "SPEECH "NUMBER

REPEAT 12 [TYPE MAX.HEADROOM TYPE "\]

I STUT T T ER SOME TIMES, AND AND SOMETIMES NOT NOT

7.2 MIDI Output

The MIDI output can be use separately.You can sent an arbitrary byte (number

from 0 to 255) through the MIDI interface. In this way you can write programs
controlling your synthesiser directly.

The next example shows a procedure that starts your tape recorder ("250" is the
MIDI sequence to start a MIDI sequencer):

TO START .SEQUENCER
MIDIOUT 250
END

See the manual of your synthesiser for details on the MIDI codes that can be used.

LOCO Appendix 2

7.3 Score System

The score system can be used separately to make your own music composing
program tool. This will give you the score primitives. A quick example:

LOAD "LOCO\ General\ Primitives
LOAD "LOCO\ Score\ Primitives

Define in the Editor:

TO DOWN :FROM :TO
IF :FROM < :TO [STOP]
WRITE NOTE 1 :FROM 1
DOWN :FROM - 1 :TO
END

And try out in the text window

DOWN 70 50
PLAY

LOCO Appendix

22

8 REFERENCES

Desain, P. & H. Honing. (1986). LOCO, Composition Microworlds in Logo. In
Proceedings ofthe 1986 International Computer Music Conference, edited by P.
Berg. San Francisco: Computer Music Association.

Desain, P. & H. Honing. (1987). LOCO, Composition Microworld, Manual
Apple He. Research Report. Utrecht: Centre for Art, Media and Technology,
Utrecht School of the Arts.

Desain, P. & H. Honing. (1987). LOCO, kompositie mikrowerelden in Logo. In
Leren met Logo 1987, edited by V. Haars et al. Nijmegen: Leren met Logo.

Desain, P. & H. Honing. (1988). LOCO: A Composition Microworld in Logo.
Computer Music Journal 12(3). Cambridge, Mass.: MIT Press.

Desain, P. & H. Honing. J. Verver (transi.). (1988). LOCO, Kompositie
Microwereld, Handleiding Yamaha CX5-MII. Research Report. Utrecht: Centre
for Art, Media and Technology, Utrecht School of the Arts.

Desain, P. & J. Henstra. (1988). Audio Illusions in LOCO. Research Report.
Nijmegen: Katholieke Universiteit.

Desain, P. & H. Honing. (1989). LOCO, compositie microwerelden in Logo. In
MIDI, Muziek en computer, by H. Timmermans. Deventer: Kluwer Technische
Boeken b.v.

Desain, P. & H. Honing. (1990). LOCO - eine Kompositionssprache. In MIDI,

Musik und Computer. Theorie und Praxis, by H. Timmermans. Aachen: Elektor
Verlag.

LOCO Appendix 23

9 INDEX

ALEATORIC 10
COLLECT 17
CONSTANT 13
CUMULATIVE 15
ERASE.CHOICE 11
ERASE.SCORE 5
ERASE.WORK 11
EVALUATED 12
INSTRUMENT
INSTRUMENT? 7
ITERATIVE 14
LOAD.WORK 16
MIDI.PORT 20
MIDI.PORT? 20
MIDI.SPEED 20
MIDIL.SPEED? 20
MIDIOUT 21
NOTE 4
ORDERED 11

P 6

PART 7

PART? 7

PLAY 4
POSITION? 5
POST 8

PRE 8
RESET.CHOICE 11
RESET.WORK 11
REST 4

S 6
SAVE.SCORE 5
SCALE 16
SCALED 14
SERIAL 12
TEMPO 5
TEMPO? 5
TIMEUNIT 6
TIMEUNIT? 6
TRANSITIVE 15
TRANSLATED 13
WEIGHTED 13
WRITE 4

LOCO Appendix

10 ACKNOWLEDGEMENTS

We like to thank all our colleagues at the Center for Art, Media and Technology
(CKMT of the Utrecht Academy of Arts) for their support and facilities, Sterling
Beckwith for general support and suggestions in the naming of the 10 co
primitives, Irene Lubberink of the coco Foundation, and Eric Brown for advise.

11 USEFUL ADDRESSES

Microsoft Corporation (Logo)
10700 Nothup Way

Box 97200

Bellevue, WA 98009

USA

Applica (MIDI interface)
P.O. Box 1404
NL-6501 BK Nijmegen

Utrecht Academy of Arts

Center for Art, Media and Technology
P.O.Box 1520

NL-3500 BM Utrecht

COCO Foundation

P.O.Box 1037
NL-3500 BA Utrecht

LOCO Appendix 25

Conclusion

Conclusion

Towards a general representation of music

Limitations on making musical knowledge explicit

Continuous representations underestimated?

Limitations on the modularization of musical knowledge

Limitations on the formalisation of musical knowledge

Some more concrete issues in the representation of music

Representation and the problem of consistency

Representation and ambiguity

Representation of articulation and rests

A static representation is not enough

References

® o o o G I wm w W R

Concluding remarks

In the introduction of this thesis it was stated that it was not the construction of
computational equivalents of music cognition that we aimed at, but the development of a
language or representational system that enables the description, in clear and precise
ways, of the main characteristics of a particular sub-domain of the representation of
music, in order to help in the understanding and modelling of cognition. I took an explicit,
formal and modular approach to the representation of musical knowledge. This is, as
argued before, a restriction for the time being but shown to be one of the better and
advisable alternatives to choose. The methodology to obtain these results was to build
microworlds dedicated to an isolated problem or a related set of issues. The result being
two concrete and successful microworlds: one concentrating on a set of issues related to the
representation of time, the other embodying an extensive knowledge representation of
structure facilitating the specification of a calculus for expressive timing. They, as such,
meet the aim set in the subtitle of this thesis. In conclusion, however, it is good to wonder
about the question of what might be lacking if one restricts oneself to such an approach,

especially in the research towards a general representation of music.

TOWARDS A GENERAL REPRESENTATION OF MUSIC

The task of constructing a general representation of music is hard to imagine and to plan.
Especially since projects of a comparable complexity did not reach high levels of success.
We still lack a general theory of representation "a sobering fact since our systems rest on
it so fundamentally” (Smith, 1991). General representation languages are still under
development, and there are, besides lots of technical difficulties, still theoretical and
philosophical problems of enormous proportions. I nevertheless think that it is very
important to look for generalizations and abstractions in the representation of music in
all its aspects. An alternative position is summarized in the statement "A representation
depends on its use" (Roads, 1984; Pope, 1988; Huron,1990b), a viewpoint described by
Christopher Longuet-Higgins (1990) in the following quote:

“My only comment is to remark that the quality ofa representation depends on how well
it fulfils the purposes for which it is intended, and to underline the need to specify
exactly what these purposes are, and how the representation is to be used in achieving
them. A blindingly obvious, but by no means trivial, example is the remarkable

efficiency of stave notation for the purpose of sight-reading - a form of representation

from which we still have a great deal to learn”

Although this is a valid approach to the respective domains of music representation -

whether it is in music notation, printing, archiving, the construction of sound and

Conclusion 1

sequencer files formats etc. the aim of constructing a general representation is to bring
out the generalizations and abstractions that are not primarily influenced or guided by
their use. I prefer this path 'generalization and abstraction' to that of 'dedication and
specialisation' (i.e. to design a new and therefore "efficient" representation for every
new task or problem) and that forces one to describe what is shared among all these

representations.

In the following paragraphs the possible restrictions on the three main aspects of our
approach to the representation of music will be discussed (i.e. explicit, modular and

formal), hopefully functioning as an appetizer to future work in this field.

Limitations on making musical knowledge explicit

If we look back to the relative complexity of the expression calculus microworld with its
explicit structural descriptions, it is hard to imagine the size of a representational
system that incorporates all musical knowledge in an explicit manner. It seems that, at a

certain stage, implicit knowledge can not be ignored.

Implicit knowledge is frequently used in all kinds of computer systems. Think of a simple
library catalogue system. What is often retrieved is implicit knowledge, for example
when a user combines facts on the country of publication and the author's year of birth to
obtain information on books of Renaissance writers in England - information that is not
explicitly represented in the electronic catalogue. But the extraction and representation
of implicit knowledge will always be dependent on explicit information (in this example
an explicit representation of a book with e.g., a title, the author's name, his/her year of

birth, etc.).

At a later stage of building a representational system we might have to consider the
notion of skill, also a kind of implicit knowledge (one has to be careful not to treat the
entire world as a collection of explicitly representable objects). Skill is acquired by
practice and experience and can not be represented explicitly. As an example example one
might think of expressing knowledge on performing ornaments, how they are played at
different tempi and in various musical styles. This knowledge is most readily expressed
in a procedural, implicit way, and in this way the explicit structural representation of
the calculus provides the hooks to which this implicit behaviour can be attached (a

good test for the expressive power of expression calculus and its extendibility).

When a proper set of explicit structural descriptions is given together with powerful

ways of providing methods or procedures that express implicit knowledge, and

Conclusion 2

extendibility is well-supported, one can envision a more or less complete framework for a

representational system of music.

Continuous representations underestimated?

However, especially in the case of the continuous aspects of music, we still lack the
availability of proper explicit representations that can deal with these continuous
aspects in a flexible and a comprehensible way.

Let's take the time functions microworld as an example. The functions that are defined in
terms of the generalized time function have, despite their expressive power (e.g. support
of function composition and embedded, automatic behaviour), procedural characteristics:
after definition they are not accessible (time functions cannot be de-composed) and, as
such, are closed to inspection. To have a declarative description in parallel, that allows
for this inspection, would combine the advantages of function composition and
encapsulated behaviour with the accessibility of a declaratively styled

representation.1

In a larger context, it appears that representations of a continuous nature can improve the
flexibility of representational systems considerably. They sometimes yield a level of
performance that is not obtained by their discrete counterparts (see e.g. Desain, 1991).
For example, in our research on rhythm perception we represented a temporal sequence as
continuously variable values that specify event durations, as cells in a connectionist
network. This proved a powerful representation for separating the continuous aspects
from the discrete aspects in musical time, precisely because of its non-discrete, non-
symbolic nature (Desain & Honing, 1989). I would not be surprised if the use of continuous
representations prove beneficial in other areas of music perception and cognition as well,
because of this flexible and sub-symbolic character from which discrete and symbolic
representations may arise. Continuity has been underrated for too long now, both from a
technical viewpoint -in many cases considering a discrete representation a harmless
simplification-, and from musicological and psychological perspectives which, more or

less, overstressed the importance of discrete categories.2

Limitations on the modularization of musical knowledge

The idea that in music “everything has to do with everything", and the impossibility to
describe aspects of it in isolation, finds a lot of support in ethno-musicological research.
But I think that the perceptual aspects of music as a whole can be profitably understood
by describing them in a formalised way, ignoring a larger context (e.g. as in a

microworld). One could also argue that music shouldn't be restricted, because if it is, the

Conclusion

restriction would be set apart on purpose by the makers of music (and its active listeners).
As David Huron (1990a) has pointed out, it is important how to approach the study of
music and how to compare these different approaches (e.g. social, perceptual,
historical); a universal representation of music is impossible and the pursue of it should
be rejected. Such a universal representation will have "worldly proportions, [...] will
change music in unpredictable ways, and there is no neutral point of view from which to
begin." And, indeed, a universal representation of music seems impossible. Therefore I
prefer to use the term 'general'. The definition of general is important here, since it
makes significant restrictions. With 'general’ I mean firstly, a representation that
describes the measurable and perceptual aspects of music (i.e. a sound signal) and
secondly, the cognitive aspects that are directly involved with this perception. The
latter is a bit of a problem. The term 'cognitive' refers to models or systems that contain
and process knowledge. But are there any limits on the knowledge we need for our
'general’ representational system? We have to be able to restrict the required

knowledge. I will elaborate on this in the next paragraph.

Limitations on the formalisation of musical knowledge

The viewpoint that "everything is important for a representation of music" in relation to
our modular approach in obtaining such a representation, brings us to the "frame
problem" (McCarthy & Hayes, 1981): a problem that arises when knowledge has to be
encapsulated, separated from the rest of the world knowledge. It is difficult, and most of
the time even impossible, to determine what knowledge is affected and what knowledge
is unaffected by a certain change or addition of new knowledge to a knowledge base. If we
think of a microworld as a small knowledge base, the possibility to extend and combine
microworlds can be questioned. A number of philosophers and cognitive psychologists
have come up with pro and contra arguments related to this problem (pro: Pylyshyn,
Fodor; contra: Dreyfus, Searle). Jerry Fodor takes an important stand in this. He doubts
the possibility of formalising cognitive processes. They are part of one central system
that is global, non-modular, and therefore cannot - with our current theoretical tools and
methods - be comprehended, and can therefore not be formalised. He considers this lack
of understanding as the basis of a failure in formalising cognitive processes: "cognitive
science has not even started". He thinks the cognitive sciences can be and are successful in
formalising the modular parts of the mind: the input systems that are "cognitive
impenetrable” (like the five senses and language). These are a successful domain for Al

and psychological research (Fodor, 1983).

The problem now becomes whether music can be considered as being part of this central

system, or whether it is a module on its own? It clearly is part of the former if one takes

Conclusion 4

into account all the social and cultural aspects of music; music can be a cognitive faculty
among a lot of other things. Restricting a representation of music to, first, all the
information measurable in the sound signal itself and secondly, by the cognitive processes
that directly interact with it, seems limited enough to gain some level of success
(following Fodor's argument). Within this definition I think it is possible to work
towards generalizations that can form a basis of cognitive models of important aspects of
music. A positive consequence of such a 'decontextualized' representation is its
effectiveness in a carefully restricted domain where almost all the knowledge is special
to that domain (i.e. little or no common-sense knowledge is required). The question,
whether music cognition can be described as such a restricted and isolated domain, is still

open.

SOME MORE CONCRETE ISSUES IN THE REPRESENTATION OF MUSIC

After these ideas of a mostly philosophical nature, I will, finally, return to a list of

more concrete problems that should be explored in the near future.

Representation and the problem of consistency

Consistency is a relational property. It describes the organizational principles of a set of
rules or statements, or, in other words, it relates a set of statements or rules to the set as a
whole. Without these organizational principles the number of possible different
configurations meeting the structural requirements would be quite large. Consistency,
therefore, is an essential characteristic of a formal system. But what are the demands on

consistency of a representational system for music?

In the calculus for expressive timing structural consistency is a given; the structural
descriptions are not changed as a result of a transformation applied to the
representation. But, when we have to loosen this restriction in a higher-level
representation based on such a calculus, structure changing transformations should be
possible. For example, a chord could be changed into an by applying a ritardando
transformation and the rhythmical structure could also change because of such a
transformation.3 In (Honing, 1991) it has been proposed to use constraints on time
intervals to distinguish between similar structural objects, with the coordinated
behaviour imposed by these constraints modelling their specific structural character.4
On the basis of these descriptions, a parse mechanism could take care of situations where
transformations on a given musical object would change its organisation (e.g. changing a
chord into an arpeggio), as a result delivering an updated structural description, i.e. a

different set of relations associated with the transformed musical object (a set of

Conclusion

arpeggi® constraints replacing the set of chord constraints), changing the behaviour of
the structural unit under future transformations. In this way, a representational system

could incorporate structure changing behaviour.

Representation and ambiguity

How can ambiguity be described in a representation system? How to coordinate the
interaction between ambiguous structures and their associated behaviour? For example,
we need a representation formalism that can express the ambiguous structure of a certain
musical fragment and the way it influences the expressive timing profile in a

performance.

Another problem, often confused with ambiguity (I was no exception), is the notion of
overlapping structure, like overlapping phrases, where, for instance, one note is part of
both the first and of the second phrase. This type of phrase structure is not ambiguous,
ambiguous in the sense that there is more than one structural description possible, since it
is best described as one structural description that comprises the dependencies of more
than one overlapping (or cross-branching hierarchical) descriptions. This is also an
acknowledged representational problem in phonetics where one phoneme can be part of
two syllables at the same time, and in spoken language, where sentences like "I think,
John is over there, I think" are not exceptional. It might turn out that the support for
"overlapping structure" is a key aspect in the representation of music since it conflicts
with the description of music as a formal grammar of rewrite rules finding such a

widespread application.5

Representation of articulation and rests

How can the difference between articulation and rests be represented? In certain contexts,
a note and a silence can be perceived differently. The structure can either be described as
a note and a rest, or as a staccato note without a rest. There are several theories that try
to explain this, on a discrete basis (Longuet-Higgins, 1984) and on a continuous basis
(Desain, in preparation). It seems that a solution should be formalised in terms of the
surrounding structure, like the metrical and rhythmical structure and, of course, the

absolute tempo.
A static representation is not enough

Especially with regard to the last question, we need the introduction of theoretical

notions like expectation and attention, and principles that have to do with the process of

Conclusion 6

building up and determination of structure, based on a process-oriented description of
music perception. The representation issues described in this thesis could ignore (for the
time being) these process-oriented descriptions because they were not aimed at the
modelling of human cognition. All too often, though, process-like descriptions are
preferred over static ones because of this valid psychological argument. However
processes like quantization, closure, planning, etc., need some overview, and therefore
static descriptions (Desain & Honing, in preparation). A balance between static and
dynamic process-oriented descriptions is important here. Processes are made up of a
knowledge representation and an algorithm, with the algorithm depending heavily on
the representation chosen (cf. implicit knowledge discussion above). Therefore, moving
the focus to the process aspects of a representational system will most likely influence
the proposed representations (hopefully) in the form of extensions or generalizations.
But here, once again, the first task is to make these processes explicit, in a modular and

formal way, instead of leaving them in procedural obscurity.

This list of points concerning the generalization of a representation of music could be
continued but it would be accompanied by more and more speculation and less and less
justification. So this seems to be the right moment to finish this thesis, a thesis in which
I hope to have shown, at least, a successful integration of knowledge representation

research with work in the field of the psychology of music.

Conclusion

REFERENCES

Desain, P. & H. Honing (1989) Quantization of Musical Time: A Connectionist Approach.
Computer Music Journal 13(3). Cambridge, Mass.: MIT Press: 56 -66.

Desain, P. & H. Honing (in preparation) Must "real-time" equal "no-idea-of-time" in
composition systems?

Desain, P. (1991) A Connectionist and a Traditional AI Quantizer, Symbolic versus Sub-
symbolic Models of Rhythm Perception. In: Proceedings of the 1990 Music and the
Cognitive Sciences Conference, edited by I. Cross and I. Delidge. Contemporary Music
Review. London: Harwood Press.

Desain, P. (in preparation). Metre as a continuous concept.

Fodor, J. (1983) The Modularity of the Mind: An Essay on Faculty Psychology.
Cambridge, Mass.: Bradford Books, MIT Press

Honing, H. (1991) Issues in the Representation of Time and Structure in Music. In:
Proceedings of the 1990 Music and the Cognitive Sciences Conference, edited by L
Cross and I. Deliege. Contemporary Music Review. London: Harwood Press. [This
thesis].

Huron, D. (1990a) Personal Communication. A letter commenting on Honing, 1991, and in
response to a letter by the author of this thesis commenting on Huron, 1990b.

Huron, D. (1990b) Design principles in computer-based music representation. In: Computer
Representations and Models in Music, edited by A. Marsden and A. Pople. London:
Academic Press.

Longuet-Higgins, H.C. (1987) Mental Processes. Cambridge, Mass.: MIT Press.

Longuet-Higgins, H.C. (1990) Personal Communication. A letter commenting on Honing,
1991.

McCarthy. J. M. & P.]J. Hayes (1981) Some philosophical problems from the standpoint
of artificial intelligence. In: Readings in Artificial Intelligence. Palo Alto: Tioga
Publishing: 431-450.

Pope, S. T. (1988) Music notations and the representation of musical structure and
knowledge. Perspectives of New Music 24:156-189.

Roads, C. (1984) An overview of music representation. In: Musical Grammars and
Computer Analysis, edited by M. Baroni and L. Callegari. Firenze: Olschki: 7-37.

Smith, B. C. (1991) The owl and the electric encyclopedia. Artificial Intelligence. 47:
251-288.

NOTES
1The use of multiple representations was discussed earlier as a possible solubion, a solution, though,
that has not yet been irmestigated in the case of the generalized time finctHm.
2This is not to say that discrete elaments do not play a aantral mile in eg. music parosption, hut to
stress the loosely defined hypothesis that a continuous baesis might explain this discreteness even
better, in a more flexible and carplete way.

“Though, in the Y=al’ warld, musicians are often very good in the goplication a “correct” ar right
amount of ritardand in a way such ttat the rhiythmical stnchare isnot lest

Unfortunately, although plamned, these idees have not yet been malised. Some of the ideas have been
loosely tried aut and are planned to be incorparated in a system for canputer animation called Cocoa.

Conclusion 8

