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Abstract 

This paper studies the impact of university-industry collaboration on 
academic research output. We report findings from a unique longitudinal 
dataset on all the researchers in all the engineering departments of 40 
major universities in the UK for the last 20 years. We introduce a new 
measure of industry collaboration based on the fraction of research 
grants that include industry partners. Our results show that productivity 
increases with the intensity of industry collaboration, but only up to a 
certain point. Above a certain threshold, research productivity declines. 
Our results are robust to several econometric estimation methods, 
measures of research output, and for various subsamples of academics. 
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1 Introduction 

In a modern economy transforming scientific research into competitive advantages is 

essential. In the US, extensive collaboration between universities and industry, and the 

ensuing transfer of scientific knowledge, is viewed as one of the main contributors to the 

successful technological innovation and economic growth of the past three decades (Hall, 

2004). At the same time, according to a European Commission report (1995), insufficient 

interaction between universities and firms in the EU has been one of the main factors for the 

EU’s poor commercial and technological performance in high-tech sectors. Nowadays, 

increasing the levels of university-industry collaboration is a primary policy aim in most 

developed economies.1  

The increased incentives (or, as some say, pressures) to collaborate with industry may 

have controversial side effects on the production of scientific research itself. Nelson (2004), 

among many others, argues that industry involvement might delay or suppress scientific 

publication and the dissemination of preliminary results, endangering the “intellectual 

commons” and the practice of “open science” (Dasgupta and David, 1994). Florida and Cohen 

(1999) argue that industry collaboration might come at the expense of basic research: 

growing ties with industry might be affecting the choice of research projects, “skewing” 

academic research from a basic toward an applied approach. 

Academics that contribute to knowledge and technology transfer, on the other hand, 

maintain that industry collaboration complements their own academic research by securing 

funds for graduate students and lab equipment, and by providing them with ideas for their 

own research (Lee, 2000). Siegel et al. (2003), for example, report that “[s]ome scientists 

explicitly mentioned that these interactions improved the quantity and quality of their basic 

research.” Ideas sourced from industry may thus expand traditional research agendas 

(Rosenberg, 1998), benefitting the overall scientific performance of researchers. 

                                                 
1 In the 1980s, the US introduced a series of structural changes in the intellectual property regime accompanied by 

several incentive programs, designed specifically to promote collaboration between universities and industry (Lee, 
2000; Mowery et al., 2001). Almost 30 years on, many elements of the US system of knowledge transfer have been 
emulated in many other parts of the world (see e.g., the UK Government’s White Paper “The Future of Higher 
Education”, 2003). 
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These claims raise two questions for empirical research: (1) Does collaboration with 

industry increase or decrease researchers’ productivity in terms of publication rates? (2) 

How does collaboration affect the various types of academic researchers and research 

outcomes? Previous research on these long-standing questions has mostly used patenting as 

a measure of industry collaboration (see Geuna and Nesta, 2006, and Baldini, 2008, for 

reviews). The evidence is somewhat mixed, ranging from the negative effects of patenting on 

research output reported in surveys of academic scientists (Blumenthal et al., 1996), to no 

effect in some of the econometric studies (Agrawal and Henderson, 2002) to even a positive 

relationship in some of the recent evidence (Azoulay et al., 2009; Breschi et al., 2008; 

Fabrizio and DiMinin, 2008; Stephan et al., 2007; van Looy et al., 2006). 

This paper studies the effect of industry collaboration on academic research output using 

a new measure of industry collaboration based on the fraction of research grants which 

include industry partners. In contrast to patents, our measure is continuous in nature, and so 

we are able to identify an optimal level of collaboration. Collaborative links through joint 

research, consulting or training arrangements are not only more widespread (D’Este and 

Patel, 2007), but are also more important knowledge transfer channels than patents, licenses, 

and spin-offs, both according to the academics (Agrawal and Henderson, 2002) and the firms 

(Cohen et al., 2002). Data on research collaborations also provide a more continued 

assessment of the level of interaction with industry than measurements based on the 

number of patents. Possibly due to the lack of comparable data, the literature has paid little 

attention to these more collaborative forms of university-industry interaction. 

Our measure is constructed exploiting comprehensive information from the main UK 

agency for funding in engineering, which distinguishes between collaborative and 

non-collaborative research grants based on the involvement of industry partners. 2 In 

addition to research funds, we compiled a unique, longitudinal dataset containing research 

output (publications), patents, and other individual characteristics for all academics 

employed in all the engineering departments of 40 major UK universities between 1986 and 

2007. Since our dataset contains the majority of academic engineers in the UK, our results 

are not driven by the most successful researchers, a single university, or academic inventors 

                                                 
2 The presence of industry partners in public research grants might not be a perfect proxy for the level of interaction with 

industry, as there are also other channels of interaction. The inclusion of private firms as partners, however, is highly 
correlated with obtaining direct funding from the industry (Meissner, 2011). 
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alone. In fact, we can test whether the effects of industry collaboration differ across types of 

researchers. 

In addition, by following each academic over time, we are able to identify the individual 

impact of industry collaboration on academic productivity, controlling for individual 

characteristics, potential reverse causality problems, and the dynamic nature of publications. 

Successful, productive researchers are better placed to attract more interest from industry. 

Industry collaboration can hence be the consequence, and not just the cause, of high numbers 

of publications. Furthermore, as is shown by previous papers (e.g. Arora et al., 1998; Agrawal 

and Henderson, 2002), the number of past, present and future publications are correlated. 

We address these two identification issues using instrumental variables and applying a 

dynamic panel data approach.  

The paper is organized as follows. In section 2 we provide the conceptual framework. In 

section 3 we describe the dataset and introduce our empirical strategy. Section 4 presents 

our results. Section 5 discusses and concludes. 

 

2 Conceptual framework 

We base our empirical specification on the implicit assumption that an academic derives 

utility from her academic research output. Her objective consists of maximizing this utility. 

Indeed, publications in peer-reviewed journals provide substantial benefits in terms of 

career, salary, and internal and external recognition (Tuckman and Leahey, 1975).3 While 

other factors like public engagement, grantsmenship, and patenting are becoming 

increasingly important, publications still present the major goal for academic researchers. 

For example, the UK’s Research Excellence Framework (REF), which links departmental 

research to core government funding, still has publications as its most important factor. 

As illustrated in Figure 1, the quantity and quality of publications of an academic depend 

positively on (i) the quality and quantity of her ideas, (ii) the amount of resources available,4 

(iii) the time she devotes to academic research, and negatively on (iv) the constraints on 

publication activity, due for example to dissemination restrictions or commercialization of 

                                                 
3 Academic researchers have also repeatedly been shown to possess a “taste” for science and derive satisfaction from 

scientific publication (Stephan, 1996, 2012; Stern, 2004). 
4  The availability of research funding is important for scientists in all academic disciplines, but especially in 

resource-intensive fields such as engineering (Stephan, 1996, 2012). Several recent studies have documented a 
positive impact of public grants on research performance (Jacob and Lefgren, 2011; Benavente et al., 2012). 
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scientific outcomes (Stephan, 1996, 2012). Of course, publication rates may also be affected 

by time-invariant individual characteristics, such as gender, field, and education, together 

with time-variant attributes, such as past publications and seniority. 

In this section we explain how industry collaboration affects each of these four factors 

and hence academic research output. Comparing the marginal benefits and the marginal 

costs of collaborating, we then show that there is an optimal degree of collaboration, in terms 

of research output. Of course, industry collaboration can bring other benefits (Lawson, 

2013a), including direct and indirect pecuniary gains (such as commercial applications), in 

addition to those considered here. Third, we discuss the effects on different types of 

academics and across different measures of academic output. Finally, we argue that 

collaboration can be the consequence and not only the cause of research output and stress 

the importance of addressing this potential reverse causality. 

 

2.1 Effects of industry collaboration 

Collaboration with industry can boost academic research output for at least two reasons. 

First, collaboration can expand academics’ research agendas and improve the pool of 

research ideas (Rosenberg, 1998). Survey evidence in Lee (2000) shows that collaboration 

helps academics gain new insights for their own research and test the practical application of 

their theories. Mansfield (1995) also shows that a substantial number of publicly sponsored 

research projects stem from industrial problems encountered in consulting.  

Second, industry collaboration can expand the available financial resources. Indeed, 

industry has been identified as a major source of funding for academic research in recent years. 

According to survey evidence by Lee (2000), two of the most important reasons for 

academics to collaborate with industry are to secure funds for graduate students and lab 

equipment, and to supplement funds for their own academic research. Private financial 

support is especially important in light of the progressive decline in direct government 

funding during the last three decades (OECD, 2010). 

Industry collaboration, however, can also be costly in terms of academic output. First, 

spending time interacting with industry partners reduces the time devoted to pure academic 

research activities. As suggested by Florida and Cohen (1999), academics’ general duties, and 

their research duties in particular, might be compromised by an increase in time allocated to 

development, consulting or commercialization.  
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In addition, firms’ commercial interests might impose constraints on the publication 

activity of collaborating academics. Czarnitzki et al. (2011) find that the percentage of 

researchers that report higher secrecy and publication delay is significantly larger for 

researchers sponsored by industry. Collaboration might even influence the selection of 

research topics and methodology (Florida and Cohen, 1999). As argued by Trajtenberg et al. 

(1997), industry research and development (R&D) is directed at commercial success, while 

university research generally focuses on solving fundamental scientific questions. Thus, 

research that addresses market demands, and appeals to industry partners, may not 

necessarily be close to the research frontier (Rosenberg and Nelson, 1994). 

In sum, industry collaboration has benefits as well as costs for academic research. On the 

one hand, collaboration might help individual research by providing new ideas and 

additional funds. But on the other hand, less time and research constraints might lead to a 

reduction in academic research output. In the next section, we discuss the importance of 

each of these factors as the degree of collaboration changes.  

 

2.2 The optimal degree of collaboration 

However small, some exposure to real business problems might help non-collaborating 

academics gain valuable insights into their area of research, and expand the pool of research 

ideas and resources available. Therefore, as illustrated in the left-hand side panel of Figure 2, 

the marginal benefits of collaboration are expected to be substantial at very low levels of 

collaboration. But, as the level of collaboration increases, we expect the marginal benefits of 

collaboration to decrease. Indeed, a small increase in collaboration activity for an academic 

heavily involved with industry is less valuable than for someone collaborating little.  

On the other hand, the marginal costs of collaboration, especially those related to the time 

lost to commercial application, are expected to be low for low levels of collaboration. But, as 

the extent of collaboration increases, the marginal costs of collaboration should increase. At 

the limit, an academic spending most of her time interacting with industry does not have 

time to do any basic research at all. As a result, the marginal costs for high levels of 

collaboration are expected to be higher than the marginal benefits, as exemplified in the 

left-hand side panel of Figure 2. 

Summing up, we expect the marginal benefits to decrease from a high level, and the 

marginal costs to increase from a low level, as the level of collaboration increases. As a result, 
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as shown in the right-hand side panel of Figure 2, we predict an inverted U-shaped 

relationship between industry collaboration and academic research output. Thus, the 

optimal level of collaboration, denoted as x* in Figure 2, is interior, i.e. lies inside the interval. 

We expect academics involved in collaborative research projects with industry to publish 

more than their non-collaborating peers. But, we also expect academic output to be lower for 

those that become heavily involved.  

The existing results on patents provide indirect evidence of the positive effect of 

collaboration for low levels of involvement. Academic patenting can be viewed as industry 

collaboration requiring low levels of interaction with firms (Agrawal and Henderson, 2002) 

and are likely to be on the increasing part of the curve in Figure 2. Recent evidence indeed 

finds a positive relationship between patenting and publications (Azoulay et al., 2009; 

Breschi et al., 2008; Fabrizio and DiMinin, 2008; Stephan et al., 2007; van Looy et al., 2005). 

Previous research that investigates the effects of forms of collaboration that require 

substantial interaction, as for example in academic start-ups, provides evidence for the 

negative effects of high levels of collaboration. Toole and Czarnitzki (2010) show that US 

academics that receive funding to start or join for-profit firms are more productive than their 

peers, but that they produce fewer publications after receiving the grant. Goldfarb (2008) 

tracks a sample of 221 university researchers funded by the NASA and concludes that 

researchers repeatedly funded by the NASA experienced a reduction in academic output. In 

this case, the effect is likely to have been that associated to the decreasing part of the curve. 

 

2.3 Differences across types of academics 

We expect some academics to be more affected than others by the positive and negative 

effects of collaboration. For instance, regular collaborators, i.e., those that show high levels of 

collaboration throughout their career, should be more affected than occasional collaborators. 

Occasional collaborators might not be heavily invested, and benefit or suffer less from 

collaboration, than those that regularly collaborate and write papers with the industry. 

Similarly, we expect stronger effects for researchers in smaller, less prestigious 

universities which have higher levels of engagement with industry (D’Este and Patel, 2005). 

Lower levels of core funding force smaller institutions to rely relatively more on external 

grants (Perkmann et al., 2013). Small but positive levels of industry collaboration may then 

lead to relatively stronger positive effects, because collaboration may financially enable 
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research. But high levels of involvement might also be relatively worse, because industry 

would then account for the overall majority of funding and could impose severe time and 

publication activity constraints. 

We also expect the trade-off associated with collaboration to be less pronounced for 

senior academics. Experience and network effects might make senior researchers less prone 

to the positive and negative effects of collaboration. Young researchers, instead, are at a 

crucial point of their careers, and should be more affected (Dasgupta and David, 1994). 

 

2.4 Differences across measures of research output, quality and type of research 

Industry collaboration might affect not only the quantity but also the quality and the type 

of publications. We expect the effects of collaboration to appear both for basic and applied 

research, but to be stronger for applied research. The availability of financial resources 

benefits, above all, applied research programs.5 Research ideas arising from collaboration 

are also more likely to be turned into applied research papers. At the same time, publication 

constraints should affect, especially, applied publications. Survey studies on this topic, such 

as Blumenthal et al. (1986), Gulbrandsen and Smeby (2005) and Glenna et al. (2011) report 

that researchers with funding from industry claim to undertake significantly more applied 

research than researchers with no external funds or other types of funds.  

The trade-off associated with industry collaboration may also be different for research 

quantity than for average research quality. A small level of collaboration might increase the 

number of publications, due to enhanced pools of ideas and resources, but not their average 

quality, which depends relatively more on intrinsic researcher characteristics, such as ability. 

Similarly, high levels of collaboration might reduce publication numbers due to time 

constraints or secrecy issues, though not necessarily affecting their average quality. 

Empirical evidence on this topic is mixed. While Hottenrott and Lawson (2013) find evidence 

that researchers with high levels of engagement, i.e., those that claim that industry is of high 

importance for gaining ideas for research, produce fewer publications but not publications of 

lower quality, Toole and Czarnitzki (2010) find a negative effect for both outcomes.  

 

                                                 
5 Financial rewards, however, might also have a positive impact on the production of basic research because basic and 

applied research efforts are complementary (Thursby et al., 2007) or because they induce a selection of riskier and 
more basic research programmes (Banal-Estañol and Macho-Stadler, 2010). 
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2.5 The collaboration decision 

Engaging in collaborative activities is not an exogenous but a strategic decision of both 

academic researchers and firms. A substantial body of literature has studied, in addition to 

the benefits and costs of collaboration mentioned earlier, which types of academics tend to 

collaborate more often with industry (see Perkmann et al., 2013). Academic researchers' 

characteristics and attitudes, as well as local group norms play a role. Geographical proximity 

to the firms is also important, particularly for researchers in universities with a modestly 

rated faculty (Audretsch and Stephan, 1996; Mansfield and Lee, 1996).  

Several papers have also identified the private sector’s benefits and costs from 

collaborating with academia (Henderson et al., 1998; Salter and Martin, 2001; Cohen et al., 

2002; Link and Scott, 2005, Laursen et al., 2011). Firms that choose to team up with 

academics gain access to specialized knowledge and equipment that benefit their own 

research and development. As a result, firms’ decision to collaborate depends on their 

absorptive capacity (Veugelers and Cassiman, 2005), their size, and whether they adopt an 

"open" search strategy (Mohnen and Hoareau, 2003; Laursen and Salter, 2004). 

Nonetheless, ultimately, forming a partnership is a strategic decision on both sides of the 

‘market’ (Mindruta, 2012). Banal-Estanol et al. (2013) develop a two-sided matching market 

model of academic researchers and firms developing research projects. Participants on each 

side of the market are heterogeneous in terms of scientific ability (past publications, patents, 

or know-how) and project preferences (degree of “appliedness”). They show, theoretically 

and empirically, that successful academics and those involved in more applied research are 

more likely to collaborate with industry, whereas the least able and those mostly involved in 

basic research are more likely to develop non-collaborative projects. Also, they find that the 

matching, among those that collaborate, is positive assortative in terms of scientific ability, i.e. 

top academics collaborate with top firms and less-able academics collaborate with less-able 

firms; and also in terms of project preferences, i.e. academics involved in more applied 

research collaborate with more applied firms and academics mostly involved in basic 

research collaborate with more basic firms.  

As a result, there is (positive) reverse causality between publications and industry 

collaboration. As shown in Figure 1, academics with a higher number of publications, and in 

particular applied research publications, possibly attract more and better collaborations. As 

Blumenthal et al. (1986) argue, “the most obvious explanation for this observed relation 
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[between collaboration and publications] is that companies selectively support talented and 

energetic faculty who were already highly productive.” Consequently, estimates of the impact 

of industry collaboration on academic research output could be biased upwards if 

endogeneity is not corrected for. We shall address this issue in our empirical strategy. 

 

3 Data and Empirical Strategy 

In this section, we provide a detailed account of the creation of the dataset, as well as of 

the model specification and the identification strategy used. 

  

3.1 Data  

We created a unique longitudinal dataset containing individual characteristics, 

publications, research funds, and patents for all researchers employed in all the engineering 

departments of 40 major UK universities between 1986 and 2007 (see Table 1 for a list of 

universities). Through the British Library, we searched for university calendars and 

prospectuses, providing detailed staff information for all the universities with engineering 

departments in the UK.6 Our final sample contains all the universities that had calendar 

information available, including all the universities that are members of the prestigious 

Russell Group, a coalition of 24 research-intensive UK universities, as well as 16 other 

comprehensive or technical universities.7 

We retrieved the academics’ names and ranks for all the years 1986 through to 2007. We 

focused on academic staff carrying out both teaching and research and did not consider 

research officers or teaching assistants. We followed the researchers’ career paths between 

the different universities by matching names and subject areas and by checking the websites 

of researchers. Academics leave (and join or rejoin) our dataset at different stages in their 

career, when they move to (or from) abroad, industry, departments other than engineering 

(e.g., chemistry, physics, computer science), or universities that are not part of our dataset. 

                                                 
6 By Act of Parliament, the British Library is entitled to receive a free copy of every item published in the UK. These data 

were supplemented with information from the Internet Archive, a not-for-profit organization that maintains a free 
Internet library committed to offering access to digital collections. Their collection dates back to 1996 and enabled us 
to retrieve information from outdated Internet sites. 

7 We identified the initial set of engineering departments from the 1996 and 2001 Research Assessment Exercises 
(RAEs). We did not find information for eight institutions which are similar to the 16 non-Russell group universities in 
our sample. We did not consider any of the 39 post-92 universities either, as these were not full research institutions 
for all the years considered in this analysis. We also excluded the Open University and Cranfield University which, as 
distance and postgraduate institutions, respectively, have a very different structure. 
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They represent the basis for our data collection and enable us to retrieve information on 

publications, research funds, and patents. 

Our final sample contains information on 3,991 individuals. The final sample excludes all 

inactive researchers (those with neither publications nor funds during the entire sample 

period) and researchers who were present for less than six consecutive years so that all of 

our (stock) variables could be created. We describe below our sources and measures of 

research output (our dependent variable), industry collaboration (our main independent 

variable), as well as funding, patents, and other individual characterizing variables. We 

provide summary statistics of these variables in the first panel of Table 2.  

 

Research output. Data on publications were obtained from the ISI Science Citation Index 

(SCI). The number of publications in peer-reviewed journals is not the only measure but is 

the best recorded and the most accepted measure for research output as they are essential 

for gaining scientific reputation and for career advancements (Dasgupta and David, 1994). 

We collected information on all the articles published by researchers in our database while 

they were employed at one of the institutions in our sample. Most entries in the SCI database 

include detailed address data that allowed us to identify institutional affiliations and 

unequivocally assign articles to individual researchers.8 

As a main measure of research output for each researcher in each year, we use the 

normal count of publications (countit), i.e. the number of publications in t on which 

researcher i is named as an author. Publication counts, however, might be misleading for 

articles with a large number of authors and may not reflect a researcher’s effective 

productivity. Therefore, we also use the co-author-weighted count of publications (co-author 

weighted countit), which we obtain by weighting publications by the inverse of the 

publication’s number of co-authors. 

To investigate the effects on the quality of publications, we take into account the impact 

factor attributed to the publishing journals. The SCI Journal Impact Factor (JIF) is a measure 

of impact based on the number of citations received by articles published in the journal in 

the first three years of publication. Though not a perfect measure of quality, the JIF 

represents the importance attributed to a particular article by peer review. As the JIF of a 

                                                 
8 Publications without address data had to be ignored. However, we expect this missing information to be random and 

to not affect the data systematically. 
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journal changes over time and journals are constantly added to the SCI, we collected JIFs for 

all years between 1986 and 2007. We measure the average quality of publications of an 

individual i in a year t as the average JIF of her publications (average impact factorit). 

Publications in journals without a JIF were given a weight of zero. 

As an indicator for the type of research, we use the Patent board (formerly CHI) 

classification (version 2005), developed by Narin et al. (1976) and updated by Kimberley 

Hamilton for the National Science Foundation (NSF). Based on cross-citation matrices 

between journals, it characterizes the general research orientation of journals, distinguishing 

between (1) applied technology, (2) engineering and technological science, (3) applied and 

targeted basic research, and (4) basic scientific research. Godin (1996) and van Looy et al. 

(2006) reinterpreted the categories as (1) applied technology, (2) basic technology, (3) 

applied science, and (4) basic science; and grouped the first two as “technology” and the last 

two as “science”. We use the normal count of publications in each of these two categories and 

denote them “applied” (applied countit) and “basic” (basic countit), respectively. Due to the 

applied character of engineering sciences, 74% of all publications are applied. 

 

Industry collaboration. Our measure of industry collaboration is based on grants awarded 

by the Engineering and Physical Sciences Research Council (EPSRC), the main UK 

government agency for research in engineering and the physical sciences, and by far the 

largest provider of funding for research in engineering (more than 50% of overall third-party 

funding). The EPSRC encourages (but does not require) academic researchers to find private 

partners for their projects. As defined by the EPSRC, “Collaborative Research Grants are 

grants led by academic researchers, but involve other partners”. Partners generally 

contribute either cash or `in-kind' services to the full economic cost of the research.9 

We obtained information on all the grants awarded since 1986. For each grant, we 

collected the start year; duration; total amount of funding; names of principal investigator 

(PI) and co-investigators; grant receiving institution; and names of partner organizations, if 

any. We use the presence of private partners to construct our measure of industry 

                                                 
9 The EPSRC does not favor specific types of academic research output. Grants are awarded based on peer-review and 

monitored through end-of–award reports. There are, however, no specific measures for evaluating the success of the 
knowledge exchanges between science and industry. 
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collaboration (fraction of funding with industryit), which quantifies the fraction of 

collaborative EPSRC funds of an individual i in the five previous years (i.e. between t-4 and t). 

To be precise, the variable fraction of funding with industry was constructed as follows. 

We divided the total monetary income of each grant between the PI and her 

co-investigator(s). We took into account the participation of all investigators but positively 

discriminated PIs by assigning them half the grant value and splitting the remaining 50% 

among the co-investigators. PIs were assigned a major part as they are expected to lead the 

project. We additionally spread the grant value over the award period.10 This was done in 

order to account for the on-going benefits and costs of the project and to mitigate the effect 

of focusing all the funds at the start of the project. Finally, for each year and for each 

researcher we computed the fraction of “collaborative” funds in the previous five years, i.e. 

those that included one or more industry partners, over all EPSRC funds received in the same 

period. We use a five-year window to reflect the profile of an academic in terms of her past 

stream of funding.  

 

Funding. As discussed in the conceptual framework section, the availability of funds is an 

important factor for research output. We therefore created an indicator variable (had some 

fundingit) that takes value 1 if academic i received any EPSRC funding (collaborative or not) 

in the five previous years and 0 otherwise. We used the indicator instead of the funding level 

because the latter is discipline-specific (some disciplines require more funding than others). 

As for industry collaboration, we used a five-year window to reflect the academic’s profile.  

 
Patents. In the conceptual framework, we argued that the commercialization of research 

results might impose constraints on publication activity. Our analysis therefore should 

control for patent activity. By including patents, we also separate the effect of patenting from 

the effect of collaborating with industry, as defined above. Prior research has considered 

patenting itself as being an indicator of a researcher’s involvement with industry. As a result, 

the benefits and costs of collaboration might also appear through the patent channel.  

We obtained patent data from the European Patent Office (EPO) database. We collected 

those patents that identify the aforementioned researchers as inventors and were filed while 

                                                 
10 If the grant lasted two years, we split it equally across those two years. If it lasted three or more years, the first and 

the last years (which are assumed to not represent full calendar years) received half the share of an intermediate year. 



15 

they were employed at one of the 40 institutions. We not only consider patents filed by the 

universities themselves, but also those assigned to third parties, e.g., industry or government 

agents (as shown by Lawson, 2013b, 52% of academic patents in the UK are not owned by 

the university). The filing date of a patent was recorded as representing the closest date to 

invention. Since the filing process can take several years, we were only able to include 

patents published by 2007, hence filed before 2005.11 The EPO only covers a subsample of 

patents filed with the UK Intellectual Property Office (UKIPO). Nevertheless, the patents that 

are taken to the EPO are those with a higher economic potential and/or quality (Maurseth 

and Verspagen, 2002) and have been used in the past to analyze academic patenting in 

Europe (see Lissoni et al., 2008). 

To measure the impact of patenting on the timing of publications, we use a dummy 

variable indicating whether the academic i has filed any patent in the same year (patentit), or 

in the two years preceding the publication (patentit-1 and patentit-2). Researchers in Europe, 

unlike the US, cannot benefit from a “grace period” and hence have to withhold any 

publication related to the patent until the patent application is filed. We therefore expect a 

lag of up to two years between invention and publication in a journal.  

 

Individual characteristics. Research output might be linked to the researcher’s personal 

attributes such as sex, age, education, and academic rank. Academic rankit is the only 

time-variant observable characteristic in our dataset. Thus, we incorporate information on 

the evolution of researchers’ academic status from lecturer to senior lecturer, reader, and 

professor into our analysis. Lecturer corresponds to an assistant professor in the US, 

whereas senior lecturer and reader would be equivalent to associate professor.  

We also include, as an additional time-variant characteristic of an academic at a given 

point in time, her past publications. Indeed, as argued by Stephan (1996), there is a 

“cumulative advantage” in science that results in a dynamic relationship between past and 

present publication output.  

 

                                                 
11 Just like previous studies (see e.g., Fabrizio and DiMinin, 2008), data construction requires a manual search in the 

inventor database to identify the entries that were truly the same inventor and to exclude others with similar or 
identical names. This was done by comparing the address, title, and technology class for all patents potentially 
attributable to each inventor. The EPO database is problematic in that many inventions have multiple entries. It was 
therefore necessary to compare priority numbers to ensure that each invention is only included once in our data. 
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Interaction variables. As discussed in Section 2.3, the effect of industry collaboration on 

research output might differ across categories of academics. We therefore created five 

indicator variables which we use as interaction variables. We differentiated between 

academics that collaborate below and above the median intensity of collaboration, defined 

using (i) the lifetime share of publications with industry co-authors and (ii) the lifetime 

share of collaborative grants. Researchers with zero publications and zero grants were 

excluded. We also differentiated between (iii) those that had received above or below the 

median amount of funding during the previous five years; (iv) those that belonged to the 

selected Russell group of universities from those that did not; and (v) those at an earlier 

stage of their careers from the most senior researchers (professors). Researchers were able 

to change groups when they changed universities or were promoted. Panels 2 to 6 in Table 2 

present the descriptive statistics of the two main variables of interest for these subsamples. 

 

3.2 Econometric specification 

Following our theoretical prediction, we estimate a model where research output is 

influenced non-linearly by the degree of collaboration with industry. The model includes as 

explanatory variables, not only the fraction of funding with industry and its quadratic term, 

but also past research output, having had any type of funding, the patent indicator variables, 

and other individual characteristics. Accordingly, we formulate our empirical model as: 

𝑦𝑖𝑡 = �𝛼j

2

𝑗=1

𝑦𝑖(𝑡−𝑗) + 𝛽1ℎ𝑓𝑖𝑡−1 + 𝛽2𝑓𝑖𝑛𝑖𝑡−1 + 𝛽3𝑓𝑖𝑛𝑖𝑡−12 + �𝛾𝑘

2

𝑘=0

𝑝𝑖(𝑡−𝑘) + 𝛿𝑥𝑖𝑡−1 + 𝜇𝑖 + 𝑣𝑖𝑡, 

where yit stands for academic i’s research output at time t (either countit, co-author weighted 

countit,, average impact factorit, applied countit, or basic countit); hfit-1 is the indicator variable 

had some fundingit-1; finit-1 is the fraction of funding with industryit-1; pit is the patentit 

indicator variable; and, xit-1 is a vector of other time-variant individual characteristics 

including academic rankit-1 and year. All the independent variables except the patents are 

lagged because of the publication lead time. The error term contains two sources of error: 

the academic i’s fixed effect term µi, and a disturbance term vit. Since the distributions are 

highly skewed, we take logarithms of both the research output and industry collaboration 

variables. As these figures contain zero values, we add the unit before we take logarithms. 

As is well known, the presence of time-invariant individual factors in the error term µi 

produces correlation among the individual errors across different periods of time, making 
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Ordinary Least Squares (OLS) inefficient and yielding incorrect standard errors. Thus, we 

estimate our model using Generalized Least Squares (GLS). And, because these 

individual-specific effects μi (e.g. ability or IQ) may be correlated with some of the 

explanatory variables (i.e., industry collaboration or academic rank), we choose a GLS with 

fixed effects (FE) estimator as our benchmark. 

This model, though, cannot correct the autocorrelation created by the endogeneity of past 

research output. Thus, we compare the results of our benchmark regression, which does not 

include past research output, with those obtained using a dynamic Generalized Method of 

Moments (GMM) panel data model, which allows for the inclusion of lagged dependent 

variables as explanatory variables. In particular, we use the Arellano-Bond GMM estimator 

(Arellano and Bond, 1991; Blundell and Bond, 1998). This estimator transforms the model 

into first differences and thus eliminates the individual effects – and, thus, the cause of the 

autocorrelation across time periods. Thus, lagged dependent terms become valid 

instruments, which, along with lagged independent and exogenous variables, allow for the 

computation of asymptotically efficient estimates of the coefficients of interest.  

 
3.3 Instrumental variables and identification strategy 

As explained in the theoretical discussion, industry collaboration may not only be the 

cause of research output but also its consequence, creating reverse causality issues. Similarly, 

the had some funding indicator variable may be endogenous because the most able 

academics are also more likely to receive funding. Thus, in order to obtain consistent 

estimates of the coefficients of interest, we need to use instrumental variables. 

For the GLS models, we instrument the fraction of funding with industry variable using 

the economic activity of the area and the overall share of industry funding of the department. 

Economic activity of the area is approximated by the yearly number of manufacturing firms, 

as listed in the COMPUSTAT database, in the own and adjacent postcodes of the university 

where the academic works. The share of funding from industry received by the whole 

department is obtained from the Research Assessment Exercise (RAE) data, which provide 

information on the total amount of research funds received by each department in the UK, 

decomposed by category (public, private and other funding) for the years 1993 through to 

2007. Both measures are good instruments in the sense that regional economic activity and 

overall industry involvement of the department should not affect individual research output 

but should have an impact on the individual’s opportunity to collaborate with firms. We also 
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instrument the had some funding variable using the aggregate amount of funding received by 

the department, based on the same RAE data. Given that some of our instruments were only 

available for 1993 onwards, the number of observations is reduced in the regressions with 

instruments. We test the validity of our instruments following the two-step model approach 

described in Wooldridge (2002: 531–532, 2003: 483).  

We also use these variables as instruments in the Arellano-Bond GMM (GMM-AB) models. 

The identification of our GMM models is warranted as they satisfy both the Autocorrelation 

and the Sargan tests. The autocorrelation test of the Arellano-Bond estimator rules out that 

the residuals’ dynamic structure is a source of autocorrelation and is thus an ignored cause 

of bias of the estimates. The satisfaction of the Sargan test warrantees that the depth of the 

endogenous and exogenous variables’ lags taken is enough to ensure that they are valid 

instruments and do not cause endogeneity issues in the transformed first differences models. 

In our case, the required depth of the lags is three periods. Even if our models satisfy the 

required tests, they use three and deeper lags of the dependent and independent variables as 

instruments, whereas the funding history goes back five years. To make sure that this is not a 

hidden cause of autocorrelation, and as a robustness check, we also estimate our model using 

a funding stock variable based on only two years of funding, as opposed to five. 

 

4 Empirical Results 

In this section we present our estimates of the impact of industry collaboration on 

research output. We first introduce our main results and then perform robustness checks. 

Finally, we analyze whether the impact of collaboration differs across types of researchers or 

measures of research output. 

 

4.1 Main Results 

The first four columns in Table 3 report the basic estimates of research output, measured 

as the normal count of publications, using GLS with fixed effects (columns 1, 2 and 3) and 

GMM estimators (column 4). Column 1 displays the estimates of the non-instrumented GLS 

with fixed effects (GLS FE). Column 2 shows the estimates of our benchmark model, the GLS 

with instrumental variables and fixed effects (GLS FE IV). Column 3 adds one and two-year 
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lagged counts of publications as explanatory variables (GLS FE IV lags). 12 Column 4 

estimates the same specification using the Arellano-Bond GMM model, with lagged 

endogenous and exogenous variables and year dummies as instruments (GMM-AB). 

At the bottom of the table, we include goodness of fit statistics. For each GLS specification, 

we report the R2 and the F-statistic associated to the joint significance of all regressors. The 

null of joint non-significance is rejected in all the models. For the GMM models, we report (i) 

the Wald Chi2 tests, which reject the joint non-significance of the regressors; (ii) the 

Sargan/Hansen tests, which are insignificant, suggesting that the models do not suffer from 

over-identification, and (iii) the Arellano-Bond tests, which do not reject the null that there is 

an absence of third (or higher) order correlation of the disturbance terms of our 

specifications, which is required for the consistency of these estimates. We report robust 

standard errors. 

In the following paragraphs we present the main results grouped in themes for clarity. 

 

Baseline number of publications. The antilog of the estimate of the constant term, minus 

the unit, can be considered the “baseline” productivity prediction, i.e., the expected number 

of publications for an academic at the lowest rank (lecturer) who does not have any funding 

or patents. For the GLS IV FE benchmark in column two, the baseline number of publications 

associated to the estimate of the constant term is 0.60. According to the GMM-AB estimator 

in column four, once we incorporate the average effect of lagged publications, the baseline 

number of publications is higher (1.20). The GMM-AB estimates, however, are very sensitive 

to past publications (the coefficients for each of the two previous years are 0.820 and 0.042, 

respectively).  

 

The effect of (non-collaborative) funding. Consistent with the conceptual framework, we 

find that financial resources enhance research output. According to the benchmark estimates, 

the incremental effect of having (non-collaborative) funding when compared to not having 

any funding at all is 0.35 publications. This is the difference between the baseline number of 

publications when the academic had some funding, i.e. the antilog of (0.471+0.199) minus 

one, and the bare baseline publications, i.e. the antilog of 0.471 minus one. For the GMM-AB 

                                                 
12 Although the GLS IV estimator does not correct for the autocorrelation created by the endogeneity of lagged publications, 

we include this specification to compare the resulting coefficients with those obtained using the GMM-AB estimator. 
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specifications the incremental effect is 0.14. This is lower because GMM-AB estimates 

attribute a large part of the variation in current publications to variation in past publications.   

 

The effect of industry collaboration. For the benchmark in column 2, the linear coefficient 

of the fraction of funding with industry variable (β2 in the equation in Section 3.2) is positive 

and significant (0.925) and the coefficient of the quadratic term (β3 in the same equation) is 

negative and significant (-1.710). These results indicate that the effect of industry 

collaboration on the number of publications has an inverted U-shape. The fraction of funding 

with industry that would result in the maximum number of publications is 0.31. This is the 

antilog (minus one) of the fraction x satisfying the first order condition of the number of 

publications’ maximization problem, i.e., x*= β2 / [-2* (β3) 2]. Thus, in the range of 0% to 

31%, increasing the fraction of collaborative funding results in more publications, but 

beyond that threshold more collaborative funding decreases the number of publications. 

For all specifications, the linear coefficient is positive and significant and the quadratic 

term is negative and significant. Thus, independent of the estimation method chosen, the 

effect of industry collaboration on the number of publications remains an inverted U-shape. 

Similarly, the optimal collaborative fractions in all the specifications range from 0.3 to 0.4, 

except for the non-instrumented GLS FE specification (0.56).   

Thus, the non-instrumented GLS FE estimates, which are not corrected for the reverse 

causality of publications on funding, result in an optimal collaboration level that is almost 

twice the optimal level in the benchmark case. The coefficients associated with industry 

collaboration in the non-instrumented specification are partly absorbing the (reverse) 

positive effect of publications on collaborative funding, and are thus overestimating the 

positive effect of collaborating with the industry.  

 

The effect of having filed patents. In accordance with recent literature, having filed patents 

in the current year (t) has a positive significant effect on research output both for the GLS IV 

FE and the GMM-AB models. The associated effect is calculated as the antilog (minus one) of 

the coefficient of the indicator variable and ranges from 0.04 to 0.06 extra publications. 

Having filed patents in each of the previous two years (t-1 and t-2) is positive and significant, 

increasing current publications by about 0.04 in each of them for the GLS FE IV models. 

These coefficients are positive but not significant in the GMM-AB model.  
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The effect of academic rank. Being a senior lecturer, a reader or a professor as opposed to 

a lecturer has little effect according to our estimates, except for the non-instrumented model. 

Correcting for the reverse causality of industry collaboration and funding removes the effect 

of academic rank on research output.  
 

The effect of lagged publications. In columns 3 and 4, we include past publications as 

explanatory variables. The coefficient associated with the previous year’s publications is 

positive and significant, both in the GMM-AB specification (0.820) and in the GLS FE IV with 

lags (0.031). The effect of the number of publications two years prior is positive but smaller. 

Because we have taken logarithms of both the dependent variable and its lagged terms, we 

can interpret these coefficients as elasticities. Thus, increasing the number of publications in 

the previous year by 100% (i.e. doubling them) would increase the following year’s expected 

number of publications by almost one percentage point according to the GMM-AB 

specification and by 0.3 percentage points according to the GLS FE IV with lags estimator.  

As in earlier papers, our estimates suggest that there is persistence in publications. But, 

most importantly, accounting and correcting for the effect of past publications on current 

output using GMM-AB, does not result in a qualitative change of the results obtained with the 

GLS IV FE estimators in terms of an inverted U-shaped response of publications to the 

intensity of collaboration with industry. 

 

Summary. Figure 3 shows the aggregated impact of industry collaboration on publications. 

Using the estimates of each of the four models, we plot the predicted number of publications 

against the levels of collaborating funding for a lecturer with no patents. The levels of 

collaborative funding range from 0% to 100%, i.e., from all funding involving no industry 

partners (non-collaborative) to all funding including industry partners. We also plot the 

predicted number of publications for a researcher that has not received any funding for the 

benchmark GLS FE IV specification (the predicted number is similar for the other models). 

As can be observed, according to the benchmark GLS FE IV specification, the predicted 

number of publications for a researcher with no funding at all (0.60) is increased by 0.35 

publications in the presence of non-collaborative funding (i.e. 0.95 publications, the intercept 

of the inverted U-shaped curve). Increasing the intensity of collaboration has a positive effect, 
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but beyond a certain threshold it is negative. For very high levels of industry collaboration 

(above 70%) the predicted number of publications is lower than for non-collaborative 

funding, but it is always better than for no funding at all. 

Overall our estimates provide strong evidence to support the hypothesis that industry 

collaboration does non-linearly affect the number of publications. The effect is positive for 

low intensities of collaboration, but it turns negative after a certain threshold, in all the 

different specifications. The inverted U-shaped curves reach their maxima at an intensity of 

industry collaboration of about 0.3 for the two GLS FE IV models, at about 0.4 for the 

GMM-AB models, and at 0.56 for the non-instrumented GLS FE. 

  

4.2 Robustness checks 

 
Two-year based funding stock. The GLS FE IV and GMM-AB estimates in columns five and 

six in Table 3 use a variation of the measure of industry collaboration. Here, the variables 

had some funding and fraction of funding with industry include the stream of funds received 

in the last two years only (as opposed to the last five). Although this choice reflects less 

accurately the funding profile of the academic, it deals better with potential autocorrelation 

issues. Indeed, all the GMM-AB models use three and deeper lags of the dependent and 

independent variables as instruments whereas the funding history in the main results is five 

years long. Additionally, basing our measure on a shorter window allows younger and more 

mobile researchers to enter the sample. This specification enables us to assess the impact of 

using the five-year window-based funding stock on the benchmark estimates.  

All coefficients of interest have the same sign and similar magnitude as in the main 

five-year stock regressions. The optimal fraction of collaborative funding in the GLS FE IV is 

slightly lower than that of the benchmark regression (0.17 as opposed to 0.31). This may be 

related to the fact that funded projects usually last longer than two years. Thus, the positive, 

long-term effects of collaboration with industry are not well captured and the implied 

optimal collaborative fraction is smaller. Instead, the model attributes a very large part of the 

variation in current publications to the variable had some funding. Surprisingly, being a 

senior lecturer increases publications by 0.05 in the GLS FE IV model but decreases them by 

0.02 in the GMM-AB specification.  
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Balanced sample. The specifications in columns seven and eight in Table 3 are estimated 

using only those researchers that can be observed for the full last 15 years of our sample, so 

that we are able to build the 5-year funding and industry collaboration variables and 

estimate a balanced 10 year panel. This specification enables us to explore whether the 

full-sample estimates have been significantly affected by attrition. 
Again, all coefficients of interest have the same sign and similar magnitude as in the 

full-sample regressions, which we interpret as being an indication that attrition has not 

caused important biases in the main estimates. The optimal levels of collaboration are also 

very similar. Interestingly, being a professor has a significant positive impact (0.07 

publications) according to the GMM-AB estimator. This may be related to the fact that the 

fraction of professors in the 10 years panel is larger than in the full sample.  

 

4.3. Differences across types of academics 

In Table 4, we reproduce the results of our benchmark model for various types of 

academics by interacting our variables of interest with indicator variables for particular 

groups of academics. The main effect in each specification reflects the effect of a variable for 

the group of reference. The effect for the interacted group is obtained by adding the 

interaction term to the main effect, if it is significantly different from zero. To summarize, the 

results in Table 4 show that the trade-off of industry collaboration exists for all the 

categories of academic researchers. The coefficient for the linear term is positive and that of 

the quadratic term is negative in all cases, both for the reference and non-reference groups. 

The magnitudes of the effects, however, differ, as we explain below. 

The first column distinguishes between academics who have an above (main effect) and 

below (adding the interaction effect) the median percentage of publications co-authored 

with industry. Those above the median in terms of lifetime industry co-authored publications 

have a larger linear term and a larger negative quadratic term for industry collaboration, 

indicating more responsiveness. Nevertheless, their associated optimal fraction of 

collaboration is 0.29, very similar to the 0.31 of the benchmark. The low collaborators have a 

flatter relationship between the fraction of funding with industry and publications, and a 

slightly lower optimal level of collaboration (0.26). Thus, occasional collaborators also 

experience gains and losses in terms of publications but the effects are weaker. 
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The second column distinguishes between academics with an above (main effect) and 

below (adding the interaction term) the median percentage of average lifetime funding with 

industry. High collaborators in terms of funding history with industry have slightly stronger 

effects than the high collaborators in terms of joint publications. But low collaborators in 

funding history do not appear to be significantly different from their high collaboration 

counterparts. The negative coefficients, although insignificant, would imply a slightly flatter 

and lower curve, and the impact of collaboration would be slightly worse.  

The third column separates academics with high and low levels of funding, i.e., academics 

above (main effect) and below (adding the interaction effect) the median in the amount of 

funding received in the past 5 years. Results suggest that those with a high level of funding 

have a slightly more positive response to industry collaboration, and a slightly higher curve. 

But, according to the interaction term estimates, academics with funding below the median 

are not significantly different from those above the median. 

In column 4, we distinguish between academics working in (main effect) and not working 

in (adding the interaction effect) a Russell group university. We find that those in the Russell 

group are not significantly different to those in other, lesser known and less-funded 

institutions. The negative coefficients of the interaction terms, although insignificant, 

suggests that the impact of collaboration for researchers in a non-Russell group university is 

slightly worse than for their counterparts. 

Lastly, column 5 distinguishes between academics that are of a lower academic rank 

(main effect) as opposed to professors (adding the interaction effect). According to our 

estimates, professors do not experience a significantly different impact than academics in 

lower academic ranks. The negative sign of these coefficients, however, are suggestive of 

professors having a flatter relationship between industry collaboration and publications. 

 

4.4. Differences across measures of research output, quality, and types of research 

In Table 5, we reproduce the results of our benchmark model using different measures of 

research output. The first column shows the impact of industry collaboration when 

publications are weighted by the inverse of the number of co-authors. The baseline number 

of the co-author weighted publication count is 0.33. The coefficients of the linear and 

quadratic terms of the fraction of funding with industry variable are significant, and jointly 

imply an optimal industry collaboration intensity of 0.2, slightly lower than that of the 
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benchmark of 0.3 in Table 3. The effect of the had some funding variable is insignificant, 

suggesting that funding may increase the number of publications simply by increasing the 

size of teams. This is further suggested by the negative effect of the professor dummy, as 

these may primarily benefit from larger labs through co-authorship. The effect of patents is 

positive and significant just like in the benchmark regression in Table 3. 

Column 2 reports the results of the effect of industry collaboration on the average quality 

of publications. While the existence of funding is positive and significant, the effects of the 

two industry collaboration terms and the patent variables are insignificant. This indicates 

that while industry funding and patenting positively affect publication quantity they do not 

affect average publication quality, which may depend more on intrinsic research ability. 

Columns 3 and 4 decompose the effects by type of research. We report the estimates of 

the impact of collaboration on the count of applied (“technology”) and basic (“science”) 

publications. The baseline number of applied and basic articles is, respectively, 0.33 and 0.11. 

Thus, the expected number of basic publications is lower than that for applied publications. 

The existence of funding positively impacts the number of basic publications, but the fraction 

of collaborative funding does not. According to the (insignificant) coefficients, the optimal 

fraction of funding in collaboration with the industry would be just 0.03. For applied 

research, the linear and quadratic coefficients associated to the industry collaboration 

variables are instead significant, and jointly imply an optimal intensity of about 0.3, similar to 

the benchmark regression in Table 3. 

Our results in the benchmark specification in column 2 of Table 3 show that having filed a 

patent in the current and in each of the two previous years increase significantly the overall 

number of publications. Columns 3 and 4 in Table 5 show that, when separating the effect for 

applied and basic publications, all the coefficients of having filed patents retain the positive 

sign. There are interesting differences, however, in terms of magnitude and significance. We 

find a significant positive contemporaneous effect of patenting on basic publications and a 

delayed significant positive effect on applied publications. Indeed, while commercialization 

may produce a variety of complementary basic research outputs, it may be delaying the 

publication of more applied, technically oriented, research papers. 
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5 Discussion and Conclusion 

This paper uses the individual time-varying fraction of research funding that involves 

industry partners to identify the effects of industry collaboration on research output. Many 

authors argue that research collaborations, contract research, and consultancy are far more 

important channels of knowledge transfer than patents, licenses, and spin-offs. Those 

channels are, however, more difficult to measure empirically and even more difficult to 

compare across institutions and time, which may explain why the literature has paid little 

attention to these collaborative forms of university-industry interactions. Here, we use 

homogeneous information on grants awarded by the EPSRC, by far the most important 

funding source of research in engineering sciences in the UK. 

Our results for this panel indicate that the number of publications increases with the 

presence of non-collaborative funding and increases even further with the intensity of 

industry collaboration, but only up to a certain point. For levels of collaboration above 30%–

40%, research output declines. These results have proven robust to variations in the 

econometric estimation method, for various subsamples of academics, and for various 

measures of academic research output. Nevertheless, some remarks are in order. Basic 

research output and average publication quality are significantly positively affected by 

(non-collaborative) funding but are not significantly affected by industry collaboration.  

The general finding of an inverted U-shaped effect of industry collaboration on research 

output might explain the positive effects previously found by studies that investigate forms 

of industry collaboration that require little to no direct interaction (e.g., patenting in the life 

sciences in Azoulay et al., 2009) and, at the same time, the negative effects of those forms of 

collaboration that require more involvement (e.g., being employed full-time in a small 

business, in Toole and Czarnitzki, 2010). Our results also bolster empirical evidence from 

previous surveys and cross-sectional studies on the effects of collaborative research funding 

on academic output by establishing a causal relationship. Even after controlling for 

endogeneity, we find supportive evidence for the positive impact of the existence of 

collaboration, as in Gulbrandsen and Smeby (2005). The negative effect of the intensity of 

collaboration for high levels of collaboration is also consistent with other survey results 

(Blumenthal et al., 1996) and cross-section empirical evidence (Hottenrott and Lawson, 

2013; Hottenrott and Thorwarth, 2011; Manjarres-Henriquez et al., 2009). 
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We use panel data estimation methods in which funding and industry collaboration are 

instrumented for, as successful researchers are better placed to attract interest from 

industry. Thus, industry collaboration can be the consequence, and not only the cause, of 

high number of publications. We also provide dynamic panel estimates that use lagged 

publications as explanatory variables. The positive effect of non-collaborative funding and 

the inverted U-shaped effect of industry collaboration on research output are validated when 

we instrument for both industry collaboration and lagged publications. Moreover, we show 

that the impact of excessive diversion from academic activity through industry collaboration 

can be seriously underestimated when inadequate estimation methods are used. Without 

controlling for reverse causality, our estimated optimal level of collaboration is almost twice 

the estimated level when this source of endogeneity is corrected for.  

Just as in earlier literature, we find a positive effect of patenting on publications. The 

contemporaneous effect of patent disclosure is similar to the one of past patents, giving no 

evidence of a “secrecy” effect. However, when we consider the nature of research we find a 

stronger contemporaneous effect of patents on publications in basic science journals. This 

may explain the positive correlation found in papers that analyze the publication and 

patenting activity of researchers in more basic sciences, e.g., life-science (Azoulay et al., 

2009; Breschi et al., 2008). As argued by Murray (2002) and Thursby et al. (2007) and 

confirmed by Thursby and Thursby (2011), ideas gained through basic research may also 

result in patents. We do however find a delayed positive effect of patenting for publications 

in applied journals, suggesting that they may suffer from “secrecy”. Perkmann and Walsh 

(2009) also argue that more applied projects are more likely to be affected by secrecy, 

because of immediate commercial viability. 

Our findings suggest that encouraging universities to collaborate moderately with 

industry is a beneficial policy. A moderate degree of industry collaboration not only 

facilitates the transfer of knowledge and accelerates the exploitation of new inventions, but it 

also increases academic research output. A moderate degree of collaboration increases the 

number of applied publications but it does not significantly affect the number of basic ones.  

We use a large uniquely created longitudinal dataset containing the academic career of 

the majority of academic engineers in the UK. We concentrate on the engineering sector 

because it has traditionally been associated with applied research and industry collaboration 

and it contributes substantially to industrial R&D (Cohen et al., 2002). But, our results are 
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similar for very different types of researchers within our sample: for those in large, 

research-intensive universities and in smaller ones, as well as for junior and senior, and for 

researchers receiving below and above median levels of funding. This suggests that our 

results might also be true in other contexts. 

Ours can only be a first step in the analysis of the effects of the various channels of 

knowledge transfer. With more comprehensive and homogeneous information, we could 

make comparisons between the effects of research collaborations, contract research, 

consultancy, and patents. In our sample, research collaborations have a stronger impact than 

patents. It might also be interesting to tackle interactions between different knowledge 

transfer channels. We know very little about whether collaboration channels complement or 

substitute each other. Consultancy, for example, might have a positive effect on research 

output if and only if it is complemented by collaboration in research. Of course, this is only a 

conjecture and a challenging task for future research. 
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Figure 1. Factors affected by industry collaboration and affecting research output. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 2. Expected effects of industry collaboration on academic research output. 

 

 

x* 

Industry collaboration 

Publications 

Marginal benefits 

Marginal costs 

x* 

Industry collaboration 

Industry Collaboration Publications 

Ideas 

Resources 

Time 

Constraints 

+ 

+ 

+ 

+ 

+ 

+ 

− 

− 

Individual characteristics 
+/− 

+ 



35 

 
Figure 3: Estimated publications by fraction of funding with industry 
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Russell	
  Group	
  Universities Number	
  of	
  ID* Number	
  of	
  Observations Other	
  Universities Number	
  of	
  ID Number	
  of	
  Observations

Birmingham,	
  University	
  of 193 1523 Aberdeen,	
  University	
  of 45 358

Bristol	
  University 82 581 Aston	
  University 62 573

Cambridge,	
  University	
  of 191 1541 Bangor	
  University 30 179

Cardiff,	
  University	
  of 99 802 Brunel	
  University 117 810

Durham,	
  University	
  of 43 308 City	
  University,	
  London 62 556

Edinburgh,	
  University	
  of 92 724 Dundee,	
  University	
  of 49 400

Exeter,	
  University	
  of 40 317 Essex,	
  University	
  of 29 295

Glasgow,	
  University	
  of 108 1033 Hull,	
  University	
  of 37 338

Imperial	
  College	
  London 268 2109 Heriot	
  Watt	
  University 141 1119

Kings	
  College	
  London 48 330 Lancaster,	
  University	
  of 26 230

Leeds,	
  University	
  of 165 1212 Leicester,	
  University	
  of 37 245

Liverpool,	
  University	
  of 102 888 Loughborough,	
  University	
  of 236 1847

Manchester,	
  University	
  ofǂ 322 2614 Reading,	
  University	
  of 47 395

Newcastle,	
  University	
  of 143 1188 Salford,	
  University	
  of 99 788

Nottingham,	
  University	
  of 167 1317 Strathclyde,	
  University	
  of 179 1563

Oxford,	
  University	
  of 97 843 Swansea	
  University 94 856

Queen	
  Mary	
  London 82 575

Queens	
  University,	
  Belfast 101 920

Sheffield,	
  University	
  of 176 1293

Southampton,	
  University	
  of 136 1060

University	
  College	
  London 127 1045

Warwick,	
  University	
  of 64 621

York,	
  University	
  of 27 205

*	
  Researchers	
  can	
  belong	
  to	
  more	
  than	
  one	
  university	
  during	
  their	
  career.	
  Therefore	
  the	
  numbers	
  of	
  IDs	
  do	
  not	
  add	
  up	
  to	
  3991,	
  the	
  number	
  of	
  unique	
  individuals	
  in	
  our	
  sample.

Table	
  1:	
  List	
  of	
  Universities



Full	
  Sample	
  (33601	
  obs) countt
had	
  some	
  
fundingit

fraction	
  of	
  
funding	
  with	
  
industryit	
  

Dependent	
  Variables
countit 1.64 2.68 0 41 1 0.228*** 0.125***
co-­‐author	
  weighted	
  countit 0.59 0.93 0 12.26 0.916*** 0.208*** 0.106***
average	
  impact	
  factorit 0.44 0.72 0 27.07 0.436*** 0.167*** 0.100***
applied	
  countit 0.9 1.62 0 24 0.778*** 0.206*** 0.122***
basic	
  countit 0.46 1.52 0 26 0.712*** 0.125*** 0.0216***
Explanatory	
  Variables
had	
  some	
  fundingit 0.67 0.47 0 1 0.228*** 1 0.405***
fraction	
  of	
  funding	
  with	
  industryit 0.2 0.35 0 1 0.125*** 0.405*** 1
patentit 0.03 0.18 0 1 0.124*** 0.0794*** 0.0577***
lecturerit 0.34 0.48 0 1 -­‐0.183*** -­‐0.194*** -­‐0.0998***
senior	
  lecturerit 0.28 0.45 0 1 -­‐0.104*** -­‐0.0511*** -­‐0.0204***
readerit 0.1 0.3 0 1 0.0853*** 0.0453*** 0.0276***
professorit 0.27 0.45 0 1 0.242*** 0.228*** 0.109***

Collaboratorsƚ	
  (27667	
  obs)
Dependent	
  Variables mean sd min max mean sd Min max
countit 1.43 2.41 0 37 2.22 3.13 0 41 ***
Explanatory	
  Variables
had	
  some	
  fundingit 0.59 0.49 0 1 0.73 0.44 0 1 ***
fraction	
  of	
  funding	
  with	
  industryit 0.19 0.34 0 1 0.3 0.38 0 1 ***

Collaboratorsƚƚ	
  (23645	
  obs)
Dependent	
  Variables mean sd min max mean sd min max
countit 1.71 2.62 0 37 2.26 3.2 0 41 ***
Explanatory	
  Variables
had	
  some	
  fundingit 0.78 0.42 0 1 0.82 0.39 0 1 ***
fraction	
  of	
  funding	
  with	
  industryit 0.07 0.19 0 1 0.5 0.41 0 1 ***

Fundingƚƚƚ	
  (28508	
  obs)
Dependent	
  Variables mean sd min max mean sd Min max
countit 0.97 1.73 0 23 2.45 3.3 0 41 ***
Explanatory	
  Variables
had	
  some	
  fundingit 0.38 0.49 0 1 0.89 0.31 0 1 ***
fraction	
  of	
  funding	
  with	
  industryit 0.11 0.31 0 0 0.36 0.38 0 1 ***

Russell	
  Group	
  (28508	
  obs)
Dependent	
  Variables mean sd min max mean sd min max
countit 2.02 3.02 0 41 1.25 2.16 0 33 ***
Explanatory	
  Variables
had	
  some	
  fundingit 0.68 0.47 0 1 0.62 0.48 0 1 ***
fraction	
  of	
  funding	
  with	
  industryit 0.24 0.37 0 1 0.24 0.38 0 1

Professor	
  (28508	
  obs)
Dependent	
  Variables mean sd min max mean sd Min max
countit 2.86 3.66 0 41 1.36 2.25 0 32 ***
Explanatory	
  Variables
had	
  some	
  fundingit 0.84 0.37 0 1 0.59 0.49 0 1 ***
fraction	
  of	
  funding	
  with	
  industryit 0.3 0.36 0 1 0.22 0.37 0 1 ***

*	
  p	
  <	
  0.10,	
  **	
  p	
  <	
  0.05,	
  ***	
  p	
  <	
  0.01.

Non-­‐Russell	
  Group	
  (8408	
  obs)

Professor	
  	
  (7955	
  obs) Not	
  Professor	
  (20553	
  obs)

t-­‐test	
  
difference

t-­‐test	
  
difference

t-­‐test	
  
difference

t-­‐test	
  
difference

t-­‐test	
  
difference

ƚ	
  High	
  (low)	
  collaborators	
  are	
  those	
  who	
  have	
  an	
  average	
  lifetime	
  collaborative	
  publications	
  with	
  the	
  industry	
  above	
  (below)	
  the	
  median.	
  Academics	
  with	
  zero	
  publications	
  excluded.

ƚƚ	
  High	
  (low)	
  collaborators	
  are	
  those	
  who	
  have	
  an	
  average	
  lifetime	
  collaborative	
  funding	
  with	
  the	
  industry	
  above	
  (below)	
  the	
  median.	
  Academics	
  with	
  zero	
  funding	
  excluded.

ƚƚƚ	
  High	
  (low)	
  funding	
  receivers	
  are	
  those	
  who	
  have	
  received	
  funding	
  In	
  the	
  previous	
  5	
  years	
  above	
  (below)	
  the	
  median.

Table	
  2:	
  Descriptive	
  Statistics
Correlation	
  with

Low	
  Funding	
  	
  (12853	
  obs) High	
  Funding	
  (15655	
  obs)

Low	
  Collaborators	
  	
  (13484	
  obs) High	
  Collaborators	
  (14183	
  obs)

mean sd min max

Low	
  Collaborators	
  	
  (11188	
  obs) High	
  Collaborators	
  (12457	
  obs)

Russell	
  group	
  	
  (18374	
  obs)



1 2 3 4 5 6 7 8
Model GLS	
  FE GLS	
  FE	
  IV GLS	
  FE	
  IV GMM	
  ABƚ GLS	
  FE	
  IV GMM	
  ABƚ GLS	
  FE	
  IV GMM	
  ABƚ

Dependent	
  Variable countit countit countit countit countit countit countit countit
Sample Full Full Full Full Full Full 10	
  yr	
  BPƚƚ 10	
  yr	
  BPƚƚ

Collaboration	
  stock 5	
  yrs 5	
  yrs 5	
  yrs 5	
  yrs	
   2	
  yrs 2	
  yrs 5	
  yrs 5	
  yrs

Funding	
  and	
  Collaboration:
had	
  some	
  fundingit-­‐1 0.044*** 0.199** 0.203** 0.066* 0.580*** 0.085** 0.243** 0.102***

(0.013) (0.083) (0.083) (0.035) (0.142) (0.038) (0.104) (0.036)
fraction	
  of	
  funding	
  with	
  industryit-­‐1 0.373*** 0.925*** 0.897*** 0.286* 0.992*** 0.589* 0.994** 0.403**

(0.099) (0.352) (0.344) (0.167) (0.331) (0.336) (0.438) (0.178)

fraction	
  of	
  funding	
  with	
  industry2it-­‐1 -­‐0.421*** -­‐1.710*** -­‐1.651*** -­‐0.432* -­‐3.228*** -­‐0.824* -­‐2.154*** -­‐0.616**
(0.145) (0.655) (0.638) (0.249) (0.661) (0.485) (0.811) (0.267)

Patent	
  Filed:
patentit 0.026 0.040* 0.040* 0.059** 0.050** 0.056** 0.043* 0.075***

(0.019) (0.021) (0.021) (0.024) (0.020) (0.022) (0.026) (0.027)
patentit-­‐1 0.014 0.037* 0.035* 0.014 0.042** 0.016 0.013 0.012

(0.019) (0.020) (0.020) (0.025) (0.020) (0.023) (0.024) (0.030)
patentit-­‐2 0.037* 0.039* 0.038* 0.017 0.043** 0.009 0.043* 0.028

(0.021) (0.021) (0.021) (0.026) (0.021) (0.024) (0.026) (0.031)
Academic	
  Rank:
senior	
  lecturerit-­‐1 0.048*** 0.025 0.022 -­‐0.013 0.053*** -­‐0.027*** -­‐0.016 -­‐0.011

(0.014) (0.018) (0.018) (0.009) (0.016) (0.008) (0.023) (0.012)
readerit-­‐1 0.093*** -­‐0.002 -­‐0.007 0.001 0.014 -­‐0.021 -­‐0.033 0.017

(0.022) (0.027) (0.027) (0.020) (0.025) (0.019) (0.033) (0.027)
professorit-­‐1 0.109*** -­‐0.003 -­‐0.009 0.017 -­‐0.015 -­‐0.003 -­‐0.034 0.065**

(0.025) (0.032) (0.032) (0.019) (0.031) (0.017) (0.039) (0.026)
Lagged	
  Publications:
countit-­‐1 0.031*** 0.820*** 0.809*** 0.718***

(0.008) (0.046) (0.046) (0.051)
countit-­‐2 0.003 0.042*** 0.046*** 0.059***

(0.007) (0.015) (0.015) (0.018)
Constant 0.479*** 0.471*** 0.453*** 0.087*** 0.236*** 0.119*** 0.536*** 0.118***

(0.014) (0.039) (0.040) (0.022) (0.071) (0.019) (0.097) (0.026)

Number	
  of	
  observations 33601 28508 28508 26782 31837 31834 16250 15738
Number	
  of	
  ID 3991 3975 3975 3724 4436 4436 1625 1625
Number	
  of	
  instruments 0 3 3 164 3 173 3 156
R^2	
  (overall) 0.247 0.087 0.369 0.131 0.197
F 19.072*** 8.961*** 8.709*** 13.119*** 6.986***

Wald	
  chi2 12597*** 12697*** 6875***

AR(1)	
  test	
  z	
  (p-­‐value) 0 0 0
AR(2)	
  test	
  z	
  (p-­‐value) 0 0 0
AR(3)	
  test	
  z	
  (p-­‐value) 0.7205 0.8382 0.9636
Sargan	
  	
  test	
  p-­‐value 0.1699 0.1381 0.1265

Robust	
  standard	
  errors	
  in	
  parentheses;	
  *	
  p	
  <	
  0.10,	
  **	
  p	
  <	
  0.05,	
  ***	
  p	
  <	
  0.01.
ǂ	
  The	
  dependent	
  variable,	
  the	
  lagged	
  dependent	
  variables	
  and	
  the	
  fraction	
  of	
  funding	
  with	
  industry	
  are	
  in	
  logarithms.	
  

ƚƚ	
  Balanced	
  panel	
  of	
  10	
  years.

Table	
  3:	
  Impact	
  of	
  Industry	
  Collaboration	
  on	
  Research	
  Outputǂ

ƚ	
  Endogeneous	
  variables	
  are	
  fraction	
  of	
  funding	
  with	
  industry	
  and	
  lagged	
  count.	
  Lagged	
  endogeneous	
  and	
  exogeneous	
  variables	
  and	
  year	
  dummies	
  are	
  used	
  
as	
  instruments.



1 2 3 4 5
Model GLS	
  FE	
  IV GLS	
  FE	
  IV GLS	
  FE	
  IV GLS	
  FE	
  IV GLS	
  FE	
  IV
Dependent	
  Variable countit countit countit countit countit
Main	
  Effect	
  (reference	
  group) high	
  collab high	
  collab high	
  funding Russell	
  group non	
  professor

Interaction	
  term low	
  collab	
  ƚ	
   low	
  collabƚƚ low	
  funding	
  ƚƚƚ non	
  Russell	
  group	
   professor

Funding	
  and	
  Collaboration:

had	
  some	
  fundingit-­‐1 0.236** 0.142 0.161* 0.175** 0.161*
(0.105) (0.107) (0.087) (-­‐0.088) (0.087)

interaction	
  term	
  *had	
  some	
  fundingit-­‐1 -­‐0.090 0.047 0.004 -­‐0.1 0.259
(0.129) (0.139) (0.048) (-­‐0.087) (0.190)

fraction	
  of	
  funding	
  with	
  industryit-­‐1 1.364*** 1.580*** 1.270*** 1.051*** 0.862**

(0.414) (0.430) (0.392) (-­‐0.389) (0.382)

interaction	
  term	
  *fraction	
  of	
  funding	
  with	
  industryit-­‐1 -­‐0.846** -­‐0.509 -­‐0.073 -­‐0.038 -­‐0.812

(0.359) (0.389) (0.291) (-­‐0.344) (0.612)

fraction	
  of	
  funding	
  with	
  industry2it-­‐1 -­‐2.687*** -­‐2.723*** -­‐2.177*** -­‐1.386* -­‐1.677**
(0.814) (0.845) (0.743) (-­‐0.74) (0.810)

interaction	
  term*fraction	
  of	
  funding	
  with	
  industry2it-­‐1 1.810** -­‐0.120 -­‐0.685 -­‐0.676 1.511

(0.837) (0.902) (0.700) (-­‐0.809) (1.212)

Patent	
  Filed:
patentit 0.040* 0.029 0.039* 0.040* 0.040*

(0.021) (0.021) (0.021) (-­‐0.021) (0.021)
patentit-­‐1 0.036* 0.031 0.034* 0.037* 0.037*

(0.021) (0.021) (0.020) (-­‐0.02) (0.020)
patentit-­‐2 0.040* 0.031 0.036* 0.038* 0.039*

(0.021) (0.022) (0.021) (-­‐0.021) (0.021)
Academic	
  Rank:
senior	
  lecturerit-­‐1 0.025 0.017 0.022 0.027 0.030

(0.019) (0.020) (0.019) (-­‐0.019) (0.019)
readerit-­‐1 -­‐0.004 -­‐0.015 -­‐0.012 -­‐0.002 0.008

(0.027) (0.029) (0.027) (-­‐0.027) (0.028)
professorit-­‐1 -­‐0.006 -­‐0.028 -­‐0.024 -­‐0.004 -­‐0.091

(0.033) (0.034) (0.033) (-­‐0.032) (0.144)
Constant 0.490*** 0.573*** 0.518*** 0.451*** 0.502***

(0.040) (0.086) (0.042) (-­‐0.079) (0.082)

Number	
  of	
  observations 27667 23645 28508 28508 28508
Number	
  of	
  ID 3833 3150 3975 3975 3975
R^2	
  (overall) 0.105 0.053 0.180 0.101 0.089
F 7.963*** 8.209*** 9.637*** 8.669*** 7.923***

Robust	
  standard	
  errors	
  in	
  parentheses,	
  *	
  p	
  <	
  0.10,	
  **	
  p	
  <	
  0.05,	
  ***	
  p	
  <	
  0.01.

ƚƚ	
  Based	
  on	
  being	
  below	
  the	
  median	
  in	
  the	
  percentage	
  of	
  average	
  lifetime	
  funding	
  with	
  the	
  industry.	
  Academics	
  with	
  zero	
  funding	
  excluded.

ƚƚ	
  Based	
  on	
  being	
  below	
  the	
  median	
  in	
  the	
  amount	
  of	
  funding	
  received	
  in	
  the	
  past	
  5	
  years.

Table	
  4:	
  Impact	
  of	
  Industry	
  Collaboration	
  by	
  Groups	
  of	
  Academicsǂ

ǂ	
  The	
  dependent	
  variable	
  and	
  the	
  fraction	
  of	
  funding	
  with	
  industry	
  are	
  in	
  logarithms.	
  

ƚ	
  Based	
  on	
  being	
  below	
  the	
  median	
  in	
  the	
  percentage	
  of	
  publications	
  co-­‐authored	
  with	
  the	
  industry.	
  Academics	
  with	
  zero	
  publications	
  excluded.



1 2 3 4
Model GLS	
  FE	
  IV GLS	
  FE	
  IV GLS	
  FE	
  IV GLS	
  FE	
  IV

Dependent	
  Variable
co-­‐author	
  

weighted	
  countit

average	
  impact	
  
factorit

applied	
  countit basic	
  countit	
  

Funding	
  and	
  Collaboration:

had	
  some	
  fundingit-­‐1 0.079 0.114*** 0.100 0.184***
(0.051) (0.044) (0.074) (0.054)

fraction	
  of	
  funding	
  with	
  industryit-­‐1 0.720*** -­‐0.173 0.952*** 0.028
(0.214) (0.187) (0.307) (0.209)

fraction	
  of	
  funding	
  with	
  industry2it-­‐1 -­‐1.535*** 0.522 -­‐1.785*** -­‐0.509
(0.395) (0.340) (0.575) (0.399)

Patent	
  Filed:
patentit 0.029** 0.013 0.030 0.034**

(0.013) (0.010) (0.020) (0.015)
patentit-­‐1 0.028** 0.015 0.014 0.012

(0.013) (0.011) (0.020) (0.014)
patentit-­‐2 0.026* 0.012 0.045** 0.021

(0.013) (0.011) (0.020) (0.014)
Academic	
  Rank:
senior	
  lecturerit-­‐1 0.012 0.013 0.017 -­‐0.004

(0.011) (0.010) (0.016) (0.012)
readerit-­‐1 -­‐0.003 0.027* -­‐0.000 -­‐0.006

(0.017) (0.015) (0.025) (0.018)
professorit-­‐1 -­‐0.034* 0.045*** 0.002 -­‐0.010

(0.021) (0.017) (0.030) (0.022)
Constant 0.282*** 0.201*** 0.283*** 0.106***

(0.024) (0.020) (0.036) (0.026)

Number	
  of	
  observations 28508 28508 28508 28508
Number	
  of	
  ID 3975 3975 3975 3975
R^2	
  (overall) 0.001 0.159 0.054 0.03
F 8.80*** 20.54*** 7.93*** 2.12***

Robust	
  standard	
  errors	
  in	
  parentheses,	
  *	
  p	
  <	
  0.10,	
  **	
  p	
  <	
  0.05,	
  ***	
  p	
  <	
  0.01.
ǂ	
  The	
  dependent	
  variable	
  and	
  the	
  fraction	
  of	
  funding	
  with	
  industry	
  are	
  in	
  logarithms.	
  

Table	
  5:	
  Impact	
  of	
  Industry	
  Collaboration	
  for	
  other	
  Measures	
  of	
  Research	
  Outputǂ
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