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A solution for the quasi-one-dimensional
linearised Euler equations with heat transfer
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The unsteady response of nozzles with steady heat transfer forced by acoustic and/or
entropy waves is modelled. The approach is based on the quasi-one-dimensional
linearised Euler equations. The equations are cast in terms of three variables, namely the
dimensionless mass, stagnation temperature and entropy fluctuations, which are invariants
of the system at zero frequency and with no heat transfer. The resulting first-order system
of differential equations is then solved using the Magnus expansion method, where the
perturbation parameters are the normalised frequency and the volumetric heat transfer. In
this work, a measure of the flow non-isentropicity (in this case the steady heat transfer)
is used for the first time as an expansion parameter. The solution method was applied
to a converging–diverging nozzle with constant heat transfer for both subcritical and
supercritical flow cases, showing good agreement with numerical predictions. It was
observed that the acoustic and entropy transfer functions of the nozzle strongly depend
on the frequency and heat transfer.

Key words: aeroacoustics

1. Introduction

Solutions of the unsteady response of ducts with area variations and sustaining a mean
flow, i.e. nozzle flows, are of interest for a wide variety of industrial applications, including
combustors, automotive exhausts, after-burners or supersonic air-intake diffusers. An early
attempt to mathematically describe the transfer function of rocket nozzles was proposed by
Tsien (1952), motivated by emerging theoretical descriptions of combustion instabilities
in rocket engines.

With the same motivation, Marble & Candel (1977) derived an analytical solution for
the transfer function of both subcritical and supercritical nozzles excited by acoustic and/or
entropy waves. This solution is valid in the compact (or zero-frequency) limit which
assumes that the acoustic and entropy wavelengths significantly exceed the length scale
over which the nozzle area change occurs. This compact solution was extended to non-zero
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frequencies by Stow, Dowling & Hynes (2002) and Goh & Morgans (2011) using an
asymptotic expansion of the linearised Euler equations in terms of frequency. Building
on the same assumptions of Marble & Candel (1977), namely inviscid, isentropic and
quasi-one-dimensional flow, Duran & Moreau (2013) proposed a solution valid at any
frequency based on the Magnus expansion method (Blanes et al. 2009). This approach
was later extended to account for incoming compositional inhomogeneities by Magri
(2017), to annular nozzles by Duran & Morgans (2015) and to multi-stream nozzles by
Younes & Hickey (2019). All the previous studies were developed in the context of
indirect combustion noise (Ihme 2017), which is the noise generated when convective
disturbances (entropy, vortical and compositional waves) are accelerated/decelerated.
Indirect combustion noise is particularly relevant for high- Mach-number flows and low
frequencies.

In parallel to the theoretical efforts of the combustion noise community, solutions
for the acoustic field in nozzle flows were presented for low subsonic Mach
numbers. Dokumaci (1998) proposed a semi-analytical solution based on the WKB
(Wentzel–Kramers–Brillouin) method which requires sufficiently high frequencies.
Additionally, several analytical solutions of the acoustic field in nozzles with specific
area profiles were obtained by Eisenberg & Kao (1971), Easwaran & Munjal (1992) and
Subrahmanyam, Sujith & Lieuwen (2001) using transformation of variables.

An assumption of all the aforementioned studies is the isentropicity of the flow.
However, many practical applications require solutions for non-isentropic mean flows.
For instance, De Domenico et al. (2021) and Yang, Guzmán-Iñigo & Morgans (2020)
recently showed that, in the diverging portion of realistic nozzles, the flow can
separate creating recirculation regions and, hence, turbulence both leading to mean flow
non-isentropicity and strong deviations from isentropic acoustic theories. Another source
of non-isentropicity can be heat transfer, as happens in combustors and heat exchangers.
Yeddula, Gaudron & Morgans (2021) showed that heat transfer can significantly affect
the acoustics of nozzles. However, there is a lack of solutions to this problem, even in
the compact limit. The only solution to date was proposed by Yeddula & Morgans (2021)
based on the WKB method and assumes high frequencies and low subsonic flow Mach
numbers.

In this paper, we propose a general solution for the acoustic field produced by acoustic
and/or entropy waves in a nozzle whose mean flow is non-isentropic due to steady
heat transfer. The solution is based on the Magnus expansion method of Duran &
Moreau (2013) and is valid for both subcritical and supercritical flow conditions, and for
any frequency within the limit of the quasi-one-dimensional assumption. The Magnus
expansion when applied to nozzle flows has always so far had frequency as the expansion
parameter. In this work, we include a measure of the flow non-isentropicity as an expansion
parameter for the first time, allowing us to develop models for non-isentropic nozzle flows
which are valid at all frequencies and Mach numbers. The non-isentropicity considered is
due to axially varying steady heat transfer; the method could be extended to include other
forms of non-isentropicity in future work.

This article is organised as follows. In § 2 the mathematical model is described and a
solution is proposed based on the Magnus expansion method. The solution is applied to a
converging–diverging nozzle in § 3 and conclusions are drawn in § 4.

2. Analysis

We consider a calorically perfect gas flowing through a nozzle as depicted in figure 1 with
steady heat transfer which varies axially as ¯̇Q(x). The flow is taken to be inviscid and
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Figure 1. Sketch of a nozzle of length L exchanging heat with the surroundings. Here A(x), M(x), and T̄(x)
represent the nozzle cross-sectional area, flow Mach number and mean temperature at any x varying from x0 to
x1.

compressible, and a quasi-one-dimensional framework is adopted. Neglecting volumetric
forces as well as thermal and mass diffusion, the conservation of mass, momentum, energy
and equation of state can be written, respectively, as,

A
∂ρ

∂t
+ ∂(ρAu)

∂x
= 0,

∂u
∂t

+ u
∂u
∂x

+ 1
ρ

∂p
∂x

= 0,
∂s
∂t

+ u
∂s
∂x

= Rg

p
¯̇Q and p = ρRgT,

(2.1a–d)

where ρ is density, p is pressure, T is temperature, u is axial velocity, s is entropy, Rg

is the gas constant, A is the cross-sectional area of the nozzle and ¯̇Q denotes the steady
volumetric heat source term.

We seek to retrieve the dynamics of unsteady, small-amplitude perturbations
superimposed on a steady background mean flow. The linearisation principle allows the
thermodynamic and flow variables to be decomposed into the sum of mean time-averaged
and fluctuating time-dependant components, denoted by ( ) and ( )′, respectively, e.g
ρ = ρ̄ + ρ′. These time-dependant quantities are further normalised as follows:

ρ̂ = ρ′

ρ̄
, p̂ = p′

γ p̄
, û = u′

ū
, ŝ = (γ − 1)

s′

γ Rg
, (2.2a–d)

with γ denoting the adiabatic index. It is assumed that there are no heat fluctuations inside
the nozzle (Q̇

′ = 0). The analysis could be extended to account for heat fluctuations, but
would require an additional closure model linking these to flow fluctuations. For simplicity,
this paper focuses on the primary effect of mean heat transfer.

By linearising the thermodynamic and flow variables in the conservation equations (2.1)
and equating the mean quantities, we obtain

1
ρ̄

dρ̄

dx
+ 1

ū
dū
dx

+ 1
A

dA
dx

= 0, ū
dū
dx

= − 1
ρ̄

dp̄
dx

,
γ Rg

γ − 1
dT̄
dx

+ ū
dū
dx

=
¯̇Q

ρ̄ ū
and p̄ = ρ̄RgT̄.

(2.3a–d)

Similarly, the linearised forms of the Euler equations are obtained in the time domain by
equating the first-order fluctuating quantities of the conservation equations (2.1) in their
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normalised form given by (2.2). They read

∂ p̂
∂t

+ ū
∂

∂x

(
p̂ + û

) = − ¯̇Qγ − 1
γ p̄

(
û + γ p̂

)
, (2.4)

∂ û
∂t

+ ū
∂ û
∂x

+ c̄2

ū
∂ p̂
∂x

+ dū
dx

[
2û − (γ − 1) p̂ − ŝ

] = 0, (2.5)

∂ ŝ
∂t

+ ū
∂ ŝ
∂x

= − ¯̇Qγ − 1
γ p̄

(
û + γ p̂

)
, (2.6)

with c̄ denoting the adiabatic speed of sound. The above linearised Euler equations (LEE)
(2.4)–(2.6) govern the perturbed flow in a nozzle sustaining a mean flow with steady heat
transfer.

To employ the Magnus expansion, the linearised Euler equations need to be recast in
terms of three variables that are invariants of the flow at zero frequency and with zero
heat transfer. The normalised fluctuating mass flow rate (IA = m̂), stagnation temperature
(IB = T̂t) and entropy (IC = ŝ) are chosen as the three invariants, where,

m̂ ≡ m′

m̄
, T̂t ≡ T ′

t

T̄t
, (2.7a,b)

with m = ρAu and Tt = T(1 + ((γ − 1)/2)(u/c)2). In terms of the primitive variables
p̂, û and ŝ, these invariants read

IA = p̂ + û − ŝ, IB = (γ − 1)

M2û + p̂ + ŝ
γ − 1

1 + γ − 1
2

M2
, IC = ŝ, (2.8a–c)

where M = ū/c̄ is the local Mach number of the flow. By defining a vector of
invariants such that I = [IA IB IC]T and using ζ = 1 + ((γ − 1)/2)M2, the linearised
Euler equations can be recast in matrix form. The full derivation is outlined in Appendix A
and the final equation reads

∂

∂t
I + ūEx

∂

∂x
I + (γ − 1) ¯̇Q

2ζγ p̄
EsI = 0, where Ex =

⎡
⎢⎢⎢⎣

1
ζ

(γ − 1)M2 − 1
(γ − 1)M2

γ − 1
ζ

1
γ − 1

ζ
0 0 1

⎤
⎥⎥⎥⎦ ,

(2.9)

Es = 1
M2 − 1

⎡
⎢⎢⎢⎢⎣

M2 (1 − γ ) − 2 ζ
γ + 1
γ − 1

−γ M2 − 2γ

γ − 1

2γ (γ − 1) + M2 (1 − γ 2)
ζ

−2ζγ + γ 2M2

γ − 1
2γ

(
γ − M2

ζ

)
− γ (γ − 1)

ζ
M4

2ζ
(
γ M2 − 1

) −2ζ 2 2ζγ M2

⎤
⎥⎥⎥⎥⎦ .

(2.10)
As observed in (2.9) and (2.10), the coefficients of the matrices are only functions of the

axial mean flow and the mean rate of heat transfer per unit volume, ¯̇Q.
A harmonic time-dependence of the fluctuating quantities is now assumed, such that

ŷ = y̆eiωt, with ω the angular frequency, y̆ the complex wave amplitude and i2 = −1.
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A solution for the quasi-1D LEE with heat transfer

Equation (2.9) is recast in the frequency domain as

d
dx

I = A(x, ω, ¯̇Q)I with A = −[Ex]−1

(
iω
ū
I + (γ − 1) ¯̇Q

2ζγ p̄ ū
Es

)
, (2.11)

where I is an identity matrix of order 3. Equation (2.11) is similar to the equation
obtained by Duran & Moreau (2013) but with an extra term, involving the matrix Es,
which accounts for mean heat transfer effects. The frequency and the heat source are
specified in terms of the non-dimensional parameters Ω = ωL/c̄t0 (axial Helmholtz
number) and Q̃ = ¯̇QL/(p̄t0 c̄t0), respectively, where L is the length of the nozzle, and p̄t0
and c̄t0 correspond to the stagnation pressure and stagnation speed of sound at the inlet,
respectively.

Equation (2.11) is solved using a Magnus-expansion-based method, that assumes the
ansatz

I(ξ, Ω, Q̃) = [exp[B(ξ, Ω, Q̃)]]I0 with B(ξ, Ω, Q̃) =
∞∑

k=0

B(k)(ξ, Ω, Q̃), (2.12)

with ξ = x/L denoting the dimensionless axial coordinate and I0 the vector of invariants at
the inlet. Here B(k)(ξ, Ω, Q̃) represents the terms of the Magnus expansion each of order
O(Ω, Q̃)k. The terms in the expansion are obtained recursively as explained by Blanes
et al. (2009). When the frequency of the fluctuating components (represented by Ω) and
the heat exchange (represented by Q̃) are zero, the flow invariants defined in (2.8) are
conserved and remain constant along the nozzle length. Any non-zero frequency and/or
non-zero heat exchange results in a deviation which is captured by the higher order terms
(k /= 0) in the Magnus expansion. The main novelty of this study is that, for the first time,
a term capturing flow non-isentropicity is included as the expansion parameter along with
frequency. To ensure convergence, the series may require the separate computation of
transfer matrices for axial segments of the nozzle, which are subsequently multiplied for
the final result (Blanes et al. 2009). For example, for the isentropic subcritical mean nozzle
flow considered in § 3, at low frequencies (Ω/(2π) ∼ 0.0001–0.01) the series exhibits
fast convergence when applied to the entire nozzle length and does not require any axial
segmentation. However, at higher frequencies, for example, when Ω/(2π) = 1, the nozzle
needs to be divided into at least 24 axial segments for fast convergence. This segmentation
approach follows the fast convergence criterion given by∫ ξF

0
‖A(ξ)‖2 dξ < π, (2.13)

where ξF determines the maximum length of the segments. The above (2.13) ensures faster
convergence when satisfied, but may diverge if the value of the integral is larger than π
(Blanes et al. 2009).

Finally, the flow invariants at the boundaries are transformed into three propagating
waves (see figure 1): (i) a downstream-propagating acoustic wave, w+, (ii) an
upstream-propagating acoustic wave, w−, and (iii) an entropy wave, ws. These wave
components at a particular location are represented using the wave vector W =
[w+ w− ws]T. In terms of the primitive variables, they read w+ = p̆ + ŭM, w− = p̆ − ŭM,

and ws = s̆, with p̆, ŭ and s̆ denoting the complex Fourier coefficients for pressure, velocity
and entropy, respectively.
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The relation between the flow invariants and the wave components can then be obtained
using (2.8) and is represented as I = DW , where D defines the relation between the wave
components and the flow invariants. A transfer matrix T is therefore defined to relate the
wave vector at any location, ξ , in terms of the wave vector at the inlet (W 0) as

W ξ = T W 0, where T = [
Dξ

]−1
C D0 (2.14)

and C = [exp[B(ξ, Ω, Q̃)]].

2.1. Subcritical nozzle flow configuration
For the case where the flow remains subsonic inside the nozzle, the acoustic system is
determined by three external inputs, namely a downstream-propagating acoustic wave at
the inlet, w+

0,f , an upstream-propagating acoustic wave at the outlet, w−
1,f , and an entropy

wave at the inlet, ws
0,f . Note that the subscripts ‘0’ and ‘1’ refer to the inlet and outlet of

the nozzle, respectively, while ‘f ’ denotes that the wave is externally forced. We also have
three waves as the outputs of the system, i.e. an upstream-propagating acoustic wave at
the inlet, w−

0 , a downstream-propagating acoustic wave at the outlet, w+
1 and an entropy

wave at the outlet, ws
1. An extended scattering matrix S can then be defined to relate the

incoming and outgoing wave vectors as⎡
⎣w+

1
w−

0
ws

1

⎤
⎦ = S

⎡
⎣w+

0,f
w−

1,f
ws

0,f

⎤
⎦ . (2.15)

This matrix is obtained by algebraically rearranging the terms of the matrix T in (2.14).

2.2. Supercritical nozzle flow without shocks
For a supercritical flow without any shock waves inside the nozzle, only two inputs, namely
w+

0,f and ws
0,f , can be applied as w−

1 now corresponds to the slow downstream propagating
wave at the nozzle outlet. The flow domain is then divided into subsonic (from the inlet
x0 to a location infinitesimally upstream of the throat xu) and supersonic (from a location
infinitesimally downstream of the throat xd to the outlet x1) portions. Mass fluctuations
cannot occur at the choked throat and this requirement is specified as a boundary condition
(Marble & Candel 1977) which takes the form M

′
/M = 0. At the location infinitesimally

upstream of the throat, this gives

w−
u =

�
���

0
w−

u,f + Ruw+
u + Rsws

u, with Ru = 3 − γ

1 + γ
, Rs = −2

1 + γ
, (2.16)

where Ru and Rs correspond to the acoustic and entropy reflection coefficients,
respectively. The inlet acoustic and entropy forcing inputs, w+

0,f and ws
0,f , respectively,

along with (2.16) give the three input conditions. Equation (2.14) then takes the form⎡
⎣w+

u
w−

u,f
ws

u

⎤
⎦ ≡

⎡
⎣w+

u
0

ws
u

⎤
⎦ =

[
D

′
1

]−1
Csub D0︸ ︷︷ ︸

T
′

⎡
⎣w+

0,f
w−

0
ws

0,f

⎤
⎦ , (2.17)

where matrix D′ relates the wave components in terms of reflection coefficients to the
flow invariants and matrix Csub connects these flow invariants at the inlet to the throat.
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A solution for the quasi-1D LEE with heat transfer

Again rearranging the matrices with forcing inputs on one side and unknowns on the other
gives, ⎡

⎣w+
u

w−
0

ws
u

⎤
⎦ = Ss

⎡
⎣w+

0,f
0

ws
0,f

⎤
⎦ ⇒ w−

0 = Ss(2, 1) w+
0,f + Ss(2, 3) ws

0,f , (2.18)

where Ss corresponds to the scattering matrix of the subsonic portion of the supercritical
nozzle, given in terms of the elements of T

′
. Separating the upstream-propagating wave at

the inlet using (2.18) gives⎡
⎣w+

u
0

ws
u

⎤
⎦ = S′

s

⎡
⎣w+

0,f
0

ws
0,f

⎤
⎦ where S′

s =
⎡
⎣Ss(1, 1) 0 Ss(1, 3)

0 0 0
Ss(3, 1) 0 Ss(3, 3)

⎤
⎦ . (2.19)

The wave vector is unaltered at the throat and hence W u = W d. Note that W u =
[w+

u 0 ws
u]T while W d = [w+

d w−
d ws

d]T since w−
u,f = 0. Denoting the transfer matrix in

the supersonic portion of the nozzle by T s, the wave vector relation W 1 = T sW d is
obtained similar to (2.14), where T s = [D1]−1Csuper Dd with matrix Dd converting the
wave components to flow invariants at the throat and matrix Csuper relating these invariants
to the invariants at the outlet. This gives⎡

⎣w+
1

w−
1

ws
1

⎤
⎦ = T sS

′
s

⎡
⎣w+

0,f
0

ws
0,f

⎤
⎦ . (2.20)

Equation (2.20) gives the fast (w+
1 ) and slow (w−

1 ) propagating acoustic waves and the
entropy wave (ws

1) at the outlet as a function of acoustic (w+
0,f ) and entropy (ws

0,f ) forcing
at the nozzle inlet. The upstream-propagating wave at the inlet (w−

0 ) in the subsonic portion
is given by (2.18).

3. Results

In this section, we apply the presented theory to a converging–diverging nozzle (see
figure 1) defined by the following area profile:

A(x)
A∗

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

(
A0

A∗
− 1

)[
cos

(
π

x
x∗

)
+ 1

]
+ 1, if x ∈ [0, x∗] ,

1 +
(

A1

A∗
− 1

)
x − x∗
L − x∗

, if x ∈ [x∗, L] ,

(3.1)

where A∗ = 0.002 m2 corresponds to the throat area (at the throat location x∗ = 0.15 m),
A0/A∗ = 2.1 and A1/A∗ = 1.18. The gas constant and adiabatic index are taken to be
Rg = 287 J kg−1 K−1 and γ = 1.4, respectively.

Two different flow cases are considered: (i) subcritical and (ii) supercritical (without
shocks). For both flow cases, numerical solutions of the mean flow are obtained for
different levels of heat transfer, set by Q̃. In the following, we assume for simplicity Q̃ to
be constant axially, but the approach can assume any spatial distribution. The subcritical
case is defined by an inlet Mach number of M0 = 0.2. The supercritical case assumes
M0 = 0.29 for the isentropic case. When heat is added, the inlet Mach number ranges
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Figure 2. Mach number, M, (lines) and mean temperature, T̄ , (lines with markers) for (a) subcritical case with
Q̃ values of −0.5 (thick dash-dot-dash line), 0 (—–), 0.5 (dashed line); (b) supercritical case for Q̃ values of
−0.5 (thick dash-dot-dash line), 0 (—–), 0.3 (dashed line).

from M0 = 0.28 to M0 = 0.30 for Q̃ = 0.3 and Q̃ = −0.5, respectively. The mean flow for
the subcritical case is obtained by solving the first-order system of differential equations
of (2.3) using higher order implicit schemes: for example, a fourth-order Runge–Kutta
was used here. For the supercritical case, a modified finite-difference-based MacCormack
scheme is used to compute the mean flow. The evolution of the Mach number and mean
temperature inside the nozzle are presented in figure 2. As expected, the temperature
at the outlet is higher when heat is added than for the isentropic flow. For the Mach
number distribution, we observe different trends for the subcritical and supercritical cases.
For the subcritical nozzle flow, the Mach number at the outlet increases when heat is
added owing to the decrease of density and subsequent increase of the flow velocity to
satisfy continuity. For the supercritical nozzle flow, adding heat reduces the Mach number
at the outlet, explained by the increase of the speed of sound due to the temperature
rise.

3.1. Effect of heat transfer at zero frequency
In this section, we explore the influence of heat transfer on the unsteady response of
the nozzle at zero frequency (Ω = 0). The heat source/sink is varied in the range Q̃ ∈
[−0.5, 0.5] for the subcritical flow and Q̃ ∈ [−0.5, 0.3] for the supercritical flow. For Q̃ �
0.3 in the supercritical regime, a normal shock appears. While the model can be extended
to nozzles sustaining normal shocks (Duran & Moreau 2013), the current validation is
limited to shock-free nozzles only. Figures 3 and 4 show the coefficients of the acoustic
transfer functions for the subcritical and supercritical nozzle flow cases, respectively. The
order of the Magnus expansion considered is k = 5. The model predictions are compared
to numerical solutions and an excellent agreement is observed.

To assess the importance of the heat transfer in the acoustic solution, the isentropic and
compact theory of Marble & Candel (1977) is also plotted. This model requires only two
parameters, namely the Mach number at the inlet and at the outlet. Here, we feed those
parameters to the Marble and Candel model based on the mean flow numerical solution
with heat transfer. This results in predictions where the perturbations are isentropic, but
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Figure 3. Transfer functions for the subcritical nozzle flow at zero frequency predicted by the present model (∗,
blue), the compact isentropic model of Marble & Candel (1977) (—, red) and numerical solutions (dotted
line).

the mean flow is corrected to account for non-isentropicity. As observed, the effect of
heat transfer on the results is strong: the trends for some of the coefficients are reversed
when compared with isentropic theory and the relative errors are as high as several
hundred percent. The differences can be explained based on the governing equations of
the fluctuating variables. The isentropic and non-isentropic equations only differ in the
source term owing to heat transfer on the right-hand side of (2.4) and (2.6). These terms
represent sources of fluctuating mass flow rate, stagnation temperature and entropy that are
produced by the interaction of acoustic waves with the steady heat transfer. The variations
of fluctuating mass flow rate and stagnation temperature act as an additional source of
sound. The variations of entropy, on the other hand, act as a dipole source of sound through
the momentum equation (2.5). For the subcritical case, the dominant effect is the former.
This can be argued based on the relatively low values of the acoustic response to entropy
fluctuations (figure 3b,e). For values of around Q̃ ≈ −0.4, this is especially notable, as
the sound produced by entropy tends to zero, but the acoustic coefficients substantially
differ from the predictions of isentropic theory. For the supercritical configuration, on
the other hand, both effects are similarly important, as can be deduced from the high
values of entropy-sound generation (figure 4a,b). An interesting trend is observed for the
slow-propagating downstream wave, w−

1 , for the supercritical case: for values 0.1 � Q̃ �
0.3, the coefficient exhibits a strong sensitivity when forced by either upstream acoustic
waves or entropy waves. This effect, not observed for the fast-propagating downstream
wave, may be linked to the fact that the Mach number is close to unity along the whole
diverging portion of the nozzle in this range and, therefore, the propagation speed of that
wave is close to zero.

3.2. Effect of heat transfer for non-zero frequencies
We now turn our attention to the effect of heat transfer at non-zero frequencies. Figure 5
shows the variation of magnitude and phase of the acoustic transfer functions for
the subcritical nozzle flow, for both isentropic (Q̃ = 0) and non-isentropic (Q̃ = −0.5)
cases. It can again be observed that the model estimates closely match the numerical
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Figure 4. Transfer functions for the supercritical nozzle flow at zero frequency predicted by the present
model (∗, blue), the compact isentropic model of Marble & Candel (1977) (—, red) and numerical
solutions (dotted line).

predictions. Similar trends are observed for all of the coefficients in the frequency domain.
On comparing the isentropic and non-isentropic results for the magnitude of some of the
coefficients, i.e. w+

1 /w+
0,f , w+

1 /w−
1,f and w−

0 /w−
1,f , an offset was observed at zero frequency

which is carried to higher frequencies. For the rest of the coefficients, large differences
exist at low frequencies, but quickly disappear with increasing frequencies. The phases
for all of the coefficients are remarkably similar, with some differences observed for the
coefficients defined in the downstream duct. This difference is expected due to the large
difference in the flow Mach numbers and speed of sound in the divergent portion of the
nozzle for nozzles with different levels of Q̃. This leads to different propagation velocities
of the acoustic waves in the diverging portion of the nozzle and therefore to the differences
in phase.

Figure 6 shows the variation of the acoustic transfer functions as a function of the
frequency for the supercritical nozzle flow with Q̃ = −0.5 and 0. The model estimates are
accurate for both cases. The trends obtained for the reflection coefficient in the upstream
duct w−

0 are very similar to those obtained for the subcritical case and have been omitted
for the sake of brevity. This is consistent with w−

0 not depending on the supersonic portion
of the nozzle such that it can be obtained using (2.15) alone. The acoustic reflection at
the outlet (w−

1 ) has a low-pass-like behaviour for both entropy (ws
0,f ) and acoustic (w+

0,f )
forcing at the inlet.

4. Conclusions

This work proposed a model for the acoustic and entropic transfer functions of
non-isentropic nozzle flows where the non-isentropicity arises due to a steady source/sink
of heat. Physically, this source term can be produced by heat exchange with surroundings
or by chemical reactions. The flow was modelled as a quasi-one-dimensional and inviscid
flow. A solution method was proposed based on the Magnus expansion, which does not
impose any limitations on the frequency or Mach number that can be considered. In this
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Figure 5. Transfer functions for the subcritical nozzle flow as a function of the frequency Ω . Numerical (dotted
line) and model solutions (©) for Q̃ = 0. Numerical (blue dashed line) and model solutions (♦, blue) for
Q̃ = −0.5. Marble & Candel (1977) compact solution (�).

work, a measure of the flow non-isentropicity has been used as an expansion parameter
for the first time. The solution was successfully validated against numerical simulations
of the quasi-one-dimensional linearised Euler equations in a converging–diverging nozzle
for different heat transfer and frequency levels. Two types of nozzle flow were considered:
subcritical and supercritical (without shocks). For the acoustically compact case, it was
shown that applying the Marble & Candel (1977) solution in the presence of heat transfer
can lead to large prediction errors, even when the corrected mean flow Mach numbers
are provided. The heat transfer was found to strongly affect the transfer functions of the
nozzle, with some acoustic transfer functions being amplified and others attenuated, for
increasing heat transfer.
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(dotted line) and model solutions (©) for Q̃ = 0. Numerical (blue dashed line) and model solutions (♦, blue)
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Appendix A. Linearised Euler equations in terms of flow invariants

Using the definition of flow invariants from (2.8), we can write

I︷ ︸︸ ︷⎡
⎣ IA

IB
IC

⎤
⎦ =

DP
I︷ ︸︸ ︷⎡

⎢⎢⎣
1 1 −1

γ − 1
ζ

(γ − 1)M2

ζ

1
ζ

0 0 1

⎤
⎥⎥⎦

P︷ ︸︸ ︷⎡
⎣ p̂

û
ŝ

⎤
⎦, ⇒ P =

[
DP

I

]−1
I. (A1)

By using the time-averaged mean flow conservation equations (2.3), we can write

dū
dx

= ū
ζ

(
1
M

dM
dx

+ (γ − 1) ¯̇Q
2γ p̄ ū

)
. (A2)
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(i) Invariant formulation for normalised fluctuating mass, IA:
Adding and subtracting (2.5) and (2.6), respectively, from (2.4) and using (A2) gives,

∂

∂t

(
p̂ + û − ŝ

)+ ū
∂

∂x

(
p̂ + û − ŝ

)− ∂ û
∂t

+
�������(

∂ ŝ
∂t

+ ū
∂ ŝ
∂x

)
=

����������− (γ − 1)

γ p̄
¯̇Q (û + γ p̂

)
.

(A3)
Using (2.5) we substitute for ∂ û/∂t and (A2) is used to replace dū/dx. This gives

DIA

Dt
+ ū

ζ

(
1
M

dM
dx

+ (γ − 1) ¯̇Q
2γ p̄ ū

) (
2û − (γ − 1) p̂ − ŝ

)+ ū
∂ û
∂x

+ c̄2

ū
∂ p̂
∂x

= 0,

(A4)
where

D( )

Dt
= ∂( )

∂t
+ ū

∂( )

∂x
. (A5)

Taking the factor 1/M2 and writing out all the terms explicitly results in

DIA

Dt
+ 1

M2

(
2M

dM
dx

ū
ζ

û − (γ − 1) M
dM
dx

ū
ζ

p̂ − M
dM
dx

ū
ζ

ŝ

+(γ − 1) M2 ¯̇Q
2γ p̄ ū

(
2û − (γ − 1) p̂ − ŝ

)+ ū
∂
(
M2û

)
∂x

− 2M
dM
dx

ūû + ū
∂ p̂
∂x

)
= 0.

(A6)

Algebraic rearrangement simplifies the above equation to

DIA

Dt
+ 1

M2

(
− (γ − 1) M

dM
dx

ū
ζ

(
ûM2 + p̂ + ŝ

γ − 1

)
+ ū

∂

∂x

(
ûM2 + p̂ + ŝ

γ − 1

)

+ ū
γ − 1

∂ ŝ
∂x

+ (γ − 1) M2 ¯̇Q
2γ p̄ ū

(
2û − (γ − 1) p̂ − ŝ

)) = 0. (A7)

Using (2.8) we replace (ûM2 + p̂ + ŝ/(γ − 1)) with ζ IB/(γ − 1) and ŝ with IC. This
gives

DIA

Dt
+ 1

M2

(
−M

dM
dx

ūIB + ū
∂

∂x

(
ζ IB

γ − 1

)
+ ū

γ − 1
∂IC

∂x

)

+(γ − 1) ¯̇Q
2γ p̄ ū

(
2û − (γ − 1) p̂ − ŝ

) = 0. (A8)

On further carrying out the differential ∂/∂x(ζ IB/(γ − 1)) in the above equation,
we obtain

DIA

Dt
+ 1

M2
ū

γ − 1

(
ζ

∂IB

∂x
− ∂IC

∂x

)
+ (γ − 1) ¯̇Q

2ζγ p̄

(
2û − (γ − 1) p̂ − ŝ

) = 0. (A9)

(ii) Invariant formulation for normalised stagnation temperature fluctuations,
IB:
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On multiplying (2.5) by M2, and using (A2), we can write

∂

∂t

(
ûM2+ p̂ + ŝ

γ −1

)
+ ū

∂

∂x

(
ûM2 + p̂ + ŝ

γ −1

)
− 1

γ −1
Dŝ
Dt

− ∂ p̂
∂t

− 2ūM
dM
dx

û

+ ū
ζ

(
M

dM
dx

+ (γ − 1) ¯̇Q
2γ p̄ ū

) (
2û − (γ − 1) p̂ − ŝ

) = 0. (A10)

Again using (2.8), we can replace (ûM2 + p̂ + ŝ/(γ − 1)) by ζ IB/(γ − 1). Here
Dŝ/Dt and ∂ p̂/∂t are also substituted using (2.6) and (2.4), respectively. This gives

∂

∂t

(
ζ IB

γ − 1

)
+ū

∂

∂x

(
ζ IB

γ − 1

)
+

−1
γ − 1

Dŝ
Dt︷ ︸︸ ︷

������¯̇Q
γ p̄

(
û + γ p̂

)+
−∂ p̂
∂t︷ ︸︸ ︷

ū
∂

∂x

(
p̂ + û

)+ (γ��−1) ¯̇Q
γ p̄

(
û + γ p̂

)
+2ūM

dM
dx

û
(

1
ζ

− 1
)

− (γ − 1)
ū
ζ

M
dM
dx

(
p̂ + ŝ

γ − 1

)

+(γ − 1) ¯̇Q
2ζγ p̄

(
2û − (γ − 1) p̂ − ŝ

) = 0. (A11)

Further using (2.8), we replace p̂ + û with IA + IC. This results in

ζ

γ − 1
DIB

Dt
+

�����ūIB

γ − 1
∂ζ

∂x
+ ū

∂

∂x
(IA + IC) −

�����������������

(γ − 1)
ū
ζ

M
dM
dx

ζ IB/(γ−1)︷ ︸︸ ︷(
ûM2 + p̂ − ŝ

γ − 1

)

+γ ¯̇Q
γ p̄

(
û + γ p̂

)+ (γ − 1) ¯̇Q
2ζγ p̄

(
2û − (γ − 1) p̂ − ŝ

) = 0. (A12)

On multiplying the resultant (A12) with (γ − 1)/ζ and rearranging, we get

DIB

Dt
+ (γ − 1)

ζ
ū
∂ (IA + IC)

∂x
+ (γ − 1) ¯̇Q

γ p̄ζ

(
p̂

(
γ 2 − (γ − 1)2M2

2ζ

)

+û
(

γ + (γ − 1) M2

ζ

)
− ŝ

(γ − 1) M2

2ζ

)
= 0. (A13)

(iii) Invariant formulation for normalised fluctuating entropy, IC:
Using IC = ŝ, we also have from (2.6)

DIC

Dt
+ (γ − 1) ¯̇Q

γ p̄

(
γ p̂ + û

) = 0. (A14)
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The above (A9), (A13) and (A14) can be written in a simplified matrix form as,

∂

∂t
I + ūEx

∂

∂x
I + (γ − 1) ¯̇Q

2ζγ p̄
Es,primitiveP = 0, (A15)

where

Es,primitive =

⎡
⎢⎢⎣

− (γ − 1) 2 −1

2γ 2 − (γ − 1)2M2

ζ
2γ + 2 (γ − 1) M2

ζ
−(γ − 1) M2

ζ
2ζγ 2ζ 0

⎤
⎥⎥⎦ , (A16)

and Ex is given in (2.9).
Using (A1), we can write

Es,primitiveP ≡ Es,primitive

[
DP

I

]−1
I = EsI, (A17)

where Es is as given by (2.10). Thus the final system of linearised Euler equations in terms
of flow invariants takes the form as in (2.9).
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