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Abstract

Indirect discrimination is an issue of major concern in algorithmic models. This is par-

ticularly the case in insurance pricing where protected policyholder characteristics are not

allowed to be used for insurance pricing. Simply disregarding protected policyholder infor-

mation is not an appropriate solution because this still allows for the possibility of inferring

the protected characteristics from the non-protected ones. This leads to so-called proxy

or indirect discrimination. Though proxy discrimination is qualitatively different from the

group fairness concepts in machine learning, these group fairness concepts are proposed to

‘smooth out’ the impact of protected characteristics in the calculation of insurance prices.

The purpose of this note is to share some thoughts about group fairness concepts in the light

of insurance pricing and to discuss their implications. We present a statistical model that

is free of proxy discrimination, thus, unproblematic from an insurance pricing point of view.

However, we find that the canonical price in this statistical model does not satisfy any of the

three most popular group fairness axioms. This seems puzzling and we welcome feedback

on our example and on the usefulness of these group fairness axioms for non-discriminatory

insurance pricing.

Keywords. Discrimination, indirect discrimination, proxy discrimination, fairness, pro-

tected information, discrimination-free, unawareness, group fairness, statistical parity, inde-

pendence axiom, equalized odds, separation axiom, predictive parity, sufficiency axiom.

1 Introduction

For legal and for societal reasons, there are several policyholder attributes that are not allowed

to be used for insurance pricing, e.g., the European Council [7, 6] does not allow for the use of

gender information in insurance pricing, or ethnicity is a critical attribute that may be declared as

protected information by society. Frees–Huang [8] and Xin–Huang [21] give extensive overviews

on protected information in insurance and implications for pricing, while Avraham et al. [3]

and Prince–Schwarcz [16] provide legal viewpoints on this topic. The critical issue is that

just ignoring protected information (being unaware of protected information) does not solve

the problem, as protected information can be inferred from non-protected one if corresponding

variables are correlated. This is especially true in high-dimensional algorithmic models. Such

inference is called proxy discrimination or indirect discrimination, and it is often implicitly

performed during the fitting procedure of complex models.

There are several attempts to prevent this inference, e.g., there is a counterfactual approach

from causal statistics, see Kusner et al. [11] and Araiza Iturria et al. [2], there is a probabilistic
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approach called discrimination-free insurance pricing by Lindholm et al. [12, 13], and there

are group fairness approaches inspired by machine learning concepts, see Grari et al. [9]. The

purpose of this note is to discuss the three most popular group fairness axioms in the light of

insurance pricing. We define a statistical model that is free of discrimination because the non-

protected information fully describes the distribution of the response variable, and the protected

one does not carry any additional information about the response. We analyze the three group

fairness axioms in this model. Surprisingly, the canonical non-discriminatory price (which is

uncontroversial here) does not satisfy any of these three group fairness axioms. This seems

puzzling and it requires a broader discussion within our community about discrimination and

fairness in insurance pricing. Therefore, we share our thoughts and welcome feedback on our

example and on the use of the group fairness axioms for non-discriminatory pricing.

Organization. We introduce our statistical model that is free of discrimination in Section 2,

and we calculate the best-estimate and the unawareness prices in this model. In Section 3,

we formally introduce the three most popular group fairness axioms; the independence axiom

(statistical parity), the separation axiom (equalized odds) and the sufficiency axiom (predictive

parity); see Barocas et al. [4], Xin–Huang [21] and Grari et al. [9]. We show that in our model the

canonical non-discriminatory price does not satisfy any of these three axioms. Finally, in Section

4 we conclude and discuss further issues. All mathematical results are proved in Appendix B.

2 Running example

To set the ground, we fix a probability space (Ω,F ,P) with P describing the real world probability

measure. On this probability space we consider the random vector (Y,X,D). The response Y

describes the insurance claim that we try to predict (and price). The vector X describes the

non-protected characteristics (non-discriminatory covariates), and D describes the protected

characteristics (discriminatory covariates). We assume that the partition of the covariates into

protected and non-protected ones is given exogenously, e.g., by law or by societal norms and

preferences. We use the distribution P(X,D) to describe the insurance portfolio, i.e., the

random selection of a policy from the insurance portfolio. Different insurance companies may

have different such distributions, and the insurance portfolio distribution P(X,D) typically

differs from the overall population distribution in a given society.

Best-estimate price. For insurance pricing, one designs a regression model that describes

the conditional distribution of Y , given the explanatory variables (X,D). The best-estimate

price of Y , given full information (X,D), is given by

µ(X,D) = E [Y |X,D] . (2.1)

This price is called best-estimate because it has minimal prediction variance,1 i.e., it is the most

accurate predictor for Y , given (X,D), in the L2-sense.

� In general, the best-estimate price directly discriminates because it uses the protected

information D as an input.

1For simplicity, we assume that all considered random variables are square-integrable w.r.t. P.
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Fairness through unawareness. The most simple fairness concept in machine learning is

the fairness through unawareness concept that just drops the protected information D. This

results in the unawareness price of Y , given X, defined by

µ(X) = E [Y |X] . (2.2)

The unawareness price does not directly discriminate because it does not use D as an input,

i.e., it is blind w.r.t. D. However, it may indirectly discriminate because the knowledge of X

allows inference of D through the tower property of conditional expectation

µ(X) =

∫
µ(X,d) dP(D = d|X). (2.3)

This formula shows that if there is statistical dependence between D and X w.r.t. P, we im-

plicitly use this dependence for inference, see last term in (2.3). This is what is called proxy

discrimination and indirect discrimination, and it should be avoided.

� Fairness through unawareness indirectly discriminates, and it does not solve the problem

of non-discriminatory insurance pricing.

We now present our example. In this example we have a response variable Y whose distribution

function is fully described by the non-protected information X, and the protected information

D does not carry any additional information about the response Y .2 Therefore, we consider this

statistical model to be free of discrimination. This model is simple enough to be able to calculate

all terms of interest, and, even if it is unrealistic in practice, it allows us to draw conclusions

about the group fairness axioms and discrimination in insurance pricing.

Example 2.1 (running example) Assume we have three-dimensional covariates (X,D) =

(X1, X2, D) having a multi-variate Gaussian portfolio distribution

(X1, X2, D)> ∼ N


0

0

0

 , Σ =

 1 0 ρ1
0 1 ρ2
ρ1 ρ2 1

 =

 1 0 0.1

0 1 0.9

0.1 0.9 1


 . (2.4)

Thus, the non-protected covariates X1 and X2 are independent, but they are both dependent

with the protected covariate D. We assume that this dependence is a purely statistical one

implied by the portfolio structure of the considered insurance company, and not a causal one.

That is, there might be a second insurance company with a portfolio distribution P(X,D)

described by a Gaussian distribution (2.4), but having, e.g., negative correlations between X

and D.

For the response Y we assume that conditionally, given (X,D),

Y |(X,D) ∼ N (X1, 1 +X2
2 ). (2.5)

That is, the response does not depend on the protected information D, but only on the non-

protected information X. This means that X is sufficient to describe the distribution of Y , and

D does not carry any additional information about Y , see also Footnote 2.

2Araiza Iturria et al. [2] call such a variable D not a true risk factor, because X is sufficient to describe the

distribution of Y , see also European Commission [6].
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The best-estimate and the unawareness prices coincide in this example, and they are given by

µ(X,D) = µ(X) = X1. (2.6)

In this example, there is no indirect discrimination through a conditional expectation (2.3)

because the best-estimate price coincides with the unawareness price, and the explicit structure

of the portfolio distribution P(X,D) is not needed here. Therefore, in this example, we call

these prices non-discriminatory.3 From an actuarial viewpoint this price is non-discriminatory

because the protected information D has no influence on the response Y , given X. This is true

for any dependence structure between D and X, and no matter whether it is a causal or a

purely statistical one. This is an additional justification for not having indirect discrimination.

�

Remark 2.2 Under the assumptions of Example 2.1, the non-discriminatory price µ(X) given

in (2.6) is equal to the discrimination-free insurance price of Lindholm et al. [12].

3 Group fairness axioms

In this section, we introduce the three most popular group fairness axioms from machine learning;

we also refer to Barocas et al. [4], Xin–Huang [21] and Grari et al. [9]. We will show that the

non-discriminatory price of Example 2.1 given in (2.6) violates all three of these group fairness

axioms.

We denote by µ̂(X) any σ(X)-measurable predictor of Y , which can be the unawareness price

(2.2) or any other pricing functional that solely depends on the non-protected information X.

(i) Independence axiom / statistical parity. Statistical parity is also called demographic

parity, and following Definition 1 of Agarwal et al. [1] it is given as follows: We have statistical

parity if

µ̂(X) and D are independent under P.

This independence implies for the distribution of the insurance prices µ̂(X), a.s.,

P [ µ̂(X) ≤ m|D] = P [µ̂(X) ≤ m] for all m ∈ R. (3.1)

We have the following proposition.

Proposition 3.1 The non-discriminatory price µ(X) = X1 of Example 2.1 does not satisfy the

independence axiom (statistical parity).

� The non-discriminatory price of Example 2.1 violates the independence axiom (statistical

parity). This violation is implied by the dependence of the protected and the non-protected

information, which is described by the parameters (ρ1, ρ2) in Example 2.1. Remark that every

3More generally, the definition of the non-discriminatory price is uncontroversial in insurance in examples

where the non-protected information X is sufficient to describe the response Y , and the additional knowledge

of the protected information D is not needed because it does not reveal any additional information about the

response Y ; we come back to this in formula (3.2) and in Remark 3.5, below.
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insurance company may have a different portfolio distribution P(X,D), e.g., Company 1 may

have the portfolio distribution (2.4) with a positive correlation ρ1 = 0.1 and Company 2 may

have this portfolio distribution but with independence ρ1 = 0. The independence axiom implies

that Company 1 cannot use information X1 for (statistical parity-fair) insurance pricing, whereas

Company 2 would be allowed to include information X1 in its tariff. Such a regulation would

be very problematic as it generates unwanted distortions at the insurance market, in a situation

where we have a pricing problem that is apparently free of discrimination (i.e., in Example

2.1). The only price that Company 1 could charge under the independence axiom is µ = E[Y ],

which corresponds to the null model not considering any covariates. However, this is not in line

with, e.g., Article 2.3.1(17) of the guidelines of the European Commission [6] which explicitly

allows for the use of covariate X1. We conclude that the independence axiom (statistical parity)

may be too restrictive in insurance pricing because the use of specific covariates will differ across

insurance companies, and the resulting (statistical parity-fair) insurance pricing functionals may

be impractical.

Remark 3.2 Assume there is a decomposition X = (U ,V ) such that the protected information

D is independent from U but not from V . Moreover, as in Example 2.1, assume that, a.s.,

P [Y ≤ y|X,D] = P [Y ≤ y|X] for all y ∈ R. (3.2)

In this case, the best-estimate price coincides with the unawareness price, and we generally set

for the non-discriminatory price µ(X) = µ(X) = E[Y |X], see Footnote 3 on page 4. This non-

discriminatory price does not satisfy the independence axiom in general. On the other hand, the

insurance price based only on U is equal to µ(U) = E[Y |U ], and it satisfies the independence

axiom because U and D are independent by assumption. If we insist on using the independence

axiom, here, we discard a possibly large part of the non-protected information X, here V . This

seems to be too restrictive, because assumption (3.2) provides a statistical model that does not

require any knowledge about D (and of the portfolio distribution P(X,D)), and it is also not

in line with the guidelines of the European Commission [6].

(ii) Separation axiom / equalized odds. Equalized odds is sometimes also called disparate

mistreatment. It has been introduced by Hardt et al. [10], and it is defined as follows: We have

equalized odds if

µ̂(X) and D are conditionally independent under P, given the response Y .

This conditional independence implies for the distribution of the prices µ̂(X), a.s,

P [ µ̂(X) ≤ m|Y,D] = P [ µ̂(X) ≤ m|Y ] for all m ∈ R. (3.3)

Note that, in general, independence between X and D is not sufficient to receive equalized odds.

Proposition 3.3 The non-discriminatory price µ(X) = X1 of Example 2.1 does not satisfy the

separation axiom (equalized odds).

� The non-discriminatory price of Example 2.1 violates the separation axiom (equalized

odds). This violation is again implied by the dependence of the protected and the non-protected

information, which is described by the parameters (ρ1, ρ2) in Example 2.1. Therefore, basically,

the same remarks apply as for the failure of the independence axiom.
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(iii) Sufficiency axiom / predictive parity. For predictive parity we exchange the role of

the response Y and the predictor µ̂(X) compared to equalized odds. We have predictive parity

if

Y and D are conditionally independent under P, given the prediction µ̂(X).

This conditional independence implies for the distribution of the response Y , a.s.,

P [Y ≤ y| µ̂(X),D] = P [Y ≤ y| µ̂(X)] for all y ∈ R. (3.4)

The notion of predictive parity is inspired by the definition of a sufficient statistics in statistical

estimation theory. We denote the support of the protected information D by D. We can then

interpret P = {Pd[Y ∈ · ] := P[Y ∈ · |D = d]; d ∈ D} as a family of distributions of Y being

parametrized by d ∈ D. In statistics we call µ̂(X) sufficient for P if (3.4) holds. Basically, this

means that µ̂(X) carries all the necessary information to predict Y , and the explicit knowledge

of D = d is not necessary.

Proposition 3.4 The non-discriminatory price µ(X) = X1 of Example 2.1 does not satisfy the

sufficiency axiom (predictive parity).

� The non-discriminatory price of Example 2.1 violates the sufficiency axiom (predictive par-

ity). This violation is again implied by the dependence of the protected and the non-protected

information, and the same remarks apply as for the failure of the independence and the separa-

tion axioms.

Remark 3.5 We briefly give the intuition why the sufficiency axiom fails in Example 2.1. The

sufficiency axiom (3.4) is formulated w.r.t. the knowledge of the predictor µ̂(X). This is different

from a sufficiency condition w.r.t. the non-protected information X where, a.s.,

P [Y ≤ y|X,D] = P [Y ≤ y|X] for all y ∈ R. (3.5)

The condition (3.5) has already been considered in (3.2), and we also refer to Footnote 2 on page

3. In general, the information set generated by X is bigger than the information set generated

by µ̂(X). Therefore, the two sufficiency conditions typically differ. More specifically, the price

functional X 7→ µ̂(X) is a projection of the (multi-dimensional) covariate information X to the

sub-space generated by the one-dimensional prices µ̂(X). In general, such a projection leads to

a loss of information which is described by the complement of this projection (in the case of our

Example 2.1 this is X2). If the protected information D is dependent with this complement, it

will partly compensate for this loss of information which results in the failure of the sufficiency

axiom (in case this complement is needed to fully characterize the distribution of Y ).

4 Discussion and open questions

We have defined a statistical model in Example 2.1 where the non-protected information X is

sufficient to describe the distribution of the response variable Y , and the additional knowledge

of the protected information D does not reveal any additional information about this response

variable Y ; Araiza Iturria et al. [2] call such a variable D not a true risk factor. In this
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statistical modeling set-up, there is a canonical non-discriminatory price because the knowledge

of D is completely irrelevant for best-estimate pricing, in fact, proxy discrimination (2.3) does

not happen in this set-up. In Propositions 3.1, 3.3 and 3.4 we show that this non-discriminatory

price does not satisfy any of the three group fairness axioms of ’statistical parity’, ’equalized odds’

and ’predictive parity’. In other words, these three group fairness axioms seem to exclude a huge

class of reasonable pricing functionals. Moreover, this exclusion is insurance company-dependent,

i.e., different companies may be forced to exclude different non-protected information (due to

different portfolio distributions). This seems disputable, and it requires a broader discussion

within our community under which circumstances we should postulate one of these three group

fairness axioms; this is further highlighted in the examples of Appendix A.

As a consequence, the three group fairness axioms considered here do not seem to provide a

quick fix of indirect discrimination, or they may but at a too restrictive price. In some sense,

these fairness axioms aim at mitigating discrimination in a post-hoc way which does not seem

to be appropriate in every situation, e.g., under the assumptions of Example 2.1.

We state a number of further points that are worth studying in more detail.

• In view of the previous conclusions, one could think of other fairness criteria that one

may want to postulate. Alternatively, one may ask under which circumstances the group

fairness axioms should be fulfilled, and how they can complement the notion of proxy

discrimination in insurance, as the two concepts seem to be qualitatively different.

• Group fairness axioms are typically formulated in the binary classification case, and one

may explore whether the one-to-one extension to continuous responses is sensible. Gen-

erally speaking, the binary classification case (Bernoulli model) is a one-parameter model

where the expected value (parameter) fully describes the distribution of the response vari-

able. Similarly, there are continuous models which are fully parametrized by their expected

values, and in these cases the group fairness criteria will essentially behave the same as in

the binary classification case. From an actuarial perspective, Tweedie’s models (belonging

to the exponential dispersion family) are often used with the mean function depending

on covariates and a constant dispersion parameter. These models are examples of one-

parameter models being fully described by their mean regression functional.

Our example is different because the response Y has an expected value of µ(X) = X1 and

a variance of 1 + X2
2 . Therefore, the response distribution is not fully characterized by

its mean, and applying the mean functional leads to the loss of information of X2. This

may motivate a search for weaker forms of the independence, separation and sufficiency

axioms, which do not rely on the full distribution of the response variable.

• Recently, notions of conditional group fairness have gained more popularity. We could

further explore how these behave on simple insurance pricing examples. Intuitively, these

conditional versions will not essentially behave differently from our outline above, but they

could still be useful as they study fairness criteria on smaller units of the covariate space.

• There are many different terms in the field of discrimination such as disparate effect, dis-

parate impact, disproportionate impact, etc.; see, e.g., Chibanda [5]. It would be desirable

to translate these terms into more mathematical definitions.
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• Adverse selection and unwanted economic consequences of non-discriminatory pricing

should be explored. Non-discriminatory prices typically fail to fulfill the auto-calibration

property which is crucial for having homogeneous risk classes, see Wüthrich [19].

• All considerations above have been based on the assumption that we know the true model.

Clearly, in statistical modeling there is model uncertainty which may impact different

protected classes differently because, e.g., they are represented differently in historical data

(statistical and historical biases). There are several examples of this type in the machine

learning literature; see, e.g., Barocas et al. [4], Mehrabi et al. [14] and Pessach–Shmueli

[15].

• Non-protected covariates may be context-sensitive. E.g., the European Commission [6],

footnote 1 to Article 2.2(14) – life and health underwriting – mentions the waist-to-hip

ratio as a non-protected (useful) covariate for health prediction. Note the following:

– The waist-to-hip ratio is gender dependent.

– The waist-to-hip ratio is age dependent.

– The waist-to-hip ratio is race dependent.

– The waist-to-hip ratio for females depends on the number of born children.

– Etc.

Thus, a waist-to-hip ratio X (if non-protected) can only be correctly interpreted under the

knowledge of protected information. This will require that we pre-process non-protected

characteristics to common units. A similar situation may, e.g., occur with age, as the

chronological age may be predictive for car driving experience, whereas in life insurance

we should rather choose a biological age (which uses gender information). This raises the

general issue of how to consider non-protected information that may be context-sensitive

and may only be fully explanatory under the inclusion of protected information. Generally,

this will result in the question of how to pre-process non-protected information.

• We have been speaking about (non-)discrimination of insurance prices. These insurance

prices are actuarial or statistical prices (technical premium), i.e., they directly result as

an output from a statistical procedure. These prices are then modified to commercial

prices, e.g., administrative costs are added, etc. An interesting issue is raised by Thomas

[17, 18], namely, by converting actuarial prices into commercial prices one often distorts

these prices with elasticity considerations, i.e., insurance companies charge higher prices

to customers that are (implicitly) willing to pay more. This happens, e.g., with new

business and contract renewals that are often priced differently though the corresponding

customers may have exactly the same risk profile. In the light of discrimination and

fairness one should also clearly question such practice of elasticity pricing as this leads to

discrimination that cannot be explained by risk profiles (no matter whether we consider

protected or non-protected information).

• Related to the previous item on converting the technical premium into a commercial price.

The technical premium (actuarial or statistical price) focuses on the expected response

for given covariates. It might be that this statistical price is accepted as being free of
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discrimination. However, by converting a statistical price into a commercial price one also

needs to add a risk margin (related to the prediction uncertainty in the statistical price),

and it can well be that this risk margin (loading) adds discrimination to the (acceptable)

statistical price.
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[20] Wüthrich, M.V., Merz, M. (2015). Stochastic claims reserving manual: advances in dynamic mod-

eling. SSRN Manuscript ID 264905.

[21] Xin, X., Huang, F. (2021). Anti-discrimination insurance pricing: regulations, fairness criteria, and

models. SSRN Manuscript ID 3850420.

10



A Appendix: further observations from our example

We give further observations on Example 2.1, but we state them as conjectures to keep this

discussion paper short (though some of them would not be difficult to prove).

We come back to the Gaussian distribution (2.4), but we do not explicitly specify the values of

the covariance parameters

(X1, X2, D)> ∼ N


0

0

0

 , Σ =

 1 0 ρ1
0 1 ρ2
ρ1 ρ2 1


 .

As in (2.5), for the response Y we assume that conditionally, given (X,D) = (X1, X2, D),

Y |(X,D) ∼ N (X1, 1 +X2
2 ).

We conjecture the following results about the three group fairness axioms.

group fairness axiom

independence separation sufficiency

ρ1 > 0 and ρ2 > 0 NO NO NO

ρ1 > 0 and ρ2 = 0 NO NO YES

ρ1 = 0 and ρ2 > 0 YES NO NO

ρ1 = 0 and ρ2 = 0 YES YES YES

The conjectures on lines 2 and 3 are also supported by the fact that under suitable assumptions

different group fairness criteria cannot jointly hold true; see, e.g., Chapter 3 in Barocas [4].

B Appendix: mathematical proofs

We prove the above statements of Propositions 3.1, 3.3 and 3.4 in this appendix.

Proof of Proposition 3.1. Under the assumptions of Example 2.1 we have

Cov (µ(X),D) = Cov (X1, D) = ρ1 = 0.1 > 0.

Thus, we have a positive correlation, and (3.1) cannot hold. This completes the proof. 2

Proof of Proposition 3.3. In view of the separation axiom (3.3) we need to prove, a.s.,

P [µ(X) ≤ m|Y,D] = P [µ(X) ≤ m|Y ] for all m ∈ R.

Under the assumptions of Example 2.1 we have µ(X) = X1 and D = D, and if the separation axiom holds we

need to have for all measurable functions h : R→ R

E [h(X1)|Y,D] = E [h(X1)|Y ] , (B.1)

a.s., where these exist. We will give a counterexample to (B.1) which proves that the separation axiom cannot

hold in Example 2.1. Because of continuity it suffices to prove that

E
[
X2

1

∣∣Y = 0, D = 0
]
< E

[
X2

1

∣∣Y = 0
]
< E

[
X2

1

]
= 1. (B.2)

We give the rationale behind conjecture (B.2). Observe that the distribution of X1 is symmetric around the origin

under the Gaussian assumption (2.4). Therefore, the right-hand side of (B.2) is precisely the variance of X1. If

we condition on Y = 0, the distribution of X1 is still symmetric around the origin, therefore, the middle term in

(B.2) is the conditional variance of X1, given Y = 0. Since Y = 0, we expect X1 (being the mean of Y ) to be

11



closer to zero, which implies that the conditional variance of X1, given Y , should be smaller than 1. Additionally

conditioning on D = 0, still keeps X1 symmetric around zero, and the positive correlation ρ1 = 0.1 should further

decrease the conditional variance, which motivates the first inequality in (B.2).

We start by analyzing the left-hand side of (B.2). We express the distribution of (Y,X1, X2) conditionally, given

D = 0. Using a standard result from multi-variate Gaussian distributions, see, e.g., Corollary 4.4 of Wüthrich–

Merz [20], we have conditional portfolio distribution

X|D=0 = (X1, X2)>|D=0 ∼ N

((
0

0

)
, ΣD =

(
1− ρ21 −ρ1ρ2
−ρ1ρ2 1− ρ22

))
. (B.3)

For the response Y conditionally given (X, D = 0), we still have

Y |(X,D=0) ∼ N (X1, 1 +X2
2 ). (B.4)

Remark that (B.3) would coincide with the distribution of X, if we would have independence ρ1 = ρ2 = 0, see

(2.4). Therefore, all considerations that we do under (B.3) can be translated to the middle term of (B.2) by just

setting these correlation parameters equal to zero.

Thus, we aim at calculating for h(x) = x and h(x) = x2 the conditional expectation

E [h(X1)|Y = 0, D = 0] = E0 [h(X1)|Y = 0] ,

where we abbreviate the conditional probability measure, given D = 0, by P0. This motivates us to consider

E [h(X1)|Y,D = 0] = E0 [h(X1)|Y ] = E0 [E0 [h(X1)|Y,X2]|Y ] . (B.5)

The joint density of (Y,X1, X2)|D=0 ∼ f (0)
Y,X1,X2

is given by

f
(0)
Y,X1,X2

(y, x1, x2) =
1√

2π(1 + x22)
exp

{
−1

2

(y − x1)2

1 + x22

}
× 1

2π|ΣD|1/2
exp

{
−1

2

x21(1− ρ22) + x22(1− ρ21) + 2x1x2ρ1ρ2
1− ρ21 − ρ22

}
.

This gives for the conditional density of X1, given (Y,X2, D = 0), we drop normalizing constants in the propor-

tionality sign ∝,

f
(0)

X1|(Y,X2)
(x1|Y,X2) ∝ exp

{
−1

2

(Y − x1)2

1 +X2
2

}
exp

{
−1

2

x21(1− ρ22) + 2x1X2ρ1ρ2
1− ρ21 − ρ22

}
∝ exp

{
−1

2

(
x21 − 2x1Y

1 +X2
2

+
x21(1− ρ22) + 2x1X2ρ1ρ2

1− ρ21 − ρ22

)}
∝ exp

{
−1

2

(
x21((2 +X2

2 )(1− ρ22)− ρ21)− 2x1
(
Y (1− ρ21 − ρ22)− ρ1ρ2X2(1 +X2

2 )
)

(1 +X2
2 )(1− ρ21 − ρ22)

)}
.

This is a Gaussian density, and we have

X1|(Y=0,X2,D=0) ∼ N
(
−ρ1ρ2X2(1 +X2

2 )

(2 +X2
2 )(1− ρ22)− ρ21

,
(1 +X2

2 )(1− ρ21 − ρ22)

(2 +X2
2 )(1− ρ22)− ρ21

)
. (B.6)

We calculate (B.5) for the function h(x) = x, conditional on having a response Y = 0 and D = 0,

E0 [X1|Y = 0] = E0

[
−ρ1ρ2X2(1 +X2

2 )

(2 +X2
2 )(1− ρ22)− ρ21

∣∣∣∣Y = 0

]
. (B.7)

Intuitively, this should be equal to 0 which we are going to verify. The joint density of (X1, X2)|Y=0,D=0 is given

by

f
(0)

X1,X2|Y=0(x1, x2) ∝ 1√
1 + x22

exp

{
−1

2

(
x21

1 + x22
+
x21(1− ρ22) + x22(1− ρ21) + 2x1x2ρ1ρ2

1− ρ21 − ρ22

)}
=

1√
1 + x22

exp

{
−1

2

(
x21((2 + x22)(1− ρ22)− ρ21) + 2x1x2ρ1ρ2(1 + x22)

(1 + x22)(1− ρ21 − ρ22)
+

x22(1− ρ21)

1− ρ21 − ρ22

)}
.
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This allows us to calculate the density of X2|Y=0,D=0 by integrating the previous density over x1

f
(0)

X2|Y=0(x2) =

∫
f
(0)

X1,X2|Y=0(x1, x2) dx1

∝ 1√
1 + x22

√
(1 + x22)(1− ρ21 − ρ22)√
(2 + x22)(1− ρ22)− ρ21

exp

{
−1

2

x22(1− ρ21)

1− ρ21 − ρ22

}
×
∫ √

(2 + x22)(1− ρ22)− ρ21√
(1 + x22)(1− ρ21 − ρ22)

exp

{
−1

2

x21 + 2x1x2ρ1ρ2(1 + x22)/((2 + x22)(1− ρ22)− ρ21)

(1 + x22)(1− ρ21 − ρ22)/((2 + x22)(1− ρ22)− ρ21)

}
dx1

∝ 1√
1 + x22

√
(1 + x22)(1− ρ21 − ρ22)√
(2 + x22)(1− ρ22)− ρ21

× exp

{
−1

2

x22(1− ρ21)((2 + x22)(1− ρ22)− ρ21)− ρ21ρ22x22(1 + x22)

(1− ρ21 − ρ22)((2 + x22)(1− ρ22)− ρ21)

}
∝ 1√

1 + x22

√
(1 + x22)(1− ρ21 − ρ22)√
(2 + x22)(1− ρ22)− ρ21

exp

{
−1

2

x22
[
(2 + x22)− ρ21

]
(2 + x22)(1− ρ22)− ρ21

}

∝ 1√
1 + x22

√
(1 + x22)(1− ρ21 − ρ22)√
(2 + x22)(1− ρ22)− ρ21

exp

{
−1

2

x22(2 + x22)ρ22
(2 + x22)(1− ρ22)− ρ21

}
exp

{
−1

2
x22

}
. (B.8)

We observe that the last expression is symmetric w.r.t. x2 around the origin. This implies that the conditionally

expected value in (B.7) is zero. Therefore, the left-hand side of (B.2) is equal to the conditional variance, and we

have from (B.6)

E
[
X2

1

∣∣Y = 0, D = 0
]

= Var (X1|Y = 0, D = 0) = E0

[
(1 +X2

2 )(1− ρ21 − ρ22)

(2 +X2
2 )(1− ρ22)− ρ21

∣∣∣∣Y = 0

]

=

E
[(

1
1+X2

)1/2 (
(1+X2)(1−ρ21−ρ

2
2)

(2+X2)(1−ρ22)−ρ
2
1

)3/2
exp

{
− 1

2

X2(2+X2)ρ22
(2+X2)(1−ρ22)−ρ

2
1

}]
E
[(

1
1+X2

)1/2 ( (1+X2)(1−ρ21−ρ
2
2)

(2+X2)(1−ρ22)−ρ
2
1

)1/2
exp

{
− 1

2

X2(2+X2)ρ22
(2+X2)(1−ρ22)−ρ

2
1

}] , (B.9)

with X ∼ N (0, 1) and where we use (B.8) to calculate the corresponding integrals. That is, the denominator

of (B.9) corresponds to the missing normalizing constant in (B.8), and it can be obtained by interpreting the

corresponding integral as an expectation under a Gaussian distribution due to the last term in (B.8). A similar

interpretation applies to the enumerator in (B.9). From (B.9) we conclude that we can calculate the left-hand

side of (B.2) by Monte Carlo simulation.

The middle term in (B.2) is calculated completely analogously, and it can be received from (B.9) by setting

ρ1 = ρ2 = 0. This results in

E
[
X2

1

∣∣Y = 0
]

= Var (X1|Y = 0) =

E
[(

1 +X2
) (

1
2+X2

)3/2]
E
[(

1
2+X2

)1/2] ,

with X ∼ N (0, 1). Evaluating these terms with Monte Carlo simulation using 10M Gaussian samples provides us

with

E
[
X2

1

∣∣Y = 0, D = 0
]

= 0.520 < 0.604 = E
[
X2

1

∣∣Y = 0
]
.

This proves (B.2), which completes the proof of Proposition 3.3. 2

Proof of Proposition 3.4. Sufficiency (3.4) of µ(X) implies that

Var (Y |µ(X),D) = Var (Y |µ(X)) . (B.10)

Therefore, it suffices to give a counterexample to (B.10) under the model assumptions of Example 2.1 to prove

Proposition 3.4. We first calculate the right-hand side of (B.10). It is given by

Var (Y |µ(X)) = Var (Y |X1)

= Var (E [Y |X]|X1) + E [Var (Y |X)|X1]

= Var (X1|X1) + E
[
1 +X2

2

∣∣X1

]
= 0 + 1 + Var(X2) = 2,
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where we use that X1 and X2 are independent, see (2.4). Next we calculate the left-hand side of (B.10). It is

given by

Var (Y |µ(X),D) = Var (Y |X1,D)

= Var (E [Y |X,D]|X1,D) + E [Var (Y |X,D)|X1,D]

= Var (X1|X1,D) + E
[
1 +X2

2

∣∣X1,D
]

= 0 + 1 + E
[
X2

2

∣∣X1, D
]
. (B.11)

The distribution of X2, given (X1, D), can be calculated under the Gaussian assumption (2.4), and it is given by

X2|(X1,D) ∼ N
(

ρ2
1− ρ21

(D − ρ1X1) ,
1− ρ21 − ρ22

1− ρ21

)
,

this can be obtained, e.g., from Corollary 4.4 of Wüthrich–Merz [20]. This implies that in general the last term in

(B.11) is different from 1 because it depends on (X1, D). Henceforth, identity (B.10) cannot hold, which completes

the proof. 2
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