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Testing for Cointegration with Nonstationary Volatility

H. Peter Boswijk∗ & Yang Zu †

Abstract

The paper generalises recent unit root tests for nonstationary volatility to a multivariate con-

text. Persistent changes in the innovation variance matrix lead to size distortions in conventional

cointegration tests, and possibilities of increased power by taking the time-varying volatilities and

correlations into account. The testing procedures are based on a likelihood analysis of the vector au-

toregressive model with a conditional covariance matrix that may be estimated nonparametrically.

We find that under suitable conditions, adaptation with respect to the volatility matrix process is

possible, in the sense that nonparametric volatility estimation does not lead to a loss of asymptotic

local power.

1 Introduction

An important approach to the analysis of cointegrated time series is based on a likelihood analysis of

the Gaussian vector autoregressive model, as developed by Johansen (1995). The resulting estimators

and test statistics, although derived under the assumption that the disturbances are independent and

identically normally distributed, can be shown to retain their asymptotic properties in more general

circumstances. Thus, for example, the asymptotic critical values for the likelihood ratio test for the

cointegration rank are still valid in the presence of leptokurtosis and time-varying volatilities, commonly

observed in daily financial time series, as long as the invariance principle holds. Clearly, the resulting

analysis is then based on a misspecified model and hence on a quasi-likelihood, such that more efficient

procedures may be based on the true likelihood function, which incorporates these characteristics. For

the case of stationary (generalised) autoregressive-conditional heteroskedastic ((G)ARCH) processes,

such procedures have been developed in the univariate case by Ling and Li (1998, 2003) and Seo (1999),

and for the multivariate (cointegration) case by Li et al. (2001), Wong et al. (2005) and Seo (2007).

Recent developments in the univariate unit root literature, however, have emphasised that volatility

processes may display nonstationary variation, such that the disturbances no longer satisfy the con-

ditions of an invariance principle, and hence standard unit root tests loose their asymptotic validity.

Possible causes of such nonstationarity include level shifts or other deterministic trending patterns in

the volatility, see Kim et al. (2002) and Cavaliere (2004), but also (near-) integrated GARCH dynamics,
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see Boswijk (2001). Cavaliere and Taylor (2004) and Beare (2004) develop two alternative approaches

to constructing unit root test statistics with the conventional (Dickey-Fuller) asymptotic null distribu-

tion. Boswijk (2005) derives the power envelope for unit root tests with observable (nonstationary)

volatility, and shows that considerable power gains may be obtained relative to procedures that do not

take the heteroskedasticity into account. He also shows that when the volatility is unobserved, the power

envelope may be reached by an adaptive procedure based on nonparametric volatility estimation.

This paper seeks to extend Boswijk (2005)’s analysis to a multivariate context, and hence develop

efficient tests for cointegration in the presence of a nonstationary multivariate heteroskedasticity. First,

building on the analysis of Hansen (2002, 2003), we derive the likelihood ratio test for cointegration in

a vector autoregressive model with observed time-varying variance matrices and conditionally Gaussian

disturbances. The asymptotic null distribution of this test is nonstandard and depends on the realization

of the volatility process, such that asymptotic p-values have to be obtained by Monte Carlo simulation.

Next, we consider the case of unknown volatility, and propose a two-step procedure where the volatility

process is estimated nonparametrically. Under suitable conditions, these estimators are consistent and

hence the resulting cointegration tests have the same asymptotic power function as in the case of known

volatility.

In a recent paper, Cavaliere et al. (2007) develop another approach to the same problem, which

involves applying the wild bootstrap to the traditional (constant-variance) Gaussian likelihood ratio test.

Their approach is very effective in solving the size distortions, but does not exploit the power gain

potential in the presence of nonstationary volatility. However, they require less stringent assumptions

on the volatility process than the present paper. In particular, they allow for level shifts in the volatility

process, which are excluded here because the nonparametric estimator requires continuous volatility

sample paths.

The plan of the paper is as follows. Section 2 presents the model and assumptions, and characterises

the limiting behaviour of the process. In Section 3 we obtain an expression of the likelihood ratio

statistic for the cointegration rank for the case of a known volatility process, and we derive its limiting

distribution, both under the null hypothesis and a sequence of local alternatives. Section 4 discusses

estimation of the volatility matrix, and its impact on the resulting test for cointegration rank. Section

5 contains an empirical application of the test to the S&P 500 and NASDAQ-100 indices in the 1990s.

Section 6 contains some concluding remarks, and proofs of all results are given in an appendix.

Throughout the paper, we use the notation Xn
L−→ X to denote convergence in distribution for

sequences of random variables or vectors, and Xn(s)
L−→ X(s), s ∈ [0, 1] to denote weak convergence

in D[0, 1]k, the product space of right-continuous functions with finite left limits, under the uniform

metric. The notation bxc is used for the largest integer less than or equal to x. For any n×m matrix A

of full column rank m < n, A⊥ denotes an n× (n−m) matrix of full column rank such that A′⊥A = 0,

and Ā = A(A′A)−1.
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2 The model

Consider the vector autoregressive model of order k, written in error correction form, for a p-variate

time series {Xt, t = 1, . . . , n}:

∆Xt = ΠXt−1 +

k−1∑
j=1

Γj∆Xt−j + εt, (1)

where Π and Γj , j = 1, . . . , k− 1 are p× p coefficient matrices, and where εt is a p-variate disturbance

vector with mean zero. The starting values {X1−k, . . . , X0} are considered fixed. For ease of exposi-

tion, we first consider the model with no deterministic components such as a constant or linear trend;

extensions in this direction are discussed at the end of Section 3.

We wish to test the null hypothesis:

H(r) : Π = αβ′, (2)

where α and β are p × r matrices, 0 ≤ r < p. Note that H(r) may be equivalently formulated as

rank(Π) ≤ r. Under this hypothesis, the vector error correction model (VECM) becomes

∆Xt = αβ′Xt−1 +

k−1∑
j=1

Γj∆Xt−j + εt. (3)

This implies that Xt is integrated of order 1, with cointegration rank r and cointegration matrix β,

provided that the following assumption is satisfied (Johansen, 1995, Theorem 4.2):

Assumption 1 In the model (3), (a) the p × r matrices α and β are of full column rank r, (b) the

characteristic equation
∣∣∣Ip(1− z)−Πz −

∑k−1
j=1 Γjz

j(1− z)
∣∣∣ = 0 has all its roots equal to one or

outside the unit circle, and (c) rank(α′⊥Γβ⊥) = p− r, where Γ = Ip −
∑k−1

j=1 Γj .

Under the assumption that the disturbances {εt} are independent and identically distributed (i.i.d.)

Gaussian with mean zero and positive definite variance matrix Σ, the likelihood function for the model

under H(r) is maximised by reduced rank regression. From this, an explicit expression is available for

the likelihood ratio test of H(r) in the unrestricted model H(p), corresponding to (1); see Johansen

(1995). Here we consider a deviation from the i.i.d. assumption, in that we allow for heteroskedasticity:

Assumption 2 In the model (3), the disturbances satisfy

εt = σtηt, t = 1, 2, . . . , (4)

where {σt}t≥1 is a sequence of possibly stochastic non-singular p× p matrices, and {ηt}t≥1 is an i.i.d.

sequence, with

E(η1) = 0, var(η1) = Ip, t = 1, 2, . . . , (5)

and with ηt independent of Ft−1 = σ({ηt−1−j , σt−j}j≥0), t = 1, 2, . . ..
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The assumption directly implies E(εt|Ft−1) = 0 and var(εt|Ft−1) = σtσ
′
t =: Σt, a positive defi-

nite conditional variance matrix. We will refer to σt, a matrix square root of Σt, as the volatility matrix

of εt. Note that the definition of the filtration {Ft}t≥0 allows for deterministic volatility, but also for

multivariate GARCH processes, where σt is a function of {εt−j}j≥1, or stochastic volatility specifica-

tions, where σt is a stochastic process driven by its own innovations, possibly depending on {εt−j}j≥1

but independent of ηt. In the next section, we will analyse the likelihood function derived from the

stronger assumption εt|Ft−1 ∼ N(0,Σt), but the asymptotic properties of the resulting procedures will

continue to hold under Assumption 2 with non-Gaussian {ηt}.
If the volatility process is stationary and ergodic, such that the average variance matrix n−1

∑n
t=1 Σt

converges to a finite and positive definite matrix Σ as n→∞, then, under suitable technical conditions,

the invariance principle will apply to {εt}. This in turn would imply that Johansen’s (quasi-) likelihood

ratio test, based on the Gaussian i.i.d. assumption on {εt}, would retain its usual asymptotic properties,

even though more efficient tests may obtained from an analysis of the true likelihood function. In

this paper, we consider the case where {σt} displays nonstationary variation, such that the invariance

principle does not apply. Define, for n = 1, 2, . . .,

Wn(s) = n−1/2
bsnc∑
t=1

ηt, s ∈ [0, 1], (6)

a vector-valued process in D[0, 1]p, and

σn(s) =

{
σbsnc+1, s ∈ [0, 1),

σn, s = 1,
(7)

a matrix-valued process in D[0, 1]p×p.

Assumption 3 As n→∞,

(Wn(s), σn(s))
L−→ (W (s), σ(s)) , s ∈ [0, 1], (8)

where W (·) is a standard p-variate Brownian motion process, and σ(·) is a p×p matrix-valued process

on [0, 1], independent of W (·). The elements σij(·) of σ(·) have continuous sample paths and satisfy

E
(∫ 1

0 σij(s)
2ds
)
<∞ for all i, j = 1, . . . , p.

This assumption is a multivariate generalization of Assumption 1 in Boswijk (2005), which in turn

was inspired by Hansen (1995). Note that the invariance principle for {ηt} follows directly from As-

sumption 2, but it is included because joint convergence will be needed. The condition on the lim-

iting behaviour of {σt} is motivated by the notion that persistent changes in the volatility should be

preserved in the limit. Beare (2004), Cavaliere (2004), Cavaliere and Taylor (2004) and Phillips and

Xu (2006) consider, in the univariate context, the closely related assumption σt = σ(t/n) for some

deterministic function σ(·), which implies σn(s) → σ(s), s ∈ [0, 1]. One instance where the assump-

tion arises naturally is in the context of continuous-record asymptotics, where the number of obser-

vations is increased by considering an increasing sampling frequency over a fixed time span; see also
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Nelson (1990). This also clarifies that {σt}, and hence {εt} and {Xt}, are in fact triangular arrays

{(Xnt, εnt, σnt), t = 1, . . . , n;n = 1, 2, . . .}, although we suppress the double index notation for sim-

plicity.

Before we consider likelihood-based testing for H(r) the model (3) under Assumption 2, we con-

clude this section with a characterization of the limiting behaviour of the process under the null H(r),

and under a sequence of local alternatives

Hn(r, r1) : Πn = αβ′ + n−1α1β
′
1, (9)

where α and β are the same as before, and α1 and β1 are p×r1 matrices of full column rank, r1 ≤ p−r,

such that [α : α1] and [β : β1] are both of rank r + r1. See Chapter 14 of Johansen (1995) and Hansen

and Johansen (1998) for the analysis of the asymptotic local power of the likelihood ratio test under the

Gaussian i.i.d. assumption and (9). Proofs of all results are given in the Appendix.

Lemma 1 In the model (3) under Assumptions 1–3 and underHn(r, r1), we have

n−1/2

bsnc∑
t=1

εt
L−→
∫ s

0
σ(u)dW (u) =: U(s), s ∈ [0, 1], (10)

and

n−1/2Xbsnc
L−→ β⊥(α′⊥Γβ⊥)−1K(s) =: X(s), s ∈ [0, 1], (11)

where the (p− r)-variate process K(·) is given by

K(s) =

∫ s

0
exp ((s− u)A)σK(u)dW (u), s ∈ [0, 1], (12)

with A = α′⊥α1β
′
1β⊥(α′⊥Γβ⊥)−1 and σK(s) = α′⊥σ(s), such that K(·) satisfies the stochastic differ-

ential equation

dK(s) = AK(s)ds+ σK(s)dW (s). (13)

The limit X(·) of n−1/2Xb·nc is a p-variate process, but of rank p− r, in the sense that β′X(s) = 0

(a.s.). Note that K(·) may be interpreted as a multivariate heteroskedastic Ornstein-Uhlenbeck process.

The limit theory under H(r) is obtained by setting r1 = 0 and hence A = 0, such that K(s) reduces to

α′⊥U(s).

Lemma 1 implies that the limiting null distribution of the quasi-likelihood ratio (QLR) statistic,

derived under the constant-variance assumption, will have a limiting distribution that depends on σ(·).

In particular, in the simple case where k = 1, and we wish to test H(0), then it follows fairly directly

from Lemma 1 that the QLR statistic satisfies, under the null hypothesis,

QLRn(0)
L−→ tr

{∫ 1

0
dU(s)U(s)′

(∫ 1

0
U(s)U(s)′ds

)−1 ∫ 1

0
U(s)dU(s)′

(∫ 1

0
Σ(s)ds

)−1
}
,

(14)

with Σ(s) = σ(s)σ(s)′. If and only if σ(·) is a constant matrix σ, such that U(s) = σW (s), the usual

limiting distribution tabulated in Johansen (1995) will result.
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3 The likelihood ratio rest with known volatility

In this section we analyse the likelihood ratio (LR) statistic forH(r) in the model (3) in the case where

{σt} is known, and where the standardized innovations {ηt} are taken to be i.i.d. N(0, Ip). Although

the assumption that {σt} is observed is unrealistic in practice, the asymptotic local power of such a

test provides an upper bound1 to the local power of tests in case {σt} is unknown and hence has to be

estimated, either based on a parametric model or nonparametrically.

Define Ψ = [Γ1 : · · · : Γk−1] and Wt = (∆X ′t−1, . . . ,∆X
′
t−k+1)′, such that the model (3) under

Assumption 2 with Gaussian {ηt} may be expressed more compactly as

∆Xt = αβ′Xt−1 + ΨWt + εt, εt|Ft−1 ∼ N(0,Σt), t = 1, . . . , n, (15)

where Σt = σtσ
′
t as before. Recall that the starting values {X1−k, . . . , X0}, and henceW1, are observed

but treated as fixed. The volatility matrices {σt}nt=1 are also observed, but no specific model (such

as multivariate GARCH) is assumed. The only assumption we make is that {σt} is either fixed or

weakly exogenous, in the sense of Engle et al. (1983), for the parameters (α, β,Ψ). This means that

the joint density of (Xt, σt) given the past Gt−1 = σ({Xt−j , σt−j}j>0) factorises into the conditional

Gaussian distribution of Xt given σt and Gt−1, with parameters (α, β,Ψ), and the marginal distribution

of σt given Gt−1, the (possibly infinite-dimensional) parameters of which are variation independent of

(α, β,Ψ). Under this condition, the log-likelihood function is given by

`n(α, β,Ψ) = −Tp
2

log 2π − 1

2

n∑
t=1

log |Σt|

−1

2

n∑
t=1

(∆Xt − αβ′Xt−1 + ΨWt)
′Σ−1
t (∆Xt − αβ′Xt−1 + ΨWt). (16)

Maximum likelihood estimation in a closely related class of models was studied by Hansen (2002,

2003), who generalised the switching algorithm developed by Boswijk (1995) in various directions,

including time-varying variance matrices. The key idea of this so-called generalised reduced rank

regression procedure is that, although no closed-form expression exists for the maximum likelihood

estimator (MLE) (α̂n, β̂n, Ψ̂n), the maximization of `n(α, β,Ψ) over (α,Ψ) for fixed β does lead to a

closed-form expression, and similarly the MLE of β for fixed (α,Ψ) has a closed-form expression. The

likelihood may then be maximised, starting from an initial guess, by switching between maximization

over (α,Ψ) and β. Properties of such switching algorithms have been studied by Oberhofer and Kmenta

(1974): since the maximised likelihood is nondecreasing in each step, it does eventually converge,

although not necessarily very fast, and not necessarily to a global maximum.

The algorithm requires that just-identifying restrictions are imposed on β. We formulate these as

c′β = Ir, for some known p× r matrix of full column rank. An equivalent formulation is β = c̄+ c⊥Φ,
1We confine ourselves to likelihood-ratio-type tests, and hence do not attempt to derive an asymptotic power envelope for

all possible tests of the null hypothesis, which would be defined as the limiting power of a point optimal invariant test of H(r)

against Hn(r, r1).
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where Φ is a (p− r)× r matrix of free parameters, such that

vecβ = vec (c̄+ c⊥Φ) = h+Hφ, (17)

where h = vec c̄ and H = Ir ⊗ c⊥, and φ = vec Φ. Other restrictions are also possible, as long as they

are just-identifying, which implies r2 restrictions and hence r(p− r) free parameters in β.

Let Zt(β) = (X ′t−1β,W
′
t)
′. Maximization of `n(α, β,Ψ) over (α,Ψ) for fixed β leads to (Hansen,

2003, Theorem 2)

vec[α̂n(β) : Ψ̂n(β)] =

(
n∑
t=1

[
Zt(β)Zt(β)′ ⊗ Σ−1

t

])−1

vec

(
n∑
t=1

Σ−1
t ∆XtZt(β)′

)
, (18)

whereas the MLE of β for fixed (α,Ψ) is given by

vec β̂n(α,Ψ) = h+H

(
H ′

n∑
t=1

[
α′Σ−1

t α⊗Xt−1X
′
t−1

]
H

)−1

H ′

×
n∑
t=1

{
vec
(
Xt−1(∆Xt −ΨWt)

′Σ−1
t α

)
−
[
α′Σ−1

t α⊗Xt−1X
′
t−1

]
h
}
. (19)

Upon convergence of the switching algorithm, this yields the MLE (α̂n, β̂n, Ψ̂n), and hence the

residuals

ε̂t = ∆Xt − [α̂n : Ψ̂n]Zt(β̂n) = ∆Xt − α̂nβ̂
′
nXt−1 − Ψ̂nWt, t = 1, . . . , n. (20)

In the special case r = 0 (no cointegration), corresponding to [Π : µ] = αβ′ = 0, this reduces to

ε̂t = ∆Xt − Ψ̂nWt, with vec Ψ̂n =
(∑n

t=1

[
WtW

′
t ⊗ Σ−1

t

])−1
vec
(∑n

t=1 Σ−1
t ∆XtW

′
t

)
.

The unrestricted model (1), corresponding to H(p), may be expressed as ∆Xt = [Π : Ψ]Zt + εt,

where Zt = Zt(Ip+1) = (X ′t−1,W
′
t)
′. The corresponding log-likelihood is maximised by

vec[Π̃n : Ψ̃n] =

(
n∑
t=1

[
ZtZ

′
t ⊗ Σ−1

t

])−1

vec

(
n∑
t=1

Σ−1
t ∆XtZ

′
t

)
, (21)

yielding the unrestricted residuals

ε̃t = ∆Xt − [Π̃n : Ψ̃n]Zt = ∆Xt − Π̃nXt−1 − Ψ̃nWt, t = 1, . . . , n. (22)

Using these, the LR statistic forH(r) with known volatility matrix is given by

LRn(r) = −2
[
`n(α̂n, β̂n, Ψ̂n)− `n(Π̃n, Ip+1, Ψ̃n)

]
=

n∑
t=1

(
ε̂′tΣ
−1
t ε̂t − ε̃′tΣ−1

t ε̃t
)
. (23)

The limiting behaviour of LRn(r) is characterised in Theorem 1. Define

Y (s) =

(
Y1(s)

Y2(s)

)
=

(
α′⊥

α′

)(
σ(s)′−1 ⊗K(s)

)
, (24)

and

Z(s) = Y1(s)−
∫ 1

0
Y1(u)Y2(u)′du

[∫ 1

0
Y2(u)Y2(u)′du

]−1

Y2(s). (25)
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Theorem 1 In the model (3), under Assumptions 1–3 and underHn(r, r1), the LR statistic (23) satisfies,

as n→∞,

LRn(r)
L−→

(∫ 1

0
Z(s)[dW (s) + Z(s)′ vec(A′)ds]

)′(∫ 1

0
Z(s)Z(s)′ds

)−1

×
(∫ 1

0
Z(s)[dW (s) + Z(s)′ vec(A′)ds]

)
. (26)

We observe that the limiting distribution under the null hypothesis H(r), such that A = 0, depends

on (the process generating) σ(s), and on α (and hence α⊥). Therefore, no uniformly applicable tables of

critical values can be constructed. Because W (·) is independent of σ(·) by Assumption 3, quantiles and

p-values of the limiting distribution conditional on σ(·) can be obtained by Monte Carlo simulation of

the limiting expression in (26), replacing α by α̂n. Consistency of α̂n (which follows from the proof of

Theorem 1) guarantees the asymptotic validity of such p-values, as both the sample size and the number

of Monte Carlo replications tend to infinity.

In the special case of the null hypothesis H(0) (no cointegration), the expression for the limiting

distribution of the LR statistic simplifies somewhat. The representation in Corollary 1 follows directly

from (26), with Z(s) = σ(s)′−1 ⊗K(s) and

dK(s) = σ(s)[dW (s) + σ(s)−1AK(s)ds] = σ(s)[dW (s) + Z(s)′ vec(A′)ds]. (27)

Corollary 1 Under the conditions of Theorem 1, the likelihood ratio statistic LRn(0) for r = 0 satis-

fies, as n→∞,

LRn(0)
L−→

∫ 1

0
dK(s)′

[
Σ(s)−1 ⊗K(s)′

](∫ 1

0
[Σ(s)−1 ⊗K(s)K(s)′]ds

)−1

×
∫ 1

0

[
Σ(s)−1 ⊗K(s)

]
dK(s). (28)

We conclude this section with a discussion of the adjustments needed to accommodate a constant

or linear trend term in the model. We focus on models where the process has either a constant mean

or a linearly trending mean in both the stationary and the nonstationary directions. As is well known

(Johansen, 1995, Chapters 5–6), this is accomplished by considering the following two extensions of

(3). To allow for a constant mean, the model becomes

∆Xt = α(β′Xt−1 + ρ0) +

k−1∑
j=1

Γj∆Xt−j + εt

= αβ∗′X∗t−1 + ΨWt + εt, (29)

where ρ0 is an r-vector, and where β∗ = (β′, ρ0)′ and X∗t−1 = (X ′t−1, 1)′. A linear trend is included via

∆Xt = µ+ α(β′Xt−1 + ρ1t) +

k−1∑
j=1

Γj∆Xt−j + εt

= αβ∗X∗t−1 + Ψ∗W ∗t + εt, (30)

8



where µ is an n-vector and ρ1 is an r-vector, and where now β∗ = (β′, ρ1)′, X∗t−1 = (X ′t−1, t)
′,

Ψ∗ = [µ : Ψ] and W ∗t = (1,W ′t)
′. The log-likelihood function under Assumption 2 is analogous to

(16), with parameters and regressors replaced by their starred counterparts.

Adjusting the identification restrictions (17) accordingly, such that vecβ∗ = vec (c̄∗ + c∗⊥Φ∗) with

c∗ of dimensions (p+1)×r and hence c∗⊥ and Φ∗ of dimensions (p+1)×(p+1−r) and (p+1−r)×r,

respectively, the switching algorithm based on (18)–(19) remains the same, with all parameters and

vectors replaced by their starred counterparts. Without proof, we state the limiting distribution of the

resulting LR test statistic in the following corollary.

Corollary 2 In the models (29)–(30), under Assumptions 1–3 and underHn(r, r1), the LR statistic (23)

satisfies, as n→∞,

LRn(r)
L−→

(∫ 1

0
Z∗(s)[dW (s) + Z∗(s)′ vec(A∗′)ds]

)′(∫ 1

0
Z∗(s)Z∗(s)′ds

)−1

×
(∫ 1

0
Z∗(s)[dW (s) + Z∗(s)′ vec(A∗′)ds]

)
, (31)

where A∗ = [A : 0] and Z∗(s) is defined analogously to (24)–(25), with K(s) replaced by K∗(s) =

(K(s)′, 1)′ in (29), and with K(s) replaced by by K∗(s) = (K(s)′, s)′ and Y (s) replaced by

Y ∗(s) =

(
α′⊥

α′

){(
σ(s)′−1 ⊗K∗(s)

)
−
∫ 1

0

(
Σ(u)−1 ⊗K∗(u)

)
du

[∫ 1

0
Σ(u)−1du

]−1

σ(s)′−1

}
(32)

in (30).

4 Estimation of the volatility process

In the previous section we have developed a likelihood ratio test for cointegration when the volatility

process σ(·) is known. In specific applications to financial data, the assumption that the volatility is

observed with negligible measurement error may not be entirely unrealistic, since high-frequency intra-

day data may be used to estimate the daily or weekly volatility with a high degree of precision; see, e.g.,

Andersen et al. (2003). In this section, however, we consider the case where the only data available is

{Xt, t = −k + 1, . . . , 0, 1, . . . , n}, and hence an estimator of the volatility matrix has to be obtained

from the data at the same observation frequency as used to construct the likelihood function and hence

the cointegration test.

The volatility matrix σt may be estimated either parametrically or nonparametrically. Possible para-

metric approaches include multivariate GARCH models, notably the dynamic conditional correlation

(DCC) model of Engle (2002). The likelihood ratio test statistic may then be obtained by full maxi-

mization of the likelihood function for the Gaussian VAR-DCC model, with and without the reduced

rank restriction. Alternatively, a two-step approach may be used, where the volatility matrix is estimated

based on the residuals from least-squares estimation of the unrestricted VAR model, and the resulting
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estimator Σ̂t is then substituted for Σt in the expressions for the MLE and LR statistic given in the

previous section.

The obvious disadvantage of such a parametric approach is that it relies on the assumption of cor-

rect specification of the volatility process. Therefore, in this paper we propose to estimate σt by a

nonparametric kernel estimator, generalizing the approach of Boswijk (2005), which in turn is based on

Hansen (1995). It should be noted, however, that as analysed by Nelson and Foster (1994) and Nelson

(1996a), univariate and multivariate GARCH models (with deterministic parameter sequences instead

of estimated parameters) may also be interpreted as nonparametric filters of continuous-time univariate

or multivariate stochastic volatility processes. Indeed, Engle (2002) shows via Monte Carlo simulations

that the DCC model is rather successful in recovering time-varying correlation paths that are not gener-

ated by a DCC process. Therefore, in the continuous-time asymptotic framework of Assumption 3, the

difference between parametric and nonparametric approaches is not as essential as it may appear at first

sight.

We extend Hansen (1995)’s nonparametric volatility filter in two directions: we consider a multivari-

ate version of the estimator, but we also propose a version of the conditional variance matrix estimator

at time t based on leads and lags of the outer product of the residual vector. As such, the approach is

close to that of Foster and Nelson (1996), and hence may be referred to as a volatility smoother instead

of a filter, see also Nelson (1996b). As discussed in these articles, using leads is not needed when the

true volatility follows a GARCH specification, and hence depends on lags of observed variables only.

However, when the true volatility process is stochastic, with its own latent shocks, then the use of leads

will increase efficiency of the estimator.

Let {et}nt=1 denote the least-squares residual vector of the model (15) (or of the extended models

(29) or (29)), or equivalently the residual vector based on the unrestricted ML estimator (21)–(22) with

Σt = In. The one-sided kernel estimator proposed by Hansen (1995) is defined in the multivariate

context follows. Let k : [0, 1] → [0, 1] be a kernel function with
∫ 1

0 k(x)dx > 0, let N ∈ N be a

window width, and let

Σ̂t =

∑N
j=1 k(j/N)et−je

′
t−j∑N

j=1 k(j/N)
, t = N + 1, . . . , n, (33)

and Σ̂t = Σ̂N+1 for 1 ≤ t ≤ N . For t > N , Σ̂t is a weighted average of N lags of ete′t. To avoid

boundary effects, the first N observations of Σ̂t (where less than N lags are available) are set equal to

Σ̂N+1. Note that N > p is a necessary condition for positive definiteness of Σ̂t for all t; we shall see

that a necessary condition for consistency of the kernel estimator is that the window width N increases

with the sample size at a suitable rate.

Alternatively, a double-sided kernel estimator may be defined as

Σ̃t =

∑N
j=−N k(j/N)1{1≤t−j≤n}et−je

′
t−j∑N

j=−N k(j/N)1{1≤t−j≤n}
, t = 1, . . . , n, (34)

where k : [−1, 1] → [0, 1] now satisfies
∫ 1
−1 k(x)dx > 0. For all t, Σ̃t is a weighted average of leads

and lags of ete′t, with weights summing to one. For t ≤ N , the estimator is determined by leads more

10



than by lags, and for t > n − N , the relative weight of the lags increases. This changing shape of the

weight function is similar in spirit to the asymmetric beta kernel which was adapted for this purpose and

analysed by Kristensen (2006).

An easily interpretable example of the one-sided (33) and the double-sided (34) kernel estimator is

obtained for k(x) = e−cx1[0,1](x) and k(x) = e−c|x|1[−1,1](x), the truncated exponential and Laplace

kernel, where c is chosen such that k(1) = k(−1) ≈ 0, i.e., such that the truncation has a very small

effect. Then the estimators approximately correspond to (single-sided or double-sided) exponential

smoothing of ete′t, with exponential smoothing parameter λN = e−c/N . In the examples below we use

this kernel with c = 5, such that k(1) = k(−1) < 0.01.

The estimators (33) and (34) correspond to estimators Σ̂n(s) = Σ̂bsnc and Σ̃n(s) = Σ̃bsnc of Σ(s);

corresponding estimators of σ(s) may be defined as any (not necessarily symmetric) square root of

Σ̂n(s) and Σ̃n(s), but this choice will not affect the results to follow. Theorem 2 establishes consistency

of Σ̂n(s) and Σ̃n(s); a necessary condition is

Assumption 4 For some r > 1, and i, j = 1, . . . , p, E(
∣∣ηi1ηj1∣∣r) <∞.

Clearly this assumption is satisfied if η1 ∼ N(0, Ip), but it is sufficient for η1 to have finite 2rth

moments for some r > 1.

Theorem 2 Consider the model (3) under Assumptions 1–4. If N = anb for some a and b satisfying

0 < a <∞ and b ∈ (2/r, 1), then

sup
s∈[0,1]

‖Σ̂n(s)− Σ(s)‖ P−→ 0, (35)

sup
s∈[0,1]

‖Σ̃n(s)− Σ(s)‖ P−→ 0, (36)

where ‖·‖ is the Euclidean matrix norm.

The consistent estimators Σ̂n(s) and Σ̃n(s) may be used for an approximate likelihood ratio test

as follows. First, we may replace Σt by Σ̂t or Σ̃t in the definition of the restricted and unrestricted

estimators (18)–(19) and (21), the corresponding residuals ε̂t and ε̃t in (20) and (22), and hence the

likelihood ratio statistic (23). Denoting the resulting statistics by L̂Rn(r) and L̃Rn(r), the next theorem

establishes that the volatility estimation error has an asymptotically negligible effect.

Theorem 3 Under the conditions of Theorem 2, L̂Rn(r) and L̃Rn(r) have the same limiting distribu-

tion as LRn(r) under the null hypothesis and local alternatives, as given in Theorem 1.

This theorem implies that under the stated conditions, adaptive estimation and testing is possible:

the fact that the unknown volatility process is not observed but estimated nonparametrically entails no

loss of efficiency.

A second use of the estimators Σ̂n(s) and Σ̃n(s) is to obtain asymptotic conditional p-values for the

test statistics, based on Monte Carlo simulation of the limiting null distributions given in Theorem 1 and
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Corollaries 1 and 2, with Σ(s) replaced by one of the estimators. The consistency result of Theorem 2

implies that the resulting p-values are consistent as both the sample size and the number of Monte Carlo

replications tend to infinity.

We conclude this section with some remarks about the selection of the window widthN . Theorem 2

requires N to increase with the sample size at a certain rate, but does not guide us in selecting a window

width for a particular sample. A cross-validation technique may be implemented as follows. The one-

sided filter Σ̂t, which for t > N only depends on et−je′t−j , j > 0, may be compared with the realisation

ete
′
t, leading to a distance function

Ĉn(N) =
n∑

t=nl

‖Σ̂t(N)− ete′t‖2, (37)

which may be minimized over a suitable range N ∈ [Nl, Nu], with Nl > p and Nu < n, and where

nl > Nu The equivalence between minimizing the sum of squared prediction errors (for exponential

smoothing) and cross-validation (for kernel estimation, using a one-sided exponential kernel) was dis-

cussed by Gijbels et al. (1999). For the two-sided filter, we propose a leave-one-out cross-validation

approach, which amounts to minimizing

C̃n(N) =

nu∑
t=nl

‖Σ̃−tt (N)− ete′t‖2, (38)

where Σ̃−tt (N) is given by (34), but with k(0) replaced by 0, such that ete′t does not enter the expression

for Σ̃−tt (N). Here it is advisable to choose nl > Nu and nu < n − Nu, to avoid boundary effects on

the cross-validation procedure.

5 Empirical application: stock market indices in the 1990s

In this section we illustrate the use of the proposed test in an application to a cointegration analysis

of the S&P 500 index and the NASDAQ-100 index in the 1990s. A cointegration model with stochas-

tic volatility (essentially a constant conditional correlation model) was proposed by Duan and Pliska

(2004), for the purpose of pricing multi-asset (basket) options. They found evidence of cointegration

between the logarithms of these two stock market indices in the period from January 2, 1991 to May 15,

1998, based on the Engle and Granger (1987) residual-based cointegration test. We will reanalyse this

relationship over the same sample period (with n = 1864) using the Gaussian (constant volatility) like-

lihood ratio test and the test proposed in this paper. More recent evidence, including the stock-market

run up and subsequent decline around the turn of the millennium reveals that any linear cointegrating

relation between such stock market indices is likely to break down eventually, but we will focus on the

1990s to illustrate the different outcomes resulting from the treatment of the volatility process.

Figure 1 displays the original data (not in logs). It is seen that both time series display an upward

trend over this period, which may be common but with a different slope: the average growth rate of

the NASDAQ clearly exceeds that of the S&P 500. To allow for the possibility that this different slope
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Figure 1: S&P 500 and NASDAQ-100 index, 02/01/1991 – 15/05/1998.
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is partly caused by a different deterministic linear trend in the logs, we follow Duan and Pliska (2004)

in allowing for a restricted linear trend in the cointegrating relationship (i.e., restricted to exclude the

possibility of a quadratic trend in the levels).

Letting Xt = (X1t, X2t)
′ = (log(S&P 500)t, log(NASDAQ-100)t)′, a first-order vector autore-

gressive model with linear trend appears to be dynamically well-specified: residuals do not display

significant serial correlation, and the lag length of one is selected by the usual information criteria.

As indicated in Figure 2, however, the residuals do not appear to be Gaussian white noise: there

is evidence of volatility clustering and leptokurtosis, both most prominently in the residuals e1t of the

S&P 500 equation.

Ignoring these results, and using the Johansen trace test as a quasi-likelihood ratio test for H(0)

leads to a test statistic of 24.37, with a (simulated) p-value of 0.075. Therefore, we reject the null

hypothesis of no cointegration only if we are prepared to use a significance level of 10% or higher. The

estimated cointegrating relation is (standard errors in parentheses)

β̂
′
X∗t = X1t + 1.976

(0.677)
× 10−4t− 0.922

(0.079)
X2t, (39)

which includes a linear trend coefficient that is significantly different from zero at the usual significance

level. The estimated error correction coefficients are α̂1 = −0.001 (0.004) and α̂2 = 0.020 (0.007),

suggesting that most of the error correction is done by the NASDAQ.

Figure 3 shows the estimated volatilities and the covariance and correlation based on {Σ̂t} and

{Σ̃t}, the nonparametrically estimated conditional covariance matrix given in (33) and (34). These

figures are based on the truncated exponential / Laplace kernel k(x) = e−5|x|1[−1,1](x), with N chosen

to minimize the cross-validation criterion functions (37) and (38), where we have taken Nl = 20,

Nu = 250 (corresponding to a range of approximately λN ∈ [0.8, 0.98] for the exponential smoothing
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Figure 2: Least-squares residuals from VAR(1) model with trend, and their histograms.
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parameter), and nl = Nu + 1 and nu = n − Nu The chosen window widths are given by N̂ =

argminN∈[Nl,Nu] Ĉn(N) = 140 (such that λN̂ = 0.965) and Ñ = argminN∈[Nl,Nu] C̃n(N) = 80

(corresponding to λÑ = 0.939).

From Figure 3 we see that both methods lead to similar estimates. As expected, the double-sided

kernel estimates have smoother sample paths than the one-sided filters, with the latter lagging behind the

former in terms of up- or downswings. Also, we note the familiar time-irreversible patterns around the

peaks in the one-sided estimates, with sudden changes before the peak and gradual mean-reversion after

the peak, whereas the double-sided estimates, by construction, lead to more symmetric patterns around

the peaks. From both estimates, we observe that the correlation may display stationary variation around

a mean of about 0.75, but the volatilities and covariance appear to have a much lower mean-reversion.

Therefore it seems reasonable to apply the type of asymptotics implied by Assumption 3.

Before the adaptive test defined in the previous section is applied, we first simulate the asymptotic

null distribution of the trace statistic based on (14), with Σ(·) replaced by Σ̂n(·) and Σ̃n(·). The re-

sulting p-values are 0.087 and 0.122, as opposed to the original p-value of 0.075 that is valid under the

assumption of stationary volatility. This illustrates that the type of nonstationary volatility observed in

financial data may have a serious consequence for the size of conventional tests.

The adaptive likelihood ratio statistic for no cointegration based on {Σ̂t} has a value of 29.60, with

an asymptotic p-value of 0.011; when using {Σ̃t}, the test statistic and p-value become 26.66 [0.035].

Therefore, we see that the evidence in favour of cointegration has increased substantially by taking the

time-varying volatility matrix into account. The resulting cointegrating relation, based on {Σ̃t} now
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Figure 3: Estimated volatilities, covariance and correlation of e1t and e2t.
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becomes

β̂
′
X∗t = X1t + 1.773

(0.672)
× 10−4t− 0.903

(0.082)
X2t, (40)

which is quite similar to the relation found from the Gaussian constant-volatility quasi-likelihood (as

well as the estimates based on {Σ̂t}). Similarly, the adjustment coefficients α̂1 = −0.001 (0.004) and

α̂2 = 0.018 (0.007) are hardly affected. Note, however, that the standard errors reported in (39) and for

the corresponding estimates of α are invalid in the presence of nonstationary volatility.

In summary, the empirical example in this section has illustrated that empirically relevant volatility

patterns may lead, on the one hand, to size distortions of conventional cointegration tests, and on the

other hand, to more efficient estimators and more powerful tests derived from an appropriate likelihood

function that allows for time-varying volatilities.

6 Discussion

Although we have used a stock market example to illustrate the approach proposed in this paper, one may

argue that there is little theory to support the idea that two stock market indices should be cointegrated,

and indeed such relations typically break down over longer sample periods. However, the scope for

possible applications of the proposed test is much wider, including interest rate (term structure) models

and exchange rate models (spot-forward relations, purchasing power parity). In principle the approach

could also be used for macro-data, but the non-parametric kernel estimator cannot be expected to give

very accurate estimates when data are observed infrequently, and in such cases it is probably advisable
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to adopt a parametric model for the changing volatilities and correlations.

The assumptions made in the paper appear to exclude some, potentially relevant, cases. First, the

assumed continuity of the volatility matrix σ(·) excludes level shifts in volatility or correlation. In princi-

ple, such discontinuous level shifts can be approximated arbitrarily well by continuous smooth transition

functions with a very steep transition. However, the effectiveness of the nonparametric volatility filter

around such events needs to be investigated further.

Another limitation is the assumed independence between the volatility process and the Brownian

motion corresponding to the partial sum of standardized innovations. This independence is needed for

the type of conditional inference considered here, but it excludes applications in stock markets where

volatility shocks and stock price shocks are negatively correlated, corresponding to the well-known

leverage effect. It will be hard to avoid this condition without formulating a fully parametric model to

make the dependence explicit.

Finally, we have considered here tests based on a conditionally Gaussian likelihood function. In

practice one often observes that financial returns standardized by GARCH-type volatility estimators

display excess kurtosis. Note, however, that the asymptotic results in this paper are robust to this type

of nonnormality, as long as the conditions of Assumption 3 and 4 are satisfied. Clearly, in such cases

the proposed test loses its efficiency claims, and more powerful tests could be derived from, e.g., a

Student’s t likelihood. Note also that the deviations from normality of standardized residuals may be

less pronounced when based on a double-sided filter, analogous to the corresponding result for residuals

based on realized volatility, see Andersen et al. (2003).
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Appendix

Proof of Lemma 1. Consider first (10), and note that (4), (6) and (7) together imply

n−1/2

bsnc∑
t=1

εt = n−1/2

bsnc∑
t=1

σtηt =

∫ s

0
σn(u)dWn(u). (A.1)

Using a multivariate version of Hansen (1992)’s Theorem 2.1, it follows that
∫ s

0 σn(u)dWn(u)
L−→∫ s

0 σ(u)dW (u) inD[0, 1]p, jointly with (8), because {(σt+1, ηt)}t≥1 is adapted to {Ft}t≥1, and {ηt}t≥1

is a martingale difference sequence with respect to {Ft}t≥0, with supn n
−1
∑n

t=1E(‖ηtη′t‖) <∞.

The proof of (11) is based on the moving average representation implied by (1) underHn(r, r1). For

the homoskedastic case, this has been analysed in detail in Theorem 14.1 and Exercise 14.1 of Johansen

(1995), and the corresponding solution to Exercise 14.1 given in Hansen and Johansen (1998). Consider

the model in companion form, for the stacked vector ~Xt = (X ′t, . . . , X
′
t−k+1)′:

~Xt =
(
Ikp + ~α~β

′
+ n−1~α1

~β
′
1

)
~Xt−1 +~εt, (A.2)

where

~α =


α Γ1 · · · Γk−1

0 Ip 0 0
...

. . . . . . 0

0 · · · 0 Ip

 , ~β =


β Ip 0 0

0 −Ip
. . . 0

...
. . . . . . Ip

0 · · · 0 −Ip

 , (A.3)

and where ~α1 = (α′1, 0
′
(k−1)p)

′, ~β1 = (β′1, 0
′
(k−1)p)

′, and ~εt = (ε′t, 0
′
(k−1)p)

′. Note that ~α′⊥ = α′⊥[Ip :

−Γ1 : · · · : −Γk−1] and ~β
′
⊥ = β′⊥[Ip : Ip : · · · : Ip], and hence

~α′⊥~α1 = α′⊥α1, ~β
′
1
~β⊥ = β′1β⊥, ~α′⊥

~β⊥ = α′⊥Γβ⊥. (A.4)

Let ~An = Ikp + ~α~β
′
+ n−1~α1

~β
′
1. Backward substitution in (A.2) gives the solution

~Xt = ~Atn
~X0 +

t∑
j=1

~At−jn ~εj . (A.5)

It will be convenient to work with the decomposition ~Xt = ~α(~β
′
~α)−1~β

′ ~Xt + ~β⊥(~α′⊥
~β⊥)−1~α′⊥ ~Xt;

we consider the behaviour of ~β
′ ~Xt (the stationary linear combinations) and ~α′⊥ ~Xt (the non-stationary

linear combinations) separately. Assumption 1 requires that all eigenvalues of Ir+(k−1)p + ~β
′
~α are less

than one in absolute value, and this implies for the stationary linear combinations, by Theorem 14.1 of

Johansen (1995),

~β
′ ~Xt = (Ir+(k−1)p + ~β

′
~α)t~β

′ ~X0 +
t∑

j=1

(Ir+(k−1)p + ~β
′
~α)t−j~β

′
~εj +R~βt, (A.6)

with R~βt = oP (1), such that n−1/2~β
′ ~Xbsnc

L−→ 0. For the nonstationary linear combinations, we find
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~α′⊥
~Xt = ~α′⊥

~Atn
~X0 +

t∑
j=1

~α′⊥
~At−jn ~εj . (A.7)

Writing ~εt = Eεt = Eσtηt, with E = [Ip : 0p×(k−1)p]
′, and defining Fn(s) = ~A

bsnc
n , we therefore find

n−1/2~α′⊥
~Xbsnc = n−1/2~α′⊥Fn(s) ~X0 + ~α′⊥Fn(s)

∫ s

0
Fn(−u)Eσn(u)dWn(u). (A.8)

Theorem A.14 of Johansen (1995) implies Fn(s)→ ~β
−1

⊥ (~α′⊥
~β⊥)−1 exp(sA)~α′⊥, and hence

Fn(−s)Eσn(s)
L−→ ~β⊥(~α′⊥

~β⊥)−1 exp(−sA)σK(s), s ∈ [0, 1], (A.9)

jointly with Wn(·) L−→ W (·). Because ηt is a martingale difference sequence with constant variance,

Hansen (1992)’s Theorem 2.1 again implies

n−1/2~α′⊥
~Xbsnc

L−→
∫ s

0
exp ((s− u)A)σK(u)dW (u) = K(s), s ∈ [0, 1]. (A.10)

The stochastic differential equation (13) follows from Itô’s formula, writing K(s) = exp(sA)M(s) =

f(s,M(s)), with dM(s) = exp(−sA)σK(s)dW (s). Finally,

n−1/2Xbsnc = n−1/2E′~β⊥(~α′⊥
~β⊥)−1~α′⊥

~Xbsnc + oP (1)

= β⊥(α′⊥Γβ⊥)−1n−1/2~α′⊥
~Xbsnc

L−→ β⊥(α′⊥Γβ⊥)−1K(s), s ∈ [0, 1], (A.11)

which concludes the proof of (11). �

Proof of Theorem 1. Let θ = vec[Π : Ψ], and define the residual function εt(θ) = ∆Xt− [Π : Ψ]Zt =

∆Xt − [Z ′t ⊗ Ip]θ. It will be convenient to start analysing (twice) the log-likelihood ratio function

relative to the unrestricted estimators, i.e.,

Λn(θ) = −2
[
`n(Π, Ip+1,Ψ)− `n(Π̃n, Ip+1, Ψ̃n)

]
=

n∑
t=1

(
εt(θ)

′Σ−1
t εt(θ)− ε̃′tΣ−1

t ε̃t
)
. (A.12)

Using εt(θ) = ε̃t + [Z ′t ⊗ Ip](θ̃n − θ), and
∑n

t=1[Zt ⊗ Σ−1
t ]ε̃t = 0, we find

Λn(θ) = (θ̃n − θ)′
n∑
t=1

[ZtZ
′
t ⊗ Σ−1

t ](θ̃n − θ). (A.13)

Note that LRn = minθ∈Θr Λn(θ), where Θr is the restricted parameter space

Θr = {θ ∈ Rkp
2

: Π = αβ′; (α, β,Ψ) ∈ Rp×r × Rp×r × Rp×(k−1)p}. (A.14)

Let θ0 denote the true value under H(r), and let θn = θ0 + Dnτ denote a sequence of parameter

values, where τ ∈ Rp(kp+1) is a fixed vector and Dn a sequence of non-singular norming matrices,

chosen such that the corresponding probability measure Pnθ0 and Pnθn are contiguous. In the present
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situation, this requires that D′n
∑n

t=1[ZtZ
′
t ⊗ Σ−1

t ]Dn and D−1
n (θ̃n − θ0) converge in distribution, and

a choice of Dn that satisfies this requirement is

Dn =

[
n−1Γ′α⊥ n−1/2β 0

0 0 n−1/2Ik(p−1)

]
⊗ Ip, (A.15)

such that

D′n[Zt ⊗ Ip] = n−1/2

(
n−1/2α′⊥ΓXt−1

Zt(β)

)
⊗ Ip. (A.16)

Here α⊥, β and Γ correspond to the true value θ0.

The local alternative H(r, r1) corresponds to a particular choice of the non-centrality parameter τ ,

which is seen as follows. First, the condition rank(α′⊥Γβ⊥) = p − r (Assumption 1 (c)) implies that

the matrix [β : Γ′α⊥] has full rank. A projection of β1 on sp(β : Γ′α⊥) is given by β1 = βa+ Γ′α⊥b,

where [a′ : b′]′ = [β : Γ′α⊥]−1β1. Because Πn = αβ′ + n−1α1β
′
1 = α†nβ

′ + n−1α1β
†′
1 , with

α†n = α+n−1α1a
′ and β†1 = Γ′α⊥b, the part of β1 that lies in sp(β) may be absorbed in αβ′. Note also

that for the asymptotic analysis, only β′⊥β1 = β′⊥Γ′α⊥b is relevant, cf. Lemma 1. Therefore we may set

a = 0 and hence confine ourselves to local alternatives with β1 = Γ′α⊥b, with b = (β′⊥Γ′α⊥)−1β′⊥β1.

This implies

θn = vec [Πn : Ψ0] = vec [Π0 : Ψ0] + vec
[
n−1α1β

′
1 : 0

]
= θ0 +Dnτ̌ , (A.17)

with τ̌ = (vec(α1b
′)′, 0′pr+(k−1)p)

′.

Lemma 1 implies that both under the null and under local alternatives, n−1/2α′⊥ΓXbsnc
L−→ K(s),

s ∈ [0, 1]. Under the null hypothesis, Granger’s representation theorem implies that Zt(β) is a mean-

zero linear process
∑∞

j=1Cjεt−j , with exponentially decaying weight matrices Cj . From Chapter 14

of Johansen (1995) and Hansen and Johansen (1998), we know that under local alternatives, Zt(β) may

be decomposed into the same linear process and an additional term, which is asymptotically negligible.

Using a multivariate generalization of the asymptotic theory for stationary linear processes with non-

stationary volatility, cf. Hansen (1995) and Phillips and Xu (2006), it follows that, under both the null

and local alternatives,

D′n

n∑
t=1

[ZtZ
′
t ⊗ Σ−1

t ]Dn
L−→

[ ∫ 1
0

[
K(s)K(s)′ ⊗ Σ(s)−1

]
ds 0

0
∫ 1

0

[
Ω(s)⊗ Σ(s)−1

]
ds

]

=:

[
J1 0

0 J2

]
= J, (A.18)

where Ω(s) =
∑∞

j=1CjΣ(s)Cj .

For the unrestricted estimator θ̃n, we find

D−1
n (θ̃n − θ0) =

(
D′n

n∑
t=1

[ZtZ
′
t ⊗ Σ−1

t ]Dn

)−1

D′n

n∑
t=1

[Zt ⊗ Σ−1
t ]εt(θ0), (A.19)

where underH(r), εt(θ0) = εt, whereas under the local alternativeH(r, r1), εt(θ0) = εt+[Z ′t⊗Ip]Dnτ̌ .

Under both hypotheses, we find, again generalizing the results of Hansen (1995) and Phillips and Xu
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(2006),

D′n

n∑
t=1

[Zt ⊗ Σ−1
t ]εt(θ0)

L−→

( ∫ 1
0

[
K(s)⊗ Σ(s)−1

]
(dU(s) + [K(s)′ds⊗ Ip]τ̌1)∑∞

j=1

∫ 1
0 [Cjσ(s)⊗ σ(s)′−1]dBj(s)

)

=:

(
S1

S2

)
= S, (A.20)

where τ̌1 = vec(α1b
′), a p(p − r)-vector consisting of the first rows of the value of τ̌ in (A.17),

and where {Bj(·)}∞j=1 are mutually independent p2-vector Brownian motion processes, obtained as the

limit in distribution of the partial sum processes of vec(ηtη
′
t−j). If σ(·) is non-stochastic, then the

bottom right-hand side expression of (A.20) has a normal distribution with mean zero and variance∫ 1
0

[
Ω(s)⊗ Σ(s)−1

]
ds, and if σ(·) is stochastic but independent of {Bj(·)}∞j=1, then the same normal

distribution holds conditionally on σ(·). Note that under the null, τ̌1 = 0 andK(s) = α′⊥U(s) in (A.18)

and (A.20).

The representation (A.19), together with the limit results (A.18) and (A.20), implies that D−1
n (θ̃n −

θ0) = OP (1) under both the null and local alternatives, such that θ̃n is consistent under both hypotheses.

Generalizing the argument explained fully in Theorem A1 of Johansen (1997), this implies that the

restricted MLE θ̂n is also consistent, and D−1
n (θ̂n − θ0) = OP (1). This implies that for the derivation

of the limiting distribution of the LR statistic LRn = minθ∈Θr Λn(θ), we may confine ourselves to the

behaviour of Λn(θ) for sequences θn = θ0+Dnτ . In particular, let Tr,n = {τ ∈ Rkp2 : θ0+Dnτ ∈ Θr},
such that LRn = minτ∈Tr,n Λn(θ0 + Dnτ). We will show that Λn(θ0 + Dnτ)

L−→ Λ(τ) uniformly

on compact sets, and that the restricted parameter space Tr,n converges to a limit Tr. Because τ̂n =

D−1
n (θ̂n − θ0) is OP (1), this will then imply, by the argmax theorem (Van der Vaart, 1998, Corollary

5.58), D−1
n (θ̂n − θ0)

L−→ arg minτ∈Tr Λ(τ) and LRn
L−→ minτ∈Tr Λ(τ).

For the limit of the log-likelihood ratio, we find

Λn(θ0 +Dnτ) =
(
D−1
n (θ̃n − θ0)− τ

)′
D′n

n∑
t=1

[ZtZ
′
t ⊗ Σ−1

t ]Dn

(
D−1
n (θ̃n − θ0)− τ

)
, (A.21)

which by (A.18) and (A.19) converges in distribution to Λ(τ) = (S − Jτ)′J−1(S − Jτ). Because both

Λn(·) and Λ(·) are quadratic, this convergence is uniform on compact sets.

For the restricted parameter space, we use the fact that Π = αβ′ = α(c̄′ + Φ′c′⊥), such that

vec(Πn −Π0) = vec
(
αn[c̄′ + Φ′nc

′
⊥]− α[c̄′ + Φ′c′⊥]

)
= vec

(
[αn − α]β′ + α[Φn − Φ]′c′⊥ + [αn − α][Φn − Φ]′c′⊥

)
= [β ⊗ Ip] vec(αn − α) + [c⊥ ⊗ Ip][Ip−r ⊗ α] vec(Φ′n − Φ′) +Rn, (A.22)

where the remainder term Rn is O(‖αn − α‖ ‖Φn − Φ‖), and where (α,Φ, β) now denote the true

values, corresponding to Π0. Note that c may be freely chosen, as long as c′β is non-singular, which is

equivalent to the condition that [β : c⊥] should be of full rank. Using the fact that [β : Γ′α⊥] has full rank

p, we find that we may choose c⊥ = Γ′α⊥. This in turn means that, if we let vec(Ψn −Ψ0) = n−1κψ,
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vec(αn − α) = n−1/2κα and vec(Φ′n − Φ′) = n−1κφ, then in the restricted parameter space Θr, we

have

θn = θ0 +Dn


[Iq ⊗ α]κφ

κα

κψ

+

(
Rn

0

)
, (A.23)

such that

τ = D−1
n (θn − θ0) =


Iq ⊗ α 0 0

0 Ir ⊗ Ip 0

0 0 I(k−1)p ⊗ Ip




κφ

κα

κψ

+ o(1) = Gκ+ o(1). (A.24)

where q = p−r. Therefore, the limiting null space for τ is the linear subspace Tr = {τ = Gκ : κ ∈ Rl},
where l = qr + pr + (k − 1)p2, the dimension of the restricted parameter space.

Combining these results, we find

LRn
L−→ min

τ∈Tr
Λ(τ) = S′J−1S − S′G(G′JG)−1G′S

= S′J−1G⊥(G′⊥J
−1G⊥)−1G′⊥J

−1S, (A.25)

where

G⊥ =

[
Iq ⊗ α⊥

0

]
. (A.26)

It follows that LRn
L−→ S′1J

−1
1 G⊥1(G′⊥1J

−1
1 G⊥1)−1G′⊥1J

−1
1 S1, where G⊥1 = Iq ⊗ α⊥.

Let Kmn denote the commutation matrix of appropriate order, such that vec(A′) = Kmn vec(A)

for an m× n matrix A, see Magnus and Neudecker (1988). We will use the properties K ′mn = K−1
mn =

Knm, and Kpm(A ⊗ B) = (B ⊗ A)Kqn for matrices A and B of dimensions m × n and p × q,

respectively. We find

G⊥1 = Iq ⊗ α⊥ = Kqp(α⊥ ⊗ Iq)Kqq = Kqp ([Iq : 0]⊗ Iq) ([α⊥ : ᾱ]⊗ Iq)Kqq. (A.27)

Without loss of generality, α⊥ may be chosen such that α′⊥α⊥ = Iq, and hence [α⊥ : ᾱ]−1 = [α⊥ : α]′.

Therefore, we find

G′⊥1J
−1
1 G⊥1 = Kqp ([Iq : 0]⊗ Iq)

(∫ 1

0
Y (s)Y (s)′ds

)−1 (
[Iq : 0]′ ⊗ Iq

)
Kpq

= Kqp

(∫ 1

0
Z(s)Z(s)′ds

)−1

Kpq. (A.28)

Similarly, using

S1 = Kqp

∫ 1

0

[
σ(s)′−1 ⊗K(s)

] (
dW (s) + [σ(s)−1 ⊗K(s)′]dsKpq τ̌1

)
= Kqp ([α⊥ : ᾱ]⊗ Iq)

∫ 1

0
Y (s)

(
dW (s) + Y (s)′ds

(
[α⊥ : ᾱ]′ ⊗ Iq

)
Kpq τ̌1

)
= Kqp ([α⊥ : ᾱ]⊗ Iq)

∫ 1

0
Y (s)

(
dW (s) + Y (s)′ds vec(A′ : bα′1ᾱ)

)
, (A.29)
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we obtain

G′⊥1J
−1
1 S1 = Kqp ([Iq : 0]⊗ Iq)

(∫ 1

0
Y (s)Y (s)′ds

)−1

×
∫ 1

0
Y (s)[dW (s) + Y (s)′ds vec(A′ : bα′1ᾱ)]

= Kqp

(∫ 1

0
Z(s)Z(s)′ds

)−1 ∫ 1

0
Z(s)[dW (s) + Z(s)′ vec(A′)ds]. (A.30)

This leads to the required result. �

Proof of Theorem 2. The proof is based on Theorem 2 in Hansen (1995), which is generalized and

modified in three directions: (i) a multivariate instead of univariate volatility estimator, (ii) residuals

from a regression with I(1) instead of I(0) regressors, and (iii) a two-sided instead of one-sided kernel.

We first prove consistency of the one-sided kernel estimator Σ̂n(s), following the steps of the proof of

Hansen (1995)’s Theorem 2, and next we discuss the modifications needed to prove consistency of the

two-sided kernel estimator Σ̃n(s).

Because of the definition of Σ̂n(s), the required result (35) is equivalent to max1≤t≤n ‖Σ̂t−Σt‖
P−→

0. We first consider the difference for t = N + 1, . . . , n, where Σ̂t =
∑N

j=1wjNet−je
′
t−j , with weights

wjN = k(j/N)/
(∑N

j=1 k(j/N)
)

summing to 1 by construction. It is convenient to decompose the

difference Σ̂t − Σt into four terms, as follows:

Σ̂t − Σt = Rat + σtR
b
tσ
′
t +Rct +Rdt , (A.31)

where

Rat =
N∑
j=1

wjN (Σt−j − Σt), (A.32)

Rbt =

N∑
j=1

wjN (ηt−jη
′
t−j − Ip), (A.33)

Rct =
N∑
j=1

wjN
[
σt−j(ηt−jη

′
t−j)σ

′
t−j − σt(ηt−jη′t−j)σ′t

]
(A.34)

Rdt =

N∑
j=1

wjN (et−je
′
t−j − εt−jε′t−j). (A.35)

This decomposition is a multivariate generalization of the one given in Hansen (1995), equation (36).

The asymptotic negligibility of Rat and Rct relates to continuity of Σt, and Rdt refers to the estimation

error in the residuals. The essential part is Rbt , because its asymptotic negligibility shows that local

averaging of εt−jε′t−j leads to a consistent estimator of the corresponding weighted average of Σt−j , and

hence (via continuity) of Σt. We will show that the maximum over t = N + 1, . . . . , n of each of these

terms will converge in probability (in Euclidean norm) to zero, such that maxN<t≤n ‖Σ̂t − Σt‖
P−→ 0

(using the triangle inequality).
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For the first term, the proof of Hansen (1995) is directly generalized. The property
∑N

j=1wjN = 1

implies that

max
N<t≤n

‖Rat ‖ ≤ max
N<t≤n,1≤j≤N

‖Σt−j − Σt‖ , (A.36)

and the right-hand side converges in probability to zero because N = o(n), and Assumption 3 implies

Σn(s)
L−→ Σ(s), s ∈ [0, 1] (which in turn implies tightness of the sequence {Σn}), and continuity the

sample paths of Σ(s); see Hansen (1995), Lemma A.1.

For the second term, note that {ηtη′t−Ip} is an i.i.d. sequence with mean zero and finite rth moment.

Again following the argument in Hansen (1995) this implies that maxN<t<n ‖Rbt‖ = oP (1). And

because maxN<t≤n ‖σt‖ = OP (1), this in turn implies

max
N<t≤n

‖σtRbtσ′t‖ ≤ max
N<t≤n

‖σt‖2 × max
N<t≤n

‖Rbt‖ = oP (1). (A.37)

For the third term, letting Hjt = ηt−jη
′
t−j , we use

Rct =

N∑
j=1

wjN
[
(σt−j − σt)Hjtσ

′
t + σtHjt(σt−j − σt)′ + (σt−j − σt)Hjt(σt−j − σt)′

]
, (A.38)

such that

max
N<t≤n

‖Rct‖ ≤ 2 max
N<t≤n

‖σt‖ × max
N<t≤n,1≤j≤N

‖σt−j − σt‖ × max
N<t≤n

N∑
j=1

wjN ‖Hjt‖

+ max
N<t≤n,1≤j≤N

‖σt−j − σt‖2 × max
N<t≤n

N∑
j=1

wjN ‖Hjt‖ . (A.39)

Because {‖Hjt‖ − p = η′t−jηt−j − p} is an i.i.d. sequence with mean 0 and finite rth moment,

max
N<t≤n

N∑
j=1

wjN ‖Hjt‖ = p+ max
N<t≤n

N∑
j=1

wjN (η′t−jηt−j − p) = p+ oP (1) = OP (1), (A.40)

where the oP (1) term is analogous to maxN<t≤n ‖Rbt‖. Next, maxN<t≤n ‖σt‖ = OP (1) because

of tightness of {Σn}, and maxN<t≤n,1≤j≤N ‖σt−j − σt‖ = oP (1) analogous to maxN<t≤n ‖Rat ‖.
Therefore, maxN<t≤n ‖Rct‖ = oP (1).

For the fourth term, we write the unrestricted model as ∆Xt = BZt + εt, where in the notation of

the proof of Theorem 1, θ = vecB. The least-squares residuals are given by et = εt − (B̄n − B)Zt,

where B̄n = B+
∑n

t=1 εtZ
′
t (
∑n

t=1 ZtZ
′
t)
−1. ExpressingDn in (A.15) asDn = [D̄n⊗Ip], the proof of

Theorem 1 implies that (D̄′n
∑n

t=1 ZtZ
′
tD̄n), (D̄′n

∑n
t=1 Ztε

′
t) and D̄−1

n (B̄n − B)′ are all OP (1). This

is useful in the following decomposition of Rdt :

Rdt = −

 N∑
j=1

wjNεt−jZ
′
t−jD̄n

 D̄−1
n (B̄n −B)′ − (B̄n −B)D̄′−1

n

 N∑
j=1

wjND̄
′
nZt−jε

′
t−j


+(B̄n −B)D̄′−1

n

 N∑
j=1

wjND̄
′
nZt−jZ

′
t−jD̄n

 D̄−1
n (B̄n −B)′. (A.41)
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Because of the convergence of the sample moments mentioned above,
∑N

j=1wjND̄
′
nZt−jε

′
t−j = oP (1)

and
∑N

j=1wjND̄
′
nZt−jZ

′
t−jD̄n = OP (N/n) = oP (1). This in turn implies that maxN<t≤n

∥∥Rdt ∥∥ =

oP (1).

The steps above together imply maxN<t≤n ‖Σ̂t − Σt‖
P−→ 0. For {Σ̂t}Nt=1, we use

max
1≤t≤N

‖Σ̂t − Σt‖ = max
1≤t≤N

‖Σ̂N+1 − Σt‖

≤ ‖Σ̂N+1 − ΣN+1‖+ max
1≤t≤N

‖Σt − ΣN+1‖
P−→ 0, (A.42)

using (A.36) and consistency of Σ̂N+1 proved earlier.

Now consider the double-sided kernel estimator Σ̃t. For N < t ≤ n − N , Σ̃t − Σt may be

decomposed into four terms entirely analogous to (A.31), but with
∑N

j=1wjN replaced by
∑N

j=−N w̃jN ,

where w̃jN = k(j/N)/
(∑N

j=−N k(j/N)
)

again sum to 1. Asymptotic negligibility of the maximum

over t = N + 1, . . . , n − N of each of the four terms follows from the same arguments, after making

the necessary changes in notation. For the observations t ≤ N and t > n−N , these arguments remain

the same, but in such cases w̃jN should be replaced by

w̃jNt =
k(j/N)1{1≤t−j≤n}∑N

j=−N k(j/N)1{1≤t−j≤n}
. (A.43)

Therefore, max1≤t≤N ‖Σ̃t − Σt‖
P−→ 0 as required. �

Proof of Theorem 3. We will show that the convergence results (A.18) and (A.20) still apply when Σt

is replaced by either Σ̂t or Σ̃t. Combining these results in the unrestricted log-likelihood ratio (A.13),

using (A.19), will imply that Λ̂n(θ0 +Dnτ) and Λ̃n(θ0 +Dnτ) (based on Σ̂t and Σ̃t, respectively) both

converge to Λ(τ) = (S1−J1τ1)′J−1
1 (S1−J1τ1) + Λ2(τ2), uniformly on compact sets. The remainder

of the proof is analogous to the proof of Theorem 1.

We will first consider the results for the one-sided filter Σ̂t, and then discuss how the results are

modified for the two-sided estimator Σ̃t. Define

Vt−1 := α′⊥ΓXt−1 ⊗ σ′−1
t , (A.44)

and similarly V̂t−1 (obtained by replacing σt by a matrix square root of Σ̂t). Lemma 1 implies

n−1/2Vbsnc
L−→ V (s) := K(s)⊗ σ(s)′−1, s ∈ [0, 1], (A.45)

under both the null hypothesis and local alternatives. The continuous mapping theorem, together with

Theorem 2, then implies n−1/2V̂bsnc
L−→ V (s), s ∈ [0, 1]. Partitioning Dn = [D1n : D2n] conformably

with S and J , the continuous mapping theorem further implies that

D′1n

n∑
t=1

[ZtZ
′
t ⊗ Σ̂−1

t ]D1n =
1

n2

n∑
t=1

V̂t−1V̂
′
t−1

L−→
∫ 1

0
V (s)V (s)′ds = J1. (A.46)

Furthermore, the stochastic orders of the second diagonal block and the off-diagonal block of (A.18),

together with Σ̂n(s) = OP (1), imply

D′2n

n∑
t=1

[ZtZ
′
t ⊗ Σ̂−1

t ]D2n = OP (1), D′1n

n∑
t=1

[ZtZ
′
t ⊗ Σ̂−1

t ]D2n = oP (1). (A.47)
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Given the limiting block-diagonality, the actual limit of the second diagonal block will not be needed.

For the result corresponding to (A.20), the main task is to derive the limit of

D′1n

n∑
t=1

[Zt ⊗ Σ̂−1
t ]εt = n−1

n∑
t=1

V̂ 0
t−1ηt, (A.48)

where V̂ 0
t−1 = [α′⊥ΓXt−1 ⊗ Σ̂−1

t σt] = V̂t−1[Iq ⊗ σ̂−1
t σt], such that the continuous mapping theorem

again implies n−1/2V̂ 0
bsnc

L−→ V (s), s ∈ [0, 1]. To show that (A.48) converges weakly to the stochastic

integral
∫ 1

0 V (s)dW (s), we cannot apply Hansen (1992)’s Theorem 2.1 for martingale differences,

because {V̂ 0
t } is not adapted to the filtration {Ft}, with respect to which {ηt} is a martingale difference

sequence. This is caused by the fact that Σ̂t depends, via the least-squares residuals et and hence the

least-squares estimates θ̄n, on the full sample. For the same reason, we cannot decompose ηt into a

martingale part and a remainder, a technique that is often useful to deal with dependent processes, see

Hansen (1992). Instead, we will follow the approach by Chan and Wei (1988), Theorem 2.4, which was

extended by Davidson (1994) and De Jong and Davidson (2000).

Let Vn(s) = n−1/2V̂ 0
bsnc and note that (Vn,Wn)

L−→ (V,W ) in D[0, 1]qp×p × D[0, 1]p where the

limit (V,W ) has continuous sample paths. The Skorohod representation theorem implies the existence

of sequences (V n,Wn) inD[0, 1]qp×p×D[0, 1]p, defined on an underlying probability space (Ω,F , P ),

such that (V n,Wn)
a.s.−→ (V,W ) in D[0, 1]qp×p ×D[0, 1]p. This implies that, given ε > 0, there exists

an even Ωε ⊂ Ω such that P (Ωε) ≥ 1− ε and

sup
ω∈Ωε

d ((V n,Wn)(ω)− (V,W )(ω)) = δn → 0, (A.49)

where d(·, ·) is the uniform metric.

Let {kn, n ∈ N} be an increasing integer subsequence, such that kn/n → 0 and knδ2
n → 0. For

each kn, choose integers 0 = n0 < n1 < n2 < . . . < nkn = n, corresponding to a partition

0 = t0 =
n1

n
< t1 =

n1

n
< t2 =

n2

n
< . . . < tkn =

nkn
n

= 1, (A.50)

with min1≤j≤kn |nj − nj−1| → ∞ and max1≤j≤kn |tj − tj−1| → 0 as n → ∞. Consider the decom-

position∫ 1

0
Vn(s)dWn(s) = n−1

n∑
t=1

V̂ 0
t−1ηt

=

kn∑
j=1

Vn (tj−1) [Wn(tj)−Wn(tj−1)] +
1

n

kn∑
j=1

nj∑
t=nj−1+2

(V̂ 0
t−1 − V̂ 0

nj−1
)ηt

=: Gn +Qn. (A.51)

Analogous to the arguments in Chan and Wei (1988) and Davidson (1994), Gn
L−→
∫ 1

0 V (s)dW (s)

follows from Gn
P−→
∫ 1

0 V (s)dW (s), where Gn =
∑kn

j=1 V
n (tj−1) [Wn(tj)−Wn(tj−1)]. For the
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remainder term Qn, we note that

Qn =
1

n

kn∑
j=1

nj∑
t=nj−1+2

(V̂ 0
t−1 − V̂ 0

nj−1
)ηt =

1

n

kn∑
j=1

nj∑
t=nj−1+2

(Vt−1 − Vnj−1)ηt

+
1

n

kn∑
j=1

nj∑
t=nj−1+2

[
(V̂ 0
t−1 − Vt−1)− (V̂ 0

nj−1
− Vnj−1)

]
ηt

=: Q1n +Q2n. (A.52)

It follows from the convergence to the stochastic integral with known volatility thatQ1n = oP (1). Since

Q2n is the same sequence, but with σ′−1
t replaced by (Σ̂−1

t −Σ−1
t )σt, and the latter is of lower order in

probability than the former, we find Q2n = oP (1) and hence Qn = oP (1), such that

D′1n

n∑
t=1

[Zt ⊗ Σ̂−1
t ]εt =

∫ 1

0
Vn(s)dWn(s)

L−→
∫ 1

0
V (s)dW (s) =

∫ 1

0

[
K(s)⊗ Σ(s)−1

]
dU(s).

(A.53)

The corresponding result for D′1n
∑n

t=1[Zt⊗ Σ̂−1
t ]εt(θ0) under local alternatives follows from combin-

ing (A.46) with (A.53).

The results obtained so far can also be used to show that D′2n
∑n

t=1[Zt ⊗ Σ̂−1
t ]εt = OP (1). Com-

bining these results implies

Λ̂n(θ0 +Dnτ)
L−→ (S1 − J1τ1)′J−1

1 (S1 − J1τ) + Λ2(τ2), (A.54)

uniformly on compact sets. Following the same steps as the proof of Theorem 1, this implies L̂Rn
L−→

minτ∈Tr Λ(τ), such that L̂Rn has the same limiting distribution as LRn. (Note that the exact form of

the quadratic function Λ2(τ2) is irrelevant.)

Finally, the proof of the corresponding result for L̃Rn is entirely analogous; since the construction

of the proof does not require Σ̃t or Ṽt−1 = (α′⊥ΓXt−1 ⊗ σ̃′−1
t ) to be adapted, the remainder term Q2n

is again of lower order than Q1n, and hence asymptotically negligible. �
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