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Abstract: To achieve automated rock classification and improve classification accuracy, this 14 
work discusses an investigation of the combination of laser-induced breakdown spectroscopy 15 
(LIBS) and the use of one-dimensional convolutional neural networks (1DCNN). As a result, 16 
in this paper, an improved Bayesian optimization algorithm has been proposed where the 17 
algorithm has been applied to automatic rock classification, using LIBS and 1DCNN to 18 
improve the efficiency of rock structure analysis carried out. Compared to other algorithms, the 19 
improved Bayesian optimization method discussed here allows for a reduction of the modelling 20 
time by about 65% and can achieve 99.33% and 99.00% for the validation and test sets of 21 
1DCNN.  22 

1. Introduction 23 

Coal remains one of the main energy sources in wide use in China. In 2020, China's coal 24 
consumption accounted for 56.8% of its total energy consumption,[1]  while in 2021, there was 25 
a small decrease in consumption (to 56.0% of the total energy consumption), and raw coal 26 
power generation to ~67.0% of the total power generation 27 
(http://www.stats.gov.cn/xxgk/jd/sjjd2020/202210/t20221008_1888971.html). There is a large 28 
number of coal mines operating in China and most involve underground mining. To achieve 29 
efficient production from such mining and reduce the risk of accidents for underground workers, 30 
intelligent mining and unmanned mining are seen as the way forward. Rock and lithology 31 
analysis plays an important guiding role in many aspects of the field, such as mining and 32 
geological disaster analysis. Through lithology analysis, real-time geological data can be 33 
provided for unmanned mining and intelligent mining.[2] The traditional lithology judgment 34 
method used relies on the experience of staff to judge the appearance and physical properties 35 
of the ore: a task which requires an extremely high level of professional expertise and 36 
identification experience from the staff involved, but unfortunately the efficiency of manual 37 
identification is not sufficiently high. With the continuous development of compositional 38 
analysis techniques as has been seen in the field of spectroscopy, a series of techniques such as 39 
X-ray fluorescence spectroscopy (XRF), X-ray diffraction analysis (XRD), and gamma 40 
spectroscopy are widely used for rock classification. However, the sample production process 41 
using these methods is relatively complex and the measurement time is relatively long. 42 
Therefore, the need is for rapid, accurate and in situ geological rock or mineral identification 43 
which the technique discussed in this paper can offer.[3-5] 44 

Laser Induced Breakdown Spectroscopy (LIBS) is a laser-based optical spectroscopy 45 
technique which operates by shining high-energy pulses on the surface of the sample to create 46 
gasification of the sample, to generate a plasma which is studied. This emits a spectrum during 47 



the process of plasma diffusion and cooling, allowing the collection of spectral data with a 48 
spectrometer, and then conducting a qualitative analysis of the material tested, based on the 49 
wavelength and intensity of the spectral peaks seen.[6-8] This approach has the advantage of 50 
multi-form analysis and is fast in operation. Further, the approach is non-destructive, shows a 51 
low detection limit, with there being no need to use vacuum environment. All this points to the 52 
LIBS technique being well suited to field detection applications. Therefore, LIBS is a technique 53 
that is widely used in the fields of environmental monitoring,[9-11] metallurgy,[12-14] 54 
medicine,[15-18] food,[19, 20] heritage science,[21] planetary exploration missions,[22, 23] 55 
and mineralogy.[24-32] 56 

Wang C et al. used PCA to reduce the dimension of each spectral signal, and then used 57 
linear discriminant analysis, and a random forest and a support vector machine approach to 58 
classify the spectral data, after dimensional reduction. The results indicate that SVM could well 59 
be applied to LIBS classification of rock.[33] We note that El-Saeid et al. used PCA and Graph 60 
Theory methods to classify spectra obtained in rocks using two methods (standard LIBS, and 61 
Nanoparticle-Enhanced LIBS), showing that excellent classification of the rocks analyzed (with 62 
more than 99% of the spectra correctly classified) could be obtained using standard LIBS, 63 
coupled to Graph Theory analysis.[34] Yelameli et al. studied the effect of increasing the 64 
number of shots per rock and the detrend operation, showing that the number of dimensions 65 
could be effectively reduced by applying PCA. The results obtained indicate that the SVM 66 
algorithm with the detrend operation, combined with a specific number of shots, creates a good 67 
rock classification effect (with an accuracy greater than 95%).[35] Janovszky et al. 68 
demonstrated that LIBS mapping, with spatially resolved local analysis offers an efficient and 69 
practical approach for the classification of mineral grains. The results indicate that the 70 
classification accuracy obtained is better than 92%, using random forest and linear discriminant 71 
analysis. Direct classification by evaluating the presence of feature elements is a powerful 72 
approach.[36] In this paper, a classification model optimization algorithm has been proposed 73 
and applied to the rock recognition method, combining LIBS and 1DCNN. The positive effect 74 
is to reduce the modeling time of the classification algorithm and to improve the efficiency of 75 
the rock classification, as an effective means to improve the classification accuracy. 76 

In this paper, LIBS technology, combined with a variety of machine learning algorithms 77 
(principal component analysis, grid search cross validation, random search cross validation, 78 
Bayesian optimization based on Gaussian process, improved Bayesian optimization, support 79 
vector machine, one-dimensional convolutional neural network, etc.), is expanded to use to 80 
carry out comparative experiments on rock classification for the mining industry. The goal is 81 
to automate rock classification and provide reference data that will enhance lithology 82 
identification in the mining industry, through a series of straightforward steps that can easily 83 
be applied, from inputting raw LIBS rock spectral datasets to outputting rock classification 84 
results. In use, a pre-processing operation first is selected to obtain the relevant LIBS spectral 85 
data, where the pre-processed spectral data are ‘dimensioned-down’ through a principal 86 
component analysis technique, following which the corresponding number of principal 87 
components is selected as the input variable for the classifier, used for different classifier 88 
models. Three optimizers were constructed and used to conduct comparative experiments on 89 
the classifier model, including the combination of grid search and random search optimization, 90 
Bayesian optimization based on Gaussian process and improved Bayesian optimization,[37] 91 
which can improve the identification of the samples under consideration. 92 

2. Experiment 93 

2.1 Experimental setup used 94 

Fig.1 and Fig.2 respectively illustrate a schematic diagram and show photographs of the LIBS 95 
experimental setup. The laser source used in this work was a Q-switched Nd: YAG (Q-smart 96 
450) pulsed laser (from Quantel, France), which was used to generate a laser beam with pulse 97 
repetition rate of 8Hz, a pulse width of 7ns and an output wavelength of 1064nm. A laser beam 98 



is focused on the surface of the rock to be tested (using a quartz lens with a focal length of 99 
100mm) to generate the plasma.  When the species in the plasma make a transition from an 100 
excited to a low-level or ground state, light is emitted and this is collected by using a lens (with 101 
a diameter of 10mm and a focal length of 15mm). Here the optical signal is collected using a 102 
fiber optic probe and fed to an 8-channel spectrometer (Avantes-usb8) equipped with a CCD 103 
detector, where it is converted into an electrical signal and transmitted to a computer for 104 
analysis and processing. The pulsed laser used emits a laser pulse energy of 35mJ, where the 105 
wavelength range of the spectrometer used was 181-673nm, thus covering a wide range. Further, 106 
the delay time of the acquisition of the spectrum is 160μs, the integration time is 1.05ms, and 107 
the spectral resolution of the different channels of the spectrometer is 0.058-0.068nm. 108 

 109 
Fig. 1. Schematic diagram of the experimental setup. 110 

 111 
Fig. 2. Photographs of the experimental setup. 112 

2.2 Sample preparation 113 

In this paper, 10 different and representative types of sedimentary rock samples, taken from the 114 
rock that forms the roof of Yanzhou coal mine (owned and operated by Shandong Energy 115 
Group) were selected for analysis, in consultation with mining experts: these being Siltstone, 116 
Oil shale, Argillaceous siltstone 1, Gritstone 1, Argillaceous siltstone 2, Mudstone 1, Red 117 
sandstone, Mudstone 2, Gritstone 2, and Fine sandstone, as detailed in Table 1 and Fig.3. To 118 
remove dust or any environmental effects from the samples, several ‘cleaning’ shots (i.e. 10 119 
laser pulses applied to six different locations of the samples) were fired at them, before any 120 
data sets were acquired. To overcome the heterogeneity of the rocks, 40 laser irradiations were 121 



performed on the same acquisition site in the course of the experimental work – where here the 122 
laser focus position was controlled by a laser ranging feedback control 3D platform. In order 123 
to eliminate the apparently unstable plasma spectra, it was necessary to eliminate the anomalous 124 
spectra and to do so, the specific process was as follows:  125 

① The M spectral information of a measurement sample, after 40 repeated measurements, 126 
was used as the independent variable matrix to obtain a 40×M matrix, following which 127 
the average value of each column was calculated to obtain a matrix, of row vector 1×M. 128 
Each element of this row vector is the average spectral intensity of the corresponding row; 129 

② The sum of the squares of the differences between each measurement value and the mean 130 
value were calculated;  131 

③ The measured spectra which were larger than 1.1 times the mean of the sum of squares 132 
were removed to complete the screening of abnormal spectral data. This process was found 133 
to remove about two-fifths of the original data. Finally, 960 sets of spectral data were 134 
obtained as the original data set used in the subsequent analysis.  135 

To eliminate the influence of the time taken for the work to be done on the spectral data 136 
collected, 50 sets of data were extracted from each rock sample in sequence. Thus, in total, 500 137 
spectral data sets were formed from the 10 different rock samples (seen in Table 1) to ensure 138 
that each was equally sampled. 139 

Table 1. Rock category information: illustrating Rock Category Label and Rock Type Name 140 

Rock Category Label Rock Type Name 

Rock 0 Siltstone 

Rock 1 Oil shale 

Rock 2 Argillaceous siltstone 1 

Rock 3 Gritstone 1 

Rock 4 Argillaceous siltstone 2 

Rock 5 Mudstone 1 

Rock 6 Red sandstone 

Rock 7 Mudstone 2 

Rock 8 Gritstone 2 

Rock 9 Fine sandstone 

 141 
Fig. 3. Photographs of 10 kinds of rocks. 142 

2.3 Spectral data pre-processing 143 



The experimental system error of the instrument used can interfere with the LIBS spectrum 144 
received. This can result from changes in the external environment, random noise in the spectral 145 
line signature seen and the diffuse reflection of the solid. As a result, the spectral data collected 146 
inevitably contain irrelevant information, such as from the pump light, from stray light that has 147 
been collected and molecular vibration effects from the spectral species involved. Spectral data 148 
from material other than the rock samples themselves i.e. background spectral data will be 149 
superimposed on, and can potentially interfere with, the collected spectral data. All this will 150 
negatively affect the accuracy of the classification of the rock samples and slow the speed of 151 
iteration of the classification model created. Therefore, it is necessary to eliminate signals 152 
which can cause such errors in the spectral signals received from the LIBS process, while still 153 
retaining the characteristic spectra of the samples themselves, to provide an appropriate basis 154 
for the subsequent analysis of the LIBS data. 155 

In this paper, it is recognized that missing values in the data sets will occur and this is 156 
undesirable.  However, to compensate, and thus to choose appropriate values to complete the 157 
sets, a Savitzky Golay smoothing filter (polynomial order is 4, window width is 5), and a 158 
Multiplicative Scatter Correction (MSC) approach, coupled with normalization as the optimal 159 
pre-processing method, with basic pre-processing was carried out to enable the results from 160 
comparative experiments to be evaluated. The experimental process used is shown 161 
schematically in Fig. 4. 162 

 163 
Fig. 4. Flow chart of the experiment. 164 

To prevent data leakage, only the training set, in the pre-processing and cross-validation 165 
hyperparameter optimization, is processed. The validation set and test set are used for 166 
hyperparameter optimization and model testing experiments through the pipeline mapping 167 
transformation.  The set is transformed through a pipeline map for hyperparameter optimization 168 
and model testing experiments. In this approach, 35 sets of spectral data were randomly selected 169 
from the 50 sets of spectral data from each type of rock studied (see Table 1), to form the 170 
training set.  This training set, comprising 350 sets of spectral data, was used to train the model 171 
and to optimize the hyperparameters; the remaining 15 sets of spectral data (from each type of 172 
rock) form the test set. As a result, 150 sets of spectral data were used finally to test the accuracy 173 
of the classification model used. The algorithms described in this paper were all implemented 174 
in Windows10, 64-bit system, Python 3.9.7 version, and using the Jupyter Lab 3.3.2 175 
development environment. 176 

The pre-processing operation used can be described as follows. Firstly, the negative value 177 
in the spectral intensity value of the data to be processed is defined as NaN, and then converted 178 
to a value of 0, following which the Savitzky Golay was used for smoothing filtering, and then 179 
the effect of scattering was eliminated by use of the MSC process. Here Multiplicative Scatter 180 
Correction (MSC) is one of the common methods of spectral data pre-processing used. Due to 181 
the diffuse reflection and surface inhomogeneity of the solid sample on which the measurement 182 
was carried out, the spectral differences caused by the presence of the different scattering levels 183 
could be eliminated by the use of the MSC algorithm. Thus, the phenomenon of baseline drift 184 
in the spectrum could be dealt with, thereby enhancing the correlation between the spectrum 185 
obtained and the original data. The specific process by which MSC is carried out can be 186 
described as follows. 187 



1) The mean value of the spectral data used was taken as the ‘standard spectrum’. Thus, 188 
the LIBS standard spectra for the 10 rock types used in this study are shown in Fig. 5 189 
below. 190 
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2) A univariate linear regression is performed on the average spectrum by importing the 192 
Linear Regression module in the sklearn library, and the linear translation and tilt 193 
offset of each spectral data set, relative to the average spectrum are obtained, by 194 
solving the least squares problem. 195 

 
i i iA m A b= +  (2) 196 

3) A Multivariate Scattering Correction is applied for each spectral data point: the 197 
corrected spectral data are obtained by subtracting the linear shift from the spectral 198 
data and dividing by the regression coefficient. 199 

 
( )

( )i i

i MSC

i

A b
A

m

−
=  (3) 200 

 201 
Fig. 5. LIBS standard spectra for 10 rock types. 202 

Each spectral data point is corrected, with reference to the average spectrum (this process 203 
does not affect the information each absorbs), to improve the signal-to-noise ratio of the spectral 204 
data overall. The spectral data are then normalized by use of the following formula: 205 
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x x
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x x

−
=

−
 (4) 206 

 ( )2 1x x Max Min Min=  − +  (5) 207 

In the above formula, x represents the value of the intensity of each group of spectral data 208 
obtained at each wave point;  is the minimum intensity of this group of spectral data;  209 
is the maximum intensity of this group of spectral data; this is normalized to the interval 1, and 210 

 represents the normalized spectral data. 211 

2.4 Models and Algorithms 212 

Principal Component Analysis (PCA) allows for creating a data dimensionality 213 
reduction, and thus feature extraction, by mapping n-dimensional features to k-214 
dimensions, which are brand-new orthogonal features, also known as principal 215 
components. In this experiment carried out, each group of spectra contains 10239 wave 216 



points.  If this is used as the input of the classification model, problems such as 217 
dimensionality disaster, low efficiency of the classification model, and long training 218 
time can be seen. 219 

The experimental work carried out and reported in this paper uses two machine learning 220 
classification models (SVM, 1DCNN), combined with three hyperparameter optimization 221 
methods (GS-RS, GP-BO and Improved BO) to conduct comparative experiments on data 222 
that are pre-processed, or not pre-processed. Support Vector Machine (SVM) is a 223 
machine learning algorithm, based on Statistical Learning Theory (STL) (and created by 224 
Vapnik) to deal with binary classification problems. The SVM approach realizes the 225 
classification of samples by finding the optimal classification hyperplane that satisfies 226 
the constraints. In the linear classification, the classification surface is selected by taking 227 
the farthest distance from the two samples.  In the case of a nonlinear classification, it is 228 
processed through a transformation in high-dimensional space. To reduce the amount of 229 
calculations needed and the complexity of the model, a kernel function is introduced to 230 
replace the dot product process in the high-dimensional feature space. The kernel 231 
function formula is given by. 232 
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( )j
x  are mapped to �̅� dimensional features. Following that, the SVM classifier model was 235 
optimized by adjusting the penalty coefficient, C, and the kernel function parameter, gamma. 236 
In this paper, a Radial Basis Function (RBF) kernel function was used, which is given as shown 237 
below (where   is the kernel width, 𝛿 > 0) 238 
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A Convolutional Neural Network (CNN) is a deep neural network model with the 240 
characteristics of neuron weight sharing and local connection. It is important because it has 241 
powerful feature extraction capabilities in high-dimensional data. When the traditional fully 242 
connected network model processes data, due to the large number of parameters present, 243 
problems such as a large amount of calculation needed, the low model efficiency, and local 244 
invariance are seen. Convolutional Neural Networks reduce the number of parameters by 245 
locally connecting each neuron, sharing weights for each group of connections, and adding 246 
pooling layers, while improving the robustness of the model and the ability of the network to 247 
generalize. For one-dimensional spectral data from the rock samples considered, it creates a 248 
kind of multivariate sequence data, using a one-dimensional convolutional neural network 249 
(1DCNN) model. By performing the one-dimensional convolution operation on the input 250 
spectral data, the feature information can then be extracted to create an effective classification 251 
from the different types of rocks considered. 252 



 253 

Fig. 6. The structure of one‐dimensional convolutional neural network. 254 

The model, 1DCNN uses 4 convolutional layers to extract features, according to the 255 
spectral data from the rocks investigated. Each convolutional layer adds an activation function 256 
to improve the ability of the neural network to express an effective classification model. After 257 
each of the 2 convolutional layers, a maximum pooling layer was added. To preserve the main 258 
features and reduce the computational cost, a flattening layer and a Dropout Layer were added 259 
in the middle, where the flattening layer converted the high-dimensional data into one-260 
dimensional data and acts as a transition from the convolutional layer to the fully connected 261 
layer. Further, the Dropout Layer randomly assigns 50% of the neurons in the network to zeros. 262 
By resetting the weight to zero, the weight reduces the sensitivity of the convolutional neural 263 
network to any small changes experienced in the data and further improves the accuracy of the 264 
processing of unknown data. After that, a fully connected layer was then added and the softmax 265 
function was further added as the output layer, to obtain each feature, with data matching the 266 
feature category with the highest probability. The Cross Entropy Loss function was selected as 267 
the model loss function, where the formula used is as shown in Equation (9). The corresponding 268 
network structure of the 1D-CNN was as is shown in Fig. 6 above, where the detailed 269 
parameters of the network structure used are as shown in Table 2. The Softmax function 270 
formula employed was as follows. 271 
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In Equation (8), 𝑥𝑖 represents the input of the Softmax function, and the n-dimensional real 273 
vector was mapped to the (0, 1) interval through the Softmax function. The sum of all 274 
probabilities is 1 and consequentially the probability distribution of multi-classification can be 275 
obtained. 276 
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Table 2. The parameters of 1D‐CNN 278 

Number Network layer Parameter Conv kernel Step size 

 Input layer 145×1 - - 

1 
Conv-1 5×1 100 1 

Conv-2 5×1 100 1 



Max-Pool-1 3 ×1 - 1 

2 

Conv-3 5×1 150 1 

Conv-4 5×1 150 1 

Max-Pool-2 3 ×1 - 1 

3 Flatten - - - 

4 Dropout 0.5 - - 

5 Dense 10 outputs - - 

Grid Search Cross Validation (GS) is a basic hyperparameter optimization technique. Here, 279 
through defining an n-dimensional grid, each grid has a hyperparameter map, and the optimal 280 
hyperparameters of the model are obtained by exhausting all the hyperparameter combinations, 281 
through cross-validation. In this technique, assuming that there are n hyperparameters, and each 282 
hyperparameter has iP  values, then with N-fold cross-validation, the number of 283 
hyperparameters to be evaluated is

1N n

i iP= （ ）. When this number of hyperparameters is 284 
large, although the optimal hyperparameter combination can be obtained in the end, this will 285 
lead to dimension explosion and low model efficiency. Randomized Search Cross Validation 286 
(RS) obtains the optimal hyperparameter combination in the sampling group by randomly 287 
selecting the hyperparameter combination in the hyperparameter space for a given number of 288 
iterations _n iter  with cross-validation. The use of a random search solves the problems of a 289 
large number of grid search combinations, a large amount of computation, and a long time over 290 
which it is done, but only suboptimal solutions can be obtained. In this paper, the SVM 291 
classification model is used to optimize the super parameters, C and gamma through both grid 292 
search cross validation and random search cross-validation. First, the grid range of the optimal 293 
combination is determined through a grid search, following which an optimal solution is 294 
obtained by use of a random search. Therefore, the use of grid search cross-validation combined 295 
with random search cross-validation can be used to shorten the time taken and thus obtain better 296 
optimization results. 297 

Bayesian Optimization (BO) regards the function of the optimized object as a random 298 
process that satisfies the prior distribution and allows obtaining a new distribution by updating 299 
the posterior probability with the Bayesian formula, by solving the function value. Following 300 
this, it then judges the most likely value, according to the new distribution. The extreme point 301 
and its function value can be calculated to form a new function value observation history. The 302 
next stage is to set the number of iterations, repeat the above process, and thus to obtain the 303 
optimal solution. It can be noted that the formula from Bayes' theorem can be given, as follows. 304 
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Where in the above formula f  is the objective function; ( ) ( ) 1: 1 1, , ,t t tD x y x y=   306 

represents the observed set, tx represents the decision vector, ( )t t ty f x = +  represents the 307 

observation value, t  represents the observation error; ( )1:tP D f∣  represents the likelihood 308 

distribution of y ;  ( )P f  represents the prior probability distribution of  f  ,  which is used 309 

to describe the assumption made about the state of the unknown objective function;  ( )1:tP D  310 

represents the posterior probability distribution of f  which is used to describe the confidence 311 

of the unknown objective function after the prior probability is corrected by the measured data 312 
set. 313 



Gaussian Process-Based Bayesian Optimization (GP-BO) uses Gaussian Processes (GP) 314 
to build a surrogate model to simulate the objective function for black-box optimization and in 315 
that way speed up the convergence. The specific idea behind its use is as follows:  by obtaining 316 

the posterior probability of the observed point , the mean u and variance σ of the point can 317 

be calculated, following which the value of  is determined according to the extraction function 318 

. After that, the process continues to sample the objective function and evaluate the objective 319 
function value, then integrate the data and update the Gaussian surrogate model for fast 320 

convergence. The formula of the function, , is given as shown below in Equation (11). 321 

 ( ) ( ) ( )
1

2
1 1argmax t t t
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u x x x  − −
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= +
x

 (11) 322 

In this paper, an improved Bayesian optimization algorithm (a Bayesian fast automatic 323 
hyperparameter optimization method based on simplex optimization domain) is proposed. In 324 
this approach, first, we construct the simplex optimization domain and sample the partition in 325 
an internal division. Then create a work queue through the heappop function of the heapq stack 326 
column module in Python; As shown in Fig. 7 below, the two division methods of simplex and 327 
square are respectively selected to optimize the domain partition, and on the assumption that 328 
each partition can be represented by the sampling points of its vertices, the partition efficiency 329 
can be defined as . The formula for is given as Equation (12): 330 

 

'En
E

En
=  (12) 331 

In the above formula, 
'En   is the number of new partitions, and En  is the number of sampling 332 

points required to divide the new area. It can be noted that when bisecting the square 333 
optimization domain, two sampling points are required; when bisecting from the inner third of 334 
the simplex or an edge, only one sampling point is required. The next step is to divide the 335 
interior of the simplex and the sides of the simplex and square respectively, and the three 336 

partition efficiencies E  are ( )1 1n + ∕ , 2 /1 ,
12 / 2n−

, This gives a b cE E E  . 337 

Therefore, it is seen as most efficient to divide the simplex optimization domain internally. 338 

 339 
Fig. 7. Optimized domain partitioning efficiency comparison. 340 

Following this, the hyperparameter space can be sampled according to Inverse Distance 341 
Weighting (IDW), and local interpolation is then performed in a simplex manner. The inverse 342 
distance weighted interpolation is a spatial interpolation method that can be used to estimate 343 
the location of the next point to be measured by using the measured sample points with 344 
corresponding weights. The inverse distance weighted interpolation formula used is shown 345 
below. 346 
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Where in the above formula, 
*x  is the next sample point to be measured; ( )  1,2,..,ix i n=  is 348 

the -th measured sampling point; w  is the weight. The formula for the weight of the -th 349 
measured sampling point used is shown below. 350 
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Here, the weight 𝑤 is inversely proportional to the 𝑝 power of the distance 𝑑 (from the point to 352 

be measured 
*x  to the known sampling point ix ), where the Euclidean Metric is selected to 353 

calculate the distance d , and the distance formula is as given in Equation (15) shown. As a 354 
result, the corresponding weighting decreases as the distance increases and the rate of descent 355 
depends on the pre-set constant p  . When p  =0, the relative weight is 1, and the prediction 356 

point is the average value of the measured data in the search field; and when p  is too large, 357 

the weight decreases rapidly. It is only the sampling points of the nearest points which have an 358 
effect on the predicted points. Therefore, the default value is p  =2, and the interpolation 359 

method is the inverse distance square weight interpolation. 360 

 ( ) ( )
2 2

2 1 2 1d x x y y= − + −  (15) 361 

In the above formula, d  is the Euclidean distance between the point  ( )2 2,x y   and the point362 
( )1 1,x y .  363 

Next, the number of iterations is set and the local interpolation value which gives the 364 
highest information gain is selected from the priority queue of the points to be measured 365 
through each iteration, and the acquisition function is used to prevent the acquisition of a sub-366 
optimal local interpolation value, to ensure the faster convergence of the objective function. 367 
The acquisition function used is shown below. 368 

 ( )* * *f x x C T= +  (16) 369 

In the above formula, C  is the weight of the optimization domain exploration, which is used 370 
to inform the optimizer of how much attention should be paid to the current exploration 371 
optimization domain to prevent the pursuit of the first Sub-optimal value explored by the 372 
optimizer. C  is an adjustable constant, and the default is C  =0.1, where T  is the exploration 373 
cost. The formula used for the value of T  is as shown below. 374 

 ( ) ( )1 2 1 2*log *ENT X X F F= −  (17) 375 

In the above formula, 1X  and 2X  are the best sampling point and the worst sampling point 376 
in the simplex sampling domain respectively, EN  is the number of all the vertices in the 377 
simplex optimization domain, and  1F 、 2F  are the scores of the simplex parent domain and 378 
subdomain, respectively. Through local IDW interpolation, the simplex parent domain can be 379 
divided into several simplex subdomains, and the content of each simplex subdomain then 380 
comes from the parent domain, so the exploration cost is the cost of each simplex space domain 381 
containing the collection points to be measured. A relative measure of how much has been 382 
explored in this work. 383 

The specific process employing the improved Bayesian optimization algorithm is as 384 
follows: the classification accuracy of the classification model is used as the objective function 385 
of the optimizer, constructing a simplex optimization domain from the hyperparameter space 386 
and creating a simplex work queue. Then, the surrogate model of the optimizer is constructed 387 



by dividing the simplex optimization domain into independent local interpolations, according 388 
to IDW. The local interpolation with the highest acquisition function value is then obtained 389 
from the simplex work queue, and the objective function can be evaluated by this local 390 
interpolation. As the exploration information is updated, the parent interpolation is split into 391 
smaller and more accurate child interpolations, and then added to the simplex worklist. With a 392 
given number of iterations, when the model training meets the number of iterations or the 393 
optimal local interpolation gets the optimal hyperparameter combination. 394 

3. Results and analysis 395 

Building on the above, the average spectrum of 10 types of rock samples was obtained and then 396 
the characteristic wavelengths of each element were determined according to the NIST atomic 397 
spectrum database. It is found through experiments that the elements affecting lithology 398 
identification include Nb, Si, Al, Mg, Ca, Ti, Na, Ba, H, Li, Mn, Fe, etc. It is not easy to quickly 399 
select the analysis line as the identification and classification model under the principle of 400 
characteristic spectral line screening (which involves high spectral line intensity, high element 401 
transition probability, and no interference and overlap of other element spectral lines around 402 
the spectral line). Typical LIBS spectra of rock samples and emission spectra of main elements 403 
in the LIBS spectra are shown in Fig. S1 and Table S1 respectively. 404 

 405 
Fig. S1. Typical LIBS spectrum of rock samples. 406 

Table S1. Emission lines of main elements in the LIBS spectrum 407 

Species Wavelength (nm) Species Wavelength (nm) 

Si 221.63, 243.46, 251.6, 263.12, 288.1, 

385.56, 390.55, 634.75  

Al 237.31, 309.28, 393.34, 

394.39, 396.09 

Fe 385.95, 438.32 Ca 396.8, 422.67, 616.33, 

649.76 

Na 261.18, 288.1, 589.11, Ni 308.16 

Mn 279.49 Nb 212.37, 260.06 

H 656.35 Li 256.23, 670.84 

Mg 279.55, 350.07 Ba 273,93, 614.25 

O 240.62, 373.68, 404.6 Cr 275.52, 383.42 



C 193.03 Ti 384.06, 455.34 

3.1 Principal Component Analysis 408 

In this experiment, the PCA has been used to extract features from the spectral data, and the 409 
pre-processed spectral data are used as the input of PCA for dimensionality reduction 410 
processing, to achieve rapid convergence of the classification model, on the premise of 411 
retaining most of the original spectral information. Fig. 8 shows the interpretation rate and 412 
cumulative interpretation rate of the first 20 principal components, and Fig. 9 shows the two-413 
dimensional scatter plot of the 10 types of rocks when the first two principal components were 414 
selected. 415 

 416 
Fig. 8. PCA analysis results of LIBS data for 10 types of rocks. 417 

By observing Fig. 8 above, it can be seen that the cumulative interpretation rate of the first 418 
four principal components has the fastest growth rate, and the cumulative interpretation rate 419 
reaches 91.96%; when the first ten principal components were taken, where the cumulative 420 
interpretation rate reaches 98.62%, and the cumulative interpretation rate of the principal 421 
components rate growth is extremely slow. 422 

 423 
Fig.9. Two-dimensional scatter plot of the first two principal components. 424 



By observing Fig. 9 above, it can be seen that when the first two principal components 425 
were selected as features after dimensionality reduction by using the PCA, it is found that ten 426 
types of rock data points appear to show a regional clustering phenomenon, among which 427 
Rock2 and Rock4, Rock1 and Rock6 have very little information which is overlapping in nature, 428 
but most of the information on Rock5 and Rock7 overlap, where most of the sample intervals 429 
are small.  This is because the cumulative explanation rate of the first two principal components 430 
is only 70.03%, and it is necessary to increase the number of principal components and use the 431 
classification algorithm to further analyse the data after feature extraction has taken place. 432 

 433 
Fig. 10. The loadings of PC1. 434 

 435 
Fig. 11. The loadings of PC2. 436 

Table 3. Contributions of the elements to the PC 437 

Contribution 

values 
Si Fe Al Ca Nb Mn Na C Li Others  

PC1 0.183 0.264 0.045 0.152 0.068 0.081 0.049 0.098 0.015 0.045 

PC2  0.151 0.166 0.019 0.122 0.015 0.025 0.111 0.007 0.036 0.348 

By calculating the loads of PC1 and PC2, the contribution values of the input variables 438 
(10,239 wave points) to the first two principal components were obtained.  Following that and 439 
with reference to the NIST atomic spectrum database, the contribution value of the main 440 
elements in the rock to the PC was obtained, where the loads on PC1 and PC2 are, respectively, 441 
as shown in Fig. 10 and Fig. 11 above, and the contribution of elements to the PC is as shown 442 
in Table 3.  It can be seen from Table 3 that Si, Fe, Al, Ca, Nb, Mn, Na, C and Li are the key 443 
elements of the first two principal components.  Among them, Si, Fe, Al, Ca, Nb, Mn and C 444 
provide the major contributions to PC1. When the number of principal components is increased, 445 
the contribution value of Na, and Li and other elements to PC2 increases, and this process adds 446 



new important features. Therefore, the appropriate number of principal components should be 447 
selected as the input to the classification model. 448 

3.2 Classifier Model Optimization 449 

The LIBS spectral data of 10 types of rocks can be seen as basic pre-processing operations and 450 
PCA dimensionality reduction with different numbers of principal components is used as the 451 
input of the classification model – and there are 500 sets of spectral data used in total. Among 452 
them, there are 350 groups in the training set and 150 groups in the test set, and the proportion 453 
of each type of rock in both the training set and the test set is equal. The classification accuracy  454 

ACCR  was used as the evaluation index of the classification model, the model was evaluated 455 

with ten-fold cross-validation, and the confusion matrix was selected for the final evaluation of 456 
the classification effect of the test set. The classification accuracy formula is given by: 457 

 

10 10 10

ACC

1 1 1

/i i i

i i i

R T T F
= = =

 
= + 

 
    (18) 458 

In the above formula， iT  is the total number of correct classifications of class i  rocks, 459 

iF  is the total number of incorrect classifications of class i  rocks,

10

1

i

i

T
=

  represents the 460 
total number of correct classifications of 10 types of rocks, and 

10

1

i

i

F
=

  represents the total 461 
number of incorrect classifications of 10 types of rock samples. 462 

The SVM in this experiment can be implemented, based on the sklearn library in Python 463 
3.9.7. The classification accuracy was used as the objective function of GS and RS, and the 464 
SVM model was optimized by adjusting the hyperparameter space and the number of iterations. 465 
Table 4 shows the 10-fold average classification and recognition accuracy of the sub-test set 466 
when different numbers of principal components were selected as the input variables of the 467 
SVM classification model, and the training set was subjected to ten-fold cross-validation as the 468 
sub-training set and the sub-test set, respectively. 469 

Table 4. SVM recognition results with different input variables 470 

Numbers of Cumulative Average 

variables interpretation rate /% accuracy rate /% 

1 47.45% 55.14% 

2 70.03% 74.57% 

3 82.08% 79.14% 

5 94.23% 83.31% 

10 98.61% 87.00% 

15 98.99% 86.20% 

It can be seen from Table 4 above that with the increase of the principal component score, 471 
the cumulative interpretation rate is increasing, and the average classification accuracy of the 472 
SVM classification model is also improving. When ten principal components were selected as 473 
the input of the classification model, the average classification accuracy of the SVM reaches 474 
87.00%. When the principal component scores continue to increase, the average classification 475 
accuracy of the classification model was seen to decrease. This arose because with the increase 476 
of principal component fraction, the increase of noise and dimension will reduce the 477 
classification accuracy. 478 

Through the comparative analysis in Table 4, the top 10 principal components are selected 479 
as the inputs of GSCV-RSCV-SVM and GP-BO-SVM models. Firstly, the range of penalty 480 
factor C in SVM is [0.01, 0.1, 1, 10, 100, 1000, 10000], and the range of parameter gamma was 481 
[0.001, 0.01, 0.1, 1, 10, 100]. Through grid search cross validation, the best parameter 482 
combination C=1000, and gamma=0.1 is obtained. At this time, the average accuracy of cross 483 



validation of the classification model is 87.20%. Then set 10<C<1000, 0.01<gamma<1, were 484 
set, and through 30 iterations of random search cross validation, the optimal parameters of SVM 485 
were found to be C=743, gamma=0.38. At this time, the average accuracy of the cross 486 
validation set of the classification model was 87.71%. 487 

 488 
Fig. 12. BO-GP-SVM optimal parameters optimization process. 489 

To further improve the classification efficiency of SVM, Bayesian optimization based on 490 
the Gaussian process was used to optimize the hyperparameters of SVM. Following that, it was 491 
necessary to establish the hyperparameter C and gamma two-dimensional hyperparameter 492 
space. As shown in Fig. 12 above, the best parameter combinations C=990.101 and 493 
gamma=0.919 were obtained after 30 iterations. At this time, the average accuracy of cross 494 
validation of the classification model was 90.20%. Although BOGP-SVM has improved the 495 
classification accuracy compared with GS-RS-SVM, the modelling times of the two models 496 
were 300.611s and 298.023s respectively, so the model efficiency of the two methods was not 497 
high. 498 

Next, the Bayesian optimization based on the Gaussian process was used to optimize the 499 
hyperparameters of 1DCNN, and thus construct a four-dimensional parameter space for the 500 
convolutional layer activation function, optimizer, batch size, and number of model training 501 
rounds through the Bayesian optimizer. The process searches within the parameter space serve 502 
as a surrogate model. The blue area in the figure is the area with a ‘poor model’ effect, the 503 
yellow area is the ‘better area’, and the black point is the sampling position of the Bayesian 504 
optimizer. The Bayesian optimizer fitted the model by using the prior probability at the higher 505 
sampling density. parameters and the red five-pointed star was obtained as the best 506 
hyperparameter combination position. The optimal hyperparameter combination (pre-507 
processing) was as follows: the activation function of the convolutional layer was Relu, the 508 
optimizer was Adam, the batch size was 23, and the number of model training rounds was 35. 509 
At this time, the average cross-validation accuracy of the classification model was 98%. The 510 
hyperparameter optimization process is shown in Fig. 13 below. 511 



 512 
Fig. 13. BO-GP-1DCNN optimal parameters optimization process. 513 

As shown in Fig. 14 below, a Bayesian optimizer was constructed, based on a simplex 514 
optimization domain to determine a two-dimensional hyperparameter space for the batch size 515 
and the number of model training epochs in the 1DCNN classification model, where the 516 
Batch_size ∈  [1,100], Epoch ∈  [1,100]. Then the simplex optimization domain was 517 
constructed according to the hyperparameter space, and the optimal hyperparameter 518 
combination was obtained through 15 iterations. Here the batch size was 17, and the number of 519 
model training rounds was 69. At this time, the average cross-validation accuracy of the 520 
classification model was 99.33%, and the modelling time was 103s. The hyperparameter 521 
optimization process is as shown in Fig. 15 below. 522 

 523 
Fig. 14. Improved BO-1DCNN optimal parameters optimization process. 524 

 525 
Fig. 15. Improved BO-1DCNN model training process. 526 

By examining the training process of the Improved BO-1DCNN model in Fig. S2, it can 527 
be seen that when the network was trained through ~20 rounds, the cross-entropy loss 528 



difference of the network tends to be stable, and the network accuracy at this time was 0.001. 529 
Although the actual set network error value was met at this time, the training set and the 530 
classification accuracies of the validation set were 97.2% and 98%, respectively, falling into a 531 
local optimum. The global search was carried out through the improved Bayesian optimizer. 532 
When the network was trained to 69 rounds, the network accuracy is 0.00098, which is the 533 
global optimal value. The confusion matrix for the classification and recognition of 10 types of 534 
rocks in the test set after model optimization is shown in Fig. S2. It can be seen that the 535 
Improved BO-1DCNN model can recognize and classify 10 types of rocks. The accuracy rate 536 
can reach 99.33%, and the model recognition time was significantly reduced, compared to the 537 
first three models, which can be used to quickly identify and classify 10 types of rock samples. 538 

3.3 Comparative and analysis 539 

To further verify the ability of the Improved BO-1DCNN model to automatically classify rocks, 540 
the four classification models are compared with the basic pre-processing and optimally pre-541 
processing rock LIBS spectral data. Fig. 16 below shows the validation set accuracy and 542 
modelling time of the four methods obtained. Table 5 is the validation set efficiency comparison 543 
of the four models. (1) in Table 5 is pre-processing, and (2) is no pre-processing. It can be seen 544 
that SVM has lower classification accuracy than 1DCNN. This is because SVM performs 545 
classification and recognition by mapping the input to a high-dimensional space. Moreover, 546 
when the SVM input variable dimension is too high, the efficiency of classification recognition 547 
and hyperparameter optimization was low. The 1DCNN adopted a convolution calculation and 548 
deep architecture and achieves high-accuracy classification by extracting spectral features to 549 
form high-level semantic category information. 550 

 551 
Fig. 16. The validation set accuracy and modelling time of the four methods. 552 

Table 5. Comparison of the validation set efficiency of the four models 553 

Models Accuracy /% Modelling times /s 

GS-RS-SVM (1) 88.86 300.611 

GS-RS-SVM (2) 87.71 412.391 

GP-BO-SVM (1) 91.91 282.493 

GP-BO-SVM (2) 90.20 298.023 

GP-BO-1DCNN (1) 98.57 260.145 

GP-BO-1DCNN (2) 98.00 360.381 

Improved BO-

1DCNN (1) 

99.46 103.858 

Improved BO-

1DCNN (2) 

99.33 173.299 



By comparing the classification accuracy and modelling time of different classification 554 
models, it can be seen that the optimization efficiency of the three optimizers follows the 555 
following pattern: GS-RS<GP-BO<Improved BO. By comparing the basic pre-processing 556 
experiment and the optimal pre-processing experiment, it has been found that although the 557 
classification accuracy of the optimal pre-processing experiment was higher, the modelling 558 
time also increased, and a large number of experiments were found necessary to obtain the 559 
optimal pre-processing combination. Fig. 17 below shows the test set accuracy and modelling 560 
time of the four methods. Table 6 is the test set efficiency comparison of the four models. 561 
Therefore, compared with other methods, the Improved BO-1DCNN model proposed in this 562 
study not only needed no optimal pre-processing, but also has the highest classification 563 
efficiency, used to realize LIBS for the automatic and rapid classification of rock samples. 564 

 565 
Fig. 17. The test set accuracy and modelling time of the four methods. 566 

Table 6. Comparison of the test set efficiency of the four models 567 

Models Accuracy /% Modelling times /s 

GS-RS-SVM 88.57 405.231 

GP-BO-SVM 95.30 300.824 

GP-BO-1DCNN 98.20 356.912 

Improved BO-

1DCNN 

99.00 170.521 

4. Conclusions  568 

In this paper, an improved Bayesian optimization algorithm has been put forward and proposed 569 
– then it has been applied to create an identification method combining laser-induced 570 
breakdown spectroscopy with a one-dimensional convolution neural network. It has been used 571 
and evaluated for the classification of 10 different types of rocks, such as siltstone, oil shale, 572 
mudstone, argillaceous siltstone, red sandstone, coarse sandstone, fine sandstone, etc., to solve 573 
the shortcomings of traditional Bayesian algorithms, such as global dynamic optimization and 574 
low efficiency. By selecting different classifiers and optimizers to build classification models, 575 
including GS-RS-SVM 、 GP-BO-SVM 、 GP-BO-1DCNN and improved BO-1DCNN, 576 
comparative experiments were carried out on 10 types of rock spectral data that were pre-577 
processed and unprocessed respectively. The experimental results obtained from that work 578 
were then able to show that LIBS technology, combined with the 1DCNN classification model, 579 
does not need to select the optimal pre-processing combination, and the improved Bayesian 580 
optimization algorithm can achieve high accuracy and fast classification between rocks. 581 
Through global dynamic optimization, the modelling time of the improved Bo algorithm has 582 
been seen to be greatly reduced, and the classification accuracy obtained was higher after 583 
optimization, which improves the classification efficiency of rocks. 584 
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