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(Å2)−2n ⋄ (Å2)−2n-Lorentzian Toda field theories . . . . . . . . . . . 67

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
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Abstract

In this thesis, we develop a framework to study n-extensions of Kac-Moody algebras, and
use the resulting Lorentzian algebras to study Lorentzian extension of Toda field theories
and their integrability. We begin our discourse by providing context and motivation for
the study of these ideas, mainly through illustrating the unmatched historical successes
of quantum field theory in science and the role of symmetry algebras and integrability in
mathematical physics.

Continuing, we develop a new framework to extend finite, gf Kac-Moody algebras,
through their simple root structure n times to what we name n-extended Lorentzian Kac-
Moody algebras, g−n. Using constants from the Casimir operators of g−n, we find a novel
type of decomposition of g−n. We derive conditions in which these decompositions are
possible, and tabulate all possible decompositions of g−n.

Applying the methods we developed in the construction of g−n, we build Lorentzian
Toda field theories as extensions of Toda field theories based on gf . We find that on each
subsequent addition of simple roots in the n-extension procedure results in the Lorentzian
Toda field theory alternating between conformal and massive behaviour. We calculate
mass ratios for the massive theories, and using the Painlevé test, we find that some of
these Lorentzian models can not be integrable.

Examining another class of Lorentzian Toda field, which we name the null root mod-
els, we show that these pass the Painlevé test. Furthermore, we show that these models
can also possess the more restrictive Painlevé property, showing this explicitly for a spin-3
rank-2 example, meaning that this example is integrable. The procedure used is general-
izable, and we therefore conclude that more models from the null root class of Lorentzian
Toda field theories are very likely to also be integrable models.

ix



Chapter 1

Introduction

Quantum field theories are the most successful theories within any and all scientific dis-

ciplines. For example, quantum electro dynamics (QED) is by far the precisest theory

in existence, with its electromagnetic fine-structure constant having been experimentally

confirmed to precisions at the scale of 10−11 [1], through a diverse array of experimen-

tal methods with increasing accuracy over the years [1, 2, 3, 4, 5, 6]. In addition to

QED, quantum field theory also underpins the electroweak (EW) and strong force gov-

erned quantum chromodynamics (QCD) sectors of the standard model of particle physics

[7, 8, 9], and, along with General Relativity [10], it is a corner-stone of most descriptions

of physics beyond the standard model.

Such physical theories aim to describe phenomena that the standard model itself falls

short of explaining. For one, the standard model cannot explain observations such as the

asymmetry between matter and anti-matter, neutrino oscillation, the strong CP problem,

the nature of dark matter and dark energy, or even its choice of its own parameters

[11]. Additionally, at a fundamental level the standard model omits the gravitational

description of the universe, and as the most successful theory of gravitation, there have

been many attempts to combine General Relativity with quantum field theories, hoping

to create a unified theory that can answer questions each theory alone cannot.

The most widely studied physical theory that aims to combine relativity with quan-

tum field theory is string theory [12, 13, 14, 15, 16] - a theory of quantum gravity that

introduces up to 11-dimensios of spacetime in its formulation known as M-theory [17].

M-theory is of particular interest as through dualities the other five categories of string

theories can be recovered, making it essential in unifying the mathematical descriptions

of string theory. As it exists in one extra dimension than the maximum number of di-

mensions any other type of string theory may possess, it correspondingly has a larger

symmetry algebra known as E11 [18] that is larger than the E10 symmetry algebra that

certain 2-dimensional reductions of M-theory are known to be invariant under [19].

As we have been alluding to, these symmetry groups and algebras are invaluable in

the construction of all the field theories mentioned so far. In particular, Lie groups,

Lie algebras, and the latter’s generalizations: Kac-Moody algebras [20], which we shall

1



often denote by g, describe and contain information about the symmetries the fields in

these field theories obey. While E10 and E11 are both Kac-Moody algebras, they belong to

different categories, E10 is a hyperbolic g [21], however E11 does not fall into this hyperbolic

category and is known as a Lorentzian Kac-Moody algebra, g [22]. Motivated partially by

its appearance in string theory and the fact that Lorentzian Kac-Moody algebras are less

well-defined in relation to the hyperbolics, efforts have been made to study a larger class

of Kac-Moody algebras that are also Lorentzian and include E11 [23, 24], and highlighted

the potential of extending Kac-Moody algebras on the level of their Dynkin diagrams

through the addition of extra nodes on the diagrams in well-defined positions defining

what is known as the n-extended Lorentzian Kac-Moody algebras g−n [25], allowing E10

to be extended to E11, for example see [24] and sections 2.3.3-2.4 for a further and more

precise definition. Notationally, starting from finite Kac-Moody algebras, gf and their

affine extension, ga, both of which we shall elucidate in more detail shortly, this extension

procedure follows the pattern

gf → ga → g−1 → g−2 → · · · → g−(n−1) → g−n

By construction g−n contains g−(n−1) in general, it then follows that E11 contains E10.

A more surprising result to find that E10 contains every simply laced hyperbolic Kac-

Moody algebra as its subalgebras [26], giving E10 the richest structure of any hyperbolic

g, again highlighting the importance of better understanding E10 and E11, in addition to

the construction and decompositions of g−n in general.

From a more physical, albeit heuristic perspective, E10 and E11 both contain the

SU(3)×SU(2)×U(1) symmetry group of the combined QCD, QED and EW sections of

the standard model, adding to the interest of studying E10 and E11 in relation to theories

which could reduce to the standard model in certain situations. On a conceptual level,

this is what some string theories hope to achieve, although currently none have come

close. However, utilizing the symmetries provided by E11 has led to particular success

in treating M-theory as gauged supergravity theories though the embedding tensor in

dimensions D ≥ 4 [27, 28, 29, 30]. Emphasizing that most of the successes of E11 have

come from its physical applications, whereas purely algebraically, even in simple terms of

its full classification, let alone its representation theory, much is still to be discovered.

Even E10 and the hyperbolic algebras are not well understood compared to the vast

data and knowledge available for the aforementioned finite Kac-Moody algebras, gf , and

their so-called affine extensions, ga, which have been completely classified with much

of their representation theory known [31, 32]. The hyperbolic Kac-Moody algebras are

however better understood than the Lorentzians on the level of classification, for example

it is known that E10 belongs to a class of 238 hyperbolic g between ranks 3-10 [33, 34],

whereas Lorentzian g are less well classified with E11 belonging to an infinitely large class

that can exist at arbitrarily large ranks, unlike hyperbolics whose ranks cannot exceed

the rank-10 of E10.

2



We do, however, have some insights into E10 and E11 at deeper levels than merely their

classification. For example, for hyperbolic Kac-Moody algebras some root multiplicities

are known for certain algebras [33, 35], for E10 and the Lorentzian E11 they are only known

at low level representations of level 18 and 10, respectively [22, 36]. Additionally, Weyl

groups have not been identified for any Lorentzian algebras, but have been identified for a

few hyperbolic g [37, 38], giving their Weyl groups potential to be studied as mathematical

objects in isolation, as well as in relation to their uses in classical and quantum field

theories.

Weyl groups of g are of particular interest when constructing Calogero-Moser-Sutherland

systems [39, 40], this can be seen from writing their general Hamiltonian as

HCMS =
p2

2
+

m2

16

∑
α∈∆

(α · q)2 + 1

2

∑
α∈∆

gαV (α · q) m, gα ∈ R, (1.1)

which describes n particles moving on a line with conjugate momenta p assembled into

canonical coordinates p, q ∈ Rn. V (x) is the potential term of the system that categories

various behaviours of the system: for example, the CMS models are taken with V (x) =

1/ sin2(x), V (x) = 1/ sinh2(x) or V (x) = 1/2(x), whereas the Calogero model has V (x) =

1/x2. α are roots of the root system ∆ of g, and to sum over this root system, like we

do in HCMS, we require the Weyl group, which acts on simple roots of the Kac-Moody

algebra by reflecting them in hyperplanes perpendicular to the simple roots. If we were to

not sum over all ∆ then HCMS would not be invariant under the action of the Weyl group

and the integrable features of the model would be lost. For gf , the Weyl group action

will terminate, giving a finite root system, ∆. Whereas for ga, hyperbolic and Lorentzian

Kac-Moody algebras ∆ will be infinite in size.

As the Weyl group is known for gf , and ga, this process of obtaining and summing over

the entire root space is possible, however for hyperbolic Kac-Moody algebras this can only

be conducted for the known Weyl groups in [37, 38], and the first non-supersymmetric

hyperbolic Calogero model has only been constructed recently for one of these known

hyperbolic Weyl groups, AE3 [41], which is an extension of the modular group PSL(2,Z).
However, as mentioned above, no known Weyl groups exist for Lorentzian Kac-Moody

algebras, the possibility of constructing a Lorentzian Calogero-Moser-Sutherland model

will require more mathematical development.

Asides from Calogero-Moser-Sutherland models, Kac-Moody algebras have found many

uses within both classical and quantum field theories. Out of all field theories that are

built from g, Toda field theories [42, 43, 44] are easily the most comprehensive, well

understood, and arguably retain this status when compared amongst all classical and

quantum integrable field theories. The Lagrangian of classical Toda field theory, based

on the Kac-Moody algebra g, lives in two spacetime dimensions and may be written as

Lg =
1

2
∂µϕ · ∂µϕ− g

β2

r∑
i=n

eβαi·ϕ (1.2)

3



the constants g ∈ R and β ∈ R, or β ∈ iR which gives non-trivial solutions to the Yang-

Baxter equation [45]. The simple roots αi, i ∈ {1, · · · , r} act as a basis of the root space,

∆ of a rank-r g. In (1.2), αi are associated to r scalar fields, ϕ(x, t) of the theory, which

posses as many components as the rank of g, so that the roots are also represented in

Rn, rather than in the complex plane. We then have ϕa(x, t) for a ∈ {1, · · · , r}. Folded

g have also been constructed and studied, whereby the field components are identified in

less general methods than with non-folded algebras [46].

Since the first discrete Toda models were discovered and studied [42], many versions of

both the discrete and the continuous Lg theory have been studied. For instance, taking

Lg with n = 1 and α being the simple roots of gf with rank-r corresponds with the

conformal Toda field theories [47, 48]. In a similar way to which we can extend the finite

Kac-Moody algebra gf to its affine counterpart, ga, we may also alter the field content

of Lgf to Lga through taking n = 0, by adding to the simple root system an affine

root, taken to be the negative of the highest root. This affine root is denoted as α0, and

associated to ϕ0, which acts as to perturb the potential of the Lgf into the new affine

theory. The Lga does not have conformal symmetry and possesses r massive fields, and

importantly both Lga and Lgf have the field components set as a = r.

Lga theories may be further perturbed with two additional fields, η, ζ, to the affine

theory, forming the theories known as conformal affine Toda field theories [49, 50], Lgca .

As the name suggests, these are also conformal Toda field theories and hence do not

contain any massive fields, unlike Lga . These extensions from finite to conformal affine

through successive perturbation of the field contents may be summarized as the following:

CFT

Lgf

ϕ0−→
Massive

Lga

η,ζ−→
CFT

Lgca

Extension procedures similar to those that result in the n-extended Lorentzian Kac-

Moody algebras, g−n, may also be applied to Toda field theories. This leads to a similar

extension pattern of alternating conformal and massive theories on each successive field

extension and perturbation of the pervious field content [51]. The underlying algebras of

these perturbed Lorentzian theories is not quite that of the full g−n, in fact the simple

root content of a massive Lorentzian Toda theory is found to not be a Kac-Moody algebra

and is denoted as g̊−(2n), with the analogy to the highest root, α0 in finite and affine

theories being α−2n for these Lorentzian n-extensions, where α−2n is associated to the

field we perturb with, denoted as ϕ−2n. The extension starting from Lgf to n = 2 may

be summarized as the following:

CFT

Lgf

ϕ0−→
Massive

Lga

ϕ−1−→
CFT

Lg−1

ϕ−2−→
Massive

L
g̊−2

.

However, in general, it is possible to construct Lorentzian Toda field theories with any

integer value of the extension constant n.

Toda field theories are of remarkable interest in relation to g−n algebras discussed

4



above, due to their rich history and comprehension as physical theories when based on

gf , ga algebras. For example, and regarding affine Toda theories in particular, one of

these outstanding facts is that the quantum scattering matrices can be constructed to all

orders in perturbation theory, through use of the so-called bootstrap approach [52, 53, 54,

55, 56, 57]. This arises from the fact that Toda field theories, as well as Calogero-Moser-

Sutherland systems, are integrable theories when the underlying Kac-Moody algebra is

either gf or ga. On the classical level, integrable theories are those consisting of nonlinear

differential equations that can, at least in principle, be solved analytically. In comparison,

most nonlinear differential equations have more unpredictable behaviour and can only be

solved approximately rather than exactly, as is the case for integrable systems. For field

theories, this means that we are mainly dealing with partial differential equations with

an infinite phase space, so that integrability is uncovered and utilized through a variety

of techniques related to the properties of the solutions [58]. Conversely, on the quantum

level, the integrability of a theory can be attributed to the feature that an n-particle

S-matrix can be factorised into 2-particle S-matrices.

For discrete and continuous formulations of Toda field theories, their integrability has

been proven through the construction of Lax pairs [59], zero-curvature conditions [49, 50]

and the Painlevé test [60]. Some efforts had previously been made to investigate the

integrability of Toda field theories based on hyperbolic g through conducting the Painlevé

test, which showed that hyperbolic Toda field theories do not have the possibility of being

integrable [21]. However, these results do not rule out the possibility of some categories of

Lorentzian Toda field theories being integrable, and no such investigations had previously

been undertaken.

The fact that Toda theories based on simply laced Kac-Moody algebras have exact

scattering matrices is due to their classical mass ratios [61] being preserved to all orders

of perturbation theory [52, 53, 54, 55, 62]. These results rely essentially on the theory’s

integrability, but it must be noted that although a theory retains special status for being

integrable, the framework for Toda theories is unique in its ability to find exact S-matrices

for the range of models that ga supplies. Such results are also possible for theories based

on non-simply laced g [63, 64], however, as the masses will have different renormalization

factors the results required additional algebraic machinery and utilized properties of q-

deformed Coxeter elements [63]. In both cases, it is still the case that the root system

of g that provides the underlying structure of the systems, in the latter g is the dual

affine algebra, which physically corresponds to very strong or very weak coupling in the

classical limit. As mentioned above, the coupling constant β of (1.2) may be either real

or imaginary, and when β ∈ C the Yang-Baxter equation is not trivially solved as in the

β ∈ R scenario due to quantum Kac-Moody algebras symmetries, in turn allowing the

S-matrices to still factor into an exactly solvable form [45].

In this thesis, we will examine the integrability of various Toda field theories based

on Lorentzian Kac-Moody algebras. To do so, in chapter 2, we will build up a definition
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of a new class of Lorentzian Kac-Moody algebras starting from gf , extending to ga, and

continuing these extensions in what we name as an n-extension procedure, resulting in

n-extended Lorentzian Kac-Moody algebras, g−n, which are a new class of Lorentzian Kac-

Moody algebras. We shall see how these g−n algebras decompose in a very natural process

according to their three-dimensional principal subalgebras. These decompositions are, to

our knowledge, a completely novel type of decomposition, which are deeply connected to

the Casimir operators of the decomposing g−n and their respective eigenvalues. In chapter

3 we motivate Toda field theories through lattice, finite, affine and conformal affine to

see the alternating patterns between massive and conformal field theories, patterns which

we see continuing when applying some perturbations on the g−n framework. We focus

further analysis on the massive models, based on perturbed g−n algebras, examining their

mass ratios and relevant eigenvalue spectra of the underlying algebras. For both the

massive and CFT theories based on perturbed g−n, we show that these theories can not

be integrable through failure of the Painlevé test, even though the ga theories we extended

from are integrable.

In chapter 4 we continue with our integrability analysis on Lorentzian generalised

Cartan matrices in the form of the Painlevé test and the Painlevé property. The latter

being more rigorous from the former, and giving very strong evidence for the integrability

of these new models we will analyse. These integrable Lorentzian Toda field theories differ

from those in chapter 3 through being purely Lorentzian, in the sense that we have not

started with a finite or affine Kac-Moody algebra and extended it, instead we have started

the construction with a purely Lorentzian lattice and formed a generalized Cartan matrix

from there. This uncovers a new class of 2-dimensional Toda field theories, infinite in

number, which both pass the Painlevé test and possess the Painlevé property. Although

the analysis here is limited to 2-dimensional generalized Cartan matrices, the procedure in

chapter 4 may be trivially generalized to higher dimension Cartan matrices. To conclude

the thesis, chapter 5 gives a summary of all key results, along with current status of

relevant fields and an outlook for future research.
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Chapter 2

n-Extended Lorentzian Kac-Moody

Algebras

Symmetry algebras and groups are ubiquitous in modern physics. Since the 1970s and

before, the finite symmetry algebras have played an essential role in the formulation of

fundamental theories in particle physics and the standard model. It was later recognized

that infinite dimensional symmetry algebras, namely Kac-Moody algebras [20], are essen-

tial in many theories of physics beyond the standard model, especially in conformal field

theories and string theories [65, 66, 67]. In particular, the E10 [21, 68] and E11 [18, 69]

infinite dimensional Kac-Moody algebras have been integral in the formation of type II

superstring theory and M-theory [14, 28, 29].

The algebra E10 is known as a hyperbolic algebra, which belongs to a set of Kac-Moody

algebras that have been completely classified in terms of their Dynkin diagrams, e.g. [33]

for explicit results from ranks 3-10. Conversely, E11 is not hyperbolic and belongs to a

larger class of algebras that have not been fully classified, and are known as the Lorentzian

Kac-Moody algebras. The hyperbolic and Lorentzian algebras lie in contrast to the finite

and affine Kac-Moody algebras, which have been completely classified with much of their

representation theory also understood [32].

Motivated partially through the above physical interest in Lorentzian algebras, but

also from the limited knowledge of the class of Kac-Moody algebras that E11 belongs to,

the authors of [24] studied a particular set of Kac-Moody algebra which could be found

through extending an affine Dynkin diagram by attaching additional nodes. This proce-

dure results in what is known as over-extended and very-extended diagrams, depending

on whether one or two nodes have been attached onto the affine diagram, respectively. In

this chapter, we build from the knowledge of finite and affine Kac-Moody algebras and

focus on generalizing this procedure to n nodes of extension, studying the behaviour of

the resulting n-extended Lorentzian Kac-Moody algebra. One such way of understand-

ing these algebras is through their principal SO(3)-subalgebras, and for hyperbolic and

Lorentzian algebras, their analogous principal SO(1, 2)-subalgebras. From these, we shall

better understand how the n-extended algebras decompose into subalgebras.
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2.1 Finite Lie Algebras

Before defining Kac-Moody algebras explicitly in section 2.3, we introduce the concept of

finite Lie algebras in this section, and affine Lie algebras in the following. The majority of

algebras that this thesis encounters will have finite Lie algebras at the core of their struc-

ture, which we will build on through the extension procedures detailed in the subsequent

sections of this chapter. As mentioned previously, the finite semisimple Lie algebras are

fully classified in terms of both structure and representation theory [32], and are the least

complex subclass of Kac-Moody algebras, hence, here they will provide motivation for the

study of the n-extended Kac-Moody algebras that this chapter focuses on.

Finite Lie algebras, gf are composed of a finite dimensional vector space over a field,

endowed with bilinear operation which takes in pairs of vectors from its vector space.

This bilinear map gf ×gf → gf is denoted as the Lie bracket, [·, ·] satisfying the following

axioms:

(i) [X,X] = 0

(ii) [X,[X,Z]] + [Y,[Z,X]] + [Z,[X,Y]] = 0 (Jacobi Identity)

(iii) [X,Y] = -[Y,X]

for all X, Y, Z in our vector space, and where (iii) is implies (i) as Y → X, as long as the

underlying field’s characteristic is not 2.

To better understand the structure of Lie algebras, we introduce the Cartan subalgebra

of gf , denoted as hf for finite Lie algebras. For gf semisimple, hf is defined as being the

maximum Abelian subalgebra of gf , which contains elements Hi ∈ hf for i ∈ {1, · · · , r},
where r is the rank of the Lie algebra. There are multiple ways of constructing the entire

gf from hf [32], here we present the Chevalley basis obeying the Serre relations as it can

also be used in the construction of a more general Kac-Moody algebra in section 2.3. As

well as Hi, the Chevalley generators include Ei and Fi and obey the following

[Hi, Hj] = 0,

[Hi, Ej] = KijEj,

[Hi, Fj] = −KijFj,

[Ei, Fj] = δijHi,

(2.1)

along with [Fi, · · · , [Fi, Fj], · · · ] = 0 and [Ei, · · · , [Ei, Ej], · · · ] = 0. The generators Ei and

Fi are associated to a triangular decomposition of the Lie algebra with Ei being the upper

half, Fi the lower and Hi the centre. As such, Ei and Fi are known as the step generators,

or step operators and are one-to-one related to a special set of vectors within the algebra

known as the roots, α, which all together form the set known as the root lattice Λα ∋ α.

The step operators act as raising and lowering the root vectors, and together completely

describe the algebra.
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The matrix Kij is unique for a given algebra up to isomorphism and is called the

Cartan matrix of the Lie algebra. We may always find a special basis of gα, composed of

the simple roots of the system, denoted as αi such that

αi · α∨
j = Kij, where i, j ∈ {1, · · · , r}. (2.2)

Where α∨
i = 2αi

αi·αi
is the dual root in this Chevalley basis.1 As K completely describes

the structure of the algebra, we may construct the adjacency matrix

2δij −Kij for i, j ∈ {1, · · · , r}, (2.3)

resulting in the interpretation of an undirected graph defined as the Dynkin diagram of the

Lie algebra. In this Chevalley basis, and until otherwise specified, each of the r positive

diagonals in this adjacency matrix are associated to a node on the diagram, with the

negative off-diagonal components corresponding to the connections between those nodes.

For example, −1 corresponds to one line connecting the nodes, −2 would be two lines

and 0 would be no connection between those nodes. If K and therefore the adjacency

matrix is not symmetric, then we draw an arrow between two nodes corresponding to the

more negative to less negative off-diagonal component from K, as we see in the Br, Cr, F4

and G2 algebras we will see shortly. In these cases, the roots of the algebra clearly have

different absolute lengths that have been absorbed into the normalization of Chevalley

basis definition.

The process of forming root systems and writing down the Dynkin diagrams of the

semisimple Lie algebras has lead to the complete structural classification of all these finite

Lie algebras [31, 70]. Their Dynkin diagrams are as follows

Ar

Br

Cr

Dr

E6

E7

E8

F4

G2

Dynkin diagrams of the finite Kac-Moody algebras, gf

where each node of the Dynkin diagram corresponds to a simple root, αi of the corre-

sponding Lie algebra. The Ar, Br, Cr and Dr series are the complex slr+1, so2r+1, sp2r

1For the simply-laced cases that we shall see shortly α∨ = α.
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and so2r Lie algebras, respectively. On the level of these diagrams, gf may be identi-

fied through the defining characteristic that the deletion of any one node leaves a set of

connected Dynkin diagrams that are also of type gf . They are the complexifications of

the infinitesimal expansions around the identity of the Lie groups that go by the same

names. The remaining five finite Lie algebras are the exceptional Lie algebras, in particu-

lar E6, E7 and E8, and their extensions will be of particular interest to us in this chapter

and beyond.

Starting from the Dynkin diagram of the system and therefore the Cartan matrix of the

system, we can reconstruct the entire root system of the Lie algebra by taking reflection

of the roots in hyperplanes orthogonal to the simple roots. This set of reflections forms a

group that is clearly a subgroup of the isometry group of the algebra’s root system, and

is known as the Weyl group of the algebra. The Weyl group acts as

wα(v) = v − 2
(v, α)

(α, α)
α (2.4)

on a vector v in the root space, defined by

{x ∈ g : [h, x] = α(h)x for all h ∈ H},where α : H → C, (2.5)

reflecting it about the hyperplane orthogonal to the roots α. Starting with the simple

roots, repeated action of the Weyl group will recover the entire root space. For the finite

Lie algebras this repeated action will cycle about a finite number of roots, whereas for the

majority of Lie algebras considered in this thesis the action of the Weyl group will not

terminate and hence will give an infinite number of roots. This is the case for the affine

Lie algebras, with their corresponding affine Weyl groups, which we shall meet in the next

section and the Lorentzian Kac-Moody algebras that are the focus of this chapter and

built upon in the remainder of this thesis.

2.2 Affine Lie Algebras

In this section we will look at two different equivalent methods to extend the finite Lie

algebras examined previously into a class of infinite dimensional algebras called affine

Lie algebras, ga the first of which will look at a purely algebraic extension, whereas the

second will use only the language of Dynkin diagrams and Cartan matrices introduced in

the previous section. The latter method will be most relevant to our extension procedure

in following sections, whereas the former is more optional for the interested reader.

2.2.1 Central Extensions of the Loop Algebra

The first method we describe to construct ga in this subsection largely follows [71], and

may be summarised as a central extension of gf tensored with its loop algebra of Laurent
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polynomials. We will break this definition down to better understand its meaning. The

central extension of g may be written as the short exact sequence

0 → a → g̃ → g → 0 (2.6)

where a is a finite Abelian Lie algebra that is the centre of g̃f . Where the centre of a Lie

algebra is defined to be the set of all x ∈ g such that [x, y] = 0 for any and all y ∈ g. This

construction arises from the bilinear map, σ : gf × gf → a where the action of σ satisfies

the Jacobi identity for all elements of a. A Lie algebra’s structure satisfying the axioms

in section 2.1 may be constructed for gf
⊕

a by action of the Lie bracket

[(a,X), (b, Y )] = ([a, b], σ(a, b)), (2.7)

for elements a, b ∈ a and X, Y ∈ gf .

The next element we need for this description of ga is the loop algebra of gf . The loop

algebra is an infinite dimensional Lie algebra

g̃ = gf ⊗ C∞(S1), (2.8)

where C∞(S1) is the algebra of infinitely differentiable functions on the circle manifold

S1, meaning g̃ can be thought of as the parameterisation of loops in gf . The Lie bracket

of g̃ takes the form

[X ⊗X ′, Y ⊗ Y ′] = [X, Y ]⊗X ′Y ′, (2.9)

where X ′, Y ′ ∈ C∞(S1).

For the construction of ga, we use the Laurent polynomials of the form
∑

i pit
i for

independent variables ti and pk ∈ C, which form a ring denoted C[t, t−1] to form the loop

algebra gf ⊗C[t, t−1]. Similarly to equation (2.8) this gives us an infinite dimensional Lie

algebra of vector fields in gf on a circle, but differs in allowing us a useful parametrisation

in the single independent variable t from the Laurent polynomials. Putting this definition

together with the knowledge that led us to the sequence (2.6), we may for the central

extension

0 → C · c → g′ → g̃ → 0 (2.10)

where now g̃ = gf ⊗C[t, t−1], and c is a central element such that g′ = g̃⊕C ·c. Finally, ga
is formed through adjoining a final basis element to the algebra, that acts on g′ through

a derivation, d,

d([X, Y ]) = [dX, Y ] + [X, dY ], [d,X] = d(X) ∀X, Y ∈ gf (2.11)

such that ga = gf ⊕ Cd. This general affine Lie algebra is hence an infinite-dimensional

extension of a corresponding finite Lie algebra. More information regarding this algebraic
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construction, including the exact form of the modified Lie bracket and details of the

representation theory of ga can be found in [32] and [71]. However, this information is

not pertinent for future discussion in this chapter, so we now turn our concentration to

extensions of gf to ga at the level of the Dynkin diagram.

2.2.2 Extensions of the Finite Dynkin Diagram

The algebraic extension of gf in the previous subsection provides one useful way to il-

lustrate how a finite Lie algebra can be extended into an infinite Lie algebra. However,

for the majority of this chapter and subsequent ones the simple root basis of the algebra

will become increasingly important for us, and thus finding an extension procedure that

focuses on the root space of the algebra would be more direct and concise for our purposes.

Extending the Dynkin diagrams of gf does exactly this, providing an equivalent way

to the previous subsections methods. To create an affine extension from the Dynkin

diagram’s perspective we start with the set of simple roots, αi from gf . From the set of αi

in whatever representation for the roots we choose, we may always construct the highest

root

θ :=
r∑

i=1

niαi, ni ∈ N, (2.12)

where ni are the Kac labels [31] for the given gf . This construction of the highest root

guarantees that taking the set α
(0)
i ∈ {α1, · · · , αr,−θ} results in the basis of simple roots

for ga. Where we have adopted the convention of a superscript to denote the extended

nature of the algebra, starting from zero in which we have the algebra extended to an

affine level only. From α
(0)
i we may form the affine Cartan matrix K

(0)
ij := α

(0)
i ·α(0)

j where

now i, j ∈ {1, · · · , r + 1} for the rank r + 1 affine algebra, based on the rank r finite

algebra. Hence, the corresponding affine Dynkin diagram can be written down as defined

through the adjacency matrix given in equation (2.3).

Following this procedure for all the finite Lie algebras in section 2.1 results in the

following Dynkin diagrams

A
(0)
r

B
(0)
r

C
(0)
r

D
(0)
r

E
(0)
6

E
(0)
7

E
(0)
8

Dynkin diagrams of the affine Kac-Moody algebras, ga
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for all the affine Lie algebras bases off the finite semisimple algebras, where the empty

nodes represent the affine nodes from the extension. Similarly to the definition of the gf

diagrams, those of ga can be understood as there being at least one node whose deletion

leads to a set of Dynkin diagrams of gf type. On the level of the root lattice, if we were to

apply Weyl transformation on a simple root system of ga we would find that the generated

root system does not close like it did for gf , and we would generate the root lattice ΛA,

containing an infinite amount of roots. To recover the full root lattice for a ga in general,

one must use the affine Weyl group, which utilizes certain orbits of Coxeter elements of

the algebra to order the infinite number of roots. However, we spare more details of affine

Weyl groups and refer the reader to [72], for example. The feature of possessing an infinite

number of roots is characteristic of infinite dimensional Lie algebras, and is by definition

something that we shall continue to see in the next section for most of the Kac-Moody

algebras we encounter.

2.3 Kac-Moody algebras with Extended, Over-Extended

and Very-Extended Root and Weight Lattices

Kac-Moody algebras [20], are more general constructions of all gf and ga we have encoun-

tered so far, in that both the affine and finite Lie algebras are subclasses of Kac-Moody

algebras. To construct Kac-Moody algebras, we generalize the definition of the rank-r

Cartan matrix, K, and therefore also the associated Dynkin diagram. Identically to be-

fore, a rank-r Dynkin diagram is defined as an undirected graph with adjacency matrix

2δij −Kij for i, j ∈ {1, · · · , r}, where until stated otherwise we assume that Kii = 2 and

Ki ̸=j < 0.2

This starting point clearly differs greatly from that of section 2.1 and 2.2, as we may

now take any valid Dynkin diagram, along with K and the associated root system, as our

starting point and from here we can construct the Chevalley generators in a basis using the

simple roots of the algebra, such that they obey the Serre relations of equation (2.1) along

with [Fi, · · · , [Fi, Fj], · · · ] = 0 and [Ei, · · · , [Ei, Ej], · · · ] = 0. Any remaining generators

may be constructed through combinations of commutators in these Serre relations.

Although this process of finding generators can be done in theory, in practice it has

not been carried out for completely general Kac-Moody algebras, and has only been

undertaken for the finite and affine examples we have seen previously [71]. Due to the

inability to construct all the generators for a generalized Kac-Moody algebra, the structure

at the level of the Dynkin diagram and root lattice becomes increasingly important in

both classifying and further analysing the algebra. Hence, it is at the root lattice level we

shall try and best understand further extension of the Kac-Moody algebras we encounter.

2This is certainly not the case for all generalized Cartan matrices, and we will see cases within this
chapter and beyond where we have other. We hold this convention for this section as to illustrate the
connection to gf and ga.
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2.3.1 Hyperbolic Kac-Moody Algebras and Over-Extended Root

Lattices

Going beyond the affine extensions on the Dynkin diagram we saw in section 2.2, we may

continue to add additional nodes to the diagram. This process results in what is known

as the over-extended Lie algebras [24], where the affine extension is known as extended.

For example, taking the E
(0)
8 algebra and adding another node to the affine node results

in

E
(1)
8 : (2.13)

where the superscript denotes that this is an extended root system, and we can see that

the additional node has been attached to the long leg of the E
(0)
8 diagram on its affine node.

More generally, this single extension procedure on the affine algebras results in hyperbolic

Kac-Moody algebras, where the additional node is always attached to the node from the

affine extension. One way of defining the hyperbolic Kac-Moody algebras is through their

Dynkin diagrams, in that they are a connected diagram, where the deletion of any single

node leaves a set of connected Dynkin diagrams, such that each diagram is of gf , apart

from at most one which is a ga. The hyperbolics have been completely classified, with

there being an infinite amount of rank-2 hyperbolic, and 238 between ranks 3-10 [33, 34].

No hyperbolic Kac-Moody algebras exist with ranks greater than 10.

To construct the root lattice of an over-extended Kac-Moody algebra we largely follow

the conventions of [24, 65, 73], starting with the root lattice, Λf , corresponding to the

rank-r gf we are wanting to extend. We combine Λf with the 2-dimensional self-dual

Lorentzian lattice that we denote Π(1,1), with the inner product

z · w = −z+w− − z−w+, z, w ∈ Π(1,1), (2.14)

where z = (z+, z−) and w = (w+, w−). Other conventions for inner products have been

adopted to form over-extended Lorentzian root lattices [36, 74], but here we find the Π(1,1)

most natural to reach the larger extensions we shall see shortly for the construction of

very-extended and the n-extended algebras of the next section.

To help us construct the extended Kac-Moody algebras we define two primitive null

vectors k, k̄ ∈ Π(1,1) as k = (1, 0) and k̄ = (0,−1) with the property that

k · k = k̄ · k̄ = 0, k · k̄ = 1, (2.15)

and we will also use the combination ±(k+ k̄) to form two vectors of length 2. To obtain

the extended affine root lattice we again take θ from equation (2.12), and combine this

with k to define α0 = k − θ, giving

{α0, α1, · · · , αr} ∈ Λgf ⊕ Π(1,1). (2.16)
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Defining the extended affine root lattice as Λg0 := Λgf ⊕ Π(1,1), we may continue to add

an additional simple root, α−1 = −(k + k̄) to form

{α−1, α0, α1, · · · , αr} ∈ Λg−1 , (2.17)

where the over-extended root lattice, Λg−1 := Λgf ⊕ Π(1,1) has similar structure to Λg0

with the addition of one extra root, α−1.

This construction allows us to take any finite Lie algebra’s root lattice and extend

twice, transitioning the finite Lie algebra through to an affine Lie algebra after the first

extension, and resulting in a hyperbolic Kac-Moody algebra after the over-extension, like

we saw in the (2.13) hyperbolic example. In the next subsection and sections we will see

the results of continuing this process beyond the initial extensions through adding more

Π(1,1) lattices and null vectors, but first we introduce the main class of algebras studied

in this thesis, Lorentzian Kac-Moody algebras.

2.3.2 Lorentzian Kac-Moody Algebras and Very-Extended Root

Lattices

To define Lorentzian Kac-Moody algebras, we take note of the definition given in [24],

stating that Dynkin diagrams of Lorentzian type must be connected diagrams with at

least one node whose deletion gives a set of Dynkin diagrams, each being of a gf , with

at most one that is a ga. This definition is a superset of the hyperbolic algebras defined

above, distinct by the caveat that they only need one node to be deleted creating the

gf and one ga, whereas the hyperbolics must have this property for every node in their

Dynkin diagram.

Equivalently, on the level of their Cartan matrices, Lorentzian Kac-Moody algebras

have non-singular, non-degenerate and indefinite K such that exactly one eigenvalue is

negative - however, we must clarify that this is not a defining characteristic of Lorentzian

Kac-Moody algebras like the definition on the level of the Dynkin diagram. One would

find that hyperbolic Kac-Moody algebras also have a Lorentzian K, so we make this

distinction clear here to untangle any confusing language found in other parts of the

literature.

An example of a Lorentzian algebra with Lorentzian Dynkin diagram and Cartan

matrix as defined above is

E
(2)
8 : (2.18)

otherwise known as E11 in literature [18]. This Kac-Moody algebra may be formed through

an extension procedure resulting in a very-extended root lattice, analogous to the over-

extension that resulted in E
(1)
8 above. To achieve this very-extended root lattice we take

the over-extended lattice Λg−1 and compose an addition Π(1,1) to it, forming Λg−2 := Λg−1⊕
Π(1,1). Within the second Lorentzian lattice associated to Λg−2 we define the primitive
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vectors as l, l̄ ∈ Π(1,1), allowing us to form the very-extended simple root α−2 = k− (l+ l̄),

and we can see both from the E
(2)
8 example and the general form of α−2 that this extended

node attaches only to the previous extended node, so that we are beginning to build a

tail of extended nodes onto the original Dynkin diagram, extending from the affine node

corresponding to α0. The very-extended root lattice is thus

{α−2, α−1, α0, α1, · · · , αr} ∈ Λg−2 . (2.19)

The results for the extended affine, over-extended and very-extended simple root systems

and root lattices are summarized below:

algebra root lattice structure added root Dynkin diagram expl.

g0 ≡ ga Λg0 = Λgf ⊕ Π1,1 α0 = k − θ · · · ◦
αi

−•
α0

E
(0)
8

g−1 Λg−1 = Λgf ⊕ Π1,1 α−1 = −
(
k + k̄

)
· · · ◦

αi

− ◦
α0

− •
α−1

E
(1)
8 ≡ E10

g−2 Λg−2 = Λg−1 ⊕ Π1,1 α−2 = k −
(
ℓ+ ℓ̄

)
· · · ◦

αi

− ◦
α0

− ◦
α−1

− •
α−2

E
(2)
8 ≡ E11

Table 2.1: Extended, over-extended and very-extended Lie algebras, root lattices, extensions
and partial Dynkin diagrams. We identify g0 ≡ ga notationally as to link with the notation of
the affine extened root α0.

2.3.3 Fundamental Weights

The fundamental weights, λi of a Lie algebra with Cartan matrix as in equation (2.2) are

defined to be

2
λi · αj

αj · αj

= δij, (2.20)

where there is a λi for each simple root, αi in the algebra. λi will become useful to us

in future sections of this chapter when we examine the decomposition of Lorentzian Kac-

Moody algebras, so we begin to motivate them here. The fundamental weights associated

to all gf , which we denote as λf
i , and can be found for instance in [31]. So analogously

to our description of αi for the extended algebras, we focus on modifying λf
i for various

levels of extension. For over-extended and very-extended algebras, we have that

λo
i = λf

i + niλ
o
0, λo

0 = k̄ − k, λo
−1 = −k, (2.21)

λv
i = λf

i + niλ
v
0 λv

0 = k̄ − k +
ℓ+ ℓ̄

2
, λv

−1 = −k, λv
−2 = −ℓ+ ℓ̄

2
, (2.22)

respectively, with i = 1, . . . , r. Where we are using the Lorentzian inner product defined

in equation (2.14) such that these fundamental weights obey equation (2.20), giving

λo
i · αj = δij, i, j = −1, 0, 1, . . . , r, (2.23)

λv
i · αj = δij, i, j = −2,−1, 0, 1, . . . , r. (2.24)
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With αi ∈ Λg−1 for the former, and αi ∈ Λg−2 for the latter. We also find it useful to

define the Weyl vectors, ρ, building on that from [65] as the sum over all fundamental

weights

ρo =
r∑

j=−1

λj = ρf + hk̄ − (1 + h)k, (2.25)

ρv =
r∑

j=−2

λj = ρf + hk̄ − (1 + h)k − (1− h)
ℓ+ ℓ̄

2
, (2.26)

ρf is the Weyl vector for the finite Lie algebras we have extended from, and h denotes

the Coxeter number, which may be calculated for all gf as h = 1 +
∑r

i ni [31], where the

ni are the Kac labels introduced in (2.12).

2.4 n-extended Lorentzian Kac-Moody Algebras

After collecting the preliminaries in the previous section, we move on to the natural

question of what do root systems look like beyond very-extended extensions? It turns

out that we can continue this expansion pattern on the level of the Cartan matrix and

Dynkin diagram in a canonical way to define g−n as an n-extended Lorentzian Kac-Moody

algebra, a new class of Lorentzian Kac-Moody algebras that we studied in detail within

[25], which we shall closely follow for the remainder of this chapter. We form the root

lattice of g−n through n repeated additions of the Lorentzian self-dual lattice Π(1,1) to

form

Λg−n = Λg ⊕ Π
(1,1)
1 ⊕ . . .⊕ Π(1,1)

n . (2.27)

We generalize the k, k̄ and l, l̄ vectors from section 2.3, so that ki, k̄i ∈ Π
(1,1)
i . Like before,

the ki, k̄i null-vectors have the properties that ki · ki = k̄i · k̄i = 0, ki · k̄i = 1 such that we

can form the two vectors ±
(
ki + k̄i

)
of length 2 in each corresponding Π

(1,1)
i .

The simple root system of an n-extended Lorentzian Kac-Moody algebra extended

from a rank-r gf has a simple root system consisting of r simple roots from gf and n

extended roots α−i, i = 1, . . . , n

α(n) :=
{
α1, . . . , αr, α0 = k1 − θ, α−1 = −

(
k1 + k̄1

)
, . . . , α−j = kj−1 −

(
kj + k̄j

)}
(2.28)

for j = 2, . . . , n. Giving the n-extended algebra a total rank of r + n + 1, with the same

number of simple roots. The fundamental weights are calculated through the orthogonal-

ity relations with Lorentzian inner product in the n-extended sections

λ
(n)
i · α(n)

j = δij, i, j = −n, 0, 1, . . . , r. (2.29)

Rearranging the identity for simply laced algebras λ
(n)
i · λ(n)

i = K−1
ij we find that
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λ
(n)
i =

r∑
j=−n

K−1
ij α

(n)
j , (2.30)

allowing us to construct the n+ r+ 1 fundamental weights for the n-extended algebra as

λ
(n)
i = λf

i + niλ
(n)
0 , i = 1, . . . , r, (2.31)

λ
(n)
0 = k̄1 − k1 +

1

n

n∑
i=2

[
ki + (n+ 1− i)k̄i

]
, (2.32)

λ
(n)
−1 = −k1, (2.33)

λ
(n)
−2 = − 1

n

n∑
i=2

[
ki + (n+ 1− i)k̄i

]
, (2.34)

λ
(n)
−3 =

1

n
(n− 2)(k2 − k̄2)−

2

n

n∑
i=3

[
ki + (n+ 1− i)k̄i

]
, (2.35)

λ
(n)
−4 =

1

n
(n− 3)(k2 − k̄2 + k3 − 2k̄3)−

3

n

n∑
i=4

[
ki + (n+ 1− i)k̄i

]
, (2.36)

...

λ
(n)
−ℓ =

1

n
(n+ 1− ℓ)

ℓ−1∑
i=2

[
ki + (1− i)k̄i

]
+

(1− ℓ)

n

n∑
i=ℓ

[
ki + (n+ 1− i)k̄i

]
,

=
(1− ℓ)

n

n∑
i=2

[
ki + (1− i)k̄i

]
+

ℓ−1∑
i=2

[
ki + (1− i)k̄i

]
+ (1− ℓ)

n∑
i=ℓ

k̄i, (2.37)

all belonging to the n-extended weight lattice of the n-extended algebra g−n. Summing

up these weights we derive the Weyl vector for the n-extended system

ρ(n) =
r∑

j=−n

λj (2.38)

= ρf + hk̄1 − (1 + h)k1 +
n∑

i=2

[(
h

n
+

n+ 1− 2i

2

)
ki +

(n+ 1− i)(2h+ n(1− i))

2n
k̄i

]
.

Noting that the above reproduces equations (2.25) and (2.26) for n = 1 and n = 2,

respectively.

The general expression for ρ(n) allows us to construct a generalization of the Freudenthal-

de Vries strange formula by computing (ρ(n))2. For a semisimple finite Lie algebra gf with

rank r it is well known, [75, 32] and references within, to be

(
ρf
)2

=
h

12
dimg =

h(h+ 1)r

12
. (2.39)

Thus, using equation (2.38) we may directly calculate that, for n ≥ 1,

ρ(n) · ρ(n) = h(h+ 1)r + n(n2 − 1)

12
− h(h+ n)(1 + n)

n
, (2.40)
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for the n-extended algebras. Which agrees with that found for the n = 1 over-extended

case found in [24].

2.5 Principal SO(3) and SO(1, 2) Subalgebras

Unlike the hyperbolic Kac-Moody algebras that have been completely classified [33], the

Lorentzian Kac-Moody algebras can exist above rank-10 and are much greater in number.

As a result, attempts have been made to place the Lorentzians into subcategories through

finding properties unique to some Lorentzians but not others. One such property that

has been very useful for the finite and affine Kac-Moody algebras has been the study

of a principal SO(3)-subalgebra [76] within gf or ga, especially in relation to how those

algebras decompose into subalgebras, a feature that we will be particularly interested in for

our n-extended algebras in the proceeding sections in this chapter. The principal SO(3)-

subalgebra has also proven useful in the study of integrable systems based on gf and ga

[61, 77]. Therefore, for both of these reasons, we are motivated to better understand the

structure of SO(3) algebras within our g−n, and if a SO(3) does not exist, then we would

like to know if anything analogous does.

In relations to the generators of the Chevalley basis for gf or ga that obey the Serre

relations of equation (2.1), the Hi, Ei, Fi form the principal SO(3)-subalgebra generators

J3 =
r∑

i=1

DiHi, J+ =
r∑

i=1

niEi, J− =
r∑

i=1

niFi, , (2.41)

all quantities are as before, except Di, which we have defined to be

Di :=
r∑

j=1

K−1
ji , (2.42)

and we shall see that these constants will play an important role throughout this thesis.

The SO(3) generators in equation (2.41) satisfy

[J+, J−] = J3, [J3, J±] = ±J±. (2.43)

The Hermiticity properties E†
i = Fi, H

†
i = Hi are inherited by the generators J+ and J−

as J†
+ = J− when ni ∈ R. Importantly, the SO(3)-commutation relation [J+, J−] = J3

is satisfied when the Kac labels ni =
√
Di. However, we shall see shortly that this is

not always possible for Lorentzian Kac-Moody algebras, meaning one must expand the

definition of these principal subalgebras.

For Lorentzian Kac-Moody algebras, in searching for a three-dimensional principal

subalgebra analogous to SO(3), we find that instead we have a principal SO(1, 2)-subalgebra

[24, 73]. The generators of SO(1, 2) are
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Ĵ3 = −
r∑

i=1

D̂iHi, Ĵ+ =
r∑

i=1

piEi, Ĵ− =
r∑

i=1

qiFi, D̂i :=
r∑

j=1

K−1
ji , (2.44)

and obey

[
Ĵ+, Ĵ−

]
= −Ĵ3,

[
Ĵ3, Ĵ±

]
= ±Ĵ±. (2.45)

The generators in equation (2.44) are Hermitian when piqi = |pi|2 = −D̂i, meaning it is a

necessary and sufficient for the existence of a SO(3)-principal subalgebra or a SO(1, 2)-

principal subalgebra that Di > 0 or D̂i < 0 for all i, respectively.

For n-extended algebras g−n, we find an additional necessary condition such that g−n

possesses both a SO(3) and SO(1, 2) subalgebra, namely that

∃k ∈ S = {−n, . . . , 0, 1, . . . , r} where Dk =
r∑

j=−n

K−1
jk = 0 (2.46)

for at least one k ∈ S. We may then decompose the index set S as S̃ = S\{k} = S1 ∪S2,

such that Kij = 0 for all i ∈ S1, j ∈ S2 and Ki′k ̸= 0, Kj′k ̸= 0 for two specific i′ ∈ S1

and j′ ∈ S2. Thus removing the node k from the connected Dynkin diagram g−n will

decompose it into two connected diagrams such that two generators indexed by i ∈ S1

and j ∈ S2 will commute. Thus when Di > 0 for i ∈ S1 and Dj < 0 for j ∈ S2 we can

formulate two commuting principal subalgebras with generators {J3, J±} and {Ĵ3, Ĵ±}.
For instance, we have[

J3, Ĵ+

]
=
∑

i∈S1,j∈S2

Di

√
−D̂j [Hi, Ej] =

∑
i∈S1,j∈S2

Di

√
−D̂jKijEj = 0, (2.47)

and similarly for the other generators. This commuting structure extends to the SO(3)

and SO(1, 2) Casimir operators

C = J3J3 − J+J− − J−J+, and Ĉ = Ĵ3Ĵ3 − Ĵ+Ĵ− − Ĵ−Ĵ+, (2.48)

respectively. So that we have SO(3)⊕ SO(1, 2) with [C, Ĉ] = 0 .

From the identity λ
(n)
i · λ(n)

i = K−1
ij , which led us to our definition of the fundamental

weights in equation (2.30), we can see that the fundamental weights, λ
(1)
i , of hyperbolic

algebras g−1 all lie in the forwards lightcone in the weight space - in other words, any two

weight vectors will be timelike separated with respects to their hyperbolic inner product.

Just as λf
i belonging to gf can also all be found in this area of their lightcone. However,

the cases in which we have a decomposing index set, as detailed above, can be understood

through there existing one lightlike weight in weight space that separates the two sections

of weights corresponding to the principal SO(3)-subalgebras and those of the SO(1, 2)-

subalgebra.
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◆ Ar (Di < 0, ∀ i)

▲ Dr (Di < 0, ∀ i)

Figure 2.1: Maximum values of n for g−n with rank r to possess a SO(1,2)-principal subalgebra
from the necessary condition ρ2 < 0 versus the necessary and sufficient condition Di < 0, ∀i.

In cases in which there is not this separation by a light-like weight vector, the weight

vectors are not segregated and therefore do not form a principal SO(1, 2)-subalgebra,

which is the situation with most general Lorentzian Kac-Moody algebras. We, however,

concentrate on these decomposing exceptions for the remaining sections of this chapter.

To do this we compute the inner products of the generators in the adjoint representation,

as carried out for instance in [73], giving

(J3, J3) = ρ(n) · ρ(n) > 0, and (J±, J±) = ρ(n) · ρ(n) > 0, (2.49)

(Ĵ3, Ĵ3) = ρ(n) · ρ(n) < 0, and (Ĵ±, Ĵ±) = −ρ(n) · ρ(n) > 0. (2.50)

This allows us to use the signatures of ρ(n) · ρ(n) to give a necessary condition of the

existence of the principal subalgebras. Hence, using the generalised Freudenthal-de Vries

strange formula in equation (2.40), we may determine upper bounds, nmax, for g−n based

on semisimple gf of rank-r, to possess a principal SO(1, 2)-subalgebra in accordance with

the inequalities in (2.50). For the exceptional series of semisimple gf we calculate that

E6 : nmax = 23, E7 : nmax = 17, E8 : nmax = 14. (2.51)

For the Ar and Dr algebras, we present the results in figure 2.1 for different values of r.

From figure 2.1 we can see the upper limits for Ar and Dr such that no n-extended

algebras may possess a principal SO(1, 2)-subalgebra are at r ≥ 24. This has also been

shown for the over-extended, n = 1 case in [65]. At r < 24 it is possible for a SO(1, 2)-

subalgebra to exist, however cross-checking with ρ2 < 0 from equation (2.50) implies that

no such principal subalgebra exists for Ar with n > 12 or Dr with n > 16.3

3For the over and very extended cases our results differ mildly in one case from a typo in [24], where
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We note that the criteria in equation (2.50) acts as a guide in narrowing down the

possibilities of finding a g−n with a principal SO(1, 2)-subalgebra, however is only a nec-

essary, but not sufficient condition in finding such a subalgebra. In the next section, we

therefore directly solve for the D
(n)
i values, unique to a given g−n and its corresponding

K, so that we can classify the subalgebras, whenever they exist, according to equations

(2.42) and (2.44).

2.6 Expansion Coefficients of the Diagonal Principal

Subalgebra Generator

The general construction of the fundamental weights of g−n that we collected in equations

(2.42) and (2.44) allows us to calculate the D
(n)
i coefficients directly for any n-extended

Lorentzian algebra of our choosing. In this section, we focus on gf as simply laced,

meaning that all the corresponding simple roots of the finite algebra will be of length

2. In this scenario, the inverse Cartan takes the form λ
(n)
i · λ(n)

i = K−1
ij , and therefore

equation (2.42) is equivalent to

D
(n)
k =

r∑
j=−n

K−1
kj = ρ(n) · λ(n)

k , k = −n, . . . ,−1, 0, 1, . . . , r. (2.52)

Hence, we may calculate D
(n)
k through the Lorentzian inner product of the Weyl vectors

(2.38) with the weight vectors in (2.31) (2.37), or directly through the inverse of K. In

doing so, we hope to uncover classifications of g−n through their 3-dimensional principal

subalgebras, SO(3) and SO(1, 2), in a more explicit way than the analysis of (2.50)

allowed.

Using equation (2.52) we may derive a general formula for the expansion coefficients

of g−n

D
(n)
i = Df

i + niD
(n)
0 , and D

(n)
−j = (n− j + 1)

(
j − 1

2
− h

n

)
, i = 1, . . . , r; j = 0, . . . , n,

(2.53)

for the extended part of the extended semisimple gf . We have abbreviated Df
i := ρf · λf

i

from also using equation (2.52). For the over-extended and very-extended algebras the

expressions in (2.53) become

Do
−1 = −h, Do

0 = −(2h+ 1), Do
i = Df

i + niD
o
0, (2.54)

Dv
−2 =

1

2
(1− h), Dv

−1 = −h, Dv
0 = −3

2
(h+ 1), Dv

i = Df
i + niD

v
0 . (2.55)

For a given gf , the Weyl vectors ρf , Coxeter numbers h and Kac labels ni are algebra

specific and well known, see e.g [31]. We list them here for convenience and our reference

it was stated that also the over extended A
(1)
16 possess a SO(1, 2)-principal subalgebras.
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in table 2.2.

Kac labels ni exponents ei Coxeter number h

Ar 1, . . . , 1 1, 2, 3, . . . , r r + 1

Dr 1, 2, 2, . . . , 2, 1, 1 1, 3, 5, . . . , 2r − 5, 2r − 3, r − 1 2r − 2

E6 1, 2, 2, 3, 2, 1 1, 4, 5, 7, 8, 11 12

E7 2, 2, 3, 4, 3, 2, 1 1, 5, 7, 9, 11, 13, 17 18

E8 2, 3, 4, 6, 5, 4, 3, 2 1, 7, 11, 13, 17, 19, 23, 29 30

Table 2.2: Kac labels, exponents and Coxeter number for the simply laced Lie algebras.

For the above gf cases, the Weyl vectors are known in terms of the simple roots

Ar : ρf =
r∑

i=1

i

2
(r − i+ 1)αi , (2.56)

Dr : ρf =
r−2∑
i=1

[
ir − i(i+ 1)

2

]
αi +

r(r − 1)

4
(αr−1 + αr), (2.57)

E6 : ρf = (8α1 + 11α2 + 15α3 + 21α4 + 15α5 + 8α6, (2.58)

E7 : ρf =
1

2
(34α1 + 49α2 + 66α3 + 96α4 + 75α5 + 52α6 + 27α7), (2.59)

E8 : ρf = 46α1 + 68α2 + 91α3 + 135α4 + 110α5 + 84α6 + 57α7 + 29α8. (2.60)

This allows us to calculate each Df
i from direct application of equation (2.53), giving

Ar : Df
i =

i

2
(r − i+ 1), i = 1, . . . , r (2.61)

Dr : Df
r−1 = Df

r =
r(r − 1)

4
, Df

j = jr − j(j + 1)

2
, j = 1, . . . , r − 2

E6 : Df
1 = 8, Df

2 = 11, Df
3 = 15, Df

4 = 21, Df
5 = 15, Df

6 = 8,

E7 : Df
1 = 17, Df

2 =
49

2
, Df

3 = 33, Df
4 = 48, Df

5 =
75

2
, Df

6 = 26,

Df
7 =

27

2
,

E8 : Df
1 = 46, Df

2 = 68, Df
3 = 91, Df

4 = 135, Df
5 = 110, Df

6 = 84,

Df
7 = 57, Df

8 = 29.

Evidently all constants Df
i for all semisimple Lie algebras are positive, and hence a princi-

pal SO(3)-subalgebra may be obtained for each gf , as is obviously expected. Continuing,

for the over-extended algebras we therefore obtain
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A(1)
r : Do

−1 = −(r + 1), Do
0 = −(2r + 3), Do

i =
i

2
(r − i+ 1)− (2r + 3) (2.62)

D(1)
r : Do

−1 = 2− 2r, Do
0 = 3− 4r, Do

1 = 2− 3r, Do
j = (j − 8)r − j(j + 1)

2
+ 6, (2.63)

Do
r−1 = Do

r =
r(r + 1)

4
+ 3− 4r,

E
(1)
6 : Do

−1 = −12, Do
0 = −25, Do

1 = −17, Do
2 = −89, Do

3 = −110, Do
4 = −154, (2.64)

Do
5 = −185, Do

6 = −267,

E
(1)
7 : Do

−1 = −18, Do
0 = −37, Do

1 = −57, Do
2 = −99

2
, Do

3 = −78, Do
4 = −100, (2.65)

Do
5 = −147

2
, Do

6 = −48, Do
7 = −47

2
,

E
(1)
8 : Do

−1 = −30, Do
0 = −61, Do

1 = −15, Do
2 = −359, Do

3 = −580, Do
4 = −658, (2.66)

Do
5 = −927, Do

6 = −1075, Do
7 = −1346, Do

8 = −1740,

with i = 1, . . . , n, j = 2, . . . , n− 2, noting that we begin to see negative values for Do
i in

these extended sections of g−1. For the very-extended algebras, we similarly compute

A(2)
r : Dv

−2 = −r

2
, Dv

−1 = −(r + 1), Dv
0 = −3

2
(r + 2), (2.67)

Dv
i =

r

2
(i− 3) +

i

2
(1− i)− 3

D(2)
r : Dv

−2 =
3

2
− r, Dv

−1 = 2− 2r, Dv
0 =

3

2
− 3r, Dv

1 =
1

2
− 2r, (2.68)

Dv
j = (j − 6)r − j(j + 1)

2
+ 3, Dr−1 = Dr =

r(r + 1)

4
+

3

2
− 3r,

E
(2)
6 : Dv

−2 = −11

2
, Dv

−1 = −12, Dv
0 = −39

2
, Dv

1 = Dv
6 = −23

2
, Dv

2 = −28, (2.69)

Dv
3 = Dv

5 = −24, Dv
4 = −75

2
,

E
(2)
7 : Dv

−2 = −17

2
, Dv

−1 = −18, Dv
0 = −57

2
, Dv

1 = −40, Dv
2 = −65

2
, Dv

3 = −105

2
(2.70)

Dv
4 = −66, Dv

5 = −48, Dv
6 = −31, Dv

7 = −15,

E
(2)
8 : Dv

−2 = −29

2
, Dv

−1 = −30, Dv
0 = −93

2
, Dv

1 = −47, Dv
2 = −143

2
, (2.71)

Dv
3 = −95 Dv

4 = −144, Dv
5 = −245

2
x, Dv

6 = −102, Dv
7 = −165

2
, Dv

8 = −64.

with i = 1, . . . , n, j = 2, . . . , n− 2.

From these expressions we find directly the maximal value of n for g−n with rank-

r to possess a principal SO(1, 2)-subalgebra from the necessary and sufficient condition

Di < 0, ∀i. For the exceptional Lie algebras we obtain

E6 : nmax = 5, E7 : nmax = 6, E8 : nmax = 7. (2.72)
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For Ar and Dr the results are reported in figure 2.1. Comparing these exact values to

those resulting from the analysis of the necessary condition ρ2 < 0 shows consistency, but

also that the latter values are more restrictive. In the next section, we shall examine the

even rarer set of examples in which we may find both a principal SO(3) and SO(1, 2)-

subalgebra contained within an n-extended Lorentzian Kac-Moody algebra.

2.7 Direct Decomposition of n-Extended Lorentzian

Kac-Moody Algebras

As argued in section 2.5, when we find a g−n such that one of its constants D
(n)
i = 0,

there is the possibility that we may simultaneously find a principal SO(3) and SO(1, 2)-

subalgebra. This requires, however, that the D
(n)
i for i belonging to the two separate index

sets S1 and S2 are of definite sign. If no such separation of positive and negative index sets

exists then the algebra can not be decomposed further using the principal 3-dimensional

subalgebras.

To identify whether we have simultaneous decomposition into both principal SO(3)

and SO(1, 2)-subalgebras or not for a given g−n based on semisimple gf , we set our

solutions of equation (2.53) to zero and solve for values of n, i, j. We can see that the only

meaningful solutions occur when n, i ∈ N and i ≤ n, j ≤ n, as anything outside these

bounds clearly can not exist on a Dynkin diagram for g−n.

First looking at the extended sections of the Dynkin diagram, from equation (2.53)

we find that

D
(n)
−j = 0, for j = 1 +

2h

n
. (2.73)

Due to the condition that j ≤ n there are a finite number of solutions. We calculated all

the solutions for the A
(n)
r and D

(n)
r series to be

A(n)
r : D

(n)
i = 0 for (n, r, j) = (3, 2, 3), (4, 1, 2), (4, 3, 2), (4, 5, 4), (5, 4, 3), . . . (2.74)

D(n)
r : D

(n)
i = 0 for (n, r, j) = (4, 4, 4), (5, 6, 5), (6, 4, 3), (6, 7, 5), (7, 8, 5), . . . (2.75)

which we found using the Coxeter numbers we collected in table 2.2. For the g−n extended

from the exceptional simply-laced gf we have

E
(n)
6 = E

(j−1)
6 ⋄ L ⋄ An−j for (n, j) = (6, 5), (8, 4), (12, 3), (24, 2), (2.76)

E
(n)
7 = E

(j−1)
7 ⋄ L ⋄ An−j for (n, j) = (9, 5), (12, 4), (18, 3), (36, 2), (2.77)

E
(n)
8 = E

(j−1)
8 ⋄ L ⋄ An−j for (n, j) = (10, 7), (12, 6), (15, 5), (20, 4), (30, 3), (60, 2). (2.78)

We denote, L as the Lorentzian root corresponding to the node that needs to be deleted.

For the parts of the Dynkin diagrams corresponding to semisimple Lie algebras also
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the expressions for ρf need to be treated case-by-case. We find

A(n)
r : D

(n)
i = 0 for i =

r + 1

2
± 1

2

√
r2 − 6r − 4n− 11− 8(1 + r)

n
, (2.79)

D(n)
r : D

(n)
i = 0 for i =

r − 1

2
±
√

r2 − 9r − 2n+
25

4
+

8(1− r)

n
. (2.80)

For the over and very extended algebras the only solutions are

A(1)
r : r = 16, i = 7, 10; r = 18, i = 6, 13; r = 26, j = 5, 22, (2.81)

A(2)
r : r = 12, i = 6, 7; r = 13, i = 5, 9; r = 18, j = 4, 15, (2.82)

D(1)
r : r = 17, j = 13; r = 18, j = 12; r = 20, j = 11; r = 39, j = 9,

D(2)
r : r = 13, j = 10; r = 14, j = 9; r = 25, j = 7.

The exceptional E-series has no solutions on this section of the Dynkin diagram. The

remaining solutions are presented in tables 2.3 and 2.4 for the A and D series, respectively.

We note that not all of the results from tables 2.3 and 2.4 fall into the A
(n)
r and D

(n)
r

n-extended series, so we introduce the notation Â
(n,m)
r labelling an Ar-Dynkin diagram

with n roots successively attached to the m-th node in form of an An-algebra. The special

case of the n-extended symmetric Dynkin diagram with n roots attached to the middle

node of Ar we denote by Â
(n)
r .

Some of the Â
(n,m)
r -algebras are equivalent to the n-extended versions of the E-series.

We have Â
(n+2,3)
5 ≡ E

(n−2)
6 , Â

(1,4)
n ≡ E

(n−7)
7 and Â

(1,3)
n ≡ E

(n−8)
8 . We also have the symme-

tries Â
(n,m)
r = Â

(n,r+1−m)
r = Â

(r+1−m,m)
n+m = Â

(m−1,m)
r+n+1−m. In the resulting decomposition we

also encounter algebras that decompose further by possessing Lorentzian roots on their

extended legs of the corresponding Dynkin diagrams. We mark them in bold in tables

2.3 and 2.4. The precise way in which they decompose is reported in following sections

in tables 2.6 and 2.7.

A
(1)
16 = Â

(1)
13 ⋄ L2 ⋄ A2 A

(1)
18 = Â

(1)
11 ⋄ L2 ⋄ A6 A

(1)
19 = Â

(1)
11 ⋄ L2 ⋄ A16

A
(2)
12 = Â

(2)
11 ⋄ L2 A

(2)
13 = Â

(2)
9 ⋄ L2 ⋄ A3 A

(2)
18 = Â

(2)
7 ⋄ L2 ⋄ A10

A
(3)
12 = Â

(3)
11 ⋄ L A

(3)
14 = Â

(3)
7 ⋄ L2 ⋄ A6 A

(3)
38 = E

(1)
6 ⋄ L2 ⋄ A32

A
(4)
11 = Â

(4)
9 ⋄ L2 ⋄ A1 A

(4)
13 = Â

(4)
7 ⋄ L2 ⋄ A5 A

(4)
27 = E

(2)
6 ⋄ L2 ⋄ A21

A
(5)
24 = E

(3)
6 ⋄ L2 ⋄ A18 A

(6)
11 = Â

(6 )
9 ⋄ L2 ⋄ A1 A

(6)
23 = E

(4)
6 ⋄ L2 ⋄ A17

A
(7)
13 = Â

(7 )
7 ⋄ L2 ⋄ A5 A

(8)
11 = Â

(8 )
11 ⋄ L A

(8)
23 = E

(6 )
6 ⋄ L2 ⋄ A17

A
(10)
14 = Â

(10 )
7 ⋄ L2 ⋄ A6 A

(10)
24 = E

(8 )
6 ⋄ L2 ⋄ A18 A

(13)
12 = Â

(13 )
11 ⋄ L2

A
(14)
13 = Â

(14 )
9 ⋄ L2 ⋄ A3 A

(14)
27 = E

(12 )
6 ⋄ L2 ⋄ A21 A

(19)
18 = Â

(19 )
7 ⋄ L2 ⋄ A10

A
(26)
38 = E

(24 )
6 ⋄ L2 ⋄ A32 A

(34)
16 = Â

(34 )
13 ⋄ L2 ⋄ A2 A

(38)
18 = Â

(38 )
11 ⋄ L2 ⋄ A6

A
(54)
26 = Â

(54 )
9 ⋄ L2 ⋄ A16

Table 2.3: Decomposition of the n-extended algebras A
(n)
r .
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D
(1)
17 = E

(5)
8 ⋄ L ⋄D4 D

(1)
18 = E

(4)
8 ⋄ L ⋄D6 D

(1)
20 = E

(3)
8 ⋄ L ⋄D9

D
(1)
39 = E

(1)
8 ⋄ L ⋄D30 D

(2)
13 = E

(4)
7 ⋄ L ⋄ A3 D

(2)
14 = E

(3)
7 ⋄ L ⋄D5

D
(2)
25 = E

(1)
7 ⋄ L ⋄D18 D

(3)
13 = Â

(1,5)
10 ⋄ L ⋄D5 D

(3)
16 = Â

(1,5)
9 ⋄ L ⋄D9

D
(4)
11 = Â

(1,6)
13 ⋄ L2 D

(4)
12 = Â

(1,6)
11 ⋄ L ⋄D4 D

(4)
14 = Â

(1,6)
10 ⋄ L ⋄D7

D
(4)
21 = E

(2)
7 ⋄ L ⋄D15 D

(5)
11 = Â

(1,7)
13 ⋄ L ⋄ A(2)

1 D
(5)
81 = E

(1)
8 ⋄ L ⋄D76

D
(6)
13 = Â

(1,5)
12 ⋄ L ⋄D6 D

(6)
52 = E

(2)
8 ⋄ L ⋄D47 D

(7)
43 = E

(3)
8 ⋄ L ⋄D38

D
(8)
11 = Â

(1 ,7 )
16 ⋄ L ⋄ A(2)

1 D
(8)
13 = Â

(1 ,5 )
14 ⋄ L ⋄D6 D

(8)
17 = E

(6)
7 ⋄ L ⋄D11

D
(8)
39 = E

(4)
8 ⋄ L ⋄D34 D

(9)
37 = E

(5)
8 ⋄ L ⋄D32 D

(10)
11 = Â

(1 ,8 )
19 ⋄ L2

D
(10)
36 = E

(6)
8 ⋄ L ⋄D31 D

(11)
12 = Â

(1 ,6 )
18 ⋄ L ⋄D4 D

(13)
14 = Â

(1 ,5 )
19 ⋄ L ⋄D7

D
(14)
36 = E

(10 )
8 ⋄ L ⋄D31 D

(16)
13 = Â

(1 ,6 )
23 ⋄ L ⋄D5 D

(16)
37 = E

(12 )
8 ⋄ L ⋄D32

D
(19)
39 = E

(15 )
8 ⋄ L ⋄D34 D

(20)
16 = Â

(1 ,5 )
26 ⋄ L ⋄D9 D

(20)
21 = E

(18 )
7 ⋄ L ⋄D15

D
(24)
13 = Â

(1 ,8 )
33 ⋄ L ⋄ A3 D

(24)
43 = E

(20 )
8 ⋄ L ⋄D38 D

(26)
14 = Â

(1 ,7 )
34 ⋄ L ⋄D5

D
(34)
52 = E

(30 )
8 ⋄ L ⋄D47 D

(48)
25 = Â

(1 ,5 )
54 ⋄ L ⋄D18 D

(64)
17 = Â

(1 ,11 )
76 ⋄ L ⋄D4

D
(64)
81 = E

(60 )
8 ⋄ L ⋄D76 D

(68)
18 = Â

(1 ,10 )
79 ⋄ L ⋄D6 D

(76)
20 = Â

(1 ,9 )
86 ⋄ L ⋄D9

D
(152)
39 = Â

(1 ,7 )
160 ⋄ L ⋄D30

Table 2.4: Decomposition of the n-extended algebras D
(n)
r .

2.7.1 Reduced System Versus n-Extended Versions

We would now like to know how to express quantities of the full n-extended lattice such

as roots, weights, Weyl vectors and determinants of the Cartan matrix in terms of those

same quantities obtained from the reduced lattices and vice versa. We again follow here

largely the reasoning presented in [25, 24], however, with the key difference that the node

to be removed from the full n-extended Dynkin diagram is not identified as the one that

decomposes the system into finite and affine diagrams, but rather the node ℓ for which

D
(n)
ℓ = 0. The former node might in fact not even exist for the cases considered here.

Moreover, these two types of nodes are always different. Our construction applies to all

n-extended lattices.

Keeping consistency with previous sections, we denote roots and weights related to

the full n-extended lattice as αi and λi for i ∈ S = {−n, . . . , 0, 1, . . . , r}, respectively. We

denote roots and weights related to the reduced system as α̃i, λ̃i for i ∈ S̃ = S\{ℓ} = S1∪
S2. The root related to the node ℓ can then be expressed as

αℓ = x− ν, with ν := −
∑

i∈S̃
Kℓiλ̃i, (2.83)

where the vector x is defined by the orthogonality properties x · α̃i = x · ν = 0. Conse-

quently, we have Kℓℓ = α2
ℓ = 2 = ν2 + x2 and the fundamental weights can be expressed

as

λℓ =
x

x2
, λi = λ̃i +

(
ν · λ̃i

)
λℓ. (2.84)

We now sum up the fundamental weights to construct the Weyl vector then yields a
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relation between the Weyl vectors in the two respective systems

ρ =
∑

i∈S
λi = λℓ +

∑
i∈S̃

λi = ρ̃+ (1 + ν · ρ̃)λℓ. (2.85)

Next, to relate the determinants of the Cartan matrices for the two systems we employ

Cauchy’s expansion theorem for bordered matrices, see for example [78], we have

detK = Kℓℓ det K̃ −
∑

i,j∈S̃
Kℓi(adj K̃)ijKjℓ, (2.86)

where adj K̃ denotes the adjugate matrix of K̃, i.e. the transpose of its cofactor matrix.

Recalling that (adj K̃)ij = K̃−1
ij det K̃, K̃−1

ij = λi · λj and Kℓℓ = 2, relation (2.86) can be

re-expressed as

detK =
(
2− ν2

)
det K̃. (2.87)

To illustrate the working of this formula and at the same time to check our expressions

from above for consistency, we present explicitly two examples from the tables 2.3 and

2.4.

Example D
(1)
17 = E

(5)
8 ⋄ L ⋄ D4 : With ν = λD4

1 + λ
E

(5)
8

−5 ,
(
λD4
1

)2
= 1,

(
λ
E

(5)
8

−5

)2

= 4/5

we compute ν2 = 9/5. Furthermore we calculate the determinants detK
D

(1)
17

= −4,

detK
E

(5)
8

= −5, detKD4 = 4 and hence confirm formula (2.87).

Example D
(2)
25 = E

(1)
7 ⋄ L ⋄D18 : With ν = λD8

1 + λ
E

(1)
7

−1 ,
(
λD8
1

)2
= 1,

(
λ
E

(1)
7

−1

)2

= 0 we

compute ν2 = 1. We also calculate the determinants detK
D

(2)
25

= −8, detK
E

(1)
7

= −2,

detKD18 = 4 and hence confirming once more formula (2.87). We shall examine this

example, along with its Dynkin diagram, in greater detail in the following subsection.

2.7.2 Decomposition of the Very-Extended D25-Algebra aka k28

Continuing to examine the very-extended D
(2)
25 example above, we write down its Dynkin

diagram as:

•

❅
❅

α−2

•❅❅ α−1

•❅❅ α0

•α1

�
�

❅
❅ •

α2

•
α3

•
α4

•
α5

◦
α6

•
α7

•
α8

•
α9

•
α10

•
α11

•
α12

•
α13

•
α14

•
α15

•
α16

•
α17

•
α18

•
α19

•
α20

•
α21

•
α22

•��
❅
❅

α23

•α24

•
α25

D
(2)
25 -Dynkin diagram on the root lattice for D25 ⊕ Π1,1 ⊕ Π1,1
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Noting that the construction of this diagram, or equivalently the construction of the very-

extended Cartan matrix of a g−n could have been carried out with alternative methods.

We however, stick to the construction methods based on the αi we have detailed in

section 2.4 with the corresponding root space is constructed as indicated in (2.28), to

retain consistency within this chapter. However, as we shall see shortly, this is not the

most convenient representation

The D
(2)
25 algebra in this example belongs to a special class of hyperbolic Kac-Moody

algebras studied by Gaberdiel, Olive and West in [24]. It possesses at least one node that

when removed leaves a set of disconnected Dynkin diagrams of finite type, with at most

one being of affine type. We may check this definition by removing the hollow node in

the above Dynkin diagram corresponding to the root labelled by α6, we are left with a

disconnected diagram of which one corresponds to the finite dimensional D19-algebra and

the other to the affine E
(0)
7 -algebra.

Here, we are especially interested in the construction of the reduced Dynkin diagram

from the decomposition corresponding to E
(2)
7 ⋄ D18. To see this decomposition more

clearly, instead of the representation (2.28), we may also represent the roots as

β1 : = α8 + ℓ, βi := αi+7, i = 2, . . . , 18, (2.88)

γi : = αi, i = 1, . . . , 4, γ5 := α0, γ6 := α−1, γ7 := α−2, γ0 := α5 − k̄, (2.89)

γ−1 : = −(k + k̄)− ℓ, γ−2 := −(ℓ+ ℓ̄). (2.90)

Using the standard rules for the construction of Dynkin diagrams, we obtain the same

diagram as above:

•

❅
❅

γ7

•❅❅ γ6

•❅❅ γ5

•γ1
�

�

❅
❅ •

γ2
•
γ3
•
γ4
•
γ0
•
γ−1

•
γ−2

•
β1

•
β2

•
β3

•
β4

•
β5

•
β6

•
β7

•
β8

•
β9

•
β10

•
β11

•
β12

•
β13

•
β14

•
β15

•��
❅
❅

β16

•β17

•
β18

E
(2)
7 ⋄D18-Dynkin diagram on the root lattice for E

(0)
7 ⊕ Π1,1 ⊕ Π1,1 ⊕D18

This construction of the Dynkin diagram differs from the previous in that we have

not used the standard representation for the over-extended and very-extended roots, but

rather we have linked the very-extended root γ−2 of E
(2)
7 with a simple root β1 of the

semisimple Lie algebra D18. Deleting ℓ̄ now has the effect that the two links connecting

γ−2 are severed so that this algebra decomposes into E
(1)
7 ⊕ Π1,1 ⊕D18. Thus γ−2 = −ℓ

has becomes a separate disconnected root of zero length γ−2 · γ−2 = ℓ2 = 0. In addition,

we obtain two separate disconnected Dynkin diagrams for the over extended algebra E
(1)
7

and the semisimple Lie algebra D18:
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•γ7
•❅❅ γ6

•❅❅ γ5

•γ1
�

�

❅
❅ •

γ2
•
γ3
•
γ4
•
γ0
•
γ−1

•−ℓ •
β1

•
β2

•
β3

•
β4

•
β5

•
β6

•
β7

•
β8

•
β9

•
β10

•
β11

•
β12

•
β13

•
β14

•
β15

•��
❅
❅

β16

•β17

•
β18

Reduced Dynkin diagram illustrating the decomposition D
(2)
25 = E

(1)
7 ⋄ L ⋄D18

Clearly we have that the root αℓ = α7 for which Dℓ = 0 is different from the root

α6 that need to be chosen for the very extended root lattice to reduce to a ga and a gf

Kac-Moody algebra. However, a n-extended construction of simple roots may still be

found such that we may form the two decomposing algebras separately and extend and

combine them into the total algebra.

2.7.3 Double and Triple Decomposition

The previous section’s example illustrated in more detail how a choice of roots may be

found such that a given g−n that contains a Dℓ = 0 may decompose into two algebras

with one ℓ. However, as we have already seen in tables 2.3 and 2.4, it is also possible

for n-extended algebras to decompose at two or three nodes, say ℓ, ℓ′ and ℓ′′, for which

Dℓ = Dℓ′ = Dℓ′′ = 0. In this subsection, we give an illustrative example of decomposing

g−n from table 2.3 and another from table 2.4, both of which decompose on the semisimple

and extended parts of their associated Dynkin diagrams.

Example A
(10)
24 = E

(3)
6 ⋄ L ⋄ A4 ⋄ L2 ⋄ A18. The first example from table 2.3 gives the

triple decomposition:

E
(8)
6 ⋄ L2 ⋄ A18

↗ ↘
A

(10)
24 E

(3)
6 ⋄ L ⋄ A4 ⋄ L2 ⋄ A18

↘ ↗
A

(5)
24 ⋄ L ⋄ A4

which on the level of the Dynkin gives the following:
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✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

• •
α1 α2

•
α3

•
α4

•
α5

•
α6

•
α7

•
α8

•
α9

•
α10

•
α11

•
α12

•
α13

•
α14

•
α15

•
α16

•
α17

•
α18

•
α19

•
α20

•
α21

L •

•

•
•
•
•

α22α23α24

• •

•
•
•
•
•

E
(3)
6

•

A4

α0

α−1

α−2

α−3

α−4

α−5

α−6

α−7

α−8

α−9

α−10

Reduced Dynkin diagram of A
(10)
24 = E

(3)
6 ⋄ L ⋄ A4 ⋄ L2 ⋄ A18

Example D
(14)
36 = A3 ⋄ L ⋄ E(6)

6 ⋄ L ⋄D31. This example from table 2.4 decomposes as

D
(10)
36 ⋄ L ⋄ A3

↗ ↘
D

(14)
36 A3 ⋄ L ⋄ E(6)

6 ⋄ L ⋄D31

↘ ↗
E

(10)
8 ⋄ L ⋄D31

Further examples can be obtained from tables 2.3 and 2.4 for the algebras with bold

entries.

2.8 Roots, Weights, Weyl Vectors and Decomposi-

tion of the Â
(n,m)
r -Algebras

Until this point we have mainly covered g−n decomposition, but since the Â
(n,m)
r -algebras

occur naturally in the decomposition of the n-extended Lorentzian Kac-Moody algebras,

we shall now discuss them in more detail for completeness. The Dynkin diagrams asso-

ciated to Â
(n,m)
r are equivalent to those arising in the description of the so-called Tp,q,r-

singularities [79], with the identification Â
(r,p+1)
p+q+1 ≡ Tp,q,r.

We would like to understand the simple root structure, and hence the basis for the

underlying root lattice, of the Â
(n,m)
r -algebras, to put them in the context of the n-extended

constructions of section 2.4. To do so, we represent the simple Â
(n,m)
r -roots in terms of
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the r simple roots αi of the semisimple Lie algebra gf and the Lorentzian roots, with the

mth root modified similarly as the affine root for the n-extended algebras αm → αm + k1.

Thus the r + n simple Â
(n,m)
r -roots are represented as

α̂ =
{
α1, . . . , αm−1, αm + k1, αm+1, . . . , αr, α−1 = −k1 − k̄1, . . . , α−j = kj−1 − kj − k̄j

}
,

(2.91)

with j = 2, . . . , n. Using the orthogonality relation

λ
(n,m)
i · α̂j = δij, i, j = −n, . . . ,−1, 1, . . . , r, (2.92)

together with λ
(n,m)
i =

∑n+r
j=1 K̂

−1
ij α̂j, K̂

−1
ij = λ

(n,m)
i · λ(n,m)

i , we can construct the n + r

fundamental weights. We shall focus here on the case for which the extension is attached

onto the middle node Â
(n,ℓ+1)
r=2ℓ+1, so that m = h/2, and refer to them as Â

(n)
r . We find in

this case the fundamental weights

λ̂
(n)
i = λf

i +
2n

nh− 4(n+ 1)
min(i, h− i)

(
λ
(n)
0 − λf

h/2

)
, i = 1, . . . , r, (2.93)

λ̂
(n)
−j = λ

(n)
−j +

4(n− j + 1)

nh− 4(n+ 1)

(
λ
(n)
0 − λf

h/2

)
, j = 1, . . . , n, (2.94)

where λf
i are the fundamental weights of Ar and λ

(n)
0 , λ

(n)
−j are fundamental weights for

the n-extended Lorentzian Kac-Moody algebras as determined above in equations (2.32),

(2.37). The Weyl vector results therefore to

ρ̂(n) =
r∑

j=−n,j ̸=0

λ̂
(n)
i = ρ(n) − hλ

(n)
0 +

n(h2 + 4n+ 4)

2n(h− 4)− 8

(
λ
(n)
0 − λf

m

)
. (2.95)

Next we calculate the expansion coefficients of the three-dimensional principal subalgebras

as

D̂
(n)
i = ρ̂(n) · λ̂(n)

i =
n(4 + 4n+ h2)

16 + 4n(4− h)
min(i, h− i) +

i

2
(h− i), i = 1, . . . , r, (2.96)

D̂
(n)
−j = ρ̂(n) · λ̂(n)

−j =
(j − n− 1)[h2 + 4j(1 + n) + nh(1− j)]

2n(h− 4)− 8
, j = 1, . . . , n. (2.97)

As before, and for the same reasons as for the n-extended algebras, when the D̂
(n)
i = 0

for certain values of i the Â
(n,m)
r -algebra decomposes. Solving for the condition of D̂

(n)
i

vanishing, we find that

D̂
(n)
i = 0, for i =

n(4n+ 4 + h2)

2n(h− 4)− 8
, h− n(4n+ 4 + h2)

2n(h− 4)− 8
, (2.98)

D̂
(n)
−j = 0, for j =

h(h+ n)

n(h− 4)− 4
, (2.99)

Thus the only meaningful solutions, i.e. those for which i,∈ N, i ≤ r, to (2.98) give rise
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to the decompositions on the leg of the Dynkin diagram corresponding to the Ar-diagram

as listed in table 2.5 below.

Â
(2)
13 = Â

(2)
11 ⋄ L2 Â

(4)
13 = Â

(4)
9 ⋄ L2 ⋄ A2

1 Â
(6)
13 = Â

(6 )
9 ⋄ L2 ⋄ A2

1

Â
(13)
13 = Â

(13 )
11 ⋄ L2 Â

(2)
17 = Â

(2)
9 ⋄ L2 ⋄ A2

3 Â
(14)
17 = Â

(14 )
9 ⋄ L2 ⋄ A2

3

Â
(1)
19 = Â

(1)
13 ⋄ L2 ⋄ A2

2 Â
(4)
19 = Â

(4)
7 ⋄ L2 ⋄ A2

5 Â
(7)
19 = Â

(7 )
7 ⋄ L2 ⋄ A2

5

Â
(34)
19 = Â

(34 )
13 ⋄ L2 ⋄ A2

2 Â
(3)
21 = Â

(3)
7 ⋄ L2 ⋄ A2

6 Â
(10)
21 = Â

(10 )
7 ⋄ L2 ⋄ A2

6

Â
(1)
25 = Â

(1)
11 ⋄ L2 ⋄ A2

6 Â
(38)
25 = Â

(38 )
11 ⋄ L2 ⋄ A2

6 Â
(2)
29 = Â

(2)
7 ⋄ L2 ⋄ A2

10

Â
(19)
29 = Â

(19 )
7 ⋄ L2 ⋄ A2

10 Â
(6)
41 = E

(4)
6 ⋄ L2 ⋄ A2

17 Â
(8)
41 = E

(6 )
6 ⋄ L2 ⋄ A2

17

Â
(1)
43 = Â

(1)
9 ⋄ L2 ⋄ A2

16 Â
(5)
43 = E

(3)
6 ⋄ L2 ⋄ A2

18 Â
(54)
43 = Â

(54)
7 ⋄ L2 ⋄ A2

16

Â
(10)
43 = E

(8 )
6 ⋄ L2 ⋄ A2

18 Â
(4)
49 = E

(2)
6 ⋄ L2 ⋄ A2

21 Â
(14)
49 = E

(12 )
6 ⋄ L2 ⋄ A2

21

Â
(3)
71 = E

(1)
6 ⋄ L2 ⋄ A2

32 Â
(26)
71 = E

(24 )
6 ⋄ L2 ⋄ A2
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Table 2.5: Decomposition of the algebras A
(n)
r on the Ar-leg of the Dynkin diagram.

Whereas on the extended part of the Dynkin diagram we have j ∈ N, j ≤ n, and find

that the solutions to equation (2.98) as listed in table 2.6:

Â
(7)
7 = Â

(4)
7 ⋄ L ⋄ A2 Â

(10)
7 = Â

(3)
7 ⋄ L ⋄ A6 Â

(19)
7 = Â

(2)
7 ⋄ L ⋄ A16

Â
(6)
9 = Â

(4)
9 ⋄ L ⋄ A1 Â

(14)
9 = Â

(2)
9 ⋄ L ⋄ A11 Â

(54)
9 = Â

(1)
9 ⋄ L ⋄ A52

Â
(8)
11 = Â

(3)
11 ⋄ L ⋄ A3 Â

(13)
11 = Â

(2)
11 ⋄ L ⋄ A10 Â

(38)
11 = Â

(1)
11 ⋄ L ⋄ A36

Â
(6)
13 = Â

(4)
13 ⋄ L ⋄ A1 Â

(13)
13 = Â

(2)
13 ⋄ L ⋄ A10 Â

(34)
13 = Â

(1)
13 ⋄ L ⋄ A32

Â
(33)
15 = Â

(1)
15 ⋄ L ⋄ A31 Â

(14)
17 = Â

(2)
17 ⋄ L ⋄ A11 Â

(7)
19 = Â

(4)
19 ⋄ L ⋄ A2

Â
(34)
19 = Â

(4)
19 ⋄ L ⋄ A2 Â

(10)
21 = Â

(3)
21 ⋄ L ⋄ A6 Â

(38)
25 = Â

(1)
25 ⋄ L ⋄ A36

Â
(19)
29 = Â

(2)
29 ⋄ L ⋄ A16 Â

(13)
31 = Â

(3)
31 ⋄ L ⋄ A9 Â

(43)
31 = Â

(1)
31 ⋄ L ⋄ A41

Â
(8)
41 = Â

(6)
41 ⋄ L ⋄ A1 Â

(10)
43 = Â

(5)
43 ⋄ L ⋄ A4 Â

(54)
43 = Â

(1)
43 ⋄ L ⋄ A52

Â
(14)
49 = Â

(4)
49 ⋄ L ⋄ A9 Â

(26)
71 = Â

(3)
71 ⋄ L ⋄ A22 Â

(89)
79 = Â

(1)
79 ⋄ L ⋄ A87

Â
(13)
111 = Â

(9)
111 ⋄ L ⋄ A3 Â

(19)
127 = Â

(7)
127 ⋄ L ⋄ A11 Â

(49)
239 = Â

(5)
239 ⋄ L ⋄ A43

Table 2.6: Decomposition of the algebras A
(n)
r on the extended leg of the Dynkin diagram.

To conclude our study of the decomposition of Â
(n,m)
r -algebras, we present the algebras

in general. We choose to not give their description of simple roots, weights and Weyl

vectors as we did for g−n in section 2.4, as we will not require these quantities in this

thesis. We instead list the decompositions for the Â
(n,m)
r -algebras that appeared in table

2.4 for completeness of the description of the g−n decomposition description. These are

listed in table 2.7 below:

Â
(1,5)
14 = Â

(1,5)
12 ⋄ L ⋄ A1 Â

(1,7)
16 = Â

(1)
13 ⋄ L ⋄ A2 Â

(1,8)
19 = Â

(1,6)
13 ⋄ L ⋄ A5

Â
(1,6)
18 = Â

(1)
11 ⋄ L ⋄ A6 Â

(1,5)
19 = Â

(1,5)
10 ⋄ L ⋄ A8 Â

(1,6)
23 = Â

(1,5)
10 ⋄ L ⋄ A12

Â
(1,5)
26 = Â

(1)
9 ⋄ L ⋄ A16 Â

(1,8)
33 = E

(4)
7 ⋄ L ⋄ A21 Â

(1,7)
34 = E

(3)
7 ⋄ L ⋄ A23

Â
(1,5)
54 = E

(1)
7 ⋄ L ⋄ A45 Â

(1,11)
76 = E

(5)
8 ⋄ L ⋄ A62 Â

(1,10)
79 = E

(4)
8 ⋄ L ⋄ A66

Â
(1,9)
86 = E

(3)
8 ⋄ L ⋄ A74 Â

(1,7)
160 = E

(2)
8 ⋄ L ⋄ A150
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Table 2.7: Decomposition of the algebras Â
(n,m)
r that occur in table 2.4.

Any remaining Â
(n,m)
r -algebras that appear in table 2.4 and are not reported in table

2.7 do not decompose. Analogously to the examples discussed in the previous section, we

may also find double decompositions for the Â
(n,m)
r -algebras. We give one example below:

Example D
(26)
14 = A23 ⋄ L ⋄ E(3)

7 ⋄ L ⋄D5

Â
(1,7)
34 ⋄ L ⋄D5

↗ ↘
D

(26)
14 A23 ⋄ L ⋄ E(3)

7 ⋄ L ⋄D5

↘ ↗
D

(2)
14 ⋄ L ⋄ A23

as seen from table 2.4, 2.7 and (2.75).

2.9 Summary

In this chapter we defined a new class of Kac-Moody algebras referred to as the n-extended

Lorentzian algebras, g−n, and investigated their structural properties. To define g−n, we

began through the motivation of finite Kac-Moody algebra, gf and studied their key

properties before extending them in a canonical way to an affine Kac-Moody algebra, ga.

This extension procedure was continued after arriving at ga and generalized beyond the

previously studied over-extended, g−1 and very-extended g−2 algebras [24], leading us to

a new definition consistent for g−n.

For the corresponding Dynkin diagrams of g−n we constructed the root and weight

lattices, and provided general equations for all the n-extended simple roots, α
(n)
i and

fundamental weights λ
(n)
i . From λ

(n)
i we constructed g−n’s Weyl vector, ρ(n), for all values

of n, and from ρ(n)·ρ(n) we found a generalized Freudenthal-de Vries strange formula, which

led us to a necessary condition for g−n to possess a principal SO(1, 2)-subalgebra. From

the inner products of the Weyl vector ρ(n) and the fundamental weights, λ
(n)
i we compute

the expansion coefficients D
(n)
i for the J3-generator of the principal SO(1, 2) or SO(3)

subalgebra. Certain properties of these SO(3) and SO(1, 2)-subalgebras will be revisited

in the following chapter, when we will be concerned with their Casimir eigenvalues in

relation to the exponents of the g−n and other Lorentzian Kac-Moody algebras that we

come across.

When the D
(n)
i constants of the J3-generator vanish, we found that g−n decomposed

into reduced Dynkin diagrams. For the reduced diagrams we analysed in detail whether

Di > 0 or D̂i < 0 for all i, which constitutes a necessary and sufficient condition for the

existence of a principal SO(3)-subalgebra or a principal SO(1, 2)-subalgebra, respectively.
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We derived explicit formulae to find relevant quantities related to the decomposition of

g−n on both the side of the reduced components, and on the side of g−n itself. Complete

lists are provided for all decompositions of n-extended Lorentzian Kac-Moody algebras

g−n and have been verified through explicit calculation to high n. A similarly detailed

analysis is presented for the A
(n)
r -algebras, but for Â

(n,m)
r ̸= A

(n)
r we only report the

decomposition for the cases appearing in the decomposition of g−n.

In addition to the role we discussed of g−n in string theory, these n-extended algebras

and similar extended constructions utilizing the Lorentzian Π(1,1) lattice are also relevant

within the context of classical and quantum integrable systems. Many of these integrable

systems, such as the Toda field theories, or the Calogero-Moser-Sutherland systems can be

described using the root systems and hence starting from the Dynkin diagrams considered

in this chapter. Toda field theories based on g−n and other systems with Lorentzian Π(1,1)

lattices will be considered in the following chapter.
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Chapter 3

Lorentzian Toda Field Theories

Many versions of Toda field theories have been studied since the initial discovery of the

discrete theory non-linear lattice in the 1975 [42]. For instance, continuous Toda field

theories can be constructed as integrable conformal field theories, as we shall see in section

3.1.2 of this chapter. The conformal Toda field theories are based on the finite Kac-Moody

algebras, gf we introduced in chapter 2, with fields associated to the simple roots of gf .

These theories may be extended to non-conformal, massive-theories by expanding their

potential about a vector which turns out to be precisely that needed to extend gf to the

affine algebra ga - such theories are known as affine Toda field theories accordingly. The

Toda theories based on ga may be extended again by the introduction of two extra fields,

again introducing conformal behaviour to the so-called conformal affine Toda theories

[80, 81].

We find that this expansion procedure can be continued through following roughly

the n-extension procedure described in the previous chapter, allowing us to construct

Lorentzian Toda field theories based around g−n algebras [51]. Analogously to the be-

haviour observed from finite, affine and conformal affine Toad theories, we note that the

Lorentzian theories we discover also follow the pattern of oscillating between conformal

and massive theories as we add subsequent fields that perturb the potential of these the-

ories in a well-defined and systematic manner. Unlike the theories bases on gf alone, and

the affine and conformal affine theories perturbed from gf , we find that the theories based

on Lorentzian g−n are non-integrable, as confirmed through conducting the Painlevé test.

Even though these theories are found to be non-integrable, we shall see that they

still possess interesting properties conserved from the integrable theories which they are

perturbed from. For example, the perturbed E8 theory that results in what we will

denote as the
(
E̊8

)
−2n

-Toda field theories, have an almost stable noncrystallographic H4

compound, meaning that the first four masses are almost identical in all such theories,

include the integrable affine
(
E̊8

)
0
theory that we shall study in its own right. Before

presenting these results, we shall now motivate discrete and continuous classical Toda

theories, building upon these classical results to discover Lorentzian Toda field theories,

uncover the status of their integrability, and finally examine their mass ratios.
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3.1 Toda Field Theories

Toda field theories are some of the best understood field theories in mathematical physics.

The integrability of their classical field theory on a discrete lattice has been known for

some time [42], and has encouraged much subsequent research into the continuous Toda

field theories that this section will mainly focus on. However, before moving onto the

continuous classical versions of the theory we will briefly look at the discretized versions

to give context to where many of the techniques used throughout the studies of Toda field

theories originated from.

3.1.1 Lattice Toda Field Theory

For the description in this subsection, we mainly follow the conventions in [60], writing

the Hamiltonians of Toda field theories for N particles on a lattice as

H(p, q) =
N∑
j=1

(p2j
2

+ eqj−qj+1
)
, (3.1)

along with the lattice boundary condition that qN+1 = q1. H and the boundary condition

are in terms of the coordinates and conjugate momenta (qj, pj). To illustrate the integra-

bility of this model, and also to aid with our discussion of the Painlevé test later in this

chapter in section 3.6, we note that it is possible to write (qj, pj) as terms of the variables

aj, bj as

aj =
1

2
e

1
2
(qj−qj+1), bj =

1

2
pj, (3.2)

for j ∈ {1, · · · , N}. Allowing us to write the equations of motion for the Toda lattice as

∂taj = aj(bj − bj+1), ∂tbj = 2(a2j−1 − a2j). (3.3)

This construction allows us to directly write down the Lax pair of the system

L =



b1 a1 . . . aN

a1 b2
...

. . .

bN−1 aN−1

aN aN−1 bN


, A =



0 −a1 . . . aN

a1 0
...

. . .

0 −aN−1

−aN aN−1 0


, (3.4)

satisfying

∂tL = [A,L] = AL− LA. (3.5)

Where ∂tL
k = [A,Lk] for all k ∈ Z, meaning that (3.5) implies Tr(Lk) and may be found

as its first integrals, which can be shown to be independent and in involution. Hence,

showing that this discrete Toda theory is integrable. From this point, many more solutions
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and behaviours of Lattice Toda can be found [82], that we shall not go into here.

More details of the integrability from Lax pairs can be found in [83]. In the next

subsection we examine the continuos Toda theory, which we shall also find to be integrable.

However, for continuous Toda we shall see that the integrability comes from the continuous

conformal symmetry that the theory admits.

3.1.2 Conformal Toda Field Theory

As we saw in the introduction and rewrite here for reference, the classical Lagrangian of

continuous Toda field theories may be taken to be

L =
1

2
∂µϕ · ∂µϕ− g

β2

r∑
i=1

eβαi·ϕ, (3.6)

where we have r bosonic fields ϕa with a ∈ {1, · · · , r} that match up to the r simple

roots of a rank-r finite Kac-Moody algebra, gf , see section 2.1, and where g and β are

constants. For this reason, we shall sometimes denote (3.6) as Lgf . The equations of

motion from equation (3.6) are found to be

∂µ∂
µϕa +

g

β

r∑
i=1

αa
i e

βαi·ϕ = 0 (3.7)

through using the Euler-Lagrange equation, ∂µ
∂L

∂(∂µϕa)
= ∂L

∂ϕa , again with a ∈ {1, · · · , r}.1

We also shall write ∂µ∂
µ := ∂2 in the discourse below.

Other properties of this and related Lagrangians will be examined throughout this

chapter, but for now we would like to concentrate on the conformal properties. To do

so we follow the reasoning of [48], in our notation for the equations of motion in (3.7),

noting that each field ϕi are invariant under the transformation

ϕi → ϕi +
1

β
λi ln f

+f−, (3.8)

where f± are written as arbitrary functions of ϕi and λi, as we saw in chapter 2, are the

fundamental weights of the algebra with identity λi · αj = δij relative to the simple roots

of gf . This gives

δfϕi = fµ∂µϕi
1

β
λi∂µf

µ, (3.9)

for an infinitesimal transform of the type in equation (3.8). We may then find the Noether

current to be expressed in terms of the conformally improved energy-momentum tensor

Jµ
f = Θµνfν . (3.10)

1We shall rewrite the form of this Lagrangian later in this chapter. Also, see chapter 4 and equation
(4.11) for alternate forms and uses of this Lagrangian.
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A necessary condition for this theory to be valid and conformal would be to see that

Θµν is conserved and traceless. Expressing Θµν in terms of the non-conformally improved

energy-momentum tensor, Tµν we find that

T µν =
∑
i

∂µϕi∂νϕi − gµνL

Θµν = T µν −
∑
i

γi(∂µ∂ν − gµν∂
2)ϕi,

(3.11)

where γi are arbitrary constants. A direct calculation shows that

∂µTµν = ∂µΘµν = 0, (3.12)

as expected. We may choose γi = 2
β
λi, leaving the trace of the conformally improved

energy-momentum tensor as

Θµ
µ =

∑
i

(2g
β2

eβαi·ϕ + γi∂
2ϕi

)
= 0, (3.13)

where the last equality can be seen by substituting in equation (3.7), and hence illustrating

the conformal invariance of the classical Toda field theory described by equation (3.6)

based on a finite Kac-Moody algebra gf . A similar calculation may be undertaken to

show the conformal invariance of a quantum Toda field theory based on gf , however as

our focus shall be on the classical theories for the remainder of this chapter we only refer

the interested reader to [48] for a continuation of this discussion.

The above calculations will become useful in analysing the behaviour of the Lorentzian

Toda field theories that we uncover in section 3.5 and beyond. There we shall see conformal

behaviour at certain levels of perturbation in Lorentzian Toda field theories. However, at

other levels of perturbation in Lorentzian Toda’s we do not see conformal behaviour, and

we in fact will find these theories to be massive - this is similar to the behaviour that we

shall see in the following subsection on Affine Toda field theories.

3.2 Affine Toda Field Theories

Just as we saw a natural connection of finite Kac-Moody algebras, gf to affine Kac-Moody

algebras ga in chapter 2, here we find there is a direct connection of conformal Toda field

theories based on gf to another Toda field theory based on the ga extended from gf .

For this reason, such theories are named affine Toda field theories. The most striking

difference between gf and ga classical Toda theories is that the conformal invariance we

found in the previous subsection vanishes, and as we shall see in the proceeding subsection,

the theory becomes massive. We discuss the perturbation of finite to affine theories here in

detail, as the results will become increasingly important through analogy to the Lorentzian
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Toda theories we introduce in section 3.5 and beyond.

3.2.1 Conformal to Affine Toda Field Theory

Starting from the Lagrangian (3.6)2, associated to rank-r gf with simple roots αi, we also

have r associated real scalar fields Φi for i ∈ {1, · · · , r}. We may rewrite our conformal

equations of motion from equation (3.7) through using the connection of αi to their Cartan

matrix, K as αi · αj = Kij, and identify Φi = αi · ϕ, resulting in

∂µ∂
µΦj +

g

β

r∑
i=1

Kjie
βΦi = 0 (3.14)

after acting on both sides of (3.7) with αj from the left. As Kij will always be invertible

for any gf we choose, we can see that the minimum of the potential of Lgf occurs as

eβΦi → ∞ for each αi and hence Φi. This is in line with the conformal behaviour we

proved in equation (3.13) for Lgf . For completeness, we note that from equation (3.8) we

learnt we may apply a conformal transformation to the fields which was invariant on the

equations of motion, using this shift in the fields with f+f− = ln 2
αi

connects equation

(3.14) to (3.7) for simply laced algebras.

We would now like to perturb the conformal theory, Lgf , with the aim of moving the

eβΦi → ∞ behaviour of the potential to a location of finite value. Following [84], this is

achieved through choosing the shift in the perturbed potential to be

δV (ϕ) =
ϵg

β2
eβα0·ϕ, (3.15)

where the perturbation parameter, ϵ, taken in the limit ϵ → 0, and where α0 is the affine

root that we obtained from extending the Dynkin diagram of gf via the definition of the

highest root in equation (2.12). Naming the new minimum of the potential ϕ(0), we have

r∑
i=1

αie
βαi·ϕ(0)

= −εα0e
βα0·ϕ(0)

. (3.16)

at the minimum of the perturbed potential, where we find the new potential Vg0 through

the equations ∂Vg0/∂ϕ
a|ϕ(0) = 0, a = 1, . . . , r. Again using λi · αj = δij and acting on

(3.16) from the left with λj we find

eβαi·ϕ(0)

= −ελi · α0e
βα0·ϕ(0)

, i ∈ {1, . . . , r}. (3.17)

Using this identity, we expand Vg0 around the minima of the vacuum at ϕ(0) with ϕ̃,

resulting in

2The Lagrangian may take other forms, see [80], but the one we use here is most concise for our
framework of simple roots that we developed in chapter 2.
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Vg0(ϕ
(0) + ϕ̃) = ε

g

β2
eβα0·ϕ(0)

[
eβα0·ϕ̃ −

r∑
i=1

λi · α0e
βαi·ϕ̃

]
(3.18)

and through making the identification that m2 = εgeβα0·ϕ(0)
, n0 = 1 and ni for i ∈ {1, , r}

the Kac labels of gf , we find

Vg0(ϕ
(0) + ϕ̃) =

m2

β2

r∑
i=0

nie
βαi·ϕ̃. (3.19)

For this perturbed theory, we write the Lagrangian as

Lga =
1

2
∂µϕ · ∂µϕ− g

β2

r∑
i=0

eβαi·ϕ. (3.20)

Using equation (3.19), the expansion of potential for Lga is

Vga =
m

β2

r∑
i=1

ni +
m2

2

r∑
i=1

niα
a
iα

b
iϕ

aϕb +
βm2

6

r∑
i=1

niα
a
iα

b
iα

c
iϕ

aϕbϕc + · · · (3.21)

From this potential, we may read off the mass matrix, (M2)ab from the squared powers

of ϕ as

(M2)ab = m2

r∑
i=1

niα
a
iα

b
iϕ

aϕb, (3.22)

three point and higher couplings clearly may also be read off from Vga .

A particularly interesting result was proven in [61] regarding the relation of this mass

spectrum and couplings to a certain eigenvector, known as the Perron-Frobenius vector,

of the Cartan matrix, K. This result was particularly interesting as it explained the fact

that the mass ratios of the theory are independent of the symmetry breaking and are even

preserved in the quantum theory for both the continuous [84, 54], and the discrete theory

[85]. A result which we expand upon and apply to hyperbolic and Lorentzian algebras in

Appendix A.

This perturbation procedure has taken us from a conformal field theory to a massive

one, and importantly for the Lgf → Lga , we do not lose integrability. The integrability

of Lga is seen most strikingly through the ability to write down exact S-matrices of the

theory, such an exposition is given in detail for all ga within [84, 55].

In the following section, we shall see that Lga may be modified again to regain the

conformal symmetry through adding certain extra fields to the theory. This analogy of

going from conformal to massive, to conformal theory through the subsequent addition

of extra fields will be a theme of this chapter, and will motivate the behaviour we see for

Lorentzian Toda field theories later.
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3.3 Conformal Affine Toda Field Theories

Modifying the Lagrangian of conformal affine Toda theory from the form used in [80, 81]

to align with our notational conventions in this chapter, gives us

Lgca = ∂+Φ∂−Φ +
g

β

r∑
i=0

eβαi·Φ (3.23)

which resembles that of Lga based on ga, in (3.20), with the use of lightcone coordinates

that we shall name (u, v) to distinguish from the spacetime coordinates (x, t), where

u± = u± v and ∂± = 1
2
(∂u ± ∂v). However, this equation differs from Lga as we take the

theories fields, Φ as

Φ = ϕH + ζC + ηT3 (3.24)

where the two fields η and ζ are added in addition to the r + 1 ϕ fields from the Lga

theory. H,C,D are the generator of the affine Cartan subalgebra of ga, and T3 = H+hD

for simply laced algebras [71]. To see the integrability of Lgca we may write down the

zero-curvature condition for the associated linear system as

∂+A− − ∂+A− + [A+, A−] = 0, (3.25)

with

A+ = ∂+Φ + eadΦε+, A− = −∂−Φ + e−adΦε−

ε+ =
r∑

i=0

Eαi
, ε− =

r∑
i=0

Fαi
,

(3.26)

where Eαi
, Fαi

are the raising and lowering step operators for ga, respectively. The ability

to find this zero-curvature condition in equation (3.25) illustrates the integrability of

conformal affine Toda field theory, with more details and derivation of these calculations

available within [49, 50].

To better understand the conformal invariance of Lgca , following [86] and references

within, we rewrite equation (3.23) in component form as

Lgca =
β̂2

2

(
∂µϕ · ∂µϕ+ ∂µϕ · ∂µη + h∂µη · ∂µζ

)
−

r∑
i=0

ĝie
βϕi+η (3.27)

where h is the Coxeter number of ga introduced in section 2.3.3, and the coupling constants

ĝi and β̂ are distinct to the coupling constants in Lga and equation (3.23). We have also

absorbed in the identification used in the previous section that Φi = αi · ϕ associated to

the affine Cartan matrix Kij =
2αi·αj

α2
i

of ga. The corresponding equations of motion may
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be written as

∂+∂−ϕ =
1

β̂
(

r∑
i=0

ĝiα
a
i e

ˆβϕi)eβ̂η i ∈ {0, · · · , r}, (3.28)

∂+∂−η = 0, (3.29)

∂+∂−ζ =
ĝ0

β̂
e−

ˆβϕieβ̂η, (3.30)

where we have assumed that (α0)
2 = 2 when calculating ∂µ

∂Lgca

∂(∂µϕa)
= ∂L

∂ϕa . These equations

of motion are invariant under the conformal transformations

e−ϕa(u,v) → e−ϕ̃a(ũ,ṽ) = e−ϕa(u,v) (3.31)

e−ζ(u,v) → e−ζ̃(ũ,ṽ) =

(
df1
du

)x∈R(
df2
dv

)x∈R

e−ζ(u,v) (3.32)

e−η(u,v) → e−η̃(ũ,ṽ) =

(
df1
du

) 1

β̂
(
df2
dv

) 1

β̂

e−η(u,v) (3.33)

for f1, f2 analytic functions, showing that eϕ transform as scalars, and for x = 0 eζ

transforms in the same manner. The equations of motion, along with the potential of

Lgca are also invariant under the field transformation

ϕ → ϕ+ χρ, η → η − χ, ζ → ζ + cχ, (3.34)

for a transform by the arbitrary function χ, with ∂+∂−χ = 0, c an arbitrary constant,

and ρ is the Weyl vector, as defined in section 2.3.3. To confirm that Lgca is indeed

a conformal theory we first calculate the non-conformally improved energy-momentum

tensor for simply laced algebras with normalized root systems of α2
i = 2 as

Θµν =
β̂2

2

r∑
i,j=0

2

α2
i

Kij

[
∂µϕi∂νϕj −

1

2
gµν∂µϕi∂

µϕj

]

+
β̂2

2

r∑
i=0

2

α2
i

[∂µϕi∂νη + ∂νϕi∂µη − gµν∂µϕi∂
µη]

+ β̂2h

2
[∂µη∂νζ + ∂νη∂µζ − gµν∂µη∂

µζ]

+ gµν

r∑
i=0

ĝie
βϕi+η

(3.35)

allowing us to write the full conformally improved energy-momentum tensor of [49, 86]

for our cases as

ΘCAT
µν = Θµν − β̂

(
∂µ∂ν − gµν∂

2
)( r∑

i=0

ϕi + hζ

)
, (3.36)

which has a vanishing trace, and hence is the energy-momentum tensor of a conformal

theory.
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Lgca is thus a conformal theory that is also an integrable theory. It was obtained from

the massive, non-conformal, affine Lga theory through the addition of two extra fields η

and ζ. Recalling the previous sections, Lga was in turn obtained from the extension of

another conformal theory with one less field, Lgf , based on a finite Kac-Moody algebra gf .

We have therefore seen the pattern that the extensions procedures of Kac-Moody algebras,

and the inclusion of additional fields in terms of the associated Toda field theories, allowed

us to alternate between conformal and massive models. This can be summarized by the

schematic below for the Lagrangians of the Toda field theories:

CFT

Lgf

ϕ0−→
Massive

Lga

η,ζ−→
CFT

Lgca

We shall see a continuation of this pattern when we extend the base algebra of the Toda

field theory past ga. This will be achieved through use of the n-extended Lorentzian Kac-

Moody algebra construction of chapter 2 to construct new field theories, which we name

Lorentzian Toda field theories, through carefully chosen perturbations from additional

fields associated to simple roots of those extended algebras. Before seeing this, in the

next section we shall briefly go over a more compact form for our simple roots in terms

of matrices, allowing us to construct the Lorentzian Toda field theories in a more concise

notation.

3.4 Lorentzian Matrix Products

In this section, before constructing our Lorentzian Toda field theories we rewrite the n-

extended root formation of section 2.4 in terms of matrices to aid within the formulation

of Lagrangians, energy-momentum tensors and the integrable status of these theories later

in this chapter. Using the Lorentzian inner product from equation (2.14) for a 1-extended

root lattice for a g−1 in accordance with equation (2.27), in component form we have

x · y :=
ℓ∑

β=1

xβyβ −
m∑

β=1

(xℓ+2β−1yℓ+2β + xℓ+2βyℓ+2β−1) . (3.37)

for vectors x = (x1, . . . , xℓ+2m) and y = (y1, . . . , yℓ+2m). Then this inner-product definition

can be extended naturally to matrix multiplication for a general N × (ℓ+ 2m)-matrix A

and another, (ℓ+ 2m)×N -matrix B, as

(AB)ij :=
ℓ∑

β=1

AiβBβj −
m∑

β=1

[
Ai(ℓ+2β−1)B(ℓ+2β)j + Ai(ℓ+2β)B(ℓ+2β−1)j

]
, i, j = 1, . . . , N.

(3.38)

Illustrating the 1-extended further, we take N = r+n+1 to define a (r+n+1)×(ℓ+ 2m)-

matrix M with rows comprised of r+n+1 root vectors αi = (α1
i , . . . , α

ℓ+2m

i )T of dimension
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ℓ+2m, i.e. Miβ := αβ
i . The inverse of such a matrix, Miβ may be found when r+n+1 ≤

ℓ + 2m, such that a right inverse can be constructed. To construct this right inverse we

utilize the fundamental weights, λi, of section 2.3.3 and define the matrix Λ to be composed

of λβ
i running along the columns of Λ for β ∈ {1, · · · , ℓ + 2m} being the components of

each λi. Hence, for the components of Λ we have Λβi := λβ
i . Or more precisely, with

Miβ := αβ
i , Λβi := λβ

i , i = 1, . . . , r + n+ 1; β = 1, . . . , ℓ, (3.39)

we obtain

(MΛ)ij = αi · λj = δij = λi · αj =
(
ΛTMT

)
ij
. (3.40)

Using Λ,ΛT and M,MT we may write a symmetric Cartan matrix, K and its inverse,

K−1 as (
MMT

)
ij
= αi · αj = Kij, and

(
ΛΛT

)
ij
= λi · λj = K−1

ij . (3.41)

As outlined in section 2.1, a general Cartan matrix is defined as 2αi · αj/α
2
j , but may be

simplified to αi ·αj when taking the length of the roots to be 2 for symmetric K, as we did

within our discussions of conformal affine Toad theory in the equations of the previous

section. Here however, we shall encounter roots of length zero in the sense that αi ·αi = 0,

so we will find it necessary to adopt the symmetric K convention.

In chapter 2 we recall that the constantsDi arose when examining the three-dimensional

principal subalgebras SO(3) and SO(1, 2) of g−n, and were especially important in re-

lation to finding their possible decomposition according to their respective SO(3) and

SO(1, 2) subalgebras [25]. In this chapter, we shall again use equation (2.52) to define

the Di constants into a diagonal matrix D := diag(Dr, . . . , D−n), which we shall use to

define the Painlevé matrix as

P := 2DK, (3.42)

also formed with the matrix inner product defined by equation (3.38), to help probe the

integrability of the Lorentzian Toda field theories we start to uncover in the next section.

Moreover, for the remainder of this chapter, all matrix products will be taken to satisfy

equation (3.38) unless otherwise specified.

3.5 Perturbed Lg−1-Lorentzian Toda Field Theory

We are now in the position where we can start to form Toda field theories from the n-

extended Kac-Moody algebra construction. Illustrating with the most simple case of a

1-extended algebra, g−1, we start with the associated root lattice Λg−1 defined in equation

(2.17), with affine root α0 = k−θ defined via the highest root of the system, θ, and where

k is that of equation (2.15). The 1-extended root is also still defined as α−1 = −(k + k̄).

Extending the schematic in section 3.3 for the Lagrangians of the perturbed theories
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beyond affine we have

CFT

Lgf

ϕ0−→
Massive

Lga

ϕ−1−→
CFT

Lg−1

ϕ−2−→
Massive

L
g̊−2

, (3.43)

where all the perturbed fields are associated to the extra highest root in the given La-

grangian, through the association αi · ϕ = Φi that we have seen before. Up to Lg−1
, the

pattern in (3.43) is akin to that of the previous chapters from finite, to affine to conformal

affine, whereas the extra perturbation to L
g̊−2

was not observed until [25]. We note at this

stage that g̊−2 is slightly different to g−2 of chapter 2, this difference will be elaborated on

later in this section, but we shall first focus on Lg−1
before perturbing it again to reach

this new theory.

3.5.1 L
g−1

Conformal Toda Field Theory

Referring to equations (3.6) and (3.20), we write the Lagrangian for Lg−n
as

Lga =
1

2
∂µϕ · ∂µϕ− g

β2

r∑
i=−1

eβαi·ϕ, (3.44)

its classical equations of motion can be written as

□ϕa +
g

β2

r∑
i=−1

αa
i e

βαi·ϕ = 0, a = 1, . . . , ℓ+ 2, (3.45)

obtained from applying the Euler-Lagrange equation, ∂µ [∂L /∂(∂µϕ
a)] = ∂L /ϕa. In

terms of the affine Toda field theories potential, Vga
, the potential of this theory may

be obtained through the perturbation, akin that of section 3.2.1 that took us from finite

conformal Toda to the affine theory, as Vg−1
= Vga

+ δVga
, where δVga

corresponds to the

term in the sum related to α−1.

We require that the additional term in the potential, δVga
, does not spoil the vacuum

which Vga
possesses, which can be expanded around. This can be viewed on one level

as the fields vanishing for αi · ϕ → −∞, but may also be seen through examining the

trace of the energy-momentum tensor as we have done in the previous subsections within

this chapter. To examine the energy-momentum tensor of Lg−1
we deform the fields as

Φi := αi · ϕ − β−1 ln(2α−2
i ) to write the Lagrangian, similar to how we did in equation

(3.14), as

□Φj +
g

β2

r∑
i=−1

Kjie
βΦi = 0, (3.46)

with symmetric Kij. Defining φi for i ∈ {−1, 0, 1, , r} as Φi = (Mφ)i where we use M as
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defined in equation (3.39), we rewrite the equations of motion in a new form as

□φα +
g

β2

r∑
i=−1

(
MT

)
αi
eβ(Mφ)i = 0. (3.47)

Following the methods to obtain the trace of the energy-momentum tensor, Θµ
µ used in

sections 3.1.2 and 3.3, we obtain

Θµ
µ =

r∑
i=−1

(
2g

β2
eβ(Mφ)i + γi□φi

)
. (3.48)

Hence, as long as we can find an inverse matrix, M−1, we can form γi = 2β−1
∑

k M
−1
ik ,

meaning the trace of the conformally improved energy-momentum tensor vanishes and

the theory is shown to be conformal. This means that in the expansion of the potential,

as done in equation (3.21) for the affine theory, the corresponding mass matrix would

not be invertible, explaining on another level why massive particles would not be found

within this theory.

3.5.2 L
g̊−2

Massive Toda Field Theory

We have found that Lg−1
is a conformal theory that may be studied in its own right,

however the remainder of this chapter we focus on the massive theory that results from

an additional perturbation from it, that we name L
g̊−2

. This new theory is obtained

through perturbing Vg−1
so that

V
g̊−2

(ϕ) := Vg−1
(ϕ) + δVg−1

(ϕ) = Vg−1
(ϕ) + ε

g

β2
eβα−2·ϕ. (3.49)

The vacuum ϕ(0) for the new potential V
g̊−2

computed from the equations ∂V
g̊−2

/∂ϕa
∣∣∣
ϕ(0)

=

0, a = 1, . . . , r + 2, leads to the constraint

r∑
i=−1

αie
βαi·ϕ(0)

= −εα−2e
βα−2·ϕ(0)

. (3.50)

Multiplying with the fundamental weights λj and using the orthogonality relation αi ·λj =

δij yields the relations

eβαi·ϕ(0)

= −ελi · α−2e
βα−2·ϕ(0)

, i = −1, 0, 1, . . . , r. (3.51)

Expanding now the potential V
g̊−2

(ϕ) around the vacuum we obtain with (3.51)

V
g̊−2

(ϕ(0) + ϕ̃) = ε
g

β2
eβα−2·ϕ(0)

[
eβα−2·ϕ̃ −

r∑
i=−1

λi · α−2e
βαi·ϕ̃

]
=

m2

β2

r∑
i=−2

n̂ie
βαi·ϕ̃, (3.52)
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where m2 = εgeβα−2·ϕ(0)
, n̂−2 = 1 and n̂i = −λi · α−2. We now make the choice α−2 = k̄,

so that with the realizations of the fundamental weights for g−1 as in [24, 25], and in

accordance with the choices that we made in chapter 2

λi = λf
i + niλ

o
0, λ0 = k̄ − k, λ−1 = −k, with i = 1, . . . , r, (3.53)

and λi denoting the fundamental weights of g , we compute n̂−1 = 1, n̂0 = 1 and n̂i = ni

the Kac labels as before. Here we make the distinction between g̊−2 and the regular

n-extended Lorentzian Kac-Moody algebras, g−n defined in chapter 2. We have α−2 ∈
Λgf ⊕ Π1,1 connecting in an almost identical way as the root k −

(
ℓ+ ℓ̄

)
to all the other

simple roots with α−2 · α−1 = −1, α−2 · αi = 0, i = 1, . . . , r. However, this root also

connects to the affine root α−2 · α0 = 1, has length zero, i.e. α2
−2 = 0 ̸= 2, and is defined

in a smaller representation space than the standard α−2 root. Hence, Λg̊−2 can not be

viewed as a lattice related to a Kac-Moody algebra, and we refer to it therefore as a root

lattice to an almost over extended algebra.

To obtain the mass matrix of the L
g̊−2

theory, we expand equation (3.52) about zero

and obtain
m2

β2

(
n̂−2 + n̂−1 + n̂0 +

∑r

i=1
ni

)
=

m2

β2
(2 + h), (3.54)

as constant term in the potential, with h being the Coxeter number of gf . The choice of

α−2 has the property ∑r

i=−2
n̂iαi = 0, (3.55)

which is crucial to ensure the linear terms within the expansion of the potential to vanish.

The resulting mass matrix must be square and is obtained to be

M2 = m2

r∑
i=−2

n̂i



α1
iα

1
i . . . α1

iα
r
i −α1

iα
r+2
i −α1

iα
r+1
i

...
. . .

...
...

...

α1
iα

r
i . . . αr

iα
r
i −αr

iα
r+2
i −αr

iα
r+1
i

−α1
iα

r+2
i . . . −αr

iα
r+2
i αr+2

i αr+2
i αr+1

i αr+2
i

−α1
iα

r+1
i . . . −αr

iα
r+1
i αr+1

i αr+2
i αr+1

i αr+1
i


, (3.56)

in analogy to the affine Toda theories in equation (3.22). For physical results, equation

(3.56) must yield real and positive eigenvalues, which shall be examined for concrete exam-

ples in section 3.7. Before looking at specific examples of Lorentzian Toda field theories,

in the next section we shall establish a framework to allow insight to the integrability of

these models.

3.6 Painlevé Integrability Test

We have already come across several techniques to establish the integrability of field

theories. In section 3.3 we used the zero curvature condition to show the integrability of
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conformal affine Todas, and in section 3.1.1 we used a Lax pair to prove the integrability

of the discrete Toda theory on a lattice. Here we shall use a different technique to

determine the integrability status of the Lorentzian Todas outlined in the previous section,

a technique known as the Painlevé test [87, 88, 89, 90]. In chapter 4 we will go into much

greater detail regarding the concept of Painlevé integrability, so here we only emphasize

the most salient feature: that it provides a necessary but not sufficient condition for the

theory being tested to be integrable. In other words, passing the test does not prove

integrability, but failing the test shows the theory is certainly not integrable. However,

no counter examples are known.

To conduct the Painlevé test on a subset of perturbed Lg−n , we largely follow and

generalize the reasoning of [21, 60] to determine whether these theories can be integrable or

not. We start by transforming the equations of motion in (3.47) into light-cone coordinates

so that □ = ∂−∂+. Denoting ∂− by an overdot and ∂+ by an overdash, e.g. ∂−φ =: φ̇ and

∂+φ =: φ́. For further convenience we set g = β = 1. We write down the second order

equation of motion into two separated first order equations, which can be achieved by

introduce two quantities, this can be thought of as being akin, but not equal, to canonical

variables, as

Pα = φ̇α, Qi = e(Mφ)i , α = 1, . . . , ℓ+ 2m,i = 1, . . . , r + n+ 1. (3.57)

Differentiating these quantities with respect to each light-cone coordinate we obtain

Ṕα = □φα = −
r∑

i=−n

(
MT

)
αi
Qi, Q̇i = Qi (MP )i . (3.58)

We now expand Pα and Qi, making the standard assumption that both quantities possess

no movable critical singularities in some field ϕ(x−, x+) → 0, whose leading order is

determined by some positive integers np, nq > 0

Qi =
∞∑
k=0

a
(k)
i ϕk−nq , Pα =

∞∑
k=0

b(k)α ϕk−np . (3.59)

naming this procedure a Painlevé expansion. Differentiating these Painlevé expansions,

we obtain

Q̇i =
∞∑
k=0

(k − nq)a
(k)
i ϕk−nq−1ϕ̇ , Ṕα =

∞∑
k=0

(k − np)b
(k)
α ϕk−np−1ϕ́. (3.60)

Substituting next the expansions (3.59) and (3.60) into (3.58) and balancing the powers
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we obtain

(k − np)ϕ́b
(k)
α = −

r∑
i=−n

(
MT

)
αi
a
(k)
i , (3.61)

(k − nq)ϕ̇a
(k)
i =

k∑
m=0

a
(k−m)
i

(
Mb(m)

)
i
, (3.62)

with nq = np + 1. At this point we have to distinguish between two cases i) when the

Cartan matrix is invertible, i.e. when we have a massive Toda theory and ii) when it is

not, as will always be with a conformal Toda theory. We shall tackle the former case first

in the following subsection.

3.6.1 Invertible Cartan matrix

For k = 0 we can solve the equations (3.61) and (3.62) for the leading order coefficient

functions when the Cartan matrix is invertible

a
(0)
i = −npnqϕ̇ϕ́Di, b(0)α = −nqϕ̇

r∑
i=−n

(
MT

)
αi
Di, (3.63)

where the Di are the constants we have seen several times before, as defined in equations

(2.42), (2.52) and (2.53).

Next, we factor out the terms in the sum for m = 0 and m = k from equation (3.62).

Using also
(
Mb(0)

)
i
= −nqϕ̇, we re-write (3.61) and (3.62) as

kϕ̇a
(k)
i + npnqϕ̇ϕ́Di

(
Mb(k)

)
i

=
k−1∑
m=1

a
(k−m)
i

(
Mb(m)

)
i
, (3.64)

r∑
i=−n

(
MT

)
αi
a
(k)
i + (k − np)ϕ́b

(k)
α = 0. (3.65)

These equations, (3.64) and (3.65), can be converted into matrix form

T (k)X(k) = Y (k), (3.66)

when defining the N +M = (r + n+ 1) + (ℓ+ 2m) dimensional column vectors

X(k) = (a
(k)
1 , · · · , a(k)M , b

(k)
1 , · · · , b(k)N )T , (3.67)

Y (k) =
k−1∑
m=1

(a
(k−m)
1

(
Mb(m)

)
1
, · · · , a(k−m)

M

(
Mb(m)

)
M
, 0, · · · , 0)T , (3.68)

together with the (M +N)× (M +N)-matrix
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T (k) =

(
A

(k)
M×M B

(k)
M×N

C
(k)
N×M E

(k)
N×N

)
. (3.69)

The block matrices in T have entries

A
(k)
ij = kϕ̇δij, B

(k)
iα = npnqϕ̇ϕ́DiMiα, C

(k)
αi =

(
MT

)
αi
, E

(k)
αβ = (k − np)ϕ́δαβ. (3.70)

In this current formulation of the Painlevé integrability test, equation (3.66) is the most

pertinent equation. It is a recursive equation that may in principle be solved iteratively

at each level k for the coefficient functions contained in X(k) as long as the matrix T (k)

is invertible. Whenever this is not the case one a free parameter is introduced, otherwise

known as a resonance in the Painlevé integrability test parlance, into the set of equations.

When there are enough resonances in the system as boundary conditions or integration

constants, the system is passing the test and is said to be integrable. We go into more

detail regarding resonances and their role and importance for finding integrability of a

given theory in chapter 4.

As equation (3.66) is central in discovering the integrability of our models, let us

therefore compute the determinant of T (k). Using the identity

det

(
A B

C E

)
= det

(
A B

C E

)
det

(
I 0

−E−1C I

)
= det(A− BE−1C) det(E),

(3.71)

we obtain

detT (k) = (k − np)
r+nϕ́r+n+1ϕ̇ det [k(k − np)I − np(np + 1)DK] . (3.72)

Apart from the pre-factor that we have included for generality, for n = np = 1, this

reduces to the expression previously obtained in [21] for the subclass of hyperbolic Kac-

Moody algebras. Taking now np = 1, the matrix in the determinant becomes the Painlevé

matrix and the last factor in (3.72) can be read as the characteristic equation for the

matrix P = 2DK with eigenvalues k(k − 1). Thus we have found that also for the Lg−n

Lorentzian Toda theories the integrability test can be reduced to an eigenvalue problem

for P .

Before considering the case of a non-invertible Cartan matrix we shall briefly look into

the connection of the Painlevé matrix to the factors appearing in the adjoint action of

the three-dimensional principal subalgebras that we first encountered in section 2.5.

3.6.2 Connection to Casimir Eigenvalues of the Principal SO(1, 2)-

Subalgebra

For hyperbolic algebras, Nicolai and Olive noticed in [73] that this matrix also emerges

from the adjoint action of the principal subalgebra, SO(1, 2) that we considered in sec-
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tion 2.5. Earlier, we saw the principal SO(3) and SO(1, 2)-subalgebras in relation to

their expansion coefficients D
(n)
i for the J3-generator of the principal SO(1, 2) or SO(3)

subalgebra, whereas here the D
(n)
i contribute as the Casimir operator

Q = J3J3 − J+J− − J−J+

= J3 (J3 − 1)− 2J+J− = J3 (J3 + 1)− 2J−J+,
(3.73)

on the Cartan subalgebra for these three-dimensional principal subalgebras, and that in

fact the eigenvalues are identical to the Casimir eigenvalues, and where J+, J− are defined

as in section 2.5. Following [73], this may be seen through first constructing the adjoint

action on Q as

adQ(x) := [J3, [J3, x]]− [J+, [J−, x]]− [J−, [J+, x]] (3.74)

for x ∈ g−n. We may always perform an expansion on the elements of the Cartan subalge-

bra h of g−n through the linear combination
∑

j cihj, where cj are expansion coefficients

and hj ∈ h, where substituting this into the above gives

adQ

(∑
j

cjhj

)
= −2

[
J−,

[
J+,

∑
j

cjhj

]]
= 2

∑
i,j

ciDjKijhj. (3.75)

Now setting cj = Dj and using the identity
∑

j KijDj = −1 for all i, we obtain

adQ (J3) = −2
∑
i,j

DiKijDjhj = −
∑
i,j

PijDjhj = +2J3. (3.76)

Illustrating the importance of P both in the algebraic structure of g−n as well as the

context of the Painlevé test. We have constructed here the SO(1, 2) algebra case, but we

note that in generalised cases a principal SO(1, 2)-subalgebra does not always exist, as

we explicitly argued for in chapter 2 for many cases, so that it needs to be replaced in

part by a principal SO(3)-subalgebra.

3.6.3 Non-Invertible Cartan Matrix

When the Cartan matrix is not invertible we can not derive (3.63) from the equations

(3.61) and (3.62). As a specific theory that involves a non-invertible Cartan matrix let

us now consider the affine Toda theory Lga
-theory, that we are now familiar with. We

know from section 3.3 that conformal affine Toda theories are integrable, Lax pairs have

been found for non-conformal classical affine Toda field theories [91], and, as mentioned

previously, for the quantum affine cases exact S- matrices have been found to factorise

into two particle S-matrices - all as a consequence of the integrability of these affine Toda

field theories [84]. However, let us also see how the Painlevé test can be implemented,

since the same line of argumentation can then also be applied to some extended theories

we consider below. Using the fact that Kij = K̃ij for i, j = 1, . . . , r with K̃ denoting the
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invertible Cartan matrix of gf in this specific line of argument, we can split off the last

row and the last column from K. Then it is easily seen that (3.63) is replaced by

a
(0)
i = −npnqϕ̇ϕ́D̃i + nia

(0)
0 , b(0)α = −nqϕ̇

r∑
i=1

(
MT

)
αi
D̃i, (3.77)

where D̃i :=
∑r

j=1 K̃
−1
ij and the ni denote the Kac labels as defined after equation (2.12).

Following now the same steps as in the previous subsection we derive the matrix T with

block matrices

A
(k)
ij = kϕ̇δij, B

(k)
iα = npnqϕ̇ϕ́DiMiα−niMiαa

(0)
0 , C

(k)
αi =

(
MT

)
αi
, E

(k)
αβ = (k−np)ϕ́δαβ,

(3.78)

where we defined D0 := 0. Taking now a
(0)
0 = 0, we notice that the only non-vanishing

entry in the 0-row of T (k) is T
(k)
00 = A

(k)
00 = kϕ̇. We can then expand detT (k) with respect

to the first row and derive

detT (k) = k(k − np)
r+1ϕ́r+2ϕ̇2 det

[
k(k − np)Ir×r − np(np + 1)D̃K̃

]
, (3.79)

with D̃, K̃ belonging to g. Thus we have reduced the Painlevé test for the Lga
-theory to

an eigenvalue problem for the matrix np(np + 1)D̃K̃ associated to gf .

Thus we conclude that the integrability properties of the Lgf
-theory are inherited by

the Lga
-theory, that is when Lgf

is (non)integrable so is Lga
.

For simplicity we derived here the eigenvalue equation (3.72) for symmetric Cartan

matrices. We may repeat the same line of argumentation by replacing in MT roots by

coroots, αi → α̂i = 2αi/α
2
i when α2

i ̸= 0. Then it is easily seen that (3.72) generalizes to

the nonsymmetric case for which the Cartan matrix is defined as Kij = 2αi · αj/α
2
j when

α2
j ̸= 0 and remains Kij = αi · αj when α2

j = 0.

3.6.4 Characteristic Equation of P

We will now continue to present the results of [51], and keep np = 1 to analyse the

characteristic equation for the Painlevé matrix P as defined in (3.42)

det [k(k − 1)I − P ] = 0, (3.80)

in some more detail. As argued in the previous subsection, for any version of the

Lorentzian Toda field theories to be integrable the eigenvalues of the Painlevé matrix

must be integer valued and factorize as k(k − 1) with k ∈ N. In particular, this means

when the eigenvalues are negative, the theory is not integrable. These cases can be iden-

tified easily. We need to argue differently depending on whether the matrix D is positive

or negative definite, semi-definite or indefinite.

Denoting by indA = ep − en the index of the matrix A, defined as the difference
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between the positive and negative eigenvalues of A, ep and en, respectively, we have the

relation

ind(±2DK) = ind(K), (3.81)

where the +sign holds for D positive definite and the −sign for D negative definite.

To prove this relation we first note that the matrix
√
±DK

√
±D has the same eigen-

values as ±DK. Here
√
±D is the positive square root with the sign depending on

whether D is positive or negative definite. Next we invoke Sylvester’s theorem, see e.g.

Theorem 12.3 in [92], which states that two symmetric square matrices A and B that

are congruent to each other, i.e. A = QBQT for some nonsingular matrix Q, have the

same index. Applied to the above this means that ind(
√
±DK

√
±D) = ind(K), since

√
±D

T
=

√
±D. Therefore with ind(

√
±DK

√
±D) = ind(±DK) we obtain (3.81).

When D is semi-definite we can define a reduced D-matrix as D̂ by setting the positive

or negative entries to zero and use a reduced version of (3.81) as ind(±2D̂K) = ind(K).

Since a necessary condition for passing the Painlevé test is that all eigenvalues of 2DK

are positive, i.e. ind(2DK) = ℓ with ℓ denoting the rank of K, the relation (3.81) implies

that ind(±K) = ℓ . This means only Lorentzian Toda field theories based on positive or

negative definite Cartan matrix can pass the Painlevé test. In turn this means that those

theories built from non-definite Cartan matrices that were extended from definite ones

through our n-extended Lorentzian root construction can not be integrable, and hence

theories perturbed around Lg−1
or more generally Lg−n

are not integrable.

This however does not rule out all constructions of Lorentzian Toda field theories to

be non-integrable. In chapter 4 we examine the cases in which we do not n-extend a

gf algebra, constructing generalized Cartan matrices that we do believe to be integrable

in the sense that they both pass the Painlevé test, and also contain enough conserved

quantities to possess the Painlevé property. We save the details for chapter 4, but the

essence of the Painlevé property is that through examining the Painlevé equations (3.61)

and (3.62) we uncover enough free parameters to be in involution to declare certain Toda

field theories based on Lorentzian Kac-Moody algebras to be integrable, analogous to the

sense of Liouville integrability of r real degree of freedom with r analytic single valued

global integrals of motion in involution.

3.7 Constructions of Lorentzian Toda field theory

We will now construct and illustrate various types of Toda field theories based on different

versions of root systems corresponding to Lorentzian Kac-Moody algebras and their exten-

sions. We will encounter conformally invariant and massive models, and shall concentrate

on the construction of non-integrable Lorentzian Toda field theories, which have particu-

lar interest as examples of perturbed integrable models that become non-integrable after

that perturbation. The results and presentation in this section will very closely follow the

corresponding section in [51].
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3.7.1 L
g̊−n

-extended Lorentzian Toda field theory

This first type of theories is a series constituting an infinite extension of the perturbed

Lg−1
-theory that we introduced in section 3.5. The theories in this series come in one of

two variants: The L
g̊−n

-Lorentzian Toda field theories for odd n are conformally invariant,

and those for which n is even are massive, continuing the pattern we observed at the

beginning of section 3.5. As a construction principle, we extend the one previously used

for the perturbation of the Lg−1
-theory and build the roots as follows. For the massless

L
g̊−(2n−1)

-theories we have the r + 2n roots

αi ≡ simple roots of gf for j = 1, . . . , r,

α−(2i−2) = ki −
∑r

j=−(2i−3) njαj for i = 1, . . . , n,

α−(2i−1) = −(ki + k̄i) for i = 1, . . . , n.

(3.82)

We notice that the roots α−(2i−2) have length zero for i = 2, . . . , n, have a standard inner

product equal to −1 with nearest neighbour roots on the Dynkin diagram and a more

unusual inner product equal to 1 for next to nearest neighbours. The roots α−(2i−1) have

length 2 for i = 1, . . . , n. Thus we have the inner products

α2
−(2i−2) = 0, α2

−(2j−1) = 2, α−k · α−(k+1) = −1, α−2l · α−(2l+2) = 1, (3.83)

for i = 2, . . . , n, j = 1, . . . , n, k = 1, . . . , 2n− 2 and l = 0, 1, . . . , n− 2. At each affine root

α0 the Dynkin diagram is extended by the following segment:

g̊1−2n : . . . •
α0

•
α−1

◦
α−2

•
α−3

◦
α−4

. . . ◦
α4−2n

• ◦
α2−2n

•

We used here the standard conventions for drawing Dynkin diagrams related to semi-

simple Lie algebras in which vertices with bullets indicate roots of length 2 and single

line links between two vertices correspond to inner products of −1 between the two cor-

responding roots. We increase the set of rules by indicating roots of length 0 with an

empty circles and inner products of 1 by dotted links between two vertices correspond to

the roots. Such type of zero length roots and inner products equal to 1 are not entirely

unusual and also occur in the context of Lie superalgebras and of their affine extensions

[93], in which the definition of the Cartan matrix is generalized to exclude any normalisa-

tion by any roots of zero length, and where exceptions are made within the corresponding

Serre relations in forming the generator structure of superalgebra. Here however, we are

less concerned with the generator construction of these almost n-extended algebras g̊n,

and instead continue to concentrate on what is required to form valid Toda field theories

from them.
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For the g̊1−2n algebra, the corresponding Cartan matrix is

Kg̊−(2n−1)
=



q1 0 · · · 0

Kg
...

...
...

qr 0 · · · 0

q1 · · · qr 2 −1 1 0

0 · · · 0 −1
...

... 1 K̂2n−1

0 · · · 0 0


(3.84)

with qs := α0 · αs, s = 1, . . . , r, and (2n− 1)× (2n− 1) matrix K̂2n−1 with entries

K̂2i−1,2i−1 = 2, K̂2j,2j = 0, K̂k,k+1 = −1, K̂2l,2l+2 = 1, (3.85)

for i = 1, . . . , n, j = 1, . . . , n− 1, k = 1, . . . , 2n− 2 and l = 1, . . . , n− 2.

Taking the same roots and adding one root at the end of the Dynkin diagram as the

negative highest root, designed to make the linear term in the potential vanish, we obtain

the massive L̊g−(2n)
-theory based on r + 2n+ 1 roots

αi ≡ simple roots of g for j = 1, . . . , r,

α−(2i−2) = ki −
∑r

j=−(2i−3) njαj for i = 1, . . . , n,

α−(2i−1) = −(ki + k̄i) for i = 1, . . . , n,

α−(2n) = −
∑r

j=−(2n−1) njαj.

(3.86)

Now at each affine root α0 the Dynkin diagram is extended by the segment:

g̊−2n : . . . •
α0

•
α−1

◦
α−2

•
α−3

◦
α−4

. . . ◦
α4−2n

• ◦
α2−2n

• ◦
α−2n

With the corresponding Cartan matrix given by

Kg̊−2n =



q1 0 · · · 0

Kg
...

...
...

qr 0 · · · 0

q1 · · · qr 2 −1 1 0

0 · · · 0 −1
...

... 1 K̂2n

0 · · · 0 0


(3.87)

where the entries of the (2n)× (2n) matrix K̂2n are defined as in (3.85) with i = 1, . . . , n,

j = 1, . . . , n, k = 1, . . . , 2n− 1 and l = 1, . . . , n− 1.
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For the Toda field theories constructed from these root systems it follows from section

3.6, in particular subsection 3.6.4 that the Painlevé integrability test is entirely reduced

to an eigenvalue problem for the Painlevé matrix P , which must factor as n(n − 1)

with n being an integer. This is done through directly reducing the test for the L
g̊−2n

-

extended Lorentzian Toda field theory to the eigenvalue problem for 2Dg̊−(2n−1)
Kg̊−(2n−1)

.

For the semi-simple Lie algebras these integer have been identified as the exponents related

to properties of the Casimir operator of the principal subalgebra on one hand, as we

illustrated in section 3.6.2 from work in [73], and on the other as labelling the spins of

conserved W-algebra currents [44].

We will now study the L
g̊−2n

-extended Lorentzian Toda field theories for some concrete

algebras extended from gf , and hence ga, in more detail in the following segments.

(Å2n)−2-Lorentzian Toda field theories

We start with the most simple system in the (Å2n)−2 series, the (Å2)−2-Lorentzian Toda

field theory. We represent the (Å2)−2 roots (3.86) on a four dimensional lattice as

α1 =

(√
3

2
,−
√

1

2
; 0, 0

)
, α2 =

(
0,
√
2; 0, 0

)
, α0 =

(
−
√

3

2
,

√
1

2
−

√
2; 1, 0

)
,(3.88)

α−1 = (0, 0;−1, 1) , α−2 = (0, 0; 0,−1) . (3.89)

The analogue of the affine root is α−2 = −
∑2

j=−1 njαj with all Kac labels nj = 1. It is

easily checked that indeed the roots α−1, α0, α1, α2 have length 2 and the root α−2 has

length 0. The Dynkin diagram drawn with the standard rules augmented with the set of

rules as stated at the end of the previous subsection, is as follows:

Å−2 :
α1

α2

•

•
❅❅

��
•
α0

•
α−1

◦
α−2

The eigenvalues of the Cartan matrix K(Å2)−1
are (3.48119, 3., 1.68889,−0.170086),

with exactly one negative eigenvalue as we expect for a Lorentzian Kac-Moody algebra

by definition. The mass matrix (3.56) for this root system is computed to

M2 =
1

2
m2


3 0 0

√
3
2

0 3 0 1√
2

0 0 2 −1√
3
2

1√
2

−1 2

 , (3.90)

with positive, that is physical, eigenvalues (4.1701, 3, 2.3111, 0.51880) for m =
√
2. The

matrix D(Å2)−1
as we defined in (2.53) is negative definite with D1 = D2 = −6, D3 = −7

and D4 = −3. The eigenvalues of the Painlevé matrix P are (−42,−36,−12, 2) and the

relation (3.81) is confirmed as ind(−2DK) = ind(K) = 2. The theory fails the Painlevé
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Figure 3.1: Mass ratios for the r + 2n particles in the (Å2n)−2n-Toda field theories extended

from the (Å2n)−2 theory.

test and is therefore not integrable, also as expected from the results from section 3.6.4.

Extending the (Å2)−2 theory to an (Å2n)−2 through the procedure described in the

previous subsection allows us to calculate the mass matrix again using equation (3.56).

We plot the results of the first few (Å2n)−2 theories mass ratios results in figure 3.1.

(E̊8)−2n-Lorentzian Toda field theories

The first member of the (E̊8)−2n-series is the (E̊8)0-theory corresponding to the well

studied affine Toda field theories, which describes the scaling limit of the Ising model at

critical temperature in magnetic field [53]. The next member is the (E̊8)−2-theory for

which we represent the roots (3.86) on a ten dimensional root lattice as

α1 =
(
1
2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
, 1
2
; 0, 0

)
, α2 = (1, 1, 0, 0, 0, 0, 0, 0; 0, 0) ,

α3 = (−1, 1, 0, 0, 0, 0, 0, 0; 0, 0) , α4 = (0,−1, 1, 0, 0, 0, 0, 0; 0, 0) ,

α5 = (0, 0,−1, 1, 0, 0, 0, 0; 0, 0) , α6 = (0, 0, 0,−1, 1, 0, 0, 0; 0, 0) ,

α7 = (0, 0, 0, 0,−1, 1, 0, 0; 0, 0) , α8 = (0, 0, 0, 0, 0,−1, 1, 0; 0, 0) ,

α0 = (0, 0, 0, 0, 0, 0,−1,−1; 1, 0) , α−1 = (0, 0, 0, 0, 0, 0, 0, 0;−1, 1) ,

α−2 = (0, 0, 0, 0, 0, 0, 0, 0; 0,−1) .

(3.91)

We have constructed the analogue of the affine root as α−2 = −
∑8

j=−1 njαj with Kac

labels n = (2, 3, 4, 6, 5, 4, 3, 2, 1, 1, 1), using those for affine E8 in [31] as a reference. Using

the Lorentzian inner product we compute for the extended part α2
−2 = 0, α2

−1 = 2,
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α−2 · α−1 = −1, α−1 · α0 = −1, α−2 · α0 = 1. The Dynkin diagram drawn with the

standard rules augmented with the set of rules as stated at the end of subsection 3.7.1 is

therefore:

(
E̊8

)
−2

: •
α1

•
α3

•
α4

•α2

•
α5

•
α6

•
α7

•
α8

•
α0

•
α−1

◦
α−2

The conformal part of the theory is the (E8)−1-theory, aka E10, whose Cartan matrix

has exactly one negative eigenvalue with all other eigenvalues being positive. The Cartan

matrix of (E̊8)−2 has a zero eigenvalue, one negative eigenvalue with the remaining ones

being positive. The mass squared matrix (3.56) for the (E̊8)−2-theory is computed to be

M2 =
1

2
m2



15 −3 −1 −1 −1 −1 −1 1 0 0

−3 27 −11 1 1 1 1 −1 0 0

−1 −11 23 −9 1 1 1 −1 0 0

−1 1 −9 19 −7 1 1 −1 0 0

−1 1 1 −7 15 −5 1 −1 0 0

−1 1 1 1 −5 11 −3 −1 0 0

−1 1 1 1 1 −3 7 1 0 2

1 −1 −1 −1 −1 −1 1 3 0 2

0 0 0 0 0 0 0 0 4 −2

0 0 0 0 0 0 2 2 −2 4



. (3.92)

The ten eigenvalues (19.4794, 12.8905, 8.8224, 7.4524, 5.1100, 3.7371, 3.0181, 2.1237, 1.1227,

0.2437) of M2 are all positive, thus leading to a physically well-defined classical mass spec-

trum. We may set here m = 1, as only mass ratios will be relevant. Similarly, we compute

the masses for the other members of the (E̊8)−2n-series, which all posses well-defined spec-

tra. We present our results for the first members of the series in figure 3.3 above.

We observe the interesting feature that when comparing the masses with those of

standard E8-affine Toda field theory, four masses are especially stable and remain almost

all identical irrespective of the value of n. These masses can be identified when recalling

that folding the E8-affine Toda field theory [46] leads to a grouping of the eight masses

in the E8-theory [53] as two copies of four masses attributed to a theory based on the

root space of noncrystallographic type H4. One set is obtained from the other by a

multiplication of the golden ration ϕ = (1 +
√
5)/2. Normalizing the E8- masses so that

the largest takes on the value 1, we have

m1 = 1, m2 = 2 sin(4θ), m3 =
cos θ

ϕ cos(4θ)
, m4 =

1

2ϕ cos(4θ)
, (3.93)

m5 = ϕ−1m1, m6 = ϕ−1m2, m7 = ϕ−1m3, m8 = ϕ−1m4, (3.94)
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Figure 3.2: Mass ratios for the r + 2n particles in the
(
E̊8

)
−2n

-Toda field theories with almost

stable noncrystallographic H4 compound.

with θ = π/30. We observe in figure 2.1 that the four H4 masses in (3.93) are almost

identical in all (E̊8)−2n-theories.

However, none of these theories, apart from (E̊8)0, passes the Painlevé integrability

test. In all other cases the eigenvalues of the matrix 2Dg̊−(2n−1)
Kg̊−(2n−1)

are all non integer

valued and sometimes negative. We find that Dg̊1 ≡ DE8 is positive definite, as is expected

for the semi-simple case. We confirm in this case the relation (3.81) as ind (2DE8KE8) =

ind (KE8) = 8. Moreover the eigenvalues factorize into si(si + 1) with si = 1, 7, 11, 13,

17, 19, 23, 29, corresponding to the 8 exponents of E8.

In contrast, the matrices Dg̊−(2n−1)
are negative definite for all values of n ≥ 1. The

8+2n eigenvalues for 2D(E̊8)−(2n−1)
K(E̊8)−(2n−1)

for n = 1, 2, . . . separate into 8+n negative

and n positive eigenvalues. The relation (3.81) is confirmed as

ind
(
−2Dg̊−(2n−1)

Kg̊−(2n−1)

)
= ind

(
Kg̊−(2n−1)

)
= 8, for n = 1, 2, . . . (3.95)

Surprisingly the index of K is preserved for all values of n. To explain this, we list here
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Figure 3.3: Eigenvalue spectra for the Painlevé matrix 2Dg̊−(2n−1)
Kg̊−(2n−1)

of the
(
E̊8

)
−2n

-Toda

field theories.

the first characteristic polynomials det(K − λI) = 0 for the Cartan matrix Kg̊−(2n−1)

ch (KE8) = λ8 − 16λ7 + 105λ6 − 364λ5 + 714λ4 − 784λ3 + 440λ2 (3.96)

−96λ+ 1,

ch
(
K(E̊8)−1

)
= λ10 − 20λ9 + 171λ8 − 816λ7 + 2379λ6 − 4356λ5 + 4949λ4 (3.97)

−3304λ3 + 1140λ2 − 144λ− 1,

ch
(
K(E̊8)−2

)
= λ12 − 22λ11 + 208λ10 − 1100λ9 + 3531λ8 − 6892λ7 (3.98)

+7356λ6 − 1914λ5 − 4872λ4 + 5944λ3 − 2626λ2 + 388λ+ 1,

ch
(
K(E̊8)−4

)
= λ14 − 24λ13 + 249λ12 − 1450λ11 + 5103λ10 − 10576λ9 (3.99)

+9896λ8 + 7088λ7 − 31796λ6 + 37074λ5 − 17467λ4

−520λ3 + 3050λ2 − 636λ− 1.

Where to be completely clear, the λ here is the expansion variable from the characteristic

equation, not the fundamental weights as we denoted λ in chapter 2. We observe that

in each polynomial of the general form
∑8+2n

i=1 aiλ
i, the sequence of coefficients ai has

exactly 8 + n sign changes. Thus according to Descartes’ rule of signs, see e.g. [94],

we have exactly 8 + n positive real eigenvalues confirming the observation above. The

factorization of these eigenvalues into si(si+1) leads to the form si = 1/2+λi with λi ∈ R
and si = κi with κi ∈ R, for the negative and positive eigenvalues, respectively.
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We depict the eigenvalue spectra for some L
(E̊8)−2n

-extended Lorentzian Toda field

theory in figure 3.3 on the previous page, and, as we can partially see from the figure,

most of the eigenvalues of the Painlevé matrix are negative or non integer valued. Hence,

the L
(E̊8)−2n

-extended Lorentzian Toda field theory fail the Painlevé test and are therefore

not integrable.

In the next segment, we shall examine another option in the construction of Lorentzian

Toda field theories, that will use a different formalism of simple roots and their root lattices

to that we have encountered so far in chapter 2, or that we have used to construct other

Lorentzian Toda field theories up top this point.

3.7.2 L(̊g1)−2n⋄(̊g2)−2m
-extended Lorentzian Toda field theory

This construction is based on a generalization of what is referred to in [24] as the symmetric

fusion of two finite semisimple Lie algebras g1 and g2 by means of some Lorentzian roots

in Π1,1. Here we consider a root lattice of the form

Λ(̊g1)1−2n⋄(̊g2)1−2m
= Λ(̊g1)1−2n

⊕ Π1,1 ⊕ Λ(̊g2)1−2m
. (3.100)

It is comprised of the r1 + 2n roots αi with i = 1 − 2n, . . . , r1 of (̊g1)1−2n, the r2 + 2m

roots βi with i = 1− 2m, . . . , r2 of (̊g2)−2m and two modified roots

α−2n = kn+1 −
∑r1

j=1−2n
njαj, β−2m = k̄n+1 −

∑r1

j=−1−2m
njβj

with kn+1, k̄n+1 ∈ Π1,1. The Lorentzian roots used in the construction of the α and β

roots are unrelated with mutual inner products equal to zero. They are labeled by ki, k̄i,

i = 1, . . . , n and ℓi, ℓ̄i, i = 1, . . . ,m, respectively. For n = m = 0 this construction

coincides with the one in [24] apart from a change of sign in the definition of β0 where we

added k̄ instead of −k̄ used in [24]. We explain the reason for our preferred choice below.

The massive version is then constructed by adding a root γ = −(kn+1 + k̄n+1). Using the

rules as stated above, the part of the Dynkin diagram where the (̊g1)−2n and (̊g2)−2m for

n ≥ 1, m ≥ 1 are joined is:

(̊g1)−2n ⋄ (̊g2)−2m : . . . ◦
α4−2n

• ◦
α2−2n

• ◦
α−2n

◦
β−2m

•
�
�

❅
❅
γ

• ◦
β2−2m

• ◦
β4−2m

. . .

The corresponding Cartan matrix is simply linking up the two affine Cartan matrices
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K(̊g1)−2n
and K(̊g2)−2m

as

K(̊g1)−2n⋄(̊g2)−2m
=



q1 0 0 · · · 0

K(̊g1)1−2n

...
...

...
...

qr1 0 0
...

q1 · · · qr1+2n 0 −1 1 0 · · · 0

−1 2 −1

0 · · · 0 1 −1 0 pr2+2m · · · p1
...

... 0 pr2
...

...
...

... K(̊g2)1−2m

0 · · · 0 0 p1



,

(3.101)

where qs := α−2n · αs, s = 1, . . . , r1 + 2n and ps := β−2m · βs, s = 1, . . . , r2 + 2m.

We present now some examples for Lorentzian Toda field theories build from concrete

algebras of this type of construction.

(E̊8)−2n ⋄ (E̊8)−2n-Lorentzian Toda field theories

We start with (E̊8)0 ⋄ (E̊8)0, where (E̊8)0 ⋄ (E̊8)0 ≡ (E8)0 ⋄ (E8)0 in our notation, and take

the same representation for the eight simple roots αi, i = 1, . . . 8 as defined in (3.91), but

we enlarge the representation space from 10 to 18 dimensions by adding 8 zero entries in

the vector representation of the root space. The modified affine root α0 = k−
∑8

j=1 njαj

takes on the same form as in (3.91). Next we construct the roots for the second set

of simple roots as βj+10
i = αj

i , i, j = 1, . . . 8, and with all remaining entries 0. The

second modified affine root is constructed as β0 = k̄ −
∑8

j=1 njβj. The additional root

γ = −(k + k̄) has therefore non-vanishing entries γ9 = −γ10 = −1. The Dynkin diagram

becomes in this case

(E8)0 ⋄ (E8)0: •
α1

•
α3

•
α4

•α2

•
α5

•
α6

•
α7

•
α8

•
α0

•γ
�
�

❅
❅ •

β0

•
β8

•
β7

•
β6

•
β5

•
β4

•β2

•
β3

•
β1

And similarly we construct the Cartan matrix for the other members of the (E̊8)−2n ⋄
(E̊8)−2n-series.

With a well defined root system and vanishing linear term we can compute the mass

squared matrix as defined in equation (3.56). Once again we find that all eigenvalues of the

mass squared matrix are positive. Taking the normalized square root of these eigenvalues,

we depict the classical mass spectra for the first seven members of the (E̊8)−2n ⋄ (E̊8)−2n-

series in figure 3.4 above.

We note that all mass spectra in figure 3.4 are non-degenerate. Even though it may

appear from the figure that some of the heaviest particles have the same mass, there is in

fact always at least a very small difference not visible on the scale used in the figure. For
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Figure 3.4: Mass ratios for the 18+ 2n particles in the (E̊8)−2n ⋄ (E̊8)−2n-Lorentzian Toda field
theory.

the lighter particles in the spectrum the difference becomes more apparent. Splitting the

particles into sets belonging to the left and right set of roots, α and β, respectively, and

comparing with the mass spectrum of the affine (E8)0-theory, we observe that the mass

spectrum of five heaviest particles is almost identical to the masses in the left and right

set of roots.

Next we consider the eigenvalues of the Painlevé matrix. First we notice that the

diagonal matrix D(E8)0⋄(E8)0 is positive definite and that the relation (3.81) holds with

ind
(
K(E8)0⋄(E8)0

)
= 16. It is these eigenvalue spectrum that motivates the choice for the

sign in front of the Lorentzian roots in the definition of β0. Choosing −k̄ instead of k̄ will

not affect the mass spectrum, but it will reverse the sign in signature of the eigenvalues of

2DK. However, this theory does not pass the Painlevé integrability test as the eigenvalues

of the matrix 2DK are all non integer valued.

In contrast, for (E̊8)−2n⋄(E̊8)−2n with n ≥ 1 theD-matrix is semi-definite with the four

central diagonal entries D(9+n±1)(9+n±1), D(9+n±2)(9+n±2) being positive and the remaining

negative. Defining a reduced D-matrix as D̂ by setting the positive entries to zero we find

a reduced version of (3.81) as ind(−2D̂K) = ind(K) = 16. None of the theories in this

series passes the Painlevé integrability test as the eigenvalues of the matrix 2DK are not

only all non integer valued or negative, but in addition some of the eigenvalues occur in

complex conjugate pairs. We depict the real eigenvalues in figure 3.5.

We observe that the “almost degeneracy”is roughly preserved for the six heaviest

particles. Before concluding this chapter, we would now like to briefly present the results

for the simplest (Å2)−2n ⋄ (Å2)−2n-series of Lorentzian Toda field theories.
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Figure 3.5: Real part of the eigenvalue spectra for the 2DK-matrix for the (E̊8)−2n ⋄ (E̊8)−2n

Lorentzian Toda field theory, where n is the index of the eigenvalue and En represents the
eigenvalue value at that index.

(Å2)−2n ⋄ (Å2)−2n-Lorentzian Toda field theories

Before concluding this chapter, and for completeness, we would like to briefly present the

mass ratio and 2DK eigenvalue results for the (Å2)−2n ⋄ (Å2)−2n theories. The Dynkin

diagram for these theories takes the form

(A2)−2n ⋄ (A2)−2n:
α1

α2

•

•
❅

❅

�
�

•
α0

•
α−1

◦
α−2

. . . ◦
α2−2n

• ◦
α−2n

◦
β−2m

•
�
�

❅
❅
γ

• ◦
β2−2m

. . .
β1

β2

•

•
�
�

❅
❅

•
β0

•
β−1

◦
β−2

where clearly the above represents diagrams with n > 2, but the structure can be inferred

for n = 0, 1 also, e.g. for n = 1 with the removal of the α−2 and β−2 roots from the above

diagram.

As done in the previous couple of segments for the (E̊8)−2n ⋄ (E̊8)−2n and (E̊8)−2n-

Lorentzian Toda field theories, we use the mass matrix in equation (3.56), to calculate

and plot the mass ratios that we present in figure 3.6.

We notice from figure 3.6 that the mass ratios also deviate from the massive theory

based on ga, unlike the stable noncrystallographic part we saw for the (E̊8)−2n-Lorentzian

Toda field theories. Giving behaviour similar to that of which we saw in the (E̊8)−2n ⋄
(E̊8)−2n with n ≥ 1, providing further confirmation that this disparity is a feature of

these symmetrically fused models, or rather that it was unique to those rather special

Lorentzian Toda field theories with almost stable noncrystallographic H4 compound.
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Figure 3.6: Mass ratios for the 7 + 2n particles in the (Å2)−2n ⋄ (Å2)−2n-Lorentzian Toda field
theories for n < 7.

From figure 3.7 we observe that the eigenvalues of the 2DK Painlevé matrix oscillate

in sign. Meaning that they also do not pass the Painlevé test, and hence are not integrable

theories like their gf and ga based counterparts. As previously mentioned, the following

chapter will focus on discovering Lorentzian Toda field theories that we will find to not

only pass the Painlevé test, but to also possess the Painlevé property - providing very

strong evidence that new integrable models may be found in certain Lorentzian Toda field

theories.

Figure 3.7: Real part of the eigenvalue spectra for the 2DK-matrix for the (Å2)−2n ⋄ (Å2)−2n-
Lorentzian Toda field theories for n < 7.
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This procedure is completely general and could be carried out for any (År)−2n ⋄
(År)−2n-Lorentzian Toda field theories, we choose the simplest (Å2)−2n ⋄ (Å2)−2n the-

ories to present here for as an arbitrary example from this series.

3.8 Summary

We began this chapter by presenting classical Toda theories, including the discrete Toda

lattice, the classical finite and affine Toda field theories, and the conformal affine Toda

theory. We noticed a pattern in the continuous classical integrable Toda field theories

that as we extended the base algebra, and hence the fields in the theory associated to

vectors in those base algebras, the theories alternated between massive and massless

theories with either non-conformal or conformal behaviour, respectively. We presented

these theories, along with proofs of their integrability, as motivation for further extending

Toda field theories and their associated Kac-Moody algebras, in ways akin to the extension

procedure we developed in chapter 2.

In this chapter’s development of Lorentzian Toda field theories, we introduced various

types of construction principles for massless, conformal theories and massive theories,

in which the simple roots of these were defined on Lorentzian lattices. We utilized the

Painlevé integrability test to establish that the Lorentzian theories presented here can not

be integrable; however, we still find valid theories and calculate their mass ratios. Some

of these theories maintain part of their integrable counterparts structure, for example the

(E̊8)−2n-theories contain the four masses of the noncrystallographic H4-theory obtained

by folding the integrable affine E8-theory. Remarkably, these masses are only slightly

changed for all values of n, so that we may view this feature as a remnant that survives

the perturbation of the integrable system.

In contrast to this chapter, the following focuses on tracking down any Lorentzian

Toda field theories that can possibly be integrable. To do so, we will have to move away

from the n-extended construction and theories perturbed around these. We shall still use

the Painlevé integrability test, but as this only provides a necessary and not sufficient

criteria for integrability, we shall also find Lorentzian Toda field theories that possess the

Painlevé property, providing the sufficient criteria of these theories’ integrability.
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Chapter 4

Painlevé Integrability of Lorentzian

Toda Systems

Integrability is the essential feature behind Toda field theory’s major successes. Recall

in chapters 1 and 3 we discussed many of these features including, for one, that Toda

field theories based on ga have exact scattering matrices, meaning that they are solved

exactly as their classical mass ratios are preserved to all orders of perturbation theory

[52, 53, 54, 55, 62] - a feature that is as rare as it is desirable amongst all quantum and

classical field theories. Identifying field theories as integrable is therefore important in

terms of their potential, and to determine what direction should be taken when further

analysing their properties.

Many techniques have been developed to determine the integrability of physical sys-

tems. For Toda field theories in particular, in section 3.1.1 we used the Lax pairs in

equation (3.4) to prove the integrability of discrete Toda field, and in section 3.3 we

utilized the zero-curvature condition to show the integrability of conformal affine Toda

field theories. In 3.6 we introduced the Painlevé test, which was effective in showing the

non-integrability of Lorentzian Toda field theories based on certain specific perturbations

of n-extended Kac-Moody algebras.

In this chapter, we again use the Painlevé test, but now as a tool to identify new

integrable Toda field theories. We find several categories of theories that pass the test, and

that the non-trivial theories must be based on Lorentzian lattices as they possess a simple

root whose squared norm is zero, hence we name them null root models. These models

are then shown to possess the Painlevé property - a property of the theory that means

its equations of motion have a general solution which can be shown to have no movable

critical singularities near any non-characteristic manifold [95] - whereby possession of the

Painlevé property means that a theory is integrable. There are many ways to determine

whether a theory possesses the Painlevé property [90, 95, 96, 97]. We use the WTCmethod

[89], in doing so we show that rank-2 null root models have the Painlevé property, and

have strong reasons to believe that higher spin and rank null root may also be shown to

be integrable in similar ways to the spin-3 rank-2 examples given in section 4.5.2 below.
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4.1 Painlevé Integrability of Toda Field Theories

For partial differential equations (PDEs), singularities occur on an analytic hypersurface

S with codimension 1 relative to the entire phase space. The equation

ϕ(z ) = 0, z = {z1, · · · , z2N} ∈ C2N (4.1)

describes the singular manifold where the singularities are contained in N complex di-

mensions. Recall that in section 3.6, ϕ is the manifold that we assumed our Painlevé

expansion solutions to be expanded around, in this chapter we will also take light-cone

coordinates such that z = {u, v} ∈ C2 for all the examples considered below. Sometimes

ϕ is described as non-characteristic manifold and S as a non-characteristic hypersurface in

C2N , this emphasises the fact that on a characteristic manifold we can not use Cauchy’s

existence theorem, which is essential in the process of proving that we have a unique

solution for the given initial value problem. Evidently, this means that it is essential for

ϕ to be non-characteristic, so that we can solve the initial value problem on our manifold.

Following from these definitions, the Painlevé property for a PDE may be defined as

a PDE with a general solution that has no moveable critical singularities near any non-

characteristic manifold, or equivalently following the definition of [95]: If S is an analytic

non-characteristic complex hypersurface in C2N , then every solution of the PDE which

is analytic on C2N\S is meromorphic on C2N , the solution is then said to possess the

Painlevé property and the PDE is Painlevé integrable. Where the distinction between

‘integrability’ and ‘Painlevé integrability’ is only that the integrability has been shown

through the Painlevé method in contrast to other techniques outlined when introducing

the classical integrable Toda field theories in chapter 3.

In searching for new integrable models in the proceeding sections of this chapter we

break our steps towards Painlevé integrability into two stages

1. Pass the Painlevé test. Or in other words, satisfy the necessary criteria of finding

as many positive integer resonances as the order of the system1

2. Possess the Painlevé property. As detailed above, this is sufficient criteria for

the system to be integrable

The machinery developed in chapter 3 provides a straight forward way of flagging

potential new integrable Toda field theory candidates that accomplish the conditions

stated in stage 1, the majority of this chapter will focus on providing a stronger argument

for the stage 2, for any new integrable candidates we find from 1.

1As previously discussed, for all Toda field theories based on algebras with a Cartan matrix K, the
order of the system is equal to the rank of K.
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4.1.1 Towards the Painlevé Property of Toda Field Theories

Our approach for achieving step 2 starts with the model or set of models we have found

to pass the Painlevé test. Passing this test will have given us enough positive integer

resonances, which we denote as N due to it identically matching the N real dimensions

of the analytic manifold. We also have that N = r where r is the rank of the underlying

algebra, the associated Cartan matrix, and hence the order of the Toda field theory’s PDE

we are interested in. In general, for Toda systems, to pass the test we require that there

are N positive integer resonances. It is also possible to achieve the Painlevé property with

negative integer resonances [97], and the so called weak Painlevé property can be satisfied

with non-integer resonances [96]. However, our analysis will stay consistent with previous

chapters and only focus on models analogous to Toda field theories based on finite and

affine Lie algebras, so we will still only be dealing with enough positive integer resonances

to match their rank.

At first sight, one may expect to find 2N − 1 = 2r − 1 resonances in an integrable

Toda system corresponding to the 2r− 1 arbitrary functions occurring along the analytic

manifold, ϕ coming from a meromorphic function, f = f(z1, · · · , z2N), {z1, · · · , z2N} ∈ C,
with no moveable critical singularities occurring on ϕ. This agrees with the notion of the

system having Liouville integrability of N real degrees of freedom with N analytic single

valued global integrals of motion in involution. However, as noted in Flaschka in [98], we

expect to see the behaviour of N = r resonances for the lowest balance Painlevé expansion,

and moreover for Toda systems the lowest balance is unique. To understand this notion

more concretely, we define what is meant by a balance and how this fits in with resonances

and the Painlevé property of some Toda field theories.

In general, a balance is a class of Painlevé expansions with the most negative power in

the series fixed, meaning that the dominant singular behaviour is most dependent at this

point. At certain powers of the expansion arbitrary parameters can be introduced, the

values of the powers in which this is possible are, as we know, identified as the resonances.

Painlevé expansion solutions that contain 2N − 1 resonances and arbitrary functions are

known as principle balances, whereas as mentioned above, those containing N resonances

and arbitrary functions are the lowest balances. Balances with amounts of resonances

between the principle and lowest balance values are also clearly possible, and more details

regarding these are discussed by Flaschka in [98] and references within.

The lowest balance is unique for a Toda PDE solution as it contains information

directly inherited from the 2N free parameters of the system. This was argued using the

technology of affine varieties and Schubert cells in [98], which we will spare all the details

of for our purposes here. Heuristically however, their argument may be understood as

the 2N complex constants of motion in involution for the integrable Toda system being

viewed as an affine variety. This may be done as we can find a function which takes these

2N constants to zero2, and hence this level set is also an affine variety in the affine space

2For our examples in this chapter and chapter 3, this function can be seen as det[T (k)] = 0. The
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of solutions. This affine variety can be compactified by the addition of ideal points at

infinity, achieved through the addition of varieties of real dimension N − 1, each of which

is parameterized by N − 1 of the 2N free parameters of the principle balance. In other

words, one can consider N of the 2N parameters to be used up to specify the values of the

N constants of motion of the Toda system as both currents of their W -algebras [99] and

exponents of the Lie algebra, as we did in the discussion within section 3.6. Moreover, for

all the models we examine in this chapter, we show explicitly that only the lowest balance

is possible in terms of the maximum possible number of positive integer resonances that

may be discovered.

For the Toda field theories considered in this chapter, we will thus use the lowest

balance to construct a meromorphic solution on the singular non-characteristic manifold,

ϕ, and show that it can possess the Painlevé property if it satisfies the definition in the

previous subsection. To do so, we will need to take each model that passes the Painlevé

test and solve the recursion equation, showing that we can find N = r free functions

in the general solution to the Painlevé expansion, corresponding to values found at the

resonances values hence showing that the solution is meromorphic on ϕ. We also expect

to uncover one final arbitrary functions, bringing us to a total of r+ 1, which will always

be related to the arbitrary expansion parameter.

For the r = 2 cases that we focus on, this means that we will uncover three arbitrary

functions in their general solutions. We will show that these solutions only depend on these

three arbitrary functions and the expansion parameter, meaning that any singularities

that occur in each expansion solution must be moveable due to the dependence on the

arbitrary functions, or equivalently that the solutions are meromorphic on the singularity

manifold ϕ. Hence, providing formal evidence for the Painlevé property and the Painlevé

integrability of the given model.

It is important to stress the formal nature of the evidence for the Painlevé property and

that at this point of analysis we have no information about the series convergence of the

solution. As noted for example in [90], there is the possibility of sequences of singularity

manifolds for single valued solutions which combine into a more complex singularity that

we cannot Painlevé expand. To rule out this possibility and to absolutely conclude the

system is integrable we must estimate the radius of convergence of the series. However,

there are, to the authors knowledge, no known examples of such models that pass the

Painlevé test, and are subsequently show to have Painlevé property via WTC methods

or otherwise, but have divergent series. We do not conduct this additional analysis here,

and only take note of this possibility.

remaining r resonances may be found at negative values, as we show in section 3.6.4 for the perturbed
n-extended Lorentzian Toda theories.
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4.3 Rank-2 Models that pass the Painlevé Test

Recall from section 3.6.4 that the Painlevé test could not be passed for the class of n-

extended Lorentzian Kac-Moody algebras that had been the focus of previous chapters.

In this section we search for new models that do pass the Painlevé test by determining

conditions on the Cartan matrix, K that allow for the test to be passed. We find that

some of these models must be described with a Lorentzian metric in their root space. For

some specific examples that we find to pass the Painlevé test, we prove they possess the

Painlevé property in later sections.

We restrict our introductory analysis to rank-2 Cartan matrices, K, as to simplify

calculations, although we make note of some higher rank solutions that follow the uncov-

ered patterns that also pass the tests of this section. We also note that our analysis is

not complete in the sense of proving that we have uncovered every general rank-2 Cartan

that passes the Painlevé test, as our main motivation here is to find the most reason-

able candidates to test their Painlevé integrability, so we stop short of exhausting all

possibilities.

Our results are split into roughly two categories of solutions that we find to pass the

Painlevé test. We only will perform further Painlevé analysis on one of these categories

of solutions due to physical reasons presented in the next section. Working with the

definitions given in chapter 3 for the Painlevé test, we start our analysis with

K =

(
a b

c d

)
, D =

1

ad− bc

(
d− b 0

0 a− c

)
, (4.2)

where {a, b, c, d} ∈ R. Hence, the Painlevé matrix, P = 2DK, takes the form

P =
1

ad− bc

(
2a (d− b) 2b (d− b)

2c (a− c) 2d (a− c)

)
. (4.3)

The associated eigenvalues of P are calculated to be λ = {2,−2(a−c)(b−d)
ad−bc

}, where the first
value is always fixed at 2, corresponding to the conserved quantity of the spin-2 current of

the energy-momentum tensor from the Toda field theory. Again, as discussed in section

3.6, it is well understood that the resonances, n are related to λ through λ = n(n − 1),

so we seek to solve

− 2(a− c)(b− d)

ad− bc
= n(n− 1), n ∈ Z+. (4.4)

Meaning that we would have two positive integer resonances for the Toda field theory

associated with K, thus passing the Painlevé test.

Solving equation (4.4) gives us two main categories of solutions, with the first that we

present below being a superset of the second. The first category has solutions of K that

take a form in which we have three free parameters and one fixed, giving the following four

possibilities for K that we split into two groups depending on the diagonal or off-diagonal
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position of the dependant value for ease of reference,

K =

(
c(b((n−1)n+2)−2d)
2b+d(n−2)(n+1)

b

c d

)
,

(
a b

c b(c((n−1)n+2)−2a)
a(n−2)(n+1)+2c

)
(4.5)

K =

(
a b

a(2b+d(n−2)(n+1))
b((n−1)n+2)−2d

d

)
,

(
a

d(a(−n2+n+2)−2c)
2a+c(−n2+n−2)

c d

)
(4.6)

Subbing the above equations (4.5) and (4.6) back into equation (4.3) results in the eigen-

values of P being λ = {2, n(n− 1)} as expected. It is not hard to see that we can recover

results of the finite Lie algebras that are known to pass the Painlevé test from the forms

of K in equations (4.5) and (4.6). For example, taking the second solution of K from

equation (4.6) with a = d = 2 and c = −1 results in K =
(

2 36
n(n−1)+6

−4

−1 2

)
, reproducing

KA2 =

(
2 −1

−1 2

)
, KC2 =

(
2 −2

−1 2

)
, KG2 =

(
2 −3

−1 2

)
. (4.7)

Which matches up precisely for the resonance of n = 2, 3, 6 values expected in the A2, C2

and G2 Lie algebras respectively. A similar calculation on our other solution in equation

(4.6) would clearly result in the K for D2, hence reproducing all the finite Lie algebras at

rank-2. Equation (4.5) can be seen as the K solutions of taking an non-normalized root

space, i.e. αi ·αj = Kij in opposed to the
2αi·αj

αi·αi
= Kij used for simple Lie algebras, where

αi for i ∈ {1, · · · , r} are the simple roots of the Lie algebra as before.

Continuing to examine the solutions (4.5) and (4.6), we immediately ask what other

values of n could be reasonable in terms of other potentially unfound algebras that will

pass the Painlevé test. For the series of known finite algebras in (4.7), we see that no

other values of n are valid for 36
n(n−1)+6

− 4 to be an integer. It may be the case that

consistent combinations that give integer values of {a, b, c, d} and positive integer n could

be found for in (4.5) and (4.6), at this stage we could perform an analysis similar to that

in section 3.6.4 to get further restrictions on their form according to the definiteness of K.

However, we will restrict our analysis to a subcategory of equations (4.5) and (4.6), with

the idea in mind that the novel form of the solutions in this subcategory will likely present

distinct physical behaviour in comparison to the finite and affine Toda field theories.

The second category of solutions gives four possibilities with two free variables, which

we again make the distinction between zeros that occur in diagonals and off-diagonals

K =

(
0 b

c 1
2
b(n− 1)n+ b

)
,

(
1
2
c(n− 1)n+ c b

c 0

)
, (4.8)

K =

(
a −1

2
d (n2 − n− 2)

0 d

)
,

(
a 0

−1
2
a (n2 − n− 2) d

)
. (4.9)
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This second category immediately stands out from any Cartan matrices we have previously

encountered through the presence of a zero value in their rows and columns. When zero

values occur in the diagonals of K we refer to these as null roots, due to our interpretation

that the roots have the property that αi · αi = 0. For zero values in off-diagonals, we

view this as non-commutativity in root space and clearly have that αi · αj ̸= αj · αi with

αi · αj = 0 for some αi.

Due to the presence of zeros in their K’s, the solutions (4.8), (4.9) will likely have

distinct physical behaviour with respect to their super category (4.5) and (4.6), which

reproduce the known finite and associated affine Toda field theory results [84]. Narrowing

down our search to the models of equations (4.8), (4.9), in the next subsection we will

use the methods developed in chapter 3 to examine the physical properties of Toda field

theories associated to these Cartan matrices. In examining the physics of (4.8), (4.9) we

hope to rule out any trivial behaviour before conducting in-depth Painlevé analysis that

may occur in some of these models, which we cannot identify at the level of analysis of

K alone.

4.4 Physical Behaviour of the Integrable Candidates

Writing down the Toda field theory Lagrangian, as we did in equation (3.6) of chapter 3,

as

L =
1

2
∂µφ∂

µφ− g

β2

r∑
i=1

eβαi·φ (4.10)

where we denote φ as the fields to distinguish in our notation the singular manifold, ϕ

of equation (4.1), and all other quantities are as before. Following standard practice and

using ∂µ
∂L

∂(∂µφa)
= ∂L

∂φa with a ∈ {1, · · · , r}, the Euler-Lagrange equations result from

equation (4.10), and can be written as

∂µ∂
µφ+

g

β

r∑
i=1

αa
i e

βαi·φ = 0

∂µ∂
µαj · φ+

g

β

r∑
i=1

αj · αa
i e

βαi·φ = 0,

(4.11)

making the identity Φ := αi · φ− 1
β
lnχi, where χi is to be found, substituting this in to

equation (4.11) we have that

∂µ∂
µΦj +

g

β

r∑
i=1

χi(αj · αa
i )e

βαi·Φ = 0

∂µ∂
µΦj +

g

β

r∑
i=1

Kjie
βαi·Φ = 0,

(4.12)
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for χi =
2
α2
i
where we identify Kji as the Cartan matrix. Concentrating on rank-2 models

with K of the form in equation (4.2) we find that the equations of motion from above

take the form

∂µ∂
µΦ1 +

g

β
(aeβΦ1 + beβΦ2) = 0

∂µ∂
µΦ2 +

g

β
(ceβΦ1 + deβΦ2) = 0.

(4.13)

Hence, we see that taking c → 0 or b → 0 corresponding to equations with zeros in

off-diagonal positions as in equation (4.9) means that equation (4.13) partially decouples

into unconnected equations of motion. Whereas taking a → 0 or d → 0 we do not see this

partial decoupling. The latter behaviour we term as belonging to the null-root models,

whereas the former we refer to as partially decoupled models.

The behaviour of these partially decoupling models seems to be more trivial than that

of the null-root models. For example, take c = 0, d = 2 (or b = 0, a = 2), then we have

decomposition into an A1 Toda field theory equation of motion for the first (resp. second)

equation of (4.13), with the equation of motion for the other field being dependent on both

fields. Studying the behaviour of these partially decoupled models could be interesting in

its own right, for example as a nonsymmetric perturbation of (A1)1 with Φ1 by another

field Φ2 from (A1)2, such analysis is similar but not identical to that conducted in [100],

in which they examine an A1 Toda system, perturbing it with another field such that

the resulting model has behaviour halfway between the Louisville equation and the sinh-

Gordon equation. Here however, we make the decision to not study these models further

in this chapter’s discussion, and we focus our Painlevé analysis on the non-decoupling

null-root models we have uncovered in above calculations.

4.5 Painlevé Integrability and the Painlevé Property

As previously discussed, it is well known that Toda theories based on finite and affine

Lie-algebras are integrable, in the classical sense [91][43]. They are also integrable as

quantum field theories, and it is even possible to find exact S-matrices of these models

[84][52]. As exemplified in the provided references above, often the integrability of these

systems is shown through finding Lax pairs or the zero-curvature representation of the

system. For this subsection we focus on the Painlevé integrability of A2, for which the

zero-curvature representation and Lax pairs have been found [101], and therefore A2’s

integrability established.3

Even though the integrability of A2 has been established, the examination of section

(4.5.1) is useful for several reasons. Firstly, as far as we could find in the literature, the

Painlevé analysis on the finite and affine Toda theories has not been previously under-

3As mentioned, and shown with the references of this paragraph, the Lax pairs and zero-curvature
representations have been found for all affine and finite Toda field theories based on ADE algebras. We
stress this for A2 as this is the example model that we will also show Painlevé integrability for.
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taken, which is understandable as their integrability has been already established by the

mean discussed above. Hence, it will be beneficial to see a concrete working example of

Painlevé integrability. Secondly, A2 will provide us with a good idea of what the Painlevé

integrability should look like when we examine the rank-2 null-root models in section

4.5.2.

4.5.1 Painlevé Property of A2

For the A2 Toda theory we start with

K =

(
2 −1

−1 2

)
, M =

 −
√
2 0

1√
2

√
3
2

 (4.14)

where K is Cartan matrix and M is a 2-dimensional matrix representation of the simple

roots, {α1, α2}, such that M · MT = K, and all dot products will be taken with a

Euclidean inner product for A2 Subbing these values, along with D1, D2 = 1 for A2, into

the equations from section 3.6 for the recurrence relation, T (k) ·X(k) = Y (k), derived from

the Painlevé equation (3.59), we have

T (k) =


kϕ̇ 0 −

√
2npnqϕ̇ϕ́ 0

0 kϕ̇ 1√
2
npnqϕ̇ϕ́

√
3
2
npnqϕ̇ϕ́

−
√
2 1√

2
(k − np)ϕ̇ 0

0
√

3
2

0 (k − np)ϕ̇

 (4.15)

where np, nq are the balances that will be discussed shortly, and ϕ := ϕ(u, v) is the field in

light-cone coordinates (u, v) that we aim to show the solutions of the recurrence relations

are meromorphic, i.e. possessing moveable no critical singularities in the limit ϕ(u, v) → 0.

The other quantities in the recurrence relation take the form

Y (k) =


−
∑k−1

i=1

√
2b

(i)
1 a

(k−i)
1∑k−1

i=1

(
b
(i)
1√
2
+
√

3
2
b
(i)
2

)
a
(k−i)
2

0

0

 , X(k) =


a
(k)
1

a
(k)
2

b
(k)
1

b
(k)
2

 (4.16)

where the ai and bi are the expansion coefficients from the Painlevé expansion that we

expect at least 2 to be arbitrary if this A2 Toda field theory is to possess the Painlevé

property. We find that the determinate of T (k) for A2 takes the form

detT (k) =
(
k2 − np (k + nq)

) (
k2 − np (k + 3nq)

)
ϕ̇2ϕ́2 (4.17)

At this point, to continue with our analysis we would like to know what balances,

np, nq > 0 are admissible for valid resonances of the A2 Toda theory. We find that if we

require detT (2) = detT (3) = 0, the only possible integer solutions for the balances are
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np = 1, nq = 2, resulting in

detT (k) = (k − 3)(k − 2)(k + 1)(k + 2)ϕ̇2ϕ́2, (4.18)

where the resonances occur identically at the values of k that satisfy this equation. Ev-

idently detT (k) = 0 for some k < 0, meaning that, for the reasons that we discussed in

section 4.1.1, this is the lowest balance solution that we expected to find.4

It is also no surprise that this solution clearly shows that A2 passes the Painlevé test,

containing enough positive integer resonances, k = {2, 3}, to match its rank. To show

that A2 also possesses the Painlevé property, we now aim to solve the recurrence relations

and expect to find three free parameters in doing so. As is standard practice in the

WTC Painlevé method [89], we employ the Kruskal simplification on our field, ϕ, so that

ϕ(u, v) = u− ξ(v), where ξ(v) is an arbitrary choice of function at this stage. From here

on, we shall denote ξ := ξ(v) and its derivative as ξ′, for notation’s sake.

To solve the Painlevé expansions equations (3.59), for A2 we seek to solve


a
(k)
1

a
(k)
2

b
(k)
1

b
(k)
2

 =



(k−1)

(
(k2−k−4)

∑k−1
i

√
2b

(i)
1 a

(k−i)
1 +2

∑k−1
i

(
b
(i)
1√
2
+
√

3
2
b
(i)
2

)
a
(k−i)
2

)
(k−3)(k−2)(k+1)(k+2)ξ′

(k−1)

(
(−k2+k+4)

∑k−1
i

(
b
(i)
1√
2
+
√

3
2
b
(i)
2

)
a
(k−i)
2 +2

∑k−1
i −

√
2b

(i)
1 a

(k−i)
1

)
(k−3)(k−2)(k+1)(k+2)ξ′

(2k2−2k−6)
∑k−1

i

√
2b

(i)
1 a

(k−i)
1 +k(k−1)

∑k−1
i

(
b
(i)
1√
2
+
√

3
2
b
(i)
2

)
a
(k−i)
2

√
2(k−3)(k−2)(k+1)(k+2)ξ′

−

√
3
2

(
(−k2+k+4)

∑k−1
i

(
b
(i)
1√
2
+
√

3
2
b
(i)
2

)
a
(k−i)
2 −2

∑k−1
i

√
2b

(i)
1 a

(k−i)
1

)
(k−3)(k−2)(k+1)(k+2)ξ′


(4.19)

to find the expansion parameters at each level k. Or at levels in which the RHS of equation

(4.19) we must show that any potential arbitrary values of the expansion parameters found

can be substituted into all levels of the recursion relations T (k) ·X(k) = Y (k) consistently.

This is show systematically through each level in the proceeding calculations.

Level k = 0

Using equation (3.63) with the derivative of the field from Kruskal simplification, ξ′, and

appropriate constants for A2, n = −1 and r = 2, we find that

a
(0)
i = 2ξ′Di, b(0)α = 2

2∑
i=1

(MT )αiξ
′Di, (4.20)

4Further basic analysis on the roots of equation (4.17) shows that only the lowest balance solutions
will be possible as negative values of k are unavoidable. Explaining why we uncover the k = −1,−2
resonances in this example, and also similar negative resonances in further examples, which we shall
examine shortly.
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resulting in 
a
(0)
1

a
(0)
2

b
(0)
1

b
(0)
2

 =


ξ′

2ξ′

−
√
2 ξ′√
6 ξ′

 , (4.21)

where ξ is our first discovered arbitrary function, we will need to check that ξ stays

arbitrary at all higher levels too.

Level k = 1

At this level T (1) is also invertible, hence we can easily find the RHS of equation (4.19)

through substitution of the appropriate quantities resulting in
a
(1)
1

a
(1)
2

b
(1)
1

b
(1)
2

 =


0

0

0

0

 . (4.22)

Level k = 2

T (2) is singular, corresponding to the resonance related to the spin-2 energy-momentum

tensor of A2. Comparing both sides of T (2) ·X(2) = Y (2) gives
−2
(
a
(2)
1 −

√
2b

(2)
1

)
ξ′

−
((

2a
(2)
2 +

√
2b

(2)
1 +

√
6b

(2)
2

)
ξ′
)

−
√
2a

(2)
1 +

a
(2)
2√
2
+ b

(2)
1√

3
2
a
(2)
2 + b

(2)
2

 =


−
√
2a

(1)
1 b

(1)
1

a
(1)
2

(
b
(1)
1 +

√
3b

(1)
2

)
√
2

0

0

 . (4.23)

Substituting in the values in from level-1 and solving results in

 a
(2)
2

b
(2)
1

b
(2)
2

 =


a
(2)
1

1√
2
a
(2)
1

−
√

3
2
a
(2)
1

 , (4.24)

where a
(2)
1 is the second arbitrary function that we will see stays arbitrary at all higher

levels.

Level k = 3

T (3) is also singular, so we proceed analogously to the above k = 2 case and find that

T (3) ·X(3) = Y (3) yields
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

(
2
√
2b

(3)
1 − 3a

(3)
1

)
ξ′

−
((

3a
(3)
2 +

√
2b

(3)
1 +

√
6b

(3)
2

)
ξ′
)

−
√
2a

(3)
1 +

a
(3)
2√
2
+ 2b

(3)
1√

3
2
a
(3)
2 + 2b

(3)
2

 =


0

0

0

0

 , (4.25)

after subbing in the values from levels k = 1, 2 into the RHS. Solving for the expansion

coefficients gives

 a
(3)
2

b
(3)
1

b
(3)
2

 =


−a

(3)
1

3
2
√
2
a
(3)
1

1
2

√
3
2
a
(3)
1

 , (4.26)

where a
(3)
1 is arbitrary. Hence, we have uncovered three arbitrary functions, and as T (k)

is not singular at any higher levels no more will be introduced.

General Painlevé Expansion Solutions

To proceed we will examine the form of equation (4.19) to find solutions to the Painlevé

expansions, and show that these solutions are meromorphic on the singular analytic mani-

fold we formed these expansions around. From equation (4.19) we can see that the highest

power of the expansion parameter on the RHS corresponds to one less than that on the

LHS. However, as a
(1)
i = b

(1)
i = 0 for i = {1, 2} we can identify that the highest terms that

occur will be two powers less on the RHS to the LHS. Taking each of the values from the

k = 0, 1, 2, 3 level solutions found above and subbing these first into (4.19) and then the

Painlevé expansion gives

P1 =−
√
2ξ′ϕ−1 +

3a
(3)
1 ϕ

2
√
2

+
(a

(2)
1 )2ϕ2

10
√
2ξ′

+
15a

(2)
1 a

(3)
1 ϕ3

28
√
2ξ′

+
15a

(2)
1 a

(3)
1 ϕ4

28
√
2ξ′

+
ϕ5
(
15(a

(3)
1 )2ξ′ + 4(a

(2)
1 )3

)
280

√
2ξ′2

+
3(a

(2)
1 )2a

(3)
1 ϕ6

20
√
2ξ′2

+
ϕ7
(
50(a

(3)
1 )2a

(2)
1 ξ′ + 3(a

(2)
1 )4

)
1400

√
2ξ′3

+
3a

(3)
1 ϕ8

(
17(a

(3)
1 )2ξ′ + 30(a

(2)
1 )3

)
2464

√
2ξ′3

+
ϕ9
(
1285(a

(3)
1 )2(a

(2)
1 )2ξ′ + 28(a

(2)
1 )5

)
86240

√
2ξ′4

+
3a

(3)
1 ϕ10

(
3275(a

(3)
1 )2a

(2)
1 ξ′ + 1382(a

(2)
1 )4

)
509600

√
2(ξ′)4

+ ...

(4.27)

Where we have taken terms up to ϕ10 but could generate terms up to arbitrary order. P2

takes the form
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P2 =

√
6ξ′

ϕ
−
√

3

2
a
(2)
1 ϕ+

1

2

√
3

2
a
(3)
1 ϕ2 −

√
3
2
(a

(2)
1 )2ϕ3

10ξ′
+

5
√

3
2
a
(2)
1 a

(3)
1 ϕ4

28ξ′

−

√
3
2
ϕ5
(
15(a

(3)
1 )2ξ′ + 4(a

(2)
1 )3

)
280ξ′2

+

√
3
2
(a

(2)
1 )2a

(3)
1 ϕ6

20ξ′2
−

√
3
2
ϕ7
(
50(a

(3)
1 )2a

(2)
1 ξ′ + 3(a

(2)
1 )4

)
1400ξ′3

+

√
3
2
a
(3)
1 ϕ8

(
17(a

(3)
1 )2ξ′ + 30(a

(2)
1 )3

)
2464ξ′3

−

√
3
2
ϕ9
(
1285(a

(3)
1 )2(a

(2)
1 )2ξ′ + 28(a

(2)
1 )5

)
86240ξ′4

+

√
3
2
a
(3)
1 ϕ10

(
3275(a

(3)
1 )2a

(2)
1 ξ′ + 1382(a

(2)
1 )4

)
509600ξ′4

+ ...

(4.28)

For the Qi’s we have that

Q1 =
2ξ′

ϕ2
− a

(2)
1 + a

(3)
1 ϕ+

3(a
(2)
1 )2ϕ2

10ξ′
+

5a12a
(3)
1 ϕ3

7ξ′
+

ϕ4
(
15(a

(3)
1 )2ξ′ + 4(a

(2
1 )

3
)

56ξ′2

+
3(a

(2)
1 )2a

(3)
1 ϕ5

10ξ′2
+

ϕ6
(
50(a

(3)
1 )2a12ξ

′ + 3(a
(2)
1 )4

)
200ξ′3

+
a
(3)
1 ϕ7

(
17(a

(3)
1 )2ξ′ + 30(a

(2)
1 )3

)
308ξ′3

+
9ϕ8

(
1285(a

(3)
1 )2(a

(2)
1 )2ξ′ + 28(a

(2)
1 )5

)
86240ξ′4

+
a
(3)
1 ϕ9

(
3275(a

(3)
1 )2a

(2)
1 ξ′ + 1382(a

(2)
1 )4

)
50960ξ′4

+ ...

(4.29)

and

Q2 =
2ξ′

ϕ2
+ a

(2)
1 − a

(3)
1 ϕ+

3(a
(2)
1 )2ϕ2

10ξ′
− 5a12a

(3)
1 ϕ3

7ξ′
+

ϕ4
(
15(a

(3)
1 )2ξ′ + 4(a

(2
1 )

3
)

56ξ′2

− 3(a
(2)
1 )2a

(3)
1 ϕ5

10ξ′2
+

ϕ6
(
50(a

(3)
1 )2a12ξ

′ + 3(a
(2)
1 )4

)
200ξ′3

−
a
(3)
1 ϕ7

(
17(a

(3)
1 )2ξ′ + 30(a

(2)
1 )3

)
308ξ′3

+
9ϕ8

(
1285(a

(3)
1 )2(a

(2)
1 )2ξ′ + 28(a

(2)
1 )5

)
86240ξ′4

−
a
(3)
1 ϕ9

(
3275(a

(3)
1 )2a

(2)
1 ξ′ + 1382(a

(2)
1 )4

)
50960ξ′4

+ ...

(4.30)

up to terms including terms of the order ϕ9, where like the Pi terms we can generate

terms of Qi up to arbitrary order in ϕ. From the form of these four solutions, we can

show that up to any arbitrary order the expansions may be written solely in terms of the

three arbitrary functions a
(2)
1 , a

(3)
1 and ξ, allowing us to conclude that these expansions

83



give a meromorphic solution fitting with the definition of the Painlevé property, giving

strong indication that the system is Painlevé integrable as expected.

4.5.2 Painlevé Property of spin-3, Rank-2 Null-Root Models

Now we have seen the Painlevé property argued for an example that we already know to

be integrable, we move on to examining the null-root solutions that we found to pass the

Painlevé test. We follow an analogous process to the previous subsection, with the only

difference being we will use a Lorentzian inner product throughout and the Euclidean

inner product used for A2. Hence, we argue for the Painlevé property for systems in the

form of equation (4.8), in which we set b, c → −dc for clarity in calculation and n → 3,

so that we have spin-3 null-root model solutions as desired5, meaning we have

K =

(
0 −dc

−dc −4dc

)
, M =

(
0 d

c 2d

)
, (4.31)

where again M ·MT = K, with the rank-2 Lorentzian inner product such that

w · z = −w1z2 − w2z1, (4.32)

for the vectors w = (w1, w2) and z = (z1, z2). Proceeding as we did with A2, we find that

T (k) =


kϕ̇ 0 0 6ϕ̇ϕ́

c

0 kϕ̇ −2ϕ̇ϕ́
d

−4ϕ̇
c

−d −2d (k − 1)ϕ́ 0

0 −c 0 (k − 1)ϕ́

 , X(k) =


a
(k)
1

a
(k)
2

b
(k)
1

b
(k)
2

 , (4.33)

where we have transformed MT as to absorb the Lorentzian inner product so that we can

use regular matrix multiplication with the Euclidean inner product, doing so we calculate

the determinant of T (k) to be

detT (k) = (k − 3)(k − 2)(k + 1)(k + 2)ϕ̇2ϕ́2, (4.34)

we have again k = {2, 3} as the resonances we expected to find, so we can confirm by this

explicit calculation that this rank-2 null root model passes the Painlevé test. Y (k) takes

the form

5We set n = 3 as we choose to study resonances {2, 3}, but clearly this method can be applied to
higher spin solutions of these null-root models by altering the value of n to the resonance and hence spin
of our choosing.
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Y (k) =


−
∑k−1

i=1 db1(i)a1(k − i)

−
∑k−1

i=1 a2(k − i) (2db1(i) + cb2(i))

0

0

 , (4.35)

where d, c remain as arbitrary real constants throughout.

Next, we again employ the Kruskal’s simplification on, ϕ, so that ϕ(u, v) = u − ξ(v),

with ξ an arbitrary function. For k ≥ 1 the expansion coefficients for the Painlevé

expansion solutions are found to be


a
(k)
1

a
(k)
2

b
(k)
1

b
(k)
2

 =



−
(k−1)

(
6
∑k−1

i a
(k−i)
2

(
2db

(i)
1 +cb

(i)
2

)
+(−k2+k+8)

∑k−1
i +db

(i)
1 a

(k−i)
1

)
(k−3)(k−2)(k+1)(k+2)ξ′

(k−1)
(
(k−1)k

∑k−1
i a

(k−i)
2

(
2db

(i)
1 +cb

(i)
2

)
+2
∑k−1

i db
(i)
1 a

(k−i)
1

)
(k−3)(k−2)(k+1)(k+2)ξ′

−
d
(
2(−k2+k+3)

∑k−1
i a

(k−i)
2

(
2db

(i)
1 +cb

(i)
2

)
+(−k2+k+4)

∑k−1
i db

(i)
1 a

(k−i)
1

)
(k−3)(k−2)(k+1)(k+2)ξ′

c
(
(k−1)k

∑k−1
i a

(k−i)
2

(
2db

(i)
1 +cb

(i)
2

)
+2
∑k−1

i db
(i)
1 a

(k−i)
1

)
(k−3)(k−2)(k+1)(k+2)ξ′


, (4.36)

so that we may now proceed to solve at each level and check if we may find the two

remaining arbitrary parameters that we would need to form a meromorphic solution to

the Painlevé expansion.

Level k = 0

For k = 0 we use equations (4.20) with D1 =
3
cd
, D2 = − 1

cd
, and find that

a
(0)
1

a
(0)
2

b
(0)
1

b
(0)
2

 =


6ξ′

dc

−2ξ′

dc

−2ξ′

d
2ξ′

c

 , (4.37)

where ξ remains an arbitrary parameter.

Level k = 1

T (1) is invertible, hence solving (4.36) for k = 1 results in
a
(1)
1

a
(1)
2

b
(1)
1

b
(1)
2

 =


0

0

0

0

 . (4.38)
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Level k = 2

As k = 2 corresponds to the conserved spin related to the energy-momentum tensor, we

will again find that T (2) is singular. As before, comparing both sides of T (2) ·X(2) = Y (2)

yields 
−

2
(
a
(2)
1 c+3b

(2)
2

)
ξ′

c

2ξ′
(
a
(2)
2 (−d)c+2b

(2)
2 d+b

(2)
1 c

)
dc

b
(2)
1 −

(
a
(2)
1 + 2a

(2)
2

)
d

b
(2)
2 − a

(2)
2 c

 =


a
(1)
1 b

(1)
1 (−d)

a
(1)
2

(
−2b

(1)
1 d− b

(1)
2 c
)

0

0

 . (4.39)

Substituting in the values in from level-1 and solving results in

 a
(2)
2

b
(2)
1

b
(2)
2

 =


−3b

(2)
2

c

b
(2)
2

c

− b
(2)
2 d

c

 , (4.40)

where for this model we find b
(2)
2 as a second arbitrary function.

Level k = 3

T (3) is again singular, and we find that after substituting in the above results from k =

0, 1, 2, T (3) ·X(3) = Y (3) gives
−

3
(
a
(3)
1 c+2b

(3)
2

)
ξ′

c

ξ′
(
−3a

(3)
2 dc+4b

(3)
2 d+2b

(3)
1 c

)
dc

2b
(3)
1 −

(
a
(3)
1 + 2a

(3)
2

)
d

2b
(3)
2 − a

(3)
2 c

 =


0

0

0

0

 , (4.41)

after subbing in the values from levels k = 1, 2 into the RHS. Solving for the expansion

coefficients gives  a
(3)
1

b
(3)
1

b
(3)
2

 =

 −a
(3)
2

1
2
a
(3)
2 d

1
2
a
(3)
2 c

 , (4.42)

where a
(3)
2 is now arbitrary. Hence, we have uncovered three arbitrary functions and as

we can see from the determinant of T (k), it is not singular at any higher levels, so no more

arbitrary functions will be introduced.

General Painlevé Expansion Solutions

Substituting the relations found for levels k = 0, 1, 2, 3 into equations (4.36) allows us to

write down each term of the Painlevé expansion solutions power by power. We can do
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this up to arbitrarily high powers of ϕ, and present here up to ϕ6:

P1 =− 2ξ′

d
ϕ−1 − b

(2)
2 dϕ

c
+

1

2
a
(3)
2 dϕ2 +

b
(2)
2

2dϕ3 (3c2 − 2d2)

10c2ξ′
+

a
(3)
2 b

(2)
2 dϕ4 (17c2 − 14d2)

84cξ′

+
dϕ5

(
5a

(3)
2

2c3 (41d2 + 27c2) ξ′ + 12b
(2)
2

3 (25d4 − 47d2c2 + 18c4)
)

3360c3ξ′2

− a
(3)
2 b

(2)
2

2dϕ6 (91d4 + 262d2c2 − 299c4)

5040c2ξ′2
+ ...

(4.43)

Where we have taken terms up to ϕ10 but could generate terms up to arbitrary order. P2

takes the form

P2 =
2ξ′

c
ϕ−1 + b

(2)
2 ϕ+

1

2
a
(3)
2 cϕ2 +

b
(2)
2

2ϕ3 (2c2 − 3d2)

10cξ′
+

a
(3)
2 b

(2)
2 ϕ4 (10c2 − 7d2)

84ξ′

+
ϕ5
(
5a

(3)
2

2c3 (29d2 + 15c2) ξ′ + 12b
(2)
2

3 (17d4 − 23d2c2 + 10c4)
)

3360c2ξ′2

+
a
(3)
2 b

(2)
2

2ϕ6 (−133d4 − 82d2c2 + 161c4)

5040cξ′2
+ ...

(4.44)

For the Qi’s we present up to ϕ5:

Q1 =
6ξ′

dc
ϕ−2 +

3b
(2)
2

c
− a

(3)
2 ϕ− 3b

(2)
2

2ϕ2 (c2 − 4d2)

10c2ξ′
− a

(3)
2 b

(2)
2 cϕ3

7ξ′

−
ϕ4
(
5a

(3)
2

2c3 (17d2 + 3c2) ξ′ + 12b
(2)
2

3 (9d4 + d2c2 + 2c4)
)

672c3ξ′2

− a
(3)
2 b

(2)
2

2ϕ5 (−175d4 + 98d2c2 + 23c4)

840c2ξ′2
+ ...

(4.45)

and

Q2 =− 2ξ′

dcϕ2
+

b
(2)
2

c
+ a

(3)
2 ϕ+

3b
(2)
2

2ϕ2 (2c2 − 3d2)

10c2ξ′
+

a
(3)
2 b

(2)
2 ϕ3 (10c2 − 7d2)

21cξ′

+
ϕ4
(
5a

(3)
2

2c3 (29d2 + 15c2) ξ′ + 12b
(2)
2

3 (17d4 − 23d2c2 + 10c4)
)

672c3ξ′2

+
a
(3)
2 b

(2)
2

2ϕ5 (−133d4 − 82d2c2 + 161c4)

840c2ξ′2
+ ...

(4.46)

We can clearly see that to arbitrary order of expansion we may write our solutions in

terms of a
(3)
2 , b

(2)
2 and ξ, giving us meromorphic solutions, and providing strong evidence
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for the Painlevé property of this rank-2 null-root model. Hence, the class of rank-2 null-

root models with Cartan matrices of the form (4.31) have strong evidence that they are

integrable.

4.6 Summary

In this chapter, we examined a new class of rank-2 integrable Toda field theories based on

Lorentzian root lattices, and showed their integrability through a Painlevé analysis. We

started by discussing the limitations of the Painlevé test, emphasising that it only gives

necessary but not sufficient conditions for integrability of a given model, and therefore

is effective for its usage in chapter 3 for ruling out integrability, whereas for proving

integrability more analysis must be conducted. Sufficient conditions are, however, given

through possession of the Painlevé property, which we proved first for a known integrable

model - the finite A2 Toda theory - and then for the new class of rank-2 integrable Toda

field theories.

Starting from the Painlevé test, we highlighted possible rank-2 Toda field theories,

which satisfy the necessary condition of possessing enough positive integer resonances to

pass the test. From this analysis, we recovered the Cartan matrices for all the expected

finite Toda theories, but also uncovered several categories of theories that previously had

not been examined. Of these categories, the null root models were non-trivial and did

not decouple into any known Toda systems, so these were singled out as candidates to

conduct further Painlevé analysis on.

As a proof of concept, we first showed that the integrable A2 Toda theory possessed

the Painlevé property, and continued to show that all the rank-2 null root Toda field

theories based on Lorentzian root lattices possess the Painlevé property. This was shown

through examination of the Painlevé equations at various levels of their recursion - in

doing so, we showed that there existed enough arbitrary functions within the Painlevé

equations, so that all solutions to an arbitrary high order of recursion depend only on

these arbitrary functions. This meant that any singularities in the solutions for the A2

Painlevé equations must not be movable, hence illustrating that they possess the Painlevé

property by definition.

The null root models possessing the Painlevé property gives very strong indication of

their integrability. We noted that there is the possibility of the Painlevé solutions diverg-

ing, so that sequences of singular manifolds, for which we have free solutions on, com-

bining into a more complex singularity that we can no longer solve through the Painlevé

expansion methods. In adjacent work [102], the authors eliminated the possibility of this

divergence through directly showing the convergence of the solutions. However, as these

authors noted, there are no known examples of this behaviour, and even contriving one

appears to be counterintuitive - so at this stage we still conclude that the null root models

are new integrable theories, and leave such additional analysis to future exploration as it
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will provide interest in its own right.

There is nothing special about the spin-3 or rank-2 nature of the null root models

studied in this chapter. In fact, a simple calculation on the Painlevé matrix of higher

rank models that also possess a null root in certain positions also pass the Painlevé

test, and very likely will also possess the Painlevé property, and this is also true for

higher spin models at rank-2 or above. Our choice of rank-2 was only illustrative, as

the number of Painlevé expansion equations to solve, and constants within each, both

increase with the rank, meaning such calculations are harder to present without more

computational automation with this current method. However, as is the case with the

finite and affine series of Lie algebras, well-defined patterns in the Cartan matrices of the

null root models will lead to more classifications of potential integrable Toda field theories

based on Lorentzian root lattices, but also new Kac-Moody like algebraic structure which

can be studied independently of their field theory properties.
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Chapter 5

Conclusion

5.1 Overview

Throughout this thesis, we have examined the integrability and other physical features

of field theories that are built from Lorentzian Kac-Moody algebras. To do so, we have

developed a framework to study a new class of Lorentzian Kac-Moody algebras, which

we named the n-extended Lorentzian Kac-Moody algebras, g−n. Utilizing aspects of the

framework used to form g−n, we built new classes of Lorentzian Toda field theories based

on perturbed g−n structures, analysed a number of these theories physical features and,

for some models, determined their non-integrability through the Painlevé test. Finally,

we conducted more Painlevé analysis on rank-2 Toda field theories, and found that there

were more options than those already known that passed the Painlevé test and therefore

were likely to be integrable. To illustrate this, for one Lorentzian rank-2 spin-3 Toda

field theory, we proved through the possession of the Painlevé property that this theory

is integrable - demonstrating that the other theories in this new Lorentzian class of Toda

field theories are likely to also be integrable.

The journey throughout this thesis began with an overview of the status and impor-

tance of field theories within physics, especially highlighting the historical successes of

integrability and its uses in exactly solving the equations of motions for a given theory.

We also highlighted the importance of Lorentzian Kac-Moody algebras in describing the

symmetry groups of string theory, whereby the hyperbolic and Lorentzian Kac-Moody

algebras E10 and E11, respectively, play an essential role in string theories unification

through M-theory.

Continuing from this motivation, we developed a framework to define the new class

of Lorentzian Kac-Moody algebra, g−n mentioned above, through building from rank-r

finite, gf , and affine, ga, Kac-Moody algebras and extending their simple roots, αi for

i ∈ {1, · · · , r} on top of the affine root α0. In this way, we constructed Dynkin diagrams

for g−n and corresponding root and weight lattices for these n-extended simple roots, α
(n)
i

for i ∈ {−n, · · · , 0, 1, · · · , r}, with fundamental weights λ
(n)
i - both of which we gave closed

formulas for all orders of n, from any starting root or weight basis of gf . We identified
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the set of constants D
(n)
i , which occurred naturally from summing over indices of the

inverse Cartan matrix, but also occurred within the context of 3-dimensional principal

subalgebras of g−n. The D
(n)
i constants led us to discover that certain g−n decompose

into sub-g−n and gf algebras, through a novel and very natural decomposition procedure,

and we gave an exhaustive list of all of these possible decompositions.

In chapter 3 we introduced various flavours of Toda field theories, and developed a

method, based on the extension method from the previous chapter, to extend Toda field

theories based on gf and ga. This meant that the resulting extended theories had fields,

ϕi, based on the Lorentzian root system g−n, and perturbations around its corresponding

simple roots, α
(n)
i , again with i ∈ {−n, · · · , 0, 1, · · · , r}. We named these new models

Lorentzian Toda field theories, and observed that the behaviour of these theories alter-

nated between conformal and massive, on addition of each simple root in the extension

procedure. Through use of the Painlevé test, we showed that these theories, conformal

or massive, were not integrable. Focusing on the massive theories, we calculated mass

ratios for several examples, observing that mass ratios for the finite parts of the extended

theory can be maintained, a feature that we attributed to the integrability of the finite

theory that we perturbed during the n-extension procedure.

Chapter 4 focused on using the Painlevé test and Painlevé property to find new inte-

grable Toda field theories with simple roots dictating field content based on Lorentzian

lattices. Focusing on rank-2 models, the Painlevé test was initially used to discover all

categories of rank-2 Cartan matrices that had enough positive integer resonances to pass

the test. From this, we recovered all the expected known integrable Toda field theories

based on gf , but also found some non-trivial unknown solutions that contained a simple

root of 0 length. We named these models, null root theories, and they could only be un-

derstood naturally through their simple roots existing on a non-Euclidean lattice, which

we chose to be Lorentzian for reasons discussed in chapters 2 and 3. Taking one rank-2

spin-3 null root model as an example, we showed that it not only passed the Painlevé test,

but also possessed the Painlevé property, meaning this Lorentzian Toda field theory is an

integrable model. We concluded by describing how this example could be generalised, and

that other null root models of higher rank and spin are also very likely to be integrable

in the sense of passing the Painlevé test and possessing the Painlevé property.

5.2 Outlook

There are a number of questions that remain unanswered in light of the results uncov-

ered over the course of this thesis. A tough and pure mathematical question to answer

regarding the n-extended Lorentzian Kac-Moody algebras, would be to explain why the

decomposition occur on certain g−n but not others. Kac has some insight into this reason

[103], in that the centre of certain constructions of Kac-Moody algebras is generated by

the Casimir operator, potentially explaining why decomposition occurs when a Di = 0.
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However, to prove this in terms of theorem 2 in [103], we would need greater understand-

ing of the Weyl group of the given g−n, amongst other tools that still have the potential

to be developed for Lorentzian Kac-Moody algebras in a more general setting.

From a more physical perspective, in the Lorentzian Toda field theories we did not

analyse the features of the conformal Lorentzian models, which could already be stud-

ied further using known methods. For the conformal and massive Lorentzian Toda field

theories, in a similar way to the finite and affine theories, an algebraically independent

formulation could be developed to complement the simple root and fundamental weight

construction explored in this thesis. Furthermore, standard calculations such as mass

renormalizations for Lorentzian Toda theories, or study of the flows between models could

be conducted. It would also be interesting to develop other field theories that use g−n

algebras, such as Calogero-Moser-Sutherland models that also use the roots of a Kac-

Moody algebra, but this issue is also non-trivial as it would again require the Lorentzian

Weyl group which is currently only known in a few special examples, such as for AE3, the

extension of the modular group PSL(2,Z), and other similar modular group correspon-

dences.

Regarding the integrable Lorentzian Toda models we discovered, it was already men-

tioned that convergence analysis could be conducted to further convince ourselves of their

integrability - however, other methods such as Lax pairs, or use of the zero curvature con-

dition may prove equally insightful, as they could potentially help in finding the status

of integrability for higher rank and spin Lorentzian null root Toda field theories. Inves-

tigation into the W-algebras and associated W-currents of Lorentzian Toda field theories

could also provide important insights into both the mathematics and physics. Of course,

the other standard calculations mentioned above could also be carried out for the null

root models as they were, or were proposed, for the other Lorentzian Toda field theories

considered.

In conclusion, this thesis has substantially rooted a framework to study extended

Lorentzian algebras in their own right, and in relations to integrable quantum field theo-

ries. There are many avenues for further study, and we hope the mathematical and physics

communities will build upon these frameworks with us, to ultimately better understand

the most fundamental questions that our joint fields aim to elucidate.
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Appendix A

The Perron-Frobenius

Correspondence

This appendix aims to answer some of the questions raised in chapter 2 regarding the

following two points:

1. Why the representation of the simple roots, αi, for a rank-r Kac-Moody algebra, in

matrix form, M , must be a square matrix to form a coherent Toda field theory mass

matrix, (M2)ab, and how this relates to the so-called Perron-Frobenius eigenvector.

2. Under what conditions the values of the Perron-Frobenius eigenvector can give the

correct values of (M2)ab for Lorentzian or Hyperbolic Toda field theories, in which

non-square representations of the simple roots matrix, M , is used, and where the

Kac labels, ni, are less well-defined.

A.1 The Toda Mass Matrix

Starting with theorem (5.2) from [104], which follows from [61], then we may write the

equation associated to this theorem as

M̃ = ⟨αi, e⟩⟨αi, e
∗⟩. (A.1)

This may be rewritten in our matrix representation of roots, Miα, from equation (3.39),

as

M̃ = ⟨Miα, eαβ⟩(⟨Mjβ, e
∗
βγ⟩)T = Miαeαβe

∗
βγ(M

T )γj, (A.2)

where the indices i, j ∈ {1, · · · , r} and α, β, γ ∈ {1, · · · , N}, for a rank-r algebra with an

N -dimensional representation of the simple roots.

The step operators, e, in the Cartan-Weyl representation are also Weyl vectors and

belong to the Cartan subalgebra in apposition [104], i.e. e ∈ h′, may be chosen most
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simply as1

eαβe
∗
βγ =


n1

. . .

nr+1

 , (A.3)

with nr+1 = 1, and the rest are the usual Kac labels for the given g. Thus, for this

initial section of discussion, we may only choose α, β, γ ∈ {1, · · · , r + 1}, and hence we

are limited to finding a square representation of Miα meaning that if we put in the correct

values for the affine root in the (r+ 1)th position of each simple root in an r-dimensional

representation we reproduce the exact same formula for the mass matrix for the affine

Toda field theory case [84].

In other words, this is the exact reason why the affine Toda mass matrix commonly

presented, such as we give in equation (3.44) or as in [84], utilizes a r-dimensional repre-

sentation of the roots to reproduce the results as explained in [61], and also links, through

algebraically reasoning, the various representations of the Lagrangian written in the lit-

erature. Explaining why the ga Toda theories based on gf give mass spectrums with

the same ratios of those values found in the Perron-Frobenius eigenvector of the Cartan

matrix associated to the given gf .

Now, to extend this idea beyond gf and ga, if we reduce the limitation of taking

the most canonical representation of ee∗ as in equation (A.3), and instead take an N -

dimensional representation of the simple roots, we may still replicate the mass matrix

(M2)ab we get for cases. We can test this against the result that such a mass matrix

M̃ = (M2)ab reproduces the Perron-Frobenius eigenvector values as its eigenvalues, and

show this exactly for certain cases through direct calculation. Therefore, the remaining

discussion in A.2 does not assume an r-dimensional representation of the simple roots,

and hence, does not assume a square representation of M .

A.2 The Correspondence

Taking Λ as a matrix with its rows composed of fundamental weights, λi of the Lie algebra,

we may act on (M2)ab as

Λ(M2)abMT , (A.4)

and we find that the eigenvalues, denoted by the function γ, are

γ[Λ(M2)abMT ] = γ[naa(Kij +X0i)ab], (A.5)

where naa is a diagonal matrix composed of the Kac labels, ni, and X0i is a column matrix

of zeros except for one column of ones in the column associated to the node of the finite

1See [104] for definitions of e on page 13.
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Dynkin diagram to which the highest root attaches, forming the affine Dynkin diagram

and associated Cartan matrix, K̃ij, where now i, j ∈ {1, · · · , r + 1}.
It follows from the fact that K̃ij is the affine version of the matrix [Kij+X0i]ab. Hence,

we may write the simplified relation

γ[Λ(M2)abMT ] = γ[ñaa(K̃)ab]− {0}, (A.6)

where the {0} represents the 0 eigenvalue, which we get as a result of K̃ having a zero

determinant. This is immediately generalizable to Lorentzian Toda field theories, whereby

we take K̃ab to be the Cartan matrix associated to the massive extended theory, such as

that of the L
g̊−2

theory derived in section 3.5.2, or any L
g̊−2n

theory through the same

reasoning.

It is important to note that the correspondence (A.6) holds solidly for the finite cases

only, in which the Kac labels are well-defined, along with their step operators e. We can

however find specific representations analogies of step operators and Kac labels for hyper-

bolic and Lorentzian algebras, but the assumption must be made that we are expecting to

reproduce the Perron-Frobenius eigenvector values in (M2)ab, otherwise we do not have

anything to measure our theory against and values of Kac labels and all representations

of step operators become arbitrary. For example, some of this ambiguity comes from not

knowing what a true K̃ab version of such an algebra would look like, since the n-extension

procedure is only one of many possible ways of extending, and thus forcing det K̃ = 0,

the Lorentzian or hyperbolic Kac-Moody algebra.
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approach to nonlinear differential equations. Physica D: Nonlinear Phenomena,

69(1-2):33–58, 1993.

[98] Masaki Kashiwara and Takahiro Kawai. Algebraic analysis: papers dedicated to

Professor Mikio Sato on the occasion of his sixtieth birthday - Volume 1. Academic

Press, 2014.

[99] Aleksandr Borisovich Zamolodchikov. Infinite additional symmetries in two-

dimensional conformal quantum field theory. Teoreticheskaya i Matematicheskaya

Fizika, 65(3):347–359, 1985.

[100] Masatsugu Minami. Perturbed Liouville/Toda systems. Progress of theoretical

physics, 71(4):727–737, 1984.

[101] George Wilson. The modified lax and two-dimensional Toda lattice equations asso-

ciated with simple Lie algebras. Ergodic Theory and Dynamical Systems, 1(3):361–

380, 1981.

[102] Paulo EG Assis and Andreas Fring. Integrable models from PT-symmetric defor-

mations. Journal of Physics A: Mathematical and Theoretical, 42(10):105206, 2009.

104



[103] Victor G Kac. Laplace operators of infinite-dimensional Lie algebras and theta

functions. Proceedings of the National Academy of Sciences, 81(2):645–647, 1984.

[104] Laura Brillon and Vadim Schechtman. Coxeter element and particle masses. Selecta

Mathematica, 22(4):2591–2609, 2016.

105


	List of Figures
	List of Tables
	Acknowledgements
	Declaration
	Abstract
	Introduction
	n-Extended Lorentzian Kac-Moody Algebras
	Finite Lie Algebras
	Affine Lie Algebras
	Central Extensions of the Loop Algebra
	Extensions of the Finite Dynkin Diagram

	Kac-Moody algebras with Extended, Over-Extended and Very-Extended Root and Weight Lattices
	Hyperbolic Kac-Moody Algebras and Over-Extended Root Lattices
	Lorentzian Kac-Moody Algebras and Very-Extended Root Lattices
	Fundamental Weights

	n-extended Lorentzian Kac-Moody Algebras
	Principal SO(3) and SO(1,2) Subalgebras
	Expansion Coefficients of the Diagonal Principal Subalgebra Generator
	Direct Decomposition of n-Extended Lorentzian Kac-Moody Algebras
	Reduced System Versus n-Extended Versions
	Example D17(1)=E8(5)LD4:
	Example D25(2)=E7(1)LD18:


	Decomposition of the Very-Extended D25-Algebra aka k28
	Double and Triple Decomposition
	Example A24(10) = E6(3)LA4L2A18.
	Example D36(14) =A3LE6(6)LD31.



	Roots, Weights, Weyl Vectors and Decomposition of the r(n,m)-Algebras
	Example D14(26) = A23LE7(3)LD5

	Summary

	Lorentzian Toda Field Theories
	Toda Field Theories
	Lattice Toda Field Theory
	Conformal Toda Field Theory

	Affine Toda Field Theories
	Conformal to Affine Toda Field Theory

	Conformal Affine Toda Field Theories
	Lorentzian Matrix Products
	Perturbed Lg0.5[0.8]-1-Lorentzian Toda Field Theory
	Lg0.5[0.8]-1 Conformal Toda Field Theory
	L0.5[0.8]-2 Massive Toda Field Theory

	Painlevé Integrability Test
	Invertible Cartan matrix
	Connection to Casimir Eigenvalues of the Principal SO(1,2)-Subalgebra
	Non-Invertible Cartan Matrix
	Characteristic Equation of P

	Constructions of Lorentzian Toda field theory
	L-n-extended Lorentzian Toda field theory
	(2n)-2-Lorentzian Toda field theories
	(8)-2n-Lorentzian Toda field theories

	L(1)-2n(2)-2m-extended Lorentzian Toda field theory
	(8)-2n(8)-2n-Lorentzian Toda field theories
	(2)-2n(2)-2n-Lorentzian Toda field theories


	Summary

	Painlevé Integrability of Lorentzian Toda Systems
	Painlevé Integrability of Toda Field Theories
	Towards the Painlevé Property of Toda Field Theories

	Rank-2 Models that pass the Painlevé Test
	Physical Behaviour of the Integrable Candidates
	Painlevé Integrability and the Painlevé Property
	Painlevé Property of A2
	Level k=0
	Level k=1
	Level k=2
	Level k=3
	General Painlevé Expansion Solutions

	Painlevé Property of spin-3, Rank-2 Null-Root Models
	Level k=0
	Level k=1
	Level k=2
	Level k=3
	General Painlevé Expansion Solutions


	Summary

	Conclusion
	Overview
	Outlook

	The Perron-Frobenius Correspondence
	The Toda Mass Matrix
	The Correspondence

	References

