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Abstract

This paper examines the implications of imperfect information (II) for optimal monetary policy with

a consistent set of informational assumptions for the modeller and the private sector an assumption

we term the informational consistency. We use an estimated simple NK model from Levine et al.

(2012), where the assumption of symmetric II significantly improves the fit of the model to US data

to assess the welfare costs of II under commitment, discretion and simple Taylor-type rules. Our main

results are: first, common to all information sets we find significant welfare gains from commitment

only with a zero-lower bound constraint on the interest rate. Second, optimized rules take the form

of a price level rule, or something very close across all information cases. Third, the combination of

limited information and a lack of commitment can be particularly serious for welfare. At the same time

we find that II with lags introduces a ‘tying ones hands’ effect on the policymaker that may improve

welfare under discretion. Finally, the impulse response functions under our most extreme imperfect

information assumption (output and inflation observed with a two-quarter delay) exhibit hump-shaped

behaviour and the fiscal multiplier is significantly enhanced in this case.
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1 Introduction

The formal estimation of DSGE models by Bayesian methods has now become standard.1

However, as Levine et al. (2007) first pointed out, in the standard approach there is an

implicit asymmetric informational assumption that needs to be critically examined: whereas

perfect information about current shocks and other macroeconomic variables is available

to the economic agents, it is not to the econometricians. By contrast, in Levine et al.

(2007) and Levine et al. (2012) a symmetric information assumption is adopted in which

rational expectations amounts to model consistency. This approach can be thought of as

the informational counterpart to the “cognitive consistency principle” proposed in Evans

and Honkapohja (2009) which holds that economic agents should be assumed to be “about

as smart as, but no smarter than good economists”. The assumption that agents have

imperfect and certainly no more information than the econometrician who constructs and

estimates the model on behalf of the policymaker, amounts to what we term informational

consistency (IC). IC may seem plausible, but does it improve the empirical performance of

DSGE models? Drawing upon Levine et al. (2012), we show this is indeed is the case for a

standard NK model.2

The main focus of this paper is on the implications of imperfect information for optimal

monetary policy. A sizeable literature now exists on this subject - a by no means exhaus-

tive selection of contributions includes: Cukierman and Meltzer (1986), Pearlman (1992),

Svensson and Woodford (2001), Svensson and Woodford (2003), Faust and Svensson (2001),

Faust and Svensson (2002), Aoki (2003), Aoki (2006) and (Melecky et al. (2008).3

Our contribution is to study three policy issues using an estimated DSGE model with IC

at both the estimation and policy design stages of the exercise. We compare the Bayesian-

estimated NK model under two information assumptions: perfect information (PI) where

the private sector observes all the macroeconomic state variables in the model (including

exogenous shock processes) and imperfect information (II) where they only observe the

data used by the econometrician and IC applies. A marginal likelihood race shows strong

evidence in favour of II. Moreover the impulse response functions for all policy regimes

display the hump-shaped behaviour highlighted in the literature.4

The three policy questions posed are first, what are the welfare costs associated with

the private sector possessing only II of the state variables? Indeed, in a second-best world

where the policymaker cannot commit, can withdrawal of information be welfare-improving?

Second, what are the implications of II for the gains from commitment (or, equivalently,

the costs of discretion) and third, how does II affect the form of welfare-optimized Taylor

rules? A novel feature of our analysis, irrespective of the information assumptions, is

the consideration of the zero lower bound (ZLB) constraint in the design of interest rate

1See Fernandez-Villaverde (2009) for a comprehensive review.
2The possibility that imperfect information in NK models improves the empirical fit has also been ex-

amined by Collard and Dellas (2004), Collard and Dellas (2006), Collard et al. (2009), although an earlier
assessment of the effects of imperfect information for an IS-LM model dates back to Minford and Peel (1983)

3Imperfect information covers a wide range of informational assumptions: section 5 provides a discussion
of the various assumed information sets assumed for both the private sector and policymaker/modeller in
these papers.

4An interesting feature of the impulse response analysis is a comparison of the fiscal multipliers under
PI or II.
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rules. Our paper is, we believe, the first to provide an integrated treatment of information,

commitment, the simplicity constraint on rules and zero-lower bound aspects of the policy

problem, enabling us to explore the important interaction between these aspects.

The rest of the paper is organized as follows. Section 2 describes a fairly standard

new Keynesian (NK) model subsequently used for the policy analysis. Section 3 sets out

the general solution procedure for solving such a model under II given a particular (and

usually sub-optimal) policy rule. Section 4 describes the estimation by Bayesian methods.

Section 5 sets out the general framework for calculating optimal policy under different

information assumptions. Section 6 turns to numerical solutions of optimal policy in the

estimated model first assuming PI for both the private sector and the policymaker. For all

information assumptions our policy exercises use the ex post welfare-optimal (Ramsey) as

a benchmark against which to assess the policies where either no commitment mechanism

is available and the central bank exercises discretion, or where policy conducted in the form

of a simple interest rate, Taylor-type commitment rules. Under perfect information, in sub-

section 6.1, both sets of agents, the central bank and the private sector observes the full

state vector describing the model model dynamics (though the econometrician only uses a

sub-set of this data). Sub-section 6.2 then relaxes this assumption by introducing different

II sets that correspond to IC adopted at the estimation stage. Section 7 concludes.

2 The Model

We utilize a fairly standard NK model with a Taylor-type interest rate rule, one factor

of production (labour) with decreasing returns to scale. The model has external habit in

consumption, price indexing and a Taylor interest-rate rule with persistence. These are

part of the model, albeit ad hoc in the case of indexing, and therefore are endogenous

sources of persistence. Persistent exogenous shocks to demand, technology and the price

mark-up classify as exogenous persistence. A key feature of the model and the focus of the

paper is a further endogenous source of persistence that arises when agents have imperfect

information and learn about the state of the economy using Kalman-filter updating.5

The full model in non-linear form is as follows

1 = βRtEt

[

MUC
t+1

MUC
t Πt+1

]

(1)

Wt

Pt
= −

1

(1− 1
η
)

MUN
t

MUC
t

(2)

Yt = F (At, Nt,∆t) =
AtN

α
t

∆t
where ∆t ≡

1

n

n
∑

j=1

(Pt(j)/Pt)
−ζ (3)

MCt =
Wt

PtFN,t
=

Wt∆t

PtAtαN
α−1
t

(4)

5The simplicity of the model facilitates the separate examination of different sources of persistence in
the model – see Levine et al. (2012).
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(5)

Ht − ξβEt[Π̃
ζ−1
t+1Ht+1] = YtMUC

t (6)

Jt − ξβEt[Π̃
ζ
t+1Jt+1] =

1

1− 1
ζ

MCtMStYtMUC
t (7)

1 = ξΠ̃ζ−1
t + (1− ξ)

(

Jt
Ht

)1−ζ

where Π̃t ≡
Πt

Πγ
t−1

(8)

Π̃t ≡
Πt

Πγ
t−1

(9)

Yt = Ct +Gt (10)

Equation (1) is the familiar Euler equation with β the discount factor, Rt the gross nominal

interest rate, MUC
t the marginal utility of consumption and Π ≡ Pt

Pt−1
the gross inflation

rate, with Pt the price level. The operator Et[·] denotes rational expectations conditional

upon a general information set (see section 3). In (2) the real wage, Wt

Pt
is a mark-up on

the marginal rate of substitution between leisure and consumption. MUN
t is the marginal

utility of labour supply Nt. Equation (4) defines the marginal cost. Equations (6) – (8)

describe Calvo pricing with 1− ξ equal to the probability of a monopolistically competitive

firm re-optimizing its price P 0
t = Jt

Ht
, indexing by an amount γ with an exogenous mark-up

shock MSt. ζ is the elasticity of substitution of each variety entering into the consumption

basket of the representative household.

Equation (3) is the production function, with labour the only variable input into pro-

duction and the technology shock At exogenous. Price dispersion ∆t, defined in (3), can be

shown for large n, the number of firms, to be given by

∆t = ξΠ̃ζ
t∆t−1 + (1− ξ)

(

Jt
Ht

)−ζ

(11)

Finally (10), where Ct denotes consumption, describes output equilibrium, with an exoge-

nous government spending demand shock Gt. To close the model we assume a current

inflation based Taylor-type interest-rule

logRt = ρr logRt−1 + (1− ρr)

(

θπ log
Πt

Πtar,t
+ log(

1

β
) + θy log

Yt

Ȳt

)

+ ǫe,t

log
Πtar,t+1

Π
= ρπ log

Πtar,t

Π
+ ǫπ,t+1 (12)

where Ȳt is the output trend and Πtar,t is a time-varying inflation target following an AR(1)

process, (12), and ǫe,t is a monetary policy shock.6 The following form of the single period

utility for household r is a non-separable function of consumption and labour effort that is

consistent with a balanced growth steady state:

Ut =

[

(Ct(r)− hCCt−1)
1−̺(1−Nt(r))

̺
]1−σ

1− σ
(13)

6Note the Taylor rule feeds back on output relative to its steady state rather than the output gap so we
avoid making excessive informational demands on the central bank when implementing this rule.
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where hCCt−1 is external habit. In equilibrium Ct(r) = Ct and marginal utilities MUC
t

and MUN
t are obtained by differentiation:

MUC
t = (1− ̺)(Ct − hCCt−1)

(1−̺)(1−σ)−1(1−Nt)
̺(1−σ) (14)

MUN
t = −(Ct − hCCt−1)

(1−̺)(1−σ)̺(1−Nt)
̺(1−σ)−1 (15)

Shocks At = Aeat , Gt = Gegt , Πtar,t are assumed to follow log-normal AR(1) pro-

cesses, where A, G denote the non-stochastic balanced growth values or paths of the

variables At, Gt. Following Smets and Wouters (2007) and others in the literature, we

decompose the price mark-up shock into persistent and transient components: MSt =

MSpere
mspertMStrae

εmstra,t where mspert is an AR(1) process and εmstra,t is i.i.d., which

results in MSt being an ARMA(1,1) process. We can normalize A = 1 and put MS =

MSper = MStra = 1 in the steady state. The innovations are assumed to have zero con-

temporaneous correlation. This completes the model. The equilibrium is described by (1) –

(12), the expressions for MUC
t and MUN

t , (14) – (15), and processes for the six exogenous

shocks in the system: At, Gt, MSper,t, MStra,t, Πtar,t and ǫe,t.

Bayesian estimation is based on the rational expectations solution of the log-linear

model. The conventional approach assumes that the private sector has perfect information

of the entire state vector including crucially, all six current shocks. These are extreme

information assumptions and exceed the data observations on three data sets output, infla-

tion and the nominal interest rate (Yt, Πt and Rt) that we subsequently use to estimate the

model. If the private sector can only observe these data series (we refer to this as symmetric

information) we must turn from a solution under perfect information by the private sector

(later referred to as asymmetric information – AI – since the private sector’s information

set exceeds that of the econometrician) to one under imperfect information – II.

3 General Solution with Imperfect Information

The model with a particular and not necessarily optimal rule is a special case of the following

general setup in non-linear form

Zt+1 = J(Zt, EtZt,Xt, EtXt) + νσǫǫt+1 (16)

EtXt+1 = K(Zt, EtZt,Xt, EtXt) (17)

where Zt,Xt are (n−m)× 1 and m× 1 vectors of backward and forward-looking variables,

respectively, and ǫt is a ℓ × 1 shock variable, ν is an (n − m) × ℓ matrix and σǫ is a

small scalar. Either analytically, or numerically using the methods of Levine and Pearlman

(2011), a log-linearized form state-space representation can be obtained as

[

zt+1

Etxt+1

]

= A1

[

zt
xt

]

+A2

[

Etzt
Etxt

]

+

[

ut+1

0

]

(18)
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where zt, xt are vectors of backward and forward-looking variables, respectively, and ut is

a shock variable. 7 We also define A1 =

[

A11 A12

A21 A22

]

. In addition we assume that agents

all make the same observations at time t, which are given, in non-linear and linear forms

respectively, by

Mobs
t = m(Zt, EtZt,Xt, EtXt) + µσǫǫt (19)

mt =
[

M1 M2

]

[

zt
xt

]

+
[

L1 L2

]

[

Etzt
Etxt

]

+ vt (20)

where µσǫǫt and vt represents measurement errors. Given the fact that expectations of

forward-looking variables depend on the information set, it is hardly surprising that the

absence of full information will impact on the path of the system.

In order to simplify the exposition we assume terms in EtZt and EtXt do not appear

in the set-up so that in the linearized form A2 = L = 0.8 Full details of the solution for the

general setup are provided in PCL.

3.1 Linear Solution Procedure

Now we turn to the solution for (18) and (20). First assume perfect information. Following

Blanchard and Kahn (1980), it is well-known that there is then a saddle path satisfying:

xt +Nzt = 0 where
[

N I
]

[

A11 A12

A21 A22

]

= ΛU
[

N I
]

where ΛU has unstable eigenvalues. In the imperfect information case, following PCL, we

use the Kalman filter updating given by

[

zt,t
xt,t

]

=

[

zt,t−1

xt,t−1

]

+ J

[

mt −
[

M1 + L1 M2 + L2

]

[

zt,t−1

xt,t−1

]]

where we denote zt,t ≡ Et[zt] etc. Thus the best estimator of the state vector at time t−1 is

updated by multiple J of the error in the predicted value of the measurement. The matrix

J is given by

J =

[

PDT

−NPDT

]

Γ−1

where D ≡ M1 − M2A
−1
22 A21, M ≡ [M1 M2] is partitioned conformably with

[

zt
xt

]

,

Γ ≡ EPDT + V where E ≡ M1 + L1 − (M2 + L2)N , V = cov(vt) is the covariance matrix

of the measurement errors and P satisfies the Riccati equation (24) below.

Using the Kalman filter, the solution as derived by PCL9 is given by the following

7In Pearlman et al. (1986), henceforth PCL, a more general setup allows for shocks to the equations
involving expectations.

8In fact our model is of this simplified form.
9A less general solution procedure for linear models with imperfect information is in Lungu et al. (2008)
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processes describing the pre-determined and non-predetermined variables zt and xt and a

process describing the innovations z̃t ≡ zt − zt,t−1:

Predetermined : zt+1 = Czt + (A− C)z̃t + (C −A)PDT (DPDT + V )−1(Dz̃t + vt)

+ut+1 (21)

Non-predetermined : xt = −Nzt + (N −A−1
22 A21)z̃t (22)

Innovations : z̃t+1 = Az̃t −APDT (DPDT + V )−1(Dz̃t + vt) + ut+1 (23)

where

C ≡ A11 −A12N, A ≡ A11 −A12A
−1
22 A21, D ≡ M1 −M2A

−1
22 A21

and P is the solution of the Riccati equation given by

P = APAT −APDT (DPDT + V )−1DPAT +Σ (24)

where Σ ≡ cov(ut) is the covariance matrix of the shocks to the system. The measurement

mt can now be expressed as

mt = Ezt + (D − E)z̃t + vt − (D − E)PDT (DPDT + V )−1(Dz̃t + vt) (25)

We can see that the solution procedure above is a generalization of the case when

there are n −m (= dim(z)) measurements at each time t, and when the observations are

uncontaminated by noise; provided the matrix D is of full rank and square10, so that its

inverse exists, from (24) we have P = Σ. This then yields the standard Blanchard-Kahn

solution for perfect information

zt+1 = Czt + ut+1 ; xt = −Nzt (26)

By comparing (26) with (21) we see that the determinacy of the system is independent

of the information set. This is an important property that contrasts with the case where

private agents use statistical learning to form forward expectations.

3.2 The Filtering and Likelihood Calculations

Now consider the computations of the Bayesian econometrician estimating the model. To

evaluate the likelihood for a given set of parameters (prior to multiplying by their prior

probabilities), the econometrician takes the equations (21), (23) and (25) as representing

the dynamics of the system under imperfect information. In order to reduce the amount of

subsequent notation, we now augment the state space so that the measurement errors {vt}

are incorporated into the system errors {ut}, which entails augmenting the states {zt}, {z̃t}

to incorporate these as well; for convenience we then retain the notation above, but now

the covariance matrix V = 0. It is a standard result that apart from constants, we can

with an application to a small open economy model, which they also extend to a non-linear version.
10An obvious example of this is when M = [I 0]. Another more useful example is when M2 is of the same

rank r as A−1
22 A21, and linearly independent of M1, which has rank n−m− r.
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write the likelihood function as:

2 lnL = −
∑

ln det(cov(et))−
∑

eTt (cov(et))
−1et (27)

where the innovations process et ≡ mt − Et−1mt.

In order to obtain Et−1mt, we need to solve the appropriate filtering problem. At first

sight, it would seem that the obvious way to do this is to subtract (23) from (21) to obtain

zt+1,t = Czt,t−1 + CPDT (DPDT )−1Dz̃t (28)

and to substitute for Dz̃t from the measurement equation now written correspondingly as

mt = Ezt,t−1 + EPDT (DPDT )−1Dz̃t (29)

However this is incorrect, because whereas these equations do describe the steady state

dynamics, they do not generate the covariance matrix of the innovations process, which

evolves over time. In order to generate this, we apply the Kalman filter to equations (21),

(28) and (29), where we note that the initial covariance matrix of z̃0 is P and cov(z̃0, z0,−1) =

0. It is then easy to show by induction that the Kalman filter generates Et−1z̃t = 0, with

corresponding covariance matrix equal to P for all t, and in addition the filtering covariance

matrix between z̃t and zt,t−1 is 0 for all t. Finally, defining z̄t = zt,t−1, the remaining updates

from the Kalman filter are given by:

z̄t+1,t = Cz̄t,t−1 + CZtE
T (EZtE

T )−1et et ≡ mt − Ez̄t,t−1

Zt+1 = CZtC
T + PDT (DPDT )−1DP − CZtE

T (EZtE
T )−1EZtC

T

the latter being a time-dependent Riccati equation. The initial value of Zt is given by

Z0 = H + PDT (DPDT )−1DP where H = CHCT + CPDT (DPDT )−1DPCT

and H = cov(z0,−1). Finally, cov(et) = EZtE
T .

In principle, this cannot be directly extended to the case when there are unit roots, which

typically may originate from technology shocks. However Koopman and Durbin (2003) have

shown that the initial covariance matrix can be decomposed in the form H = κHa +Hb,

as κ → ∞, where Ha and Hb can be directly obtained computationally. In practice, one

would set higher and higher values for κ until the likelihood converged, which would then

permit marginal likelihood comparisons for differing models. This decomposition of the

initial covariance matrix is a better computational strategy than the arbitrary approach of

setting its diagonals equal to a very large number.

3.3 When Can Perfect Information be Inferred?

We now pose the question: under what conditions do the RE solutions under perfect and

imperfect information actually differ? By observing a subset of outcomes can agents actually

7



infer the full state vector, including shocks?

To answer this basic question we first explore the possibility of representing the solution

to the model under imperfect information as a VAR.11 First define

st ≡

[

zt
z̃t

]

and ǫt ≡

[

ut
vt−1

]

and

mt =
[

M̃1 M̃2

]

[

st
xt

]

+ vt (30)

Then the solution set out in the previous section can be written as

st+1 = Ãst + B̃ǫt+1 (31)

xt = −Ñst (32)

where Ã, B̃ and Ñ are functions of A, B, C, N , P , D, U and V . Hence

mt+1 = (M̃1 − M̃2Ñ)(Ãst + B̃ǫt+1) + vt+1 ≡ C̃st + D̃ǫt+1

Suppose that the number of shocks=the number of observed variables. With at least one

shock this can only be true if there is no measurement error; so we also put vt = 0. With

this assumption D is square. Suppose first that it is invertible. Then we can write

ǫt+1 = D̃−1(mt+1 − C̃st)

Substituting into (31) we then have

[I − (Ã− B̃D̃−1C̃)L]st+1 = B̃D̃−1mt+1

Iterating we arrive at

st =

∞
∑

j=0

[Ã− B̃D̃−1C̃]jB̃D̃−1mt−j (33)

mt+1 = C̃
∞
∑

j=0

[Ã− B̃D̃−1C̃]jB̃D̃−1wt−j + D̃ǫt+1 (34)

Then provided matrix [Ã − B̃D̃−1C̃] has stable eigenvalues, the summations converge.12

Then (34) is an infinite VAR representation of the solution to our DSGE model. Fur-

thermore, from (33), observations on the history of mt imply that st is observed. This

is consistent with our full information RE assumption. Thus we have the result that if

agents observe mt without measurement error and if the number of shocks = the number

of observations, then by observing the latter agents can infer the full state vector if D̃ is

invertible. Imperfect information is equivalent to complete information in this special case.

11This section essentially generalizes Fernandez-Villaverde et al. (2007) to the case of imperfect informa-
tion.

12This is an innocuous requirement - see the online Appendix of Levine et al. (2012).
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Under what conditions would D̃ be singular? An obvious case pursued later in the

optimal policy exercises is under imperfect information where some variables are observed

only with one or two lags. Then the current shocks cannot influence these observed variables

so some of rows (two in this case) are zero, meaning D̃ is not invertible. In our model

then, both these sufficient conditions for imperfect information collapsing to the perfect

information case do not hold, so we can expect differences between the two cases.13

4 Bayesian Estimation

The Bayesian approach combines the prior distributions for the individual parameters with

the likelihood function, evaluated using the Kalman filter, to form the posterior density.

The likelihood does not admit an analytical solution, so the posterior density is computed

through the use of the Monte-Carlo Markov Chain sampling methods. The linearized model

is estimated using the Dynare software (Juillard (2003)), which has been extended by the

paper’s authors to allow for imperfect information on the part of the private sector.

4.1 Data and Priors

To estimate the system, we use three macro-economic observables at quarterly frequency

for the US: real GDP, the GDP deflator and the nominal interest rate. Since the variables

in the DSGE model are measured as deviations from the trend, the time series for GDP is

de-trended and those for inflation and the nominal interest rate are demeaned. Following

Smets and Wouters (2003), for GDP we use a linear trend.14 Real variables in the model

are now measured in proportional (virtually identical to logarithmic) deviations from linear

trends, in percentage points, while inflation (the GDP deflator) and the nominal interest

rate are de-trended by the same linear trend in inflation and converted to quarterly rates.

The estimation results are based on a sample from 1981:1 to 2006:4.

The values of priors are taken from Levin et al. (2006) and Smets and Wouters (2007).

Table 7 in Appendix B provides an overview of the priors used for each model variant

described below. In general, inverse gamma distributions are used as priors when non-

negativity constraints are necessary, and beta distributions for fractions or probabilities.

Normal distributions are used when more informative priors seem to be necessary. We use

the same prior means as in previous studies and allow for larger standard deviations, i.e.

less informative priors. For the parameters γ, hC and ξ we center the prior density in the

middle of the unit interval. The priors related to the process for the price mark-up shock

are taken from Smets and Wouters (2007). One structural parameter, β = 0.99, is kept

fixed in the estimation procedure. A consumption-output ratio cy ≡ C
Y

= 0.6 is imposed in

the steady state. Given cy and hC , the parameter ̺ is calibrated to target hours worked in

13In fact many NK DSGE models do have the property that the number of shocks equal the number of
observables, and the latter are current values without lags - for example Smets and Wouters (2003).

14In Levine et al. (2012) a more comprehensive empirical exercise is carried out that includes second mo-
ment comparisons, and identification and robustness checks. Estimations were run using a linear-quadratic
trend obtaining virtually identical parameter estimates, with the ordering of data densities under II and AI
assumptions remaining unchanged.
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the steady state at N = 0.4.15

4.2 Estimation Results

We examine two information sets: first we make the assumption that private agents are

better informed than the econometricians and have perfect information (PI) – the stan-

dard information assumption in the estimation literature). Then we examine a symmetric

information set for both econometrician and private agents: imperfect Information with

observable sets It = [yt, πt, rt]. Table 8 in Appendix B reports the parameter estimates us-

ing Bayesian methods. It summarizes posterior means of the studied parameters and 90%

uncertainty bands for the two information sets, PI and II, as well as the posterior model

odds. Overall, the parameter estimates are plausible, and are generally similar to those of

Levin et al. (2006) and Smets and Wouters (2007).

It is interesting to note that the parameter estimates are fairly consistent across the

information assumptions despite the fact that these alternatives lead to a better model

fit based on the corresponding posterior marginal likelihood. Focusing on the parameters

characterizing the degree of price stickiness and the existence of real rigidities, we find that

the price indexation parameter, γ, is estimated to be smaller than assumed in the prior

distribution (in line with those reported by Smets and Wouters (2007)). The estimate of

γ imply that inflation is intrinsically not very persistent. The posterior mean estimates

for the Calvo price-setting parameter, ξ, imply an average price contract duration of about

7 quarters (compared with the prior of 2 quarters). This is rather high, but is consistent

with findings in much of the literature including Smets and Wouters (2007).16. The external

habit parameter is estimated to be around 60−90% of past consumption, which is consistent

with other estimates reported in the literature.

In Table 1 we report the posterior marginal likelihood from the estimation which is com-

puted using the Geweke (1999) modified harmonic-mean estimator. This can be interpreted

as maximum log-likelihood values, penalized for the model dimensionality, and adjusted for

the effect of the prior distribution (Chang et al. (2002)). Whichever model variant has the

highest marginal likelihood attains the best relative model fit.

Information set PI II with It = [yt, πt, rt]

Log ML -105.84 -102.36

Table 1: Log Marginal Likelihood Values Across Information Sets

In order to compare models we calculate the relative model posterior probabilities as

follows. Let pi (θ|mi) represent the prior distribution of the parameter vector θ ∈ Θ for

some model mi ∈ M and let L (y|θ,mi) denote the likelihood function for the observed data

y ∈ Y conditional on the model and the parameter vector. Then by Bayes’ rule the joint

posterior distribution of θ for model mi combines the likelihood function with the prior

15A full discussion of the choice of priors is provided in Levine et al. (2012).
16Modifying the model to have Kimball preferences (Kimball (1995)) enables a flat estimated Philips curve

to be made consistent with shorter contracts - see Smets and Wouters (2007)
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distribution:

pi (θ|y,mi) ∝ L (y|θ,mi) pi (θ|mi)

Bayesian inference provides a framework for comparing alternative and potentially mis-

specified models based on their marginal likelihood. For a given model mi ∈ M and common

data set, the latter is obtained by integrating out the vector θ,

L (y|mi) =

∫

Θ
L (y|θ,mi) p (θ|mi) dθ

where pi (θ|mi) is the prior density for model mi, and L (y|mi) is the data density for model

mi given parameter vector θ. For mi and mj, the Bayes Factor is then the ratio of their

posterior model probabilities when the prior odds ratio, p(mi)
p(mj)

, is set to unity:

BFi,j ≡
p(mi|y)

p(mj|y)
=

L(y|mi)p(mi)

L(y|mj)p(mj)
=

L(y|mi)

L(y|mj)
=

exp(LL(y|mi))

exp(LL(y|mj))
= exp(LL(y|mi)−LL(y|mj))

in terms of the log-marginal likelihoods (LL). According to Jeffries (1996), a BF of 3-10 is

“slight evidence” in favour of model i over j. This corresponds to a LL difference in the

range [ln 3, ln 10]= [1.10,2.30]. A BF of 10-100 or a LL range of [2.30, 4.61] is “strong to

very strong” evidence; a BF over 100 (LL over 4.61) is “decisive” evidence.

Table 1 now reveals that information set II outperforms information set PI by a Bayes

factor of 3.48 which is “strong to very strong” evidence of II over PI. This is a striking result;

although informational consistency is intuitively appealing, there is no inevitability that

models that assume this will perform better in LL terms than the traditional assumption

of PI. The evidence in favour of II confirms the significant persistence effect seen in the

analytic models of Collard and Dellas (2006) and Levine et al. (2012).17

5 The General Set-Up and Optimal Policy Problem

This section describes the general set-up that applies irrespective of the informational as-

sumptions. Removing the estimated rule (12), for a given set of observed policy instruments

wt we now consider a linearized model in a general state-space form:

[

zt+1

Etxt+1

]

= A1

[

zt

xt

]

+A2

[

Etzt

Etxt

]

+Bwt +

[

ut+1

0

]

(35)

where zt, xt are vectors of backward and forward-looking variables, respectively, wt is a

vector of policy variables, and ut is an i.i.d. zero mean shock variable with covariance

matrix Σu; as before the more general setup in PCL allows for shocks to the equations

involving expectations. In addition for the imperfect information case, we assume that

17A limitation of the likelihood race methodology is that the assessment of model fit is only relative to its
other rivals with different restrictions. The outperforming model in the space of competing models may still
be poor (potentially misspecified) in capturing the important dynamics in the data. To further evaluate the
absolute performance of one particular model (or information assumption) against data, it is necessary to
compare the model’s implied characteristics with those of the actual data and with a benchmark DSGE-VAR
model. See Levine et al. (2012)
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agents all make the same observations at time t, which are still given by (20).

Define target variables st by

st = Jyt +Hwt (36)

Then the policy-maker’s loss function at time t by

Ωt =
1

2
Et

[

∞
∑

τ=0

βt(sTt+τQ1st+τ + wT
t+τQ2wt+τ )

]

(37)

whereQ1 and Q2 are symmetric and non-negative definite and β ∈ (0, 1) is a discount factor.

This could be an ad hoc loss function or a large distortions approximation to the household’s

utility as described in Levine et al. (2008a) and summarized in Appendix E. Substituting

(36) into (37) results in the following form of the loss function used subsequently in the

paper

Ωt =
1

2
Et

[

∞
∑

i=0

βt(yTt+τQyt+τ + 2yTt+τUwt+τ + wT
t+τRwt+τ )

]

(38)

where Q = JTQ1M , U = JTQ1H and R = Q2 +HTQ1H.

For the literature described in the introduction, rational expectations are formed as-

suming the following information sets:

1. For what we refer to as ‘perfect information’ (see Svensson and Woodford (2001),

Aoki (2003), Aoki (2006) and standard Bayesian estimation):

Ipst = {zτ , xτ}, τ ≤ t;A1, A2, B,Σu, [Q,U,R, β] or the monetary rule for the private

sector and

Ipolt = {mτ}, τ ≤ t;A1, A2, B,M,L,Σu,Σv, [Q,U,R, β] and the monetary rule for the

policymaker/modeller.

2. For ‘imperfect information’ (see Pearlman (1992), Svensson and Woodford (2003) and

for Bayesian estimation with IC in this paper):

Ipst = Ipol = {mτ}, τ ≤ t given by (20);A1, A2, B,M,L,Σu,Σv, [Q,U,R, β] and the monetary rule.

3. For an alternative category of asymmetric imperfect information (see Cukierman and

Meltzer (1986), Faust and Svensson (2001), Faust and Svensson (2002)) and (Melecky

et al. (2008)):

Ipolt = {mτ}, τ ≤ t;A1, A2, B,M,L,Σu,Σv, [Q,U,R, β] and the monetary rule for the

policymaker sector and

Ipolt ⊃ Ipst = {mτ}, τ ≤ t;A1, A2, B,M,L,Σu,Σv for the private sector.

In the rest of the paper we confine ourselves to information set 1 for perfect information

(PI) and information set 2 for imperfect information (II). Information set 1 is incompatible

with IC. Information set 3 is however compatible and is needed to address the issue of

optimal ambiguity. However this interesting case is beyond the scope of this paper.

The welfare losses for information sets 1 and 2 can be summarised in the theorem below,

and proved in Appendix D:

12



Theorem: The expected welfare for each of the regimes is given by

W J =zT0,0S
Jz0,0 +

λ

1− λ
tr
(

SJPDT (DPDT + V )−1DP
)

+
1

1− λ
tr
(

Q11 −Q12A
−1
22 A21 −AT

21A
−T
22 Q21 +AT

21A
−T
22 Q22A

−1
22 A21

)

P̄ (39)

where J =OPT, TCT, SIM refer to the optimal, time-consistent and optimized simple rules

respectively; the second term is the expected value of the first three terms of (D.8) under

each of the rules, and the final term is independent of the policy rule, and is the expected

value of the final term of (D.8), utilising (D.2). Also note that from the perfect information

case in Appendix C:

SOPT = S11 − S12S
−1
22 S21 (40)

• Sij are the partitions of S, the Riccati matrix used to calculate the welfare loss under

optimal policy with commitment.

• STCT is used to calculate the welfare loss in the time consistent solution algorithm.

• SSIM = V LY A is calculated from the Lyapunov equation used to calculate the welfare

under the optimized simple rule.

In the special case of perfect information on all zt, M1 = I, L, vt, V are all zero, so that

D = I. It follows that P̄ = 0 and the last term in (39) disappears. Moreover P = Σ,

z0,0 = z0 and (39) reduces to the welfare loss expressions obtained in Appendix C. Thus

the effect of imperfect information is to introduce a new term into the welfare loss that

depends only on the model filter, but is independent of policy and to modify the first

policy-dependent term by an effect that depends on the solution P to the Riccati equation

associated with the Kalman Filter.

6 Optimal Monetary Policy in the Estimated NK Model

This section sets out numerical results for optimal policy under commitment, optimal discre-

tionary (or time consistent) policy and for an optimized simple Taylor rule. The model is the

estimated form of the best-fitting one, namely that under II with observables It = [yt, πt, rt].

For the first set of results we ignore ZLB considerations. The questions we pose are first,

what are the welfare costs associated with the private sector possessing only imperfect infor-

mation of the state variables? Second, what are the implications of imperfect information

for the gains from commitment? To assess these we compare the welfare outcomes under

commitment and discretion. Third, how does imperfect information affect the form of op-

timized Taylor rules and the costs of simplicity, and finally what are the impulse responses

to shocks under different information assumptions and policy regimes?

With one preferred estimated model in place, to address these questions we now examine

the following forms of imperfect information (II) for the private sector and policymaker.18

18Note for j > 0 informational consistency still holds, in that the econometrician using historical data has
more information than the private sector at the time it forms rational expectations.
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In log-linearized form19

Information Set II: mt =







yt−j

πt−j

rt






; j = 0, 1, 2 (41)

This contrasts with the information set under perfect information (PI) which consists of all

the state variables including the shock processes at, gt, etc.

We considered simple inflation targeting rules that respond to both inflation and output:

rt = ρrrt−1 + θππt + θyyt

for PI and for the II information set with j ≥ 0, one of the two forms:

rt = ρrrt−1 + θπEtπt + θyEtyt (Form A)

rt = ρrrt−1 + θππt−j + θyyt−j (Form B)

Thus for form A the rule responds to the best estimate of inflation and output given

observations of mt. For form B the response is to direct observations available to both the

private sector and the policymaker at the time the interest rate is set. Of course for PI and

II with j = 0 forms A and B are identical.

With this choice of Taylor rule the case where ρr = 1 and αy = 0 is of particular

interest as this then corresponds to a price-level rule. There has been a recent interest

in the case for price-level rather than inflation stability. Gaspar et al. (2010) provide an

excellent review of this literature. The basic difference between the two regimes in that

under an inflation targeting mark-up shock leads to a commitment to use the interest rate to

accommodate an increase in the inflation rate falling back to its steady state. By contrast a

price-level rule commits to an inflation rate below its steady state after the same initial rise.

Under inflation targeting one lets bygones be bygones allowing the price level to drift to a

permanently different price-level path whereas price-level targeting restores the price level

to its steady state path. The latter can lower inflation variance and be welfare enhancing

because forward-looking price-setters anticipates that a current increase in the general price

level will be undone giving them an incentive to moderate the current adjustment of its

own price. In our results we will see whether price-level targeting is indeed welfare optimal

across different information assumptions.

6.1 Optimal Policy without Zero Lower Bound Considerations

Results are presented for a loss function that is formally a quadratic approximation about

the steady state of the Lagrangian, and which represents the true approximation about

the fully optimal solution appropriate for a distorted steady state. This welfare-based loss

function has been obtained numerically using the procedure set out in Appendix E.

Table 2 sets out the stochastic inter-temporal welfare loss for our three policy regimes

19Strictly speaking, we use proportional deviations from steady state, so that lower case variables are
defined as xt =

Xt−X

X
. rt and πt are proportional deviations of gross rates.
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under PI and II. Consumption equivalent losses relative to the optimal policy under PI

are shown in brackets.20 We immediately observe that the welfare losses associated with

either an inability to commit or from simplicity are small under all information sets, but

grow in significance as information available at time t declines. At most, welfare costs are

ce = 0.02%.

Information Information Set Optimal Time Cons Simple Rule A Simple Rule B

Perfect Full state vector 6.78 7.70 6.81 6.81
(0) (0.01) (0.005) (0.005)

Imperfect It = [yt, πt, rt] 7.50 8.46 7.52 7.52
(0.004) (0.01) (0.004) (0.004)

Imperfect It = [yt−1, πt−1, rt] 8.63 9.22 8.64 8.70
(0.01) (0.01) (0.01) (0.01)

Imperfect It = [yt−2, πt−2, rt] 9.41 9.96 9.42 9.54
(0.01) (0.02) (0.01) (0.02)

Table 2: Welfare Loss and Information without ZLB Considerations

Simple rules are able to closely replicate the welfare outcome under the fully optimal

solution. Table 3 shows that for PI and II but no lags in information, this is achieved with a

first-difference interest rate rule (ρr = 1) and no significant feedback from output (αy ≃ 0),

a price level rule in other words. In fact αy is slightly negative indicating that monetary

policy accommodates an increase in output above the steady state, rather than ‘leaning

against the wind’, but the effect is very small. For information set II with one or two lags,

the form of the rule is close to a price level rule. For simple rule B which responds only to

directly observed data on inflation and output, interest rates respond less to inflation as the

information lag increases. This is intuitive: policy responds less to dated information and

less than that for estimates of the target variables (form A), a result broadly in accordance

with the Brainard principle (Brainard (1967)).

Information Information Set Simple Rule A Simple Rule B
[ρr, θπ, θy] [ρr, θπ θy]

Perfect Full state vector [1.000, 2.162, −0.014 [1.000, 2.162, −0.014]

Imperfect It = [yt, πt, rt] [1.000, 2.439, −0.026] [1.000, 2.439, −0.026]

Imperfect It = [yt−1, πt−1, rt] [0.951, 2.235, −0.025] [0.914, 0.729, −0.008]

Imperfect It = [yt−2, πt−2, rt] [0.962, 2.291, −0.015] [0.862, 0.706, −0.013]

Table 3: Optimized Coefficients in Simple Rules without ZLB Considerations

20To derive the welfare in terms of a consumption equivalent percentage increase (ce ≡
∆C
C

× 102),
expanding U(Xt, 1 − Nt) as a Taylor series, a ∆U = UC∆C = CMUCce × 10−2. Losses X reported in
the Table are of the order of variances expressed as percentages and have been scaled by 1 − β. Thus
X × 10−4 = ∆U and hence ce = X×10−2

CMUC . For the steady state of this model, CMUC = 1.77. It follow that
a welfare loss difference of X = 100 gives a consumption equivalent percentage difference of ce = 0.566%.
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Figure 1: IRFs with Technology Shock
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Figure 2: IRFs with Government Spending Shock
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Figure 3: IRFs with Persistent Mark-up Shock

0 10 20
−0.01

0

0.01

0.02

0.03
Inflation

0 10 20
−0.1

−0.05

0

0.05

0.1
Output

0 10 20
−0.1

0

0.1

0.2

0.3
Interest Rate

0 10 20
−0.15

−0.1

−0.05

0

0.05
Consumption

0 10 20
−0.1

−0.05

0

0.05

0.1
Hours

0 10 20
−0.3

−0.2

−0.1

0

0.1
Marginal Cost

 

 

OP(P) TC(P) SIM(P) OP(I) TC(I) SIM(I)

16



To gain further insights into our results we compare the impulse response functions

for the NK model under the optimal, time-consistent and optimized simple rules.21 We

consider two information assumptions: PI and II with j = 2. Figures 1 – 3 display the

impulse responses to three shocks, technology, technology and the persistent component of

the mark-up shock.

Under PI we see the familiar responses in a NK model. For a technology shock output

immediately rises and, inflation falls. The optimal policy is to raise the interest rate a little

initially to contain inflation, but then to commit to a sharp monetary relaxation before

gradually returning to the steady state. Both consumption and leisure rise (the latter a

familiar result in the NK literature) and hours fall. The productivity shocks results in a fall

in the marginal cost, which is why inflation falls in the first place. The ⊔-shaped interest

rate path is time-inconsistent. Only an increasing interest rate path after the initial fall will

be time-consistent; regime TC sees this happening with a larger drop in both the interest

rate and inflation. Real variables - output, hours and consumption differ little between OP

and TC for all shocks which explains the small welfare differences for all shocks combined.

Under II with two lags the interest rate only responds when information is received.

At the micro-level firms respond to the shock but with the delayed drop in the nominal

interest rate consumers save more and consume less, demand falls and output initially falls

as well. The main impact of the productivity shock is now a larger and more prolonged

fall in inflation because of the delay in the interest rate response. There is also a sharp

fall in the real wage adding to the fall in the marginal cost. With II we see endogenous

persistence arising from the rational learning of the private sector about the unobserved

shock using Kalman updating. Output, inflation, consumption, hours and marginal cost

all exhibit hump-shaped responses, a feature stressed in the II literature (see, for example,

Collard et al. (2009) and Levine et al. (2012) among others cited in the introduction).

The mark-up shock is similar to the technology shock but with opposite effects; only

the qualitative response of hours differ. The government spending shock however provides

more interesting results. Under PI an increase in demand acts as a fiscal stimulus - in

fact with G
Y

= 0.4 in the steady state the impact multiplier is over unity in our estimated

model and almost identical across all policy regimes. 22 Inflation also rises which elicits an

interest rate rise, again for all regimes. The increase in government spending is financed by

non-distortionary tax; in anticipation of this households save more and consume less. The

real wage and therefore marginal costs rise, the marginal utility of consumption rises and

there is a switch away from leisure (hours increase). Under II there is a delayed upward

response of the interest rate to the inflation response. The demand increase is therefore

greater, the fiscal multiplier reaches almost 2 on impact and the real wage, marginal cost

and inflation increase by more. Now both leisure and consumption increase on impact and

the crowding out of consumption is delayed for around 5 quarters.

To summarize, although the welfare effects of II are modest in consumption equivalent

terms we see significant differences in impulse responses with II bringing about hump-shaped

reactions to shocks. However Table 4 indicates the aggressive nature of these rules leads

21Only the simple rule of type A is shown - type B is very similar.
22 ∆Yt

∆Gt
= Yt

Gt
× irf, but note that ‘government spending’ consists of all non-consumption demand in our

model.
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Information Information Set Optimal Time Cons Simple Rule A Simple Rule B

Perfect Full state vector 0.235 0.669 0.134 0.134

Imperfect It = [yt, πt, rt] 0.200 0.729 0.165 0.166

Imperfect It = [yt−1, πt−1, rt] 0.117 0.364 0.118 0.121

Imperfect It = [yt−2, πt−2, rt] 0.118 0.366 0.116 0.123

Table 4: Interest Rate Variances

to high interest rate variances resulting in a ZLB problem for all the rules and information

sets. From Table 4 with our zero-inflation steady state and nominal interest rate of 1% per

quarter, optimal policy variances between 0.118 and 0.235 of a normally distributed variable

imply a probability per quarter of hitting the ZLB in the range [0.004, 0.04]. Probabilities

for the optimized simple rules are within this range whilst for the time consistent policy

these rise to a range [0.05, 0.11]. At the upper end of these ranges the ZLB would be hit

almost once every two years. In the next section we address this issue.

6.2 Imposing an Interest Rate Zero Lower Bound Constraint

In the absence of a lower bound constraint on the nominal interest rate the policymaker’s

optimization problem is to minimize Ω0 given by (38) subject to (35) and (36) and given

z0. If the variances of shocks are sufficiently large, this will lead to a large nominal interest

rate variability and the possibility of the nominal interest rate becoming negative.

We can impose a lower bound effect on the nominal interest rate by modifying the

discounted quadratic loss criterion as follows.23 Consider first the ZLB constraint on the

nominal on the nominal interest rate. Rather than requiring that Rt ≥ 0 for any realization

of shocks, we impose the constraint that the mean rate should at least k standard deviation

above the ZLB. For analytical convenience we use discounted averages.

Define R̄ ≡ E0

[

(1− β)
∑∞

t=0 β
tRt

]

to be the discounted future average of the nominal

interest rate path {Rt}. Our ‘approximate form’ of the ZLB constraint is a requirement

that R̄ is at least kr standard deviations above the zero lower bound; i.e., using discounted

averages that

R̄ ≥ k

√

(Rt − R̄)2 = k

√

R2
t − (R̄)2 (42)

Squaring both sides of (42) we arrive at

E0

[

(1− β)

∞
∑

t=0

βtR2
t

]

≤ K

[

E0

[

(1− β)

∞
∑

t=0

βtRt

]]2

(43)

where K = 1 + k−2 > 1

We now maximize
∑∞

t=0 β
t[U(Xt−1,Wt) subject to the additional constraint (43) along-

side the other dynamic constraints in the Ramsey problem. Using the Kuhn-Tucker theorem

this results in an additional term wr

(

R2 −K(R̄)2
)

in the Lagrangian to incorporate this

23This follow the treatment of the ZLB in Woodford (2003) and Levine et al. (2008b)
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extra constraint, where wr > 0 is a Lagrangian multiplier. From the first order conditions for

this modified problem this is equivalent to adding terms E0(1−β)
∑∞

t=0 β
twr(R

2
t −2KR̄Rt)

where R̄ > 0 is evaluated at the constrained optimum. It follows that the effect of the extra

constraint is to follow the same optimization as before, except that the single period loss

function terms of in log-linearized variables is replaced with

Lt = yTt Qyt + wr(rt − r∗)2 (44)

where r∗ = (K − 1)R̄ > 0 is a nominal interest rate target for the constrained problem.

In what follows, we linearize around a zero-inflation steady state. With a ZLB con-

straint, the policymaker’s optimization problem is now to choose an unconditional distribu-

tion for rt, shifted to the right by an amount r∗, about a new positive steady-state inflation

rate, such that the probability of the interest rate hitting the lower bound is extremely

low. This is implemented by choosing the weight wr for each of our policy rules so that

z0(p)σr < R∗ where z0(p) is the critical value of a standard normally distributed variable Z

such that prob (Z ≤ z0) = p, R∗ = (1+π∗)R+π∗ is the steady state nominal interest rate,

R is the shifted steady state real interest rate, σ2
r = var(R) is the unconditional variance

and π∗ is the new steady state positive net inflation rate. Given σr the steady state positive

inflation rate that will ensure Rt ≥ 0 with probability 1− p is given by

π∗ = max

[

z0(p)σr −R+ 1

R
× 100, 0

]

(45)

In our linear-quadratic framework we can write the intertemporal expected welfare loss

at time t = 0 as the sum of stochastic and deterministic components, Ω0 = Ω̃0 + Ω̄0.

By increasing wr we can lower σr thereby decreasing π∗ and reducing the deterministic

component, but at the expense of increasing the stochastic component of the welfare loss.

By exploiting this trade-off, we then arrive at the optimal policy that, in the vicinity of the

steady state, imposes a ZLB constraint, rt ≥ 0 with probability 1− p. Figure 4 – 6 shows

this solution to the problem for all three policy regimes and PI with p = 0.0025; ie., a very

stringent ZLB requirement that the probability of hitting the zero lower bound is only once

every 400 quarters or 100 years.

Note that in our LQ framework, the zero interest rate bound is very occasionally hit;

then the interest rate is allowed to become negative, possibly using a scheme proposed by

Gesell (1934) and Keynes (1936). Our approach to the ZLB constraint (following Woodford

(2003))24 in effect replaces it with a nominal interest rate variability constraint which

ensures the ZLB is hardly ever hit. By contrast the work of a number of authors including

Adam and Billi (2007), Coenen and Wieland (2003), Eggertsson and Woodford (2003) and

Eggertsson (2006) study optimal monetary policy with commitment in the face of a non-

linear constraint Rt ≥ 0 which allows for frequent episodes of liquidity traps in the form of

Rt = 0.

24As in Levine et al. (2008b), we generalize the treatment of Woodford however by allowing the steady-
state inflation rate to rise. Our policy prescription has recently been described as a “dual mandate” in which
a central bank committed to a long-run inflation objective sufficiently high to avoid the ZLB constraint as
well as a Taylor-type policy stabilization rule about such a rate - see Blanchard et al. (2010) and Gavin and
Keen (2011).
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Figure 4: Imposition of ZLB for Optimal Policy and Perfect Information
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Figure 6: Imposition of ZLB for the Optimized Simple Rule and Perfect
Information

Table 5 shows that introducing the ZLB constraint significantly changes the relative

welfare performance of commitment, simple rules and the withdrawal of information. Now

there are substantial gains from commitment of over 0.39− 0.50% consumption equivalent.

Simple rules are still able to mimic their optimal counterpart. The form of the optimized

simple rules is now a difference rule that is very close to a price level rule for all cases. Again

the response to positive output deviations is slightly negative, offsetting the contractionary

response to inflation. We also see a far less aggressive response of monetary policy to

inflation that lowers the variance of the interest rate and prevents the ZLB problem seen

previously.

The reason why the discretionary policy performs so badly with a ZLB constraint is

that under discretion the policymaker lacks the leverage over private sector behaviour that

is possible under commitment from say temporary loosening (or tightening) of monetary

policy with promises to reverse this in the future. This in turn greatly inhibits the ability

to reduce the unconditional variance of the nominal interest rate when it is penalized by an

increasing size of the weight wr. Consequently to achieve a low probability of hitting the

ZLB one needs a larger shift of the nominal interest rate distribution to the right. Whereas

under commitment π∗ = 0, under discretion this rises to π∗ = 0.57− 0.67% or around 2.5%

per year. Our ZLB constraint then results in a long-run inflationary bias in addition to the

familiar stabilization bias highlighted by Currie and Levine (1993), Clarida et al. (1999)

and others.

These results of imposing the ZLB are fairly uniform across all three information sets.
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Information Information Set Optimal Time Consis Sim Rule A Sim Rule B

Perfect (Wel Loss) Full state vector 6.84 75.8 6.88 6.88
(0.003) (0.39) (0.006) (0.006)

Perfect (Weight wr) Full state vector 0.009 0.032 0.10 0.10

Perfect (Inflation π∗) Full state vector 0.00 0.62 0.00 0.00

Imperfect (Wel Loss) It = [yt, πt, rt] 7.61 95.8 7.71 7.71
(0.005) (0.50) (0.005) (0.005)

Imperfect ((Weight wr) It = [yt, πt, rt] 0.018 0.0375 0.03 0.03

Imperfect (Inflation π∗) It = [yt, πt, rt] 0.00 0.67 0.00 0.00

Imperfect (Wel Loss) It = [yt−1, πt−1, rt] 8.64 71.8 8.64 8.73
(0.01) (0.39) (0.01) (0.01)

Imperfect (Weight wr) It = [yt−1, πt−1, rt] 0.002 0.275 0.003 0.0003

Imperfect (Inflation π∗) It = [yt−1, πt−1, rt] 0.00 0.58 0.00 0.00

Imperfect (Wel Loss) It = [yt−2, πt−2, rt] 9.43 69.1 9.43 9.52
(0.02) (0.35) (0.02) (0.02)

Imperfect (Weight wr) It = [yt−2, πt−2, rt] 0.003 0.030 0.002 0.005

Imperfect (Inflation π∗) It = [yt−2, πt−2, rt] 0.00 0.57 0.00 0.00

Table 5: Welfare Costs per period of Imperfect Information with ZLB Considerations.
Consumption Equivalent Losses (%) in brackets. Prob of hitting ZLB=0.0025.

Information Information Set Simple Rule A Simple Rule B
[ρr, θπ, θy] [ρr, θπ, θy]

Perfect Full state vector [1.00, 0.417, −0.006] [1.00, 0.417, −0.006]

Imperfect It = [yt, πt, rt] [1.00, 0.397, −0.017] [1.00, 0.397, −0.017]

Imperfect It = [yt−1, πt−1, rt] [1.00, 0.370, −0.009] [1.00, 0.256, −0.020]

Imperfect It = [yt−2, πt−2, rt] [1.00, 0.335, −0.010] [1.00, 0.170, −0.015]

Table 6: Optimized Coefficients in Simple Rules with ZLB Considerations

What then are the particular implications of II then? There are two results to highlight.

First under commitment with both optimal policy and optimized rules, the welfare conse-

quences of limiting information to lagged output and inflation is similar to before without

ZLB considerations. But the combination of II and a lack of commitment can have par-

ticularly severe welfare implications. It should be noted that without commitment we are

in a world of second-best and the withdrawal of information is not automatically welfare-

reducing as it actually could improve the welfare outcome by the ”tying one’s hands” of the

policymaker to respond to current information. However the delay in the response imposed

by II could go the other way and in our estimated model this is precisely what happens as

one proceeds from PI to II with no lags in available information. But then with such lags

the tying one’s hands effect dominates and the welfare loss from an inability to commit falls

from ce = 0.5% at its peak with no lags to ce = 0.35% with two lags.

Finally in Figures 7 – 9 we examine the impulse responses with the ZLB constraint.
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These are now about a non-zero inflation steady state for the time-consistent case, but apart

from this feature they are similar to those obtained before. The most marked differences is

the noticeable divergence between the OP and SIM regimes that we expect from the larger

welfare difference reported in Table 5 for simple rule A and lag 2 (ce = 0.02% with the ZLB

compared with ce = 0.01% without).

7 Conclusions

We believe this to be the first paper to examine optimal policy in an estimated DSGE

NK model where informational consistency is applied at both the estimation and policy

stages. Our main results can be summarized as follows. First, common to all information

sets only with a ZLB constraint do we see substantial welfare gains from commitment.

Second, optimized rules take the form of a price level rule, or something very close across all

information cases. Third, the combination of limited information and a lack of commitment

can be particulary serious for welfare. At the same time we find that II with lags introduces a

‘tying ones hands’ effect on the policymaker that improves welfare under discretion. Finally,

the impulse response functions under our most extreme imperfect information assumption

(output and inflation observed with a two-quarter delay) exhibit hump-shaped behaviour

and the fiscal multiplier is significantly enhanced in this case.

There are a number of potential areas for future research. Our model is very basic with

low costs of business cycle fluctuations in the absence of ZLB considerations. If anything we

underestimate the costs of imperfect information and the importance of the ZLB. It seems

therefore worthwhile to revisit the issues raised in the context of a richer DSGE model

that includes capital, sticky wages, search-match labour market and financial frictions. A

second avenue for research would be to extend the work to allow the policymaker to have

more information than the private sector. This satisfies informational consistency and

would allow the proper examination of the benefits or otherwise of transparency. A third

research direction is the address the same the policy questions using other ways of modelling

information limitations associated with the ‘rational inattention’ and ‘sticky information’

literatures (see, for example, Sims (2005), Adam (2007), Luo and Young (2009), Reis (2009)

and Mackowiak and Wiederholt (2009)). The basic idea for the latter is that only a fraction

of agents can update their information each period and, for the former, that agents process

information subject to a constraint placing an upper bound on the information flow. Finally,

we assume rational (model consistent) expectations. It would be of interest to combine

some aspects of learning (for example about the policy rule) alongside model consistent

expectations with II, as in Ellison and Pearlman (2011).
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Clarida, R., Gaĺı, J., and Gertler, M. (1999). The Science of Monetary Policy: A New

Keynesian Perspective. Journal of Economic Literature, 37(4), 1661–1707.

Coenen, G. and Wieland, V. (2003). The Zero-Interest Rate Bound and the Role of the

Exchange Rate for Monetary Policy in Japan. Journal of Monetary Economics, 50,

1071–1101.

Collard, F. and Dellas, H. (2004). The New Keynesian Model with Imperfect Information

and Learning. mimeo, CNRS-GREMAQ.

Collard, F. and Dellas, H. (2006). Misperceived Money and Inflation Dynamics. mimeo,

CNRS-GREMAQ.

Collard, F., Dellas, H., and Smets, F. (2009). Imperfect Information and the Business

Cycle. Journal of Monetary Economics. Forthcoming.

Cukierman, A. and Meltzer, A. H. (1986). A theory of ambiguity, credibility and inflation

under discretion and asymmetric information. Econometrica, 54, 1099–1128.

Currie, D. and Levine, P. L. (1993). Rules, Reputation and Macroeconomic Policy Coor-

dination. Cambridge University Press.

Eggertsson, G. (2006). The Deflation Bias and Committing to Being Irresponsible. Journal

of Money, Credit and Banking, 36(2), 283–322.

Eggertsson, G. and Woodford, M. (2003). The Zero Interest-Rate Bound and Optimal

Monetary Policy. Brooking Papers on Economic Activity, 1, 139–211.

Ellison, M. and Pearlman, J. (2011). Saddlepath learning. Journal of Economic Theory,

146(4), 1500–1519.

Evans, G. W. and Honkapohja, S. (2009). Learning and Macroeconomics. Annual Review

of Economics, 1, 421–449.

25



Faust, J. and Svensson, L. (2001). Transparency and credibility: monetary policy with

unobservable goals. International Economic Review, 42, 369–397.

Faust, J. and Svensson, L. (2002). The equilibrium degree of transparency and control in

monetary policy. Journal of Money, Credit and Banking, 34(2), 520–539.

Fernandez-Villaverde, J. (2009). The Econometrics of DSGE Models. CEPR Discussion

Paper No. 7159.

Fernandez-Villaverde, J., Rubio-Ramirez, J., Sargent, T., and Watson, M. W. (2007). ABC

(and Ds) of Understanding VARs. American Economic Review, 97(3), 1021–1026.

Gaspar, V., Smets, F., and Vestin, D. (2010). Is Time Ripe for Price Level Path Stability?

In P. L. Siklos, M. T. Bohl, and M. E. Wohar, editors, Challenges in central banking:

the current institutional environment and forces affecting monetary policy. Cambridge

University Press.

Gavin, W. T. and Keen, B. D. (2011). The Zero Lower Bound and the Dual Mandate.

Mimeo. Presented to the CEF 2011 Conference in San Francisco .

Gesell, S. (1934). The Natural Economic Order. Free-Economy Publishing Co., Phlip Pye,

San Antonio.

Geweke, J. (1999). Computational Experiments and Reality. University of Minnesota and

Federal Reserve Bank of Minneapolis.

Jeffries, H. (1996). Theory of Probability. Oxford: Clarendon Press. Third Edition.

Juillard, M. (2003). DYNARE: A Program for Solving Rational Expectations Models.

CEPREMAP.

Keynes, J. M. (1936). The General Theory of Employment, Interest and Money. Macmillan,

New York.

Kimball, M. (1995). The Quantitative Analytics of the Basic Neomonetarist Model. Journal

of Monetary Economics, 27(4), 1241 – 1277. Part 2.

Koopman, S. J. and Durbin, J. (2003). Filtering and smoothing of state vector for diffuse

state-space models. Journal of Time Series Analysis, 24(1), 85–98.

Levin, A., Onatski, A., Williams, J. C., and Williams, N. (2006). Monetary Policy Under

Uncertainty in Micro-Founded Macroeconomic Models. in M. Gertler and K. Rogoff

(eds.), NBER Macroeconomics Annual, 2005, pp 229–387 .

Levine, P., Pearlman, J., and Perendia, G. (2007). Estimating DSGE Models under Par-

tial Information. Department of Economics Discussion Papers 1607, Department of

Economics, University of Surrey .

Levine, P., Pearlman, J., and Pierse, R. (2008a). Linear-Quadratic Approximation, Effi-

ciency and Target-Implementability. Journal of Economic Dynamics and Control, 32,

3315–3349.

26



Levine, P., McAdam, P., and Pearlman, J. (2008b). Quantifying and Sustaining Welfare

Gains from Monetary Commitment. Journal of Monetary Economics, 55(7), 1253–1276.

Levine, P., Pearlman, J., Perendia, G., and Yang, B. (2012). Endogenous Persistence in

an Estimated DSGE Model under Imperfect Information. Economic Journal, 122(565),

1287 – 1312.

Levine, P. L. and Pearlman, J. G. (2011). Computation of LQ Approximations to Optimal

Policy Problems in Different Information Settings under Zero Lower Bound Constraints.

Dynare Discussion Paper 10.

Lungu, L., Matthews, K., and Minford, A. (2008). Partial Current Information and Signal

Extraction in a Rational Expectations Macroeconomic Model: A Computational Solu-

tion. Economic Modelling, 25(2), 255–273.

Luo, Y. and Young, E. R. (2009). Rational Inattention and Aggregate Fluctuations. The

B.E. Journal of Macroeconomics, 9(1). Article 14.

Mackowiak, B. and Wiederholt, M. (2009). Optimal Sticky Prices under Rational Inatten-

tion. American Economic Review, 99(3), 769–803.

Magill, M. (1977). A Local Analysis of Capital Accumulation under Uncertainty. Journal

of Economic Theory, 15(2), 211–219.

Melecky, M., Rodriguez Palenzuela, D., and Soderstrom, U. (2008). Inflation Target Trans-

parency and the Macroeconomy. MPRA Paper No. 10545.

Minford, A. and Peel, D. (1983). Some Implications of Partial Information Sets in

Macroeeconomic Models Embodying Rational Expectations. Manchester School, 51,

235–249.

Pearlman, J. G. (1992). Reputational and Non-Reputational Policies with Partial Informa-

tion. Journal of Economic Dynamics and Control, 16, 339–357.

Pearlman, J. G., Currie, D., and Levine, P. (1986). Rational Expectations Models with

Private Information. Economic Modelling, 3(2), 90–105.

Reis, R. (2009). A Sticky Information General Equilibrium Model for Policy Analysis.

NBER WP No. 14732.

Sims, C. (2005). Rational Inattention: A Research Agenda. Deutche Bundesbank, W.P.

no. 34/2005.

Smets, F. and Wouters, R. (2003). An estimated Stochastic Dynamic General Equilibrium

Model of the Euro Area. Journal of the European Economic Association, 1(5), 1123–

1175.

Smets, F. and Wouters, R. (2007). Shocks and Frictions in US business cycles: A Bayesian

DSGE approach. American Economic Review, 97(3), 586–606.

27



Svensson, L. E. O. and Woodford, M. (2001). Indicator variables for Optimal Policy.

Journal of Monetary Economics, 50(3), 691–720.

Svensson, L. E. O. and Woodford, M. (2003). Indicator variables for Optimal Policy under

Asymmetric Information. Journal of Economic Dynamics and Control, 28(4), 661–680.

Woodford, M. (2003). Foundations of a Theory of Monetary Policy. Princeton University

Press.

28



ONLINE APPENDICES

A Linearization of Model

The log-linearization25 of the model about the non-stochastic steady state zero-growth26, zero-

inflation is given by

yt = cyct + (1 − cy)gt where cy =
C

Y
(A.1)

EtmuC
t+1 = muC

t − (rt − Etπt+1) (A.2)

πt =
β

1 + βγ
Etπt+1 +

γ

1 + βγ
πt−1 +

(1− βξ)(1 − ξ)

(1 + βγ)ξ
(mct +mst) (A.3)

where marginal utilities, muC
t , muN

t , and marginal costs, mct, and output, yt are defined by

muC
t =

(1− ̺)(1 − σ)− 1

1− hC

(ct − hCct−1)−
̺(1− σ)N

1−N
nt (A.4)

muN
t =

1

1− hC

(ct − hCct−1) +
N

1−N
nt +muC

t (A.5)

wt − pt = muN
t −muC

t (A.6)

mct = wt − pt − at + (1 − α)nt (A.7)

yt = at + αnt (A.8)

Equations (A.1) and (A.2) constitute the micro-founded ‘IS Curve’ and demand side for the model,

given the monetary instrument. According to (A.2) solved forward in time, the marginal utility of

consumption is the sum of all future expected real interest rates. (A.3) is the ‘NK Philips Curve‘, the

supply side of our model. In the absence of indexing it says that the inflation rate is the discounted

sum of all future expected marginal costs. Note that price dispersion, ∆t, disappears up to a first

order approximation and therefore does not enter the linear dynamics. Finally, shock processes and

the Taylor rule are given by

gt+1 = ρggt + ǫg,t+1

at+1 = ρaat + ǫa,t+1

mspert+1 = ρmsmspert + ǫmsper,t+1

mst = mspert + ǫmstra,t

πtar,t+1 = ρaπtar,t + ǫtar,t+1

rt = ρrrt−1 + (1− ρr)θ(Etπt+1 − ρtarπtar,t) + ǫe,t

ǫe,t, ǫa,t, ǫg,t, ǫmsper,t, ǫmstra,t and ǫtar,t are i.i.d. with mean zero and variances σ2
ǫe
, σ2

ǫa
, σ2

ǫg
, σ2

ǫmsper
,

σ2
ǫmstra

and σ2
ǫtra

respectively.

Calibration

̺ to target N = 0.4 given C
Y

= 0.6 and the estimate of hC , so
G
Y

= 0.4 with Gt including exogenous

investment.

25Lower case variables are defined as xt = log Xt

X
. rt and πt are log-deviations of gross rates. The validity

of this log-linear procedure for general information sets is discussed in the online Appendix of Levine et al.

(2012).
26With growth we simply replace β and hC with βg ≡ β(1 + g)(1−̺)(1−σ)−1 and hCg = hC

1+g
.
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B Priors and Posterior Estimates

Parameter Notation Prior distribution
Density Mean

Risk aversion σ Normal 1.50 0.375
Price indexation γ Beta 0.50 0.15
Calvo prices ξ Beta 0.50 0.10
Consumption habit formation hC Beta 0.50 0.10
Labour Share α Beta 0.70 0.10

Interest rate rule

Inflation θπ Normal 1.50 0.25
Output θy Normal 0.125 0.05
Interest rate smoothing ρr Beta 0.80 0.10

AR(1) coefficient

Technology ρa Beta 0.85 0.10
Government spending ρg Beta 0.85 0.10
Price mark-up ρms Beta 0.50 0.20
Inflation target ρtar Beta 0.85 0.10

Standard deviation of AR(1) innovations

Technology sd(ǫa) Inv. gamma 0.40 2.00
Government spending sd(ǫg) Inv. gamma 1.50 2.00
Price mark-up sd(ǫms) Inv. gamma 0.10 2.00
Inflation target sd(ǫtar) Inv. gamma 0.10 10.00

Standard deviation of I.I.D. shocks

Mark-up process sd(ǫm) Inv. gamma 0.10 2.00
Monetary policy sd(ǫe) Inv. gamma 0.10 2.00

Table 7: Prior Distributions
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Parameter Information PI Information II

σ 2.22 [1.66:2.79] 2.15[1.89:2.70]
γ 0.26 [0.08:0.43] 0.18 [0.08:0.31]
ξ 0.86 [0.80:0.93] 0.87 [0.84:0.91]
hC 0.77 [0.63:0.91] 0.66 [0.54:0.84]
α 0.70 [0.56:0.85] 0.67 [0.58:0.80]

Interest rate rule
θπ 1.79 [1.40:2.18] 2.03 [1.65:2.26]
θy 0.15 [0.09:0.22] 0.13 [0.10:0.19]
ρr 0.65 [0.53:0.78] 0.63 [0.58:0.74]

AR(1) coefficient
ρa 0.96 [0.93:0.99] 0.96 [0.94:0.98]
ρg 0.92 [0.88:0.95] 0.91 [0.89:0.94]
ρms 0.27 [0.04:0.49] 0.16 [0.03:0.40]
ρtarg 0.72 [0.55:0.91] 0.85 [0.71:0.92]

SD of AR(1) innovations
sd(ǫa) 0.43 [0.27:0.60] 0.51 [0.35:0.61]
sd(ǫg) 1.89 [1.63:2.14] 1.99 [1.74:2.13]
sd(ǫms) 0.05 [0.02:0.08] 0.05 [0.03:0.06]
sd(ǫtarg) 0.28 [0.03:0.50] 0.11 [0.04:0.22]

SD of I.I.D. shocks
sd(ǫm) 0.10 [0.06:0.13] 0.09 [0.05:0.11]
sd(ǫe) 0.12 [0.04:0.18] 0.18 [0.15:0.21]

Price contract length
1

1−ξ
7.30 7.42

Log Marginal Likelihood (LL) and posterior model odd
LL -105.84 –102.36
Prob. 0.037 0.963

Table 8: Bayesian Posterior Distributions♦

♦ Notes: we report posterior means and 90% probability intervals (in parentheses) based on the
output of the Metropolis-Hastings Algorithm. Sample range: 1981:I to 2006:IV.

C Optimal Policy Under Perfect Information

Under perfect information,

[

Etzt

Etxt

]

=

[

zt

xt

]

. Let A ≡ A1 + A2 and first consider the purely

deterministic problem with a model then in state-space form:

[

zt+1

xet+1,t

]

= A

[

zt

xt

]

+Bwt (C.1)

where zt is an (n−m)× 1 vector of predetermined variables including non-stationary processed, z0
is given, wt is a vector of policy variables, xt is an m× 1 vector of non-predetermined variables and

xet+1,t denotes rational (model consistent) expectations of xt+1 formed at time t. Then xet+1,t = xt+1
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and letting yTt =
[

zTt xTt
]

(C.1) becomes

yt+1 = Ayt +Bwt (C.2)

The procedures for evaluating the three policy rules are outlined in the rest of this section (or

Currie and Levine (1993) for a more detailed treatment).

C.1 The Optimal Policy with Commitment

Consider the policy-maker’s ex-ante optimal policy at t = 0. This is found by minimizing Ω0 given

by (38) subject to (C.2) and (36) and given z0. We proceed by defining the Hamiltonian

Ht(yt, yt+1, µt+1) =
1

2
βt(yTt Qyt + 2yTt Uwt + wT

t Rwt) + µt+1(Ayt +Bwt − yt+1) (C.3)

where µt is a row vector of costate variables. By standard Lagrange multiplier theory we minimize

L0(y0, y1, . . . , w0, w1, . . . , µ1, µ2, . . .) =

∞
∑

t=0

Ht (C.4)

with respect to the arguments of L0 (except z0 which is given). Then at the optimum, L0 = Ω0.

Redefining a new costate column vector pt = β−tµT
t , the first-order conditions lead to

wt = −R−1(βBT pt+1 + UT yt) (C.5)

βAT pt+1 − pt = −(Qyt + Uwt) (C.6)

Substituting (C.5) into (C.6), we arrive at the following system under control

[

I βBR−1BT

0 β(AT − UR−1BT )

] [

yt+1

pt+1

]

=

[

A−BR−1UT 0

−(Q− UR−1UT I

] [

yt

pt

]

(C.7)

To complete the solution we require 2n boundary conditions for (C.7). Specifying z0 gives us

n−m of these conditions. The remaining condition is the ‘transversality condition’

lim
t→∞

µT
t = lim

t→∞

βtpt = 0 (C.8)

and the initial condition

p20 = 0 (C.9)

where pTt =
[

pT1t p
T
2t

]

is partitioned so that p1t is of dimension (n −m) × 1. Equation (36), (C.5),

(C.7) together with the 2n boundary conditions constitute the system under optimal control.

Solving the system under control leads to the following rule

wt = −F

[

I 0

−N21 −N22

] [

zt

p2t

]

≡ D

[

zt

p2t

]

= −F

[

zt

x2t

]

(C.10)

where
[

zt+1

p2t+1

]

=

[

I 0

S21 S22

]

G

[

I 0

−N21 −N22

] [

zt

p2t

]

≡ H

[

zt

p2t

]

(C.11)

N =

[

S11 − S12S
−1
22 S21 S12S

−1
22

−S−1
22 S21 S−1

22

]

=

[

N11 N12

N21 N22

]

(C.12)
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xt = −
[

N21 N22

]

[

zt

p2t

]

(C.13)

where F = −(R+BTSB)−1(BTSOPTA+ UT ), G = A−BF and

S =

[

S11 S12

S21 S22

]

(C.14)

partitioned so that S11 is (n −m) × (n −m) and S22 is m ×m is the solution to the steady-state

Riccati equation

S = Q − UF − FTUT + FTRF + β(A−BF )TS(A−BF ) (C.15)

The welfare loss for the optimal policy (OPT) at time t is

ΩOPT
t = −

1

2
(tr(N11Zt) + tr(N22p2tp

T
2t)) (C.16)

where Zt = ztz
T
t . To achieve optimality the policy-maker sets p20 = 0 at time t = 0.27 At time

t > 0 there exists a gain from reneging by resetting p2t = 0. It can be shown that N11 < 0 and

N22 < 0.28, so the incentive to renege exists at all points along the trajectory of the optimal policy.

This is the time-inconsistency problem.

C.2 The Dynamic Programming Discretionary Policy

To evaluate the discretionary (time-consistent) policy we rewrite the welfare loss Ωt given by (38)

as

Ωt =
1

2
[yTt Qyt + 2yTt Uwt + wT

t Rwt + βΩt+1] (C.17)

The dynamic programming solution then seeks a stationary solution of the form wt = −Fzt in

which Ωt is minimized at time t subject to (1) in the knowledge that a similar procedure will be

used to minimize Ωt+1 at time t+ 1.

Suppose that the policy-maker at time t expects a private-sector response from t+ 1 onwards,

determined by subsequent re-optimization, of the form

xt+τ = −Nt+1zt+τ , τ ≥ 1 (C.18)

The loss at time t for the ex ante optimal policy was from (C.16) found to be a quadratic function

of xt and p2t. We have seen that the inclusion of p2t was the source of the time inconsistency in

that case. We therefore seek a lower-order controller

wt = −F zt (C.19)

with the welfare loss in zt only. We then write Ωt+1 = 1
2z

T
t+1S

TCT
t+1 zt+1 in (C.17). This leads to the

following iterative process for Ft

wt = −Ftzt (C.20)

27Noting from (C.13) that for the optimal policy we have xt = −N21zt −N22p2t, the optimal policy “from
a timeless perspective” proposed by Woodford (2003) replaces the initial condition for optimality p20 = 0
with Jx0 = −N21z0 − N22p20 where J is some 1 × m matrix. Typically in New Keynesian models the
particular choice of condition is π0 = 0 thus avoiding any once-and-for-all initial surprise inflation. This
initial condition applies only at t = 0 and only affects the deterministic component of policy and not the
stochastic, stabilization component.

28See Currie and Levine (1993), chapter 5.
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where

Ft = (Rt + λB
T

t S
TCT
t+1 Bt)

−1(U
T

t + βB
T

t S
TCT
t+1 At)

Rt = R+KT
t Q22Kt + U2TKt +KT

t U
2

Kt = −(A22 +Nt+1A12)
−1(Nt+1B

1 +B2)

Bt = B1 +A12Kt

U t = U1 +Q12Kt + JT
t U2 + JT

t Q22Jt

J t = −(A22 +Nt+1A12)
−1(Nt+1A11 +A12)

At = A11 +A12Jt

STCT
t = Qt − U tFt − FT

t U
T
+ F

T

t RtFt + β(At −BtFt)
TSTCT

t+1 (At −BtF t)

Qt = Q11 + JT
t Q21 +Q12Jt + JT

t Q22Jt

Nt = −Jt +KtFt

where B =

[

B1

B2

]

, U =

[

U1

U2

]

, A =

[

A11 A12

A21 A22

]

, and Q similarly are partitioned conformably

with the predetermined and non-predetermined components of the state vector.

The sequence above describes an iterative process for Ft, Nt, and STCT
t starting with some

initial values for Nt and STCT
t . If the process converges to stationary values, F,N and S say, then

the time-consistent feedback rule is wt = −F zt with loss at time t given by

ΩTCT
t =

1

2
zTt S

TCT zt =
1

2
tr(STCTZt) (C.21)

C.3 Optimized Simple Rules

We now consider simple sub-optimal rules of the form

wt = Dyt = D

[

zt

xt

]

(C.22)

where D is constrained to be sparse in some specified way. Rule (C.22) can be quite general. By

augmenting the state vector in an appropriate way it can represent a PID (proportional-integral-

derivative)controller.

Substituting (C.22) into (38) gives

Ωt =
1

2

∞
∑

i=0

βtyTt+iPt+iyt+i (C.23)

where P = Q + UD +DTUT +DTRD. The system under control (C.1), with wt given by (C.22),

has a rational expectations solution with xt = −Nzt where N = N(D). Hence

yTt P yt = zTt T zt (C.24)

where T = P11 −NTP21 − P12N +NTP22N , P is partitioned as for S in (C.14) onwards and

zt+1 = (G11 −G12N)zt (C.25)
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where G = A+BD is partitioned as for P . Solving (C.25) we have

zt = (G11 −G12N)tz0 (C.26)

Hence from (C.27), (C.24) and (C.26) we may write at time t

ΩSIM
t =

1

2
zTt V zt =

1

2
tr(V Zt) (C.27)

where Zt = ztz
T
t and V LY A satisfies the Lyapunov equation

V LY A = T +HTV LY AH (C.28)

where H = G11 −G12N . At time t = 0 the optimized simple rule is then found by minimizing Ω0

given by (C.27) with respect to the non-zero elements of D given z0 using a standard numerical

technique. An important feature of the result is that unlike the previous solution the optimal value

of D, D∗ say, is not independent of z0. That is to say

D∗ = D∗(z0)

C.4 The Stochastic Case

Consider the stochastic generalization of (C.1)

[

zt+1

xet+1,t

]

= A

[

zt

xt

]

+Bwt +

[

ut

0

]

(C.29)

where ut is an n× 1 vector of white noise disturbances independently distributed with cov(ut) = Σ.

Then, it can be shown that certainty equivalence applies to all the policy rules apart from the simple

rules (see Currie and Levine (1993)). The expected loss at time t is as before with quadratic terms

of the form zTt Xzt = tr(Xzt, Z
T
t ) replaced with

Et

(

tr

[

X

(

ztz
T
t +

∞
∑

i=1

βtut+iu
T
t+i

)])

= tr

[

X

(

zTt zt +
λ

1− λ
Σ

)]

(C.30)

where Et is the expectations operator with expectations formed at time t.

Thus for the optimal policy with commitment (C.16) becomes in the stochastic case

ΩOPT
t = −

1

2
tr

(

N11

(

Zt +
β

1− β
Σ

)

+N22p2tp
T
2t

)

(C.31)

For the time-consistent policy (C.21) becomes

ΩTCT
t = −

1

2
tr

(

S

(

Zt +
β

1− β
Σ

))

(C.32)

and for the simple rule, generalizing (C.27)

ΩSIM
t = −

1

2
tr

(

V LYA

(

Zt +
β

1− β
Σ

))

(C.33)

The optimized simple rule is found at time t = 0 by minimizing ΩSIM
0 given by (C.33). Now we
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find that

D∗ = D∗

(

z0z
T
0 +

β

1− β
Σ

)

(C.34)

or, in other words, the optimized rule depends both on the initial displacement z0 and on the

covariance matrix of disturbances Σ.

A very important feature of optimized simple rules is that unlike their optimal commitment or

optimal discretionary counterparts they are not certainty equivalent. In fact if the rule is designed

at time t = 0 then D∗ = f∗

(

Z0 +
β

1−β
Σ
)

and so depends on the displacement z0 at time t = 0

and on the covariance matrix of innovations Σ = cov(ǫt). From non-certainty equivalence it follows

that if the simple rule were to be re-designed at ant time t > 0, since the re-optimized D∗ will then

depend on Zt the new rule will differ from that at t = 0. This feature is true in models with or

without rational forward-looking behaviour and it implies that simple rules are time-inconsistent

even in non-RE models.

D Optimal Policy Under Imperfect Information

The proof of the theorem generalizes Pearlman (1992) slightly, in that it allows for cross-product

terms in states and instruments i.e. matrix U 6= 0, and provides a more elegant proof. Pearlman

(1992) shows that optimal policy is certainty equivalent in the sense that all the rules under imperfect

information correspond to those under perfect information, but with zt,t and xt,t replacing zt, xt.

In particular, for the fully optimal rule p2t then depends only on past values {zs,s, xs,s : s < t}, so

that p2t = p2t,t = p2t,t−1. The updating equation for zt,t is then derived as follows:

xt,t +N21zt,t +N22p2t = 0 xt − xt,t = A−1
22 A21(zt − zt,t) (D.1)

where N22 = 0 for TCT and SIM, N21, N22 were defined for OPT in (C.13) and N21 is dependent on

which rule is in place; the second equation is obtained by taking time-t expectations of the equation

involving Etxt+1 and subtracting from the original:

0 = A12(zt − zt,t) +A22(xt − xt,t) (D.2)

After taking expectations of each of these at t− 1, it then follows that we can write

mt −mt,t−1 = D(zt − zt,t−1) + vt + (E −D)(zt,t − zt,t−1) (D.3)

using the definitions of D and E in Section 3.1. Now assume that

zt,t − zt,t−1 = J1(D(zt − zt,t−1) + vt) (D.4)

which will be verified shortly. It then follows that

mt −mt,t−1 = (I + (E −D)J1)(D(zt − zt,t−1) + vt) (D.5)

and hence the updated value zt,t using the measurement mt is given by

zt,t − zt,t−1 = PDT (DPDT + V )−1(I + (E −D)J1)
−1(mt −mt,t−1)

= PDT (DPDT + V )−1(D(zt − zt,t−1) + vt) (D.6)

where the second equality is obtained by substituting from (D.5); hence J1 = PDT (DPDT +V )−1.

Finally Pearlman (1992) shows that E[(zt − zt,t)zs,s] = 0, s ≤ t. This enables us to rewrite the
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welfare loss in the form of (D.8), and to obtain its value in (39) using (D.9), where P is the solution

of the Riccati equation

P = APAT −APDT (DPDT + V )−1DPAT +Σ (D.7)

where A = A11 − A12A
−1
22 A21. Note that this Riccati equation is independent of policy. We may

then write the expected utility as

1

2
Et

[

∞
∑

i=0

βt(yTt+τ,t+τQyt+τ,t+τ + 2yTt+τ,t+τUwt+τ + wT
t+τRwt+τ

+ (yt+τ − yt+τ,t+τ )
TQ(yt+τ − yt+τ,t+τ ))

]

(D.8)

where we note that wt+τ is dependent only on current and past yt+s,t+s. The discounted expected

sum of the last term of (D.8) corresponds to the last term of (39) and is independent of policy,

while the other terms are minimized subject to the expected dynamics

[

zt+1,t+1

Etxt+1,t+1

]

= (A1 +A2)

[

zt,t

xt,t

]

+Bwt +

[

zt+1,t+1 − zt+1,t

0

]

(D.9)

allowing the problem to be solved using the techniques of Appendix C. We note by the chain rule

that Etxt+1,t+1 ≡ Et[Et+1xt+1] = Etxt+1, and that cov(zt+1,t+1−zt+1,t) = PDT (DPDT +V )−1DP

and cov(zt+1− zt+1,t+1) = P −PDT (DPDT +V )−1DP ≡ P̄ . This implies that the the other terms

of the welfare loss are as given in (39).

Furthermore, as in Pearlman (1992) we can show that certainty equivalence holds for both the

fully optimal and the time consistent solutions (but not for optimized simple rules).

E The Hamiltonian Quadratic Approximation of Welfare

Consider the following general deterministic optimization problem

max

∞
∑

t=0

βtU(Xt−1,Wt) s.t. Xt = f(Xt−1,Wt) (E.1)

where Xt−1 is vector of state variables and Wt−1 a vector of instruments.29 There are given initial

and the usual tranversality conditions. For our purposes, we consider this as including models with

forward-looking expectations, so that the optimal solution to the latter setup is the pre-commitment

solution. Suppose the solution converges to a steady state X,W as t → ∞ for the states Xt and the

policies Wt. Define xt = Xt −X and wt = Wt −W as representing the first-order approximation to

absolute deviations of states and policies from their steady states.30

29An alternative representation of the problem is U(Xt,Wt) and Et[Xt+1] = f(Xt,Wt) where Xt includes
forward-looking non-predetermined variables and Et[Xt+1] = Xt+1 for the deterministic problem where per-
fect foresight applies. Whichever one uses, it is easy to switch from one to the other by a simple re-definition.
Note that Magill (1977) adopted a continuous-time model without forward-looking variables. As we demon-
strate in Levine et al. (2008b), although the inclusion of forward-looking variables significantly alters the
nature of the optimization problem, these changes only affect the boundary conditions and the second-order
conditions, but not the steady state of the optimum which is all we require for LQ approximation.

30Alternatively xt = (Xt − X)/X and wt = (Wt − W )/W , depending on the nature of the economic
variable. Then the Theorem follows in a similar way with an appropriate adjustment to the Jacobian
Matrix.
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The Lagrangian for the problem is defined as,

∞
∑

t=0

βt[U(Xt−1,Wt)− λT
t (Xt − f(Xt−1,Wt))] (E.2)

so that a necessary condition for the solution to (E.1) is that the Lagrangian is stationary at all

{Xs}, {Ws} i.e.

UW + λT
t fW = 0 UX −

1

β
λT
t−1 + λT

t fX = 0 (E.3)

Assume a steady state λ for the Lagrange multipliers exists as well. Now define the Hamiltonian

Ht = U(Xt−1,Wt) + λT f(Xt−1,Wt). The following is the discrete time version of Magill (1977):

Theorem: If a steady state solution (X,W, λ) to the optimization problem (E.1) exists, then

any perturbation (xt, wt) about this steady state can be expressed as the solution to

max
1

2

∞
∑

t=0

βt
[

xt−1 wt

]

[

HXX HXW

HWX HWW

] [

xt−1

wt

]

s.t. xt = fXxt−1 + fWwt (E.4)

where HXX , etc denote second-order derivatives evaluated at (X,W ). This can be directly extended

to the case incorporating disturbances.

Thus our general procedure is as follows:

1. Set out the deterministic non-linear problem for the Ramsey Problem, to maximize the rep-

resentative agents’ utility subject to non-linear dynamic constraints.

2. Write down the Lagrangian for the problem.

3. Calculate the first order conditions. We do not require the initial conditions for an optimum

since we ultimately only need the steady-state of the Ramsey problem.

4. Calculate the steady state of the first-order conditions. The terminal condition implied by

this procedure is such that the system converges to this steady state.

5. Calculate a second-order Taylor series approximation, about the steady state, of the Hamil-

tonian associated with the Lagrangian in 2.

6. Calculate a first-order Taylor series approximation, about the steady state, of the first-order

conditions and the original constraints.

7. Use 4. to eliminate the steady-state Lagrangian multipliers in 5. By appropriate elimination

both the Hamiltonian and the constraints can be expressed in minimal form. This then gives

us the accurate LQ approximation of the original non-linear optimization problem in the form

of a minimal linear state-space representation of the constraints and a quadratic form of the

utility expressed in terms of the states.
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