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A B S T R A C T

One of the most important parameters influencing the acoustic response of holes that sustain
a low-Mach-number bias flow is their length-to-diameter ratio. For sufficiently short holes, the
bias flow is detached within the hole’s length, while in long holes the bias flow reattaches.
The acoustic behaviour of each class is different and separate modelling approaches exist in
the literature. For many technical applications, however, the length-to-diameter ratio falls in
the range 1.5 < 𝐿ℎ∕𝐷ℎ < 3.0, where is not clear if the holes behave acoustically as short or
long holes. In this work, the acoustics of such medium holes are explored numerically and
analytically. The numerical approach is based on the linearisation of the compressible Navier–
Stokes equations (LNSE) around a Reynolds-averaged mean flow. Medium holes are shown to
whistle at higher Strouhal numbers than short holes although the mean flow reattaches within
them. The underlying physics are further investigated by incorporating selected flow features
of the LNSE results into a semi-analytical model accounting for vortex-sound interaction. It is
shown that the perturbation field is determined by the three-way coupling of the two vortex
sheets shed from the inlet and outlet edges of the hole with the acoustic field. Furthermore, the
modelling of the growth of vorticity inside the hole is shown to be crucial to enable whistling
in the semi-analytical model.

. Introduction

Circular holes sustaining a low-Mach and high-Reynolds-number bias flow are found in many technical applications such as
iquid rocket engine propellant injectors [1,2], acoustic liners [3] and Helmholtz resonators [4,5] in gas turbines. Such holes can
ither damp or generate acoustic energy [6,7], the latter being known as whistling. Their acoustic behaviour depends on a complex
nterplay between incident and scattered acoustic waves, and vorticity that is shed at the hole lips [8,9].

The length (thickness) of the hole determines different classes of holes by determining the mean flow topology inside them.
egardless of the hole length, the mean flow separates at the sharp hole inlet edge resulting in a low-speed recirculation zone close

o the wall separated from the central jet by a thin shear layer. When the hole is short, the flow cannot reattach within the hole as
hown in Fig. 1(a). In contrast, for longer holes, turbulent flow reattachment (caused by the high mean flow shear rates inside the
ole [10]) takes place within the hole’s length (Fig. 1(b)). Based on this difference in mean flow topology, conventional short and
ong holes can be defined, respectively. Lichtarowicz et al. [11] investigated experimentally the low-Mach-number, high-Reynolds-
umber and non-cavitating flow through long holes up to length-to-diameter ratios of 10. They found that, for length-to-diameter
atios 𝐿ℎ∕𝐷ℎ < 1, reattachment inside the hole is unlikely to occur [11]. To justify this, they reported the values of the discharge
oefficient (defined as the ratio of the actual mass flow rate at the hole to that of an ideal nozzle) and argued that, for holes where
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Fig. 1. Mean flow velocity magnitude and streamlines inside the hole. Velocities are normalised with the bulk velocity inside the hole. Detached flow in hole
(a) and turbulent reattachment (b).

flow reattachment is not complete, this coefficient varies rapidly with the length of the hole [11,12]. This happens because, for
short holes, the pressure drop is mainly produced by the reduction of the effective flow area (due to the presence of the separation)
and the subsequent acceleration of the central jet. For short holes, the minimal effective flow area is strongly affected by the exact
length and, hence, the strong variation of the discharge coefficient. In contrast, once the flow is fully reattached, the area at the
vena contracta does not change significantly and, consequently, the discharge coefficient remains flatter (with a gentle decrease
for increasing hole lengths due to turbulent friction losses). Lichtarowicz et al. [11] found that beyond a value of 𝐿ℎ∕𝐷ℎ ≈ 1.5,
the discharge coefficient is approximately constant. Hay and Spencer [12] report from experiments a stabilisation of the discharge
coefficient at 𝐿ℎ∕𝐷ℎ ≈ 2.0. Similarly, strong variation of the discharge coefficient up to 𝐿ℎ∕𝐷ℎ ≈ 2.0 is found in Idelchik [13]. The
empirical correlation of Kolodize and Van Winkle [14] shows stabilisation at 𝐿∕𝐷 ≈ 1.6. Based on these experimental studies, the
border between short and long holes can be expected to fall within 1.5 < 𝐿ℎ∕𝐷ℎ < 2.0. Rennels and Hudson [15], for instance,
propose 𝐿ℎ∕𝐷ℎ > 1.4 as the lower limit for long holes.

The different mean flow topologies result in different acoustic behaviours exhibited by short and long holes. The damping of
acoustic energy by apertures in infinitely thin walls was studied analytically by Howe [8]. Howe assumed that the Reynolds number
was sufficiently high for the perturbation field to be taken as inviscid everywhere except in the vicinity of the separation line, where
viscous effects need to be taken into account to avoid the geometric singularity predicted by inviscid theory. To this end, vorticity is
2



Journal of Sound and Vibration 546 (2023) 117435P. Brokof et al.

a

F
c
l
e
c

t

b
d
m

o
c
(
c
a
m
t
f
a
T
o

a
a
w
s
f
q
i
f
f

a
t
a

a
a
w
c
b
t
i

allowed to be shed from the rim of the hole in such quantities as to eliminate the singularity (via the Kutta condition). Subsequently,
the vorticity is assumed to be convected without change by the mean flow along the shear layer. Howe modelled the thin regions
of vorticity shed from the hole rim as a vortex sheet [16] and described the interplay between vorticity and the acoustic field. Yang
and Morgans [9,17] extended Howe’s model to account for the vortex-sound interaction inside short but finite holes. The straight
vortex sheet shed from the hole in Howe’s model, was replaced by a curved vortex sheet starting at the inlet edge of the hole and
following the geometry of the vena contracta inside the hole. This model successfully describes the acoustic behaviour of short but
finite holes. For a Strouhal number based on the hole length and the bulk velocity inside the hole, short holes (𝐿ℎ∕𝐷ℎ < 0.5) are
found to whistle in the range 0.2 < 𝑆𝑡 < 0.35 [7,18–22]. When whistling occurs, energy is transferred from the mean flow to the
coustic field through the unsteady vorticity shed at the sharp rims of the hole [9].

Longer holes with 𝐿ℎ∕𝐷ℎ ∈ {5, 10} have been studied numerically [20] and experimentally [21] and no whistling was found.
or long holes, the vorticity shed from the hole inlet is dissipated by turbulence before being convected to the hole outlet where it
ould interact with the radiated sound. Long holes were studied analytically based on Howe’s model [8] by accounting for the hole
ength through an additional inertia term [3], or by allowing the propagation of planar acoustic waves inside the hole [9]. Bellucci
t al. [4] developed a model for the acoustics of holes based on a momentum balance across the hole that needs the hole discharge
oefficient as an input parameter.

Whereas the acoustics of short and long holes are well described by theoretical models, the border region between these
wo classes of holes, i.e. 1.0 < 𝐿ℎ∕𝐷ℎ < 5.0, has been little investigated. Whistling of a hole with 𝐿ℎ∕𝐷ℎ = 1.5 is reported for
0.87 < 𝑆𝑡 < 1.0 [19,23], at significantly higher Strouhal numbers than the whistling range of conventional short holes. The existence
of whistling for holes with a reattached mean flow in a different frequency range than for short holes suggests that the underlying
physical mechanism of such holes must be different. In this work, the acoustics of holes with length-to-diameter ratios falling
between 1.5 < 𝐿ℎ∕𝐷ℎ < 3.0 are studied numerically and analytically. The lower boundary is chosen based on the observations
y Lichtarowicz et al. [11] of stabilised discharge coefficient at 𝐿ℎ∕𝐷ℎ > 1.5, allowing to explore the so far unexplained whistling
espite reattached hole flow. Length-to-diameter ratios smaller than 1.5 are excluded from the present study because the hole flow
ay be three-dimensional and hysteresis effects may occur [11].

The acoustics of the aforementioned holes are explored numerically to gain understanding of the underlying physics and to
pen the path to efficient analytical modelling. Numerical studies can be based on the Navier–Stokes equations with increasing
ontributions of modelling. The hole acoustics can be directly extracted from compressible time-resolved large eddy simulations
LES) which resolve large scale turbulent structures and account for non-linear effects [24,25]. To overcome the high demand of
omputational resources inherent to LES, the impedance of an acoustically compact hole was also extracted from Unsteady Reynolds-
veraged Navier–Stokes (URANS) simulations [20,22,26]. While significantly reducing the computational effort by complete
odelling of turbulence, this approach still accounts for the non-linear impact of the acoustics on the mean flow. Further reduction of

he computational effort can be achieved by a two-step approach [27–29], i.e. solving the linearised Navier–Stokes equations (LNSE)
or a mean flow that was obtained as the solution of the steady Reynolds-averaged Navier–Stokes equations (RANS). Inherently, this
pproach cannot account for non-linear effects and applies only to configurations that feature a time-averaged steady mean flow.
o incorporate the influence of turbulence on the linear acoustics in the two-step approach, a turbulence model for the LNSE based
n the mean flow eddy viscosity was proposed by Gikadi et al. [30] and Holmberg et al. [31].

The linear two-step approach with eddy viscosity is employed in this study for two reasons: (1) The high computational efficiency
llows to perform a parametric study of the length-to-diameter ratio in the investigated border region between conventional short
nd long holes while obtaining the acoustic response of the holes over a broad frequency band. The latter is necessary, since the
histling of conventional short and medium holes occurs at low and high Strouhal numbers, respectively. (2) As for conventional

hort holes, a linear whistling mechanism is expected. Previous studies have shown the ability of LNSE to achieve excellent results
or linear acoustic problems [27–31]. The choice of LNSE then allows the computational resources to be investigated in high mesh
uality instead of resolving non-relevant flow details. This is especially important at higher frequencies. This can be observed, for
nstance, in the LES results of a hole (𝐿ℎ∕𝐷ℎ = 0.3) given by Lacombe et al. [25], where the scattering matrix differs significantly
rom experimental trends at higher Strouhal numbers. The LNSE approach, in contrast, yields an excellent agreement over all
requencies for the same configuration, as we show in Appendix A.

A further contribution of this paper is a semi-analytical model for the acoustics of holes in the aforementioned region. Yang
nd Morgans’ [9,17] semi-analytical model is extended to account for the vorticity distribution identified by the LNSE approach for
he holes of interest. This includes the three-way coupling of two vortex sheets with the acoustic field and the introduction of an
dditional model parameter to account for the growth of vorticity inside the hole at high Strouhal numbers.

This paper is organised as follows: Section 2 defines the problem studied in this paper in detail. Subsequently, the numerical
nd semi-analytical models employed in this paper are presented in Section 3.1 and Section 3.2, respectively. Section 4 presents
nd discusses the results of this study. The presented numerical approach is validated for low Strouhal numbers by comparison
ith experimental data in Section 4.1 and Section 4.2. In Section 4.3, the vorticity shed from the hole edges is analysed in the

ontext of the vortex sound equation [16]. Key flow features enabling the whistling potential of this class of holes are identified in
y incorporating them from the LNSE results into semi-analytical vortex-sound models [9,17,32] as shown in Section 4.4. This leads
o the suggestion of the class of medium holes based on the underlying physical mechanism. Finally, the findings are summarised
3
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Fig. 2. Computational domain for acoustic characterisation of holes: Rotational symmetry around the duct axis is assumed. Boundaries are denoted with 𝛤(⋅).

2. Problem formulation

A circular hole of diameter 𝐷ℎ and length 𝐿ℎ and arranged between two circular ducts is considered as shown in Fig. 2. Quantities
upstream and downstream of the hole are denoted with the subscripts (⋅)𝑢 and (⋅)𝑑 , respectively. Quantities considering the hole
itself are denoted with the subscript (⋅)ℎ. The geometry is determined by the up- and downstream expansion ratios 𝜆𝑢 = 𝐷𝑢∕𝐷ℎ and
𝜆𝑑 = 𝐷𝑑∕𝐷ℎ, as well as the length-to-diameter ratio of the hole 𝐿ℎ∕𝐷ℎ. A uniform mean flow enters the domain at 𝛤in, causing a
bias flow through the hole. A small-amplitude acoustic wave coming from the upstream side is then imposed on this mean flow.
We formulate the problem in the frequency domain by choosing the ansatz ̃(⋅) = ̂(⋅) exp(i𝜔𝑡) for small perturbations, where 𝑡 is the
ime and i the imaginary unit. As the considered frequencies 𝜔 = 2𝜋𝑓 are below the cut-off frequency of the ducts, only acoustic
lane waves are non-evanescent. The ducts in Fig. 2 are chosen to be sufficiently long (𝐿𝑢 = 150𝐷ℎ, 𝐿𝑑 = 300𝐷ℎ), so that only
ne-dimensional planar acoustic waves propagate far up- and downstream from the hole. For comparability with other studies,
requencies are presented in non-dimensional form using the Strouhal number

𝑆𝑡 =
𝑓𝐿ℎ
𝑈ℎ

, (1)

based on the hole length and the mean bulk velocity inside the hole 𝑈ℎ.
Representative for holes with length-to-diameter ratios falling in between conventional short and long holes, a hole with

ℎ∕𝐷ℎ = 2.0 is chosen. The Mach number inside the hole, based on the hole bulk velocity 𝑈ℎ and mean flow speed of sound
𝑐, is set to 𝑀𝑎ℎ = 𝑈ℎ∕𝑐 = 0.043 for comparison with available experimental data. The mean flow Mach number inside the hole
s small which allows the mean flow to be modelled as incompressible. The Reynolds number inside the hole, based on the bulk
elocity, hole diameter 𝐷ℎ and kinematic viscosity 𝜈, is set to 𝑅𝑒ℎ = 𝑈ℎ𝐷ℎ∕𝜈 = 10,000 throughout the paper. This is sufficiently
igh for the mean flow topology inside the hole to become independent of the Reynolds number [8,12].

A quantitative measure of the acoustic behaviour of the hole is its impedance

ℎ =
𝛥�̂�ℎ
𝐴ℎ�̂�ℎ

, (2)

where 𝛥�̂�ℎ is the difference in acoustic pressure across the hole, 𝐴ℎ is the hole cross section area and �̂�ℎ is the axial acoustic velocity
t the inlet of the hole. If the real part of the impedance, known as the resistance, becomes negative, the hole generates acoustic
nergy [8,33]. For comparison with other studies, the impedance is given in its normalised form

𝑍ℎ =
𝐴ℎ
�̄�𝑐

ℎ = 1
�̄�𝑐

𝛥�̂�ℎ
�̂�ℎ

, (3)

ssuming a constant mean flow density �̄� and speed of sound 𝑐.

. Models and their assumptions

In this section, we describe the numerical (Section 3.1) and analytical (Section 3.2) models that we use to study the configuration
utlined in Section 2. Furthermore, we outline the underlying assumptions of each model.

.1. Numerical model

In this work, the mean flow Mach number is assumed to be low. Hence, the mean flow through the hole can be assumed incom-
ressible and entropy fluctuation can be neglected [27–29]. The problem is, therefore, completely governed by the conservation of
ass and momentum,

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮) = 0, (4)

𝜕(𝜌𝐮)
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮⊗ 𝐮) = −∇𝑝 + ∇ ⋅ 𝝉 , (5)
4
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where 𝜌 is the density, 𝑝 is the pressure and 𝐮 is the velocity. Body forces are neglected in this formulation. For the assumed
Newtonian fluid, the shear stress tensor is defined as

𝝉 = 𝜂𝝐 = 𝜂
[

(∇𝐮 + ∇𝐮𝑇 ) − 2
3
(∇ ⋅ 𝐮)𝐈

]

, (6)

where 𝜂 is the dynamic viscosity and 𝝐 is the shear rate tensor. The unit tensor is denoted by 𝐈.
To model the influence of turbulence on the linear acoustics, the Navier–Stokes equations are Reynolds-averaged [34]. To this

purpose, primitive flow variables 𝐘 = (𝐮, 𝜌, 𝑝) are decomposed into a steady mean flow �̄�, small-amplitude, coherent oscillations �̃�
and small random turbulent fluctuations 𝐘′, such as

𝐘 = �̄� + �̃� + 𝐘′. (7)

This triple decomposition is introduced in Eq. (4) and Eq. (5) and the time average is taken. After neglecting second-order terms
of the coherent oscillations, the Reynolds-averaged Navier–Stokes (RANS) equations are obtained for the mean flow. Here, the RANS
equations are solved with the finite volume software OpenFoam version 7.0 [35], using a segregated solver based on the SIMPLE
algorithm. Turbulence is modelled with the 𝑘 − 𝜔-SST turbulence model [36], which can treat wall-bounded and free-shear flows
simultaneously [36–38]. This property is necessary since flow separation inside the hole and a shear layer convected downstream
from the hole are present in the mean flow.

Exploiting the rotational symmetry of the problem, the structured mean flow mesh is a 5 degree wedge composed of hexahedral
cells with a row of prismatic cells around the axis of revolution. This mesh extends only one layer in the circumferential direction
with boundary conditions in the two bounding planes that ensure axisymmetry of the flow variables. The duct wall upstream of the
hole 𝛤𝑢 is treated with a slip boundary condition �̄� ⋅ 𝐧 = 0 since it models a plenum. The wall containing the hole 𝛤ℎ, as well as the
downstream duct wall 𝛤𝑑 , are treated with a non-slip boundary condition �̄� = 0 to capture the influence of the recirculating flow,
due to the area expansion, on the acoustics. In a parametric study, the expansion ratio 𝜆 = 𝐷𝑑∕𝐷ℎ is increased until independence of
the acoustic results on the expansion ratio is found. At no-slip walls, the mesh resolves the boundary layer with a dimensionless wall
distance of 𝑦+ < 1 to avoid the use of wall functions for the turbulence modelling. A uniform velocity profile is set at the inlet 𝛤in to
yield a mean velocity of 𝑈ℎ = 1 inside the hole. Additionally, the turbulent kinetic energy at the inlet is imposed so that a turbulence
intensity of 5% is achieved. The viscosity is adjusted to match the target Reynolds number inside the hole. Zero gradients are set
for the pressure and specific dissipation rate of turbulent kinetic energy on the inlet. The flow leaves the computational domain at
prescribed zero relative pressure and the gradients of velocity, specific dissipation rate of turbulent kinetic energy and turbulent
kinetic energy are set to zero at the outlet 𝛤out.

The governing equations for perturbations of the mean flow are obtained by inserting the triple decomposition (Eq. (7)) into
Eqs. (4) and (5), and subsequent subtraction of the time-averaged ⋅̄ equations from the phase-averaged ⟨⋅⟩ ones. By neglecting
erturbation terms of order two and higher, we find the linearised Navier–Stokes equations (LNSE) as

𝜕�̃�
𝜕𝑡

+ ∇ ⋅ (�̄��̃� + �̃��̄�) = 0, (8)
𝜕�̄��̃�
𝜕𝑡

+ (�̄��̃� + �̃��̄�) ⋅ ∇�̄� = ∇ ⋅
(

�̃� − �̄�(
⟨

𝐮′ ⊗ 𝐮′
⟩

− 𝐮′ ⊗ 𝐮′)
)

− ∇�̃�. (9)

For a detailed derivation, the reader is referred to Gikadi et al. [30] and Holmberg et al. [31]. When entropy perturbations
are neglected, the equation of state reduces to �̃� = �̃�𝑐2. Turbulence is modelled by relating the time and phase-averages of
double-correlations of turbulent fluctuations in Eq. (9) to the harmonic perturbation strain rate tensor with the Boussinesq
hypothesis [30,31]

⟨

𝐮′ ⊗ 𝐮′
⟩

− 𝐮′ ⊗ 𝐮′ =
[

−𝜈𝑇
⟨

𝝐
⟩

+ 2
3
⟨𝑘⟩ 𝐈

]

+
[

𝜈𝑇 𝝐 −
2
3
𝑘𝐈
]

= −𝜈𝑇 �̃�. (10)

Eq. (10) assumes that the energy of the turbulence 𝑘 is not affected by phase averaging and therefore, cancels out. Furthermore,
the property of phase and time-averaging, �̃� =

⟨

𝜖
⟩

− 𝜖, is used. We further assume that the turbulence is unaffected by the acoustic
perturbation [39] and, hence, the eddy viscosity 𝜂𝑇 = �̄�𝜈𝑇 is assumed ‘‘frozen’’ and equal to the one obtained from the mean flow
solution. Finally, Eqs. (8) and (9) are transformed to the frequency domain by using the ansatz �̃� = �̂�𝑒i𝜔𝑡 for harmonic perturbations.

hese equations are solved within the finite element framework FEniCS [40] using a coupled approach [39].
As for the mean flow computations, the rotational symmetry of the problem is exploited in the acoustic simulations. The

overning equations are formulated in cylindrical coordinates and an unstructured two-dimensional mesh consisting of triangular
lements is used. Anechoic acoustic boundary conditions based on a flux vector splitting approach (Appendix B) are set at the
omain inlet 𝛤in and outlet 𝛤out. The flow is acoustically forced from the inlet. For the acoustics, the upstream duct wall 𝛤u is again
odelled with a slip boundary condition �̂� ⋅ 𝐧 = 0 since its purpose is to model a plenum where viscous losses are negligible. The
all containing the hole 𝛤h is treated with a non-slip boundary condition �̂� = 0. In the acoustic simulations, the downstream duct
all is also modelled with a slip boundary condition �̂� ⋅ 𝐧 = 0 to reduce the computational cost associated with solving the acoustic
oundary layer. Comparative studies between simulations with acoustic no-slip and slip boundary conditions at the downstream
uct wall showed only a small influence on the results. Additionally, Kierkegaard et al. [28] report that a high resolution of the
coustic boundary layer is not necessary to obtain reliable results. For a hole Mach number of 𝑀𝑎ℎ = 0.043 and a maximum Strouhal

number of 𝑆𝑡 = 1.2, the shortest acoustic wave length at the coarsest part of the mesh in the upstream duct is 𝜆∕𝐿ℎ ≈ 19.4. This
5

yields a resolution of approximately 55 elements per wavelength.
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The Riemann invariants, which represent the amplitude and phase of plane acoustic waves propagating in and opposite to the
low direction, are defined as

𝑓 = 1
2

(

�̂�
�̄�𝑐

+ �̂�
)

, �̂� = 1
2

(

�̂�
�̄�𝑐

− �̂�
)

, (11)

respectively, and are extracted from the LNSE results with a numerical analogue of the multiple-microphone method [41]. The
two post-processing zones are −100 < 𝑥∕𝐷ℎ < −10 upstream and 40 < 𝑥∕𝐷ℎ < 100 downstream of the hole outlet. Under the
assumption of local incompressibility at the hole, the pressure difference across the hole is the pressure difference between the up-
and downstream ducts at the duct-hole-interfaces

𝛥�̂�ℎ
�̄�𝑐

= (𝑓𝑢 + �̂�𝑢) − (𝑓𝑑 + �̂�𝑑 ), (12)

and the velocity in the hole can be approximated from the velocity in the upstream duct

�̂�ℎ =
𝐴𝑢
𝐴ℎ

(

𝑓𝑢 − �̂�𝑢
)

. (13)

Both quantities together allow to compute the hole impedance Eq. (3).
To sum up, the most important assumptions of the numerical model are (1) incompressibility and steadiness of the mean flow,

(2) the neglection of entropy fluctuations and (3) no influence of acoustic perturbations on the turbulence (’’frozen eddy viscosity’’).

3.2. Semi-analytical model

We now turn our attention to the theoretical description of the problem. The presented semi-analytical model is based on the
vortex-sound theory [8,9] and an extension of the model of Yang and Morgans [9,17] developed for short holes.

We consider flows characterised by low-Mach, (𝑀𝑎2) ≪ 1, and high-Reynolds numbers (𝑅𝑒ℎ) = 104 − 105. The first limit allows
o assume that entropy perturbations are negligible. The second limit allows to treat the perturbation field as inviscid. Viscous effects
re only important close to the sharp edges of the hole, where viscosity produces the shedding of fluctuating vorticity when acoustic
aves impinge them. In the model, the strength of the unsteady shed vorticity is chosen according to a Kutta condition [8], i.e. so

hat the perturbation velocity and pressure at the hole edges stay finite. The shed vorticity is then convected by the mean flow and,
f viscous diffusion is neglected, it can be assumed to be contained in an infinitely thin region. This is known as the vortex sheet
ssumption [16] and has been extensively used to successfully model the acoustics of this type of flow, for example by Pedergnana
t al. [42].

The flow through the hole is described in terms of the stagnation enthalpy 𝐵 = 𝑐𝑝𝑇 + 1
2𝐮

2, where 𝑐𝑝 is the isobaric specific heat
and 𝑇 the temperature. In an irrotational low-Mach-number flow, the perturbated stagnation enthalpy �̃� is linked to the acoustic
pressure and acoustic velocity by �̃� = �̄�(�̃� − �̄��̃�) and 𝜕�̃�

𝜕𝑡 = −∇�̃�, respectively [16]. Flow variables are represented as the sum of a
teady mean component ̄(⋅) and a small-amplitude perturbation component ̃(⋅). Neglecting body forces and assuming the flow to be
omentropic with constant mean density and speed of sound, the distribution of the perturbation stagnation enthalpy �̃� is governed
y the following inhomogeneous wave equation [16],

(

1
𝑐2

(

𝜕2

𝜕𝑡2
+ �̄� 𝜕

𝜕𝑥

)

− ∇2
)

�̃� = ∇ ⋅ (�̃� × �̄�), (14)

where �̃� is the perturbation vorticity. To model this vorticity, we assume that the strength and phase of the vorticity shed at a given
edge 𝜎 are determined by a Kutta condition and the vorticity is then advected with uniform convection velocity 𝐮𝑐 along the vortex
sheet path, 𝑠, i.e.

�̃� = 𝜉𝐞𝜃 = 𝜎𝑒i𝑘0𝑠𝐞𝜃 , (15)

where 𝑘0 = 𝜔∕|𝐮𝑐 | is the hydrodynamic wavenumber and 𝐞𝜃 the unit vector in the azimuthal direction. In the rest of this paper, the
mean velocity in the source term of Eq. (14) is replaced by the convective velocity associated with the vortex sheet.

If the walls with which the vortex sound interacts are not penetrated by the perturbation vorticity, the perturbated stagnation
enthalpy must obey the potential flow wall boundary condition of vanishing normal velocity, �̃� ⋅ 𝐧 = 0. The irrotational relation
between acoustic velocity and perturbation total enthalpy allows to formulate this condition as

𝜕�̃�
𝜕𝐧

= 0. (16)

In order to solve Eq. (14) the Green’s function method is used [9,16,17,32]. The Green’s function 𝐺 is defined as the solution
enerated by a Dirac impulse 𝛿 at position 𝐲 and time 𝜏:

(

1
𝑐2

(

𝜕2

𝜕𝑡2
+ �̄� 𝜕

𝜕𝑥

)

− ∇2
)

𝐺 = 𝛿(𝐱 − 𝐲)𝛿(𝑡 − 𝜏). (17)

Eq. (14) can then be weighted by this Green’s function and integrated over the physical domain. After some manipulations, the
following integral solution for the stagnation enthalpy in the frequency domain [9,17] is obtained

�̂�(𝑥, 𝜔) =
(

2i𝑘𝑀𝑎�̂��̂�𝐞𝑥 + �̂�∇�̂� − �̂�∇�̂�
)

⋅ 𝐬 − (�̂� × 𝐮𝑐 ) ⋅ ∇�̂�d𝑣, (18)
6
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where 𝑘 is the acoustic wavenumber and 𝐞𝑥 the unit vector in the axial direction. Note that to obtain a closed-form integral solution
of Eq. (14), the Green’s function is required to satisfy the boundary condition 𝜕𝐺

𝜕𝐧 = 0 on the wall boundaries.
To sum up, the most important assumptions of the semi-analytical model are (1) the neglection of entropy fluctuations, (2) the

neglection of viscosity but in the vicinity of the sharp hole edges and (3) uniform convection of the shed vorticity.

4. Results and discussion

In this section, we present the results of our numerical study. Subsequently, the semi-analytical model described in Section 3.2
is extended by certain flow features obtained from the numerical results to improve its predictions. Based on the presented findings,
we introduce the medium hole as new class of perforation with its own characteristic acoustical behaviour.

4.1. Mean flow as obtained by numerical model

Fig. 1(b) shows the velocity field for a hole defined by 𝐿ℎ∕𝐷ℎ = 2.0. The flow cannot follow the sharp geometry of the hole
at the inlet and separates creating a low-speed recirculation region adjacent to the wall. A jet is created in the central zone of
the hole. The thickness of the recirculation zone rapidly increases downstream of the inlet up to a vena contracta located at a
distance of 𝑥∕𝐷ℎ ≈ 0.5 from the inlet. In this portion, the velocity of the jet increases due to the reduction of the effective flow area
produced by the presence of the separation. This increase of velocity however comes at the expense of a pressure drop. Downstream
of the vena contracta, turbulence enhances the transfer of momentum between the boundary layer and the jet, leading to a turbulent
reattachment of the flow at 𝑥∕𝐷ℎ = 1.22 (based on the change of sign of the wall friction coefficient). This value compares favourably
with the reattachment line at 𝑥∕𝐷ℎ = 1.15 reported by Son et al. [43] for a hole with 𝐿ℎ∕𝐷ℎ = 1.5 using LES. With the increase
of effective flow area downstream of the vena contracta, the velocity of the jet reduces and the pressure is recovered. Deckker and
Chang [44] reports the pressure measured experimentally at the centre-line for a hole with 𝐿ℎ∕𝐷ℎ = 2.0. They found a minimum
of the pressure (corresponding to the position of the vena contracta) at 𝑥∕𝐷ℎ ≈ 0.5, in agreement with Fig. 1(b).

To compare the numerical results with experimental data, we use the loss coefficient defined as

𝜁 =
𝛥�̄�

1
2 �̄�𝑈

2
ℎ

, (19)

where the 𝛥�̄� is the pressure difference between the inlet and the outlet of the domain. The loss coefficient quantifies the pressure
loss across the domain, in this case, the pressure loss across the hole and any friction losses produced in the downstream duct. In
the upstream duct, there are no viscous losses since a slip boundary is imposed at the wall. For holes up to 𝐿ℎ∕𝐷ℎ < 2.0, the wall
riction inside the hole is negligible [11] and the pressure loss is mainly due to the contraction of the jet inside the hole. From the
xperimental data given by Idelchik [13], the loss coefficient of a hole with 𝐿ℎ∕𝐷ℎ = 2.0 can be computed as 𝜁 = 1.55. The empirical
orrelation of Rennels and Hudson [13] yields a loss coefficient of 𝜁 = 1.566. The loss coefficient obtained from the RANS is 𝜁 = 1.6,
arking a relative difference of 3.13% and 2.13%, respectively.

Experimental values of the discharge coefficient 𝐶𝑑 for similar holes are found in the literature and can be used to further
uantify the quality of the simulations. The discharge coefficient is defined as the ratio of the actual mass flow rate at the hole to
hat of an ideal nozzle and is related to the loss coefficient as 𝐶𝑑 = 1∕

√

𝜁 . Lichtarowicz et al. [11] report experimental values of
the discharge coefficient in the range 𝐶𝑑 ≈ 0.8 − 0.82, and propose an empirical relation that yields 𝐶𝑑 = 0.8057 for the parameters
considered here. The discharge coefficient obtained from the RANS is 𝐶𝑑 = 0.79 yielding a relative error of 1.88%. This difference
could be partially explained by the different position of the pressure measurements: the pressure is measured at the inlet and outlet
in the simulations, while corner tappings are used in the experiments. The small relative error between experimental/numerical
data shows that the mean flow topology inside the hole is correctly captured, giving us confidence in the accuracy of the RANS
predictions closed with the 𝑘 − 𝜔-SST turbulence model.

.2. Impedance as obtained by numerical model

Fig. 3 shows the real 𝑍𝑅 and imaginary 𝑍𝐼 part of the normalised impedance for a hole with 𝐿ℎ∕𝐷ℎ = 2.0. For Strouhal
numbers below 0.9, the LNSE results are insensitive to the expansion ratio. This is in agreement with results presented by Yang
and Morgans [17] which indicate that the impedance converges to the plenum result for expansion ratios 𝜆 = 𝐷𝑢∕𝐷ℎ = 𝐷𝑑∕𝐷ℎ ≥ 5
for short holes . In the low Strouhal number regime for which experimental data is available, the agreement between LNSE and
experiment is good. The LNSE results predict a negative resistance for 𝑆𝑡 ≳ 0.8, indicating a whistling potential of the hole.

Fig. 4 compares the impedance results obtained by the LNSE approach for increasing 𝐿ℎ∕𝐷ℎ ratios. The short hole with
𝐿ℎ∕𝐷ℎ = 0.5 whistles at 𝑆𝑡 ≈ 0.25. For such short holes, the whistling regime is reported to collapse in the range 0.2 < 𝑆𝑡 < 0.35 [23].
The introduction of the class of medium holes is motivated by the collapse of the whistling regimes of holes with 𝐿ℎ∕𝐷ℎ ratios of
1.5 and 2.0 at 0.8 < 𝑆𝑡 < 1.1 instead. This means that medium holes whistle at a three times higher Stouhal number than short holes,
uggesting a different underlying whistling mechanism. Moussou et al. [19] report from experiments that a hole with 𝐿ℎ∕𝐷ℎ = 1.5

sustaining a mean flow with 𝑀𝑎ℎ = 0.01 can generate acoustic energy at 𝑆𝑡 ≈ 1.0. The experimental results also indicate that the
whistling regime shifts to lower Strouhal numbers if the Mach number is increased. Testud [23] reports whistling at 𝑆𝑡 ≈ 0.87 for
7

a similar hole with 𝑀𝑎ℎ = 0.1. If the hole length is further increased to 𝐿ℎ∕𝐷ℎ ratios of 2.5 and 3.0, the whistling potential of the
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Fig. 3. Normalised impedance 𝑍 for a hole with 𝐿ℎ∕𝐷ℎ = 2.0 for different expansion ratios 𝜆. Comparison with experimental data [21].

Fig. 4. Comparison of the normalised impedances of a short hole (black), medium holes (blue) and long holes (red). All computations were conducted with an
xpansion ratio of 𝜆 = 10. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

ole in the higher Strouhal number regime begins to vanish. This is in agreement with findings in the literature that longer holes
annot whistle [20,21].

The whistling frequency range observed experimentally [19,23] for a hole with 𝐿ℎ∕𝐷ℎ = 1.5 agrees with the LNSE prediction of
negative resistance at 0.75 < 𝑆𝑡 < 1.1 as shown in Fig. 4. In this paper, this phenomenon is referred to as the whistling of medium
holes and is further investigated. Medium holes are long in the sense that the mean flow reattaches inside them but differ from
conventional long holes by their whistling potentiality.

4.3. Analysis of the perturbation vorticity distribution

Eq. (18) illustrates that the knowledge of the distribution of the perturbation vorticity shed from the hole and its convection
velocity are crucial to understand the acoustics of a medium hole.

Fig. 5 shows the distribution of perturbation vorticity �̂� for a medium hole as obtained from the LNSE. We observe that, for the
two frequencies, vorticity is shed from both the upstream and downstream edges, and is convected downstream in two thin regions.
These regions will be modelled using the vortex sheet assumption as sketched in Fig. 6. The vorticity shed from the inlet edge, 𝜎1,
is first convected in the region that separates the recirculation bubble from the central jet and, then, follows a straight path until it
leaves the hole. We model this region with a vortex sheet whose shape is given by the ansatz [9]

𝑅𝑣
𝑅ℎ

= 1 − 𝑎(1 − 𝑒
−𝑏 𝑥

𝑅ℎ ), (20)

where 𝑅𝑣 is the radius of the vortex sheet. From the contraction ratio of the vortex sheet in the LNSE, 𝑎 = 0.33 is found, and 𝑏 = 6
is chosen as in Yang and Morgans [9] for conventional short holes. Downstream of the hole, 𝜎1 is assumed to be parallel to the hole
xis. The vorticity shed from the downstream edge leaves the edge parallel to the hole and is quickly diffused due to the strong
urbulence. This second vortex sheet, 𝜎2, is taken to be straight and parallel to the hole axis.

To investigate the importance of each vortex sheet on the acoustic response of the hole, models (1) to (3) in Fig. 6 are considered
ere. Model (4) in Fig. 6 is discussed later. The first and second model consider separately vorticity of constant strength shed from
he upstream 𝜎1 and downstream 𝜎2 edges, respectively. The third model includes both vortex sheets of constant strength 𝜎1 and 𝜎2
nd, thus, solves two Kutta conditions. The extension of the single vortex sheet model of [9,17,37] as presented in Section 3.2 for
wo vortex sheets is explained in Su et al. [32]. Fig. 7 compares the normalised impedance obtained with the three semi-analytical
odels for a hole with 𝐿ℎ∕𝐷ℎ = 2.0. For all three models, the convective speeds of the vortex sheets 𝜎1 and 𝜎2 were set to the

ulk velocity 𝑈ℎ inside the hole. The model including only 𝜎1 does not match the LNSE trends of resistance or reactance. Instead,
egative resistance at 0.3 < 𝑆𝑡 < 0.6, close to the conventional whistling range of short holes, is predicted. This is to be expected
ince the model captures the physics of the whistling mechanism of short holes. The model including only 𝜎2 predicts a constant
esistance and linear increase of reactance with the Strouhal number. Thus, it does not capture the LNSE trends of the impedance of
8

edium holes. Instead, this behaviour is typical for conventional long holes that cannot whistle. The model accounting for 𝜎1 and
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Fig. 5. Magnitude of the normalised perturbation vorticity for 𝐿ℎ∕𝐷ℎ = 2.0.

Fig. 6. Vortex sheet models for medium holes: (1) only 𝜎1 with constant strength, (2) only 𝜎2, (3) 𝜎1 with constant strength and 𝜎2, (4) 𝜎1 with jump in strength
and 𝜎2.

𝜎2 qualitatively captures the overall trend of the resistance of the numerical simulations. A maximum and minimum in resistance
at 𝑆𝑡 ≈ 0.45 and 𝑆𝑡 ≈ 0.9 are predicted. However, the quantitative match between LNSE and model is unsatisfactory. The resistance
stays positive at higher Strouhal numbers so that whistling is not predicted by the model. The model also matches the LNSE trends
9
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Fig. 7. Normalised impedance 𝑍 for a hole with 𝐿ℎ∕𝐷ℎ = 2.0 obtained with the vortex sheet model with only one vortex sheet shed from the inlet edge (𝜎1),
only one vortex sheet shed from the outlet edge (𝜎2) and both vortex sheets (𝜎1 , 𝜎2). Results are compared with the LNSE data. The convection velocities in all
models are set to the bulk velocity inside the hole.

Table 1
Normalised convection velocities 𝑢𝑐∕𝑐 of vortex
sheets convected from the inlet edge (𝜎1) and
outlet edge (𝜎2).
St 𝑢𝑐,1 𝑢𝑐,2
0.30 0.0359 0.0224
0.60 0.0309 0.0288
0.82 0.0367 0.0301

in reactance by showing an inflexion point at 𝑆𝑡 ≈ 0.4. However, as for the resistance, the quantitative match between model and
LNSE in reactance is unsatisfactory.

4.4. Extraction of physical model parameters

We now seek to improve the quantitative match between the semi-analytical model and the simulations by extracting model
parameters from the numerical simulations, i.e. the convection velocities associated to the vortex sheets and the vortex sheet
strengths.

4.4.1. Convection velocity
Two model parameters according to Eq. (18) are the convection velocities 𝑢𝑐,1 and 𝑢𝑐,2 of the two vortex sheets 𝜎1 and 𝜎2. The

convection velocity of a vortex sheet can be estimated by tracking vorticity structures in the frequency domain [32]. This allows
to identify a hydrodynamic wavelength 𝜆hy which when multiplied with the frequency 𝑓 gives the convection velocity 𝑢𝑐 = 𝜆hy𝑓 .
Fig. 8 illustrates this using the real part of the normalised perturbation vorticity Re(�̂�∕𝑐) for 𝑆𝑡 = 0.82. Vorticity structures convected
from the inlet and outlet edge can be identified. By connecting the minima and maxima of each structure, the total length of the
trajectory 𝐿𝑡 is obtained. The average wavelength can then be computed by dividing through the number of cycles 𝑁 along the
trajectory. This yields for the normalised convection velocity,

𝑢𝑐
𝑐

=
𝐿𝑡
𝐿ℎ

𝑆𝑡𝑀𝑎ℎ
𝑁

. (21)

Table 1 summarises the convection velocities obtained with Eq. (21) for different Strouhal numbers. The convection velocities
veraged over the considered Strouhal numbers for 𝜎1 and 𝜎2 are 𝑢𝑐,1∕𝑐 = 0.0345 and 𝑢𝑐,2∕𝑐 = 0.0271. With absolute mean deviations
f 0.0024 and 0.0031 for 𝜎1 and 𝜎2, respectively, a constant average convection velocity for all Strouhal numbers is assumed.

The Mach number inside the hole, 𝑀𝑎ℎ = 𝑈ℎ∕𝑐 = 0.043, is the bulk velocity normalised with the speed of sound. For short
oles [37], the bulk velocity is a better assumption for the convection velocity of the vortex sheet than the velocity at the vena
ontracta or half of it as suggested by Howe [8]. The average convection velocities found for the medium hole are 80% of the bulk
elocity for 𝜎1 and 63% of the bulk velocity for 𝜎2. A lower convection velocity for 𝜎2 than for 𝜎1 is expected since 𝜎1 is located
nside the jet of the hole where the mean flow velocities are higher. A lower convection velocity for 𝜎1 than in the short hole case
s also to be expected since the flow reattaches in the medium hole leading to lower mean flow velocities in the second half of the
ole.

Guzmán-Iñigo et al. [37] studied the influence of the vortex sheet convection velocity on the acoustic response predicted by
similar model for short holes. They reported that the convection velocity does not change the peak values of the Rayleigh

onductivity but the Strouhal number at which these peaks occur. However, in the situation where the two vortex sheets 𝜎1 and
2 interact, the choice of different convection velocities translate to a phase shift between the vortical structures of the individual
heets and can therefore influence the trends of the predicted impedance.
10
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Fig. 8. Real part of normalised perturbation vorticity at 𝑆𝑡 = 0.82. Minima and maxima of vortex structures along a vortex sheet are connected.

Fig. 9. Normalised impedance 𝑍 for a hole with 𝐿ℎ∕𝐷ℎ = 2.0 obtained with the vortex sheet model including both vortex sheets for different convection
velocities. Results are compared with the LNSE data.

Fig. 9 shows that the choice of the correct convection velocities allows the model to predict the LNSE trends for resistance and
reactance in the low Strouhal number regime up to 𝑆𝑡 < 0.4 with good quantitative agreement. At higher frequencies, however, the
model does not reproduce the trends predicted by the simulations.

4.4.2. Strength variation of vortex sheets
The results presented in Fig. 9 show that tuning of the convection velocities alone is not sufficient to achieve a quantitative

match between model prediction and LNSE for higher Strouhal numbers 𝑆𝑡 ≳ 0.4. The physical mechanism allowing the medium
hole to whistle is so far missed in the acoustic modelling. The vortex-sound models assume a constant vortex sheet strength 𝜎 along
the vortex sheet path that is determined by the Kutta condition at the shedding point. However, the strength of the vorticity will, in
reality, grow/decay due to shear-layer instabilities [45] and dissipation by turbulence. This variation of the vorticity strength while
being convected has not been considered so far by any vortex-sound model. In this section, we analyse this effect and incorporate
it to the model.

Fig. 10 shows the radial distribution of the normalised perturbation vorticity at different positions 𝑥∕𝐷ℎ along the hole axis for
𝑆𝑡 = 0.82. As observed in Fig. 5, the strong gradients of the flow variables at the inlet preclude an accurate computation of the
vorticity field there. For this reason, the position 𝑥∕𝐷ℎ = 0.2 is selected to represent the vorticity shed at the inlet edge. At the hole
outlet, 𝑥∕𝐷ℎ = 2.0, one vorticity peak at 𝑟∕𝐷ℎ ≈ 0.35 corresponding to the vortex sheet shed from the inlet edge 𝜎1 is observed.
High vorticity is also found close to the wall—in the acoustic boundary layer. Downstream of the hole at 𝑥∕𝐷ℎ = 3.0, two vorticity
peaks relating to the shed vorticity from the inlet edge at 𝑟∕𝐷ℎ ≈ 0.3 and outlet edge at 𝑟∕𝐷ℎ ≈ 0.55 can be clearly identified.

The cross-sectional average vorticity for a given vortex sheet can be computed as

𝜎𝑖(𝑥) =
∫𝐴𝑖

�̃�(𝑥) d𝐴

𝐴𝑖
=

2 ∫ 𝑅𝑓,𝑖
𝑅0,𝑖

�̃�(𝑥) 𝑟d𝑟
(

𝑅2
𝑓,𝑖 − 𝑅2

0,𝑖

) , (22)

where 𝐴𝑖(𝑥) is the cross-sectional area where a given vortex sheet is defined, and 𝑅0,𝑖 and 𝑅𝑓,𝑖 the radial positions bounding that area.
For the vortex sheet shed at the inlet edge, 𝜎1, Eq. (22) is integrated from the hole axis to 𝑅𝑓,1∕𝐷ℎ = 0.49 so that the vorticity at the
boundary layer is excluded. For the vorticity shed at the downstream edge, 𝜎2, the limits of integration extend from 𝑅0,2∕𝐷ℎ = 0.49
to 𝑅𝑓,2∕𝐷ℎ = 1.0.

The strengths of the vortex sheets convected from the inlet edge 𝜎1 and outlet edge 𝜎2 along the hole axis are plotted in Fig. 11.
For 𝑆𝑡 = 0.3, 𝜎1 increases up to the middle of the hole (𝑥∕𝐷ℎ = 1.0) due to an instability of the shear layer [45]. For 𝑥∕𝐷ℎ > 1.0, the
turbulent dissipation of vorticity dominates. Note that the reattachment of the mean flow in Fig. 1(b) at 𝑥∕𝐷 = 1.22 also indicates
11
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Fig. 10. Radial distribution of the normalised perturbation vorticity at different positions 𝑥∕𝐷ℎ along the hole axis for 𝑆𝑡 = 0.82.

Fig. 11. Normalised strengths of vortex sheets shed from the hole inlet at 𝑥∕𝐷ℎ = 0.0 (𝜎1) and outlet at 𝑥∕𝐷ℎ = 2.0 (𝜎2).

trong turbulence in this region. Downstream of the hole, 𝜎1 and 𝜎2 are dissipated. For 𝑆𝑡 = 0.82, 𝜎1 increases in the first half
f the hole. In the second half of the hole, the vortex sheet strength stays constant at 𝜎1 ≈ 700. Downstream of the hole, 𝜎1 is
urther amplified. The vortex sheet 𝜎2 is amplified downstream of the hole and reaches a maximum of 𝜎2 ≈ 500 at 𝑥∕𝐷ℎ ≈ 3.0. For
∕𝐷ℎ ≳ 3.0 it is dissipated.

Looking at Fig. 11, the assumption used for short holes [9,17] that the vortex sheet strength is constant is justified since it does
ot significantly change for 𝑥∕𝐷ℎ < 0.5. Thus, for short holes, the vortex sheet is convected out of the hole before the vorticity
s significantly increased. In contrast, for medium holes, the strength of 𝜎1 at the shedding point can significantly differ from the
trength at the hole outlet plane depending on the Strouhal number. To include this effect in the semi-analytical model, the growth
atio

𝜎𝑟 =
|𝜎1,outlet|

|𝜎1,inlet|
(23)

between the vorticity at the hole outlet plane 𝜎1,outlet and shedding point 𝜎1,inlet is introduced. The vortex sheet strength inside the
hole is then set to 𝜎1 = 𝜎1,inlet, which is determined by the Kutta condition, and jumps to 𝜎1 = 𝜎𝑟𝜎1,inlet at the hole outlet plane as
shown in Fig. 6. Note that 𝜎𝑟 is an additional model parameter and needs to be defined a priori. The idea of modelling the vortex
sheet strength with a jump function – instead of a continuous distribution along the hole – is motivated by the fact that most of the
scattering of vorticity into acoustics takes places in the vicinity of the hole edges [46].

Fig. 12 compares the normalised impedance predicted with the vortex-sound model including 𝜎1 and 𝜎2 for different growth ratios
𝜎𝑟. The convection velocities of 𝜎1 and 𝜎2 are set according to the LNSE results to 𝑢𝑐,1∕𝑐 = 0.8𝑀𝑎ℎ and 𝑢𝑐,2∕𝑐 = 0.6𝑀𝑎ℎ, respectively.
rom the investigated growth ratios, 𝜎𝑟 = 1 gives the best quantitative match between the prediction of the vortex sheet model for
he resistance and reactance and the LNSE results at low Strouhal numbers up to 𝑆𝑡 < 0.4. Yet the trends at higher Strouhal numbers
re not captured. By increasing the growth ratio in the semi-analytical model to 𝜎𝑟 = 3 and 𝜎𝑟 = 5, the maximum and minimum in
esistance predicted by the LNSE at 𝑆𝑡 ≈ 0.6 and 𝑆𝑡 ≈ 1.0 are captured. The same holds for the maximum and minimum in reactance
t 𝑆𝑡 ≈ 0.4 and 𝑆𝑡 ≈ 0.7. If the growth ratio is further increased to 𝜎𝑟 = 9 and 𝜎𝑟 = 13, the predicted resistance becomes negative at
.8 < 𝑆𝑡 < 1.2 and the model predicts successfully the whistling of medium holes in the high Strouhal number regime.

The variation of the vorticity growth factor with the Strouhal number in the LNSE is given in Fig. 13. To compute this plot,
he vortex sheet strength at the inlet was extrapolated from the vortex sheet strengths at positions 𝑥∕𝐷ℎ = 0.2 and 𝑥∕𝐷ℎ = 0.3.
ollowing Fig. 13, the growth ratio at 𝑆𝑡 = 0.3 is 𝜎𝑟 ≈ 0.63 and at 𝑆𝑡 = 0.82 is 𝜎𝑟 ≈ 8.1, indicating that 𝜎𝑟 > 1 should be chosen for
igher Strouhal numbers.

Fig. 14 shows a blend of the independent plots in Fig. 12 for a Strouhal-number-dependent growth factor according to Fig. 13.
12

he model predictions clearly follow the LNSE results for all the frequencies investigated. The quantitative differences between
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Fig. 12. Normalised impedance 𝑍 for a hole with 𝐿ℎ∕𝐷ℎ = 2.0 obtained with the vortex sheet model for different growth ratios 𝜎𝑟. Results are compared with
the LNSE data.

Fig. 13. Vorticity growth rate in dependence of the Strouhal number.

Fig. 14. Normalised impedance 𝑍 for a hole with 𝐿ℎ∕𝐷ℎ = 2.0 obtained with the vortex sheet model with varying growth factor according to Fig. 13.

LNSE and model are most likely due to the LNSE being not able to give exact quantitative values for the vorticity growth inside the
hole but more the general trends. For example, uncertainty is introduced by the turbulence modelling and post processing of the
vortex sheet strength. Furthermore, modelling the shear layer instability with a discrete jump in vortex sheet strength is a crude
approximation. A better prediction may be achieved by using a continuously varying vortex strength along the vortex sheet path.
However, this would require more input parameters to the model. Nevertheless, the chosen modelling approach positively indicates
that the vorticity growth inside the hole is an important mechanism for the acoustics of medium holes.

5. Conclusions

The present paper provides a numerical and theoretical study of the acoustics of holes with length-to-diameter ratios of
1.5 < 𝐿ℎ∕𝐷ℎ < 3, and thus falling in the border region between conventional short [7,18–21] and long holes [20,21]. The numerical
approach is based on a linearisation of the Navier–Stokes equations around a turbulent mean flow [27–29]. The mean flow was
13

computed as a solution of the RANS equations. The linearised equations were recast in the frequency domain and solved using a
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finite element method. This approach, usually referred as two-step approach, is limited to configurations (length-to-diameter ratios)
where a steady mean flow exists.

From the numerical study, holes with length-to-diameter ratios between 1.5 < 𝐿ℎ∕𝐷ℎ < 3 were found to be able to whistle in
an approximately three-times-higher Strouhal number regime than short holes, i.e. 0.75 < 𝑆𝑡 < 1.1 (compared to 0.2 < 𝑆𝑡 < 0.35
for short holes). If the Strouhal number is based on the hole length, the whistling regime of these holes collapse, leading to our
definition of medium holes: medium holes are long in the sense that the mean flow reattaches inside them [11–13] but differ
from conventional long holes by their whistling ability. By incorporating flow features from the LNSE results into semi-analytical
vortex-sound models [9,17,32], the three-way coupling between two vortex sheets shed from the inlet and outlet edges of the hole
with the acoustic field, as well as the amplification of vorticity inside the hole, were identified as the main physical mechanisms to
explain the acoustic behaviour of such medium holes.

For technical applications, these results show that holes with length-to-diameter ratios of 1.5 < 𝐿ℎ∕𝐷ℎ < 3.0 sustaining a bias
low should be applied with care since they can introduce acoustical energy into noise-controlling systems at relatively high Strouhal
umbers. For example, recent experimental studies of thermo-acoustic instabilities in a cryogenic rocket engine show that a global
nstability of the rocket could be induced by the whistling of a hole with 𝐿ℎ∕𝐷ℎ = 1.5 located at the head of the liquid oxygen
njector [1,2].

Although experimental evidence of the whistling of medium holes exists [19,23], detailed impedance measurements for 𝑆𝑡 > 0.4
or this class of holes were not found in the literature. With increasing frequency, the acoustic length scales become smaller and
tronger spatial gradients of the perturbation velocity, i.e. higher strain rates, are the consequences. This leads to an increased
nfluence of the eddy viscosity at higher frequencies so that the turbulence modelling [30,31] will influence foremost the high
trouhal number regime of the solution. An experimental study of the impedance of medium holes at higher Strouhal numbers
ould be therefore of interest to confirm the findings obtained in this publication for high Strouhal numbers.

Since the shear layer stability inside the hole seems to be crucial for the whistling mechanism of medium holes, a detailed
ydrodynamic stability analysis can be the scope of further work to understand the physical mechanism in more detail.
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ppendix A. Impedance for short holes

Fig. A.1 shows the real 𝑍𝑅 and imaginary part 𝑍𝐼 of the normalised impedance as defined in Eq. (3) for a hole with 𝐿ℎ∕𝐷ℎ = 0.5.
he LNSE results reproduce the experimental data for the resistance and the match improves with increasing expansion ratio
= 𝐷𝑑∕𝐷ℎ = 𝐷𝑢∕𝐷ℎ between hole and ducts. The reactance follows the experimental trend but is under-predicted by the LNSE

imulations. This is most likely due to differences in the setup, e.g. the flow exits to a plenum in experiments but a circular duct is
rranged downstream of the hole in the simulations and multiple holes are present in experiment.

In Fig. A.2 the LNSE results are compared with experimental data from [26]. In this experiment, a single hole is tested and the
ownstream part is well defined by a circular duct with expansion ratio 𝜆𝑑 = 2. For this well defined case, the agreement of the
14

NSE results with the experiment is excellent.
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Fig. A.1. Normalised impedance Z for a hole with 𝐿ℎ∕𝐷ℎ = 0.5 for different expansion ratios 𝜆. Comparison with experimental data [21] and CFD results [20].

Fig. A.2. Normalised impedance Z for a hole with 𝐿ℎ∕𝐷ℎ = 0.3. Comparison with experimental data from [26].

ppendix B. Anechoic and forcing acoustic boundary conditions

Eqs. (8) and (9) are discretised with ansatz functions

�̂�ℎ, �̂�ℎ𝑖 ∈ ℎ ⊂  =
{

𝑣 ∈ 𝐻1(𝛺) ∶ 𝑣 = 𝑢𝐷 on 𝛤𝐷
}

. (B.1)

he weak formulations are obtained by multiplication with test functions, chosen from the trial function space so that

𝑤ℎ
𝜌 , 𝑤

ℎ
𝑢,𝑖 ∈ ℎ ⊂  =

{

𝑣 ∈ 𝐻1(𝛺) ∶ 𝑣 = 0 on 𝛤𝐷
}

, (B.2)

nd integration over the domain 𝛺 with Dirichlet 𝛤𝐷 and Neumann 𝛤𝑁 boundaries. In the following, the superscript ℎ for discrete
pproximations is dropped for the sake of readability and L2-inner products on 𝛺 and 𝛤𝑁 are denoted with (𝑓, 𝑔)𝛺 and (𝑓, 𝑔)𝛤𝑁 ,
espectively. The finite element formulation is stabilised by a least-squares stabilisation [47], employing the residual operators

𝑅𝑐 (�̂�, �̂�) = i𝜔�̂� + ∇ ⋅ (�̄��̂� + �̂��̄�) = 0, (B.3)

𝑅𝑚(�̂�, �̂�) = i𝜔�̄��̂� + (�̄��̂� + �̂��̄�) ⋅ ∇�̄� + ∇ ⋅
(

�̂�𝐈 − �̂�tot
)

= 0. (B.4)

This leads to the stabilised weak formulation in frequency domain as

(𝑤𝜌, i𝜔�̂�)𝛺 + (𝑤𝜌,∇ ⋅ (�̄��̂� + �̂��̄�))𝛺
+ (𝑅𝑐 (𝑤𝜌,𝐰𝑢)𝜏𝜌, 𝑅𝑐 (�̂�, �̂�))𝛺 = 0, ∀𝑤𝜌,𝐰𝑢 ∈ ℎ, (B.5)

(𝐰𝑢, i𝜔�̄��̂�)𝛺 + (𝐰𝑢, (�̄��̂� + �̂��̄�) ⋅ ∇�̄�)𝛺
+ (𝐰𝑢,∇ ⋅

(

�̂�𝐈 − �̂�tot
)

)𝛺

+ (𝑅𝑚(𝑤𝜌,𝐰𝑢)𝜏𝑢, 𝑅𝑚(�̂�, �̂�))𝛺 = 0, ∀𝑤𝜌,𝐰𝑢 ∈ ℎ. (B.6)

y applying the Gauss’ theorem and integration by parts, mass fluxes 𝐡𝑐 and momentum fluxes 𝐡𝑚 over the domain boundary can
e naturally introduced in the weak formulation:

(𝑤𝜌,∇ ⋅ (�̄��̂� + �̂��̄�))𝛺 = (𝑤𝜌,𝐡𝑐 )𝛤𝑁 − (�̄��̂� + �̂��̄�,∇𝑤𝜌)𝛺 , (B.7)

(𝐰𝑢,∇ ⋅
(

�̂�𝐈 − �̂�tot
)

)𝛺 = (𝐰𝑢,𝐡𝑚)𝛤𝑁 − (
(

�̂�𝐈 − �̂�tot
)

,∇𝐰𝑢)𝛺 . (B.8)

This naturally allows to impose an anechoic boundary condition by applying flux vector splitting [48] at the boundary and only
incorporating outgoing fluxes in the weak formulation. In Fig. 2, fluxes across the domain inlet (𝛤in) and outlet (𝛤out) are foremost
15

in axial direction. If the influence of viscosity is assumed to be restricted to the boundary layers at the walls 𝛤𝑢 and 𝛤𝑑 , the flow
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behaves mostly inviscid at the inlet and outlet and the flux vector can be formulated as

�̂� =

⎛

⎜

⎜

⎜

⎝

�̄��̂�𝑥 + �̂��̄�𝑥
�̄�𝑥�̄��̂�𝑥 + �̂�
�̄��̄�𝑥�̂�𝑦

⎞

⎟

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

ℎ𝑐,𝑥
ℎ𝑚,𝑥𝑥
ℎ𝑚,𝑥𝑦

⎞

⎟

⎟

⎠

. (B.9)

or the linearised Euler equations, the flux vector can be written as the matrix product of the Jacobian �̂�
𝑥

and the vector of conserved

flow variables �̂� =
(

�̂�, �̄��̂�𝑥, �̄��̂�𝑦
)𝑇 ,

�̂� = �̂�
𝑥
�̂�. (B.10)

he eigenvalues of the Jacobian are then �̂�𝑘 = (�̄�𝑥, �̄�𝑥 + 𝑐, �̄�𝑥 − 𝑐) with 𝑐 as the speed of sound of the mean flow. Using the linear
ransformation �̂� = (�̂�1, �̂�2, �̂�3) consisting of the corresponding eigenvectors of �̂�

𝑥
, the Riemann invariants �̂� of the PDE system [49]

can be obtained as

�̂� = �̂�−1�̂� =

⎛

⎜

⎜

⎜

⎝

�̄��̂�𝑦
�̄��̂�𝑥
2 + �̂�𝑐

2
�̄��̂�𝑥
2 − �̂�𝑐

2

⎞

⎟

⎟

⎟

⎠

. (B.11)

he outgoing fluxes for the anechoic boundary formulation can then be obtained as

�̂�inlet,out = �̂��̂�−

𝑥
�̂�, �̂�outlet,out = �̂��̂�+

𝑥
�̂�, (B.12)

where the matrices �̂�+

𝑥
and �̂�−

𝑥
contain only positive or negative eigenvalues that are correlated to information transport in and

pposite to the mean flow direction, respectively.
The flux vector splitting approach introduced for anechoic boundaries naturally allows to force the flow acoustically. The

ncoming fluxes at the inlet 𝛤in is

�̂�inlet,in = �̂��̂�+

𝑥
�̂� =

⎛

⎜

⎜

⎜

⎜

⎝

�̄�𝑥+𝑐
𝑐

(

�̂�𝑐
2 + �̄��̂�𝑥

2

)

(�̄�𝑥 + 𝑐)
(

�̂�𝑐
2 + �̄��̂�𝑥

2

)

�̄�𝑥�̄��̂�𝑦

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

�̄�𝑥+𝑐
𝑐 𝑓

(�̄�𝑥 + 𝑐)𝑓
�̄�𝑥�̄��̂�𝑦

⎞

⎟

⎟

⎟

⎠

. (B.13)

Comparison with Eq. (B.11) shows that the incoming flux vector contains the Riemann invariant 𝑓 =
(

�̂�𝑐
2 + �̄��̂�𝑥

2

)

with the physical
meaning of a one-dimensional planar wave entering the domain [29]. By including the incoming flux at the inlet in the weak
formulation and setting 𝑓 = 𝑎 + 𝑖𝑏, a forcing of amplitude

√

𝑎2 + 𝑏2 and phase difference tan(𝑏∕𝑎) is prescribed. Since planar waves
n 𝑥-direction are predominant, at 𝛤in and 𝛤out in Fig. 2, �̂�𝑦 = 0 is assumed in Eq. (B.13).
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