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ABSTRACT

This thesis illustrates the technology required to provide a new generation of 
clinical instrumentation systems for critical care medicine. This advance in measurement 
science is gained from the use of a knowledge-based component able to process 

information as well as data. To implement a clinical information system using 

knowledge-based technology requires prior knowledge of human and computer-based 
activity within the critical domain. A historical perspective is given to both of these topics 
which reflects the genesis of current practice. The application area is introduced by 
investigating a control system approach to managing patients who require ventilatory 

therapy.

It was found that no current methodology is wholly appropriate when a 
knowledge-based component is included in the technological paradigm. Therefore, a 
novel methodology for system design, implementation and evaluation is proposed, and its 

utility tested in the aforementioned application domain. The detailed processes involved 
in the evolution of a prototype system which aids the clinical user in the art of ventilatory 
therapy are shown. Three levels of machine intelligence are shown to be required, based 
on: context-sensitive deterministic mechanisms; pattern cognition; and decision support 
elements. A wider discussion of the important points raised in the practical use of the 
methodology focuses upon the philosophical basis of clinical information systems and the 

processes of knowledge elicitation, knowledge representation and intelligent system 

evaluation.
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1 : INTRODUCTION

1.1 Background

This study focuses on the problems associated with 

introducing an intelligent measurement and information system into a 

medical environment. Clinicians use physiological measurement as a 

means of providing information about the well-being, or state, of a 

patient. If patient state is regarded as a dynamic entity then 

clinical measurement provides the basis from which patient state 

trajectory can be determined. Both patient state and its trajectory 

pattern have a direct bearing on clinical diagnosis and subsequently 

on the therapy or treatment regimes required for a successful outcome. 

This outcome may be defined as the return of the patient to normal 

physiological function, or alternatively may be more generally defined 

as the return of the patient to a less morbid state.

The medical environment of interest is the Critical Care 

Unit, an umbrella term which encompasses all high dependency 

environments, such as the Intensive Care Unit, Coronary Care Unit, 

Post-operative Recovery Ward, Spinal Injuries Unit, Burns Unit and 

Special Care Baby Unit. These environments are distinct units within a 

hospital system which cater for "...the care of patients who are 

deemed recoverable but who need continuous supervision and need or are 

likely to need the prompt use of specialised techniques operated by 

skilled personnel", (British Medical Association, 1967). Although this 

definition is over twenty years old, it is the one adopted by the 

Royal College of Nursing.

There have been many recent technological advances taking 

place within the Critical Care Unit which have mirrored those taking 

place in associated fields of medicine and bio-engineering. For 

instance, all of the following have influenced a change in patient 

management, (after Gregory, 1983) :-

i) development of new surgical procedures,

ii) development of new therapies and treatment regimes,

iii) an increase in general measurement technology,

iv) development of instrumentation systems to monitor the 
effects of the proposed therapy.

The advancement in surgical procedures, especially in cardiac 

and vascular surgery, has meant that a greater proportion of people 

can be treated for what were untreatable conditions a matter of years 

ago. This has had the effect of increasing the throughput of patients
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who spend time in the Critical Care Unit as a normal part of their 

rehabilitation from surgery.

Progress in the use of new therapies and treatment regimes 

can be considered as having two distinct strands of development. The 

first are those developments which are necessary to cope with the new 

surgical procedures described above; the second are those instances 

where clinical research has indicated that an advance can be made on 

therapies and treatments in current use.

The increase which is evident in general measurement 

technology can be illustrated by observing the increase in sensitivity 

of sensors whilst their physical size and cost have been diminishing 

rapidly. Both the increase in sensitivity and decrease in physical 

size have contributed to improvements in the measurement process, for 
it is one of the corner-stones of measurement theory that a measuring 

system should not disturb the natural behaviour of the system of 

interest. In practice this is rarely possible, so one should always be 

aware of the sources of measurement error, a full account of which can 

be found in the literature, (eg. Barry, 1978; Hofmann, 1982). As 

advances are made in measurement technology, novel ways of measuring 

variables previously unmeasurable become apparent, which as a 

consequence increases the number of variables available to describe 

patient state. These, following appropriate processing, yield 

additional information for the clinician. However, more information 

about patient state does not necessarily lead to a more accurate 

diagnosis or a more beneficial treatment regime. Instead it may lead 

to a situation where extra information actually clouds the diagnostic 

process, and therefore has a resultant negative effect on patient 

management. Hence there is a need for concomitant development of 

instrumentation systems which can cope with the increased complexity 
of measurement.

Advances in instrumentation are closely related, and in most 
cases subservient, to increases in component technology. Emphasis has 

been placed on the development of electrical and electronic 

instruments where massive miniaturisation has become possible. Perhaps 

the best examples of this new generation of medical instrumentation 

are the computer-based or microprocessor-based instrumentation 

systems, developed in response to a general increase in the complexity 

of measurement. Not only can a computer-based system deal with the 

increased number of measured variables, but it can also process the
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information at a rate of the order of magnitude of a million 

instructions per second. Thus, if necessary, quite complex processing 

functions can be dealt with in real-time. Another advantage of a 

computer-based instrumentation system is its capability to store and 

archive information by down-loading it to a permanent storage medium, 

(eg. magnetic diskette). These storage media are small, cheap, 

portable and information is easily transferred back to the working 

memory of the computer. With large increases in information handling 

capacity a need became apparent to assign a utility function which 

describes the pragmatic value of each piece of information. This 

function can then be used to find an automatic way of filtering out 

redundant data from those which are more useful. Such a function can 

be defined by increasing the knowledge content of the controlling 

software: intelligent instrumentation systems came about as a logical 

consequence of this requirement.

Given that intelligent measurement and instrumentation 

systems are an emergent technology, there is still some confusion over 

what constitutes intelligence in measurement. One author has suggested 

that the term ’intelligent instrumentation’ has come to mean "...the 

use of a measurement system to evaluate a physical variable employing 

usually a digital computer to perform all (or nearly all) the 

signal/informat ion processing" (Barney, 1985). This definition is 

unsatisfactory as most measurement systems, whether or not they employ 

a computer to do some signal or information processing, would fall 

within its scope. Another study describes intelligent measurement as a 

three level hierarchy: inferential measurement; pattern cognition; and 

measurement as part of an integrated information system (Carson et al, 

1986; Finkelstein and Carson, 1986). It is this description which is 

adopted for the purpose of this study. Intelligent instrumentation 

employs software techniques drawn from Artificial Intelligence. This 

includes various distinct processes which contribute to the evolving 

intelligent system: the elicitation of domain dependent human 
expertise; the representation of that expertise in a form which can be 

utilised directly by the computer; methods of obtaining intelligible 

input and meaningful output to the system; and a coherent software 

control strategy capable of being able to reproduce the same output 
from the same set of inputs.
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1.2 Problem Definition and Objectives of the Research Programme

One specific situation where intelligent instrumentation is 

required is in the process of artificial ventilation. This requires 

the use of a ventilator, which is a medical machine that allows the 

mechanical ventilation of a patient who is unable to breathe 

spontaneously. Currently, the settings of the ventilator which control 

respiratory performance are defined heuristically. This requires the 

clinician to have prior knowledge of the factors involved in this 

process. To counter any vagueness in this respect, an intelligent 

module is required which makes the rules for changing the ventilator 

settings more explicit. The objective of the study described here is 

to develop and implement a prototype Artificial Intelligent Respirator 

System (AIRS) which interfaces such an intelligent module with a 

modern ventilator.

In normal clinical practice patients who undergo surgery 

where a general anaesthetic agent is administered require mechanical 

ventilation until normal respiratory function returns. This usually 

occurs whilst the patient is still in the recovery room, which is part 

of the operating theatre complex. However for some surgical 

procedures, such as prolonged cardiac surgery, a patient may be 

transferred to a Critical Care Unit to await recovery. A patient may 

also require ventilatory therapy as a consequence of some respiratory 

dysfunction. This is the main category of patient for which AIRS has 

been designed.

AIRS can be described as a management system for adult 

patients who require respiratory support. It is NOT a diagnostic 

system, indeed the diagnostic state of the patient forms an important 

information source. The system is centred on the Puritan-Bennett 7200a 

microprocessor-controlled s e r vo - v e n t i 1 a t o r . This microprocessor 

fulfils the dual role of control and display of an extensive primary 
data-set. For the former function strategically placed sensors in the 

pneumatic sub-system of the ventilator yield control data on pressure, 

flow and temperature of the inspired gas; for the latter function the 

data-set used by the ventilator is organised into a form that can be 

interpreted readily by the end-user. AIRS adds a knowledge-based 

component on top of that system. This allows computei— based advice to 

be given in the form of a suggestion for an appropriate action to be 

taken, acting on the basis of incoming data and knowledge of the 
current state of the patient.
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The top-goal of this study is to specify the problems and 

provide solutions for the successful introduction of an intelligent 

instrumentation system into a specialised clinical unit, with an 

emphasis on clinical applicability and acceptability. To reach this 

goal a number of contributary objectives become apparent. These 

include: an appreciation of current working practice in the Critical 

Care Unit; the development of a novel methodology which caters for the 

design, implementation and evaluation of technological change; and an 

illustrative application of this methodology to the domain of 

respiratory management of adult patients undergoing mechanical 

ventilatory therapy. These goals and sub-goals are reflected in the 

organisation of the thesis.

1.3 Outline Plan of this Thesis

This thesis consists of three parts. The first part, which 

encompasses Chapters 2, 3, and 4, contains the reviews necessary to 

place this study in historical context and provides a new 

methodological advance which is able to cope with the introduction of 

an intelligent system capability into what is already a highly 

technological environment. Chapter 2 contains a historical review of 

Artificial Intelligence and historical development of the Critical 

Care Unit. This makes the reader aware of the great progress made in 

both of these areas during the last thirty years. Chapter 3 contains 

a critical review of techniques used in both a control systems 

approach and Artificial Intelligence approach to respiratory 

management. This provides an appreciation of technology employed 

currently in this domain. The need for a novel methodology for 

technological change is described in Chapter 4. This methodology is 

created from previous work in Requirements Engineering, Design 

Engineering, and methodologies which are not wholly appropriate for 

dealing with change at the technological level.

The second part comprises Chapters 5 and 6. These chapters 

describe the domain dependent aspect of the study. Chapter 5 contains 

the system specification for the implementation of AIRS. This utilises 

one element of the design methodology presented in the previous 

chapter. This chapter also contains a brief introduction to PROLOG, 

the computer language used in the implementation. Chapter 6 includes 

specific details of the implementation and evaluation of AIRS, 

illustrated by extracts from the actual program.

The third part consists of the last two chapters - Chapters 7
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and 8, which attempt to place AIRS in context with other intelligent 

measurement and instrumentation systems, from which the appropriate 

conclusions can be drawn. The discussion in Chapter 7 can be divided 

into two parts. It begins with a general discussion on intelligent 

systems, and then focuses upon topics which are relevant to this 

particular study. One of the central themes of this part of the 

discussion is the evaluation of intelligent knowledge-based systems. A 

systems framework is utilised which permits the study of existing 

evaluation strategies from other fields of interest. Those strategies 

which contribute towards the more meaningful evaluation of computer 

systems which exhibit some sort of intelligent behaviour can then be 

elicited. Chapter 8 contains the conclusions drawn from this work 

together with recommendations for the future. This last comment 

perhaps emphasises the fact that AIRS should not be considered as a 

static piece of research work, rather development of it will continue 

as knowledge-based systems, like their human counterparts, evolve as 

new knowledge is acquired.

There are two appendicies. A critical review of Artificial 

Intelligence, with applications in medicine as the dominant theme, is 

presented in Appendix I. This introduces the concepts and constructs 

used in the domain and is useful as background information for the 

implementation of AIRS. An annotated program listing of several 
aspects of the implementation is given in Appendix II.
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2 : HISTORICAL REVIEW OF ARTIFICIAL INTELLIGENCE AND 
HISTORICAL DEVELOPMENT OF THE CRITICAL CARE UNIT

2.1 Introduction

Artificial intelligence and the environment of the critical 

care unit are the two distinct themes which are of concern in this 

study. Current perspectives in artificial intelligence have their 

origins in the theory of numbers and computability, which itself is 

based on the fundamental concepts of measurement. However, it would be 

pedantic to begin this part of the review with the measurement system 

devised by the Egyptians in 3,500 B.C.! An alternative criterion for 

the onset of the review is revealed when we consider the history of 

artificial intelligence as being intertwined with the development of 

the modern computer with which it is inextricably linked. Therefore, 

the chosen starting point is 1812, the year in which Charles Babbage 

first conceived a fully mechanised automatic system to compute numbers 

- the Difference Engine. Where applicable within this review, emphasis 

has been placed on developments in the medical domain, which provide 

the necessary clinical relevance.

The historical review of the development of the critical care 

unit proved less problematical in defining a suitable time origin. The 

need for a specialised area within a hospital for critically ill 

patients was perhaps first realised in 1863 by Florence Nightingale.

2.2 Historical Review of Artificial Intelligence

Today the accuracy of tables which describe certain 

mathematical functions is taken for granted. However, in the early 

ninteenth century most mathematical tables contained numerous errors, 

much to the chagrin of the mathematicians, scientists, and engineers 

of that time. Therefore there was a real need to check the values 

contained within these tables; if done by hand this process would have 

been both time consuming and laborious and as a result may well have 

introduced further errors. In 1812 Charles Babbage attempted to solve 

these problems by his conception of the ’Difference Engine’. This was 

a mechanical device to compute and print tables of mathematical 

functions automatically. The principle on which the machine worked is 

that any mathematical function can be approximated to sufficient 

accuracy by means of a polynomial ’fit’. This polynomial can be 

inferred by using simple additions, that is, by constructing a 

difference table. It was this process that Babbage proposed to 

mechanise. The specification for his device was to compute tables of

8



sixth degree polynomials to twenty decimal places. An example of a 

difference table of a second degree polynomial can be found in Figure 

2.1. Technology of the time was typified by Arkwright's steam mill, 

developed thirty years previously, a product of the industrial 

revolution used in the textile industry. A working prototype of the 

Difference Engine was capable of tabulating quadratic functions to 

eight decimal places. However, to progress to a fully mechanised 

system and as a result of the high precision required, all of the 

components were individually manufactured. This was a contributing 

factor for the renunciation of any further work on the Difference 

Engine in 1842. However some scientific profit was made from this 

project. In 1854 a Swedish engineer, Georg Scheutz, built a machine 

using Babbage’s design which could tabulate fourth degree polynomials 

to fourteen decimal places.

The major reason Babbage abandoned work on his machine 

was that the Government of the day refused a request for further 

funding. He then became involved in a project to design a more 

universal mechanical machine which he called the 'Analytical Engine’. 

Included in the design specification were devices for input and 

output, a memory store (which Babbage described as a mathematical 

'mill') and a control unit. If we substitute 'arithmetic logical 

unit’ for 'mathematical mill’ then we have all the components of a 

modern electronic computer! A comparison can be made between the 

architecture of the Analytical Engine and the more modern von 

Neumann computer architecture, (Figures 2.2 and 2.3). The memory store 

of the Analytical Engine was conceived as a device to hold numbers, 

whether in raw data format or as intermediate data values in the 

course of a numerical calculation. The mathematical mill performed 

the arithmetic operations on the numbers from the store. The design of 

the control unit, which ensured that the machine performed the 

desired operations in the correct sequence, was an example of the 

transformation of a design concept from the textile industry, as both 

processes exhibited their control by the use of punched cards. In the 

Analytical Engine another set of cards constituted the input device, 

each card representing the value of an input variable. The output 

device displayed the result of the calculation in the form of yet 

another punched card, or could print the result directly on to paper.

9



X
First Second

Difference Difference

0

1

2

3

4

5

6

y.

6

9

14

21

30

41

54

( 1)

3

5

7

9

11

13

(2)

2

2

2

2

2

As the second difference is constant, the function 
y=x2+ 2x + 6 is an example of a second degree 
polynomial

FIGURE 2.1 AN EXAMPLE OF A DIFFERENCE TABLE 
FOR THE FUNCTION y = x2+2x  + 6
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KEY

A 2 - way switch

B 3 - way switch

-  data/instruction

control

FIGURE 2.2 ARCHITECTURE OF THE ANALYTICAL ENGINE

KEY

---------------  data/instructions

— — — control

FIGURE 2.3 von NEUMANN ARCHITECTURE
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In 1886 Hollerith extended the idea of using punched cards as 

devices to carry data. His system used an electrical device rather 

than a mechanical means for carrying data values. That is, the 

presence of a hole in the punched card would allow current to flow 

whereas the absence of a hole would stop it. Thus a binary code was 

used to carry data, the two states being current ’off’ and current 

on .

The binary encoding of data and instructions was exploited 

further by Turing in 1936. However, he anticipated the use of 

continuous paper tape divided into unit squares as a form of input and 

output, each unit square being binary encoded as a ’1’ or a ’O’, 

(Turing, 1937). His machine, soon to be termed the 'Turing Machine’, 

could erase symbols as well as reading and writing them. The Turing 

machine was in fact a collection of machines, each one defined by its 

own decision table, (the decision table for adding two numbers is 

shown in Figure 2.4). The Turing machine was completely deterministic 

and could be described by its configuration. It worked automatically 

and can be considered as an early pattern recognition device. Thus, as 

well as mathematical functions, the Turing machine could also act as 

an automatic decision device, for example, in deciding whether or not 

one number is divisable by another. Indeed, Turing constructed his 

machine for the purpose of automatic decision-making. Turing’s work of 

1937 is of significance for two reasons; he was concerned with 

’computable numbers’ which almost coins the word ’computer’ as the 

word to describe his device; and he realised the scope of his work, 

even at that early stage, by comparing the workings of his machine to 
the human brain.

The decade of the 1940s was an important one in the 

development of the computer. In 1944, at Harvard University U.S.A., 

H.H. Aiken led a research team responsible for the Automatic Sequence 

Controlled Calculator (ASCC), which can be described as a realisation 

of the ’paper’ machine developed by Turing. The numbers used in the 

calculations were stored in 'registers’ which consisted of sets of 

wheels. Each wheel could be in one of ten states and could therefore 

store the representation of a decimal digit. The storage register was 

made up of a group of 24 wheels which could store a 23 digit number 

plus its sign. There were 72 registers in all. The instructions for 

the ASCC were fed in via paper tape which was read by an 

electromechanical method. The complete machine contained approximately 

750,000 parts and used more than 500 miles of wire. However, when the
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INPUT 2 3

SCANNER 

DECISION TABLE

CONFIGURATION SYMBOL SCANNED

BLANK 1

1 move R; 
config 1

move R; 
config 2

2
write T; 
move R; 
config 3

move R; 
config 2

3 move L; 
config 4

move R; 
config 3

4 no move 
config 4

erase; 
no move; 
config 4

OUTPUT
5

SCANNER

The task, defined by the addition decision table, is to fill in the blank space with a T , then to erase 
the last T . A four configuration decision table is sufficient to define the machine: configuration 
1 moves along the tape until the first T  is encountered and then moves into configuration 2; when it 
meets the blank separator, configuration 3 is reached; this then moves the the seamier along until it 
reaches the blank after the second group of T"s, which acts as the signal to move back one space; 
configuration 4 is then reached, which erases the last T  and remains as a stopping state.

FIGURE 2.4 A TURING ADDING MACHINE
(from Hodges, 1983)
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ASCC was ready to be evaluated it was already out of date, superseded 

by the world’s first electronic computer. The Electronic Numerical 

Integrator and Calculator (ENIAC) was designed by a research team at 

the University of Pennsylvania, U.S.A., led by J.P. Echert and J.W. 

Maunchly. The ENIAC consisted of 18,000 values, the majority of which 

were double triodes, and 1,500 relays.

The ENIAC machine could only store 20 numbers, so a research 

team led by J. von Neumann designed an improved version, termed the 

Electronic Discrete Variable Calculator (EDVAC). An important 

attribute of this machine was that the available memory capacity was 

increased considerably . However, the first operational stored program 

computer was a prototype machine designed by F.C. Williams at 

Manchester University, U.K., which was demonstrated in 1948. Indeed 

two English groups competed with each other to produce such a machine. 

The successful Manchester group used a Cathode Ray Oscilloscope as the 

storage medium, whereas a group at Cambridge University, under the 

direction of M.V. Wilkes, preferred the use of mercury delay-lines in 

their Electronic Delay Storage Automatic Computer (EDSAC).

By 1950, emphasis changed from hardware development to the 

development of programmable software which could be used to make 

computers do something. Activities on both sides of the Atlantic 

concentrated on constructing programs which would allow computers to 

make an intelligent decision or take an intelligent action. In the 

U.K. Turing’s conjecture "...can machines think?" was a particular 

driving force which stimulated research activity.

In the U.S.A., Shannon described computers as not only being 

able to carry out numerical calculations, but were so general and 

flexible that they could "be adapted to work symbolically with 

elements representing words, propositions or other conceptual 

entities" (Shannon, 1950). Shannon illustrated these concepts with the 

game of chess. This problem domain was chosen because it is well- 
defined, both in terms of its final goal (checkmate) and in 

operational terms (a change of state occurs after each move in the 

game). The computer was programmed to find a solution from a reduced 

set of the whole, that is, situations where only a few of the defined 

pieces were in play at any one time (to simulate chess endgames). 

Thus, the problem to be solved was neither too simple nor too 

difficult. Evaluation of the chess-playing program was made by playing 

the computer against human chess-players of various ability.
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The work of Turing and Shannon serves to illustrate the two 

schools of thought which constituted computer-based intelligence in 

the early 1950s. The view of the psychologists (Turing) was that 

computer-based intelligence should be considered as analagous to human 

intelligence, that is, the computer and its controlling software 

should imitate the human brain and thought processes respectively. 

Alternatively, Shannon champions the perspective taken by engineers, 

and viewed computer intelligence as mechanistic in nature, controlled 

by computer algorithms which imitate what humans do rather than how 

they do it. To illustrate the currency of this divide the debate 

surfaced again some thirty years later (Kolata, 1982; Waldrop, 1984).

In 1954 two precursors of artificial intelligence led to the 

field of Medicine and Bio-engineering being one of the major domains 

for its application. First, Meehl argued that many clinical 

predictions could be made by statistical rather than intuitive means 

(Meehl, 1954). Second, Savage re-introduced Bayesian statistical 

decision theory (Savage, 1954), which was later to provide the basis 

for value judgements in several ’intelligent’ computer-based systems.

One of the most notable landmarks in the study of computer- 

based intelligence was a Summer School in 1956, held at Dartmouth, 

U.S.A. and organised by J. McCarthy. The 'Dartmouth Summer Research 

Project on Artificial Intelligence’ was a resounded success, as it 

achieved its main aim of unifying the efforts of research groups in 

the U.S.A. Along with McCarthy, present at some time during the six 

weeks were, for example, Simon, Newell, Minsky and Shannon. Newell and 

Simon presented a logic theorist model to their colleagues which was a 

forerunner to their General Problem Solver program (Newell and Simon, 

1957). The General Problem Solver was based upon a model of human 

activity. That is, humans going about their everyday tasks bring some 

general processes to bear for their successful completion. The General 

Problem Solver was designed to separate the problem solving strategy 
from the task-specific knowledge by employing a ’means-end analysis’. 

This analysis considered the problem solving process as a series of 

states, with a trajectory of discrete steps from 'current state’ to 

’goal state’. For a successful outcome each state in the trajectory is 

nearer to the goal state than its predecessor. This iterative 

procedure used appropriate operators to move from state to state, with 

a full list of operators used to reach the goal state termed the 

'solution plan’. These operators often took the form of heuristic 

rules, which meant usually that there was more than one solution plan
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for each problem considered. This ambitious project was hampered by 

several inadequacies in its implementation. For instance, the problem 

of choosing which attributes to use to classify the differences 

between successive states; finding appropriate operators (heuristic 

rules) to act on the attributes; and only trivial problems were ever 

considered, mainly because of excess computer times and memory 

allocation required to compute the solution plan (Newell et al., 

1960).

In 1959 McCarthy described his programming language for non-

numeric computation. LISP was developed as a practical LISt Processing 

language with a recursive function capability. Using LISP, iterative 

processes such as the ones used by Newell and Simon in their program 

for General Problem Solving, could be implemented more directly. The 

year of 1959 was also a landmark for research in artificial 

intelligence in medicine, as Ledley and Lusted published their seminal 

paper on the reasoning foundations of medical diagnosis (Ledley and 

Lusted, 1959). This paper described how statistics and Bayesian 

analysis could be used to enhance the diagnostic process.

Entering the decade of the 1960s the first generation of 

computers, which had the valve as its most fundamental component, were 

being superseded by transistor-based machines. Several advantages 

ensued because of this change in technology, these included: various 

cost-type benefits, the most obvious being the decrease in financial 

outlay for hardware purchase; the integral components were smaller, 

decreasing the size of the computer; transistors dissipated less heat 

than valves, so although ventilation systems were still required they 

were not as specialised; and as a consequence of their size and 

decrease in heat dissipated, transistor-based computer systems could 

have more components built into them, thus increasing computing power. 

This latter advantage was to have far reaching effects, as the scope 

of the problems for which a computer-based implementation was sought 
diversified.

Work began in the early 1960s to develop computer-based tools 

useful for mathematicians. A heuristic-based computer program to 

perform symbolic integration at University entrance level was 

developed (Slagle, 1961). This proved to be the forerunner of MACSYMA, 

a well known mathematical symbolic programming language developed 

during the 1970s at the Massachusetts Institute of Technology, U.S.A. 

Game-playing exercises were still popular to those working in 

artificial intelligence, as well as chess, the strategies used in
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draughts (American checkers) were also studied (Samuel, 1963). These 

should not be considered as recreational activities as the benefits to 

emerge from this work were computer-based search strategies used to 

obtain successful solution paths in directed graphs and hierarchies.

Computer vision systems were pioneered in the mid-1960s 

(Roberts, 1965), with the computer component of the system being 

implemented to understand simple polyhedral block scenes. Much 

preprocessing was required before input into the computer-based part 

of the system. A pattern matching algorithm was used to compare the 

current blocks scene to the one stored in computer memory.

Perhaps the most notorious program of the 1960s was ELIZA, 

which simulated a non-directive psychotherapist (Weizenbaum, 1966). 

ELIZA was conceived as a parody to machine understanding. The natural 

language interface used in its implementation was neverthless an 

indication of what would be acceptable to the future users of 

intelligent systems. There is no doubt that the domain chosen helped 

in the overall success of the program in achieving its objective of 

demonstrating the ridiculousness of a machine being able to understand 

true natural language. If a print-out of a machine - subject 

interaction were studied, the level of machine understanding may at 

first sight seem impressive. However, on closer examination the 

deterministic nature of the program could be deduced. The program was 

implemented in such a way that a deterministic reply was given on the 

identification of a key word in the subjects’ answers. Likely key 

words in the domain were, for example, ’mother’, ’family’ and ’sex’. 

Each word would have their own predetermined answer composed in such a 

way as to continue the interrogation. In the event of a reply by the 

subject which contained no recognisable key words, an ambiguous answer 

was given, such as ’Please continue’. This reply was chosen until the 

next key word was recognised, thus extending the interview.

The period between the end of the 1960s and the start of the 

1970s can be viewed as a watershed in the field of artificial 

intelligence research. Groups on both sides of the Atlantic 

consolidated their positions, guided by results of research in this 

young science. Artificial intelligence was found to be much more 

exacting than researchers first realised, where success lay not in 

’general problem’ solving as at first thought, but rather in computer- 

based implementations of knowledge from narrow domains of interest. 

Heuristic rules were necessary to limit the number of possible
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solutions found by computer search techniques, otherwise valuable 

computer time and memory were taken up computing and storing non- 

optimal pathways. There was also a further increase in computer 

technology. The change of technology to this third generation of 

computer hardware had all the advantages of the previous change; that 

is, there were advantages of decreased financial outlay to install a 

new computer, integral computer components were smaller (based on 

integrated circuit technology), computing power increased while both 

size and heat dissipation decreased. Two other factors could also be 

identified for the necessary transition into the third generation of 

machines: the standardisation of operating systems as the interface 

between hardware and software; and a standardisation of component 

technology (imposed and driven by the market leader in computer 

manufacture).

Up to the early 1970s the LISP programming environment was 

the only one specialised for research into artificial intelligence. In 

1972 at the University of Marseille, France, a new programming 

language was developed for PROgramming in LOGic (Roussel, 1975). 

PROLOG became more popular as it became more generally available, 

partly because it is a relational language based on first predicate 

calculus, but also because it subsumed most of the list processing 

functions performed by LISP.

Research in artificial intelligence was set to expand using 

the third generation computer hardware when a set-back to its progress 

occurred in the U.K. The Government of the day commissioned a report 

into artificial intelligence research from the Science Research 

Council (now the Science and Engineering Research Council). Its 

author, the physicist Sir James Lighthill, saw no need for a separate 

field for artificial intelligence and found no organised body of 

techniques that represented such a field (Lighthill, 1972). Lighthill 

saw the fields of automation and computer science coming together to 

fill whatever research gap ensued. As a result of the report there 
was an immediate cessation of work in artificial intelligence in the 

U.K. Affected personnel were dispersed to other research centres, 

mainly in the U.S.A., where their contributions were received gladly.

However, perhaps as a response to the Lighthill report which 
had a knock-on effect in the U.S.A., research was initiated in 

development of the techniques used in artificial intelligence. For 

example, new knowledge representation schemes appeared, computer 

search techniques began to mature and inter-domain research activity
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became apparent, (where the medical domain was an early application 

for artificial intelligence). During the 1970s feasible approaches 

were demonstrated for speech understanding, language processing, and 

computer vision. A sub-set of artificial intelligence called 'expert 

systems’ also began to emerge.

From 1971 to 1976 the HEARSAY-II speech understanding system 

was developed at Carnegie-Mel Ion University, U.S.A., (Erman et al., 

1980). One of the first tasks of this research was to define when 

understanding (rather than recognition) of the spoken word had taken 

place. A behaviourist view was employed which allowed understanding to 

take place at several levels. The HEARSAY-II program was said to 

understand speech if it could perform one of the following tasks : 

give a correct answer to a question; paraphrase a paragraph; take 

inferences from a paragraph; translate a paragraph into another 

language; or predict what might be said next. In its summative 

evaluation the program could understand sentences with 90% accuracy 

from continuous speech, based on a thousand word vocabulary. The 

HEARSAY project used a 'Blackboard System Architecture’, which allows 

and controls information flow from multiple knowledge sources. In this 

way knowledge from different levels in the task-hierarchy can be 

considered at the same time.

A natural language program, SHRDLU, was developed at the 

Massachusetts Institute of Technology, U.S.A., (Winograd, 1972), which 

was designed to interface with an 'artificial blocks world’ (c.f. the 

work by Roberts discussed earlier). The significance of SHRDLU, 

although limited in extent, was that it was the first program to 

integrate successfully the syntax and semantics of natural language 

with a knowledge base.

Continuation of work started in the 1960s on computer vision 

systems resulted in an industrial prototype (Gleason and Agin, 1979). 

The purpose of this system was the assessment of quality assurance of 
industrial workpieces. A special lighting system was used to 

illuminate the workpiece whose edges were extracted using a continuous 

scan process. Any workpiece which did not match with the 

representations held in the memory of the computer were rejected.

Expert systems began to emerge in the 1970s, with the medical 

domain being a keen user of the technology. (The definition of an 

expert system has been given in Chapter 1, and medical expert systems 

are discussed in more depth in Appendix I). The genesis of medical
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expert systems perhaps stems from three fields of interest: the 
clinical algorithm; medical databases; and clinical decision making 

using decision theoretic techniques.

The clinical algorithm can be considered as a simple 

decision-making tool. It has been successfully applied to the encoding 

of triage protocols for use by nurses (Perlman et al. 1974), and 

giving therapeutic advice for acid-base disorders (Bleich, 1972). 

Deficiencies in this method are well recognised, such as its 

unwieldiness in large domains and the difficulty of maintaining the 

medical knowledge contained in the algorithm. The lack of any explicit 

model also makes justification of a course of action difficult to 

explain.

The hospital-kept patient notes form an original ’paper’ 

database. With the advent of advanced instrumentation systems not only 

did it become possible to computerise these notes, but they could also 

be cross-referenced with domain-specific databases. Indeed, large 

domain-specific databases are being gathered for various clinical 

problems (Weyl et al., 1975; Mabry et al., 1977). There are drawbacks 

to the use of clinical database systems, which include the need for a 

standard approach to nomenclature and interpretation for comparison 

between similar systems, and rare disorders may have so few references 

in the database that any inferences made may be statistically 

inappropriate.

One statistical method employed in clinical decision-making 

which provides for uncertainty is the use of Bayes theorem. For this 

to be consistent, the theory requires quantitative values for the 

a priori and conditional likelihoods for each disease state and 

constituent manifestations under consideration. Applications which use 

this method are typically from small domains, as otherwise the time 

required to carry out the a posteriori mathematical calculations 

required for a set of possible solutions becomes untenable. Examples 

of the use of Bayes theorem in clinical decision-making are in the 

management of patients with acute renal failure (Gorry et al., 1973), 

and from the clinical response to digitalis therapy (Gorry et al., 

1978). The main disadvantage of this method is the difficulty in 

obtaining a reasonable estimate of the a priori probabilities for 

disease states and their manifestations in each domain. It follows 

from this observation that large medical domains and multiple disorder 

protocols are not good examples of potential areas of application. 

However, there is one notable exception. A system for acute abdominal

20



pain has been in the process of development since 1972 at the 

University of Leeds, U.K. (de Dombal et al., 1972; Horrocks et al., 

1972). An evaluation study has been performed which assessed the 

impact of the system on clinical practice. This study involved 8 

hospitals, 250 clinicians and 16,737 patients at both national and 

international sites (Adams et al., 1986).

When research from all three of the above approaches are 

combined, any resultant expert system would benefit from the 

advantages offered by each individual approach whilst each of their 

individual disadvantages are minimised. For example, a clinical 

algorithm could provide the procedural knowledge required in an expert 

system, while data from a domain-specific clinical database could 

provide the statistical insight required to obtain the a priori 

probabilities for the disease states used in a Bayesian analysis of 

clinical prediction.

As research entered the 1980s it became clear that the 

encapsulation of knowledge into computer-based systems was necessary 

and central to the field of artificial intelligence. Suddenly ’expert 

systems’ and 'intelligent knowledge-based systems’ became synonyms for 

research into artificially intelligent systems. Although one 

definition of ’expert system’ has already been given (Chapter 1), it 

is pertinent to add a second more comprehensive definition at this 

stage :

"An expert system is an intelligent computer 
program that uses knowledge and inference 
procedures to solve problems that are difficult 
enough to require significant human expertise 
for their solution. The knowledge necessary to 
perform at such a level, plus the inference 
procedures used, can be thought of as a model 
of the expertise of the best practitioners of 
the field.

The knowledge of an expert system consists of 
facts and heurisitics. The ’facts’ constitute a 
body of information that is widely shared, 
publically available, and generally agreed upon 
by experts in a field. The ’heuristics’ are 
mostly private, little-discussed rules of good 
judgement (rules of plausible reasoning, rules 
of good guessing) that characterise expert- 
level decision-making in the field. The 
performance level of an expert system is 
primarily a function of the size and quality of 
the knowledge base that it possesses."

(Feigenbaum, 1982).

This definition emphasises the requirement for an expert system, as
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well as dividing it into its constituent parts of facts and rules. 

Facts are universally known whereas rules usually employ ’local’ 

knowledge, which could be one reason why expert systems are generally 

not very portable.

The early 1980s also saw the wholesale manufacture of micro-

processors, which brought the cost of buying a computer down 

dramatically. With the advent of the microcomputer a potential home-

computing market was established. Versions of LISP, PROLOG and other 

software packages became available for use with these microcomputers, 

which is perhaps one reason why expert system technology has 

proliferated. In 1982 the Japanese officially began a well-funded ten 

year research project to create a further generation in computer 

technology. This generation of machinery will be capable of computing 

in parallel, that is, perform many computational tasks concurrently. 

The significance of this project to this review is twofold : first, 

PROLOG has been chosen as the implementation language; and second, 

computers operating in a parallel mode have a great research potential 

in the field of artificial intelligence. These facts, taken in 

conjunction with the fact that intelligent computer-based systems are 

now found in commercial use, ensure that research in artificial 

intelligence will play an ever-increasing role in the future 

development of intelligent devices.

2.3 Historical Development of the Critical Care Unit

The critical care unit can be described as a specialised and 

confined area within a hospital unit where critically ill patients are 

gathered together. The creation of such an environment has various 

consequences. For instance: the highly trained nurses required to 

staff the unit can be deployed in an efficient way, more often than 

not in a ratio greater than unity between nurse and patient; the 

sophisticated instrumentation systems needed for enhancing patient 

care are utilised for a high proportion of their operational lives, 

thus expensive and specialised equipment does not sit idle for very 

long; and the critical care unit provides an ideal setting for medical 

training and research. All of these factors contribute to the finding 

that the establishment of a critical care unit within a hospital has 

the effect of reducing overall patient mortality and morbidity, 

(McCleave et al, 1977). As an illustration of the popularity of this 

method of dealing with critically ill patients, an American study has 

shown that over 80% of all short-term General Hospitals in the U.S.A.
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which have more than 200 beds have a critical care unit (Snyder et

al., 1981). However, this type of care is a phenomenon of the latter

half of the twentieth century, which owes much to the establishment of

the post-operative recovery room, perhaps first chronicled by Florence

Nightingale, who observed,
"It is not uncommon, in small country 
hospitals, to have a recess or small room 
leading from the operating theatre in which 
the patients remain until they have recovered 
from the immediate effects of the operation. "

(Nightingale, 1863).

One of the problems of managing critically ill patients is 

that although initially there may be only one pathological condition 

which accounts for the prime complaint, in a relatively short period 

of time many physiological disturbances can contribute to overall 

patient state. Therefore there is potential for a number of clinical 

specialists to assume charge of the care of the patient. This can lead 

to a most unsatisfactory situation where a conflict of management 

approaches can be adopted by the different specialists. Therefore 

there is a need for a holistic approach to the management of the 

critically ill patient, which was first perceived by Kirschner, a 

surgeon from the hospital of the University of Tuebingen, Germany, 

(Kirschner, 1930). He designed and had built a dual purpose unit which 

catered for post-surgical patients as well as for the critically ill.

It was the advent of World War II which brought about further 

developments in critical care medicine. Due to the number of 

casualties involved, a systems-type approach to the management of the 

battle wounded was adopted in many places. For example, in July, 1943, 

a thoracic surgical tent was established in Bizerte, North Africa, to 
deal with incoming wounded. This enabled the limited number of 

specialised medical personnel to be deployed in the most efficient 

way. Further examples of this intensive approach to patient care in 
World War II (from an American perspective) are well documented in a 
series of volumes published by the Office of the Surgeon General, 

Department of the Army, Washington, D.C. (U.S. Army Medical Services, 
1955; 1963; 1964).

The management of civilian crises has also been responsible 

for the evolution of the critical care unit. Indeed, it was one such 

crisis, namely the poliomyelitis epidemic of 1952 in Scandinavia, 

which ultimately provided the impetus for the creation of purpose- 

designed specialist units for the management of the critically ill.
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However in 1952 no such unit existed, so in Copenhagen, Denmark, a 

hospital ward was temporarily seconded to cater for victims of the 

poliomyelitis epidemic who had severe respiratory problems caused by 

their primary complaint. This ward was supervised by anaesthetists, 

and as technology had yet to improve on the cuirass ventilator, 

intermittent positive pressure ventilation was applied manually for 

prolonged periods of time on the tracheotomised patients, (Ibsen, 

1954). Clinical acceptance of this treatment regime was enhanced 

because evaluation of the methodology could be undertaken. 

Epidemiologists compared the mortality rates from respiratory 

paralysis during the poliomyelitis epidemic of 1952 to that of a 

similar epidemic in Scandinavia which took place three years earlier. 

Results showed that throughout Scandinavia the mortality rate during 

the 1949-1950 epidemic was 85%; prior to the anaesthetists’ 

intervention in 1952 the mortality rate in Denmark was 87%; however 

after intervention by the anaesthetists in the way previously 

described, the mortality rate fell by more than half to 40%, (Lassen, 

1953).

The clinical knowledge gained from these experiences had at 

least two consequences. First, a technological advance was made in the 

design of mechanical ventilators, which began to include an automatic 

way of delivering intermittent positive pressure ventilation. Second, 

a methodological advance was made in the design of a special unit 

which catered specifically for the critically ill.

The first purpose-built civilian multidisciplinary critical 

care units opened almost simultaneously in 1958, in Baltimore, U.S.A., 

and Uppsala, Sweden, (Safar et al, 1961; Holmdahl, 1962). Taking the 

latter unit as an example of the methodological advance, the 24 bed 

unit was split into two wards. The larger of the two wards contained 

13 beds and was administered by anaesthetists, and could be considered 

as an extension to the post-operative recovery room. This can be 

visualised as the forerunner of the medico-surgical critical care 

units found in most large hospitals. The other ward, which contained 9 

beds, was administered by cardio-thoracic surgeons and was perhaps the 

originator of the coronary care unit.

Other specialist units that can be considered under the 

umbrella term of critical care include the neurological intensive care 

unit and the special care baby unit. These have a more chequered 

historical development, owing much to the personality of the 

clinicians involved rather than any structured advancement in
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methodology for patient care. A small three bed intensive care unit 

for the post-operative management of the neurosurgical patient was in 

existence in 1923 in Baltimore, U.S.A. This unit was directed by W.E. 

Dandy, who realised the efficacy of this type of patient care, 

(Harvey, 1974). A special care baby unit for neonatal intensive care 

was first established in Chicago, U.S.A., in 1927, (Klaus and Kennell, 

1970). However, treatment and methods were still crude, often using 

medical instruments designed for adults on neonates. The creation of 

the unit in Chicago provided an environment which allowed clinicians 

to design proper sized instruments for use on neonates, (Flagg, 1928). 

An increase in general instrument technology has also contributed to 

the care of the critically ill. As clinical instrumentation has become 

more sensitive the amount of test substance required to obtain a 

reliable reading has become less. For instance, for paediatric blood- 

gas analysis a blood sample of 40 ul is all that is required to obtain 

a reliable measure from most modern machines. This has allowed serial 

analyses of variables to be undertaken in even the smallest of 

neonates. Patient management can then be optimised at regular 

intervals, which increases the chance of patient survival. Further 

examples of how other ’specialist’ critical care units have developed 

from a clinical viewpoint can be found in an article by Hilberman 

(1975).

With the establishment of the critical care unit as a 

distinct entity within a hospital system, emphasis on its development 

has changed from a clinical perspective to a technological one. The 

use of computers to monitor continuous physiological signals first 

became a tool for patient management in 1964, in Los Angeles, U.S.A. 

(Jensen et al, 1966). Since then many more patient data items have 

become available on-line, and to counteract a ’data-explosion’ these 

must be made available to a computer-based patient data management 

system (Booth, 1983). Such a system has existed in Kuopio, Finland, 
since 1986 (Kari, 1988), where the entire patient data set is captured 

either on-line or manually entered via a keyboard. A problem encumbent 

with any system of this type is its universal appeal, as the patient 

data set differs from hospital to hospital. To overcome this problem a 

European initiative is underway to determine what constitutes the 

minimal data set. Once this has been defined, commercial patient data 

management systems should be forthcoming. The future development of 

the critical care unit will then probably concentrate on interfacing 

these systems with intelligent software modules capable of deciding
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automatically when to update data for the optimal management of the 

patient.

2.4 Summary

It has been shown how the history of research into artificial 

intelligence is intertwined with that of the development of the modern 

computer. The historical development of computer technology has been 

summarised previously (Harrison, 1986), see Figure 2.5. The Analytical 

Engine of 1842 comprised tonnes of brass and steel and was driven by a 

steam engine. Two 50-digit numbers could be multiplied together, the 

answer taking one minute to compute; addition and subtraction could be 

performed at a rate of 60 operations per second. The ENIAC machine of 

1946 comprised 18,000 vacuum tubes, had dimensions of 100*10*3 feet, 

consumed 140kW of energy and was capable of 5,000 operations per 

second. The modern computer of 1988 is much smaller, uses much less 

power, costs much less and is capable of over 1,000,000 operations per 

second. It can be said with confidence that a computer revolution has 

taken place over the last forty years.

The intention of this chapter was to perform a historical 

review of artificial intelligence and show a historical development of 

the critical care unit. From these descriptions it can be seen how the 

development of the former has had an application in the latter. The 

use of ’high technology medicine’ has had a beneficial effect on 

patient diagnosis, monitoring and therapy. One area of critical care 

which would benefit from the use of advanced instrumentation is the 

respiratory management of patients who require ventilatory therapy. 

The modern ventilator is often controlled by a micro-processor and is 

therefore capable of a ’smart’ functionality. In the next chapter a 

critical review is performed on ventilatory devices which use 

feedback-control and techniques from the domain of artificial 

intelligence to demonstrate novel ways of increasing the ’smartness’ 

or intelligence in patient management processes.
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3 : CRITICAL REVIEW OF A CONTROL SYSTEMS APPROACH 
AND AN ARTIFICIAL INTELLIGENCE APPROACH 

TO VENTILATORY MANAGEMENT

3.1 Introduction

In the previous chapter the historical aspect of artificial 

intelligence was given. Here the investigation of an application of 

this technology to the management of patients who require mechanical 

ventilatory support is considered. To achieve this objective this 

chapter critically reviews external control of the human respiratory 

system by use of an artificial ventilator. Two approaches to external 

control of ventilation are considered: the first from a traditional 

control systems perspective; and the second using the tools and 

techniques of an artificial intelligence approach.

A classical control system consists of three sub-units; the 

transducing element(s) from which the variables of the system are 

derived; the controller, (e.g. P, P + D, P + I, PID), which computes the 

degree of control required; and the actuator, which supplies the means 

by which the control action is carried out on the system. The purpose 

of a control system is to keep designated variables within pre-set 

desirable limits. In normal physiology the respiratory system has its 

own internal control mechanisms, the basic system elements are shown 

in Figure 3.1 a), with a more detailed account which includes neural 
respiratory control shown in Figure 3.1 b).

In situations where the physiological system which controls 

respiration is not intact, an alternative external controller is 

required. This is the role of an artificial ventilator; it takes over 

from the respiratory control system so as to sustain life. Such 

situations occur, for example, when the respiratory centre of the 

brain is deranged due to supression (as in drug overdose), or 
compression (as with a tumour). Many more examples exist which explain 

the dysfunction of the respiratory control system.

In Section 3.2 servo-controlled ventilator systems are reviewed. 

The purpose of a controlled ventilator system is to keep designated 

respiratory variables within pre-set desirable limits. This enables 

the production of a patient-specific management plan, the desired end-

point of which is to return the patient to a state where spontaneous 

ventilation occurs. This is the point when the internal physiological 

control system can regain control from the external ’artificial’ 
system.
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INPUT OUTPUT

pons,medulla and 
higher parts of the 

brain

SENSORS EFFECTORS
negative feedback

mechanoreceptors respiratory
chemoreceptors muscles

Input to the controller is information from the various sensors. 
Controller output affects the respiratory muscles. Changes in 
ventilation are counterbalanced by the action of the respiratory 
muscles via a negative feedback loop.

FIGURE 3.1 a) BASIC ELEMENTS OF THE RESPIRATORY CONTROL SYSTEM
(After Figure 8.1, West, J.B., 1979)
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FIGURE 3.1b) BASIC STRUCTURE OF NEURAL RESPIRATORY CONTROL
(after Figure 20, Fincham and Beishon, 1973)
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A difficulty encountered in servo-controlled ventilator 

systems is that of obtaining a reliable measure of the ’controlled’ 

variable. For instance, clinicians would like to use PCO2  in arterial 

blood (PaCC>2 ) as the controlled variable, as this measure reflects 
respiratory status. However, to obtain this measurement an invasive 

technique is required, which is fraught with its own complications, 

although this procedure may be deemed beneficial for some patients in 

a Critical Care Unit. To date, end-tidal CO 2  concentration (ETPCO2 ), 

measured by a capnograph, is usually used as an indicator of PgCC^. 

ETPCO2  reflects alveolar concentration of carbon dioxide which is 

itself a function of PaCC>2 .

Section 3.3 illustrates the artificial intelligence approach 

for the provision of a patient-specific management plan. As well as 

ventilator control, the system has a domain specific knowledge-base 

appended to it. This knowledge-base has the function of providing 

intelligent advice to the user, which enables an optimal or near 

optimal respiratory management trajectory to be set.

3.2 A Control Systems Approach to Ventilator Management

Katona describes two reasons for developing systems to 

automatically control the designated respiratory variables (Katona, 

1983). First, ventilator settings may have to be continually adjusted 

to allow optimal gas exchange to take place for the metabolic 

requirements of the patient. Second, it is sometimes desirable to keep 

some of the monitored respiratory variables constant so that 

interpretation of respiratory manoeuvres can be more easily made. Both 

of these principles are used in the systems described below.

3.2.1 ETPCO2  as an Indication of PaC02, (Ohlson et al., 1982)

It has been indicated previously that ETPCO 2  is used as an 

approximation to PgCC^. A microcomputer-based feedback control system 

was designed to test this hypothesis under different physiological 

conditions. The significance of this research is that in some disease 

states large differences can occur between ETPC02 and PaC02 (West, 

1979). As a consequence of the evaluation study performed on this 

system a number of automatically controlled ventilation systems which 

use ETPCO2  as a basis for their control action become compromised.

The system designed by Ohlson and colleagues was based on a 

SIEMENS-ELEMA 900B s e r vo-ven t i 1 a t o r. The ventilator was modified to 

accept control signals from a computer, which exhibited control of
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both minute volume and ventilation rate. A CC> 2 analyser was used to 

measure ETPCO2 , and both monitoring and lung mechanic calculator 

modules were used. This configuration allowed the display of flows, 

pressures and mechanical factors, (for example, resistance and 

compliance).

This ventilator-computer system was tested in closed-loop 

mode and evaluated using six dogs. Although only ETPCO2  was captured 

by the computer, PaC02 was also monitored continuously. A model of the 

closed-loop feedback control system is shown in Figure 3.2. D(z) is 

the Proportional plus Integral plus Derivative (PID) controller, whose 

output, ’m’, is the sum of the current error, the accumulated error 

and the change in error. These parameters are related by a set of 

difference equations. The sampling interval, that is, how often the 

physiological variables were measured, was determined empirically and 

set at 5 seconds.

System performance was evaluated under different 

physiological conditions induced by the following pertubations :-

1) NaHCOg was infused intravenously.

2) A main branch of the pulmonary artery was occluded by a

Swan-Ganz balloon catheter.

3) One lumen of a double lumen endobronchial tube was occluded.
4) An air embolism was administered.

Each of these pertubations mimic a pathophysiological state, their 

significance can be described as follows. Infusion of NaHCOg for 10 

minutes at a rate of 0.21 mEq/kg/min simulates a change in CO2  minute 

production, thereby changing the metabolic rate of the animal. This 

situation occurs regularly in patients who are admitted to a Critical 

Care Unit. Occlusion of one of the main branches of the pulmonary 

artery effectively increases the physiological dead-space. This is of 

pathological significance because it simulates disease states which 

are caused by poor blood flow in the lungs, where physiological dead 
space is effectively increased due to little or no gas exchange in 

those areas. The left lumen of a dual lumen endobronchial tube was 

occluded which meant that all ventilation was diverted to the right 

lung. This mechanism simulated a right-to-1eft shunt. Air (1 ml/kg) 

was rapidly infused into the right atrium of the heart via one lumen 

of the Swan-Ganz catheter. This modelled a transient disturbance, and 

is also effectively another method of increasing physiological dead- 
space .
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End-tidal

D(z) is a PID controller (computer software);
Ventilator acts as a zero order hold (ZOH);
The animal is considered as a continuous process G(s);
The summing junction is contained within thee computer software algorithms; 
T = 5 seconds.

FIGURE 3.2 CLOSED - LOOP CONTROL SYSTEM USED BY OHLSON ET AL„ (1982)



When NaHCOg was infused, the PID controller adjusted minute 

volume based on ETPCO2  measurements, and kept PgCC^ within desirable 

limits even though CO 2  production increased by as much as 44%. 

However, control was not as effective when the other three 

pertubations were performed. One reason for this ineffectiveness could 

be that all three pertubations caused large changes in the ventilation 

- perfusion ratios, thus causing large differences between ETPCO2  and 

PaC02. If this large ETPCO2  ~ PaCC> 2 mismatch were constant then the 

PID controller set-point could be altered so as to accommodate this 

change. The resulting change in minute ventilation could then bring 

the PgOO2  measurement back to within desirable limits. One conclusion 

of this work was to begin research into methods that would monitor 

ventilation - perfusion ratio, as this could determine the ETPCO2  - 

PaC02 relationship.

3.2.2 Automatic Control of a Ventilator Using ETPCOg as the 
Controlled Variable (Smith et al., 1978)

A similar control system to that described by Ohlson and 

colleagues (above) was proposed four years earlier. Here ETPCO2  was 

measured via an infra-red CO2  analyser. The value of ETPCO2  was to be 

used to control the motor rate of a fixed-volume respirator. The CO2  

analyser - controller - respirator system operated in a closed-loop 

mode which allowed for the automatic control of ETPCO 2 . The 

instrumentation system contained a variable gain and lag compensation 

network, which permitted critical damping and thus prevented 

oscillation.

The purpose of this system was to investigate the 

respiratory neural control of paralysed animals, where a constant 

ETPCO2  was required. Tidal volume and respiratory rate (which define 

minute volume) were set at values necessary to provide the desired 

ETPCO2 . This measure then became the set-point value. The system 

operated in a way such that if there was a change in ETPC02 the 
controller would alter the rate of the respirator in a way to minimise 

the effect of that change.

3.2.3 Investigation of the Response to Hypoxia and Hypercapnia 
Using ETPC>2  and ETPCOg as the Controlled Variables 
(Kawakami et al., 1981)

This system was developed to control PaC> 2  and PaC02 

simultaneously and independently of each other. The control action 

alters the inspiratory Fj02 and FjC02. The purpose of the system was
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to investigate the ventilatory response of human subjects to hypoxia 

and hypercapnia. Using the same system it was also possible to assess 

the effectiveness of gas exchange while changing ventilatory pattern, 

and simulate the values of the arterial blood gases for specific 

conditions such as exercise.

The instrumentation system used in this study is shown in 

Figure 3.3. Expiratory gases were analysed by mass spectrometry, this 

is a technique capable of measuring both ETPO 2  and ETPCO 2  

simultaneously. The O2  and CC> 2 controllers regulated the directions of 

the movement of two pulse motors, which were connected to two mixers 

which allowed the separate determination of FjC^ and FjCC^. Nitrogen, 

as well as oxygen, was supplied to the 0 2  mixer, the output of which 

was connected to the CC> 2 mixer. The gas mixture was available in any 

concentration between 0% to 100% for both O 2  and CC^- The output of 

the CO2  mixer was connected to the ventilator, (BENNETT PR-2), where 

the gases were decompressed and humidified. This gas mixture was 

administered to the subject via an overflow bag, J-valve and 

mouthpiece. If the values of ETPO2  or ETPCO2  were at a level to bring 

about a control action, under normal operation of the system the 

increase in FjC> 2 and FjC0 2  occurred using a ramp function set at 2 

%/min for Ĉ , and 3 %/min for CC>2 . A provision for a more rapid change 

was also included where the ramp function was set at 23 %/min for O2  

and 32 %/min for CC^. This rapid change function was included to off-

set any life-threatening situations. For measurement purposes it was 

assumed that the end-tidal concentrations mirrored the concentrations 
of the gases in arterial blood.

Three different physiological conditions were induced in the 

subjects in order to evaluate the system allowing an insight into the 

relationship between end-tidal and arterial blood gas concentrations. 
They were:-

1 ) normoxia Pa°2 =  12 kPa ; paC02 = 5 kPa

2) normocapnie hypoxia Pa°2 " 5 kPa ; paC02 = 5 kPa

3) normoxic hypercapnia C
M

r
HIIC

M
O

03
Q

_ kPa ; PaC02 = 7 kPa

Arterial blood for the blood gas determinations was drawn from an 

indwelling catheter placed in the brachial artery, and analysed 

directly after sampling. In this way the measurements of Pa02 and 

PaC02 could be compared with the end-tidal concentrations used by the 

control system. All measurements were made three minutes after 
reaching the steady-state condition.
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FIGURE 3.3 CONTROL SYSTEM FOR ARTERIAL BLOOD GASES
(after Kawakami et al, 1981)



The conclusions drawn from this study were that the 

instrumentation system performed well under normal physiological 

conditions, that is, when the end-tidal concentrations matched the 

arterial blood gas determinations. However this relationship was not 

as effective under the experimental conditions which introduced 

possible pathological factors.

3.2.4 Use of ETPCO2  as the Controlled Input to Investigate Ways 
of Optimising Drug Therapy (Swanson et al., 1971)

This system was used for studying normal and drug-altered 

respiratory physiology, and combined the use of a computer-controlled 

breathing chamber together with a dynamic mathematical model of the 

physiological processes. The work is of importance because it allowed 

interpretation of the response of the respiratory system to the action 

of new drugs. The methodology used by the system hinged upon the fact 

that re-breathing of CO2  was a proven useful experimental method for 

assessing the effects of drugs. However previous analysis had not 

taken into account drug action in terms of its dynamic properties, 

(time constants, gain, circulatory time, etc.), which was included in 

this study.

System input was ETPCO2 , which could be altered using an 
open-loop control system which regulated inspired CC>2 . The system 

output was a control action which varied tidal volume or the ratio 

between time for inspiration to time for expiration.

A dynamic mathematical model was used to describe the CO2  

regulatory system, where the values of the measured data were used for 

model parameter estimation. Pertubation in ETPCO2  was said to be a 

function of inspired CC^, alveolar ventilation and mixed venous 

concentrations of PCC^- The effective action of the drugs could be 

instantiated to the change which took place in the values of the 

parameters of the model. This system was designed so that the 

uncertainty factor associated with each parameter was minimised, thus 
helping to identify optimal drug therapy.

3.2.5 A Breath-by-Breath Method to Automatically Control a 
Ventilator Using ETPCOp as the Controlled Variable 
(Bhansali and Rowley, 1984)

A microcomputer controlled servo-ventilator system which 

continuously monitored ETPCO2  and adjusted minute volume on a breath- 

by-breath basis has been proposed. This system is similar to the one 

described by Smith and colleagues (above). Alterations to minute
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volume was the control action, taken on the basis of the measured 

value of ETPCC^. The difference between the two systems is that Smith 
and colleagues alter respiratory rate to change the minute volume, 

whereas Bhansali and Rowley alter the tidal volume, thereby creating a 

different physiological dead-space.

A modified SIEMENS-ELEMA 900B servo-ventilator was used in 

this study, the modification being a variable orifice in the 

compressed air-line connected to the ventilator. This had the effect 

of altering air flow, which was the device used to change tidal 

volume. ETPCO2  was monitored using a CO2  analyser. The algorithm used 

for adjusting the minute volume is shown in Figure 3.4, and was 

capable of detecting long-term and short-term changes; that is, a ramp 

change between measured and set-point value of ETPCC^, and a breath- 

by-breath change respectively. This algorithm was implemented in 

BASIC, and operated in the following way. A set-point of ETPCO2  was 

entered, (S), and compared with its current value, (Z). If Z was not 

equal to S then an appropriate control action was taken; if Z equalled 

S, the measure was compared to the previous value of ETPCO2 , (X). A 

difference between Z and X brought about a control action in order to 

increase or decrease the minute volume accordingly. The previous 

sample, X, was then replaced by Z, (that is, Z was instantiated to X), 

and a new sample of the ETPCO2  measure was taken.

This system was evaluated in an animal study by altering 

acid-base status. An infusion of 0.5N HC1 induced an increase in 

minute ventilation which required control action to maintain ETPCO2  at 

a constant value. The system responded well and in real-time, although 

the system response was underdamped. The authors partly attributed 

this to the fact that the body acts as a physiological buffer. It was 

suggested that further evaluation studies were required before using 
this system on humans.
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FIGURE 3.4 ALGORITHM FOR ADJUSTING MINUTE VENTILATION
(From Bhansali and Rowley, 1984)



3.3 An Art i f i c i a l  Intel l igence Approach to Ventilator Management

This section comprises systems which use a knowledge-based 

approach to ventilator management. Research using artificial 

intelligence in this domain began in 1973, and the various methods by 

which intelligent systems have been used are reviewed below.

3.3.1 A MUMPS-based Ventilator Consultation System 
(Menn et al.,1973)

One of the first computer-based medical consultation systems 

was designed and developed at the Massachusetts General Hospital, 

U.S.A. (MGH). It comprised a suite of programs, each one dedicated to 

a particular patient care - data management application area. One such 

area was designated as the care of patients who enter the state of 

respiratory failure, (Menn et al, 1973). The purpose of the system was 

to provide a set of recommendations from which ventilator therapy 

could be planned in an optimal manner.

The system used a specialised programming environment, 

taking its name from the acronym of MGH Utility Mu 11i-Programming 

System, (MUMPS). This was described as a versatile, user-friendly, 

text-orientated language which allowed fast access to a dynamic 

database. Program input consisted of answering a series of menu-driven 

questions. The information requested included the vital statistics of 

the patient, his state of consciousness, the settings of the 

ventilator, arterial blood gas determinations, pulmonary diagnosis and 

the type of ventilator and airway used. The program could cope with 

five types of ventilator and nine different airways. The primary data 

set used in the MUMPS-based consultation system is shown in Table 3.1.

Program output consisted of five areas of assessment:-

i) Oxygen Assessment
ii) Acid-Base Assessment
iii) Ventilation Assessment
iv) Weaning Assessment
v) Airway Care

Oxygen assessment yielded an ’ideal’ inspired oxygen 

concentration made on the basis of the results of the arterial blood 

gases. The suggested ventilator settings were then shown to attain 

that particular value of Fj02.

Acid-Base assessment used a modified Bleich method to 

determine acid-base status from a linear plot of PaC02 and Hydrogen 

ion concentration. The program was able to distinguish between pure 
and mixed acid-base disturbances.
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P a02 Partial Pressure of Oxygen in Arterial Blood

P aC 02 Partial Pressure of Carbon Dioxide in Arterial Blood

S a 0 2 Arterial Oxygen Satuaration

A aD 02 Alveolar - Arterial Oxygen Gradient

PH pH

H C 03 Bicarbonate Concentration

EEP End - Expiratory Pressure

Fiq Fraction of Oxygen in Inspired Air

VT Tidal Volume

VD/VT Ratio between Dead Space and Tidal Volume

RR Respiratory Rate

TABLE 3.1 PRIMARY DATA - SET FOR THE MUMPS - BASED 
CONSULTATION SYSTEM
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Ventilation assessment used the fact that tidal volume, 

respiratory rate, and mechanical dead space all affect the PaCC> 2 of 

the ventilated patient. The program stipulated what tidal volume and 

respiratory rate were required for optimal carbon dioxide elimination.

The parameters used in weaning assessment included the state 

of consciousness of the patient, respiratory rate, vital capacity, 

PaC02, pH, VD/VT, AaDC>2 , and FjC^. The temporal trends of all these 

variables and parameters were also used in the program for weaning 

assessment. Computer advice was divided into three states; the first 

was where weaning could be contemplated with a high probability of 

success; the second was where weaning could be started but with 

increased patient observation, so that any breathing difficulties the 

patient might have could be dealt with quickly and efficiently; the 

third was where the program advised against weaning at that time.

For Airway Care, assessment recommendations were made for 

the maximum duration for which various airways should be used before 

performance of either extubation or tracheostomy.

During the initial phase of its use, all assessments made by 

the advisory program were evaluated by an experienced senior 

clinician. The system was used mainly by medical students so that they 

could obtain a therapeutic plan an expert would use. Thus, as well as 

being able to organise the vast amount of data generated by a patient 

in a respiratory care unit, the system could be used as a valuable 
teaching tool.

However, there were problems encountered when using the 

MUMPS-based consultation system. These could be split into two groups; 

operational problems, and what can be described as historical 

problems. Although most input to the system was quantatative and 

therefore communicable via a modem link, which allowed access to 

computer advice from terminals remote to the Massachusetts General 
Hospital, the original program allowed only 22 simultaneous users. 

This limited the utilisation of the information contained within the 

program. The historical problems associated with the system could be 

described as waiting for relevant computer hardware and software to 

catch up with the program specification. It must be remembered that 

MUMPS was designed in the early 1970s, when the advent of the age of 

the microcomputer was still ten years away.

The heart of MUMPS-based system consisted of a tree- 

structured consultation mechanism with the knowledge base defined
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implicitly in the inference mechanism. This was known to be a rigid 

construct, now superseded by expert systems where the knowledge base 

and inference mechanisms exist as separate software entities. As an 

example of this rigidity, the validity of a MUMPS interpretation was 

dependent on the accuracy and completeness of the data that were 

entered. In more advanced systems, using expert system technology 

that evolved in the late 1970s, both accuracy and completeness of data 

are problems that can be overcome. Other lesser problems encountered 

during the operation of MUMPS when it first became available were the 

physical time to enter the data required by the system, and the time 

taken to obtain a printed copy of the data, (both taking up to 10 

minutes).

MUMPS became a popular programming environment, the source 

code being exported to various other national (U.S.A.) and 

international centres. This popularity can be indicated by the number 

of MUMPS user-groups in existence, although that number is now on the 

decline. A possible reason for its former popularity is due to the 

fact that its authors were harnessing the might of the then new age of 

mini-computing power to a real world medical problem. With the advent 

of the microcomputer and an increase in sophistication of software 

tools available, other more advanced systems were designed to help in 

the care of patients who require mechanical respiratory support. 

However the MUMPS-based consultation system deserves its place in this 

review as it made a significant contribution to medical computing.

3.3.2 VM (Fagan, 1980)

VM was developed principally by L. M. Fagan in the 

Departments of Medicine and Computer Science, Stanford University, 

during the late 1970s, (Fagan, 1980; Fagan et al, 1980). The program 

was designed to interpret on-line quantitative data in an ITU setting, 

which were used to manage post-surgical patients receiving mechanical 

ventilatory assistance. Operation of VM depended on its ability to 
perform the following five tasks:-

i) to detect possible measurement errors
ii) to detect errors in the instrumentation system, and 

if an error was present to suggest corrective action
iii) to summarise patient-state based on the incoming 

data
iv) to suggest adjustments to the patient-specific 

management plan
v)to maintain a set of patient-specific expectations 

and goals for future evaluation of the program.
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Central to the operation of VM was a model of therapeutic 

procedures carried out in an ITU, enabling interpretations of the 

time-varying physiological data to be made in the context of their 

therapeutic value at the time of measurement. Adjustments to a 

patient-specific management plan were made by comparing current 

patient data with the expectations of the measurement values of the 

data for that particular patient-state. Thus both patient-state 

trajectory and long-term therapeutic goals had a bearing on plans of 

patient management in this system.

To implement VM the EMYCIN shell was used. However, whereas 

MYCIN used a goal-directed (backward chaining) approach to form a 

coherent line of reasoning, VM used a data-driven (forward chaining) 

approach. VM had five major rule groups, the format of which is shown 

in Figure 3.5, with an example of an actual rule in Figure 3.6. The 

rule groups have the following headings; Initialising rules, Status 

rules, Therapy rules, Transition rules, and Instrument rules.

INITIALISING RULES set up the initial 
expectations of the system defining the normal (and 
therefore abnormal) ranges of the values of the incoming 
measured physiological parameters.

STATUS RULES recognised the physiological status 
of the patient based on incoming data.

THERAPY RULES identified the readiness of the 
patient to undergo a new set of therapeutic goals. They 
established future expectations with respect to the 
proposed new therapy and also recommended appropriate 
ventilator settings.

TRANSITION RULESwere used when the patient 
transferred from one ventilator mode to another.

INSTRUMENT RULESwere used to define and 
characterise artifactual data.

On examination of these rules, and using the general formula 
of a production rule, that is,

IF (premise)
THEN (action)

both the premises and actions of VM rules contained three types of 

entity. The rule premise could be either inputed data, description of 

patient-state, or mode of ventilation; and the rule action could be 

factual conclusions, suggestions for therapeutic action, or a new set 
of data expectations.
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RULE GROUP : Rule Name

DEFINITION : Rule Definition

APPLIES TO : Context(s) for Rule Evaluation

C : Comment

IF

M : Match (left - hand side of rule)

THEN

I : Intepretation

S : Suggestions

E : Expectations

FIGURE 3.5 GENERAL FORMAT OF A VM RULE

STATUS RULE : Status Hypoventilation

DEFINITION : Identify Hypoventilation and Recommend Correction

APPLIES TO : Volume, Assist, CMV, T - Piece

C : Should correct ETCO^ for PCO2 - ETCO^ gradient

IF ONE OF

M : e t c o 2 HIGH

M : PaC02 HIGH

THEN

I : Hypoventilation present

S : Hypoventilation

FIGURE 3.6 EXAMPLE OF A VM RULE
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VM used symbolic values in the rule premise demonstrated by 

looking at Figure 3.6, where ETCC> 2 and PaCC^ are described as ’high’. 

Numeric input to the program was converted into symbolic data via 

tables found in the Initialising rules. These rules defined the normal 

range; those values which were outside this range were divided into 

degrees of abnormality. These numeric - symbolic conversion tables 

differed according to the mode of the ventilator, so that what may 

have been an acceptable value in one mode of operation may be 
described as either ’high’ or ’low’ in another mode of operation.

A problem with the knowledge-base architecture of VM was 

that the domain-dependent knowledge was defined implicitly. This is 

not necessarily a disadvantage, but it is to be avoided in domains 

such as medicine where knowledge is constantly being updated. Past 

experience with production rule systems has shown that if new 

knowledge presents itself, it is difficult to incorporate the 

concomitant new rules into the system without affecting the pre-

existing rules. The outcome of this is that the whole system has to be 

’tuned’ again, with appropriate re-evaluation and re-va1idation. 

Ironically, as Hunter has pointed out, (Hunter, 1986), it is an 

increase in instrument technology rather than medical knowledge which 

makes VM redundant. For example, in modern ventilators the mode of 

operation is available automatically as an item of data, whereas VM 

has specialised Transition rules to infer the current mode of 

vent ilat ion.

VM remained a developmental system, never used on-line in a 

clinical setting. Instead patient data were recorded on magnetic tape 

at intervals between 2 and 10 minutes; the tape was then removed from 

the ITU and the data analysed via the VM program at a remote site. So 

although the data used by VM were not on-line, in a sense it was still 

in real-time. Data which represented the complete record for one 

patient over 24 hours took up 15 minutes of CPU time on the computer. 

The evaluation of VM was performed on the equivalent of five days 

worth of patient physiological data, although the outcome of the study 

has never been recorded. One of the off-shoots of this research 

programme was the PUFF system for interpreting respiratory laboratory 

data, (Aikins,1983). To date, this is one of the few computer systems 
actually in clinical use on a permanent basis.
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3.3.3 VQ-ATTENDING (Mi 11er,P.L., 1984)

The ATTENDING system, implemented using LISP, was developed 

at the Department of Anaesthesiology, Yale University School of 

Medicine, (Miller, P.L., 1984). Like the MUMPS-based consultation 

system the ATTENDING system comprises a suite of programs. Others in 

the series investigate anaesthetic management, pharmacological 

management of patients with hypertension, and the management of 

patients with a suspected phaeochromocytoma. Of interest to this study 

is VQ-ATTENDING which investigates ventilator management. The purpose 

of this system is to investigate the feedback loop between arterial 

blood gas determinations and ventilator settings.

A feature of the ATTENDING system is that it can be 

described as a goal-directed critiquing system. In systems such as
MYCIN, 'inference goals’ are implicitly defined in the IF... THEN

production rules. VQ-ATTENDING uses 'treatment goals’ which are 

defined explicitly. This has important consequences in the software 

design of the system, as the knowledge-base is split into two parts. 

Defined explicitly is the 'strategic' knowledge about treatment goals 

which is separate from the 'tactical' knowledge about the management 

choices applicable for achieving those goals, which are defined 

implicitly in the production rules of VQ-ATTENDING.

Program input involves describing the patient in terms of 

age, sex and weight; and any underlying diseases the patient has which 

may influence ventilator management are also requested. Data required 

by the system include pH, PO2 , PCO2 , minute ventilation and 

respiratory rate. Finally the current ventilator settings followed by 

the proposed new ventilator settings are required. The particular 

ventilator settings the system critiques are shown in Table 3.2. The 

treatment goals thought to be relevant for a particular patient are 

chosen, and are activated by the production rule inference mechanism. 

The critique of the management plan entered by the clinician then 
occurs from the perspective of those treatment goals.

In its critical analysis the program looks at treatment 

goals with respect to the patient’s oxygenation status, then 
ventilation status is investigated. These treatment goals are shown in 

Table 3.3. More than one goal can be activated at any one time, and 

conflicting goals can be handled.

An attractive feature of VQ-ATTENDING is that the critique 

is in the form of prose, as the system has a natural language
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f I ° 2 Fraction of Oxygen in Inspired Air

PEEP Positive End - Expiratory Pressure

RR Respiratory Rate

TV Tidal Volume

MODE Mode of the ventilator 
(A/C - Assist/Control;
IMV - Intermittant Mandatory Ventilation)

DEAD SPACE Amount of Extra Tubing in Patient Circuit

TABLE 3.2 VENTILATOR SETTINGS WHICH ARE CRITIQUED 
IN VQ - ATTENDING

A) OXYGENATION GOALS

1. To achieve an oxygenation (PO2 )
2. To maintain an adequate PO 2
3. To avoid the risk of potential oxygen toxicity
4. To reduce the risk of potential oxygen toxicity
5. To avoid the risks associated with high PEEP
6. To reduce the risks associated with high PEEP
7. To reduce the level of oxygenation support
8. To maintain FIO 2 at maintenance levels
9. To maintain PEEP at maintenance levels

B) VENTILATION GOALS

1. To maintain a normal PCO2 and normal work of breathing
2. To achieve a normal PCO2 and normal work of breathing
3. To maintain a moderate hypocapnia
4. To achieve a moderate hypocapnia
5. To maintain a moderate hypercapnia
6. To achieve a moderate hypercapnia
7. To counteract, if possible, the patient's primary hyperventilation
8. To reduce the level of ventilatory support

TABLE 3.3 TREATMENT GOALS OF VQ-ATTENDING
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interpreter. This allows for a comprehensive understanding of the 

program output, a feature to be encouraged in all medical consultation 

systems.

3.3.4 KUSIVAR (Rudowski et al., 1988)

KUSIVAR is an on-going co-operative project between Linköping 

University, the South Hospital in Stockholm, and a ventilator 

manufacturer, (SIEMENS-ELEMA). The aim of this project is to develop 

and clinically evaluate a knowledge-based system for ventilator 
management, (Rudowski et al., 1988). This includes both the monitoring 

of patient data and its use to semi-automatically alter patient 

therapy. The algorithms contained in such a control system use an 

extant microcomputer-based system so that relevant patient data are 

provided on-line. Advanced measurement techniques are used to obtain 

data pertaining to carbon dioxide, oxygen, and their flow 

characteristics within the lungs. From this the state of the 
respiratory system can be inferred.

Developmental work on the project is being carried out using 

the SIEMENS-ELEMA servoventi1 at or 900-1 connected to a SPERRY-EXPLORER 

workstation. It is envisaged that for clinical use the KUSIVAR system 

will be downloaded to an advanced PC. The user interface will allow 

interaction to take place in various modes, including advisory (c.f. 

VM), critiquing (c.f. VQ-ATTENDING), and a semi-automatic mode. For 

the latter mode, ethical, moral and legal perspectives will have to be 

taken into consideration. A new knowledge-base is being developed and 

the expert system within which it resides uses KEE, (Knowledge 

Engineering Environment). It is hoped that the use of the fully 

developed KUSIVAR system will allow the optimal control of therapeutic 

planning for patients who require mechanical ventilatory support.

3.3.5 ESTER (Hernandez et al., 1989)

ESTER is a system for ventilatory therapy advice undergoing 

development in the Department of Applied Physics, University of 

Santiago de Compostela, Spain (Hernandez et al., 1989). It is designed 

for use in the post-surgica 1 recovery room where it gives clinical 

advice about weaning the patient from a ventilator. For the process of 

weaning to be successful ESTER divides the problem into four sub-

tasks. These are: a semi-quanatitative estimate of the risk associated 

with a change in ventilatory protocol is obtained using information 

from the past history and diagnostic state of the patient; 

physiological variables are monitored in order to infer current
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patient state; a therapeutic regime is recommended; and finally this 

recommendation is checked for clinical prudence.

The risk assessment is applied by using the APACHE-II 

clinical scoring criteria (Knauss et al., 1985), the outcome of which 

is a numerical morbidity factor. This factor can be converted to a 

qualitative value by using a simple look-up table. For example, a 

morbidity factor of greater than 80% could translate to a risk 

assessment of ’very high’, whereas a value of less than 10% could 

translate to a risk assessment of ’very low’, with a full qualitative 

spectrum between these values.

Current patient state is inferred by consideration of the 

current values of variables which measure haemodynamic and respiratory 

status, together with respiratory gas analysis and a measure of 

cardio-respi ratory stability. This potentially rich data-set must be 

captured automatically in the fully implemented system, as the time 

scale with which ESTER operates is on a minute-to-minute basis.

On the basis of current patient state one of eight possible 

therapy regimes is chosen. These range from full mechanical 

ventilation to full spontaneous (endogenous) respiration, (see Table

3.4 for the complete range). Once the therapy regime has been 

suggested by the system a ’censorship’ procedure is used, which 

ensures that the therapy protocol and the risk assessment are 

compatible with each other. This procedure also makes certain that 

’aggresive’ changes to therapy protocols are eliminated.

The knowledge base of ESTER is organised according to 

criteria of no r m a 1 i t y/abno r ma 1 i t y, so that the time taken to infer 

patient state is optimised. Its inference engine is controlled by a 

set of meta-rules which select which one of the eight rule bases to 

apply, (see Table 3.5 for a list of these rule bases). Both backward 

and forward chaining of rules are employed in the execution of the 
program: backward chaining to obtain the data and for user 

interaction; forward chaining to allow the reasoning process to be 

elucidated. In this way a simple ’how’ explanation query can be dealt 

with, that is, tracing the antecedants and precedants of the rules 

used to get to a certain point constitute the reasoning strategy.

ESTER is currently implemented on an advanced microcomputer, 
using the GENIE knowledge engineering tool (Sandell, 1984), which 

itself is a LISP-based environment.
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1 . CMV 100% mechanical ventilation

2. SIMV1 90% mechanical ventilation + 10% endogenous respiration

3. SIMV2 70% mechanical ventilation + 30% endogenous respiration

4. SIMV3 60% mechanical ventilation + 40% endogenous respiration

5. SIMV4 40% mechanical ventilation + 60% endogenous respiration

6. SIMV5 30% mechanical ventilation + 70% endogenous respiration

7. SIMV6 10% mechanical ventilation + 90% endogenous respiration

8. SPONT 100% endogenous respiration

TABLE 3.4 VENTILATOR THERAPY PROTOCOLS USED IN ESTER

1. R -H EM O D  : haemodynamic analysis

2. R -R E S P  : respirator parameter analysis

3. R -ESTA B  : evaluation of cardio - respiratory stability

4. R -G A SO N  : respiratory gas analysis

5. R -ESTA D  : patients diagnostic state

6. R -TERAP : proposed therapy regimes

7. R -C O N T  : censorship procedure

8. R -C L A S  : risk assessment

TABLE 3.5 RULE BASES USED IN ESTER
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3.3.6 COMPAS (Sittig et al., 1988)

The Computerised Patient Advice System (COMPAS) is under 

development at the University of Utah Scool of Medicine, U.S.A. 

(Sittig et al., 1988). It invokes the use of the well-known Health 

Evaluation through Logical Processing (HELP) system, which is an on-

going database development programme that was initiated in 1973 (Pryor 

et al., 1983). The HELP system allows for automatic data capture in 

all clinical environments. It is the ultimate goal of the development 

programme to have a hospital-wide distributed database system. In its 
present implementation the data required for each patient in the 

Intensive Care Unit are ’on-line’, with a computer terminal for access 

to the database at every bedside.

COMPAS was designed specifically to test the viability of 

using the HELP system to assist in the management of patients 

undergoing a controlled clinical trial. The subject of the trial is 

Extra-Corporeal Carbon Dioxide Removal (ECCO2 R) therapy together with 

the use of continuous positive pressure ventilation for the treatment 

of patients with Adult Respiratory Distress Syndrome (ARDS). This is 

an ill-defined syndrome which can affect severely ill patients. ARDS 

also has a high mortality, hence the use of extreme measures such as 

ECCO2 R therapy, a procedure which constitutes an artificial lung. The 

purpose of COMPAS is to judge the effectiveness of using open-loop 

ventilator control and to ’lead’ the physician step-by-step through 

the clinical protocols used. The intelligent advice is obtained from a 

data-driven expert system which is needed because the clinical 

knowledge is new and known only to a few human experts, and also in 

order to maintain a strict compliance with the detailed clinical care 

protocols established for the pertinent conduct of the clinical trial.

Preliminary evaluation of COMPAS has identified several types 

of problem inherent in the system. For example, one of the stimuli for 

this research was to implement an expert systems approach to problem 

solving within the HELP system with a minimum of disruption to the 

normal clinical routine. However, an operational problem concerning 

the length of time taken to access the patient database when the file 

was already open (due to a prior query) was identified and 

subsequently rectified. The summative evaluation of COMPAS using 

retrospective data revealed that 84% of its therapy suggestions were 

valid, (320/379 therapy suggestions over a time period of 624 hours).

It is evident that the success of COMPAS owes much to the 

clinical environment in which it is being developed and implemented.

52



3.4 Summary

Two approaches to the external control of the respiratory 

system have been considered in this chapter. First, using classical 

control methods and second, using an artificial intelligence approach. 

The critical variable for both of these methods is arterial PCC^, 

which alone is effective in determining the respiratory state of the 

patient. The value of arterial PCO2  is inferred from alveolar PCO2 , 

which itself is measured usually by the PCO2  of the end-tidal 

fraction. The relationship between arterial PCO2  and end-tidal PCO2  is 

good in normal physiology but in pathological conditions the 

relationship may not be as adequate. Thus, classical control systems 

may not be founded on a true representation of pathophysiology, as 

shown by Ohlson and colleagues in Section 3.2.1. An artificial 

intelligence approach is based on a deeper knowledge-based 

representation, so altered data relationships caused by pathological 

changes can be accounted for in the rules which infer the knowledge.

Physiological measurement technology is gradually catching up 

with the demands made of it, for example, witness the advances made in 

non-invasive transcutaneous monitoring of the arterial blood gases, 

(Mendelson and Peura, 1984); and the use of a mass-spectrometer in a 

system for long-term, continuous, on-line monitoring of respiratory 

gas exchange, (Bertrand et al., 1986). The use of these and other 

research techniques will further advance the knowledge of respiratory 

pathophysiology in a clinical setting, benefiting the patient 

undergoing mechanical ventilatory support in the process.

Of the systems reviewed which employ a control systems 

approach, the emphasis of much of the work is to ’close’ the control 

loop between arterial PCO2  and the controlling ventilator settings. 

However recent evidence suggests that such opaque systems would meet 

much clinical resistance to their use. Knowledge-based ventilator 

systems offer an alternative, giving intelligent advice which allows 
the clinician to ’close’ the control loop. The form of this 

intelligent advice depends on the patient data-set on which it is 
based and the sophistication of the mechanical ventilator. These 

topics are included for consideration in the next chapter, where 

intelligent system architecture is included as one aspect of a wider 

systems methodology for design, implementation and evaluation.
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4 : METHODOLOGICAL ANALYSIS FOR MANAGEMENT 
OF CLINICAL INFORMATION

4.1 Introduction

The purpose of this chapter is to convey the practicalities 

involved in the implementation of change due to the introduction of 

new technology, and in particular for the introduction of intelligent 

measurement systems into complex data gathering environments, such as 

that exhibited by a Critical Care Unit. In this context, change can be 

defined as a transition of common practice from entering data manually 

to an automated means of data capture and interpretation. This can be 

exemplified by the Artificial Intelligent Respirator System (AIRS), a 

system designed to aid the clinical user in the management of patients 

undergoing ventilatory therapy. There is a clear need for a well- 

structured way of introducing this change of practice, which will 

enable the transformation to continue with the minimum of resistance. 

Such a structure can be imposed by the use of an appropriate 

methodology able to identify strategic points in the process of 

technological change. For a successful outcome the methodology must 

include phases for system design, implementation and evaluation. 

Before embarking on a design strategy there is a need to employ a 

systems methodology which will ensure that a proper systemic approach 

is adopted. There appears to be no totally appropriate methodology in 

existence for dealing with technological change, therefore this 

chapter reviews a number of relevant methodological strands and 

synthesises from existing approaches a methodology appropriate for the 

adoption of the design of a decision-support system. A major feature 

of the chosen medical application area is the introduction of a new 

generation of intelligent devices for clinical practice. The 

methodology to be introduced also has a general applicability within 

other domains where intelligent measurement has a significant role in 

the development of the underlying technology.

Methodologies and techniques drawn from the domain of systems 
engineering can be used to identify the components required for a 

methodology to implement technological change. Systems engineering can 

be defined as the domain concerned with a problem-solving paradigm for 

which the design of complex systems are required. From this four 

activities can be recognised : requirement analyses of the current and 

proposed systems; the development of a solution, or a number of 

candidate solutions; the implementation of the solution(s); and an 

evaluation procedure which yields value judgements at each of the
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recognised decision points. For example, where a number of candidate 

solutions are offered the evaluation process may aid the end-user in 

the decision regarding which solution should be implemented.

To increase the operational success of the proposed system it 

may be prudent to perform a systems analysis. This can be defined as 

the systematic process of reasoning about a problem and its 

constituent sub-problems to identify what needs to be done to achieve 

a particular goal or sub-goal. An essential component of this analysis 

is communication between the system engineer and the full complement 

of end-users. From this the multi-perspective nature of requirements 

for the new system can be recognised. The analysis of the need for the 

new system is a key component, for if a perceived need can not be 

clearly demonstrated, the new system is doomed for the scrap-heap 

before it is even implemented.

The role of systems engineering, and especially requirements 

engineering, in the formation of a methodology for introducing 

technological change is discussed in the following section. 

Development of these ideas lead to a systems methodology for design, 

implementation and evaluation for the purpose of introducing 

technological change. A general format for this methodology is 

introduced in section 4.3.

4.2 Systems Engineering and Technological Change

Systems engineering is an attractive way of dealing with the 

problem of increasing rates of change due to a general advance in 

technology. It is a discipline where the available human, capital, and 

technological resources are used to ascertain that the overall 

objective of a system is attained in the most efficient way. Economic 

criteria can be used to optimise these resources, so for example, 

human resources can be optimally assessed in terms of economic 

variables. The system to which the change of technology is to apply, 

termed the ’system of interest’ can be considered as dynamic in some 

instances, for example, where individual sub-systems are constantly 

evolving due to an increase in component technology. As systems 

engineering is deeply rooted in engineering design, it is not 

unnatural to review general system design methodologies as a starting 

point for the provision of a methodology for coping with technological 

change. As technology advances so does user expectation of the 

capabilities of that technology. User expectation can be said to drive 

user requirements, which have therefore been identified as a key
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component in the design of systems able to integrate new technology. 

User requirements fall into two categories : functional and non-

functional. Functional requirements seek the needs inherent in the 

process for successful completion of the task or sub-task of the 

system, whereas non-functional requirements impose constraints upon 

the system.

A conceptual model, which is a representation of all possible 

system states and system behaviour between states, helps in the 

visualisation of the functional requirements. An advantage of using 

such a model is that system boundaries can be defined, thus allowing 

the characterisation of the reaction between different environments. 

It also provides the opportunity for discourse between the system 

engineer and the eventual set of users. This enables the establishment 

of a definition for functional evaluation criteria of component design 

(Roman, 1985).

The types of constraint which can be imposed upon the system 

include interface, performance, operational, economic, and political 

factors. Interface constraints define the way in which the system 

interacts with the wider-system within which it resides. The wider- 

system is an environment which includes the full complement of system 

users, any other system to which the system of interest is linked, and 

the hardware and software with which it is implemented. Performance 

constraints include topics such as the computer memory requirement of 

the system and the type of computer necessary for successful 

implementation. Operational constraints include factors that may 

affect the smooth running of the system, such as a mis-match in the 

information-handling rate of each of the sub-systems. Economic 

constraints deal with the cost of the system, where ’cost’ is 

liberally defined in financial and non-financia 1 terms. Political 

constraints include the designation of the recognised users of the 

system, what level of interaction they are allowed, as well as the 

more divergent legal and ethical issues.

Two papers offer an outstanding introduction to the concept 

of systems engineering and the design process. Jenkins (1969) 

describes succinctly the stages involved in the development of a 

systems engineering project, whereas Finkelstein and Finkelstein 

(1983) review the methodology of design from which a rich glossary of 

domain terms can be taken. From this introduction a more directed path 

is required which leads to an analysis of system requirements. Four 

methodologies are investigated which fulfil the role of seeking system
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requirements. First, the Structured Analysis and Design Technique 

(SADT) developed by SofTech, USA (Ross, 1985), which is a computer- 

based technique for handling the design requirements of large and 

complex systems. Second, a Software Requirements Engineering 

Methodology (SREM) is reviewed (Alford, 1985), which is being 

developed at the TRW Huntsville Laboratories, USA. Third, the 

Technology for Automated Generation of Systems (TAGS) is a methodology 

which uses a computer-based tool in the design process and is being 

developed at Teledyne Brown Engineering Inc, USA (Sievert and Mizell, 

1985). Fourth, an expert system architecture is used for Computer- 

aided Control Engineering (CACE), being developed at the General 

Electric Corporate Research and Development Laboratories, USA (Taylor 

and Frederick, 1984).

The piecemeal approach to engineering problem-solving can be 

vastly improved if a systems engineering approach is taken (Jenkins, 

1969). This imposes a disciplined and well-structured methodology for 

engineering problem-solving, although restricted to applications of a 

general character. This approach is not new, as the genesis of systems 

engineering dates back to its use in the Bell Telephone Laboratories, 

USA, in the early 1940s. Subsequent ideas were developed by the RCA 

and RAND Corporations in the United States from the early 1950s 

onwards. This development popularised the techniques used in systems 

engineering and in so doing enhanced the view of systems as a science.

The stages in development of a systems engineering project as 

defined by Jenkins are shown in Figure 4.1. They comprise the 

activities of systems analysis, design, implementation, and 

operation. As befits a systems approach each stage can be decomposed 

into several functional units. Systems design is the modelling stage 

within the development process. This includes models of the system of 

interest and models of the wider-system in which it resides. Jenkins 

stipulates quantitative simulation models, allowing the system of 

interest to be optimised and choice of ’best’ system made. The future 

environment of the system (the wider-system) must also be forecast, 

allowing the proposed interaction between the two levels in the 

hierarchy to be modelled.

Systems analysis includes stating the objective(s) of the 

project, an operational analysis of the system, a cost-benefit 

analysis, and identification of key data which will be used to 

describe the performance of the system. Objectives can be defined at 

any level in the systems hierarchy, but usually lead to some perceived
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FIGURE 4.1 STAGES IN THE DEVELOPMENT OF 
A SYSTEMS ENGINEERING PROJECT

(after figure 4, Jenkins, 1969)
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improvement in the operation of the system of interest (as depicted in 

Figure 4.1). To increase the transparency of the system an explanation 

should be included at each phase of the operational analysis. Cost 

benefits can take many forms; time, space and financial benefits being 

prime examples. Key variables should be recognised. These allow an 

evaluative procedure to be undertaken at a later stage in the 

development of the system.

The implementation stage in the development of a systems 

engineering project brings together the findings from the systems 

analysis and systems design stages. Approval is then sought from some 

sanctioning authority to convert the ’paper’ system generated thus far 

into an operational system. Decisions at this stage include the choice 

of hardware and software to be used for implementation of the system. 

After implementation an alpha-evaluation should proceed, which 

concentrates on quality of performance rather than operational 
measures.

In the operation stage the fully-implemented system is handed 

over to the end-users. A beta-evaluation can then proceed, which 

includes user-orientated performance and operational measures. This is 

the least well understood part of the system development process as it 

includes subjective issues which are traditionally difficult to 

quantify. It is at this point in the methodology where the process can 
be considered as an art rather than a science.

The Jenkins methodology provides an inter-disciplinary 

approach to engineering problem solving and design, for as well as the 

engineering aspect itself other viewpoints are taken into 

consideration. For example, economic criteria are used (such as the 

appropriate use of statistical analyses and accountancy practice) to 

find a solution to a particular problem in systems engineering. 

Jenkins suggests that the most important part of systems anlysis is 

the attainment of a correct objective. This emphasises the role of 
requirements analysis to the success of the project, a topic which is 

discussed below.

Jenkins also suggests that design is the central activity in 

engineering but is rarely acknowledged as such. Finkelstein and 

Finkelstein (1983) try to redress this balance with their paper 

concerning design methodology. They describe design as

"...the creative process which starts from a requirement 
and defines a contrivance or system and the methods of 
its realisation or implementation, so as to satisfy the
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requi rement."
(Finkelstein and Finkelstein, 1983)

The process by which design is realised or implemented follows a 

methodology, which is summarised in Figure 4.2. This depicts a design 

'unit' which can be used at any level in the hierarchical description 

of a system of interest. However there are two boundary conditions: at 

the most fundamental level in the hierarchy the requirements which 

drive the design unit are primitive need statements, that is, those 

which cannot be further decomposed; and at the highest level of 

abstraction the output of the decision stage defines the information 
required for the creation of the system of interest.

After a requirement has been realised, whether it be from a 

primitive need statement or as a result of a requirement specification 

from a previous design stage, the first step in the design process is 

the gathering of information relevant to the design problem, and its 

organisation into a coherent form. This stage is followed by the 

formulation of the criteria which arise from the requirement. This 

defines the system specification, which may or may not have 

constraints imposed upon it. From this specification candidate designs 

may be evaluated which generate a set of proposed candidate design 

solutions. Analysis of these candidate design solutions yield 

positive and negative attributes relevant to the requirement 

specification. Evaluation of each candidate design solution can be 

measured on the basis of the value criteria previously adopted. The 

design methodology terminates with a decision step: the choice of 

optimum candidate design solution. Each stage in the methodology is 

iterative. For example, if none of the solutions are acceptable (the 

design criteria cannot be satisfied), alteration of the requirement 

specification is necessary. This may effect the requirement analysis 

of the previous design stage.

Design is described by some authors as a problem-solving 

exercise, an activity which has been studied extensively by Checkland 
(1981). He differentiates problem-solving into two paradigms : ’hard’ 

problems and ’soft’ problems. A ’hard’ problem is distinguished by 

clear and concise system objectives taken from a we 11-structured 

problem to which a state model can be applied. The state model not 

only defines the current state and the desired state, but also the 

trajectory from one to the other. Alternatively, a ’soft’ problem is 

characterised by objectives which are difficult to define, as the 

problems to which they are applied are often ill-structured. Much

6 0



FIGURE 4.2
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debate has been stimulated by Checkland’s assertion that ’hard’ 

problems can be considered as special cases in the application of a 

soft systems methodology. It is not within the scope of this thesis to 

enter this debate, but the reader should be aware of its presence. 

Both Jenkins and Finkelstein and Finkelstein consider design 

engineering as a hard problem situation, with many similarities 

between their respective design methodologies. However the approach 

adopted by Finkelstein and Finkelstein centres upon the generation of 

design concepts for candidate solutions. Five methods of achieving 

this are identified: the use of existing design concepts (most design 

concepts are not created de novo but are developments of existing 

design criteria); the use of analogies, taking a design concept from 

one domain and applying it to another; transformation of the design 

concept (the principle of parsimony is often invoked); convergent 

generation of concepts (this uses a logical sequential process 

starting from the basic phyisical law underlying the design principle 

used); and divergent concept generation, where creative ’jumps of the 

imagination’ and the relaxing of design constraints are employed. By 

using these techniques design has a central place in engineering 

science.

There is a similarity in the requirements analysis of both 

the Jenkins methodology and the design methodology proposed by 

Finkelstein and Finkelstein. The definition of the requirement of the 

system is an important phase because it defines the starting state of 

the system of interest. In the United States an emerging discipline 

has been recognised which specialises in this issue, termed 

’Requirements Engineering’. An engineering (system) requirement is 

considered as a precise statement of need intended to increase 

understanding about a desired result through the use of relevant 

explanation. The analysis of the system necessary to achieve these 

statements of need requires good communication skills with the many 

types of user, as they are all potential sources of new requirements. 

Requirements engineering can be typified by the following four 
examplars of the emerging technology.

4,2,1 Structured Analysis Design Technique

The Structured Analysis and Design Technique (SADT - 

registered trademark of SofTech Inc.) was originally developed as a 

methodology to document the architecture of large and complex systems 

(Ross, 1977; Ross and Schoman, 1977). Subsequently, the methodology 

has been modified to allow for group decision-making strategies,

62



without losing the discipline that an individual disposition imposes 

(Ross, 1985). SADT can be split conveniently into two activities: 

structured analysis for which a diagrammatic language is employed; and 

the design technique which implements the results from the previous 

stage in the most effective way.

The premise which underpins the SADT methodology is that 

complex situations can be comprehended if they are decomposed into a 

hierarchy of component parts. Further, the methodology stipulates that 

each level in the hierarchy should not exceed six ’entries’. Each 

entry can be depicted by using a graphical language notation in the 

form of a box, (see Figure 4.3), the four sides of which represent 

input, output, control, and mechanism. The box represents a complete 

and consistent set of activities. For a given input, under certain 

control conditions and using a certain mechanism, a resultant output 

can be determined. To illustrate this point consider the well-known 

physiological relationship between Cardiac Output, Body Surface Area, 

and Cardiac Index:-

C.O. / B.S.A. = C.I.

Cardiac Index (C.I.) as the output can be determined from the Cardiac 

Output (C.O.) which acts as an input, and Body Surface Area (B.S.A.) 
being a parameter of the patient constitutes the control element. It 

is the arithmetic notation which acts as the mechanism and the 

equation as a whole represents the ’box'. It is envisaged that the 

input (C.O.) will itslf be an output from a previous structured 
analysis box.

A structured analysis ’model’ is constructed when a 

collection of these diagrams are connected together. Models are of two 

diametrically opposite types: activity models and data models. 

Although an algebraic physiological relationship is used in the 

example above, most structured analysis models are verbal 

descriptions. In an activity model the box names are verb phrases and 

arrow labels are noun phrases, whereas in data models the box names 

are noun phrases and the arrow labels are verb phrases. An attractive 

feature of the SADT approach is that activity and data models can be 

constructed to describe the same process. The resultant cross- 

reference between items in the models serves to strengthen the 

understanding of the modelled process. Example of subject areas to 

which the SADT methodology has been applied are shown in Table 4.1. 

The design component of SADT is not yet complete, as system boundaries 

to which the methodology applies have not been fully characterised.
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CATEGORY SADT MODELS MODEL PURPOSES

Requirements Present Operations

Future Operations

Operational System 
hardware/software/people

Understand current procedures 

Visualise future procedures 

Specification and Design

Software Systems User requirements 

Functional specification

System/sub-system design

Includes user needs

Identification of system 
modules and interfaces

Top-level design

Project Management Project operation System development 
Task assignment 
Procedure definition 
Communications

Simulation Man-machine interaction Analysis of performance

TABLE 4.1 TYPES OF SADT APPLICATIONS
(afterTable l,Ross, 1985)
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4.2.2 Software Requirements Engineering Methodology

The Software Requirements Engineering Methodology (SREM) was

originally developed to manage the technical and management aspects of

large, real-time, unmanned weapon systems (Alford, 1985). It has since

been generalised for application to any Command, Control,
o

Communication and Intelligence (Cl) situation, (for example, its use 

in an engineering problem concerned with the aircraft industry, 

Scheffer et al., 1985). The technical aspects identify the activities 

to be performed and the subsidiary goals to be achieved before the 

designated top-goal can be reached. They also define any computer- 

based tool used to improve the efficacy of the requirements analysis. 

The management aspects provide techniques for project planning and 

evaluation of the intermediate products of the methodology, and have 

the overall objective of reducing costs and development time.

From these underlying principles three goals can be 

identified for the successful operation of SREM. The first is the 

development of a structured language medium in which requirements of a 

system can be tested for their unambiguity, testability, modularity, 

communicability, and design freedom. Secondly, the development of an 

integrated set of computer tools to ensure consistency, completeness, 

automatabi 1 ity, and correctness. Thirdly, by the interaction of the 

first two goals a direct method for the validation of the system 

requirements can be obtained.

To be testable the requirements must be specified in terms of 

data input and data output. The processing steps between input and 

output, which include the the intermediate data values and functions 

between the two, are termed a ’path’. Various performance criteria can 

be instantiated at ’validation points’ on these paths. As this can 

invoke an increase in complexity due to the number of possible paths 

involved, a Requirements Network (R-Net) is established. The R-Net is 

implemented in a formal language, RSL, as this reduces ambiguity and 

provides a direct input to the support software. Automated software 

tools, integrated into a Requirements Engineering and Validation 

System (REVS), checks the requirements for completeness and 

consistency, maintains the traceability between the originating 

requirements and simulations, and generates simulations to validate 

the correctness of the requirements. This integrated methodology 

produces intermediate products which can be evaluated for completeness 

before advancement to the next phase is granted. Figure 4.4 

illustrates an overview of the steps involved in the methodology,
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/ ------ t
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FEASIBILITY 
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RESULTS

- REFINED RSL
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- PERFORMANCE STATEMENTS
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- ORIGINATING 
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FIGURE 4.4 OVERVIEW OF THE STEPS OF THE SREM 
METHODOLOGY
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indicating the products generated from each step and the criteria used 

for evaluation of their completeness.

4.2.3 Technology for the Automated Generation of Systems

Technology for the Automated Generation of Systems (TAGS) was 

developed as a response to a perceived crisis in the existing software 

paradigm (shown in Figure 4.5). This crisis has occurred because of 

the opaqueness of software program code to the end-user. This often 

means that the maintenance phase of the software development cycle is 

ill-defined because it is at too abstract a level for the end-user to 

comprehend. Balzer and colleagues (1983) identified a further flaw 

which exacerbated this problem: there was no technology available (in 

1983) to manage knowledge intensive requirements analysis and design 

activities. Further indications of the software crisis could be 

evidenced by projects overrunning in terms of both time and cost, and 

by the fact that the final software product did not always reflect 

user expectation. To counteract these problems an automation-based 

paradigm was proposed, as shown in Figure 4.6. The major difference 

between the two paradigms is that in the automated approach software 

maintenance is defined in terms of its underlying requirements anlysis 

and formalised specification. At this level the end-user can 

understand the issues involved in software maintenance, as they are 

described at a higher level of abstraction. Other differences in the 

two paradigms can be visualised by comparing Figures 4.5 and 4.6.

TAGS was developed to take advantage of the automation-based 

software paradigm (Sievert and Mizell, 1985). It is composed of three 

basic elements: the input-output requirements language (IORL); a 

computer-based software toolbox for system development purposes; and 
an underlying TAGS methodology.

Development of the IORL began in 1972, initiated in response 
to problems associated with general system propogation. In order for 

the language to be effective it had to meet various requirement 
criteria, as listed below:-

i) to enforce a rigorous methodology for system propogation
ii) to have a general applicability for all types of system
iii) it must be easy to use by a wide range of end-users; and 

conversely, it must be hard to mis-use
iv) it must have a user-friendly interface, allowing engineers 

to input system performance characteristics and algorithms 
in a form in which they are well-versed, (for example, the 
use of matrix notation)

v) from a systems perspective, it must use symbols which are 
derived from general systems theory.
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Informal specification 
Prototyping uncommon 
Code validated against intent 
Prototype discarded 
Manual implementation 
Code tested
Final source program maintenance 
Design decisions lost 
Maintenance by patching

FIGURE 4.5 CURRENT PRACTICE: SOFTWARE PARADIGM
(after figure la, Sievert and Mizell, 1985)

INFORMAL
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FORMAL 
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SOURCE PROGRAM
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AUTOMATION-BASED PARADIGM

Formal specification 
Prototyping standard 
Specification is the prototype 
Prototype validated against intent 
Prototype becomes implementation 
Machine-aided implementation 
Testing eliminated 
Formal specification maintained 
Development automatically documented 
Maintenance by replay

FIGURE 4.6 AUTOMATED PRACTICE: SOFTWARE PARADIGM
(after figure lb, Sievert and Mizell, 1985)
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The IORL also differentiates between data flow and control flow, where 

data flow analysis also includes the time response characteristics of 

each data component. These criteria have been met, the result of which 

is a functional input-output requirements language. Using the IORL any 

individual system component can be identified, whether it be hardware, 

software or management aspect of the system of interest. At the 

functional level the IORL requires three items: that the component is 

a part of the system of interest and interacts through data links; 

that these data links are effected via an overseeing control 

mechanism; and that the component and its data links constitute a 

system hierarchy.

The TAGS toolbox comprises four tools which each exist for a 

specific task. The first is a data storage and retrieval package which 

manages the data ’seen’ at any instant by the computer-based system. 

Second, a diagnostic analyser package checks the IORL for static 

errors; these include syntax errors, range errors, and errors in input 

or output. To illustrate the scope of TAGS there are more than 200 

types of static error. Third, a simulator compiler checks the IORL for 

dynamic errors, generates a definition of the run-time parameters, 

simulates the system and processes the output data. Using this tool 

allows the comparison between different algorithms in the IORL. 

Fourth, a configuration management package uses the results obtained 

in the comparisons between algorithms to establish a system which is 

optimised at a whole-system level.

TAGS is based solidly on systems engineering principles that 

can be characterised by four fundamental activities:-

i) Conceptualisation : a conceptual model is defined which 
combines user concepts and requirements to form the base 
level for further system development

ii) Definition : the conceptual model is refined in terms of 
its function and performance requirements

iii) Analysis : the conceptual model is analysed to determine 
(at the top-most level) if it matches with the desired 
system; if not, the model is further refined

iv) Allocation : the functional and physical requirements are 
allocated to specific subsytems of the whole

These four activities have been incorporated into a TAGS 

methodological model. Figure 4.7 illustrates the development process 

as a part of a wider system. This includes the users, the project 

managers, and the processes of verification and validation. The arrows 

in the diagram represent flows of information which aid in the system 

development process. Each element of the methodological model has its
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KEY:

SDP-XY: system development process - from X to Y

FIGURE 4.7 TAGS METHODOLGY
(after Figure 8, Sivert and Mizell, 1985)
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own perspective on how development should proceed: the user provides 

the initial requirement and has a role in the reviews of system 

development; management have the responsibility for allocating 

resources to the project, including time, financial and manpower 

planning; the processes of verification and validation provide a 

formal input from which decisions on future project management can be 

made; and the system development process has its own intrinsic 

perspective on the process of developing a target system.

A TAGS development life-cycle consists of a sequence of 

specification-prototype validation duplexes, commencing with 

conceptualisation of user requirements and proceeding until the 

prototype matches the target system. This process is shown in Figure 

4.8. On receipt of the user requirements tests are performed which 

evaluate their consistency, completeness and potential for 

implementation. The evaluation proceeds until the user requirements 

permit the first specification phase to be realised. This 

specification defines the IORL prototype which can be validated 

against user intentions. When the IORL of the prototype system finally 

matches the target system the translation phase takes place, which 

consists of translating the IORL into the target implementation 

language. This is a manual process performed at a rate of 

approximately 200 commands of target coding language per day per 

translator. Once the system has been fully implemented in the target 

language it can be tested using conventional software evaluation 
criteria.

The TAGS approach using the automation-based software 

paradigm has been applied to projects from the aircraft and space 

industries. Therefore it has potential use in any complex environment 

such as that exhibited by critical care medicine.

4.2.4 Computer-aided Control Environment

The development of a Computer-Aided Control Engineering 

environment (CACE) began in the 1960s, with a second generation 

appearing in the 1970s. CACE consists of four software packages, their 

functionalities being system identification, simulation, frequency 

domain design, and state space design. These packages are integrated 

by a unified database and command driven environment. However, a 

problem persists with the user interface of the second generation 

software: knowledge about control engineering and operation of the 

CACE package are assumed but are not always present in the user.
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Expert system technology is being introduced to alleviate this 

problem, allowing the 1 ess-than-expert user of CACE to work at a 

higher level (Taylor and Frederick, 1984).

The architecture of the resultant rule-based system is shown 

in Figure 4.9. This shows how the concept of having two frames 

(problem and solution) linked to entities external to the expert 

system via six separate rulebases can represent the functional 

structure of CACE. The problem frame can be split into three 

categories: the model, which describes the characteristics of the 

system of interest; the constraints, which describe its operational 

and/or functional limitations; and the specifications, which describe 

behaviour and performance criteria used to evaluate the desired 

system. The solution frame also comprises three categories: the needs, 

which monitor the individual requirements of the subsystem components, 

keeping a list of what has been achieved and what is yet to be done; 

the status, which provides information about how the system is 

developing by matching the list of what has been done to the 

specification of the problem frame; and a catch-all ’other’ category, 

which contains a diverse range of constituents, for example, 

methodological implications derived from the order in which subsystem 

design is attempted.

The rulebases which link the problem and solution frames to 

external agencies have different functions, as detailed below.

Rulebase 1 (RBI) governs the interaction between the design 

engineer plus plant models external to the expert system and the model 

and constraint components of the problem frame. This rulebase also 

interfaces with a library of analytical procedures, useful for 

characterising factors which enhance system development. As an example 

of such a factor, consider the controllability and observability of a 

process which may be improved by a modification in the modelling 

phase.

Rulebase 2 (RB2) governs interaction between the design 

engineer and the specification component of the problem frame. This 

rulebase guides the 1ess-than-expert user to describe a full 

specification, and checks for consistency, completeness and pragmatic 

utility via another set of analytical procedures. The goal of 

rulebases 1 and 2 is to obtain a we 11-formu 1 ated problem, which 

ensures a greater probability of success in the design stage.

Rulebase 3 (RB3) contains rules concerned with interfacing
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(after figure 4, Taylor & Frederick, 1984) RB6 governs final systems validation.



the problem to the solution frame. It deals with matters such as 
identifying the amount of information in the problem frame required to 

provide an acceptable solution for the fulfillment of a particular 

(sub)goal. The identification process requires appropriate analytical 

procedures to perform its analysis.

Rulebase 4 (RB4) governs interaction between the solution 

frame and the available design procedures. That is, it takes the 

information required to provide a solution identified using rulebase 

3, and invokes a design procedure for the attainment of that 

requi rement.

Rulebase 5 (RB5) governs interaction between the design 

procedures and the problem and solution frames of the expert system. 

As it is part of the solution, each time a design procedure is used 

the solution frame must be updated to reflect the techniques employed. 

Difficulties may arise when there is a conflict of information 

contained within the solution. These can be resolved by relaxing the 

original specifications, hence the link between RB5 and the problem 

frame.

Rulebases 4 and 5 represent an iterative loop. System 

development is cycled through this loop until all the specifications 

of the problem frame have been added to the list of the solution 
frame.

Rulebase 6 (RB6) governs system validation, this contributes 

towards converting the idealised system design to its practical 

implementation. The ultimate output of CACE is software code of the 

target implementation language.

The mul ti-rulebase structure of the CACE expert system is 

beneficial for application orientated end-users because it clarifies 

many of the conceptual aspects of the design process. This structure 

also enables easy access for updating the various rulebases. At a 

higher level, the use of expert system technology shows great 

potential for improving the human-computer interface, and allows a 

greater divergence of personnel to be involved in the design of 

products from the domain of control engineering.

4.3 A Systems Methodology for Design, Implementation and Evaluation

The level of complexity within measurement science is 
increasing due to novel techniques of measuring entities thought 

previously unmeasurable and a general increase in sensitivity leading
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to an increased frequency of measurement. Technology has kept apace 

with these developments by incorporating various degrees of 

intelligence within the measurement device. In the first instance 

'smart’ measurement systems were developed which were capable of low- 

level processing, for instance, the conversion of data into 

information via simple data classification techniques. Development of 

these systems using advanced information technology resulted in a 

further transformation of information into knowledge, via appropriate 

explanation and/or justification, which constitutes high-level data 

processing. This type of system has been termed an 'intelligent' 

measurement system from which three measurement processes can be 

identified: inferential measurement; pattern cognition; and 

measurement as part of an integrated information system, (Finkelstein 

and Carson, 1986). Most intelligent systems have not appeared de novo, 
rather constant development of existant systems is the norm. However, 

any methodology used to incorporate intelligence into a measurement 

system should be able to handle both of these situations. The use of 

an appropriate methodology will provide a formal framework that will 

cover the entire system development process. This will ensure that 

system development is well-structured and that key points within the 

methodology can be identified for system evaluation. To introduce an 

intelligent system capability into a measurement system requires the 

activities of design, implementation and evaluation. A methodology for 

this purpose is described. Although key components can be found in 

existing (but separate) methodologies, there appears to have been no 
previous unifying gestalt.

A methodology to incorporate intelligence into a measurement 

system has its evolution in the disciplines of engineering and 

computing. One of the key components of such a methodology is 

knowledge-based system design and implementation. In the past it has 

been traditional to perceive knowledge-based system development as a 

special case of general software development. However, for the 
proposed methodology to assist in the technology transfer process of 

the whole measurement system, it is necessary to widen the system of 

interest. As well as software generation for the knowledge base of the 

application, inclusion of sensor component technology and issues 

concerned with the human-computer interface must be taken into 

consideration. These points are reflected in the methodology for 

design, implementation and evaluation of an intelligent measurement 

system, as shown in Figure 4.10. It distinguishes between processes 

undertaken and states achieved. A key feature is the means of
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evaluation of the proposed intelligent system. To increase the chance 

of a successful implementation (and therefore use) it is argued that 

the evaluation procedure should be made as explicit as possible. It 

should also start at the system requirements stage of the methodology, 

that is, as early as possible in the development of system design.

Figure 4.10 should be viewed as a three-tier process which has 

been sheared sideways : the bottom tier describes the process for 

system design and implementation, the uni-directional arrows at this 

level show the path of progress; the second tier 'covers’ the first, 

and comprises three separate evaluation procedures (needs, formal and 

summative); and the top-tier is the evaluation process (the 

'evaluation of the evaluation’) which unifies the evaluation of the 

system to its design and implementation. The tiers are linked with bi-

directional arrows which represent both association a 1 and iterative 

links. When thought of as associational links the evaluation is being 

used passively. For instance, it can be said that the 'late prototype 

system’ requires a 'formal evaluation’. However, when thought of as an 

iterative link the evaluation process is being used actively, that is, 

evaluative queries are being made of the system which determines the 

level at which the evolving system re-enters the methodology. In this 

sense the evaluation of the developing system is used to fire the 

associations between different levels in the methodology, which 

includes passing through the 'meta-evaluation' stage if necessary.

Below is a brief description of each recognised stage in the 

methodology. These descriptions will be expanded in Part II where the 

methodology is applied in the context of management of patients who 
require ventilatory therapy.

4.3.1 Requi rement

User requirements vary according to the expertise of the end- 
users. The requirement analysis of the proposed intelligent 

measurement system should reflect the different viewpoints expressed 
by the full range of intended users.

4.3.2 System Architecture

The proposed system should be broken down into its most 

fundamental components. Each component should be examined for optimal 

design, although this should not detract from a more holistic view of 

the system. Computer software and/or environments should also be 

included in this analysis. This would allow, for example, the reasons 

for use of a particular software package to be stated expicitly.
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4.3 .3  Early Prototype System

The early prototype system will be generally a family of 

’hollow’ systems. The computer will be incorporated into the 

measurement system, but programmed to show only a possible set of user 

interfaces, (windows, menus, etc.). What constitutes the intelligence 

of the system is yet to be implemented. This alludes to the purpose of 

this stage of the methodology, which is to demonstrate the user 

interface(s) to each of the putative end-users. This allows the system 

to be visualised, which may stimulate interest and allow advice for 

on-screen display format. Although this process may appear to have a 

low utility, it is in fact an important stage in the development of 

the system and should not be undervalued. It is at this stage of 

development when a rapport between the system engineer and the set of 

end-users can be instigated, which is essential for success of the 

project.

4.3.4 Knowledge Engineering Design Cycle

The knowledge engineering design cycle is the part of the 

methodology where the intelligent decision-making of a human expert is 

captured and transformed into a machine readable form. This includes 

the processes of knowledge acquisition and knowledge representation. 

The former describes the method by which knowledge is elicited from a 

human expert, and the latter describes how the resulting ’paper’ 

system can be transformed into a programmable form. This constitutes 

the intelligent element of a knowlege-based system. The knowledge is 

of two types: domain (factual) knowledge; and task (operational) 

knowledge. Domain knowledge is, for example, the simple relationship 

between a measureand and its value at some instant. The value can be 

of a quantitative or qualitative nature. Task knowledge is concerned 

with two dynamic processes: firstly, how inferences between knowledge 

entities are made; and secondly, the software control of the 
programming environment, which ensures that the correct part of the 

knowledge base is activated at the correct time.

4.3.5 Interface Design

The interface design cycle is concerned with the fact that no 

part of the instrumentation is isolated from the rest. Therefore some 

sort of interface must exist between each element of the system. 

Interfaces in measurement systems are generally of three kinds: sensor 

to an element of a measuring machine; inter- and intra-machine
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interfaces; and machine element to human user (that is, the human- 

computer interface). In certain circumstances three other interfaces 

can also be identified: the system of interest to the sensor; user- 

user interfaces; and the system of interest to the human end-user. The 

latter type of interface should not be forgotten when the system of 

interest is (patho)-physiological.

4.3.6 Late Prototype System

The late prototype system is the culmination of the states 

achieved and processes involved thus far in the methodology. When the 

expert responsible for the intelligence embedded within the system 

views the late prototype system, valuable insights of how the system 

can be improved can be gained from his feedback. The suggestions may 

vary according to the success of the implementation, but whatever the 

outcome the system is still evolving at this stage, which illustrates 

the highly iterative nature of the methodology.

4.3.7 Program Tuning

Program tuning is different from the iteration between the 

knowledge engineering and late prototype system stages of the 

methodology. Whereas in the latter the contents of the knowledge base 

can change, program tuning deals with a static knowledge base, but 

certain parameters within it may change for correct system operation. 

For example, the values at which patient alarms are set may be at an 

inappropriate level and thus have to be changed.

4.3.8 Intelligent Knowledge-based System (IKBS)

To achieve an operational IKBS is the goal-state of the 

methodology. The functional attributes of the final system must be 

able to integrate its sub-system components in context.

4.3.9 Needs Evaluation

The evaluation of the need of the system is associated with 

the initial requirements stage of the methodology, and has as its most 

fundamental evaluative query, "What are the requirements of the system 

and how can they be met?". One of the precursors necessary to answer 

this query is a functional analysis of the system about to be replaced 

(if one exists). This enables constraints imposed on the system to be 

recognised and dealt with. It also allows for a conceptual model of 

information flow within the system, which not only identifies the type 

of information used but also identifies the information sources and 
receptors.
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4.3.10 Formative Evaluation

Formative evaluation describes the process which asks how the 

system can be improved whilst under development. Thus, all stages in 

the methodology except the initial requirements stage and the final 

goal-state are associated with formal evaluation. To cope with the 

different levels of development which exist, the formative evaluation 

must be wide-ranging. For instance, at one level a query may be, "Is 

the multi-perspective nature of the system maintained?", while at 

another the query may be, "What metrics are used to describe the 

efficacy of the software?". Some evaluative queries are effective at 

all levels, for example, "To what extent has a specific sub-goal been 

attained?". These queries will vary from system to system, dependent 

on the specific domain.

4.3.11 Summative Evaluation

Summative evaluation is the type of evaluation which is most 

often quoted in the literature. The goal-state is associated with the 
summative evaluation, which is concerned primarily with questions of 

standardisation, effectiveness and comparison (see Figure 4.11). The 

outcome of a summative evaluation determines if further development of 

the system is necessary. In some cases an external evaluation (beta-

testing) should be performed, which involves allowing peers to have 

access to the system for the purpose of its independent assessment.

4.3.12 Meta-Evaluation

The meta-evaluation describes the ’evaluation of the 
evaluation’. It is concerned with the query, "How has the evaluation 

process proceeded?". This query determines the outcome of each stage 

in the evaluation process. The meta-evaluation can be viewed as the 

phase in the methodology which describes the degree of success of a 

particular system in reaching its pre-determined goal. For this reason 

its outcome can be used to ask the ultimate question in project 
management: "Should development of the system proceed?".

4.4 Summary

Commonalities in the analysis and design techniques reviewed 

in Section 4.2 are that they have all been developed over a number of 

years by well-funded industrial and/or university concerns. They are 

also only applicable to large-scale projects. To take advantage of the 

apparent technology gap at the micro end of the analysis and design 

spectrum, a methodology which incorporates system analysis, design and
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STANDARDISATION : Does the system meet a set minimum standard for
accreditation?

Are Standard inter-machine interfaces used?

EFFECTIVENESS : How effective is the system in attaining its goal?

What are the effects of the system on the subject of 
interest?

What are the effects of the of the system on the 
end-user?

What is the cost-effectiveness of the system?

How does the system compare to the system it is 
replacing? (if appropriate)

COMPARISON : How does the system compare to other similar
systems?

FIGURE 4.11 THEMES INVOLVED DURING SUMMATIVE 
EVALAUATION
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implementation has been proposed. The central tenet on which the 
methodology is based is that it will assist in the technology transfer 

process from the laboratory to the real-world.

As the review of requirements engineering continued, emphasis 

changed to a computer-aided development model. These computer-based 

development processes are perceived in various ways, ranging from 

acting as an organisational aid to being used as a source of 

knowledge. This wide range of techniques is indicative of the 

comparative youth of the subject area. The manual methodology 

introduced in Section 4.3 goes further than system analysis and 

design, as implementation of the candidate design solution and an 

explicit evaluation procedure are featured. This illustrates the 

increased scope of the proposed methodology when compared to 

those used in conventional software development.

This chapter completes Part I of this thesis. The historical 

context of both the medical domain of interest and intelligent 

computer-aided decision support systems have been discussed. This 

allows knowledge of the level of the type of solution being sought. An 

artificial intelligence and control systems approach to the management 

of patients on ventilators has been included to focus upon subjects 

and techniques to be used in Part II. Finally, a novel methodology has 

been described, which is to be imposed upon the development processes 

necessary to create an intelligent measurement system. Thus, the 

research tools are in place, ready for exploitation by a suitable 
application: this is described in Part II.
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5 : SPECIFICATION FOR AN ARTIFICIAL INTELLIGENT RESPIRATOR SYSTEM

5.1 Introduct ion

The methodology developed in Section 4.3 is used to impose a 

framework for the introduction of an intelligent computer-based system 

to aid in the management of patients who require ventilatory therapy. 

Requirements for the introduction of an intelligent system capability 

and the proposed system architecture can be combined to produce a 

’working’ specification. This constitutes the design phase of the 

methodology. Essential components of the design phase of any computer- 

based system are the choices of hardware and software to be used for 

its implementation. The instrumentation system to be described is 

being developed and implemented in a microcomputer environment using 

PROLOG as the language base. PROLOG is becoming increasingly popular 

as a means of incorporating intelligence into a system. To illustrate 

this finding, a brief section in this chapter is devoted to its 

fundamental functionality. To complete the background study necessary 

to understand the complexities of the application domain a brief 

section which explains the pertinent respiratory physiology is also 

included.

The Artificial Intelligent Respirator System (AIRS) is a 

patient management system designed specifically for use in an adult 

Critical Care Unit. AIRS is one element of a wider integrated 

information system able to assist clinical and nursing personnel with 

all aspects of management of the critically ill patient (Carson et 

al., 1988). The system combines a microprocessor controlled ventilator 

and intelligent microcomputer-based advisory system from which a 

wealth of patient data are produced. Three degrees of intelligence are 

exposed in the data analysis module of AIRS: the use of context 

sensitive information processes; the use of pattern matching 

algorithms; and the use of expert system technology.

The specification of AIRS defines the design phase of the 
methodology introduced in the previous chapter. To complete this 

assignment Section 5.5 introduces the needs evaluation associated with 
the requirement of the system.

5.2 PROLOG : An overview

PROLOG is an interactive language designed primarily for 

symbolic, non-numeric data processing. It is based on the predicate 

calculus, a powerful subset of classical logic for the definition of 

relationships between data terms (Roussel, 1975). A major attraction
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of programming in PROLOG is that the code generated is both concise 

and readable, and therefore more understandable than equivalent code 
written in conventional programming languages, (for example, FORTRAN, 

C and PASCAL). PROLOG programming has minimal syntax, indeed it is 

possible for programmers to define their own syntax for specific 

applications.
The basic structure in logic programming is the ’term’. A 

term can be a constant, a variable, or a compound version of itself. A 

constant is either an integer or an atom (beginning with a lower case 

letter), whereas a variable begins with an underscore character or 

upper case letter. PROLOG programming consists of three main tasks

i) declaring facts about objects and their relationships

ii) defining rules about objects and their relations

iii) querying objects and their relations

Consider the following example shown in Table 5.1, in which facts are 

declared that define the cardiac_output and body_surface_area of 

different patients, where a rule is defined for obtaining 

cardiac_index from the given facts, and a query used to find patients 

with a similar cardiac_index, where ’similar’ is defined as values 

within +/- 5% of each other. This type of query may be useful when 

classifying patient cohorts for a drug trial.

facts
cardiac_output(patientl,8.25). 
cardiacoutput(patient2,5.86). 
cardiac_output(patient3,2.52). 
cardiacoutput(patient4,2.12).

body_surface_area(patienti,3.380). 
body_surface_area(patient2,1.139). 
body_surface_area(patient3,8.708). 
body_surface_area(patient4,3.609).

rule
cardiac_index(Pat ient,Cardiac_index) 
cardiac_output(Patient,Cardiac_output), 
body_surface_area(Patient,Body_surface_area), 
Cardiac_index is Cardiacoutput / Body_surface_area.

query
answer(Ptl,Cardiac_indexl,Pt2,Cardiac_index2) 
cardiac_index(Pt1,Cardiac_indexl), 
cardiac_index(Pt2,Cardiac_index2), 
Cardiac_indexl > Cardiac_index2,
20 * Cardiac indexl < 21 * Cardiac index2.

TABLE 5.1 PROLOG representation of Cardiac Index
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The syntax used in this example can be used to describe its mode of 

operation. The 'cardiac_output’ and ’body_surface_area’ predicates 

have four clauses. Each clause can be interpreted in the following 

way: -

cardiac_output(patientl,8.25). ------ > the cardiac_output of
patientl is 8.25 litres

In the clause, ’patientl’ is written with its first letter in lower 

case to denote that it is a constant. If an upper case initial letter 

were used denoting a variable, the interpretation of the clause would 

be meaningless.
In the ’cardiac_index’ rule the symbol is interpreted as

’IF’, and the commas are interpreted as ’AND’. This rule also 

illustrates the principle of unification which is often used in 

PROLOG. Unification embodies pattern matching that can be applied to 

data structures of any complexity. To fire the ’cardiac_index’ rule 

the ’Patient’ argument of the ’cardiac_index’ clause must be 

instantiated. If ’Patient’ is instantiated to ’patientl’, then the 

cardiac_output and body_surface_area clauses can be fully unified, 

from which ’Cardiac_index’ can be instantiated, allowing the 
’cardiac_index’ rule to succeed in the process.

To fire the query the patients whose cardiac_index are to be 

compared should be entered by the user, for example

?-answer(patientl,Cardiac_index1,patient4,Cardiac_i ndex2).

The ’cardiac_index’ rule is called twice, the first time to determine 

the cardiac_index of patientl, and the second time to determine the 

cardiac_index of patient4. A simple numerical algorithm in the query 

clause then checks to see if the results are within 5% of each other.

PROLOG has many features which can be considered as unique 

advantages when compared with conventional programming languages. For 

example, the following features are all used in the implementation of 
AIRS :-

* clauses can represent data or rules and can be treated as arguments 

to higher level clauses allowing data to be manipulated by appropriate 

meta-clauses which effect software control

* software procedures can be multi-purpose and have more than one 
input and output
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* required iteration (via backtracking of goals) can be handled and 

controlled by a special purpose ’built-in’ predicate, (the ’cut’ 

operator)

* incomplete data structures are allowed, using pattern matching to 

unify variables

* for database applications the terms themselves define the record 

structure; any number of fields are allowed, and there is no 

restriction imposed on field-type

* a declarative clausal form is allowed as well as the more normal 

procedural form

This last feature is important as it uses the relational nature of 

PROLOG programming to determine the declarative meaning of WHAT the 

output of the program will be. This can be compared to the procedural 

meaning, which is concerned with HOW the output of the program is 

obtained.

PROLOG has been applied to many programming tasks from a wide 

spectrum of domains. For example, understanding natural language, 

mathematical logic, symbolic equation solving, and many areas within 

the field of artificial intelligence. PROLOG was also chosen as the 

implementation language for the Japanese Fifth Generation Computer 

System initiative. This necessitated software able to cope with highly 

parallel computer architectures; the logic and relational nature of 

PROLOG met this requirement.

There are many versions of PROLOG available, from main-frame 
to microcomputer implementations. AIRS has been developed and 

implemented on a standard microcomputer using PROLOG-2 (Chemical 

Design Ltd.). This version of PROLOG was chosen because it offered 

over 300 ’built-in’ predicates (including predicates for creating a 

windows environment), code could be interpreted and compiled, and it 

conforms to the (pseudo)-standard of Edinburgh syntax.

5.3 Respiratory (patho)physiology

The respiratory system is critical for immediate survival. 

Air contains a number of gases, the two which contribute to the 

maintenance of living organisms are oxygen and carbon dioxide. The 

respiratory process can be viewed from two perspectives : external 

respiration, which describes the exchange of gases between the lungs 

and the bloodstream; and internal respiration, which is the exchange 

of gases in solution, between the bloodstream and cells. Thus, the
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overall purpose of respiration is to acquire oxygen which is 

eventually distributed to the cells for metabolism, and to eliminate 

carbon dioxide which is accumulated from the effects of cellular 

metabolic activity. The metabolic utilisation of oxygen can be 

described by the following mass-balance equation:-

FOOD + OXYGEN --- > CARBON DIOXIDE + WATER + by-products
+ ENERGY

The rate at which the products of the right-hand side of the above 

equation are formed from the initial components on the left-hand side, 

termed the metabolic rate, differs from person to person. For example, 

the metabolic rate of a person lying motionless in a Critical Care 

Unit is much less than that of an athlete, and therefore their 

respective respiratory demands are also very different.

Artificial mechanical ventilation is used when patients are 

unable to breathe spontaneously. To understand the reason for 

mechanical replacement therapy consider the physiological system it 

is to supersede. The respiratory system can be arbitrarily divided 

into four functional units, as follows:-

i) Airflow mechanics; this incorporates movement of the chest wall 

under the influence of the pressure difference between internal 

and external environments, causing air to be drawn into the 

alveolar spaces, as well as the physical properties of the lungs 
and air themselves.

ii) Blood flow mechanics; this describes the distribution of blood 

in the lungs.

iii) Diffusion and Gas exchange; this describes the transfer of

respiratory gases through the alveolar membrane, and the 

interacting effects of blood and airflow on oxygen and carbon 

dioxide concentrations.

iv) Regulation of respiration; this describes the control mechanisms 

involved in the respiratory process. The regulation of 

breathing can be described by two parameters, respiratory rate 

and tidal volume. Respiratory rate is the number of breaths per 

unit time, and tidal volume describes the amount of air 

inspired during normal breathing. Normally, these two 

parameters are controlled by the nervous system and a 

homeostatic mechanism which monitors the partial pressure of 
carbon dioxide in the bloodstream.
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The first and the last of these functions are replaced when there is 

no endogenous respiratory function, that is, when the mechanical 

ventilator is in Continuous Mandatory Ventilation mode (CMV). The 

machine can be preset to deliver the required respiratory rate, tidal 

volume and air/oxygen mixture in the correct pressure-time cycle. When 

limited physiological control returns, the ventilator can be switched 

to Synchronised Intermittant Mandatory Ventilation mode (SIMV), which 

allows a preset ratio of spontaneous to ventilator-induced breaths. To 

wean the patient from the ventilator this ratio is gradually changed 

until the patient is breathing spontaneously and independent of the 

mechanical assistance. For successful ventilatory therapy the 

physiological mechanisms which contribute to the other functions of 
the respiratory system must remain intact. As indicated, the 

parameters set by the ventilator can influence the amount of venous 

blood oxygenation, and can therefore indirectly contribute to the 

control of metabolic rate.

5.4 Design Specification for AIRS 

5.4.1 Requi rement

A question of fundamental importance to be asked before any 

system development work commences is: —

"Is there a need for the proposed system, or would it 
be, perhaps, an example of unnecessary technology which would be 
infrequently used?"

At the highest level of definition the purpose of AIRS is to assist in 

the management of patients who require artificial ventilation. This 

group of patients are often sub-optima 11 y managed (Sittig, 1988), 

therefore there is a need for a system such as AIRS.

Pragmatically, an evolutionary system must be better than the 

system it replaces, otherwise it will remain redundant technology. In 

the context of AIRS the term "better" has two meanings: first, in the 

operation of the system; and second, the system must lead to enhanced 

patient care. The first of these meanings depends upon the 

’friendliness’ of the Human-Computer interface. To be ’better’ this 

interface must be attractive to use and quick to learn and exploit. 

The ability to enhance patient care depends upon how the user 

perceives the change of working practice instigated by the new 

technology. When a computer-based data-logging device (the data 

capture functionality of AIRS) replaces the manual system employed 

currently, much of the clerk-type role of the nurse will disappear,
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freeing time for more valuable nursing activities. The need for 

automatic data-logging is emphasised by a clear trend in the number of 

parameters included in an intensive care primary data set,which has 

increased approximately threefold in sixteen years (Price and Mason, 

1986). Nurses record 45% of these data, the rate of which can be up to 

2000 items per patient per day.

The advisory mode of AIRS can be used as a means of dealing 

with complexity. In respiratory critical care there is often an 

overload of sometimes conflicting data. A computer-based advisory 

system can organise the patient management options into a suitable 

format for selection. Such a system would also serve a useful role for 

educational and training purposes.

5.4,2 System Architecture * *

AIRS consists of four functional units (patient, operator, 

ventilator system and computer system) which can be further sub-

divided into constituent subsystem elements, (Figure 5.1).

The patient can be considered as a complex physiological super-

system, whose constituent systems are interlinked in such a way as to 

optimise the process for sustaining life. Of interest in this study is 

the respiratory system.

Each category of operator will have a different level of 

system interaction depending on their status. The users of the system 

will include doctors, nurses, paramedical staff, system engineers, and 

medical students and student nurses. A brief indication of system 
interaction at each level is given below.

* Doctors

+ to enter the initial settings of the ventilator

+ to enter the initial alarm settings

+ to enter any changes in ventilator settings as the 
patient progresses

+ to enter any change in alarm settings

+ to delegate any of the above to another system user

* Nurses

+ to enter data via the computer keyboard or alternative 

means of data entry

+ to be aware of the meaning of the audible and visual alarm
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signals and to take appropriate action

* Paramedics

+ to enter data via the computer keyboard or alternative means 

of data entry

+ to be aware of the meaning of the audible and visual alarm 

signals and to take appropriate action

+ to have superficial knowledge about the operation of AIRS

+ to have superficial knowledge about the operation of 

AIRS

+ to liaise with the system engineer

* System Engineer

+ to have knowledge about AIRS at every level

+ to manufacture appropriate computer software

+ to obtain the primary data-set used for subsequent 

information processing.

+ to investigate alternative methods of data entry

+to decide on computer output format (in conjunction with 

other users)

+to decide on the format for printer output (in conjunction 
with other users)

+ to liaise with all other system users

* Medical Students and Student Nurses

+AIRS should have an educational and training role

The ventilator system comprises six functional units: the 

microprocessor control unit, the gas supply system, the pneumatic 

system, the patient service system, the keyboard display, and the 

printer.

The microprocessor control unit is responsible for the 

control action of the ventilator. It receives inputs from the keyboard 

display unit and from pressure, flow and temperature sensors found in 

the gas supply, pneumatic, and patient service systems. A controlled 

output port leads to the pneumatic system which generates and controls 

gas flow. An output to the keyboard display unit indicates patient and 

ventilator performance. The microprocessor control unit has a fail-
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safe mechanism which contains instructions for use in emergency 

situations, for instance, when another part of the ventilator is 

functioning incorrectly. A battery-powered back-up unit is on stand-by 
if the mains power supply is interrupted.

The gas supply system allows two inputs (air and oxygen) from 

the external source (the wall supply). Filters on the input side 

prevent particles larger than 0.3 microns and moisture from entering 

the ventilator. As the wall supply pressure is between 35 and 100 

pounds per square inch - gas (psig), an internal pneumatic regulator 

is required to reduce the pressure to a nominal 10 psig for ventilator 

operation. If wall supply pressure falls below 35 psig, or if working 

pressure falls below 7.5 psig, an automatic switching circuit becomes 

active which transfers the ventilator into emergency mode. In these 

situations the ventilator settings are pre-set by the manufacturer, 

the values being stored in the microprocessor control unit.

The pneumatic system consists of two parallel circuits, one 

for air and the other for oxygen. A pair of solenoid valves which 

monitor gas flow are important elements in this system. The solenoids 

are adjusted continually which allow the desired volume and 

composition of gas to be delivered to the patient. For patient safety 

there is a valve on the ventilator output port which prevents the 

patient from receiving gas at either too high a pressure or flow 

rate. There are also pneumatic sub-systems for: temperature 

correction; providing gas flow to the patient via a nebuliser; 

providing pressure to a balloon valve, (this seals the exhalation port 

during inspiration); and uni-directional check valves that prevent gas 

backflow.

The patient service system describes the patient-specific 

elements of the ventilator system. It includes the pipe circuitry 

which delivers the gas to the patient and returns the exhaled gas to 

the ventilator. A humidifier and/or nebuliser can be placed in the 
patient input side of the circuit. A flow sensor is situated on the 

patient output side, when integrated this signal yields the volume of 

exhaled gas. The patient service system also contains bacterial 

filters on both input and output sides, which confines any bacterial 

contamination to within the humidifier or patient delivery system. 

Moisture from exhaled air is prevented from entering the ventilator by 

a water trap. Unidirectional valves in the patient mouthpiece prevent 
any gas backflow.
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The keyboard display system can be divided into three functional 

units. Patient data can be viewed and stored; patient and ventilator 

status can be inferred from the alarm unit; and ventilator setting 

adjustments can be made.

The printer is capable of making a hard-copy of four types of 
report; a patient data log, a chart summary, ventilator status, and 

ventilator self-test.

The computer system comprises the system unit, a keyboard 

and/or alternative methods of data entry, and a visual display unit to 

observe the output of the system. An example of an alternative device 

for data entry is a pressure sensitive graphics pad where the 
function and size of the input area can be p r e-spec i f i ed. Up to 256 

A4-size paper overlays can be designed, allowing capture of a wide 

spectrum of data. Advantages of using this type of pad for data entry 

include: personnel do not have to learn typing skills (however 

rudimentary they may be); it can be quicker than keyboard entry; and 

non-numeric or qualitative data can be contemplated.

5.5 Needs Evaluation

In current practice much of the patient-related information 

flow is the concern of the nurse, so much so that a clerk-type role is 

assumed, (taking care of the data rather than taking care of the 

patient). This is unsatisfactory for both the nurse and the patient. 

Introducing an automatic means of data capture offers the potential 

for a reduction of this clerk-type nurse workload. Nurses often 

mistrust computer-based (automatic) monitoring systems, possibly due 

to the 'black box’ approach commonly adopted. To combat this fear of 

new technology an effort was made to make AIRS as transparent as 

possible to the end-users.

For AIRS to be used on a regular basis it must fulfil various 

requirement criteria, the most important of which is that it should be 
better than the existing manual system. In this sense "better" means 

more cost-effective, measured in terms of amount of time and resources 

saved. The system must also lead to more enhanced patient care.

To enhance the care of the patient is the driving force for 

this study. In a similar study in the United States, an attempt was 

made to determine if correct ventilator adjustments were made in 

instances where patient Pa02 fell below 50 mmHg (Sittig, 1988). 

Current expert opinion suggests that in such cases either Fj02 and/or 

PEEP be increased as soon as possible, or that mode of ventilation be
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changed to SIMV or CMV. The results of this study showed that a 

correct action was taken in 85 % of the cases within 26.5 minutes 

(S.D. = 19.4, n = 41). However in 12.5 % of the cases (n = 6) a 

confirmatory blood-gas analysis was obtained, a procedure which took 

on average 46 minutes (S.D. = 24.1). This delay before any corrective 

action was taken constitutes a life-threatening event. It is suggested 

that such a delay would be less likely if a computer-based decision 

support system were in situ.

Resource constraints imposed on the development of AIRS 

meant that the ventilators used for the development of the system were 

in almost constant use within the High Dependency Unit. Therefore the 

system was developed off-line, where ironically most implementation 

time was devoted to a manual means of entering patient data. 

Nevertheless a means of converting the data output of the ventilator 

to a computer readable form was successfully identified.

5.6 Summary

The first two elements of a methodological framework imposed 

to introduce an intelligent component into an existing data-rich 

environment have been used to define the specification for its 

implementation. This constitutes the design phase of the methodology 

introduced in Section 4.3. An evaluation of the needs for a system 

such as AIRS reveals both user requirements in terms of replacing the 

clerk-type activity of the nurse and system requirements in terms of 

dealing with the complexity of incoming data and its transformation 

into a more meaningful form. Patient care is enhanced as a result of 

this change in technology.

The background information to achieve the implementation 

has been addressed, and includes details of the programming 

environment (PROLOG) together with a basic introduction to respiratory 

physiology. In the next chapter these strands are drawn together for 
the implementation of the system.
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6 : IMPLEMENTATION AND EVALUATION

6.1 Introduction

This chapter draws upon both the methodology for intelligent 

system design, implementation and evaluation described in Chapter 4 

and the set of design features generated in the last chapter.

A PROLOG programming environment is used for the 

implementation of AIRS. There are several reasons why this is an 

attractive alternative to the use of commercial expert system 

development packages: the style of programming mimics the ’test-and- 

hypothesise’ cycle used by clinicians; modular programming is 

supported which allows ease of maintenance of the program; software 

routines and program features can be written for any type of 

application (for example, management and/or diagnosis); and the 

program source code is more readable than conventional programming 

languages, as discussed in the last chapter. There are two drawbacks 

in using PROLOG for the implementation of the system. First, the 

memory allocated to ’workspace’ within the environment is not large 

enough to accommodate the processing required in complicated cases. 

Second, the time taken to execute some clauses within the program can 

be extremely slow, causing problems with user acceptance of the human- 

computer interface. However, as AIRS is a prototype system, the 

constraints of workspace size and speed of execution can be relaxed. 

It can be argued that the purchase of an (expensive) software 

development environment would have decreased the time taken to 

complete the implementation. This can be offset by the number of 

features that can be included in a customised implementation taken 

together with the number of redundant features in a commercial 

development package.

In Section 6.2 the Early Prototype System is described. This 

illustrates the user interface, denuded of a knowledge base and other 

features of a fully integrated system. The purpose of this phase of 
the development cycle is to show the Human-Computer Interface to a 

putative set of end-users. Sections 6.3 and 6.4 describe the Knowledge 

Engineering Design Cycle and Interface Design Cycle respectively. 

These processes illustrate the way in which intelligence is 

incorporated into a computer system. Both processes are highly 

iterative in nature. Within the Knowledge Engineering Design Cycle the 

sub-processes of knowledge acquisition and knowledge representation 

are documented. It is these phases of the implementation where the
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information processing functionality is included in AIRS. This 

capability elevates AIRS above the data processing functionality of 

most existing instrumentation systems for patient care in this area. 

Although the Interface Design Cycle describes the off-line version of 

AIRS, the modification necessary for on-line operation is illustrated. 

When the output of both the Knowledge Engineering and Interface Design 
phases are brought together a ’Late Prototype System’ is formed. This 

is described in Section 6.5. This version of the system can be fine- 

tuned until the clinical users are confident that the resulting 

knowledge-based system can be improved no further. This milestone in 

system development is formalised in Section 6.6. The output of the 

methodology, an intelligent knowledge-based system, is detailed in 

Section 6.7. The ability to build knowledge-based systems has been 

evident for the past decade, yet there are only a tiny proportion of 

such systems in routine operation. Perhaps one reason for this is that 

an appropriate evaluation strategy has yet to be formulated. The 

evaluation of AIRS follows the development procedure from the 

requirements phase. A formative evaluation (Section 6.8) occurs at 

every intermediate phase of development; a summative evaluation is 

performed when the system has reached fruition (Section 6.9); and an 

overarching meta-evaluation (Section 6.10) ensures that the evaluation 

procedure has proceeded in an orderly manner.

Where appropriate, some features of the implementation are 

presented. Accompanying annotated software code listing can be found 
in Appendix II.

6.2 Early Prototype System

The early prototype system provides an opportunity to 

demonstrate several types of screen interface to the clinical and 

nursing staff who form the end-users of AIRS. From informal but close 

questioning about the use of computers in clinical medicine, it was 

recognised at an early stage that a Windows-I cons-Menus-Pul1 downs 

(WIMP)-type interface would be potentially the most acceptable format 

for screen display and control. This choice was influenced by users 

comparing the facilities offered by a DOS-based IBM compatible 

microcomputer with the WIMP interface of an Apple Macintosh 

microcomputer. Using PROLOG it is possible to implement a WIMP-type 

interface (the ’W’, ’M’ and ’P’ components provide no problem, but the 

’I' is more difficult to implement and is excluded in this prototypic 

version). Menus are used to control the logical flow of operation in
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AIRS, the outcome being a nested hierarchy of screens. In all menu- 

formats an option is given to return to the preceding menu or to go to 

the ’top’ (i.e. first) menu encountered in the system.

The clinicians and nurses advised on the screen display 

format and use of peripheral devices, thereby refining the early 

prototype system. For example, using a computer keyboard to operate 

the screen interface was too slow. To counter this problem a ’mouse’ 

was included as a peripheral device to speed up screen management and 

data entry, although some users had difficulty initially in using the 

device. The order of the menu options was also chosen at this stage, 

though some changed subsequently as development of the system 

progressed. A more fundamental change in menu options involved the use 

of the explanation facility. Instead of having just one menu entry to 

the explanation facility at the top-menu level, an explanation option 

was included in each of the relevant sub-menus. The result of this 

change allowed the explanation screen to be viewed with far fewer key- 

clicks, also saving time in the interaction between the user and the 

system. This had the effect of increasing the acceptance of the 
system.

Figure 6.1 shows the screen output of the top-menu screen 

display, this complements the program code excerpt given in Appendix 

II (AII.l and All.2) which describes the implementation of the WMP- 

system interface.

6.3 Knowledge Engineering Design Cycle

To the user, the levels of intelligence embedded within AIRS 
are exhibited in the analysis option of the topmost menu of the 

system. In fact three levels of system intelligence can be defined 

which match the three phases of ventilation. Within the AIRS start-up 

phase context-sensitive information is portrayed. This yields advice 

and explanation about the initial machine settings as the patient is 

connected to the ventilator. The maintain phase uses a data-driven 

algorithm to define the respiratory state of the patient in terms of 

alarm status (normal, high, low). A higher level of intelligence is 

employed in this phase than the previous one as each item of data is 

checked using a pattern-matching algorithm and classified accordingly. 

The highest level of intelligence is exhibited in weaning the patient 

from the ventilator. In this phase knowledge-based technology is used 
to represent the weaning process.
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6.3.1 First level of intelligence: AIRS start-ap

To initialise the patient on the ventilator the working 

diagnosis is required so that patient state can be established. 

Patient state can be described in various ways, some of which are 

variations on a single theme. For instance, it seems fashionable to 

try and assign a quantitative value to a number of diagnostic 

findings, which in turn contribute to a final patient ’score’. It is 

the deviation of this score from the norm which determines patient 

state. Studies by research groups in the United States seem 

particularly to favour this type of technique (Siegal, 1981; Shoemaker 

et al.,1982). In AIRS the diagnostic category in which the patient 

resides is sufficient evidence to establish patient state.

A retrospective analysis of the Intensive Therapy Unit log 
book at the Royal Free Hospital, London, between May 1986 and December 

1988 revealed that the 630 patients who spent more than 24 hours in 

the Unit could be classified into 14 independent diagnostic states. 

Only 5 patients (0.008%) in this database were unc1 assifiab1e, (see 

Table 6.1). It follows that to match a patient to the correct start up 

settings, 14 separate options are required, one for each of the 

dignostic states. To illustrate the data processing involved, software 

source code for the ventilator start up settings for cardiac patients 
is shown in Appendix 11—3. Whereas the initialisation screen shows the 

various ventilator settings, two further options are also possible: 

the action screen and the explanation screen. The action screen takes 

into account the weight of the patient, so gives patient-specific 

ventilator settings. The explanation screen gives a context-sensitive 

description of why a particular ventilation strategy is favoured. 

Figures 6.2, 6.3 and 6.4 show respectively the initialisation, action 

and explanation screens for a particular cardiac patient.

6.3.2 Second level of intelligence: AIRS maintain

At the centre of the programming module which describes the 

second level of intelligence is a value-matching algorithm. The 

information which forms the basis of this algorithm was elicited from 

clinical personnel. Clinical indicators which describe some aspects of 

patient respiratory state were prioritised, the resulting seven 

indicants being partial pressures of oxygen and carbon dioxide in 

arterial blood, pH, tidal and minute volume, respiratory rate and peak 

inspiratory flow rate. Figure 6.5 shows the form in which information 
for one indicator, tidal volume, was gained.
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CLASSIFIER No. Patients

HEALTHY LUNG 180

POST-OPERATIVE 229

FLAIL CHEST 5

LEUKAEMICS 33

PNEUMONIAS 55

SEPSIS 31

ARDS 11

CARDIAC 54

PULMONARY EMBOLUS 5

ASTHMATICS 8

COAD 5

MULTIPLE ORGAN FAILURE 29

RENAL 28

EPIGLOTTITIS 6

UNCLASSIFIED 5

NB: 54 patients are in two groups

TABLE 6.1 DIAGNOSTIC STATES

103



AIRS Off-Line v2.0 Pt Name: John SMITH Pt 01

o

Suggested Ventilator Settings 
for Cardiac Patients:

RR 12 per min
TV 10 ml per Kg
I:E 1
PEEP 5 cm H 20 *** 
FI02 0.5

[—INITIALISE---------
Group 1 POST-OP 
Group 2 HL
Group 3 PNEUM___
Group 4 CARDIAC 
Group 5 LEUK 
Group 6 SEPSIS 
Group 7 MOF 
Group 8 RENAL 
Group 9 ARDS 
Group 10 ASTHMA 
Group 11 EPIG
Group 12 CO AD 
Group 13 PE 
Group 14 FLAIL
ACTION
EXPLANATION
Reset
Back to Topmenu

FIGURE 6.2 INITIALISATION SCREEN FOR A CARDIAC PATIENT



AIRS Off-Line v2.0 PtName: John SMITH Pt 01

Suggested Ventilator Settings 
for Cardiac Patients:

RR 12 per min
TV 10 ml per Kg
I:E 1
PEEP 5 cmH20 *** 
FI02 0.5

r—INITIALISE---------
Group 1 POST-OP 
Group 2 HL 
Group 3 PNEUM 
Group 4 CARDIAC 
Group 5 LEUK 
Group 6 SEPSIS 
Group 7 MOF 
Group 8 RENAL 
Group 9 ARDS 
Group 10 ASTHMA 
Group 11 EPIG

The suggested ventilator settings for John Smith are

RR 12 per min, TV 800 ml, I:E 1, PEEP 5 cmH20, FI02 0.5

** WARNING **
Only use PEEP when MAP >75 mmHg and BP (sys) > lOOmmHg 

Use of Dopamine ? Lasix ?

Group 12 CO AD 
Group 13 PE 
Group 14 FI Al l .
ACTION
EXPLANATION
Reset
Back to Topmenu

FIGURE 6.3 ACTION SCREEN FOR A CARDIAC PATIENT



AIRS Off-Line v2.0 PtName: John SMITH Pt 01

1. Try CPAP before CMV.

2. It is possible to alter the ventilator settings slightly 
so as to endure adequate ABG's.

R R < 1 6 p erm in , TV < 16 ml per Kg, I:E < 2, PEEP < 10 cm H20 

** WARNING ** : Only use PEEP if both MAP > 75 mmHg and BP (sys > 100 mmHg.

It is imperative to increase intra-alveolar pressure in order to reverse 
the Starling equation. Therefore, if BP is low infuse fluid (colloid) if 
renal function is O.K. Consider Dopamine (increases BP, CO, and renal 
function), and then LASIX to excrete excess water. Check K ions !

-IN IT IA L IS E -----------
Group 1 POST-OP 
Group 2 HL 
Group 3 PNEUM 
Group 4 CARDIAC 
Group 5 LEUK 
Group 6 SEPSIS 
Group 7 MOF 
Group 8 RENAL 
Group 9 ARDS 
Group 10 ASTHMA 
Group 11 EPIG 
Group 12 COAD 
Group 13 PE 
Group 14 FLAIL 
ACTION
EXPLANATION
Reset
Back to Topmenu

FIGURE 6.4 EXPLANATION SCREEN FOR A CARDIAC PATIENT
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VARIABLE ABBREV. UNITS OF 
M’MENT

FREQ OF 
M’MENT

SET-POINT 
ALARM 

HIGH LOW

TREND ALARM ACTION
SET-POINT TREND

TIDAL VOLUME vx nil h** 3 0 m l K g 'l  l m l K g 'l if < 50% of

| C M V  i

patient check for leak

TV
(P B 7 2 0 0 *  M a n u a l)

mlkg-1
(when calculated) 

1
( P B 7 2 0 0 *  M a n u a l )

or as necessary
previous recorded 

value.
disconnected

(leak)
machine

malfunction

| S1MV |

patient . . , .  
disconnected + rate of machine 

(leak) breaths by two
machine

malfunction

t  rate of machine 
breaths patient 
malfunction

| SPONT |

re-initialise patient h a s R P t 9 
to ventilator ¡s patient tired ? 

are ventilator. is V j  low because 
settings 0f respiratory 

appropriate . depressants ?

FOR ALL ALARMS CHECK FOR 
INAPPROPRIATE VENTILATOR 

SETTINGS

* PB7200: Puritan-Bennett 7200a ventilator
** Present time resolution of paper record system is hourly

FIGURE 6.5 MAINTAIN: TIDAL VOLUME



Great care was used in the design of the maintain screen, one 

of the more important design concepts was to obtain a display which 

appeared uncluttered yet still had sufficient information content to 

remain useful. Each window icon (box) associated with one of the 

indicators is split into two sections: the top-half displays the set- 

point alarm state, and the bottom-half displays the trend alarm state. 

By using this combination of set-point and trend alarms it is the aim 

of the program to keep patient-threatening events to an acceptable 

minimum.

Appendix 11—4 illustrates the software code for PCO2  when the 

ventilator is in ’Controlled Mandatory Ventilation’ mode. Before this 

level is reached, various pre-processing modules have checked the data 

for completeness and have set up the window presentation system which 

gives a qualitative interpretation of the chosen measurements. In the 
first instance, this design feature has been achieved by using the 

colour green for a value in the normal range, blue if the value is low 

and red if the value is high. At an earlier prototyping stage, a 

flashing blue window signified a value in the ’very low’ range and a 

flashing red window corresponded to a value in the ’very high’ range. 

If requested by the users, this facility can be re-installed.

6.3.3 Third level of intelligence: AIRS wean

The weaning phase differs significantly from 

AIRS: initialisation and AIRS: maintain, as knowledge is processed 

rather than data or information. This requires the use of knowledge 

engineering techniques to transfer knowledge from a human expert to an 

internal computer representation. A diagrammatic representation of the 

knowledge-based system design cycle is shown in Figure 6.6. In the 

development of AIRS: wean various ’experts’ were used, covering 

technical as well as clinical domains. This allowed the capture of 

knowledge about machine malfunction together with patient dysfunction. 

Knowledge elicitation, the process by which a ’paper’ system of 

expertise can be constructed, was performed by a series of structured 

interviews (see Chapter 7 for further discussion). This process was 

exacerbated by rotation of clinical staff. Paradoxically, the 

resultant knowledge base may be more widely acceptable because of the 

increased scope afforded by the different perspectives from the many 

staff involved in knowledge elicitation.

Knowledge is represented as premise-action PROLOG clause 

pairs. The control and reasoning strategy is entirely data driven.
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EXPERT

KEY

0  knowledge store

1 1 phases in development 

— ►  logical flow of knowledge 

— ►- putative flow of knowledge

FIGURE 6.6 KNOWLEDGE-BASED SYSTEM DESIGN CYCLE
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Associated with each premise of the clause pairs is a list of data 

findings which must be known (instantiated) before the premise can be 

evaluated, (see Appendix All.5 for more details).

A conceptual model of the weaning process is shown in Figure 

6.7. The start state is depicted as the patient on the ventilator in 

controlled mandatory ventilation (CMV) mode, that is, the ventilator 

is in complete control of patient ventilation. It is possible, and is 

common in current practice, for the patient to be connected to the 

ventilator in synchronised intermittent mandatory ventilation (SIMV) 

mode, that is, the ventilator initiates inspiration when triggered by 

patient inspiratory effort with a fail-safe mechanism of delivering a 

set number of breaths per minute. In the model the patient progresses 

form the start state to the goal state of spontaneous ventilation via 

a number of intermediate states.

Five types of rule become apparent to implement this 

conceptual model, as shown in Figure 6.8: weaning rule, progression 

rule; regression rule; termination rule; and a fail-safe meta-rule. If 

CMV mode is the start state, then the ’fit to wean?’ criteria of the 

weaning rule must be met before progress to the intermediate states 

can commence. These criteria are quite extensive and cover causal 

mechanisms for respiratory muscle fatigue, f1uid-e 1 ectro1yte 

imbalance, physiological system failure, and patient anxiety. Figure 

6.9(a-e) illustrates the causal mechanisms and relationships in a 

conceptual diagram. Similar conceptual diagrams are used to show the 

progression and regression rules (Figures 6.10 and 6.11 respectively).
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FIGURE 6.7 CONCEPTUAL MODEL OF THE WEANING PROCESS
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WE ANING_RULE_ 1 : IF START_STATE 
and fit to wean
THEN go to ENTERMEDIATE_S TATE_ 1.

PROGRES S ION_RULE_2 : IF INTERMEDIATE_S TATE_N
and progression rules succeed
THEN go to INTERMED IATE_S TATE_N +1.

REGRES SION_RULE_3 : IF INTERMEDIATE_STATE_N
and regression rules succeed
THEN go to INTERMEDIATE_STATE_N-1.

TERMINATION_RULE_4 : IF GOAL STATE 
THEN STOP.

META_RULE_1 : If regression conditions succeed 
and progression conditions succeed 
THEN do REGRESSION_RULE_3

FIGURE 6.8 VERBAL DESCRIPTION OF CONCEPTUAL MODEL 
OF IMPLEMENTATION
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respiratory_muscle_failure

f_e_imbalance

fit_to_wean----------------- NOT system_failure

anxiety

feeding_problems

FIGURE 6.9a RULE ASSOCIATIONS FOR FIT_TO_WEAN



-increased.respiratory.resistance-------
increased_oxygen. 
consumption

increased_work_ 
of_breathing

increased_C02_production

_excessive_muscle
demands fever infection

breathing_circut_inappropriate — sensitivity
increased.

—bronchospasm-----------------  dynamic.
-obesity  resistance

—ascites

respiratory.muscle.failure —

-im paired.oxygen.delivery

impaired.energy
.supply

-^lutritional.deficiency ------------  catabolic

FIGURE 6.9b RULE ASSOCIATION FOR FIT.TO.WEAN (Contd.)



hypovolaemia c_v_pres sure_lo w

anaemia haemoglobin_count_low

f_e_imbalance pulmonary _oedema

potassium_level_out

------------- p_a_wedge_pressure_high

------------- colloid_osmotic_pressure_high
potassium_high

potassium_low

phosphate_level phosphate_high

FIGURE 6.9c RULE ASSOCIATION FOR FIT_TO_WEAN (contd.)



system_failure

respiratory_failure

cardiac_failure

ventilatory_failure -----------------------

inefficient_pulraonary_gas_exchange

cardiac_output_low-----------------------

acu te jv f ----------------------------------

tidal_volume_low

capAa-D02

cardiac_index_pressure_low
p_a_wedge_low

systolic_blood_pressure_low

neurological

metabolic_acid_base

metabolic_alkalosis

renal_problem

hepatic_problem-

creatinine_high

lft_deranged

FIGURE 6.9d RULE ASSOCIATION FOR FIT_TO_WEAN (contd.)



sleep_deprivation sleeping_draught

primary_anxiety anxiolytic_agent

anxiety

pain

local_blocker

infiltration

sedation sedative

FIGURE 6.9e RULE ASSOCIATION FOR FIT_TO_WEAN (contd.)
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progress

not progress

not progress

review_in_30_mins

ph_up_paco2_same

ph_up_paco2_down

ph_down_paco2_same

ph_down_paco2_down

ph_same_paco2_up

ph_same_paco2_same

ph_same_paco2_down

regress

ph_up_paco2_up

ph_down_paco2_up

FIGURE 6.10 PROGRESSION RULES
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6.4 Interface Design

6.4.1 Data Transfer at the Machine Level Interface

At the machine-level software interface the PROLOG 

programming environment can deal directly with a list of ASCII 

characters that would form the output from the digital communications 

interface of the ventilator. Equally, characters which specify 

instrument commands can be converted into a list of ASCII characters, 

allowing commands from the computer to be interpreted by the 

ventilator. This two-way communication link is implemented by use of 

two built-in predicates which have the effect of converting a list of 

ASCII characters into the required atom notation; they are 

list(List .String) and n am e( At om , S t r i n g ). (Note: in some PROLOG 

implementations this conversion is made even more simple, as the name 

built-in predicate is defined as name(Atom ,Li st)). In the program code 

illustrated below in Table 6.2 pdtest/O is the clause which defines 

communication from the ventilator to the computer, and describes a 

list of patient data. To decode what the data represent needs further 

information obtained from an ASCII look-up table (not shown).

pdtest: —

list([80,68,44,49,51,58,52,53,32,44,49,50,46,49,32,32, 
44,54,46,48,54,32,32,44,48,46,57,32,32,32,44,49, 
46,51,32,32,32,44,48,46,53,48,32,32,44,48,46,48, 
48,32,32,44,52,46,52,32,32,32,44,52,46,50,32,32, 
32,13],X),

name(Y,X),

write(Y).

TABLE 6.2 Machine Communication in PROLOG

The two arguments in the list/2 predicate are a PROLOG list and an 

ASCII string. In the example above, X becomes instantiated to 

"PD,13:45 ,12.1 ,6.06 ,0.9 ,1.3 ,0.50 ,0.00 ,4.4 ,4.2“

Apart from the string identifier PD, there are nine data fields each 

consisting of six characters. These data fields comprise the time of 

measurement and eight items of patient respiratory function. The last 

character in the list is ASCII(13), this is a non-printable character 

which represents "carriage return". Thus, when the name/2 predicate is 

reached, whose arguments are an atom and a string containing the 

characters of the name of the atom, the string has become instantiated
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and its atom equivalent is returned. This is then used by the write/1 

built-in predicate to send the patient data to an output device. At 

this point the data are in the following format :-

PD,13:45 ,12.1 ,6.06 ,0.9 ,1.3 ,0.50 ,0.00 ,4.4 ,4.2

To convert this output into a more acceptable form a data compression 

routine can be employed. This can be achieved in a number of standard 

ways. Illustrated below in Table 6.3 is a routine to eliminate each 

occurrence of a space character (ASCII equivalent is 32), adapted from 

Bratko (1986).

squeeze:- 
getO(C), 
put(C), 
dorest(C).

dorest(13) :- !. /* ASCII(13) = carriage return */

dorest(32) :- !, /* ASCII(32) = space */
get(C),
put(C),
dorest(C).

dorest(Letter) 
squeeze.

TABLE 6.3 Data Compression in PROLOG

The getO/1, get/1 and put built-in predicates are used for character 

input and output. This routine will read the first character of any 

output atom, and then continues character processing in one of three 

ways. If a carriage return is met the routine terminates; if a space 

is met it is disregarded; if any other printable character is met it 

is returned to the output. Notice the powerful use of recursion in 

this procedure. If the patient data from the previous illustration is 
compressed in this way, the output will become :-

PD,13:45,12.1,6.06,0.9,1.3,0.50,0.00,4.4,4.2

Further list processing is required to obtain the standardised data 

format for PROLOG input to other modules, where each number must be 

separated by a comma (rather than a colon, as in the time data field).

This example shows that PROLOG can handle data conversion at 

the machine-level software interface. However, in the development of 

AIRS this approach was abandoned due to pragmatic constraints. Indeed
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it is doubtful whether PROLOG processing is fast enough to cope with 

the required data-rate, and other faster commercial packages are 

available which provide the same functionality with a higher utility. 

Further investigation is required in this area before any firm 

conclusions can be reached.

6.4.2 Data presentation

Presentation of data occurs at two levels. The first uses a 

six-line ’data capture’ window (ventdb) and the second uses the full 

screen to display values in the ’database’ window (ventdatdb). The 

reason for this dual display is that users require some immediate 

visual feedback of the data being entered, hence the data capture 

window. For ease of use a similar menu to that used for data capture 

is employed to display data in the database window. Whilst in the 

database facility, it is possible to view the previous 22 values of 

any data item captured by the system.

6.5 Late Prototype System

This phase in the development of an intelligent system can be 

viewed as an important milestone, it brings together concurrent work 

in knowledge engineering and interface design. It allows the different 
levels of intelligence employed and the user interface to be examined 

by end-users. Whereas the early prototype system is denuded of 

knowledge, the late prototype system is a functioning system. To take 

advantage of bringing the users and full system together for the first 

time, the system engineer or developer may seek advice on how to 

improve the system and take note of the comments made by the full 

range of intended users. This milestone leads naturally to the next 

phase of development, which is to adapt the program for specific use.

6.6 Program Tuning

From the perspective of the system engineer, program tuning 

can be defined as the modification (and evaluation) of the software to 

improve performance so as to meet specific objectives. It is a two 

stage process: detection of problems in performance of the system (for 

example, response times); and modification of the system to correct 

the detected problems. Intuitively, this is an iterative process in 

which improvement of the system is heuristic. This indicates, perhaps, 

that a successful outcome is due to more artistic merit than 
scientific endeavour.

The techniques involved in program tuning include improving
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the code and enhancing the file structure. In AIRS a significant 
improvement in response times was achieved by optimising the items 

contained in the PROLOG database. For example, the clauses used most 

often were placed at the top of the list in the database. The file 

structure was also changed so that a patient index number linked 

demographic data files to the time-stamped clinical data collected and 

archived by the system. This allowed the write-once only demographic 

data files to be accessed when necessary rather than take up valuable 

working memory.

Three ’laws’ became evident when in this phase of 

development. A law of diminishing returns: it is estimated that 80% of 

results are obtained with 20% of effort, but it takes the remaining 

80% of effort to achieve the remaining 20% of results (although rarely 

achieving the ’perfect’ system). A law of pragmatism: there may be 

many interesting facets of development within a system, but if 

inappropriate behaviour is the outcome, effort has been wasted. 

Finally, Ockham’s Razor: the simplest (or most obvious) way of doing 

something is often the way to proceed. All three laws were involved 

during the tuning of the AIRS software.

6.7 Intelligent Knowledge-based System

The development of the intelligent knowledge-based system 

into a final product is another important milestone. However 

development of the system does not stop once this phase has been 

reached. It is crucial to realise that AIRS will remain viable only 

as long as the knowledge it embodies remains current clinical 

practice. Knowledge in the domain of respiratory therapy is dynamic, 

new treatment regimes are being reported at regular and frequent 

intervals. The onus is on the clinicians and knowledge engineers alike 
to incorporate new knowledge into the system.

6.8 Formative Evaluation

The Formative Evaluation is an amalgam of evaluative queries 

active at different times in the development process of the system. 

This is reflected in the way that this evaluation process is presented 
below.

The components of the AIRS architecture comprise a 

ventilator system, a computer system, a range of possible end-users 

and the patient (the system of interest). Only functional 

decomposition of the computer system was allowed, the other systems
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being standard. To enhance the acceptability of computer hardware a 

high resolution screen is used for data presentation, and an 

alternative means of manual data entry other than the QWERTY keyboard 

is being sought. The use of large, high resolution screens allows 

their content to be intelligible from a distance, freeing the nurse 

from the immediate environs of the patient yet still allowing a 

constant check on patient data.

The Early Prototype System shows the type of interface that 

is possible to the end-users. AIRS has a window-based menu system 

which is acceptable to all categories of end-user (student nurse to 

senior clinician). Speed of data entry was increased by using a 

mouse, although initial difficulties in handling the device meant that 

data entry was in fact slower before any benefit could be obtained. 

Menu-options were chosen at this stage, which were subsequently 

changed as development of the system progressed. A more fundamental 
change involved the use of the explanation facility: instead of having 
just one option at the main-menu level, an explanation option was 

included in each of the relevant sub-menus. Therefore far fewer key- 

clicks were necessary, thus saving time before an explanation was 

generated, which increased user acceptance of the system.

Within the off-line version of AIRS there are four types of 

interface: the hardware interface; the software interface; the human- 

computer interface; and the inter-personnel interface. In the on-line 
version of AIRS a physical connection must exist between the 

ventilator and the computer system so that data and instructions can 

be transferred between the two. It is forseen that this link will be a 

standard RS-232 or similar. The ventilator system issues data to its 

output port in terms of an ASCII equivalent to the character set. As 

shown in Section 6.4.1, the translation of ASCII characters back into 

alphanumeric format is a trivial problem using PROLOG. However in the 

off-line version of AIRS it was decided to omit this stage of data 

processing, as lists of numbers (ASCII code) do not enhance the 

transparency of the system. Instead much work was involved in the 

design of the human-computer interface, which uses a hierarchy of 

menus for manual data capture. It was important to make this method of 

data entry attractive, even though the majority of the interface would 

become redundant in the development of the on-line system. The 

evaluation of the inter-personnel "interface" can be viewed in terms 

of the educational needs of the persons involved. This functions at 

two levels: how to operate the system itself, and how to use the

125



information contained within the system. The first question should be 

addressed initially by the system engineer, and the second by senior 

nursing or clinical personnel. In AIRS the "interface" between 

clinical personnel and the patient remains an important aspect of the 

system. Evaluation of all these interfaces can be couched in terms of 

levels of communication between the sub-systems. If any one breaks 

down the integrity of the whole system is compromised.

The Formal Evaluation of Knowledge Engineering Design is 

linked in many ways to the formal evaluation of later phases of the 

methodology, and to the summative evaluation of the fully developed 

product. For example, the quality of the rule-set will not be known 

until various outcome measures are known. These include knowledge base 

"coverage" (that is, completeness of the knowledge base) and relevance 

of action suggested or explanation generated. This illustrates the 

iterative nature of the knowledge engineering design process.

The evaluation of the Late Prototype System is a first 

opportunity to query AIRS task knowledge. That is, does the system do 

what you want/expect it to do? This is the phase in the methodology 

when various teething problems can be identified and dealt with. Minor 

problems did occur at this stage in the development of AIRS, but these 

were all found to be faults with the program rather than errors in 

the process of operation.

Evaluation of the Program Tuning stage of AIRS is involved 

with observing the levels at which the set-point and trend alarms are 
set. It is also important to ensure that the correct action and 

appropriate explanation are generated for each alarm state. The system 

is able to handle situations where more than one alarm is active at 
any one time.

6.9 Summative Evaluation

The summative evaluation deals with that part of AIRS which 

is involved with data processing and interpretation. Therefore the 

analysis option of the main-menu is the focus of attention. For the 

purpose of this study the ventilatory process is deemed to consist of 

three separate functional stages: initialisation of the patient on the 

ventilator; maintaining the respiratory needs of the patient; and 
weaning the patient off the ventilator.

The initialisation stage involves knowledge of patient 

diagnosis. For each diagnostic state there are specific ventilator 

settings that should be used to initialise the patient. The maintain
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option of the analysis sub-menu is concerned with keeping certain 

measured variables from the patient within desirable physiological 

limits. This is an alarm-driven technique which uses pattern cognition 

to elicit a visual alarm when the monitored data go outside the pre-

set limits. Weaning a patient off the ventilator is the stage where 

expert system technology is used. The problem addressed is the 

determination of the point when the patient is fit enough to start the 

weaning process, and then move progressively through the SIMV mode of 

ventilation until spontaneous respiration is restored once again.

To provide a summative evaluation of AIRS a retrospective 

case study was undertaken. This utilises a computerised database which 

contains patients who have passed through the Intensive Therapy Unit, 

Royal Free Hospital, London, from May 1986 to December 1988. As it is 

routine practice to admit some post-surgical patients before they 

return to their surgical ward, all patients who entered the unit for 

less than twenty-four hours have been eliminated from the database. 

This leaves a total of 630 patients entered between May 1986 and 

December 1988; of these 427 (67 %) were ventilated at some time during 

their stay. These patients have been classified into fourteen 

diagnostic states (as previously seen in Table 6.1, p.103) which 

enables a grouped data analysis. Patients from each diagnostic group 

present their own challenge to the management of ventilatory 

performance. To meet this challenge AIRS has fifteen complementary 

management strategies. Preliminary results for three diagnostic groups 

which compare the initial ventilator settings as suggested by AIRS to 

those obtained from the retrospective study are shown in Table 6.4. 

This table shows the differences in respiratory rate (RR), tidal 

volume (TV), and the fraction of oxygen in the inspired air (FjC^). A 

more detailed statistical analysis awaits further data.

6.10 Meta-evaluation

From the evaluation of requirements, the need for an 

instrumentation system such as AIRS is strongly indicated. Progress 

in this field would be enhanced even if the system were used to 

identify possible problem areas for a subsequent generation of 

intelligent instrumentation. An attractive user-interface has been 

developed which has a fully integrated data presentation and 

storage/ret reival system as a by-product of the off-line 
implementation.
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RETROSPECTIVE
STUDY

AIRS

PNEUMONIAS

RR TV FI02

14.4 + 3.1 0.74 + 0.12 0.67 + 0.18

12 0.75 0.5

CARDIAC

RR TV FI02

11.3 + 0.1 0.76 + 0.01 0.55 + 0.20

12 0.75 0.5

HEALTHY LUNG

RR TV FI 02

12.7+1.7 0.76 + 0.11 0.43 + 0.07

10 0.75 0.4

TABLE 6.4 COMPARISON OF INITIAL VENTILATOR SETTINGS IN THREE DIAGNOSTIC GROUPS



6.11 Summary

The methodology introduced in Section 4.3 and applied 

throughout Part II of this study covers total system development, 

incorporating software development and wider issues of technology 

transfer. As well as providing coverage for the entire development 

process, the application of a methodology provides a framework for 

support for system evolution, and is necessarily an open-ended 

process.

The methodology employed allows the development process to be 

partitioned into discrete phases, these are necessary to define 

milestones for evaluation purposes. This enabled the creation of 

decision points in the development of the system which facilitated the 

direction of effort.

Part III of this study considers the decision-support process 

from a wider perspective, although it builds on work presented in 

Parts I and II. It illustrates some of the processes undertaken to 

achieve the implementation of AIRS and gives information on how and 

why particular avenues of thought were pursued.
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7 : DISCUSSION

7.1 Int roduct ion

Part I of this thesis described the evolution of the 

components which comprise an intelligent instrumentation system to be 

applied to the domain of critical care medicine; Part II illustrated 

how a methodology for system design, implementation and evaluation 

could be used to generate a specific application; Part III now brings 

together these two strands and includes the wider issues on which the 

research is based.

For ease of discussion this chapter is divided into five 

sections which reflect the different methodological activities 

introduced in Part II. Section 7.2 discusses clinical information 

systems in terms of their underlying measurement and control 

functionality and indicates how intelligence can be embedded into such 

systems by using a knowledge-based formalism. This description 

illustrates the design concept of an intelligent measurement system. 

For its implementation, knowledge derived from human experts has to be 

transformed into a set of symbols which represent machine-readab1e 

software code. Two distinct phases can be identified within this 

transformation process: knowledge elicitation and knowledge 

representation. Discussion of each of these phases can be found in 

Sections 7.3 and 7.4 respectively. No matter how well knowledge is 

acquired and represented the intelligent system will not be used 

unless the interface to the user is attractive and meets other defined 

user requirements. These matters are discussed in Section 7.5, the 

Human-Computer Interface. A measure of the worth of the intelligent 

system can be determined at various points during its evolution. This, 

and a more general discussion of the evaluation of intelligent systems 

can be found in Section 7.6. Both specific and general conclusions of 
this study follow in Chapter 8.

7.2 Clinical Information Systems

Clinical information systems are underpinned by clinical 

measurement, which itself can be defined as those data collected in 

context of providing information about the physiological well-being, 

or state, of a patient. If patient state is regarded as a dynamic 

entity, then clinical measurement provides the basis from which 

patient state trajectory can be determined. Although this is a 

description which many clinicians would fear, the concept of patients
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residing in a ’state space’ has been used with some success by several 

clinical groups (Siegal, 1981; Shoemaker et al., 1982). Such an 

approach is favoured because it is more rigorous than the more 

traditional diagnostic-based approach to patient management issues.

Measurements, data, information and knowledge are related to 

each other by a series of transformations (see Figure 7.1). When 

recorded measurements of a particular variable are ordered, for 

example as a time series, they can be described as data. To transform 

these data into information requires classification of the data 

elements. Finally, knowledge can be obtained by interpretation of 

information together with appropriate explanation and/or 
justification.

For a complete understanding of clinical information systems 

employed in a critical care unit it is crucial to comprehend the 

general principles of measurement which form their base. A definition 

of measurement can be given as:-

"Measurement is the process of empirical objective 
assignment of numbers to the properties of objects and 
events of the real world in such a way as to describe them."

(Finkelstein, 1982)

If this definition is accepted then it is imperative to realise that 

measurement is concerned with two complementary systems: the natural 

system of the ’real’ world and the formal system of the ’model’ world.

Natural systems comprise some perceived aspect of the real 

world which we wish to study. There is a set of qualities in which 

exist definite relations. A perceived quality can be termed an 

’observable’, which is the most fundamental unit of the natural 

system. Relations between two or more observables can be termed a 

’linkage’. Thus, the study of natural systems can be described in 

terms of system observables and linkages. For example:-

"If an interaction between any two natural systems sj, S2 > 
causes some change in S2 , say, then the vehicle responsible 
for this change is an observable of Si, and conversely."

(Rosen,1985)

Quantitation can be introduced into the analysis of natural systems by 
noting that:-

"...if a quality of such a system corresponds to an 
observable, a quantity corresponds to a specific value of an 
observable. "

(Rosen,1985)
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This introduces the formal system which can be described in terms of 

mathematical entities and the mappings between them together with the 

relationships that they satisfy.

To establish the essential relationship between natural and 

formal systems, the entities and linkages contained within each system 

are deemed synonymous. Figure 7.2 depicts the degree of synonymity. 

Within the natural system there are two entities, ’A’ and ’B’, with a 

causal link between them, that is, a relationship exists between a 

cause and effect of an action in the natural world. The encoding 

relation transforms observables and linkages in the natural system via 

observation and measurement into symbols and propositions that 

represent ’A’ and ’B’ in the formal world. This defines a modelling 

relation between the natural and formal worlds. Within the formal 

system ’A’ and ’B’ can be linked in various mathematical ways, but of 

interest to this study is if they are linked by inference rules. That 

is, IF antecedent conditions are true THEN consequents fire an action 

(IF A THEN B). If a set of related entities from the natural system, 

which define some body of knowledge, are represented in the formal 

system by a set of inference rules, then the encoding relation can be 

termed knowledge-based modelling. Examples of knowledge-based systems 

from the medical domain which illustrate variations on this type of 

modelling can be found in Appendix I. The decoding relation can be of 

a multipurpose nature: for description, explanation, control and/or 

prediction. Most knowledge-based measurement systems (including AIRS) 

describe, explain and control (in open-loop mode) the processes that 

they represent. However, predictive models provide a powerful tool 

when it is important to gain information about a future state of a 

natural system. For example, being able to predict future patient 

state on the basis of some control action.

To be aware of how these philosophical issues relate to day- 

to-day activity within a critical care unit, the measurement system 

can be viewed from another perspective. Figure 7.3 shows the elements 

of a general measurement system, which when errors are ignored 

comprises the system of interest, the measuring system and the method 

of display. However, errors are introduced inherently into the 

measuring system, so it becomes important to realise that the measured 

value of an observation will not be exactly the same as its true 

value. A full account and classification of these errors can be found 

in the literature (for example, Barry, 1978; Hofmann, 1982).

134



ENCODING

U)

causal
link

rules of 
inference

FIGURE 7.2 RELATIONS BETWEEN NATURAL AND FORMAL SYSTEMS



ERROR

SYSTEM OF 
INTEREST

true value MEASURING measured value DISPLAY
of observable SYSTEM of observable SYSTEM

FIGURE 7.3 GENERAL MEASUREMENT SYSTEM



For the management of patients who require intensive care a 

large and diverse range of physiological data are required. There are 

also a range of measuring techniques to cope with the different types 

of data encountered (see Table 7.1). A set of sensors is required 

which can detect changes in pressures, flows, volumes, temperatures, 

inputs, outputs, input-output relations, biochemical processes and 

elect rophysiological signals. Some sensors, such as those found in 

most modern ventilators (flow, pressure, volume and temperature), are 

in direct contact with the system of interest. Others have indirect 

contact, with varying degrees to which they are abstracted from the 

physiological process of interest. For example, for the on-line 

measurement of arterial blood pressure a saline-filled cannula is 

introduced into (say) the brachial artery of the arm, the other end 

being attached to a cuvette in which the pressure transducer resides 

and is external to the patient. The pulsatile nature of the arterial 

blood pressure can be observed through the transparent cannula as 

oscillations in the level of the blood-saline interface. Blood 

pressure is therefore recorded as the action of the saline fluid on 

the transducer. The accuracy of this measure depends on factors such 

as the compressabi1ity of the saline fluid, the rigidity of the walls 

of the cannula, and the characteristics of the pressure transducer 
itself.

For monitoring purposes a basic set of observations can be 

identified which allows the state of the patient to be inferred at any 

point in time. This set of variables differs slightly between 

institutions dependent upon the varying clinical specialities catered 

for within each hospital. When a time series has been collected the 

detection of trends becomes possible, allowing the patient-specific 
treatment plan to be optimised (Blom et al., 1985).

In critical care medicine it is often desirable to keep 

certain key physiological variables within well defined limits. If 

these limits are exceeded a control action brings about a change so 

that the system returns to within the accepted levels. AIRS 

demonstrated this feedback principle in open-loop mode: if minute 

volume decreased to an unacceptable level, advice was given to the 

user to raise the respiratory rate and/or tidal volume. Closed-loop 

feedback systems have also been used in clinical situations, for 

example to control arterial blood pressure in hypertensive patients by 

intravenous administration of nitroprusside (Sheppard, 1980).

As measurement technology has advanced there has been a
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PRESSURES

Arterial blood pressure (systolic, diastolic) 
Venous blood pressure 
Pulmonary capillary wedge pressure 
Intra-cranial pressure

FLOWS

Blood flow 
Respiratory gas flow

VOLUMES

Tidal volume 
Minute volume

TEMPERATURE

Core temperature 
Peripheral temperature (big toe)

INPUTS

drugs /  doses

OUTPUTS

Cardiac output

INPUT - OUTPUT RELATIONSHIP

Fluid - electrolyte balance

ELECTROPHYSIOLOGICAL SIGNALS

Electrocardiogram 
Electroencephalogram 
Evoked responses

BIOCHEMISTRY

Haematological 
Liver function tests

TABLE 7.1 EXAMPLES OF PATIENT DATA
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shift towards integrating microprocessors or microcomputers into 

biomedical instrumentation systems. This is evident in the ventilator 

component of AIRS, where a microprocessor sends and receives control 

signals from pressure, flow and temperature sensors mounted at 

strategic places in the ventilator system. This data processing 

functionality has been defined previously in the Introduction as 

giving rise to a ’smart’ instrument; for an instrumentation system to 

be described as ’intelligent’ there must be incorporated within it an 

information processing requirement for a knowledge-based component. 

Thus, this type of instrumentation system differs from conventional 

technology by having as a necessary requirement mechanisms to elicit 

expert-level knowledge and to represent that knowledge in a way that 

is programmable by computer. The way this is achieved in AIRS is 

discussed below, comparisons can also be made with other methods of 
knowledge elicitation and representation.

7.3 Knowledge Elicitation

It has been shown previously that the difference between 

’smart’ microprocessor controlled instruments and intelligent advisory 

systems is the level of knowledge embodied in the latter. This 

knowledge does not appear de novo, rather it is acquired from the 

literature and human experts. The process of knowledge acquisition 

has been described as a "bottle-neck in expert system construction" 

(Hayes-Roth et al., 1983), so it is not suprising to see a plethora of 

techniques becoming available to try and address this issue. This 

section will identify some of the most popular techniques for 

knowledge elicitation, that is, that branch of knowledge acquisition 

which deals with human experts. It is common for experts to fall into 

one of three categories: academics, practitioners and domain ’Tsars’. 

Generally, academics provide a theoretical base for a given domain; 

practitioners have experience of using a particular body of knowledge 

and therefore provide a pragmatic base; and domain Tsars have the 

ability to combine theory and practice. Knowledge engineers must be 

aware of the scope and limitations of their human experts, and be 

prepared to accept that the perception one expert has to a particular 

problem may not be the same as another. In situations where there is a 

clash of opinion, a ’gold standard’ should emerge when knowledge is 

elicited from a range of experts. It is recognised that this method of 

acquiring a gold standard may not be feasible in some domains. For 

example, in situations where there is a lack of agreement between 

experts, problem solving may be considered an art rather than a
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science, and therefore any attempt at formal representation of the 

problem domain is unlikely to succeed.

To compound the difficulties faced by the knowledge engineer 

there are different types of knowledge, given by the following 

epistemological classification of expertise (Shadbolt and Burton, 

1989):

i) Domain level knowledge

This is defined as knowledge that describes the concepts and 

elements in the domain and the relations between them. That is, a 

declarative description is obtained about what is known for each 

concept in the domain.

ii) Inference level knowledge

This is defined as knowledge about how the individual 

components of expertise in the domain are organised and used in the 

overall system; this type of knowledge may be implicit from a 

pragmatic viewpoint.

iii) Task level knowledge

This is defined as procedural knowledge which deals with how 

goals should be reached.

iv) Strategic knowledge

This is defined as knowledge which monitors and controls the 

systemic problem-solving strategy. For example, strategic knowledge 

deals with problems associated with conflict resolution.

Thus, if the overall aim of knowledge elicitation is to 

specify a body of knowledge which is complete, consistent and as 

correct as possible, then several overarching questions must be borne 

in mind:

* What is the role of the intelligent advisory system?

* How is the domain mapped out in terms of significant concepts and

relationships?

* What is the task structure of the domain? Are there any ’special’ 

relationships between concepts?

* Is there a need for more than one type of strategic knowledge?

Knowledge elicitation can therefore be a complex process, 

best dealt with by a range of techniques. In this study a ’structured
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interview’ elicitation technique is used and is discussed below in 

some detail. Other elicitation techniques are discussed for 

comparative purposes and indicate potential areas for future 

development in this field.

7.3.1 Structured Interviews

The most popular knowledge elicitation techique is the 

structured interview. There are various formats that can be used 

within a structured interview, two of the simplest methods are 

outlined below. Using the first method the expert is given a list of 

variables that are used to describe the domain and a list of 

conclusions which describe all possible outcomes of the system. 

Production rules of the format:

IF <variable 1> <value> 

and <variable 2> <value>

and «variable N> <value>

THEN «conclusion A>

can then be derived which link the two lists. It is important for the 

knowledge engineer to attempt to formalise all rules stated, whether 
they be explicit or implicit in nature.

In the second method the expert is given a brief verbal 

outline of the target task, such as ’weaning patients off ventilators 

using synchronised intermittent mandatory ventilation’. Topics 

covered in the outline should (as before) include a description of the 

possible solutions to the problem and a description of the variables 

which may affect each solution. However, in this method a list of 

major rules which connect the variables to the solution should also be 

stated explicitly. The task for the knowledge engineer is then to 

take each elicited rule in turn and enquire about the conditions 

required which increase or decrease its appropriateness. This 
procedure reveals the scope of each rule, and in its test for 

relevancy new rules may be generated. This cyclic nature of rule 

generation continues until it is clear that the expert will not 

produce any additional information.

It is possible to use both of these methods in conjunction 

with one another, where the first method produces the rule list for 

the second method. In both cases the knowledge engineer should 

attempt to keep his contribution to the structured interview process
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to a minimum. This can be achieved by careful phrasing of the trigger 

questions. A "Why..." query is useful as it converts an assertion 

made by the expert into a rule. Similarly, a "How..." query generates 

rules at a lower level in the knowledge hierarchy. A “What if..." 

question simulates a forward scenario for which new rules may be 

generated. To reveal the scope of a rule, or of a set of rules, a 

“When..." query could be used which could also act as a catalyst for a 

new rule set. Finally, if the goal of the knowledge engineer is to 

generate further dialogue when the expert has come to a temporary 

lull, the "Can you tell me more about..." is a good device to use.

In the development of AIRS both methods of performing 

structured interviews were employed to elicit knowledge. For example, 

after identification of the seven variables which appear on the AIRS- 

maintain screen, the possible action and explanation outcomes were 

elicited by forward scenario simulation of each alarm state. 

Conversely, the full set of trigger question types were required to 

elicit knowledge for AIRS-wean. Concepts used in weaning patients off 

ventilators were eventually organised into a hierarchy, described 

previously in Section 6.3.3.

The advantages of the structured interview approach to 

knowledge elicitation are threefold: the expert only has to put aside 

a small amount of time in what is usually a busy schedule; the 

experts generally enjoy this method of knowledge elicitation; and the 

method can be used to elicit knowledge from any domain. However 

there are also a number of disadvantages which can be split into two 

sub-groups: those which deal with the expert as subject; and those 
which deal with the knowledge engineer.

In the former category it is sometimes difficult to get 

experts to obey instructions as generally they do not respond in a 

systematic manner and are prone to give anecdotes rather than rules. 

In some domains it is difficult to establish clear rules in 

production rule format. To obtain maximum efficiency of transfer 

between the human expert and the computer-based system it is essential 
for the expert and the knowledge engineer to have a good rapport. To 

engage in any meaningful knowledge transfer it is worth spending some 

preliminary sessions mapping out the knowledge domain, which also 

enables the knowledge enginer to have an opportunity to get to know 

the expert and his way of conceptualising a problem.

From the point of view of the knowledge engineer the
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structured interview technique requires a priori knowledge of the 

domain so that trigger questions are meaningful and lead to the 

capture of a large amount of rules. For the knowledge transfer 

sessions to go well the knowledge engineer needs to be astute and 

alert to changes in theme. From a resource stand-point this method is 

very time consuming for the knowledge engineer. To aid the ease of 

knowledge elicitation most meetings are tape-recorded from which a 

written transcript is obtained, and many iterations of the technique 

are necessary before a ’complete’ rule set is obtained.

7.3.2 Other Techniques for Knowledge Acquisition

Although the structured interview technique was favoured for 

the elicitation of knowledge for AIRS, various other techniques have 

become available in recent years, including: Protocol analysis; 20 

questions; Laddered grids; Repertory grids; and Automatic techniques. 

A brief description of each follows.

Protocol analysis is a generic term used to describe several 

similar methods of knowledge elicitation. Their common theme is that 

the knowledge engineer records the routine activity of an expert 

during the solving of a particular problem task. Protocols are then 

made from the written transcripts of the record (for example, on 

audio/visual tapes) from which rules can be extracted. To be 

successful the knowledge engineer must be acquainted with the domain 

of interest; if this is not the case an alternative strategy can be 

used where another expert ’shadows’ the expert performing the 

problem-solving task in order to explain the nuances of what is 

happening. In general protocol analysis elicits the "when...“ and 

"how..." of using different items of the knowledge base as well as 

revealing the various reasoning strategies. A problem with protocol 

analysis is that it is very time consuming, and only a small section 

of the domain can be addressed each session.

The 20 Questions knowledge elicitation technique is useful 
in the initial stages of knowledge structuring. Initially the expert 

is provided with little or no information about a particular problem 

to be solved. The expert must then ask the knowledge engineer for 

specific data or information that is required to solve the problem, 

(the knowledge engineer can qualify any answer given). Using this 

format, processing rules can be formed from the requests for 

information from the expert, where not only what is requested but also 

in what order the information is requested, are important knowledge
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sources.

An obvious disadvantage of this technique is that the 

knowledge engineer has to be an expert in the domain to answer 
questions from the expert. Other disadvantages include: the technique 

is time consuming to prepare, it is sometimes difficult to infer 

rules, and experts do not like being relegated to role of 

subordinate.

The laddered grid technique provides a graphical 

representation for a hierarchy of domain knowledge. A qualitative 

two-dimensional graph is produced which shows ’concept nodes’ 

connected by 'labelled arcs’. To construct this graph the knowledge 

engineer and expert confer, starting with a seed item which is 

mutually agreed. The position of the nodes in the domain map is an 

important item of information and several verbal devices can be used

to distinguish the place for each node. These include, "How__" or

"Can you give an example__“ to move down the conceptual map;

"What...." to move up the conceptual map; and "Give me 

alternatives...." to move across. The knowledge engineer can choose 

the order in which the map is drawn by using the appropriate verbal 

cue.

A repertory grid is a technique in which the expert is 

presented with a set of cards. Each card has a single concept written 

on it and represents an element in the domain of interest. To 

construct the repertory grid the expert chooses three cards, two of 

which are similar and one of which is different. A label is given to 

the feature which provides the reason for discrimination. This process 

continues with different triads of elements until the expert can think 

of no further discriminating constructs. The outcome of this 

technique is a matrix of ’similarity ratings’ which relate the 

elements and their labels. To analyse the results the statistical 

technique of cluster analysis is used. Rules can be elicited directly 
from the grid.

The advantage of this technique is that it uses a formal 
method to elicit information which may not have been forthcoming using 
a conventional interview technique. However, analysis can be very 

time consuming and sometimes difficult to interpret. To aid the 

knowledge engineer, there is a software program available which 

performs the repertory grid analysis interactively with the domain 

expert (Shaw and Gaines, 1987). This technique is best suited to 

small scale domains even when the computer-aided method is used.
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In each of the knowledge elicitation techniques discussed 

thus far, a limiting feature has been that the knowledge engineer 

acts a filter for information and if a control engineering analogy is 

taken some signal is invariably lost. To counter this problem 

automatic knowledge elicitation procedures are becoming popular. These 

are techniques where the expert imparts knowledge directly into the 

computer-based system. There are two main methods in use: machine 

induction and knowledge-base browsing.

Machine induction has the longer history, with perhaps the 

best known algorithm for rule capture being ID3 (Quinlan, 1979). The 

ID3 algorithm is implemented on a computer and uses a statistical 

pattern recognition technique to infer rules from training examples 

that the experts provide. These training examples are solved problems 

from the domain of interest. An expert system shell is available 

which is based on this algorithm (’First Class’, Programs in Motion 

Co.). The machine induction technique does not provide a complete 

solution to automatic knowledge elicitation as the knowledge engineer 

together with the expert have to decide what metrics to measure to 

reach particular conclusions. A major disadvantage of machine 

induction is its way of handling causality. The fact that a 

particular set of precursors co-occurs with a particular conclusion 

does not necessarily imply a causal relationship.

A more recent development in automatic knowledge elicitation 

is the knowledge base browser approach (Chelsom, 1990). This method 

has become possible due to the rapid development of computer hardware 

and software, where a major emphasis has involved the human-computer 

interface. In this technique the expert first establishes a taxonomy 

of classes in the form of a hierarchy. The data which are required to 

provide information about the whole domain are established. The task 

of the expert is to then go through each ’knowledge node’ 

systematically, detailing which items of data are important for that 
particular node and to indicate at what value each item of data change 

their levels of significance. A subjective measure of ’belief’ is 

also added at this stage. The outcome of this procedure is the 

definition of a ’problem hypothesis space’ which can be interrogated 

at will. A disadvantage of this technique is that the problem to be 

studied has to be classifiable into a hierarchy. The expert must also 

be familiar with state of the art technology used at the human- 
computer interface.
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7.4 Knowledge Representation

Knowledge representation can be achieved in numerous ways: 

frame-based systems (eg. PIP); systems which use semantic nets (eg. 

CASNET); and the use of a blackboard architecture for software control 

and knowledge representation (eg. HEARSAY-II). Further discussion of 

these techniques and systems, together with an operational description 

of MYCIN which uses a rule-based formalism, can be found in Appendix 

I. As AIRS uses a rule-based representation itself, this method of 

knowledge representation is discussed below.

7.4.1 Rule-based Systems

There are three necessary constituents which make up a 

rule-based system : a database of pertinent facts which can be updated 

and modified; a knowledge base consisting of rules which relate items 

of data; and an inference engine which matches rules in the knowledge 

base with facts about a particular event as they are entered by the 

user. Thus, the information model that this type of system uses is to 

infer intermediate data findings from the rules executed from data 

input by the user, which has the effect of gaining extra information 

about a particular problem. The rule execution cycle continues until 

an impasse is reached, that is, when no conclusions can be formed from 

the data input by the user (the system then may request more data), 

or the top-goal of the system can be concluded from the data already 

available, this stops the execution cycle.

Rule-based systems are typified by a production rule 
inference mechanism, shown in Table 7.2:

IF <antecendent 1>
<antecendent 2>

Antecedent N>

THEN •«consequent >

TABLE 7.2 The Format for a Production Rule

Each system consists of many rules of this type, these may 

be chained together by allowing rule antecedents in one part of the 

rule-base to be a consequent of another rule in another part of the 

rule-base. For example, let a mythical list of antecedents and 

consequents for a particular application be represented by the letters 

A to G; further, let two rules be defined as described in Table 7.3:

146



RULE 1

IF i)A and
ii)B and 

iii )C

THEN D

RULE 2

IF i)E and
ii)F and 
iii )G

THEN C

TABLE 7.3 Two General Production Rules

This example illustrates the principle of rule chaining, as 

in evaluating the antecedents of Rule 1 a consequent of another rule 

(that is, Rule 2) is met. Thus, for the consequent D to be asserted 

as a fact, sub-goals A,B,E,F and G have to be evaluated. In a 

simple system these sub-goals could all be user queries about patient 

findings which establish the existence of a pathphysiological 

disorder. In some systems, including MYCIN, the consequents can also 

have weightings attached to them which indicate the likelihood of a 

particular event occurring. When rules chain together these likelihood 

values interact in a way to reflect the conditional probabilities of 

two or more events happening simultaneously.

Another way of conceptualising the rule-base is to think of 

the rules organised into hierarchical sets, sometimes referred to as 

’goal trees’ because of the order of rule execution. In the simple 

two rule example above this corresponds to the representation 

illustrated in Table 7.4:

D

A

TABLE 7.4 A ’Goal Tree’ Representation

By considering the rule-base as an ordered hierarchical set, 

both the control strategy and explanation facility of rule-based 
systems can be formulated.

When the inference engine matches the consequents of rules 
in the knowledge base with data in the database a forward-chaining 

inference mechanism is defined. Conversely, if the match is with the 

antecedents of the rules, then a backward chaining inference mechanism
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is the outcome.

In more detail, the forward-chaining mechanism starts with 

data in the database from which all antecedents of satisfiable rules 

are fired in order of appearance in the rule-base. The successful 

antecedents then become further items of data and are added to the 

dynamic database. Of course, the antecedents which succeed may be the 

consequents of rules at a higher level in the goal tree, and so the 

inference mechanism is reiterated. This process continues until more 

data are requested or the top-goal is reached. In systems which use a 

forward chaining inference mechanism, for example the 0PS5 environment 

(Forgy, 1981), the efficency of the system is determined by the order 

of rules in the rule-base.

Backward chaining inference systems start with the top goal 

in the goal tree from which its consequents must be evaluated. These 

invoke further rules whose antecedents are the consequents of the top 

goal. Again, this procedure continues until confirmatory data 

required by the system are requested. If these data already exist in 

the database the leaf nodes succeed, that is, the goal nodes at the 

base of the goal tree are satisfied. These in turn send a wave of 

goal successes back up the goal tree, ultimately leading to the 

success of the top goal rule. However, if the confirmatory data does 

not exist in the database, goals which require user interaction are 

fired in order that the required data may be input. The EMYCIN shell 

used by the MYCIN system uses this form of inference mechanism, where 

the top goal is a therapy rule which asks if there are any organisms 

present which require therapy (Shortliffe, 1976). The normal 

execution cycle of PROLOG also mimics a backward chaining mechanism.

In.AIRS there are three types of rule : weaning, regression 

and progression. The top goal of the weaning rule set is given in 

Table 7.5:

premise (0.1, weaning, [fit-to-wean]) 
equals (0,1, weaning, fit-to-wean, yes).

where first argument is the Rule Number
second argument is the Premise Number
third argument is the Rule Type
fourth argument is/are the Dependent Variables.

TABLE 7.5 The Top-goal of the Weaning Rule Set
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To satisfy the goal ’ fit-1o-wean’ six further rule 

hierarchies have to be satisfied (see Section 6.3.3). A backward 

chaining inference mechanism is used where the leaf nodes fire 

questions to the user in order to add items of data to the database.

Two types of explanation are possible in these systems : WHY 

explanations and HOW explanations. WHY queries are dealt with by 

ascending the goal tree and show which items of data are required to 

determine the antecedents of sub-goals. Conversely, HOW explanations 

descend the goal tree, chaining together the events which are 

necessary to reach a particular conclusion. In AIRS, both types of 

explanation are given in terms of a list of the goal nodes passed 

through to reach a particular conclusion.

One problem encountered in rule-based systems is that of 

conflict resolution; that is, if a condition arises that both negates 

and satisfies a particular rule. The most common solution to this 

impasse is to invoke a meta-rule. In AIRS there is one meta-rule, 

which is shown below in Table 7.6:

IF progression rules succeed 
regression rules succeed

and

THEN regress

TABLE 7.6 AIRS Meta-rule

Thus, AIRS errs on the side of safety. This is an important 

principle which many researchers take one step further (Table 7.7):

IF no conclusion(s) apparent

THEN do nothing

TABLE 7.7 A General Meta-rule

Here, if the system is unable to come to any conclusion then 

current opinion dictates that the system takes no action rather than 

an action which may be erroneous. Although this maxim can be applied 

to any type of knowledge representation it is particularly true for 

production rule systems where there is usually only one consequential 
action.
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7.5 The Human-Computer Interface

There are many synonyms which describe the interface between 

the (human) user and computer, including ’man-machine interface’ or 

more simply ’user interface’. These are attributable perhaps to the 

relevant newness of the area of research. The choice here of ’Human- 

Computer Interface’ (HCI) is deliberate, for it is a phrase which 

describes the juncture between two of the components featured 

previously in the design phase of AIRS (see Figure 5.1).

Research themes which include the investigation of the HCI 

are popular due to the rapid proliferation of computer systems in all 

sectors of society. Whereas there may be an increasing number of 

people able to program computers, there is still an order of magnitude 

greater number of people who can be described simply as computer 

operators. This mul ti-perspective view of the HCI becomes more 

apparent when dealing with knowledge-based systems in highly complex 

environments such as that exhibited by a High Dependency Environment. 

For example, at certain times there may be a conflict of interest 

between efficient programming capability and the interface 

requirement. To identify the pertinent issues involved in HCI 

design, the user requirements for the system are an important source 

of information. It is essential that computer programmers (system 

designers) take into account these issues when creating computer-based 

systems for widespread use, for if not it is probable that the system, 
when implemented, will remain unused.

An integrated approach to HCI issues is required which 

matches what the user wants from the system to the type of interface 

available using the programming environment. Traditionally the HCI 

consists of a keyboard for input into the computer system, and a 

visual display unit (VDU) or printer for display of the output. By 

using an integrated approach, the HCI can be categorised in terms of 

type of alternative device for input/output; graphics capability of 

the system; and other more specific configurable features.

A need for peripheral devices which provide an alternative 

method for input into the system became apparent as soon as computer- 

based technology reached the business community. Many computer 

operators have limited keyboard skills which means that as a 

consequence data input is a rate-limiting step. To counter this 

problem two types of input device have evolved : the pointing device 

which must be used with associated software; and devices which use
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pressure-sensitive sensors. The most popular pointing device is the 

mouse, although it is becoming evident that control of a trackerball 

requires less dexterity. The trackerball also has the advantage of 

having a smaller ’footprint’. A transparent pressure-sensitive 

overlay placed on a VDU screen is the sensor for another pointing 

device - the finger of the user. More recently the sensing element has 

evolved to an infra-red matrix, this method of location is more 

reliable than its predecessor. In the design phase of AIRS an external 

pressure-sensitive graphics pad is specified as an alternative input 

medium (described in Chapter 5).

Changes in input/output device have heralded further changes 

in the quality of screen interface. Graphics packages are becoming 

the norm, a ’windows interface’ with associated menus and pull-down 
screens being a popular configuration. It is also possible to perform 

multi-tasking with advanced graphics packages. This has obvious 

advantages in complex environments, for example, data can be collected 

continuously from on-line monitoring devices whilst historical trends 

or trend predictions are being computed and displayed simultaneously.

Other features of the HCI include its capability for 

handling communications, being user-friendly for all types of end- 
user, being maintainable and its robustness. Increasingly, stand-

alone computers are being networked into larger communications 

systems, either via a local network or as part of a wider commercial 

communications system. This is an attractive feature for computer 

systems employed in High Dependency Environments, as messages relating 

to patient care can be left on the system or sent to/from a remote 

source. If the system is connected to a commercial network it is 

possible to form diagnostic-related databases for the benefit of 

future patient care. For example, by its very nature a rare clinical 

condition occurs infrequently, the chance that the same hospital will 

admit further similar cases is therefore also rare. However, if a 

clinical database for all such cases is created at one national site, 

clinicians can send electronically the details of particular patients 

which will complement the database. In return the clinician can 

receive management guidelines generated from previous attempts at 

treating similar conditions. Indeed, there is nothing to prevent the 

formation of an international database for particular clinical 

findings. Creation of such databases would enable research into the 

clinical time course of the disease and could lead to improved therapy 

planning.
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Research into how users use computer-based management 

systems has revealed that expert users may look at specific items 

whereas the novice user requires a more general picture. The notion 

here is that the expert has a ’mind model’ based on experience of 

looking at similar cases, and uses the system to fine-tune some of the 

parameters. However, the novice user has no such experiential 

knowledge to draw upon, and therefore uses the system to help form a 

model. Any HCI must therefore cater for both types of user - the 

expert ’vertical-mode’ user and the novice ’horizontal-mode’ user.

For the HCI to be maintainable there is a requirement for 

modular programming. This allows redundant features of the HCI to be 

removed and new features or upgrades of existing features to be added. 

The HCI must also be robust for users to gain confidence in using the 
system.

Although the current ’ w i n d o w s -1 y p e ’ HCI of AIRS is 

attractive and easy to use, it is too slow. The requirement for fast 

access into the system and faster screen management can now be 

achieved using commercial software packages written in real-time 

programming environments. Extra facilities are also available, for 

example, a notepad data entry screen for free-text input together with 

a word-processing functionality. Both of these facilities are useful 

for generation of patient care reports.

The HCI of the future may be more general than those 

available at present, sculpted by a user interface management system 

(UIMS). Essentially the UIMS is a software device which is placed 

between the user and the application program and graphical 

presentation manager. It comprises a set of software tools which 

support the implementation and evaluation of interactive human- 

computer dialogues. The overwhelming advantage of this type of system 

is that high quality user interfaces can be generated by the end-user. 

The result of this collaboration should be that the software 
application will be used effectively and efficiently because the user 

has defined the HCI rather than the applications programmer.

7.6 Evaluation

In the formulation of a strategy for evaluation, analogies 

have been drawn from evaluation studies in domains which have a richer 

history than knowledge-based technology. These are: mathematical 

modelling; clinical trials of a new pharmaceutical; and the social
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sciences. Figure 7.4 shows a different perspective of knowledge base 

development than used previously in this study, its emphasis is on 

knowledge processing rather than whole system development. The figure 

illustrates the mappings between a basic process model of knowledge 

engineering and the evaluation issues that can be ’covered’ by 

strategies in the analogical systems.

The validation of mathematical models can be defined as the 

extent to which a model satisfies the objectives for which it was 

formulated. Two types of criteria can be applied to such models; 

internal and external (Leaning, 1980). The mappings in Figure 7.4 

indicate that the internal criteria cover the development of the 

intelligent decision aid, whilst the external criteria cover program 

tuning and the goal state where data are required for validation 

purposes.

Internal criteria for mathematical model validation comprises 

consistency, completeness and algorithmic validity. Consistency and 

completeness refers to the finding that the model should not contain 

any logical, mathematical or conceptual contradictions, and should 

represent all possible aspects of model configuration. Algorithmic 

validity refers to the requirement that any algorithm used in the 

model is appropriate and leads to accurate solutions. The analogies to 

knowledge-based technology drawn from this work are clear - 

consistency and completeness can be applied directly to the 
development of the knowledge base, and algorithmic validity can be 
applied to the adequacy of knowledge representation.

External validation comprises empirical validity, theoretical 

validity, pragmatic validity and heuristic validity. Empirical 

validity describes the extent to which the mathematical model 

corresponds to available data over the intended range of application; 

theoretical validity requires any model to be consistent with accepted 

theory; pragmatic validation describes the extent to which the model 

satisfies its initial objectives; and heuristic validation assesses 

the potential of the model for scientific explanation. The external 

validation criteria for development of mathematical models map into 

the issues of system effectiveness, acceptability and usability when 

applied in the knowledge-based system domain.

Clinical trial protocols can be divided into three phases. In 

Phase I the safety aspect of the drug is determined, for example, the 

measurement of maximum tolerated dose. Phase II tests the efficacy of 

the drug, and Phase III uses a multi-centre trial to assess the
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effects of the new treatment regime and compares it to the best 

available existing therapy. From Figure 7.4, it can be seen that the 

safety aspect has been mapped into the process for producing the first 

prototype system from the initial stage of knowledge acquisition. 

Clearly, the Phase II objective of producing the desired effect can be 

mapped into the program tuning phase of system development. The third 

phase of multi-centre trial maps to the evaluation of the goal state, 
and can be considered as summative evaluation.

The methodology described in this thesis suggests one way of 

introducing an intelligent information system into a pre-existing data 

processing environment. Its emphasis is on the evaluation process, as 

this has been identified as a route towards ensuring a high user 

acceptance. Different facets exist in the evaluation process, 

demonstrated by the lack of consensus for its definition and 

terminology when applied to intelligent systems. A possible (and 

candidate) solution to this problem comes from the social sciences, 

where a ’user-focused’ approach has been used to define a multi-

perspective view of evaluation, as follows:-

"...the systematic collection of information about the 
activities, characteristics, and outcomes of programmes, 
personnel, and products for use by specific people to 
reduce uncertainties, improve effectiveness, and make 
decisions with regard to what those programmes, 
personnel, or products are doing and affecting. This 
definition of evaluation emphasizes 1) the systematic 
collection of information about 2) a broad range of 
topics 3) for use by specific people 4) for a variety of 
purposes."

(Patton, 1982)

This definition is favoured because it places emphasis on a systematic 

approach to the information requirements of the different end-users. 

The "systematic collection of information" reflects the information 

gathered at each stage of the methodology; the "broad range of topics" 
reflect the different types of evaluation which cover different 

aspects of the underlying phases of the methodology; the specific 

users of the system are identified at an early stage in the 

methodology; and the "variety of purposes" are reflected in the 

interest in the evaluation shown by the different type of user.

Hence, evaluation protocols taken from the Social Sciences 

have the broadest scope, and the types of evaluation from this domain 

illustrated in Figure 7.4 are by no means exhaustive. The various 

strategies shown are also not mutually exclusive, as indicated by the

155



high degree of integration. Unlike the domains of mathematical 

modelling and clinical trials, evaluation in the Social Sciences 

investigates the requirement for a proposed system. A needs assessment 

matches what the user requires to solve a problem with the resources 

that are available. Front-end analysis describes a more strategic 

level of analysis than a needs assessment, providing guidance in the 
planning and implementation of programmes. Internal evaluation is 

performed ’in-house’ and comprises decision-focused evaluation and 

formative evaluation. Decision-focused evaluation provides the 

information required to make a specific decision on progress at a 

specific juncture in the programme; and formative evaluation 

investigates how the present system can be improved. The former maps 

into the development of the knowledge base, whereas the latter covers 
the iterative process of program tuning. External evaluation is 

performed by ’third party’ assessors, and can consist of summative 

evaluation and impact evaluation. In the Social Sciences, summative 

evaluation investigates whether or not the programme should be 

continued; impact evaluation considers the extent to which there is a 

change in the environment in which the programme resides. In the 

knowledge-based domain this can represent the evaluation of the goal 

state. Also, in the Social Sciences the evaluation process of a 

programme is sometimes evaluated, this ’meta evaluation’ covers the 

entire development process, from initial requirement to achievement of 

the final product. Such a concept would also be useful in the 

knowledge-based domain.

It is evident from this study that the evaluation of 

knowledge-based systems should be considered as an essential and on-

going activity. However, this process is hampered in the medical 

domain, being partly due to its multi-perspective nature in a clinical 

setting. Other factors which must be overcome include the volume and 

complexity of the incoming information, the time and other resource 

demands made on already busy personnel to perform the evaluation 

study, and the professional sensitivity of clinical personnel involved 

in the management of the evaluation study. To combat these 

difficulties the evaluation process needs a clear and coherent 

structure. In formulating an evaluation strategy it has been shown how 

the evaluation process from three different domains have been drawn 

together in order to synthesise such a structured framework. This 

process was incorporated into a novel methodology for intelligent 

system design, implementation and evaluation, as discussed previously.
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8: CONCLUSION

Part I of this study provided the necessary background and 

historical information for the introduction of intelligent 

instrumentation into a High Dependency Environment. As a key element 

in this process, a novel methodology was proposed which provides a 

structure for the incorporation of a knowledge-based component into 

the measurement process. This methodology covers the entire 

development process, from the requirement for a particular 

measurement system to the evaluation of the final product. As a 

consequence the methodological weaknesses of existing approaches (for 

example, from either a software or control engineering paradigm) were 

highlighted and the benefit of using the novel methodology espescially 

designed for technological change was exposed. For instance, 

evaluation of the system throughout its development phase was 

identified as a key component in the procurement of the final product. 

The methodology is iterative in nature and provides support for system 

evolution and is therefore necessarily open-ended.

Part II detailed a specification and implementation for a 

prototype patient management system designed for those patients who 

require ventilatory therapy as part of their overall management 

strategy. Three levels of decision-support were implemented to match 

the three phases of ventilation identified: the start-up phase of 

ventilatory support was implemented using simple deterministic rules 

obtained by analysis of a database of retrospective patient data; the 

maintain phase was equated with a pattern-matching algorithm, the 

boundary values of the data classifiers in the algorithm were 

established by consultation with expert clinicians; and the weaning 

phase was implemented using production rule technology which again 

required expert clinicians from which knowledge could be elicited.

Evaluation of the prototype system, which was implemented 
entirely in PROLOG, had some unexpected findings. For example, novice 

users were more impressed with the windows display of the start-up 

advice screen than those which were implemented using more advanced 
knowledge representations. One reason for this conclusion is that the 

more advanced knowledge technology did not match user expectation in 

terms of time taken to reach a recommendation for action. A paradox 

becomes evident here, as although the time taken for a human expert to 

arrive at the problem location (and then reach a decision for action) 

may be orders of magnitude greater than the time the computer takes to
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reach its decision, users still expect computer-generated advice to be 

instantaneous. The underlying psychology responsible for this outcome 

may be due to the fact that time is an important commodity in the 

Critical Care Unit, and clinical staff should not waste it waiting for 

the output from slow-acting high technology found at the bedside.

From this phase of the research programme several general 

conclusions can be made that would enable successful introduction of 

intelligent instrumentation systems in the Intensive Therapy Unit. 

These include:

* the system must make life easier for staff in the Intensive

Therapy Unit, especially the nurse who is the main care 

provider.

* the system must improve the quality of data available.

* interpretation of data within the system must be made in

context of the clinical situation at that time.

* the system must include a facility for trend prediction

* the system should make clinical audit an easier task.

Also, several technico-clinical problem areas were identified from the 

use of ventilatory therapy as the application in this study, 
including:

* data overload and complexity of measurement in the ITU.

* the continuity of patient management practices through the 

different phases of ventilation.

* an appraisal of the worth of each item of monitored data.

These conclusions emphasise the systematic nature of the systems 

enquiry. Particular problems were broken down into their constituent 

parts before problem-solving was attempted.

Part III discussed the nature of intelligent instrumentation 

and techniques used to incorporate the knowledge component into the 

measurement process used in the development of AIRS. Comparisons were 

made with other available methods of knowledge elicitation, knowledge 

representation schemas, human-computer interface techniques and 

evaluation issues. The nature of intelligent instrumentation from a 

wider perspective was also included. From discussion, recommendations 

for further work became apparent.
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In the immediate future a reorganisation of programming 

tasks should take place, so that PROLOG is used solely for that part 

of the program where logic is required. That is, the part of the 

system which is represented by production rule technology. The window 

environment and associated menu system can be implemented more 

efficiently in other high level languages such as ’C’ or ’PASCAL’. 

This would also enable the development of a graphical capability. To 

gain credibility work should also commence on an on-line version of 

the system. For this an appropriate communications package will be 

required as well as a ventilator with a digital port. However, in the 

long term this type of single function program may become redundant, 

superseded by machines capable of processing many parallel functions 

at once, the data being pre-processed by transputers at the bedside. 

A programming environment such as a parallel version of PROLOG, as 

used in the Japanese Fifth Computer Generation Initiative, will become 

the software of choice, although dedicated parallel PROLOG machines 

may become the norm. This may be conjecture, but intelligent 

instrumentation systems have a bright future and are set to pervade 

all measurement processes no matter what the domain.
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APPENDIX I

CRITICAL REVIEW OF ARTIFICIAL INTELLIGENCE IN MEDICINE

1.1 Int roduct ion

Biomedical engineering is a fertile domain for the 

application of new computer-based techniques that have the potential 

to enhance patient care. These techniques come in many forms, and can 

be classified according to the level of processing required before 

their stated purpose is achieved. Low-level processing include 

techniques such as signal interpretation, where a threshold value has 

to be reached before an appropriate action is taken. This type of 

system uses a shallow data model to transform data into a more useful 

information-based format. However in this Appendix, the systems of 

interest are those which provide a further transformation, that of 

information into knowledge via appropriate explanation and 

justification of concepts used. These knowledge-based systems have 

various synonyms including expert systems, intelligent systems and 

decision-support systems.

1.2 Artificial Intelligence: General Medical Systems

The criterion by which the medical systems reviewed have been 

chosen is that they each illustrate some novel use of techniques found 

in the domain of artificial intelligence. They have thus become 

leaders in their respective fields from which other intelligent 

systems have evolved.

The Dendral system was one of the first medical expert 

systems to be implemented, and was the antithesis of the general 

problem solving strategies of its day. It worked in a narrow and very 

well-defined domain which paved the way for a plethora of similar 

systems. These systems were not confined to the medical domain, for 

example, geological expert systems which were of benefit to the oil 

industry were constructed.

The MYCIN system is included because it is a prime example of 

the use of a production rule methodology, this describes how the 

knowledge required by the system is captured. A normal representation

of a production rule, (IF--THEN---), is supplemented by a
quantitative qualifier, as follows:-

IF premise 

THEN action

WITH a confidence factor X.
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This allows a clinicians degree of confidence in a decision to be 

captured by the system, and at the same time aid in its transparency 

to the end-user.

CASNET is a system which uses a causal-associational model to 

represent the embodied knowledge. This knowledge is separated into 

three different entities : manifestations present in the patient; 

pathophysiological processes caused by the manifestations; and disease 

states caused by the pathophysiological processes. If this is thought 

as a three-plane hierarchy then the causal-associational links can be 

both inter- and intra-p1 an a 1. A fourth ’therapy’ plane also links to 

this hierarchy at the level of the disease state plane.

The PIP system is included because it was one of the first 

intelligent systems to include a frame-type representation. This 

allows the knowledge engineer to keep all similar knowledge together, 

rather than have it dispersed throughout the program. Frames are 

therefore useful in the development stage of the system, as the 

knowledge embodied in the program remains transparent to the user and 

is readily obtainable for editing purposes.

HEARSAY-II, although not strictly a medical system, is the 

product of a large research programme which started in the early 1970s 

and is still on-going, (HEARSAY-III is now under development). A 

feature of this system is its blackboard architecture for control of 

the knowledge processes intermediate to final output. Like DENDRAL it 

is used for signal understanding rather than as a diagnostic system.

The INTERNIST research programme was an ambitious attempt to 

combine all knowledge relevant to general internal medicine in one 

system. It is included in this review to illustrate the problems 

involved when techniques employed for a narrow clinical domain are 
exploited for a much wider domain.

1.3 DENDRAL

DENDRAL is a system which interprets the data emergent from 

the process of mass spectography, and works at a high intellectual 

level. The domain is therefore vey narrow but presumes expert 

knowledge in what is a difficult task domain (Lindsay et al., 1980).

At the time of its first implementation DENDRAL was a 

precursor to intelligent knowledge-based systems and was responsible 

for the founding of many of the techniques used in knowledge 

engineering. These include both knowledge elicitation and knowledge
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representation. The former was identified to be a ’bottleneck’ in the 

design and building of intelligent systems, as although development 

time could be continual it needed the prior knowledge of the expertise 

to be embodied. This expertise could only be elicited in discrete 

stages due to the time demands made on the human experts involved.

The evaluation of DENDRAL involved the development of a set 

of analytical rules utilising a training-set of similar compounds, 

(for example, cyclic ketones). Once these rules were obtained they 

were applied to another five members of the same chemical group for 

the purpose of rule refinement. The refined system was then applied to 

the remaining compounds of the same group. The full implementation of 

DENDRAL is used in both academia and industry, making it not only the 

first ’expert system’, but also one of the very few in actual clinical 

use.

1.4 MYCIN

MYCIN is perhaps the most cited expert system of the 1970s, 

and was developed by Shortliffe and others at Stanford University, 

U.S.A., (Shortliffe et al., 1975; Shortliffe, 1976). The domain of 

interest is aiding in the identification process and recognising the 

significance of organisms causing microbial infection, then 

recommending an optimal treatment protocol. This domain is well chosen 

as there is a need for such consultative advice, as microbial 
infection is often secondary to the major complaint of the patient, 

and the clinician responsible for the welfare of such patients may not 

be an expert on infectious diseases. The treatment protocols yield 

information not only on what drugs to recommend to combat particular 

infections, but also on what dose should be administered, thereby 

cutting down on inappropriate prescribing and antibiotic misuse.

MYCIN is an example of an expert system which uses 

’production rules’ to represent the causal relationships between 
individual items of factual knowledge held on the knowledge base. Such 

rule-based deduction systems are procedural by nature of the way they 

are constructed, that is, IF a premise condition is true THEN one can 

deduce that the consequent action(s) is true. An example of a typical 

MYCIN production rule is found in Figure A—1.1, and can be seen to 
have the general form:-

IF premise assertions are true 

THEN consequent assertions are true 

with confidence weight X.
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RULE 160

If: 1) The timeframe of the patient's headache is acute.

2) The onset of the patient's headache is abrupt, and

3) The headache severity (using a scale of 0 to 4; maximum 
is 4) is greater than 3.

Then: 1) There is suggestive evidence (.6) that the patient's
meningitis is bacterial.

2) There is weakly suggestive evidence (.4) that the 
patients's meningitis is viral and

3) There is suggestive evidence (.6) that the patient 
has blood within the subarachnoid space.

Thus this rule has three conclusions. It is represented internally in LISP as 
follows:

PREMISE (SAND SAME CNTXT HEADACHE-CHRONICITY ACUTE)
(SAND CNTXT HEADACHE-ONSET ABRUPT) 
(GREATERP (VALI ONTXT HEADACHE-SEVERITY 3))

ACTION; (DO-ALL (CONCLUDE ONTXT MENINGITUS 
BACTERIAL-MENINGITUS)

TALLY 600)
(CONCLUDE CNTXT MENINGITUS VIRAL-MENINGITUS 

TALLY 400)
(CONCLUDE CNTXT SUBARACHNOID-HEMORRAGE 
YES

TALLY 600)

FIGURE A-1.1 A TYPICAL PRODUCTION RULE FOUND IN THE 
MYCIN SYSTEM
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Notice that each production rule has associated with it a measure of 

certainty. This aids in the reasoning strategy of the system, where a 

value of -1 represents complete disbelief, and a value of +1 

represents complete belief in the consequent assertion(s). The 

assertions can be Boolean combinations of clauses each of which 

consists of a predicate statement triple:-

(at tribute,object.value).

For example,

(Gramstain,E.Coli.Gramneg),

which when translated means that the Gramstain of the E.Coli organism 

is Gram-negative.

The uniformity of representation for both domain-specific 
inferences and reasoning goals makes it possible for MYCIN to use a 

very general and simple control strategy, that is, a goal-directed 

backward-chaining of the production rules. This approach can be 

described in the following way. The first rule to be evaluated is the 

one which contains the highest level goal, which for MYCIN is "To 

determine if there are any organisms, or classes of organisms, that 

require therapy". To deduce the need for therapy requires knowledge of 

the infections, which is usually unknown in the first instance. 

Therefore the system tries to satisfy sub-goals which originate in the 

premise of the top-goal that will allow the infections to be inferred. 

Rule chaining is the name given to the process by which the production 

rule hierarchy is linked together; the premise portion of each sub-

goal rule fires a new set of sub-goals. This process is repeated until 

the most fundamental level of the hierarchy is reached, where the 

rules become assertions that can only be confirmed or denied by 

directly questioning the user for the appropriate information.

After MYCIN determines the significant infections, found by 

assessing the overall certainty factor which combines the individual 

degrees of confidence associated with each production rule, the 

organisms which account for the infections are found 

deterministically. Then, if appropriate, the system proceeds to 

recommend an antimicrobial regimen. To reach its decision the MYCIN 

therapy selector uses a description of the infection(s) present; the 

causal organisms together with a ranking of drugs by their 

sensitivity; and a set of drug-preference categories. The algorithm 

used within the therapy selector also calculates the drug-dose 

required, and contains knowledge to modify the value if, for example,
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the patient is in renal failure. An advantage of this therapy 

selection system is that it can accept and critique a treatment 

protocol proposed by the user. For this function the therapy selector 

has an appropriate facility to generate explanation and justification 

for its choice of action. "WHY?" queries are dealt with by displaying 

the rule it is trying to imply, and if "WHY?" is asked again the query 

is answered by ascending the goal-tree hierarchy. "HOW?" queries are 

interpreted as the chain of rules which are fired to get to that 

particular conclusion, and if "HOW?" is asked again the query is 

answered by descending the goal tree hierarchy.

An advantage of using a production rule system is that each 

rule is a small ’packet’ of knowledge, each one being independent of 

all the others. This has two consequences: first, changing or adding 

knowledge to the MYCIN knowledge base is relatively easy; and second, 

addition of new rules is facilitated by a having modular data 

structure. The MYCIN system is also user-friendly, characterised by 

its natural language interface which translates the knowledge encoded 

in the system to a form that is easy to understand and examine at the 

user interface.

The MYCIN system can deal with both inexact and incomplete 

information. Inexact information is inherent in this domain as many 

test results are qualitative in nature, and relatively few statements 

can be made with absolute certainty. Incomplete information may arise 

from the time constraints involved in the identification of an 

organism, that is, the time taken for an identifying laboratory test 

to be completed and the result of it made known to the clinician.

A disadvantage of the system is that disease states can not 

always be adequately described by a rule. Also, it may not always be 

possible to map a series of desired actions into a set of production 

rules. Another disadvantage is that although new knowledge can be 

added by inserting a new rule, this may not interact with the existing 
rules in the anticipated way.

The MYCIN system is encoded in LISP and runs under the TENEX 

operating system. When compiled the system takes up approximately 50 

kbytes of disk space, which includes 16 kbytes to hold the knowledge 

base and 28 kbytes to hold clinical parameters, tables and working 

space. A normal consultation takes on average 20 minutes, which 

includes time allowed for the optional use of the explanation 

facility. MYCIN has been evaluated as having a diagnostic success rate
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of 72%. This relatively poor performance (for an expert system) 

combined with clinician suspicion and resistance to new technology, 

contributed to the fact that the system never went into clinical 

operation. However, as a research tool it was the subject of extensive 

interest in the artificial intelligence fraternity, being responsible 

for a number of successful descendants. One of these, the PUFF system 

developed to interpret pulmonary function test results (Aikens et al., 

1983), is one of the few medical expert systems in daily clinical use.

1.5 CASNET

CASNET is an expert system for consultation in the diagnosis 

and therapy of glaucoma (Weiss et al., 1978 a,b). A feature of this 

system is that the medical knowledge used in the patient-specific 

reasoning process is encompassed in a causa 1-associationa 1 network 

model of the specific disease process. Such a network, termed a 

’semantic net’, allows the structure of the medical knowledge covered 

by the system to be more coherent. A semantic network comprises nodes 

connected by links, where nodes correspond to either the condition or 

action part of the rules and the links are the inferences between the 

two. The model of disease is separate from the decision making 

strategy which allows the up-dating of both data structures to be 

facilitated more easily.

The CASNET model has a descriptive component which consists of 
four sets of elements, as follows:-

i) Observations - these consist of symptoms and laboratory 
test results, etc., and form the direct evidence that a 
disease is present

ii) Pathophysiological states - these describe internal 
abnormal conditions or mechanisms that can directly 
cause the observed findings. The causal relations 
between states are of the form

where ni and nj are states and a —  is the causal 
frequency with which state n^, when present in a 
patient, leads to state nj

iii) Disease categories - each category consists of a pattern 
of states and observations, and is therefore 
conceptually at the highest level of abstraction

iv) Treatment plans and therapies - composed of sets of 
related treatments or treatment plans.

Figure A-I.2 shows a three level description of a disease process, the
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FIGURE A-I.2 THREE-LEVEL DESCRIPTION OF DISEASE PROCESS
(Kulikowski & Weiss, 1982)
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fourth component (the treatment plans) are associated with the 

disease-state plane.

Other components of the CASNET model are the decision rules, 

which state:-

i) The degree of confidence with which an inference of a 
pathological state can be made from an observed pattern 
of findings. In rule-form this translates to :-

QU -> n

where t ■ is finding (or observation) or Boolean 
n- is a state, and Q ; ; is acombination of findings, n̂  is a state, and ~ 

number in the range -1 to +1 representing the confidence 
with which t̂  is believed to be associated with nj. The 
value of Q is then transposed to a certainty factor 
which indicates how certain is the belief that the 
patient is in state n-. A threshold function is then 
used to determine whether or not the certainty factor 
confirms, denies, or leaves undetermined a particular 
state.

ii) Rules for associating disease categories and
pathophysiological states to treatment protocols are in 
the form of a classification table which consists of 
ordered triples,

(rij,Dj,T|), (n2 .D2 .T2 )......(n-,D-,T-),

where n- is the pathophysiological state, D- is the 
disease process arising from it, and T- are the 
preferred treatment regimes for disease D-.

The pathogenesis and mechanisms of a disease process are 

described in terms of cause-and-effect relationships between 

pathophysiological states. For example, Figure A-I.3 shows a partial 

causal network for glaucoma, where each box represents a node, n̂ , and 

is a pathophysiological state, and each arrow represents the causal 

associations between states. In this way complete or partial disease 

processes can be characterised by pathways through the network. When a 

set of cause-and-effeet relationships are specified the resulting 
network can be described as an acyclic graph of states (Weiss et al., 

1978b). This state network is defined by a four-tuple, (S,F,N,X), 

where S is the set of starting states (that is, those states which 

have no antecedant causes); F is the set of final states; N are the 

number of states visited between S and F; and X are the causal 

relationships between the states visited (in the form of a list).

An unusual feature of CASNET is the language with which it 

was implemented. The authors of the system considered that an 

efficient program would lead to decreased computer response times and
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FIGURE A -1.3 PARTIAL CAUSAL NETWORK FOR GLAUCOMA.
STATES WITH NO ANTECEDENT CAUSES ARE 
MARKED BY ASTERISKS (*)

(Kulikowski and Weiss, 1982)
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therefore an increase in user acceptance, therefore FORTRAN was chosen 

for its implementation. This choice had repercussions in the 

development of CASNET, as any modification to the program meant that 

the source code had to be obtained, changed and recompiled. In the 

1978 implementation of CASNET, the knowledge base consisted of more 

than 100 states, 75 classification tables and 200 diagnostic and 

treatment statements. Thus, a most comprehensive knowledge 

representation had been achieved. However glaucoma is an example of a 

well-defined clinical problem, (that is, not many disease processes 

can overlap with it, which would make differential diagnosis more 

difficult). If a more complex domain of interest were chosen one would 

expect a great increase in the number of states, classification tables 

and treatment statements. This may make the causal-associational model 

unworkable for large-scale systems, due to the increase in complexity.

An important test for any expert system is how it copes with 

contradictory information. This can occur in the CASNET system, for 

example, when a particular state is confirmed even though all of its 

potential causes in the network are denied. When such a situation 

occurs the CASNET system advises the user that this has happened. 

There are two explanations for the origin of this contradictory 
information : it could be that the model of the disease process may be 

incomplete (that is, one or more nodes together with their respective 

causal relationships are missing from the knowledge base); or it may 

be that the threshold function associated with one of the existing 

causal links has been set at an inappropriately high level. The 

modular structure of the knowledge base enables easy access to the 

underlying reason for the contradiction, so up-dating of the knowledge 
base can be facilitated.

An advantage of the CASNET system is that it can present 

alternative expertise derived from different consultants. It is this 

fact, coupled with the fact that glaucoma is a well-defined clinical 
problem which results in an accuracy of diagnosis which contributed to 

its relative success. The diagnostic accuracy of CASNET has been 

evaluated at greater than 75 % for particularly difficult cases, and 

greater than 90 % for cases which constitute a broad clinical 

spectrum. Unfortunately the clinical utility of the system was not 

assessed as high, which resulted in CASNET never being used in a 

routine clinical environment. However, the system remains as a very 

useful tool for research into artificial intelligence in medicine.
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1.6 PIP

The task of the Present Hlness of a Patient (PIP) expert 

system is to diagnose oedematous patients (Pauker et al., 1976). It 

was developed more for understanding the cognitive processes involved 

in medical decision-making rather than for use as a clinical tool. 

Accordingly, a less well-defined clinical task was chosen, as oedema 

represents a complex diagnostic domain.

Conceptually, there are four components to the program (see 

Figure A-I.4), which are: the patient-specific data; the supervisory 

program module; the 'short term’ memory; and the 'long term’ memory. 

Clinical data about a specific patient is entered and passes to the 

supervisory program, which in turn delivers it to the ’short term’ 

memory. The supervisory program then generates hypotheses about the 

given set of facts, using information stored in both the ’short term’ 

and 'long term’ memories, transferring all relevant information to the 

’short term’ memory. Additional patient-specific questions are then 

generated by the supervisory program, and the data entered starts the 

control cycle once more. Thus, the program alternates between asking 

questions and integrating new information into a developing picture of 

patient state. A typical cycle consists of characterisation of the 

observations, seeking advice on how to proceed, generating hypotheses, 

testing those hypotheses and selecting new questions to ask the user. 

It is thought that this test and hypothesis cycle more closely mimics 

the way in which clinicians make decisions than the more rigid 

production rule type inference mechanisms. Whereas the procedural 

production rule inference methodology is deductive by nature, the test 

and hypothesis inference cycle is both declarative and abductive.

A feature of the PIP system is that the long-term memory uses 

a ’frame representation’ for its collection of facts about a 

particular disease, clinical state or physiological state. Using 

frames to represent knowledge was first proposed in the mid-1970s 
(Minsky, 1975), and since then they have become a popular medium used 

by knowledge engineers to conceptualise various types of expert 

system. Each frame has a number of ’slots’ for the inclusion of 

specific sub-categories, such as observations, non-causal information 
and rules for judging how closely a given patient might match the 

disease state that the frame describes. An advantage of using a frame- 

type representation is that all relevant information about a 

particular disease sub-class is held close together and not spread 

over the entire knowledge base as is true of production rule systems.
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FIGURE A-I.4 PROGRAM ORGANISATION OF PIP
(After Pauker et al., 1976)
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PIP uses a scoring system for each hypothesis generated, and 

then classifies the score with the appropriate use of threshold 

functions. The score originates from the uncertainty rules found 

within each of the frames in the long-term memory. It has two 

components: the first is a measure of ’goodness-of-fit’ of observed to 

expected manifestations for the hypothesis under examination; the 

second is a value which corresponds to the ’cover’ of the frame, that 

is, the ratio between the number of findings explained by the 

hypothesis to the total number of findings found in the frame. Once 

this score, termed the ’belief function’, has been established the 

focus of the system then turns to other frames where the test and 

hypothesis cycle continues. This process continues until all of the 

reported manifestations have been covered.

One of the problems associated with this type of system is 

the maintenance of a sufficiently focused and clinically acceptable 
line of reasoning. Deviation away from the line of reasoning can be 

accounted for from the use of a generalised scoring system. To keep 

this problem to a minimum, it was suggested by the authors that only a 

well-defined and narrow clinical domain should be chosen for this type 

of methodology.

The PIP system developed a knowledge base of about 70 frames, 

which included frames for 20 different diseases, the rest being 

representations of various clinical and physiological states which are 
associated with those diseases.

1.7 HEARSAY-II

The HEARSAY-II speech understanding system is the product of 

a well-financed research programme from Carnegie-Me11 on University, 

U.S.A. (Erman et al., 1980). A feature of this system is its general 

problem solving framework, termed the 'blackboard architecture’, which 

has become the basic control model for real-time intelligent signal 

understanding systems (Hayes-Roth, 1983). The blackboard architecture 

contains four elements:-

i) ’entries’, which is the name given to intermediate by-
products of the problem-solving strategy.

ii) ’knowledge sources’, these are diverse and independent 
sub-programs which are capable of solving a specific 
problem efficiently. They can be thought of as a 
condition-action duplex, where the condition premise 
describes the situations to which each knowledge source 
can contribute, and the action component specifies the 
interaction of that particular knowledge source in the
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overall problem-solving strategy. It is the activated 
knowledge sources which produce the entries.

iii) the ’blackboard’ itself, which can be considered as a
structured database. It serves two roles : first, it 
represents intermediate states of problem solving 
activity; and second, as all communication between the 
individual knowledge sources is carried out via the 
blackboard, it can accommodate hypotheses from one 
particular knowledge source that may activate a number 
of others.

iv) an 'intelligent control mechanism’, which has
sufficient knowledge embodied within it to decide if and 
when any particular knowledge source should be 
activated, thus generating entries which are recorded on 
the blackboard.

The blackboard control structure supports a hierarchical 

arrangement of knowledge sources. For instance, in the HEARSAY-II 

system the top-level of the hierarchy is the spoken sentence, followed 

by phrase, word sequence, word, syllable, segment and phoneme 

respectively. The control postulate is that of ’establish-and-refine’, 

that is, each activated knowledge source in the hierarchy tries to 

confirm or reject itself. If it is confirmed then it refines itself by 

calling on the next immediate layer in the hierarchy to enter the same 

cycle. This procedure continues until (if successful) the bottom layer 

of the hierarchy is reached. Once the phonemes have established 

themselves, the spoken sentence has been modelled completely. In this 

way the spoken sentence is recognised as syntactically valid, which is 

one of the definitions used as speech ’understanding’. Further signal 

processing techniques can then be applied to obtain a more 

comprehensive understanding, such as translation into another language 
or paraphrasing an argument.

HEARSAY-II is implemented in the SAIL programming 

environment, which is an ALGOL-60 dialect, and includes list and set 

membership functions. About 40 knowledge sources were developed, each 

one being a one or two person effort for a period of between 2 to 36 

months. This work produced between 5 and 100 pages of source code 
(with an average of 30), and on average each knowledge source has 50 

kbytes of data in its local database. The kernel program comprises 300 

pages of code, and was the product of a continual development process, 

carried out by two full-time programmers over a period of three years.

It is interesting to investigate the development of the 

HEARSAY-II speech understanding system in terms of its evaluation. The 

first version of the kernel program took two persons 4 months to 

complete; the first knowledge source implementation took 16 months to
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work, although using an incomplete knowledge base; the first complete 

implementation (kernel plus knowledge source plus interface 

development) took 27 months, when the system had a 10 % success rate 

of signal understanding with a 250 word working vocabulary; 10 months 

later, (that is, after 35 months of development), the initial very 

poor performance had been transformed into a 90 % success rate working 

with a 1000 word vocabulary.

A disadvantage of the architecture as it is implemented in 

the HEARSAY-II system, is that the blackboard has to be accessed at 

each decision step. This is desirable for structuring communication 
between different knowledge sources, but consumes a lot of time when 

it occurs at intermediate decision points within an individual 

knowledge source. Therefore a different problem solving strategy is 

suggested for dealing with knowledge from within a single knowledge 

source.

More processing time could also be saved if knowledge-based 

meta-programming tasks were included in the kernel system. In its 

present implementation time is lost in the choice process from which 

the system decides which knowledge source to implement. An intelligent 

decision-making module which ’sits’ on top of the kernel system could 

alleviate that problem.

1.8 INTERNIST

The INTERNIST project of the University of Pittsburgh, U.S.A. 

is an ambitious attempt to represent medical knowledge which would 

enable diagnosis of general internal medicine (Miller et al., 1982). A 

total of 15 person-years of research effort has produced an extensive 

knowledge base, which in 1982 consisted of over 500 individual disease 

profiles and over 3550 manifestations of disease. A disease profile is 

defined as a list of manifestations (for example, patient history, 

signs, symptoms, laboratory test results, as well as demographic data 

and predisposing factors), which have been reported to occur in 

patients with a specified disease. The profile is compiled by 

reviewing the medical literature as well as by consultation with human 

’experts’. An example of part of a disease profile for aortic 

dissection is shown in Figure A-I.5. The knowledge base, because of 

its extensive domain, is also in the form of a hierarchy of diseases. 

For example, acute viral hepatitis is classified as a hepatocellular 

infection, hepatocellular infection is classified as a sub-class of 

diffuse hepatic parenchymal disease, and this in turn falls into the
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The leftmost number beside each 
manifestation is the evoking strength and 
the rightmost number is the frequency. 
The list is abridged from a 
comprehensive INTERNIST disease 
profile comtaining over 200 findings.

AGE 16 TO 25...0 1 
AGE 26 TO 55...0 3 
AGE GTR THAN 55...0 3 
CHEST TRAUMA RECENT IIX... 1 1 
HEART CATHETERIZATION 
RECENT IIX... 1 1 
HYPERTENSIONS IIX...1 4 
MARFANS SYNDROME FAMILY 
HX...2 2
SEX FEMALE...0 2 
SEX MALE...0 4
SYNSCOPE OR SYNSCOPE RECENT 
IIX...1 2

CHEST PAIN LATERAL 
EXACERBATION WITH 
BREATHING....1 1 
CHEST PAIN SUBSTERNAL AT 
REST...1 3
CHEST PAIN SUBSTERNAL 
BURNING...1 2 
CHEST PAIN SUBSTERNAL 
CRUSHING... 1 2 
CHEST PAIN SUBSTERNAL 
KNIFE-LIKE OR TEARING...2 3 
CHEST PAIN SUBSTERNAL 
LASTING GTR THAN 20 MINUTE 
<S>...2 3
CHEST PAIN SUBSTERNAL 
MIGRATING TO BACK OR 
ABDOMEN...3 3 
CHEST PAIN SUBSTERNAL 
RADIATING TO BACK...2 2 
CHEST PAIN SUBSTERNAL 
SEVERE...2 3
CHEST PAIN SUBSTRENAL 
SEVERITY MAXIMAL AT ONSET...3
2

ARTERY <HES> CAROTID 
SYSTOLIC BRUIT...1 2 
ARTERY <HES> FEMORAL 
SYSTOLIC BRUIT... 1 2 
COMA WITH LUCID INTERVAL... 1 
1
CYANOSIS ACRAL PART <S> 
ONLY...1 2 
FEVER...0 3
NEUROLOGIC SIGN <S> 
TRANSHENT...1 2 
PRESSURE ARTERIAL DIASTOLIC 
95 TO 125...1 3
PRESSURE ARTERIAL SYSTOLIC 
90 TO 100
PRESSURE ARTERIAL SYSTOLIC 
GTR ARM <S> THAN LEG<S>...2 2

AORTA XRAY DILATATION 
ASCENDING AORTA... 2 3 
AORTA XRAY DILATATION 
DESCENDING THORACIC...2 3 
AORTA XRAY DUPLICATION OF 
LATERAL BORDER...3 2 
AORTA XRAY HUMP ON ARCH 
cLATERAL VIEW>...2 3 
AORTA XRAY RAPID SERIAL 
ENLARGEMENT...3 2 
AORTOGRAPHY ABDOMINAL 
AORTA IRREGULARITY OF 
LUMEN...2 3
AORTOGRAPHY ABDOMINAL 
AORTA NARROWING...2 2 
AORTAGRAPHY DOUBLE 
CONTRAST COLUMN...4 3 
AORTOGRAPHY THORACIC 
DESCENDING AORTA 
NARROWING...2 2 
AORTOGRAPHY THORACIC 
DESCEBDING IRREGULARITY OF 
LUMEN...24
AORTOGRAPHY THORACIC 
FAILURE OF CONTRAST TO FILL 
MULTIPLE BRANCH ARTERY 
<IES>...3 2

FIGURE A-I.5 SAMPLE INERNISTI DISEASE PROFILE FOR AORTIC DISSECTION
(Miller R A, 1984)
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category of hepatic parenchymal disease which itself is a major sub-

class of the hepatobiliary system. Links exist in the knowledge base 

between findings and disease state and there are also disease-to- 

disease causal associations. A novel use (sic) of the INTERNIST 

knowledge base is to use the list of disease profiles as an electronic 

text book of medicine (First et al., 1985), although the original 

authors themselves estimate that the knowledge base is only 75 % 

complete.

Associated with each manifestation in a disease profile are 

two critical parameters, these are its ’evoking strength’ and its 

measure of clinical frequency. The evoking strength is a measure of 

how important the manifestation is for the purpose of differential 

diagnosis. It is measured on a nominal scale of 0 to 5, that is, from 

non-specific (the finding occurs too commonly to be useful for 

differential diagnosis) to the other extreme where the finding is 

pathognomic for the diagnosis. The clinical frequency is an estimate 

of how often any patient would exhibit a particular finding for a 

particular disease. It is measured on a scale of 1 to 5, which 

corresponds to ’very rarely’ to ’always’ respectively. Both of these 

measures are extremely subjective and are assigned by the human 

experts.

The reasoning strategy of INTERNIST begins in an event-driven 

fashion, data entered via the keyboard evokes a set of related disease 

hypotheses. For each hypothesis the system creates a patient-specific 

model which consists of four lists, as follows :-

i) observed findings consistent with the disease

ii) observed findings unexplained by the disease

iii) other findings of the disease profile not observed in the 
patient

iv) findings that ought to be observed if the disease is the 
correct diagnosis.

A scoring system ranks the competing hypotheses and in this way the 
most favoured hypothesis is found. A partitioning heuristic then 

divides the remaining hypotheses into those which compete and those 

whch complement the most highly ranked one. If there are more than 

four competitors, the system will try to reduce the number by asking 

questions about the findings that are in the disease profile of the 

most highly ranked hypothesis. When the number of competitors has been 

reduced to four or less, discriminant analysis is employed, which uses 

the evoking strength of each manifestation in the disease profiles to
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obtain the optimal hypothesis. In the event of a single hypothesis 

with no competitors, the system will ask for data which will ’strongly 

confirm' it. When this process has been completed and if there are 

still some unexplained findings, then the next most highly ranked 

hypothesis is partitioned, and the cycle continues until all findings 

are covered. INTERNIST is therefore another example of an abductive 

system, using a reasoning cycle that begins with observed findings and 

ends when the best hypothesis is found.

A disadvantage of using an evoking strength parameter is that 

the more favoured hypotheses usually lead to the most common diseases 

being considered responsible for the set of patient-specific findings. 

This would contradict one of the important functionalities of expert 

systems, as their anticipated use is for the input of the more 

difficult cases, (that is, where considerable diagnostic expertise is 

required). Another problem encountered with the scoring regime 

employed by INTERNIST is that it attaches no level of importance to 

the in-coming data, which can lead to inappropriate task definition. 

For example, if a wealth of data is forthcoming about a relatively 

unimportant finding, the system may spend the majority of its 

execution time trying to make sense of all of this data rather than 
more important tasks. This will be frustrating to the user and may 

erode user confidence in the system.

The system does not always reason correctly about causality. 

For example, at times the system gives weight to disease hypothesis 

because of a presumption concerning its ability to explain data, but 

if a pathophysiological analysis was carried out it would show the 

hypothesis to be incorrect. This can lead to a lot of time being 

wasted as well as inaccurate decisions being made. Indeed, evaluation 

of INTERNIST showed that the weakness of the system was its 

inability to link findings to their proper causes.

Preliminary evaluation of the INTERNIST knowledge base was 

performed using difficult cases taken from medical journals. Of the 43 

patient histories reviewed, INTERNIST correctly diagnosed 58 % (25/43) 

of the cases. This compares with a diagnostic accuracy of 65 % (28/43) 

for non-expert clinicians, and 81 % (35/43) for expert clinicians. It 

proved difficult to improve on this success rate, so research effort 

concentrated on a successor program to INTERNIST called CADUCEUS. This 

new system is still in its developmental stage. Other problems 

associated with the INTERNIST project were its limited user interface 

and its lack of an explanatory facility.
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One of the original collaborators sums up his experience with

INTERNIST in a rather paradoxical fashion, as follows:-

"....a diagnostic reasoning program must have
access to detailed pathophysiologic knowledge in 
order to permit the test of hypothesised 
attributions; however, if the program is forced 
into consideration of the detailed pathophysiology, 
there is a danger that unifying gestalts may fail 
to emerge."

(Pople,1982)

I.9 Summary

Six medical expert systems have been critically reviewed, 

they have illustrated many of the knowledge engineering concepts and 

techniques currently employed. One of the goals of the early 

knowledge-based systems was to prove that the concept of a computer- 

based diagnostic or signal understanding system was indeed a valid 

one. This type of system was thought to have a sound practical future 

after the success of DENDRAL. However, subsequent experience has shown 

that this has not been the case, as only very few systems have reached 

full clinical use. Possible reasons for this lack of achievement 

include over zealous expectation from the end-users and technical 

issues, such as the best way to combine uncertainties in the in-coming 

data.

MYCIN was given as an example of a procedural expert system, 

to be compared with CASNET, PIP and INTERNIST which are all examples 

of declarative expert systems. The distinction between the two types 

hinges upon the relationship between the encoded knowledge 

representation and the control algorithm. In systems where the 

knowledge representation and control algorithm are combined, then a 

procedural definition applies. This is exemplified by the production

rule methodology, where causality is implicit in the IF __ THEN

rules. The ability to provide explanation of action, one of the 

prerequisites of an expert system, can not naturally be accommodated. 

However, to overcome this problem ’canned’ explanations can be used. 

These are a set of fixed files, each one specific to a particular 

production rule, which can be fired whenever the production rule they 

represent is used. A disadvantage of this approach is that the 

explanation can appear ’stale’ to an experienced user of the system. 

In systems where the knowledge representation and control algorithm 

are separate, then a declarative definition applies. The knowledge 

representation is explicitly defined, allowing a set of algorithms to 

act on it. This can include the test and hypothesis diagnostic cycle,
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an explanation generating algorithm, and an algorithm which produces 

text which constitutes computer-based advice. Both frame-based 

knowledge representations and semantic networks are examples of 

declarative systems.
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APPENDIX II

ANNOTATED PROGRAM LISTING OF AIRS

AII.l Creating the window environment

To illustrate how a window environment is created, the 

program code shown in Figure A—11.1 is taken from the top-level module 

of AIRS, which describes the opening screen format. All the predicates 

used in this listing are predefined by the PROLOG-2 environment.

make_windows:- cstream, c_screen, c_windows. 

c_stream
createstr earn (banner,readwrite.byte,

window(20,78,bright yellow on black)), 
createstream(header,readwrite,byte,window(1,80,white on blue)), 
create_stream(blacking,readwrite.byte,window(25,80.black on black)), 
create_st ream(top_menu,readwrite.byte,

window(7,14,bright yellow on cyan)),
open(banner,readwrite), 
open(header,readwrite), 
open(blacking,readwrite), 
open(top_menu,readwrite).

cscreen:-
screen(blacking,
create(0,0,blacking,0,0,0,none,black on black,25,80,hidden)), 
screen(header,
create(0,0,header,0,0,0,none,white on blue,1,80,revealed)), 
screen(banner,
create(4,1.banner,0,0,0,all.yellow on black,20,78,revealed)), 
screen(top_menu,
create(5,65,top_menu,0,0,0,all.yellow on cyan,7,14,hidden)). 
c_windows:-
screen(blacking,unhide),
window(banner,cursor_address(10,20)),
window(banner,

text("AIRS - Artificial Intelligent Respirator System")), 
window(banner,cursor_address(15,36)), 
window(banner.text("WELCOME !")), 
window(header,cursoraddress(0,2)),
window(header,text(" AIRS Off-Line v2.0 ")).
**
*

close_and_delete
close(top_menu),delete_stream(top_menu), 
close(header),delete_stream(header), 
close(banner),delete_st ream(banner), 
close(blacking),delete_stream(blacking), 
halt.

FIGURE A-II.l Creating the Window Environment

The essence of any PROLOG program is to satisify logical
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goals. In the program excerpt listed above the top-goal is 

make_windows/0 (the "0" indicates that make_windows has no arguments), 

which will succeed only if c_stream/0, c_screen/0 and c_windows/0 all 

succeed in turn. For c_stream/0 to succeed the ’built-in’ predicate 

used to define a ’stream’ is called. In PROLOG-2 ’streams’ are the 

data input and output channels to and from devices of various kinds. A 

window environment is considered by the system to be a device, so a 

means of accessing data has to be defined. This is accomplished by 

using the predicate

createst ream(St reamname.Access,Datatype,Descript ion) .

’Streamname’ is the name of the stream to be created.

’Access’ specifies the type of access allowed to the stream, and 

can be one of read (read only), write (write only), or readwrite 

(the stream can be read from and written to).

’Datatype’ is either specified as ASCII or byte, depending on the 

data’s binary form.

’Description’ describes the stream, which can be a file, a window, or 

a special descriptor such as a printer.

The window descriptor also has three arguments, the first two describe 

the number of rows and columns the window is to cover on the screen, 

and the third argument describes the colour attributes of the window. 

For example, a colour attribute of ’yellow on black’ indicates yellow 

coloured text on a black background.

Nothing can be achieved with this window stream until it is 
opened, using the predicate

open(St reamname.Access).

To display the defined window the screen predicate is used

screen(Name,Operat ion).

’Name’ is the name of the viewport created.

’Operation’ is the PROLOG structure which describes the desired 
operat ion.

The viewport can cover the entire window or any rectangular portion of 

it, however an error message will occur if the viewport is larger than 

its associated window. It is advantageous to give the viewport the 

same name as its window stream, thereby keeping like with like. To 

create a viewport the Operation argument of the screen/2 predicate is 
instantiated to

create(SY,SX,Win,WY,WX,D,M,Matt,H,W,R).

'SY and SX’ define the position of the top left hand corner of the 
viewport on the screen.
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’Win’ is the name of the associated window stream.

’WY and WX’ define the top left hand corner of the viewport on the 

window.

’D’ is the depth of the viewport, that is, a depth of zero will ensure 

that the whole viewport can be seen.

’M’ specifies which side of the viewport are to have margins in Left- 

Right-Bottom-Top order, although more commonly "all" or "none" are 

used.
’Matt’ describes the colour attributes of the margins.

’H and W’ define the size of the viewport in terms of rows and 

columns.

’R’ is either "hidden" or "revealed", depending on whether the 

viewport is to be seen straightaway.

Once the window has been created there are various operations that can 

be used for its management, using the predicate

window(Streamname,Operation).

Two of these operations are illustrated in the source code shown, 

where the operator cursor_address(Y,X) is used to position the cursor, 

and the operator text(" te x t s t r i n g " )  is used to enter a welcome 

message.

In the code illustrated above, four windows are generated: 

the "banner" displays an opening message; the "header" displays a one 

line window at the top of the screen, which is used subsequently to 
enter the patient’s name and identification number; the "blacking" 

window is a useful utility, as its purpose is to cover up any pre-

existing windows or text on the screen before the window of interest 

is displayed; and the "top-menu" window describes the options 

available for continuation of the computer-based consultation.

After processing data, the windows have to be closed if the 

computer memory that they take up is to be re-used. This is achieved 
by using the predicate

close(Streamname).

To tidy up the memory completely, the window stream can be deleted 
using

delete_stream(Streamname).

The halt predicate returns the user to the underlying disk-operating 
system.

All.2 Menu selection

A menu-driven user interface has been designed which allows
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the full potential of the windows environment to be explored. AIRS 

comprises a hierarchy of menus. The code which describes the highest 

level menu is illustrated in Figure A-II.2 below.

display_topmenu
retractall(menu_selection(top_menu,_)), 
assert(menu_selection(top_menu,0)), 
repeat,
once(menu_selection(top_menu,Selection)), 
once(menu(top_menu,"TOP-MENU“,

["Patient name"-"@M-true-l-help,
"Input data"-"@"-true-2-help, 
"Database"-"@"-true-3-help,
"Analyse data"-"@"-true-4-help,
"Act ion"-"@"-t rue-5-help,
"Explanation"-"@"-true-6-help, 
"eXit"-"@"-true-7-help],Option,Select ion)), 

once(screen(topmenu,unhide)),
once(retract(menu_selection(top_menu,Select ion))), 
once(assert(menu_selection(top_menu,Option))), 
once(top_menu_action(Opt ion)),
Option == 7,!. /* fails until exit selected */

top_menu_action(1) 
screen(blacking,pull_up), 
reconsult("rsptname.dat"), 
ptname,
screen(header,pull_up).
***
top_menu_action(7):- 
(store;true).

store
current_data(demographic,“identity",Id),
Display is_string "Archiving " & Id, 
decision_box(3,55,Display,Result), 
archive_patient(Result) .

FIGURE A-II.2 Program Code for the Pull-down Menus

The code shown can be split into two functional units: 

display_topmenu/0 creates the menu; and top_menu_act ion/1 effects the 
menu choice. Before the menu/5 predicate is encountered for the first 

time in d i s p l a y _ t o p m e n u / 0 ,  the internal PROLOG database (the 

’workspace’) is set to a dummy menu selection variable. This ensures 

that no conflict of choice occurs when the menu selection is made. The 

’repeat’ predicate, in conjunction with the ’once’ built-in predicate, 

allows re-satisfaction of the menu options. This has the effect of 

keeping cursor control within the menu until menu option 7 is chosen 

("exit"). When this occurs, immediately after ’top_menu_act ion(7)’ has 

been satisfied the final term of display_topmenu/0 succeeds, the ’cut’
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operator (denoted by the exclamation mark) eliminates any back-

tracking, and display_topmenu/0 is exited.

Central to the menu selection routine is the m e n u / 5  

predicate, which has the general format

menu(Window,Title,Menu,Answer.Start).

’Window’ is the name of the window and associated viewport created to 

accommodate the menu. These must be of sufficient dimensions to 

enclose the menu options.

’Title’ is the title of the window, and is displayed in the top margin 

of the menu selection box. This is an optional feature.

’Menu’ is a list with each entry having five fields, as follows. (1) 

the selection descriptor, which must be a string; (2) an accelerator 

key, which must be a single character string, and has the same 

function as choosing the menu selection with the cursor keys (or 

mouse); (3) the enabling condition, which is a PROLOG goal that has to 

succeed before the menu is displayed; (4) the term which fires the 

action sequence; and (5) the string which is passed to the help system 

for user clarification.

’Answer’ is the selected item.

’Start’ is the menu option where the cursor bar appears, and is in 

reverse video mode.

To illustrate an application of this general format, consider 

the m e n u / 5  predicate found in the example above. The window and 

viewport are called "top_menu"; the menu window has the title "TOP 

MENU". The seven menu options are the first fields of the entries in 

the list; no accelerator keys are used, so these are all matched to 

the enabling condition is the predicate true/0, which always 
succeeds when called; the selected item is indicated by an integer; 

and the help system is not activated. The Answer and Start arguments 

of the m e n u / 5  predicate are matched to the variables O p t i o n  and 

Selection respectively. This allows the starting position (Selection) 
of the cursor bar to be placed on the previous choice, and 

instantiates "Option" to the integer of the present menu selection. 

This integer is then used in the top_menu_act ion/1 predicate to effect 

the appropriate action.

The predicate to p_ menu_action/1 consults one of the second 

level files and initiates action by calling the top goal of the opened 

file. This activates a second level menu system which operates in the 

same way as the top level system. In some instances third and fourth
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level menus are used, but each menu node must eventually exhibit some 

action. For example, this may be for data capture, displaying a 

database or displaying an advice screen. The file is closed 

automatically when exiting from the lower level menu system, enabling 
cursor control to revert to the top-menu. This successive use of menus 

is the way in which control is exhibited within AIRS.

When "exit" is chosen from the top-menu, top_menu_act ion(7) 

is fired which terminates the menu-driven action of the system. Before 

returning to the Disk Operating System any patient details are either 

updated and stored on disk or (the operator is interpreted as 

"or") the true/O predicate succeeds and the AIRS consultation is 

terminated immediately.

AII.3 First level of intelligence

The initialisation of the patient on the ventilator assumes 

that diagnostic state is known, as it is this knowledge which 

determines the information that is shown on the screen. In the program 

excerpt shown in Figure A-II.3 only one of the diagnostic states is 

shown. This is indicative of all the others.

init_menu_action(1) :- 
analysisinit(1), 
act ion(cardiac,init),
explain(cardiac.init).
**
i n i t m e n u a c t i o n ( 16) 
screen(analysis,unhide), 
screen(action,unhide) .

init_menu_action(17) 
screen(explanat ion.unhide) .

analysis_init(1) :-
screen(analysis.unhide),
window(analysis,cursor_address(0,1)),
window(analysis,text("Suggested Ventilator Settings")), 
window(analysis,cursor_address(1,1)), 
window(analysis,text("for Cardiac Patients :-")), 
window(analysis,cursor_address(3,1)), 
window(analysis,text("RR 12 per min")),
window(analysis,cursor_address(4,1)), 
window(analysis,text(”TV 10 ml per Kg“)),
window(analysis,cursor_address(5,1)), 
window(analysis,text(“I:E 1")) ,
window(analysis,cursor_address(6,1)), 
window(analysis,text("PEEP 5 cmH20 ***")),
window(analysis,cursoraddress(7,1) ), 
window(analysis.text("FI02 0.5")).

FIGURE A-II.3 Initialisation of a Cardiac Patient
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The predicate init_menu_action/l is the action product of the 

initialisation menu and is responsible for firing the goal predicates 

which display the suggested ventilator settings (analysis_init/l), the 

action screen (action/2), and the explanation screen (explain/2). 

These latter two predicates are found in the files "rsact.pro" and 

" rsexpln.pro" respectively.

A facility to switch between the analysis/action screen and 

the explanation screen has been added as a feature in this menu 
(init_menu_action(16) and init_menu_act ion(17) being the explicit 

goals to achieve this action).

All.4 Second level of intelligence

At the centre of the sub-program which exhibits the second 

level of intelligence is a value-matching algorithm. The program code 

illustrated in Figure A-II.4 shows an example of the value-matching 

algorithm being used in the determination of the set_point alarm 

status of PC0 2 -

check_status(cmv,set_pt) 
check_pco2(cmv,set_pt).

check_pco2(cmv,set_pt):- 
lab_data(_,_,Index,"PC02 -,VI),
Valuel is value(VI,ir), /* numerical string to atom */
Valuel < 3 , ! ,  /* low < 3 KPa */
fill_top_blue(pco2_status),
action(cmv,set_pt,pco2,low), explanation(cmv,setpt,pco2,low).

check_pco2(cmv,set_pt) 
lab_data(_,_,Index,"PC02 ",V1),
Valuel is value(Vl,ir), /* numerical string to atom */
Valuel > 9 , ! ,  /* high > 9 KPa */
fill_top_red(pco2_status),
action(cmv,set_pt,pco2,high), explanation(cmv,set_pt,pco2,high).

check_pco2(cmv,set_pt) 
fill_top_green(pco2_status).

/* Not HIGH or LOW, therefore NORMAL.
Screen command required for reset. */

check_pco2(cmv,set_pt). /* catch all */

FIGURE A-II.4 Value-matching Algorithm for PCO2 Limit Alarm

The predicate check_status/2 comprises twenty-one clauses, 
one for each of the seven data variables in the three modes of 

ventilation recognised by the system. PaC02 is the data variable in 

the illustrative example above, where the value-matching algorithm 

shows the data values for changing set-point alarm status when the
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mode of ventilation is continuous mandatory ventilation (CMV). There 

are four clauses for check_pco2/2, in the first two of these the value 

for PaC02 is obtained from the internal PROLOG database using 

lab_data/5. This value is then converted from a string to an atom 

using value/2, and tested against the set-point criterion. If the 

Valuel term is passed the colour attribute of the upper half of the 

window is changed accordingly. The order in which the clauses for 

check_pco2/2 occur is important, as if the value fails the first two 

clauses it is automatically assumed to reside within the normal range. 

A fourth clause is added for check_pco2/2 which has no goal, this acts 

as a software safety mechanism and returns all failures.

All.5 Third level of intelligence

All.5.1 Structure of the rulebase

The rule-based knowledge of the weaning element of AIRS is 

represented in PROLOG by the clauses premise/4 and action/3. A rule of 

the form:

IF condition 1 

AND condition 2 

OR condition 3 

AND condition 4 

THEN action 1 

AND action 2

is represented in a general form as

premise(rule_number_l,premise_number_l,rule_type,Data) 

condition 1, 

condition 2.

premise(rule_number_l,premise_number_2,rule_type,Data):- 
condition 3, 

condition 4.

act ion(rule_number_l,Premise variable,Data) 
action 1, 

action 2.

The premise conditions can be any PROLOG goal, but several standard 
conditions are defined: 

equals/5 

not_equal/5

greater_than_or_equal/5 

less_than_or_equal/5 

one of/5
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Figure A-II.5 shows an example of program code, the 4th rule of the 

weaning rule-set, which has two premises that deal with impaired 

energy supply. The premises indicate that this situation can occur 

when the patient has impaired oxygen delivery or a nutritional 

deficiency. A full listing of the program code for the third level of 

intelligence is found in Section All.8.

premise(4,1,weaning,[impaired_oxygen_delivery]) 

equals(4,1,weaning,impaired_oxygen_delivery,yes).

premise(4,2,weaning,[nut rit ionaldeficiency]) 

equals(4,2,weaning,nutritional_deficiency.yes).

action(4,P,[impaired_energy_supply]):- 

conclude(4,P,impaired_energy_supply,transient,yes).

FIGURE A-II.5 Rule for Impaired Energy Supply

The predicates listed above test the current values of data stored in 

a dynamic database defined by PROLOG facts current_value/3: 

current_value(Dataname.Datatype,Datavalue).

For the action goals, one standard predicate is used to update the 
current_value/3 facts, that is: 

conclude/5.

All.5.2 The role of premise requirements

The 4th argument of the premise/4 clauses is a list of all 

the Data-names that appear in equals/5 conditions for the premise. The 

values of these data items must exist in the database if the premise 

is to evaluate successfully. Hence, the list of Data-names is called 
the ’premise requirements’ list for the rule premise.

Before the rules which comprise the inference engine are 

fired, the predicate generate_premise_requirements/0 checks each 
premise clause and asserts a fact:

premise_requi rements(Rule,Premise.Type,Requi rements)

for each rule premise, where the four arguments are the same as those 
in the head of the premise/4 clause.

Whenever the value of a data item is concluded with 

conclude/5 the pr em i se_requi r ement s facts are searched and the name of 

the data item whose value is concluded is removed from the
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requirements list (this is a c h i e v e d  by the p r e d i c a t e  

reduce_premise_requirements/2).

Whenever the value of a data item is tested using one of the 

standard premise conditions (equals/5 etc.) and the test fails, the 

name of the data item is added to the requirements list in the 

premise_requirements/4 fact for that rule premise.

The rules for which the requirements list is empty are 

suitable for testing on the next cycle of the inference engine.

All.5.3 The inference engine

The inference engine operates in a simple cycle, shown in 

Figure A-II.6, activated by the predicate control_cycle/0. The set of 

active rules is formed in two stages. First a set is formed of all 
rules whose requirements list is empty (in premiserequirements/4 

facts). Then for each rule in this set the premise is evaluated (by 

calling the premise/4 goal) and the set of active rules is formed from 

all rules whose premise succeeds. The two phases of rule activation 

are achieved by the predicates f i r s t _p a s s_a c t i v a t i o n / 1 and 
second_pass_act ivat ion/2.

The predicate schedule_rules/3 is passed the list of active 

rules and returns them to be executed one at a time. The order that 

the rules are scheduled is controlled by a simple algorithm:

goal top priority

weaning

regression

progression

request lowest priority

On each cycle the rule returned by schedule rule/3 is executed (that 

is, the action/3 predicate is called.

AII.6 Data capture

A menu-type interface is used to enter data into AIRS. At one 

level the menu options are the type of data (for example, ventilator, 

monitor, nurse observations), and at a lower level the menu options 

are the data items themselves (for examp 1 e ,tida 1 volume and 

respiratory rate). The program excerpt in Figure A-II.7 illustrates 

data capture from the ventilator, and shows two predicates : 
vent_data/0 and input_data/2.

199



ventdata 
repeat,
once(get_archive_time(Date,Time)),
once(vent_display([Day.Month,Year],[Hour,Min])),
once(create_data_display(Date,Time,"RR ",Display_RR)),
once(menu(input_ventdata,"Data Input",
[Display_RR-"@"-create_data_display(Date,Time,"MV ",

Display_MV)-input_data(“RR ",Index)-help,

Display_MV-,,@"-create_data_display(Date,Time, “MawP
Display_MawP)-input_data("MV “,Index)-help, 

Display_MawP-”@"-create_data_dispiay(Date,Time,"IE ",
Display_IE)-input_data("MawP ",Index)-help, 

Display_IE-"@"-create_data_display(Date,Time,"TV
Display_TV)-input_data("IE ", Index)-help,

Display_TV-"@"-create_data_display(Date,Time,"SMV ",
Display_SMV)-input_data(“TV ",Index)-help, 

Display_SMV-"@"-create_data_display(Date,Time,"PawP ",
Display_PawP)-input_data("SMV ",Index)-help, 

Display_PawP-"@"-create_data_display(Date,Time,"PP ",
Display_PP)-input_data("PawP ",Index)-help, 

Display_PP-"@"-true-input_data("PP ",Index)-help, 
"exit"-"@"-true-exit-help], Option,0)), 

once(call(Opt ion)),
Option == exit, 
window(ventdb,scroll_up), 
scroll window down(ventdatdb), 
closeal1.

input_data(Measurand,Index)
date(Day.Month,Year), time(Hour,Minute,Sec),
Date = [Day,Month,Year], Time = [Hour.Minute],
pt_index(Index),
screen(input_ventdata,unhide) ,
Prompt is_string Measurand,
Value_string is_string ?(Value,

fedit(5,1,30,"Input Data".Prompt,“ ".green on black.Value)), 
asserta(vent_data(Date,Time,Index,Measurand,Value_st ring)) , 
display_data(Measurand,Valuestring).

FIGURE A-II.7 Program Code for Data Capture

In the vent_data/0 predicate repeat/0 is again used to keep 

cursor control within the menu until the "exit" option is chosen. The 

predicates get_archive_t ime/2, vent_di sp 1 a y / 2 and c r e a t e _ d a t a _  

display/4 are involved with the on-screen presentation of the captured 

data and are discussed in the next section.

The m e n u / 5 predicate within vent_data/0 describes a more 

sophisticated menu system than previously encountered. For any option 

except the last one in the menu list, the enabling condition is the 

create_data_display/4 predicate of the next item in the menu. The 

enabling condition of the last listed item is the predicate true/0 

which automatically succeeds. To complicate the understanding of the
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program even further, the display token of the chosen menu item is the 

last argument of the previous create_data_display/4 predicate. The 

corresponding argument for the first item in the list is defined 

before the menu/5 predicate is fired. The return token for every menu 

option is the predicate input_data/2. The data capture menus have been 

implemented in this way to facilitate data processing.

When it is called, the first argument of input_data/2 is 

instantiated to the chosen measureand. The date and time are then 

taken from the system clock to act as a time-stamp for the data file 

and the index number of the patient is checked to ensure that the 
correct data is transferred. A built-in predicate fedit/8 is used as a 

means to enter the data, and has the general format
fedit(SY.SX,Length,Title,Prompt,Def,Att,Ans).

’SY and SX’ define the position of the top left corner of the window 

and associated viewport.

’Length’ is the width of the window (by default an fedit/8 window is 

specified as having only one row).

’Title’ is the title of the window, and is optional.

’Prompt’ is the prompt which is written to the left of the window. 

’Def’ is the data string to be entered.

’Att’ is the colour attribute of the window.

’Value’ is the output string.

Hence, the program excerpt shows a window that is thirty 

characters long and the top left corner appears five rows down and one 

column across. The window is entitled "Input Data", the prompt is the 

required measurand (to be instantiated) and the characters are green 

on a black background. When the input window first appears the data 

entry area is blank and awaits input by the user. The value entered 

can be edited as necessary, as it is not matched to "Value" until the 

return key is pressed. The number inputted is converted to a string 

before saving in the PROLOG workspace in the form

vent_data(Date.Time,Index,Measurand,Value_st ring).

A typical entry could be

vent_data([01,03,89],[14,30],Pt3,"RR "

This can be interpreted as, "The patient whose identity is Pt3 had a 

respiratory rate of 12 breaths per minute at 14:30 hours on 1st March, 
1989."

There are similar clauses for monitor data, nurse 

observations etc. which have the same argument format to vent data/5 

above. It is these clauses which are saved to disk when exiting from
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AIRS. They are stored in files called "PTX.ARC", where X is the 

appropriate patient number.

All.7 Data presentation

The predicates shown in Figure A-II.8 are used for data 

capture and for data presentation.

get_archive_time(Date.Time) 
vent_data(Date,Time,_,_,_).

get_archive_time(Date,Time)
date(Day,Month,Year), time(Hour.Minute,Sec), 
Date = [Day.Month,Year], Time = [Hour.Minute].

vent_display(_,_)
date_display(Date), time_display(Time), 
window(ventdb,cursor_address(5,1)) , 
Datadisplay is_string Date & " " & Time, 
window(ventdb,text(Datadisplay)), 
window(ventdatdb,cursor_address(0,1)), 
window(ventdatdb,text(Datadisplay)).

create_data_disp1ay(Date,Time,Measurand,Datadisplay) 
vent_data(Date,Time,Index,Measurand,Value), 
output_format(Value.Displayvalue), 
units(Measurand.Units),
Data_display isstring Measurand & Display_value & Units.

create_data_disp1ay(Date,Time,Measurand,Data_dispiay) 
units(Measurand.Units),
Data_display isstring Measurand & " " & Units.

units("RR 
units("MawP 
units("TV 
units("PawP

,,,M per min"). units("MV 
cmH20"). units("IE 

"," litres"). unitsC'SMV 
cmH20”). units(”PP

litres").

"," litres"). 
,“ cmH20").

display_data(Measurand,Value)
clause(vent_tab_head/l,vent_tab_head(Measurand),Pos), 
Xpos is 10 + Pos*8,
Xposdb is 10 + Pos*8,
window(ventdb,inquire_cursor_address(CY,X)) , 
window(ventdb,cursor_address(CY,Xpos)), 
window(ventdb,text(Value)),
window(ventdatdb,inquire_cursor_address(CYdb,Xdb)), 
window(ventdatdb,cursor_address(CYdb,Xposdb)), 
window(ventdatdb,text(Value)).

vent_tab_head("RR 
vent_tab_head("MawP 
vent_tab_head("TV 
vent_tab_head("PawP

"). vent_tab_head("MV 
"). vent_tab_head("IE 
“). vent_tab_head("SMV 
"). vent_tab_head("PP

")-
")■
")■
”)■

FIGURE A-II.8 Program Code for Data Presentation

There are two clauses for the predicate getarchivetime/2 

which is called from within the data capture menu. The first succeeds
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if the date and time from the system clock has remained the same from 

the previous call to this predicate. However if a time boundary 

(minutes are the most significant time boundary) has been passed, the 

first clause fails and the second clause is used to update the time 

(and date, if the time is midnight). The predicate vent_display/2 is 

used to display the date and time in the data capture and database 

windows.

The predicate create_data_display/4 also has two clauses, 

which one of them succeeds also depends on whether the time has been 

updated. Its use is to return the term Data_display, which shows the 

data entry options available. Within this clause, output_format/2 is 

used to convert all numbers to an accuracy of two decimal places; and 

units/2, as illustrated in the code above, returns the appropriate 

units of measurement for the entered data.

The predicate display_data/2 is used to enter the captured 

data entries into their respective positions in the data capture and 

database windows. Date and time require ten columns for their entry, 

so the position of the data entries are off-set by that amount. The 

clauses for vent_tab_head/l are position sensitive, the variable term 

Pos being matched to the numerical order of the entered Measurand. 

Each data item has a field of eight columns in the database, so the 

cursor position for data entry into the data capture window is given 

by the term Xpos. The same algorithm is used for placing data at the 

appropriate position within the database window.
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AII.8 Program listing for the third level of intelligence

/* ________________ rswean rulebase ______________ */

/* Form of rule premises :
1st argument - Rule_no
2nd argument - Premise_no
3rd argument - Rule_type
4th argument - Dependent variables */

/* */

premise(goal,1,goal, [ ]): - 
t rue.

/* top goal always fires */

premise(terminate.l,terminate,[]):- 
t rue.

/* end goal always fires */

/ * ------ Rule premises - weaning---------*/

premise(0,l.weaning,[fit_to_wean]) :- 
equals(0,1,weaning.fi t_to_wean,yes).

premise(l,l,weaning,[respi ratory_muscle_fat igue]):- 
equals(1,1,weaning,respi ratory_muscle_fat igue,yes).

premise(l,2,weaning,[f_e_imbalance]):- 
equals(1,2,weaning,f_e_imbalance,yes).

premise(l,3,weaning,[syst em_failure]): - 
equals(1,3,weaning,syst em_failure,yes).

premise(1,4,weaning,[anxiety]] 
equals(1,4,weaning,anxiety,yes).

premise(l,5,weaning,[feeding_problems]):- 
equals(1,5.weaning,feeding_problems,yes).

premise(2,1,weaning,[excessive_muscle_demands]):- 
equals(2,1.weaning,excessive_muscle_demands,yes).

premise(2,2.weaning,[impai red_energy_supply]):- 
equals(2,2,weaning,impaired_energy_supply,yes).

premise(3,l.weaning,[increased_respi ratory_resistance]):- 
equals(3,1.weaning,increased_respiratory_resistance,yes).

premise(3,2.weaning,[fever_infect ion]):- 
equals(3,2,weaning,fever_infection,yes).

premise(3,3,weaning,[i ncreased_co2_product ion]):- 
equals(3,3.weaning,increased_co2_product ion,yes).

premise(4,l,weaning,[impai red_oxygen_delivery]):- 
equals(4,1.weaning,impai red_oxygen_delivery,yes).

premise( 4 , 2 .weaning, [ nut rit  ional_deficiency] ) : -
equals(4,2 , weaning,nutri t ional_def iciency,yes) .
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premise(5,l.weaning,[breathing_ci rcuit_inappropriate]): 
equal s( 5,1.weaning,breathing_circuit_inappropriate,yes)

premise(5,2 .weaning,[bronchospasm]):- 
equals(5,2.weaning,bronchospasm,yes).

premise(5,3,weaning,[ascites]):- 
equals(5,3,weaning,ascites,yes).

premise(5,4,weaning,[obesity]):- 
equals(5,4,weaning,obesity,yes).

premise(6,l.weaning,[reduced_oxygen_consumpt ion]):- 
equals(6,1.weaning,reduced_oxygen_consumption,yes).

premise(6,2.weaning,[increased_work_of_breathing]) 
equals(6,2.weaning,increased_work_of_breathing,yes).

premise(7,l.weaning,[cat abolic]): - 
equals(7,1 .weaning,catabolic,yes).

premise(8,l.weaning,[sensitivity]):- 
equals(8,1.weaning.sensitivity,yes).

premise(9,1.weaning,[i ncreased_dynamic_resistance]):- 
equals(9,l,weaning,increased_dynamic_resistance,yes).

premise(10,l.weaning,[hypovolaemia]) 
equals( 10,1,weaning,hypovolaemia,yes).

premise(10,2,weaning,[anaemia]):- 
equals(10,2,weaning,anaemia,yes).

premise(10,3,weaning,[pulmonary_oedema]):- 
equals( 10,3,weaning,pulmonary_oedema,yes).

premise(10,4,weaning,[potassium_level_out]):- 
equals( 10,4,weaning,potassium_level_out,yes).

premise(10,5,weaning,[phosphate_level]):- 
equals(10,5,weaning,phosphate_level,yes).

premise(ll,l,weaning,[c_v_pressure]): - 
equals(11,1,weaning,c_v_pressure,yes).

premise(12,l.weaning,[haemoglobin_count]):- 
equals(12,l,weaning,haemoglobin_count,yes).

premise(13,l.weaning,[p_a_wedge_pressure]) 
equals(13,1,weaning,p_a_wedge_pressure,yes).

premise(13,2,weaning,[colloid_osmot ic_pressure]):- 
equals( 13,2.weaning,colloid_osmot ic_pressure,yes).

premise(14,1,weaning,[potassium_high]) 
equals(14,l,weaning,pot assium_high,yes).

premise(14,2,weaning,[potassium_low])
equals(14,2 ,weaning,potassium_low,yes).
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premise(16,1,weaning,[respiratory_failure]) 
equals(16,1,weaning,respi ratory_failure,yes).

premise(16,2 .weaning,[cardiac_failure]) 
equals(16,2,weaning,cardiac_failure,yes).

premise(16,3,weaning,[neurological]):- 
equals(16,3.weaning,neurological,yes).

premise(16,4,weani ng,[metabolic_aci d_base]):- 
equals( 16,4,weaning,metabolic_acid_base,yes).

premise(17,l,weaning,[ventilatory_failure]) 
equal s( 17,1,weaning,venti1 atory_failure,yes).

premise(17,2,weaning,[i nefficient_pulmonary_gas_exchange]): 
equals(17,2,weaning,inefficient_pulmonary_gas_exchange,yes)

premise(18,l,weaning,[t idal_volume]):- 
equals(18,1,weaning,t idal_volume,yes).

premise(19,l,weaning,[capAaD02]):- 
equals(19,1.weaning,capAaD02,yes).

premise(20,l.weaning,[cardiac_output_low]) 
equals( 20,1,weaning,cardiac_output_low,yes).

premise(20,2,weaning,[acute_lvf]):- 
equals(20,2,weaning,acute_lvf,yes).

premise(21,l.weaning,[cardiac_index]):- 
equals(21,1.weaning,cardiac_index,yes).

premise(22,1,weaning,[p_a_wedge_pressure]):- 
equals(22,1,weaning,p_a_wedge_pressure,yes).

premise(23,l,weaning,[metabolic_alkalosi s ]):- 
equals (23,1,weaning,metabolic_alkalosis,yes).

premise(23,2,weaning,[respi ratory_alkalosis]):- 
equals(23,2,weaning,respiratory_alkalosis,yes).

premise(23,3,weaning,[renal_probiem]):- 
equals(23,3,weaning,renal_problem,yes).

premise(23,4,weaning,[hepat ic_problem]):- 
equals(23,4,weaning,hepatic_problem,yes).

premise(24,1,weaning,[creat inine_high]):- 
equals(24,1,weaning,creatinine_high,yes).

premise(25,l,weaning,[1ft_deranged]) 
equals(25,1,weaning,lft_deranged,yes).

premise(15,1 ,weaning,[phosphate_high])
equals(15,1 ,weaning, phosphate_high, yes ).

premise( 26 , 1 .weaning, [ sleep_deprivat ion] ) : -
equals(26 ,1 , weaning, sleep_deprivat ion, yes ).
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premise(26,3,weaning,[pain]):- 
equals(26,3,weaning,pain,yes).

premise(26,4,weaning,[sedation]):- 
equals(26,4.weaning.sedation,yes).

premise(27,1,weaning,[sleepi ng_draught]):- 
equals(27,1.weaning,sleeping_draught,yes).

premise(28,1.weaning,[anxiolyt ic_agent]):- 
equals(28,1,weaning,anxiolytic_agent,yes).

premise(29,l.weaning,[local_blocker]):- 
equals(29,1.weaning,1ocal_blocker,yes).

premise(29,2,weaning,[infiltration]):- 
equals(29,2.weaning,infiltration,yes).

premise(32,1,weaning,[sedation]):- 
equals(32,1,weaning,sedation,yes).

premise(33,l,weaning,[atelactasis]):- 
equals(33,1,weaning,atelactasis,yes).

premise(33,2,weaning,[decreased_vent ilatory_response]): 
equals(33,2.weaning,decreased_vent i1atory_response,yes)

premise(34,l.weaning,[ineffect ive_cough]):- 
equals( 34,1.weaning,ineffeetive_cough,yes).

premise(35,l.weaning,[hypoxia]) 
equals(35,1.weaning,hypoxia,yes).

premise(35,2,weaning,[hypercapnia]) 
equals(35,2.weaning,hypercapnia,yes).

premise(26 , 2 , weaning,[primary_anxiety] ) : -
equals(2 6 , 2 , weaning,primary_anxiety,yes).
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/* rule premises - regression */

premise(l00,1,regression,[regress]):- 
equals(100,1,regression,regress,yes).

premise(101,l,regression^respi ratory_muscle_weakness_fat igue]): 
equals(101,1,regression,respi ratory_muscle_weakness_fat igue,yes)

premise(101,2,regression,[decreased_respi ratory_drive]): - 
equals(101,2,regression,decreased_respi ratory_dr ive,yes).

premise(101,3,regression^ increased_respi ratory_drive]): - 
equals(101,3,regression,increased_respi ratory_driv e ,yes).

premise(l02,1,regression,[rr_gt_25_and_tv_vlow]): - 
equals(102,1,regression,rr_gt_25_and_tv_vlow,yes).

premise(102,2,regression^abnormal_breat hing]): - 
equals(102,2,regression,abnormal_breat hi ng,yes).

premise(l03,1,regression,[abdominal_paradox]): - 
equals(103,1,regression,abdominal_paradox,yes).

premise(l 03,2,regression^ respi ratory_alternans]): - 
equals(103,2,regression,respi ratory_alternans,yes).

premise(l 04,1,regression^ increased_tv_inspi ratory_t ime_rat io]): 
equals( 104,1,regression,increased_tv_inspi ratory_t ime_rat io,yes)

premise(l05,1,regression,[p01_gt_6]):- 
equal s( 105,1,regression,p01_gt_6,yes).

premise(l05,2,regression,[increased_co2_product ion]) 
equals(105,2,regression,increased_co2_product ion,yes).

/ * ----------- rule premises - progression---------- */

premise(200,1,progression,[progress]):- 
equals(200,1,progression,progress,yes).

premise(200,2,progression,[regress]):- 
equals(200,2,progression,regress,yes).

premise(200,3,progression,[review]):- 
equals(200,3,progression,review,yes).

premise(201,1,progress ion,[ph_same_paco2_up]): — 
equals(201,1,progression,ph_same_paco2_up,yes).

premise(201,2,progression,[ph_same_paco2_same]):- 
equals (201,2,progression,ph_same_paco2_same,yes).

premise(201,3 , progression,[ph_same_paco2_down]): -
equal s (201, 3 , progression,ph_same_paco2_down, yes ).

209



premi se(202,2,progression,[ph_down_paco2_up]): - 
equals( 202,2,progression,ph_down_paco2_up,yes).

premise(203,1,progression,[ph_up_paco2_same]): - 
equals(203,1,progression,ph_up_paco2_same,yes).

premise(203,2,progression,[ph_up_paco2_down]):- 
equal s(203,2,progression,ph_up_paco2_down,yes).

premise(203,3,progression^ ph_down_paco2_same]): 
equal s(203,3,progression,ph_down_paco2_same,yes)

premise(203,4,progression,[ph_down_paco2_down]): 
equals(203,4,progression,ph_down_paco2_down,yes)

premise(204,1,progression,[ph_samel]):- 
equals(204,1,progression,ph_samel,yes).

premise(204,2,progression,[paco2_upl]):- 
equal s(204,2,progress ion,paco2_upl,yes).

premise(205,1,progression,[ph_same2]):- 
equal s(205,1,progression,ph_same2,yes).

premise(205,2,progression,[paco2_samel]):- 
equals(205,2,progression,paco2_samel,yes).

premise(206,1,progression,[ph_same3]): - 
equal s(206,1,progression,ph_same3,yes).

premise(206,2,progression,[paco2_downl]):- 
equals(206,2,progression,paco2_downl,yes).

premise(207,1,progression,[ph_upl]):- 
equal s(207,1,progression,ph_upl,yes).

premise(207,2,progression,[paco2_up2] ) : - 
equal s(207,2,progression,paco2_up2,yes).

premi se(208,1,progression,[ph_downl]):- 
equal s(208,1,progression,ph_downl,yes).

premise(208,2,progression,[paco2_up3]) 
equal s(208,2,progression,paco2_up3,yes).

premise(209,l,progression,[ph_up2]) 
equal s(209,1,progression,ph_up2,yes).

premise(209,2,progression,[paco2_same2]) 
equals(209,2.progression,paco2_same2,yes).

premise(210,l,progression,[ph_up3]) 
equals(210,1,progression,ph_up3,yes).

premise(202, 1 , progression,[ph_up_paco2_up])
equal s ( 202,1 ,progression, ph_up_paco2_up, yes ).

premise(210,2 ,progression,[paco2_down2] ) : -
equals ( 210,2 ,progression,paco2_down2, yes ).
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premise(211,2,progression,[paco2_same3]) 
equals(211,2,progression,paco2_same3,yes).

premise(212,1,progression,[ph_down3]): - 
equals(212,1,progression,ph_down3,yes).

premise(212,2,progress ion,[paco2_down3]) 
equals(212,2,progression,paco2_down3,yes).

premise(213,1,progression,[ph_is_same]) 
equals(213,l.progress ion,ph_is_same,yes).

premise(214,1,progression,[paco2_is_up]):- 
equals(214,1,progression,paco2_is_up,yes).

premise(215,l,progression,[ph_is_same]) 
equals(215,1,progression,ph_is_same,yes).

premise(216,1,progression,[paco2_is_same]): 
equals(216,1,progression,paco2_is_same,yes)

premise(217,l,progression,[ph_is_same]) 
equals(217,1,progression,ph_is_same,yes).

premise(218,1,progression,[paco2_is_down]): 
equals(218,1,progression,paco2_is_down,yes)

premise(219,1,progression,[ph_is_up]):- 
equals(219,1,progression,ph_is_up,yes).

premise(220,1,progression,[paco2_is_up]): - 
equals(220,1,progression,paco2_is_up,yes).

premise(221,l,progression,[ph_is_down]): - 
equals(221,1,progression,ph_is_down,yes).

premise(222,l,progression,[paco2_is_up]) 
equals( 222,1,progression,paco2_i s_up,yes).

premise(223,1,progression,[ph_is_up]):- 
equals(223,1,progress ion,ph_is_up,yes).

premise(224,l,progression,[paco2_i s_same]): 
equals(224,1,progression,paco2_is_same,yes)

premise(225,l,progression,[ph_is_up]) 
equals(225,1,progression,ph_is_up,yes).

premise(226,1,progression,[paco2_is_down]): 
equals(226,1,progression,paco2_is_down,yes)

premise(227,1,progression,[ph_is_down]):- 
equals(227,1,progress ion,ph_is_down,yes).

premise(211,l ,progression,[ph_down2] ) : -
equals(211 ,1 ,progression, ph_down2, yes ).

premise(228, l ,progression, [ paco2_is_same]):
equals(228,1 ,progression, paco2_is_same, yes )
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premise(230,1,progression,[paco2_is_down]):- 
equals(230,1,progression,paco2_is_down,yes).

premise(229,1 ,progression, [ph_is_down] ) : -
equals(229,1 ,progression,ph_is_down,yes).

/ * _________________________________________________________________* /
/ * ------------- negative weaning conclusions ------------------  */

premi se(500,1,weaning,[f it_to_wean]):- 
equals(500,1.weaning,f it_to_wean,no).

premise(501,1,weaning,[respi ratory_muscle_fat igue,f_e_imbalance,
system_failure.anxiety,feeding_problems]): - 

equals(501,1.weaning,respi ratory_muscle_fat igue,no), 
equals (501,2.weaning,f_e_imbalance,no), 
equals(501,3,weani ng,system_failure.no), 
equals (501,4,weaning,anxiety,no), 
equals (501,5,weaning,feeding_problems,no).

premise(502,1,weaning,[impai red_energy_supply,
excessive_muscle_demands]) 

equals(502,1.weaning,impaired_energy_supply,no), 
equals (502,2,weaning,excess ive_muscle_demands,no).

premise(503,1.weaning,[increased_respirat ory_resistance,
fever_infeet ion,increased_co2_product ion]):- 

equals(503,1.weaning,increased_respiratory_resistance,no), 
equals(503,2.weaning,fever_infeet ion,no), 
equals(503,3.weaning,increased_co2_product ion,no).

premise(504,1.weaning,[impai red_oxygen_delivery,
nutritional_deficiency]):- 

equals(504,1.weaning,impaired_oxygen_delivery,no), 
equals(504,2.weaning,nut rit ional_deficiency,no).

premise(505,1,weaning,[breathing_circuit_inappropriate,
bronchospasm,ascites,obesity]):- 

equals(505,1,weaning,breathing_circuit_inappropriate,no), 
equals(505,2,weaning,bronchospasm.no), 
equals(505,3,weaning,ascites,no), 
equals(505,4.weaning.obesity,no).

premise(506,1.weaning,[reduced_oxygen_consumption,
increased_work_of_breathing]) 

equals(506,1.weaning,reduced_oxygen_consumpt ion,no), 
equals(506,2.weaning,increased_work_of_breat hing,no).

premise(507,1.weaning,[catabolic]) 
equals(507,1,weaning,catabolic,no).

premise(508,1,weaning,[sensitivity]):- 
equals(508,1.weaning.sensitivity,no).

212



premise(509,1.weaning,[increased_dynamic_resi stance]) 
equals(509,1.weaning,increased_dynamic_resistance,no).

premise(510,l,weaning,[hypovolaemia,anaemia,pulmonary_oedema,
potassium_level_out,phosphate_level]):- 

equals(510,1,weaning,hypovolaemia,no), 
equals(510,2,weaning,anaemia, no), 
equals(510,3,weaning,pulmonary_oedema,no), 
equals(510,4,weaning,pot assium_level_out,no), 
equals(510,5,weaning,phosphate_level,no).

premise(511,l,weaning,[c_v_pressure]) 
equals(511,1,weaning,c_v_pressure,no).

premise(512,l,weaning,[haemoglobin_count]):- 
equals(512,1,weaning,haemoglobin_count,no).

premise(513,l,weaning,[p_a_wedge_pressure_high,
colloid_osmot ic_pressure]):- 

equals(513,1,weaning,p_a_wedge_pressure_high,no), 
equals(513,2,weaning,colloid_osmot ic_pressure,no).

premise(514,l,weaning,[potassium_high,potassium_low]):- 
equals(514,1.weaning,potassium_high,no), 
equals(514,2.weaning,potassium_low,no).

premise(515,l.weaning,[phosphate_high]) 
equals(515,1,weaning,phosphate_high,no).

premise(516,l,weaning,[respi ratory_failure,cardiac_failure,
neurological.metabolic_acid_base]):- 

equals(516,1,weaning,respi ratory_failure.no), 
equals (516,2,weaning,cardi ac_failure.no), 
equals(516,3,weaning,neurological,no), 
equals(516,4.weaning.metabolic_acid_base,no).

premise(517,1,weaning,[ventilatory_failure,
inefficient_pulmonary_gas_exchange]) 

equals(517,1.weaning,vent i1 atory_failure,no), 
equals(517,2.weaning,inefficient_pu1monary_gas_exchange,no).

premise(518,l,weaning,[t idal_volume]):- 
equals(518,1,weaning,t idal_volume,no).

premise(519,l,weaning,[capAaD02]) 
equals( 519,1,weaning,capAaD02,no).

premise(520,1.weaning,[cardiac_output_low,acute_lvf]) 
equals (520,1,weaning,cardiac_output_low,no), 
equals( 520,2,weaning,acute_lvf,no).

premise(521,l,weaning,[cardiac_index]) 
equals(521,1.weaning,cardiac_index,no).

premise(522,1,weaning,[p_a_wedge_pressure_low]) 
equals(522,1,weaning,p_a_wedge_pressure_low,no).

213



premise(523,1,weaning,[metabolic_alkalosis,respi ratory_alkalosis,
renal_problem,hepat ic_problem]):- 

equals(523,1,weaning,metabolic_alkalosis,no), 
equals (523,2,weaning,respirat ory_alkalosis,no), 
equals (523,3,weaning,renal_problem,no), 
equals(523,4.weaning,hepat ic_probiem,no).

premise(524,1.weaning,[creat inine_high]) :- 
equals(524,1.weaning,creat inine_high,no).

premise(525,1,weaning,[lft_deranged]):~ 
equals(525,1,weaning,lft_deranged,no).

premise(526,1,weaning,[sleep_deprivat ion,primary_anxiety,
pain,sedation])

equals(526,1.weaning,sleep_deprivat ion.no), 
equals(526,2,weani ng,primary_anxiety,no), 
equals(526,3,weaning,pa in,no), 
equals(526,4,weaning,sedation,no).

premise(527,l,weaning,[sieeping_draught]):- 
equals(527,1,weaning,sieeping_draught,no).

premise(528,1,weaning,[anxiolyt ic_agent]):- 
equals (528,1,weaning,anxiolytic_agent,no).

premise(529,1,weaning,[local_blocker,infiltration]):- 
equals(529,1.weaning,local_blocker,no), 
equals(529,2,weaning,infiltration.no).

premise(532,1,weaning,[sedation]):- 
equals(532,1.weaning,sedation,no).

premise(533,1,weaning,[atelactasis,
decreased_vent ilatory_response]) 

equals(533,1,weaning,atelactasis,no),
equals( 533,2.weaning,decreased_vent ilatory_response,no).

premise(534,l,weaning,[ineffect ive_cough]):- 
equals(534,1.weaning,ineffect ive_cough,no).

premise(535,l.weaning,[hypoxia.hypercapnia]):- 
equals(535,1.weaning,hypoxia,no), 
equals(535,2,weaning,hypercapnia,no).
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/*
/* negative regression conclusions

*/
*/

premise(600,1,regression,[regress]):- 
equals(600,1,regression,regress,no).

premise(601,1,regression,[respi ratory_muscle_weakness_fat igue,
decreased_respi ratory_drive, 
increased_respi ratory_drive]): -

equals(601,1,regression,respi ratory_muscle_weakness_fat igue,no), 
equals(601,2,regression,decreased_respi ratory_dr ive,no), 
equals(601,3,regression,increased_respirarory_drive,no).

premise(602,1,regression,[rr_gt_25_and_tv_vlow,
abnormal_breathing])

equals(602,1,regression,rr_gt_25_and_tv_vlow,no), 
equals(602,2,regression,abnormal_breathing,no).

premise(603,1,regression,[abdominal_paradox,
respi ratory_alternans]):- 

equals(603,1,regression,abdominal_paradox,no), 
equals(603,2,regression,respiratory_alternans,no).

premise(604,1,regression^ increased_tv_i nspi ratory_t ime_rat io]):- 
equals(604,1,regression,increased_tv_inspi ratory_t ime_rat io,no).

premise(605,l,regression,[p01_gt_6,
increased_co2_product ion]):- 

equals(605,1,regression,p01_gt_6,no), 
equals(605,2,regression,increased_co2_product ion,no).

/ * --------- negative rule premises - progression---------*/

premise(200,1.progression,[progress,regress,review]):- 
equals(200,1,progression,progress,no), 
equals(200,2,progression,regress,no), 
equals(200,3,progress ion,review.no).

premise(201,1.progression,[ph_same_paco2_up,
ph_same_paco2_same, 
ph_same_paco2_down]):-

equals(201,1,progression,ph_same_paco2_up,no), 
equals(201,2,progression,ph_same_paco2_same,no), 
equals(201,3,progression,ph_same_paco2_down,no).

premise(202,1,progression,[ph_up_paco2_up,
ph_down_paco2_up]):-

equals(202,1,progression,ph_up_paco2_up,no), 
equals(202,2,progression,ph_down_paco2_up,no).
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premise(203,1,progression,[ph_up_paco2_same,
ph_up_pac°2_down, 
ph_down_paco2_same, 
ph_down_paco2_down]):-

equal s(203,1,progression,ph_up_paco2_same,no), 
equals(203,2,progression,ph_up_paco2_down,no), 
equal s(203,3,progress ion,ph_down_paco2_same,no), 
equal s(203,4,progression,ph_down_paco2_down,no).

premise(204,1,progression,[ph_samel,paco2_upl]):- 
equal s(204,1,progression,ph_samel,no), 
equals(204,2,progression,paco2_upl,no).

premise(205,1,progression,[ph_same2,paco2_samel]) 
equal s(205,1,progression,ph_same2,no), 
equals(205,2,progression,paco2_samel,no).

premise(206,1,progression,[ph_same3,paco2_downl]) 
equal s(206,1,progression,ph_same3,no), 
equals(206,2,progression,paco2_downl,no).

premise(207,1,progression,[ph_upl,paco2_up2]):- 
equal s(207,1,progress ion,ph_upl,no), 
equal s (207,2.progression,paco2_up2,no).

premise(208,1,progress ion,[ph_downl,paco2_up3]): - 
equal s(208,1,progression,ph_downl,no), 
equal s(208,2,progression,paco2_up3,no).

premise(209,1,progression,[ph_up2,paco2_same2]):- 
equal s(209,1,progression,ph_up2,no), 
equals(209,2.progression,paco2_same2,no).

premise(210,l,progression,[ph_up3,paco2_down2]) 
equal s(210,1,progression,ph_up3,no), 
equal s(210,2,progression,paco2_down2,no).

premise(211,l,progression,[ph_down2,paco2_same3]) 
equals(211,1,progression,ph_down2,no), 
equal s(211,2,progression,paco2_same3,no).

premise(212,1,progression,[ph_down3,paco2_down3]) 
equal s(212,1,progression,ph_down3,no), 
equals(212,2,progression,paco2_down3,no).

premise(213,1,progression,[ph_is_same]): - 
equals(213,1,progression,ph_i s_same,no).

premise(214,1,progress ion,[paco2_is_up]): - 
equals( 214,1,progress ion,paco2_is_up,no).

premise(215,1,progression,[ph_is_same]): - 
equals(215,1.progress ion,ph_is_same,no).

premise(216,1,progress ion,[paco2_is_same]):- 
equals(216,1,progression,paco2_is_same,no).

premise(2 1 7 , 1 , p rog r es s i on , [ ph_ i s_same] ): -
equal  s ( 2 1 7 , 1 , p r o g r e s s i o n , ph_is_same, no).
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premise(219,l,progression,[ph_is_up]) 
equals(219,1,progress ion,ph_is_up,no).

premise(220,1,progression,[paco2_is_up]): - 
equals(220,1,progression,paco2_is_up,no).

premise(221,1,progression,[ph_is_down]):- 
equals(221,1,progression,ph_is_down,no).

premise(222,l,progression,[paco2_i s_up]):- 
equals(222,1,progression,paco2_is_up,no).

premise(223,1,progression,[ph_is_up]): - 
equals(223,1,progression,ph_is_up,no).

premise(224,1,progression,[paco2_is_same]) 
equals(224,1,progression,paco2_is_same,no)

premise(225,1,progression,[ph_is_up]) 
equals(225,1,progression,ph_is_up,no).

premise(226,1,progression,[paco2_is_down]) 
equals(226,1,progression,paco2_is_down,no)

premise(227,1,progression,[ph_i s_down] ) :- 
equals(227,1,progression,ph_is_down,no).

premise(228,l,progression,[paco2_is_same]) 
equals(228,1,progression,paco2_is_same,no)

premise(229,1,progression,[ph_is_down]): - 
equals(229,1,progression,ph_is_down,no).

premise(230,l,progression,[paco2_is_down]) 
equals(230,1,progression,paco2_is_down,no)

p r e m i s e ( 2 1 8 , l , p r o g r e s s i o n , [ paco2_is_down])
equals  ( 2 1 8 , 1 , p r o g r e s s i o n , paco2_is_down, no)
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/*
/*

Rule ac t i ons */

Form of rule action
1st argument - Rule_no
2nd argument - Premise_no
3rd argument - Concluded variables

*/
action(goal,P,[state]):-
conclude(goal,P,state,intransient,"CMV").

action(terminate,P,[give_advice]): - 
give_advice.

/ * -------- Rule actions - weaning----------*/

act ion(0,P,[state,give_advice]) 
conclude(0,P,state,intransient,"SIMV"), 
give_advice.

act ion(1,P,[fit_to_wean]):-
conclude(1,P,fit_to_wean.transient,no).

action(2,P,[respi ratory_muscle_fat igue]) 
conclude(2,P,respiratory_muscle_fatigue,transient,yes).

action(3,P,[excessi ve_muscle_demands]):-
conelude(3,P,excessive_muscle_demands.transient,yes).

action(4,P,[impai red_energy_supply]) 
conclude(4,P,impai red_energy_supply,transient,yes).

action(5,P,[increased_respi ratory_resistance]):- 
conclude(5,P,increased_respiratory_resistance,transient,yes).

action(6,P,[fever_i nfeet ion]):-
conclude(6,P,fever_infeet ion.transient,yes).

action(7,P,[nutritional_deficiency]):- 
conclude(7,P,nutritional_deficiency,transient,yes).

action(8,P,[breat hing_ci rcuit_inappropriate]):- 
conclude(8,P,breathing_circuit_inappropriate,transient,yes).

action(9,P,[bronchospasm]):- 
conclude(9,P,bronchospasm,transient,yes).

action(10,P,[f_e_imbalance]):- 
conclude(10,P,f_e_imbalance.transient,yes).

action(ll,P,[hypovolaemia]):- 
conclude(ll,P,hypovolaemia,transient,yes).

action(12,P,[anaemia]):~ 
conclude(12,P,anaemia,transient,yes).

a c t i o n ( 1 3 , P , [ pulmonary_oedema])
conclude(13 ,P ,pulmonary_oedema. t r ans ien t ,yes ) .
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action(14,P,[potassium_level_out]):- 
conclude(14,P,potassium_level_out,transient,yes).

action(15,P,[phosphate_level]):-
conclude(15,P,phosphate_leve 1.transient,yes).

action(16,P,[system_fai Iure]) : - 
conclude(16,P,system_fai Iure,transient,yes).

action(17,P,[respi ratory_fai Iure]) : - 
conclude(17,P,respi ratory_fai Iure,transient,yes).

action(18,P,[vent ilatory_fai Iure]) : -
conelude(18,P,venti latory_fai Iure,transient, yes).

action(19,P,[inefficient_pulmonary_gas_exchange]):- 
conclude(19,P,inefficient_pulmonary_gas_exchange.transient,yes).

act ion(20,P,[cardiac_fai Iure])
conclude(20,P,cardiac_fai Iure,transient,yes).

action(21,P,[cardiac_output_low])
conclude(21,P,cardi ac_output_low,t ransient.yes).

action(22,P,[acute_lvf]):- 
conclude(22,P,acute_lvf.transient,yes).

act ion(23,P,[metabolic_acid_base])
conclude(23,P,metabolic_acid_base,transient,yes).

action(24,P,[renal_problem]):- 
conclude(24,P,renal_problem,transient,yes).

action(25,P,[hepat ic_problem]): - 
conclude(25,P,hepat ic_prob lem,t ransi ent,yes).

action(26,P,[anxiety]):- 
conclude(26,P,anxiety,transient,yes).

action(27,P,[sleep_deprivat ion]):- 
conclude(27,P,sleep_deprivation,transient,yes).

act ion(28,P,[primary_anxiety]): - 
conclude(28,P,pr imary_anxi ety,transient,yes).

action(29,P,[pain]):-
conelude(29,P,pain,transient,yes).

action(32,P,[sedation]):- 
conclude(32,P,sedation,transient,yes).

action(33,P,[feeding_problems]):-
conclude(33,P,feeding_problems.transient,yes).

action(34,P,[atelactasis]):-
conelude(34,P.atelactasis,transient,yes).

action(35,P,[decreased_vent ilatory_response]): -
conelude(35,P,descreased_vent ilatory_response.transient,yes).
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action(100,P,[state,give_advice]):- 
conclude(100,P,state,intransient,"SIMV"), 
give_advice.

action(101,P,[regress]):- 
conclude(101,P,regress,transient,yes).

action(102,P,[respi ratory_muscle_weakness_fat igue]):-
conclude(102,P,respi ratory_muscle_weakness_fat igue.transient,yes).

action(103,P,[abnormal_breathing]) 
conclude(103,P,abnormal_breathing,yes).

action(104,P,[decreased_respi ratory_dr ive]):-
conelude(104,P,deereased_respi ratory_drive.transient,yes).

action(105,P,[increased_respi ratory_drive]):-
conclude(105,P,increased_respi ratory_drive.transient,yes).

/ * -------------- Rule a c t i ons  -  r e g r e s s i o n ------------------*/

/ * -------- Rule actions - progression-----------*/

act ion(200,P,[state,give_advice]): - 
conclude(200,P,state,intransient,"SIMV"), 
give_advice.

action(201,P,[progress]):- 
conclude(201,P,progress,transient,yes).

action(202,P,[regress]):- 
conclude(202,P,regress,transient,yes).

act ion(203,P,[review]):- 
conclude(203,P,review,transient,yes).

act ion(204,P,[ph_same_paco2_up])
conelude(204,P,ph_same_paco2_up,transient,yes).

act ion(205,P,[ph_same_paco2_same]):-
conclude(205,P,ph_same_paco2_same.transient,yes).

act ion(206,P,[ph_same_paco2_down]):-
conelude(206,P,ph_same_paco2_down.transient,yes).

act ion(207,P,[ph_up_paco2_up])
conelude(207,P,ph_up_paco2_up.transient,yes).

act ion(208,P,[ph_down_paco2_up])
cone1ude(208,P,ph_down_paco2_up,transient,yes).

action(209,P,[ph_up_paco2_same]) 
conclude(209,P,ph_up_paco2_same,transient ,yes).

act ion(210,P, [ph_up_paco2_down] ) : -
conclude(210,P,ph_up_paco2_down. t rans ient ,yes ) .
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action(211,P,[ph_down_paco2_same]) 
conclude(211,P,ph_down_paco2_same.transient,yes)

action(212,P,[ph_down_paco2_down]):- 
conclude(212,P,ph_down_paco2_down.transient,yes)

action(213,P,[ph_samel] ) : -
conelude(213,P,ph_same1.transient,yes).

action(214,P,[paco2_upl]):-
conelude(214,P,paco2_upl.transient,yes).

action(215,P,[ph_same2]):-
conelude(215,P,ph_same2,transient,yes).

action(216,P,[paco2_samel]):- 
conclude(216,P,paco2_samel.transient,yes).

action(217,P,[ph_same3]) 
conclude(217,P,ph_same3.transient,yes).

action(218,P,[paco2_downl]):-
conelude(218,P,paco2_downl.transient,yes).

action(219,P,[ph_upl]):- 
conclude(219,P,ph_upl.transient,yes).

action(220,P,[paco2_up2]):-
cone 1ude(220,P,paco2_up2,transient,yes).

action(221,P,[ph_downl]):- 
conclude(221,l,ph_downl.transient,yes).

action(222,P,[paco2_up3]) 
conclude(222,P,paco2_up3.transient,yes).

action(223,P,[ph_up2]):-
cone1ude(223,P,ph_up2,transient,yes).

act ion(224,P,[paco2_same2]):-
cone1ude(224,P,paco2_same2,transient,yes).

action(225,P,[ph_up3]):-
conc1ude(225,P,ph_up3,transient,yes).

action(226,P,[paco2_down2])
cone1ude(226,P,paco2_down2,transient,yes).

action(227,P,[ph_down2]) 
conclude(227,P,ph_down2.transient, yes).

action(228,P,[paco2_same3]) 
conclude(228,P,paco2_same3.transient,yes).

action(229,P,[ph_down3])
cone1ude(229,P,ph_down3,transient,yes).

action(230,P,[paco2_down3]): -
cone1ude(230,P,paco2_down3.transient,yes).
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act ion(500,P,[give_advice]):- 
give_advice.

act ion(501,P,[fit_to_wean]):-
conelude(501,P,fit_to_wean.transient,yes).

act ion(502,P,[respi ratory_muscle_fat igue]):-
conelude(502,P,respi ratory_muscle_fat igue.transient.no).

act ion(503,P,[excessive_muscle_demands])
conelude(503,P,excessive_muscle_demands.transient.no).

act ion(504,P,[impai red_energy_supply]) 
conclude(504,P,impaired_energy_supply,transient,no).

act ion(505,P,[increased_respi ratory_resistance]):-
conelude(505,P,increased_respi ratory_resistance.transient.no

action(506,P,[fever_infeet ion])
conelude(506,P,fever_infeet ion.transient.no).

act ion(507,P,[nutritional_deficiencyDr-
con elude (507, P, nutritional_deficiency.transient.no).

act ion(508,P,[breathing_ci rcui t_inappropriate]):- 
conclude(508,P,breathing_ci rcuit_inappropriate,transient.no)

act ion(509,P.[bronchospasm]):- 
conclude(509,P,bronchospasm.transient.no).

action(510,P,[f_e_imbalance]):- 
conclude(510,P,f_e_imbalance.transient.no).

action(511,P,[hypovolaemia]) 
conclude(511,P,hypovolaemia,transient.no).

action(512,P,[anaemia]):- 
conclude(512,P,anaemia,transient,no).

action(513,P,[pulmonary_oedema]):-
conclude(513,P,pulmonary_oedema,transient, no).

action(514,P,[potassium_level_out]):- 
conclude(514,P,potassium_level_out.transient.no).

action(515,P,[phosphat e_level ]):- 
conclude(515,P,phosphate_level.transient.no).

action(516,P,[system_failure]):-
conclude(516,P.system_failure.transient,no).

action(517,P,[respi ratory_failure]) 
conclude(517,P,respi ratory_failure,transient.no).

action(518,P,[vent ilatory_failure]):- 
conclude(518,P,vent i1atory_failure,transient.no).

/ *  ----  negat ive  ac t i on  conclus ions  -  weaning ----  */
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action(519,P,[inefficient_pulmonary_gas_exchange]):- 
conclude(519,P,inefficient_pulmonary_gas_exchange.transient,no).

action(520,P,[cardiac_failure])
conclude(520,P,cardiac_failure,transient.no).

action(521,P,[cardiac_output_low]):-
conclude(521,P,cardiac_output_low,transient,no).

action(522,P,[acute_lvf])
conclude(522,P,acute_lvf.transient.no).

action(523,P,[metabolic_acid_base])
conelude(523,P.metabolic_acid_base,transient.no).

action(524,P,[renal_problem]):- 
conclude(524,P,renal_problem.transient.no).

action(525,P,[hepat ic_problem]):- 
conclude(525,P,hepat ic_probiem,t ransient.no).

action(526,P,[anxiety]):-
conclude(526,P,anxiety,transient,no).

action(527,P,[sieep_deprivat ion])
cone1ude(527,P,sleep_deprivation.transient,no).

action(528,P,[primary_anxiety]):-
conclude(528,P,primary_anxiety,transient,no).

action(529,P,[pain]):- 
conclude(529,P,pain,transient, no).

action(532,P,[sedation]):- 
conclude(532,P,sedation,transient,no).

action(533,P,[feeding_problems]):-
cone1ude(533,P,feedi ng_problems.transient.no).

action(534,P,[atelactasis]):- 
conclude(534,P,atelactasis.transient.no).

action(535,P,[decreased_vent ilatory_response]):-
conclude(535,P,descreased_vent ilatory_response,transient.no).
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act ion(600,P,[give_advice]) 
give_advice.

action(601,P,[regress]):- 
conclude(601,P,regress,transient.no).

act ion(602,P,[respi ratory_muscle_weakness_fat igue]):-
conclüde(602,P,respi ratory_muscle_weakness_fat igue,t ransient,no).

action(603,P,[abnormal_breathing]) 
conclude(603,P,abnormal_breathing,no).

act ion(604,P,[decreased_respi ratory_drive])
conclüde(604,P,decreased_respi ratory_drive,transient.no).

action(605,P,[increased_respiratory_drive])
conclüde(605,P,increased_respi ratory_drive,t ransient.no).

/ *  — negat ive  ac t i on  conclus ions  -  r eg ress ion  — */

/* —  Negative action conclusions - progression —  */

action(700,P,[state,give_advice]):- 
conclude(700,P,state,intransient,"SIMV"), 
give_advice.

action(701,P,[progress]):-
conclude(701,P,progress,transient,yes).

act ion(702,P,[regress]):- 
conclude(702,P,regress,transient,yes).

action(703,P,[review]):- 
conclude(703,P,review,transient,yes).

action(704,P,[ph_same_paco2_up])
conelude(704,P,ph_same_paco2_up.transient,yes).

act ion(705,P,[ph_same_paco2_same]):-
conclude(705,P,ph_same_paco2_same.transient,yes).

act ion(706,P,[ph_same_paco2_down]):-
conclude(706,P,ph_same_paco2_down.transient,yes).

act ion(707,P,[ph_up_paco2_up]):-
conclude(707,P,ph_up_paco2_up,transient,yes).

act ion(708,P,[ph_down_paco2_up)):-
conelude(708,P,ph_down_paco2_up.transient,yes).

action(709,P,[ph_up_paco2_same])
conclude(709,P,ph_up_paco2_same,transient,yes).

action(710,P,[ph_up_paco2_down]):- 
conclude(710,P,ph_up_paco2_down.transient,yes).

act ion(711,P, [ph_down_paco2_same]) : -
conclude(711,P,ph_down_paco2_same. t rans ient ,yes) .
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act ion(712,P,[ph_down_paco2_down])¡- 
conclude(712,P,ph_down_paco2_down,t ransient,yes).

action(713,P,[ph_samel]):- 
conclude(713,P,ph_samel.transient,yes).

action(714,P,[paco2_upl]) 
conclude(714,P,paco2_upl.transient,yes).

action(715,P,[ph_same2]):- 
conclude(715,P,ph_same2.transient,yes).

action(716,P,[paco2_samel]Ji-
co nelude(716,P,paco2_samel.transient,yes).

action(717,P,[ph_same3]): - 
conclude(717,P,ph_same3.transient,yes).

action(718,P,[paco2_downl]):- 
conclude(718,P,paco2_downl.transient,yes).

action(719,P,[ph_upl]):- 
conclude(719,P,ph_upl.transient,yes).

action(720,P,[paco2_up2]Ji-
co ne lude (720 ,P,paco2_up2.transient,yes).

action(721,P,[ph_downl]):- 
conclude(721,P,ph_downl.transient,yes).

action(722,P,[paco2_up3]) 
conclude(722,P,paco2_up3.transient,yes).

action(723,P,[ph_up2]):- 
conclude(723,P,ph_up2.transient,yes).

action(724,P,[paco2_same2]Ji-
co ne lude (724, P, paco2_same2.tr an sien t ,yes).

action(725,P,[ph_up3]):-
cone1ude(725,P,ph_up3,transient,yes).

act ion(726,P,[paco2_down2])¡- 
conclude(726,P,paco2_down2.transient,yes).

action(727,P,[ph_down2])¡-
conciude(727,P,ph_down2,transient,yes).

action(728,P,[paco2_same3])¡-
conclude(728,P,paco2_same3.transient,yes).

action(729,P,[ph_down3])¡- 
conclude(729,P,ph_down3,transient,yes).

action(730,P,[paco2_down3]):-
cone1ude(730,P,paco2_down3,transient,yes).
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premise(901,l,request,[state,increased_dynamic_resistance]) 
one_of(901,1,request,st at e ,["CMV"]).

premise(902,1,request,[state,sensitivity]):- 
one_of(902,1,request,state,["CMV"]).

premise(903,1,request,[state,obesity]):- 
one_of(903,1,request,state,["CMV"]), 
not_equal(903,1,request.obesity,A).

premise(904,1,request,[state,ascites]):- 
one_of(904,1,request.state,["CMV"]), 
not_equal(904,1,request.ascites,A).

premise(905,1,request,[state,impai red_oxygen_delivery]):- 
one_of(905,1,request,state,["CMV"]).

premise(906,1,request,[state,catabolic]):- 
one_of(906,1,request,state,["CMV"]).

premise(907,1,request,[state,reduced_oxygen_consumpt ion]):- 
one_of(907,1,request,state,["CMV"]).

premise(908,1,request,[state,increased_work_of_breathing]): 
one_of(908,1,request,state,["CMV"]).

premise(909,l,request,[state,increased_co2_product ion]):- 
one_of(909,1,request,state,["CMV"]).

premise(910,l,request,[state,c_v_pressure]):- 
one_of(910,1,request,state,["CMV"]).

premise(911,l,request,[state,haemoglobi n_count]):- 
one_of(911,1,request,state,["CMV"]).

premise(912,l,request,[state,p_a_wedge_pressure_high]):- 
one_of(912,1,request,state,["CMV"]).

premise(913,l,request,[state,colloi d_osmot i c_pressure]):- 
one_of(913,1,request,state,["CMV"]).

premise(914,l,request,[state,potassium_high]) 
one_of(914,1,request,state,["CMV"]).

premise(915,l,request,[state,pot assium_low]) 
one_of(915,1,request,state,["CMV" ]).

premise(916,l,request,[state,phosphate_high]):- 
one_of(916,1,request,state,["CMV"]).

premise(917,l,request,[state,t idal_volume]):- 
one_of(917,1,request,state,["CMV" ]).

premise(918,l,request,[state,capAaD02]):- 
one_of(918,1,request,state,["CMV"]).

premise(919,l,request,[state,cardiac_index]) 
one_of(919,1,request,state,["CMV"]).

/ * -----------data  request  r u l e s  -  w e a n i n g ------------------*/
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premise(920,1,request,[state,p_a_wedge_pressure_low]): 
one_of(920,1,request,state,["CMV"]).

premise(921,l,request,[state,systolic_blood_pressure]) 
one_of(921,1,request.state,["CMV"]).

premise(922,l,request.[state,metabolic_alkalosi s]):- 
one_of(922,1,request,state,["CMV"]).

premise(923,1,request,[state,respi rat ory_alkalosi s]):- 
one_of(923,1,request,state,["CMV"]).

premi se(924,1,request,[state,creat i ni ne_high]):- 
one_of(924,1,request,state,["CMV"]).

premise(925,1,request.[state,lft_deranged]):- 
one_of(925,1,request,state,["CMV"]).

premise(926,1,request,[state,ineffect ive_cough]):- 
one_of(926,1,request,state,["CMV"]).

premise(927,1,request,[state,hypoxia]):- 
one_of(927,1,request,state,["CMV"]).

premise(928,1,request,[state,hypercapnia]):- 
one_of(928,1,request,state,["CMV"]).

premise(929,l,request,[state,neurological]):- 
one_of(929,1,request,state,["CMV"]).

premise(930,1,request,[state,sleeping_draught]):- 
one_of(930,1,request,state,["CMV"]).

premise(931,l,request,[state,anxiolyt ic_agent]):- 
one_of(931,1,request,state,["CMV"]).

premise(932,1,request,[state,1ocal_blocker]) 
one_of(932,1,request,state,["CMV"]).

premise(933,1,request,[state,infiltration]):- 
one_of(933,1,request,state,["CMV"]).

premise(934,1,request,[state,sedat ive ]):- 
one_of(934,1,request,state,["CMV"]).
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premise(935,1,request,[state,rr_gt_25_and_tv_vlow]):- 
one_of(935,1,request.state,["SIMV"]).

premise(936,1,request,[state,abdominal_paradox]) 
one_of(936,1,request.state,["SIMV"]).

premise(937,1,request,[state,respi ratory_alternans]):- 
one_of(937,1,request.state,["SIMV"]).

premise(938,1,request,[state,increased_tv_inspi ratory_t ime_rat io]) 
one_of(938,1,request,state,["SIMV"]).

premise(939,l,request, [state,p01_gt_6]):- 
one_of(939,1,request,state,["SIMV"]).

premise(940,1,request,[state,increased_co2_product ion]):- 
one_of(940,1,request,state,["SIMV"]).

/ * --------- data  request  ru l es  -  r e g r e s s i o n ----------- */

/ * ----- data request rules - progression-------*/

premise(941,l,request,[state,ph_is_same]) 
one_of(941,1,request,state,["SIMV"]).

premise(942,1,request,[state,paco2_is_up]):- 
one_of(942,1,request,state,["SIMV"]).

premise(943,1,request,[state,ph_is_up]) 
one_of(943,1,request.state,["SIMV"]).

premise(944,1,request,[state,paco2_is_same]) 
one_of(944,1,request,state,["SIMV"]).

premise(945,1,request,[state,ph_is_down]):- 
one_of(945,1,request.state,["SIMV"]).

premise(946,1,request,[state,paco2_is_down]) 
one_of(946,1,request.state,["SIMV"]).
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/* ******** **************************** ******************** */
/* ----------------  weaning action queries ------------------  */

act ion(901,1,[increased_dynamic_resistance]):-
request("Has dynamic resistance increased significantly ? ",

yes-no,R ),
conclude(901,1,increased_dynamic_resistance,transient,R). 

act ion(902,1,[sensitivity]):-
request("Is sensitivity at a minimum ? ",yes-no,R), 
conclude(902,1,sensitivity,transient,R).

act ion(903,l,[obesity]):-
request("Is the patient obese ? ",yes-no,R), 
conelude(903,1,obesity,intransient, R).

act ion(904,l,[ascites]):-
request("Does the patient have ascites ? ",yes-no,R), 
conclude(904,1,ascites, intransient,R).

act ion(905,1,[impai red_oxygen_delivery]):- 
request("Is oxygen delivery impaired ? ", yes-no , R ), 
conclude(905,1,impaired_oxygen_delivery,transient,R).

act ion(906,1,[catabolic]):-
request("Is the patient catabolic ? ", yes-no,R ), 
conclude(906,1,catabolie,transient,R).

act ion(907,1,[reduced_oxygen_consumpt ion]):-
request("Is there a marked decrease in oxygen consumption ? ",

yes-no,R ),
conclude(907,1,reduced_oxygen_consumption,transient,R).

act ion(908,1,[increased_work_of_breathing]):-
request("Is there a marked increase in work of breathing ? ",

yes-no,R),
conclude(908,1,increased_work_of_breathing,transient,R). 

action(909,1,[increased_co2_product ion]):-
request("Is there an increase in C02 production ? ",yes-no,R), 
conclude(909,1,increased_co2_production,transient,R).

action(910,l,[c_v_pressure]):-
request("Is central venous pressure low ? ",yes-no,R ), 
conclude(910,l,c_v_pressure,transient,R).

action(911,l,[haemoglobin_count]):-
request("Is the haemoglobin count low ? ", yes-no , R ),
conclude(911,l,haemoglobin_count,transient,R).

action(912,l,[p_a_wedge_pressure_high]):-
request("Is pulmonary artery wedge pressure high ? ",yes-no,R), 
conclude(912,l,p_a_wedge_pressure_high,transient,R).

action(913,l,[colloid_osmot ic_pressure]) :- 
request("Is colloid osmotic pressure low ? ", yes-no,R ), 
conclude(913,l,colloid_osmot ic_pressure,transient,R).
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action(914,l,[potassium_high]) :-
reqaest("Is potassium level high ? ",yes-no,R),
conclude(914,l,pot assium_high,transient,R).

action(915,l,[potassium_low])
request("Is potassium level low ? ", yes-no,R ), 
conclude(915,l,pot assium_low,transient,R).

action(916,l,[phosphate_high]): -
request("Is phosphate level high ? ",yes-no,R),
conclude(916,l,phosphate_high,transient,R).

action(917,l,[t idal_volume]):- 
request("Is tidal volume low ? ", yes-no , R ), 
conclude(917,l,tidal_volume,transient,R).

action(918,l,[capAaD02])
request("Is AaD02 gradient low ? ",yes-no,R), 
conclude(918,l,capAaD02,transient, R).

action(919,l,[cardiac_index]):- 
request("Is cardiac index low ? ",yes-no,R), 
conclude(919,l,cardiac_index,transient,R).

act ion(920,1,[p_a_wedge_pressure_low]):- 
request("Is pulmonary wedge pressure low ?",yes-no,R ), 
conclude(920,1,p_a_wedge_pressure_low,transient,R).

act ion( 921,1,[systolic_blood_pressure]): - 
request("Is systolic blood pressure low ? ",yes-no,R), 
conclude(921,1,systolic_blood_pressure,transient,R).

action(922,1,[metabolic_alkalosis]):-
request("Is the patient metabolic alkalotic ? ",yes-no,R), 
conclude(922,1.metabolic_alkalosis,transi ent,R).

action(923,l,[respi ratory_alkalosis])
request("Is the patient respiratory alkalotic ? ",yes-no,R), 
conclude(923,1,respiratory_alkalosis,transient,R).

act ion(924,1,[créât inine_high]):-
request("Is there an increase in creatinine ? ",yes-no,R), 
conelude(924,1,créâti ni ne_high,transient,R).

action(925,l,[lft_deranged]):-
request(”Are the liver function tests deranged ? ", yes-no,R ), 
conclude(925,1,lft_deranged.transient,R).

action(926,1,[ineffect ive_cough]):-
request("Has the patient got an ineffective cough ? ",yes-no,R), 
conclude(926,1,ineffect ive_cough,transient,R).

act ion(927,1,[hypoxia ] ) : -
request("Is the patient hypoxic ? ",yes-no,R), 
conclude(927,1,hypoxia,transient,R).

action(928,l,[hypercapnia] ) : -
request("Is the patient hypercapnic ? ", yes-no,R ), 
conclude(928,1,hypercapnia, transient,R).
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action(929,1,[neurological]):-
request("Is there a neurological involvement ? ", yes-no,R ), 
conclude(929,l,neurological,transient,R).

act ion(930,1,[sleeping_draught] ) : -
request(“Is the patient taking a sleeping draught ? “ ,yes-no,R ), 
conclude(930,1,sleeping_draught,transient,R).

action(931,l,[anxiolyt ic_agent]):-
request("Is the patient taking an anxiolytic agent ? ", yes-no, R ), 
conclude(931,1,anxiolytic_agent,transient,R).

action(932,1,[1ocal_blocker]):-
request("Is the patient receiving a local pain blocker 

conclude(932,1,local_blocker,transient,R).

? " ,
yes-no,R ),

act ion(933,l,[infiltration]):- 
request

("Is the patient receiving an infiltration to relieve pain ? "
yes-no , R ),

conclude(933,1,infiltration,transient,R).

act ion(934,l,[sedative]):-
request("Is the patient taking sedatives ? ",yes-no,R), 
conclude(934,1,sedative,transient,R).

/* -------------  regression action queries --------------------  */

act ion(935,1,[rr_gt_25_and_tv_vlow]):- 
request("Is RR >25, and TV very low ? ",yes-no,R), 
conelude(935,1,rr_gt_25_and_tv_vlow,t ransient.R).

act ion(936,1,[abdomi nal_paradox]):-
request("Is breathing pattern abdominal paradox ? ",yes-no,R), 
conclude(936,1,abdominal_paradox,transient,R).

act ion(937,1,[respi ratory_alternans]):-
request("Is breathing pattern respiratory alternans ? ",

yes-no,R ),
conelude(937,1,respiratory_alternans,transient,R ) .

act ion( 938,1,[increased_tv_i nspi ratory_t ime_rat io]):- 
request("Has the patient an increased tv-insp time ratio ? ",

yes-no,R ),
conelude(938,1,increased_tv_inspi ratory_time_rat io,transient,R). 

act ion(939,1,[pO1_gt_6]):-
request("Is the airway occlusion pressure P0.1 >6 ? ",yes-no,R), 
conclude(939,l,p01_gt_6,transient,R).

act ion(940,1,[increased_co2_product ion]):-
request("Is there an increase in C02 production ? ",yes-no,R), 
conelude(940,1,increased_co2_production,transient,R).
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progress ion  ac t i on  quer i es */

act ion(941,1,[ph_is_same])
request("Is pH about the same ? ",yes-no,R), 
conclude(941,1,ph_is_same,transient,R).

act ion(942,1,[paco2_is_up])
request("Has PaC02 value gone up significantly ? ", yes-no,R ), 
conclude(942,1,paco2_is_up,transient,R).

act ion(943,1,[ph_is_up]):-
request("Has pH value gone up significantly ? ", yes-no,R ), 
conelude(943,1,ph_is_up,transient,R).

act ion(944,1,[paco2_is_same]):-
request("Is PaC02 value about the same ? ", yes-no,R), 
conclude(944,1,paco2_is_same,transient,R ) .

act ion(945,1,[ph_is_down]):-
request("Has the pH value gone down significantly ? ",yes-no,R), 
conclude(945,1,ph_is_down,transient,R).

act ion(946,1,[paco2_is_down]):-
request("Has the PaC02 value gone down significantly ? ", yes-no,R ), 
conclude(946,1,paco2_is_down,transient,R).

/ * -------------------------- Inference E n g i n e ------------------------- */

/* First pass activation - */
/* find all rules with all data in premise known */ 

first_pass_activation(Rule_list):-
setof((Rule_no,Premise_no),Rule_typeApremise_requi rement s(Rule_no, 

Premise_no,Rule_type,[]),Rule_list),!.

first_pass_activation([]):-!.

/^Second pass activation - */
/^evaluate premise of rules that survived 1st pass*/ 

second_pass_act ivat ion([],[]):-!.

second_pass_act ivat ion([(Rule_no,Premise_no)1Rule_list],
[(Rule_no,Premise_no,Type)|Activated_rules]):- 

premise(Rule_no,Premise_no,Type,Dependents), 
second_pass_act ivat ion(Rule_list,Act ivated_rules).

second_pass_act ivat ion([(Rule_no,Premi se_no)|Rule_list],
Activated_rules):-

second_pass_act ivat ion(Rule_list,Act ivated_rules).
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/* System control cycle */

control_cycle:- /* forward chain */
once(fi rst_pass_act ivat ion(Rule_list)),
once(second_pass_act ivat ion(Ruie_list,Act ivated_rules)), 
once(schedule_rules(Ruie_no,Premise_no,Act ivated_rules)), 
act ion(Rule_no,Premise_no.Conclusions), 
cont rol_cycle.

cont rol_cycle.

/* kick off system */

run_wean:-
generaie_premise_requi rement s, 
ret ract al 1(current_value/3), 
control_cycle.

/ * ------------------ Meta rules---------------------*/

schedu1e_rules(Rule_no,Premise_no.Act ivated_rules) 
member((Rule_no,Premi se_no,goal).Act ivated_rules ).

schedule_rules(Rule_no,Premi se_no.Act ivat ed_rules):- 
member((Rule_no,Premise_no,weaning),Act ivated_rules).

schedule_rules(Rule_no,Premise_no,Activated_rules) 
member((Rule_no,Premise_no,regression),Activated_rules).

schedule_rules(Rule_no,Premise_no,Act ivated_rules) 
member((Rule_no,Premise_no,progression),Acti vated_rules).

schedule_rules(Rule_no,Premise_no,Act ivated_rules) 
member((Rule_no,Premise_no,request),Act ivated_rules).

/* ask a question if no rules fire */

schedule_rules(Rule_no,Premise_no.[(terminate.terminate)]):- 
premise_requi rements(Rule_no,Premise_no,request,A), 
clause(action/3,act ion(Rule_no,Premise_no,A):-G).

schedule_rules(termi nate,1,[(terminate,terminate)]).
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/ * Operators */

equals(Rule_no,Premise_no,Type,A,B) 
current_value(A,T,B).

equals(Rule_no,Premi se_no,Type,A,B):-
increase_premise_requirements(Rule_no,Premise_no,Type,A),!, 
f ai 1.

not_equal(Rule_no,Premise_no,Type,A,B): - 
not current_value(A,T,B).

not_equal(Rale_no,Premise_no,Type,A,B)
increase_premise_requirements(Rule_no,Premise_no,Type,A),!, 
f ai 1.

greater_than_or_equal(Rule_no,Premise_no.Type,A,B): - 
current_value(A,T,V),
A>=B.

greater_than_or_equal(Rule_no,Premise_no,Type,A,B): - 
increase_premise_requirements(Rule_no,Premise_no,Type,A),!, 
f ai 1.

less_than_or_equal(Rule_no,Premise_no,Type,A,B) 
current_value(A,T,V),
A=<B.

less_than_or_equal(Rule_no,Premise_no.Type,A,B) 
increase_premise_requirements(Rule_no,Premise_no,Type,A),!, 
fail.

one_of(Rule_no,Premise_no,Type,A,B): - 
current_value(A,T,V), 
member(V,B).

one_of(Rule_no,Premise_no,Type,A,B)
retract(premise_requirement s(Rule_no,Premise_no,Type,[])), 
assert(premise_requi rement s(Rule_no,Premi se_no,Type,[A])),!, 
fail.
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/ * Act ions */

conclude(Rule_no,Premise_no,A,Observât ion_type,B) 
predicate_size(premise_requi rement s/4,N), 
reduce_premise_requi rement s(A,N), 
clause
(premise/4,(premise(Rule_no,Premise_no,Type,Dependents):-G) 
increase_premise_requirements

(Rule_no,Premise_no,Type,Dependents),!, 
ret racial 1(current_value(A,_,_)), 
assert(current_value(A.Observat ion_type,B)).

convert_response("yes",yes). 
convert_response("no",no).

request(Prompt,yes-no,Response):-
fedit(5,1,75,"Data Request"»Prompt,"".white on blue.R), 
convert_response(R,Response).

give_advice:-
write("That’s all folks!"),nl, 
listing(current_value),!, 
fail.

/* fails so that control cycle ends after advice is given */

/* -------  managing premise requirements -----  */

/* generate initial premise requirements */

generate_premise_requi rements
once(ret racial 1(premise_requi rements/4)),
clause
(premise/4,(premise(Rule_no,Premise_no,Type,Dependents):-G),_), 

assert(premise_requi rement s(Rule_no,Premise_no,Type,Dependents)), 
fail.

gene rate_premise_requi rements.

/* reduce premise requirements for all rules */ 

reduce_premise_requi rements(A,1). 

reduce_premise_requirements(A,N)
retract(premise_requirements/4,premise_requirements(Rule_no, 

Premise_no,Rule_type,Requirements),N), 
compound_delete(A,Requi rements,New_requi rement s), 
assertz(premise_requirements(Rule_no,

Premise_no,Rule_type,New_requi rements)),
Next_N is N-l,
reduce_premise_requi rements(A,Next N).
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/* increase premise requirements for specified rule */

increase_premise_requi rements(Rule_no,Premise_no,Rule_type,A): - 
once(bagof(Requirements,

Premise_noApremise_requirements(Rule_no,
Premise_no,Rule_type,Requi rements),Premise_list)), 

member(Requi rement s,Premi se_li st), 
once(ret ract(premi se_requi rements(Rule_no,

Premi se_no,Rule_type,Requi rements))), 
once(assert(premise_requi rements(Rule_no,

Premise_no,Rule_type,[Al Requirements]) ) ), fail.

increase_premise_requi rements(Rule_no,Premise_no,Rule_type,A).

/ * --------------------- utilities--------------------------*/

/* delete element from list */

delete(A,[],[]).

delete(A,[A|L],L).

delete(A,[B!L],[B!Ll]):- 
delete(A,L,Ll).

/* delete element from list if it contains the target */

compound_delete(A,[],[]).

compound_delete(A,[EJL],L1):— 
member(A,E),
compound_delete(A,L,Ll).

compound_delete(A,[A|L],L1) 
compound_delete(A,L,Ll).

compound_delete(A,[B|L],[B1L1]):- 
compound_delete(A,L,LI).

/* member of a list */

member(A,[A !L]).

member(A,[B!L ] ): — 
member(A,L).
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