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 14 

Abstract: Shape sensing is of importance for the manipulation of flexible needles.  In this work, a 0.6 15 

mm diameter stylet with five Fiber Bragg Gratings (FBGs) installed as triplets was designed and 16 

implemented and a novel model of local curvature was established. A gradient-based optimization 17 

method has been integrated into the complete algorithm for shape sensing and this was used to reduce 18 

the difference between the midpoint curvature and the mean curvature.  The experimental results obtained 19 

show that the mean tip errors are 0.35mm, 0.30mm, 0.38mm in the single-bending, double-bending and 20 

space-bending experiments, respectively.  In a torsion test experiment which was performed, when the 21 

rotation angle of the tip was less than 25°, the error seen was less than 0.5mm.  Furthermore, when the 22 

needle designed in this work was used to puncture a 60mm thickness, ex vivo biological tissue, the mean 23 

error of the measurement of the needle tip was 0.39mm. 24 
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1 Introduction 29 

The accurate placement of needles is a critical process during different types of surgeries, such as 30 

biopsies, brachytherapy, and radiofrequency ablation.  Such accurate placement of the needle is easily 31 

made possible if any deformation of the needle used can be neglected. However, in ‘real world’ situations, 32 

some deformation of the needle is inevitable during surgeries and a knowledge of the deformation that 33 

occurs is even sometimes utilized to target lesions that cannot be reached along a straight path.  To do so 34 

in a reproducible way, steerable flexible needles have been proposed.  The flexibility of the needles used 35 

during these surgeries depends on both the shape of the needle and the position of the tip – and this should 36 

be known (and therefore measured accurately) in real time.  Several medical image-based methods, such 37 

as using Ultrasound (US), Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), for 38 

example, have been employed to measure the shape of such needles when inserted into tissue.  By 39 

comparison with using both CT and MRI methods, using Ultrasound can provide the advantage of real-40 

time feedback of the position of the needle tip, especially allowing the surgeon to prevent the needle from 41 

damaging vital nerves or blood vessels.  It can be noted that it is difficult to obtain sufficient accuracy in 42 

the position of the needle in situ, when using the Ultrasound method.  A considerable number of studies 43 

have been reported in recent decades which have attempted to improve both the accuracy and the usability 44 

of this method. An alternative is the electromagnetic tracking method which can offer high-resolution, 45 

real-time feedback on the position of the needle tip, and give data on it in a more intuitive manner.  46 



However, this method has not been widely used in clinical practice up to now, due to problems of 47 

electromagnetic compatibility. Both these methods (using ultrasound and electromagnetic tracking) 48 

ignore the measurement of the actual shape of the full length of the needle, as they focus mainly on real-49 

time feedback which defines the position of only the needle tip – a problem as the shape of the full length 50 

of the needle is needed and this is not given by the real-time feedback received in these methods.  In this 51 

work, a method for shape sensing using Fiber Bragg Gratings (FBGs) integrated along the full length of 52 

a needle has been proposed, as this method shows promise to meet accuracy requirements required for 53 

in vivo tracking of surgical instruments, taking advantage of the excellent properties of the FBGs used, 54 

such as immunity to external electromagnetic fields, small dimensions, low mass, robustness and their 55 

multiplexing capabilities[1–4].  56 

Several studies have previously been carried out using FBGs to track the position of surgical 57 

instruments, including needles, although the application scenarios and configurations of FBGs used and 58 

reported in the literature are different from those in this study.  Previous methods have been based on the 59 

linear relationship seen between the Bragg wavelength of the FBGs used and the strain resulting from 60 

the deformation of the instrument.  The local curvature has then been estimated by making a reasonable 61 

assessment of the situation, based on the number and position of the FBGs used in the instrument, as for 62 

example has been reported by Gander et al. [5].  Park et al. first proposed the use of FBGs for shape 63 

sensing of needles [6], where this work provided a basis for detailed shape sensing, involving the 64 

configurations of the FBGs, the filtering of the signals received, the creation of a model of the local 65 

curvature, the calibration of the model, the interpolation of the positions on the curvature and thus the 66 

description of the overall shape. The FBGs were usually configured as triplets in many of the reported 67 

studies [6–12], where such triplets were fixed on the surface of the needles or the other instruments used.  68 

Such a configuration is the simplest theoretically, which can be used in estimating the magnitude of the 69 

curvature and the direction of the bending, while excluding the effects of other disturbances such as 70 

temperature-induced Bragg wavelength shifts.  Some recent studies have added a further FBGs (placed 71 

in the centre of the triplets) [13–19], to provide more detailed information to include in the model, 72 

especially information on the torsional strain [14, 18] and axial tension [15, 20].  The FBGs in the centre 73 

allow independent compensation for temperature and axial strain, allowing the torsion alone to be 74 

calculated – this being extremely useful in those applications where knowing the tip position and pose is 75 

critical despite its high cost.  Further, filtering of the signal received is necessary, especially for the 76 

dynamic feedback on any changes that occur to the shape of the needle.  Donder et al.  [21] and Lu et al. 77 

[20] have implemented shape sensing of steerable needles and catheters, respectively, using Extended 78 

Kalman Filtering (EKF).  These studies have shown that EKF offers a better dynamic response than using 79 

other filters, such as the median filter and the mean filter, gradually making it a common method for 80 

shape sensing. Then it is important in the model to know local curvatures and their calibration, obtained 81 

by extracting signals of interest from the FBGs arrays used.  FBGs are not only sensitive to strain, but 82 

also to temperature and humidity [22] and further Bragg wavelength shifts due to the strain caused by 83 

different types of deformation, such as bending, torsion and tension/compression are superimposed on 84 

these. All this points to the need for the establishment and accurate calibration of a model as the core of 85 

good shape sensing, and accurate data [23].  Park et al. directly constructed the relationship between the 86 

signals from the FBG arrays used and the local curvature, using a calibration matrix [6], which separated 87 

the shifts of the Bragg wavelengths caused by both the bending and the temperature, a method used in 88 

many studies [24, 25].  Moore et al. used a geometry-based model [8], which has the clearer physical 89 

meaning [20, 23, 26–28] and thus is more commonly used.  Yi et al. established the angle at which the 90 

FBG arrays were packaged, as a function of the torsion-induced strain at different torsion angles [12].  91 

Floris et al. have proposed a simple method, based on Saint-Venant’s torsion theory for homogeneous 92 

circular cylinders, to calculate the fiber torsion [14].  However, these models usually ignore certain of 93 

the key contributing factors to the shifts of the Bragg wavelength that are measured.  The model that can 94 



simultaneously exclude temperature, axial strain and torsional strain have not yet been sufficiently 95 

studied.  Finally, an interpolation of the local curvature must be made to achieve better shape sensing.  96 

When the shape is relatively simple, the use of a linear interpolation will be sufficient to ensure that the 97 

shape sensing offers good performance [16, 25] but to make the curvature smoother, the cubic spline 98 

interpolation has also been used in many studies [8, 12, 29].  In most studies, the interpolation is based 99 

on assuming that the shift of the Bragg wavelength is linear with respect to the average strain and 100 

therefore errors may be introduced when the mean curvature is calculated by assuming the average strain 101 

at the midpoint curvature of the grating [30].  Any error produced using this assumption will be noticeable 102 

when the curvature changes drastically and to our knowledge, no reports on shape sensing have taken 103 

this potential error into account.  The last issue considered is how to describe the shape of the needle – 104 

whether it is a catheter or a flexible needle, only the shape of its central curvature is usually described 105 

and polynomial fitting has first been used to illustrate the shape of this curvature [6, 9, 25].  However, 106 

when many FBGs arrays are used, the boundary value is prone to the Runge phenomenon and Seifabadi 107 

et al. have proposed using the differential equation for elastic beam deformation to calculate the small 108 

deformation in the plane of the needle, thus effectively avoiding this phenomenon [31].  Some studies 109 

have used a series of transformation matrices to calculate the positions of the discrete points on the curve 110 

to describe large deformation curves in three-dimensional space, based on the assumption of constant 111 

local curvature [19, 29].  In recent years, using a moving frame approach based on differential geometry 112 

has attracted interest, mainly including the Frenet-Serret frame [7, 8, 10] and the Bishop frame [16, 18, 113 

32, 33].  Although it has been shown that those methods based on the homogeneous transformation matrix 114 

are less sensitive to the accuracy of interpolation than are the methods based on a moving frame [19], it 115 

is clear that the moving frame methods are more suitable for generalization to other shape-based studies, 116 

than, for example, force sensing from the shape of deformed objects [34].  117 

In this work, a new approach has been taken in which FBGs were embedded on a flexible needle, in 118 

the form of triplets, and a complete solution for shape sensing is proposed. The contributions that this 119 

work makes can be summarized as follows: 1) A novel model for the local curvature has been proposed 120 

that can separate the shifts of the Bragg wavelength caused by bending from those due to other factors, 121 

including temperature, tension/compression and torsion.  An appropriate calibration method and several 122 

devices, adapted to the model, have been developed to improve the accuracy of shape sensing as a result. 123 

2) A gradient-based algorithm has been applied to the optimization of the interpolation, to redress the 124 

inconsistency highlighted above in the assumption of the mean curvature being at the midpoint of the 125 

FBGs triplets used.  126 

The article is organized as follows.  Section 2 firstly introduces the configuration of the flexible needle 127 

embedded with the FBGs triplets.  The model of local curvature is then proposed, based on analysing the 128 

deformation of the needle.  Section 3 proposes an optimization-based shape sensing algorithm, which 129 

introduces a gradient-based optimization method in the interpolation of curvature.  Section 4 elaborates 130 

the experimental setups and results, and which is then divided into four parts, as discussed below.  This 131 

begins with the calibration experiment carried out, followed by the results obtained.  Then, based on the 132 

results of this calibration, the needles designed by the authors were individually subjected to a test 133 

involving only bending, only torsion and then an in vitro biological tissue puncture test.  Section 5 134 

completes the paper, with conclusions drawn on the work. 135 

 136 

2 Design and modelling of the flexible needles 137 

2.1 Design of the needle with the embedded FBGs  138 

The needle designed in this work consisted of a stylet and a cannula, as shown in Fig. 1(a), which 139 

are similar in construction to the puncture needles used in a typical clinical environment.  Both the stylet 140 

and the cannula are made of Nitinol (provided by PEIERTECH Co., Ltd).  The inner diameter of the 141 

cannula used was 0.8mm and the outer diameter was 1mm.  The stylet was 0.6mm in diameter and three 142 



grooves (width, 0.2mm and depth, 0.2mm, as detailed in Fig. 1(b)) were cut (using electrical discharge 143 

machining (EDM)) to accommodate the fibers, as shown in Fig. 1(a).  The grooves were all manufactured 144 

at one time, clamping the set up using the same length of electrode as the grooves.  Three 0.15mm 145 

diameter fibers were fixed in the groove, respectively, using epoxy adhesive (type, Loctite 1C-LV).  Each 146 

fibre was inscribed with five FBGs (of 10 mm length with an interval of 35 mm between each), using a 147 

phase mask technique (as provided by Beijing Tongwei Technology Co., Ltd).  The Bragg wavelengths 148 

of these five FBGs used were 1530nm, 1540nm, 1550nm, 1560nm and 1570nm respectively.  The FBGs 149 

in the same position on the three fibres were aligned and are referred to as a triplet.  The stylet and the 150 

cannula both have plastic housings fixed to the root and are used in the form of trocars.  Such a structure 151 

not only avoids direct contact between human tissue and the adhesive, but also reduces the frictional 152 

resistance as its sharp tip can cut through the tissue to reduce the axial force.  This means that only a 153 

small fraction of the strain due to the tension/compression and torsion are transferred to the stylet, a 154 

condition which is essential for use in the model described below. 155 

 156 
Fig. 1 Configuration of the needle with the FBGs incorporated  157 

(a) Photograph of the cannula and stylet of the needle (with inset showing the stylet with and without the 158 

embedded FBGs) and (b) schematic of FBG triplets used in a needle of length 178mm   159 

2.2 Model of the local curvature 160 

It is well known that the shifts of the Bragg wavelength are mainly due to the strains of the FBGs along 161 

the axis of the fiber, and the change of the environment (mainly temperature), before any deformation 162 

(tension/compression, torsion and bending) of the needle is taken into consideration.  All the wavelength 163 

shifts associated with these effects will be cumulative and result in observing a single wavelength shift.  164 

Consequently, in order to understand only the shape changes that occur, separating these shifts is 165 

important and this can be done through matching in the model created.  In this section, all the major 166 

factors that cause the shifts of Bragg wavelength that were observed were classified as homogeneous or 167 

inhomogeneous, according to the perturbation analysis of the structural parameters carried out.  Of these, 168 

only the Bragg wavelength shifts due to bending of the needle are inhomogeneous and based on this 169 

conclusion, a model for the local curvature of the needle has been proposed, which is insensitive to the 170 

homogeneous shifts of the Bragg wavelength.   A detailed perturbation analysis has been carried out for 171 

the various causes of wavelength shift, as shown below: 172 

1) Temperature 173 

When monitoring the Bragg wavelength variation caused by temperature change, usually the strain 174 

caused by the thermal expansion is ignored and the expression can be simplified to: 175 

 ( )= 1,2,3Ti BiT i    =  (1) 176 



where  is the refractive index of silica, and T is the change of temperature, (where the subscript i  is 177 

the ‘serial number’ of each FBG sensor in any one triplet). 178 

Generally, the ambient temperature around a triplet will not show a large temperature gradient due to the 179 

small size of the triplet.  A further consideration is that the Bragg wavelengths of the three FBG sensors 180 

of the triplet have been written deliberately so as not to be the same.  The relative error caused by the 181 

perturbation, B , can be given as follows: 182 

 ( )3= 10 1,2,3Ti B B

T B Bi

T
i

T

   
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 
 (2) 183 

It is relatively easy in practice to control this perturbation to within 1 nm and therefore the relative error 184 

is less than 310− , which means that the shifts of any one triplet are homogeneous. 185 

2) Tension/compression 186 

To more clearly represent the relationship between the deformation of the needle and the strains measured 187 

on the FBGs, a section of length, L , in a fiber of length, l , is isolated for analysis, as shown in Fig. 2(b), 188 

in the form of a side-expansion diagram.  Since the needle assembly is such that it does not guarantee 189 

that the axes of the FBG sensors and of the stylet are perfectly parallel, the introduction of the helix angle, 190 

i , is necessary.  The relationship between the strains on the FBGs in a triplet and the shifts of the Bragg 191 

wavelength can be described as follows:  192 

 ( )(1 ) 1,2,3i Bi e aiP i   = − =  (3) 193 
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where, i is the shift of the Bragg wavelength, eP is the photoelastic coefficient, ai is the strain on the 195 

FBG sensors, and i  is the helical angle.  Further,   is the angle due to the tension/compression 196 

experienced and 1a L L = −  is the axial strain.  L  and l  are defined, respectively, as the length of 197 

the section and the fiber after the deformation. 198 

The relative error caused by the disturbance, B , is given as follows: 199 

 ( )3(1 )
= 10 1,2,3

(1 )

i B e ai B

i B e ai Bi

P
i

P
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 (5) 200 

Further, the strain caused by the perturbation of   is given as follows: 201 

 

2

0axial
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d

d 
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
=

=  =  (6) 202 

As can be seen, the shifts of one triplet caused by tension/compression are also homogeneous. 203 

3) Torsion 204 

The strain due to the torsion experienced is as shown in Fig. 2(a) and Fig. 2(c) in the form of a side 205 

expansion diagram, as expressed as Eq. (7) and Eq. (8), as shown below. 206 

 ( ) ( )
221 (sin ) tan sin(2 ) tan 1 1,2,3ti i i i i i    = + + − =  (7) 207 

 tan i ir =  (8) 208 

where, ti  are the strains of the three FBGs (i = 1,2, 3) due to torsion, and i  is the angle experienced 209 

due to torsion.   is the torsion angle per unit length and ir  is the distance from the center of each fiber 210 

to the center of the stylet. 211 



The torsion angle usually is relatively small.  Although some studies have claimed that the rotation of 212 

the needle in the tissue can cause non-negligible torsion of the needle, the structure of the trocar makes 213 

it difficult to transmit the torsion, if any, to the stylet.  The high-order small quantities in the Taylor 214 

expansion of Eq. (7) at =0  have been omitted.  As a result, the strain can be approximated as shown 215 

below 216 

 ( )2 2 2 2 21 1 1
sin(2 ) (sin sin (2 ) ) 1,2,3

2 2 4
ti i i i i i ir r r i     = + − =  (9) 217 

The relative errors caused by the perturbation,  , are as follows: 218 
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 (10) 219 

Thus for one single FBG sensor, it can be seen from Eq.10 that i  has a significant effect on the strain, 220 

due to torsion, especially when ir and  are small.  This means that when the helix angle becomes 221 

smaller, the FBG is more sensitive to torsion.  Furthermore, for the needle designed in this work, since 222 

ir  is small, the requirements for   is more demanding.  Thus, the perturbation,  , may cause the 223 

strain on the three FBG sensors in the triplet to be inhomogeneous. 224 

The relative error caused by the perturbation, r , is as follows: 225 
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2
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r rti
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Based on the structure of the needle, r  has a maximum value of 0.05mm and the design size used for 227 

ir  is 0.2mm – that is to say, the perturbation of ir  may cause the strain on the three FBG sensors in the 228 

triplet to be inhomogeneous.  In other words, a calibration of ir  is essential for these applications, 229 

requiring precise measurement of torsion, especially when the ir  is small.  230 

However, this work does not focus on calculating the exact value of the torsion.  For the needle that was 231 

designed in this work, the maximum value of 
2

i


−  is ( ) 30.2 0.15 /10 5 10−− =   which is guaranteed 232 

by the machining process used.  According to Eq. (9) it can be seen that 
6 8 21 10 2 10ti  − −  +  .  Since 233 

the strain is very small when   is small, it is difficult for the interrogator to discern this inhomogeneity. 234 

Thus, while the strain due to the torsion is inhomogeneous, it can still be modelled as homogeneous when 235 

  is small.  However, there is a potential risk that this assumption will not hold, as  increases. 236 

4) Bending 237 

A schematic of both the bending and related structural parameters are presented in Fig. 2(a) and Fig. 2(d).  238 

The x-z plane is regarded as the reference plane, that is, the virtual neutral plane when there is no bending. 239 

The strain due to pure bending can be written as: 240 
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 (12) 241 



where 1b  2b  and 3b  are the strains caused by bending, 1 , 2 and 3  are the angles of 1r , 2r  and 242 

3r  with respect to the reference plane.    is the angle of the neutral plane with respect to the reference 243 

plane, and  is the local curvature.  Additionally, cos   and sin    also are termed the projected 244 

curvatures i.e., the projections of the curvature on the reference plane. 245 

The relative errors caused by the perturbation,  , are as follows: 246 
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 (13) 247 

The values of   of the three FBG sensors in any one triplet must be different, which is also the reason 248 

for the inhomogeneity that occurs.  From another perspective, the result of this analysis shows that the 249 

sensitivity of this method for shape sensing, to the orientation of the device, is nonlinear.  250 

The relative errors caused by the perturbation, r , are as follows: 251 
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Obviously, the values of ir  in one triplet cannot be considered to be the same, in terms of the stylet.  253 

The strains of the triplet due to bending shows a different pattern from what is seen in the previous ones, 254 

which are inhomogeneous.  That means the structural parameters, i  and ir , must be calibrated. 255 

 256 
Fig. 2 A segment of the stylet with the FBGs triplets used 257 

(a) Structural parameters of the cross section. 1r , 2r  and 3r  is the distance from the center of each fiber to the 258 

center of the stylet. 1 , 2 and 3  is the angle of 1r , 2r  and 3r  relative to the referenced plane (x-z plane).  259 

(b) The geometric relationship of the stylet after tension/compression is represented by the expansion diagram. L  260 

and L  are the length of the section before and after the deformation respectively. l  and l  is the length of the 261 

fiber.   is the helical angle.   is the angle due to tension/compression. 262 



(c) Geometric relationship about the torsion of the stylet.   is the angle due to torsion.   is the torsion angle per 263 

unit length. 264 

(d) Geometric relationship about the bending of the stylet.   is local curvature.   is the radius of local 265 

curvature. 266 

 267 

To summarize, it is only the bending which allows the shifts of the wavelength of the Bragg gratings in 268 

a triplet to be inhomogeneous, when the torsion angle is small.  As a result, a complete model of the local 269 

curvatures has been proposed, as can be seen in Eq. (15).  Here it is clear that the shifts of the Bragg 270 

wavelength caused by the bending can be distinguished from those caused by the temperature, the 271 

tension/compression and the torsion, 272 
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 (15) 273 

where = (1 )B B eP  − .  The first part of the equation, on the right side of Eq. (15), represents the structural 274 

parameters of the triplet, which can be calibrated using the method which will be described in Section 275 

4.1.  This model shows that it is possible to exclude the homogeneous parts, without affecting the central 276 

FBGs.  277 

3 Algorithm of shape sensing 278 

In this section, an algorithm for shape sensing using the model of the local curvature has been proposed, 279 

which includes the filtering of the local curvatures, the optimization according to the results of the 280 

interpolation and the description of the shape, based on the Bishop Frame, as shown in Fig. 3.  First, the 281 

shifts of the Bragg wavelengths of each triplet were used to calculate the values of  ,   and H  282 

with the noise in the signal present, and using the model discussed in Section 2.  It can be noted that the 283 

Extended Kalman Filter (EKF) has been used for improving the accuracy of the measurement of the local 284 

curvatures.  Following that, all the local curvatures were interpolated, to obtain each of the discrete 285 

curvatures, with sufficient resolution.  Here, the shifts of the Bragg wavelength in the first step can only 286 

reflect the average curvatures.  However, when the interpolated curve representing the curvatures is 287 

convex, the value of the average curvature can be taken as the midpoint curvature of the triplets, and this 288 

could introduce errors.  Therefore, a gradient-based optimization process has been introduced to adjust 289 

the interpolation curve, so that the mean curvature seen from the interpolated curve of the curvature, over 290 

the range of the triplets, matches the curvature measured.  Finally, the shape of the needle can be 291 

described, based on the Bishop Frame.  An important reason to choose the Bishop Frame is to eliminate 292 

the singularities which appear in the Frenet Frame [32].  The following sections give a detailed 293 

description of the three steps taken. 294 



 295 
Fig. 3 Flow of the shape sensing procedure 296 

The first step was to filter the local curvature for a single triplet. The second step was to interpolate and optimize 297 

the discrete curvatures. Taking a triplet as an example, when the curvature interpolation curve is convex, if the real 298 

curvature is as shown by the blue line, then the interpolation curve is as shown by the gray line, when the average 299 

curvature is taken as the midpoint curvature of the triplet.  The goal of the optimization is thus to adjust the gray 300 

line to be as close as possible to the red line, where the mean curvature of the interpolated curve is closer to the 301 

measured value.  The central line of the needle is described, based on the Bishop Frame. 302 

3.1 Filtering of the local curvature 303 

In order to describe this more easily, some symbols that were used in Eq. (15) are replaced, as shown 304 

below in Eq. (16) 305 
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 (16) 306 

where, H  is the homogenous shifts of the Bragg wavelengths for a triplet of FBGs.  The state vector 307 

at an instant, k , for each FBG triplet can be defined as shown: 308 

 ,k k k H k   =  x
•

 (17) 309 

The state transition model can be formulated as: 310 

 1=k k k+ +x Ax w  (18) 311 

where 
3 3

3 3= 

 A I R
 for this quasi-static measurement, 

3(0, )k w Q R
 is the process noise with 312 

covariance 
3 3Q R

.  A reference initial value is diag(0.1,100,0.1)=Q . The shifts are therefore 313 

measured to be: 314 

  1 2 3k   =   z
•

 (19) 315 

The observation model can be formulated as: 316 

 = ( )k k kh +z x v  (20) 317 

where 
3(0, )k v R R

 is the observation noise with covariance 
3 3R R , and a reference initial value 318 

is given by diag(1,1,1)=R , 
( )kh x

 is extended from Eq. (16).  The prior estimate of the state vector and 319 

the covariance is given by:  320 

 | 1 1| 1
ˆ ˆ

k k k k− − −=x Ax  (21) 321 



 | 1 1| 1k k k k− − −= =P AP A Q
•

 (22) 322 

The Kalman gain, kK , can be calculated as: 323 

 
1

| 1 | 1= ( )k k k k k k k k

−

− − +K P H H P H R
• •

 (23) 324 

where kH  is linearized from | 1
ˆ( )k kh −x  as shown below: 325 
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 (24) 326 

Finally, the estimation of the state vector and the updated covariance is given by: 327 

 | | 1 | 1
ˆ ˆ ˆ= ( ( ))k k k k k k k kh− −+ −x x K z x  (25) 328 

 | 3 3 | 1=( )k k k k k k −−P I K H P  (26) 329 

3.2 Interpolation and optimization of the curvature 330 

Normally, the shape of the needle is considered to be smooth and continuous.  However, the load at the 331 

base and at the tip of the needle is abrupt, that is, here the curvature has changed significantly and so it 332 

is extremely difficult to measure the curvature at these two positions.  So, the curvatures of the two 333 

positions were considered to be zero in some research work done on shape sensing of flexible needles 334 

and admittedly this assumption is usually valid, especially at the needle tip.  Nevertheless, here the load 335 

applied to the needle has been analyzed and it has been concluded that it is more appropriate to estimate 336 

the curvatures linearly, especially at the base.  The classical force analysis of the situation following 337 

needle penetration into the tissue, as reported by Misra et.al. [35], is shown in Fig.4.  Although the loads 338 

on the needle and the deformation of the needle are complex in the tissue, there is usually only a small 339 

lateral displacement at the piercing point.  For this reason, the base of the needle to the piercing point can 340 

be viewed in a simplified way as a cantilever beam subjected to a concentrated force and a concentrated 341 

force couple. Naturally, the curvature is linear with respect to the arc length.  Such a simplification can 342 

further improve the accuracy of the measurement of the tip position, than can be done simply by 343 

considering the curvature at the base to be zero, because the error at the base will be amplified as the arc 344 

length increases.  In contrast, the curvature at the tip has much less effect on the tip position.  Based on 345 

this conclusion, a cubic spline interpolation with natural boundary conditions was then chosen to take 346 

into account the smoothness of the curvature and the linear estimation of the boundary.  347 

 348 
Fig. 4 Schematic diagram of the load applied to the needle 349 

( fF , the friction force between needle and the tissue, lF , the lateral force due to the deformation of the needle, 350 

cF  , the cutting force during the penetration. F , the concentrated force, M , the concentrated force couple.) 351 



Another issue that cannot be ignored in the analysis is the uneven strain on the FBG triplets along the 352 

axis  [30], because the signal returned by the FBG interrogator only reflects the average strain. The 353 

curvature of the midpoint of the triplets is equal to the mean curvature, when the curvature is linear with 354 

respect to the arc length.  However, this equivalence introduces errors when the curvature is convex with 355 

respect to the arc length, as shown in Fig. 5.  Therefore, a method of gradient-based optimization has 356 

been proposed to improve this situation.  Here  1 2M M M Mn  =κ  is defined as shown and 357 

represents the set of mean curvatures, measured by n FBG triplets and 
( ) ( ) ( ) ( )

1 2

k k k k

O O O On   =
 

κ  358 

represents the midpoint curvature of n FBG triplets, after each step of optimization carried out.  The 359 

initial value of 
( )0

Oκ  is equal to Mκ .  The average value of the interpolation function of the curvature is 360 

given by 
( ) ( ) ( ) ( )

1 2

k k k k

A A A An   =
 

κ , calculated by the interpolation of Oκ .  
( )k

Ai  has been calculated 361 

using the method of discrete integration of the results of the interpolation of 
( )k

Oκ  over the interval of the 362 

FBG triplet.  Here An  represents the projection of the curvature, cos −   or sin  −   shown in Eq. 363 

(16).  The optimization problem can now be defined as shown: 364 

 minimize A M−κ κ  (27) 365 

The gradient-based iterative formulation is given below: 366 

 
( ) ( ) ( )( )1

=
k k k

O O A M
+

−  −κ κ κ κ  (28) 367 

where a reference value of   is empirically taken to be 0.9 to achieve oscillation-free convergence. 368 

 369 
Fig. 5 Illustration of the pattern of the curvature 370 

(a) Linear pattern (b) Convex pattern 371 

3.3 Description of the shape of the needle 372 

The shape of the needle can be described using the vector function of the spatial curve formed by its 373 

center, as shown 374 



 ( ) ( ) ( ) ( )s x s y s z s= + +r i j k  (29) 375 

where s  is the arc length of the curve and 
3( )s r R . 376 

In this work, the Bishop Frame, also called the parallel frame, has been applied to describe the curve. 377 

Compared with Frenet Frame, it only needs quadratic differentiability and can avoid a singularity when 378 

the curvature is 0.  The Bishop Frame can be defined by a tangent unit vector, ( ) ( )s d s ds=T r  and two 379 

normal vectors, ( )1 sN  and ( )2 sN .  These three vectors constitute an orthogonal moving frame, and they 380 

satisfy the following differential equation. 381 
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 (30) 382 

where 1( )= cos ( ) ( )s s s  −  , 2 ( )= sin ( ) ( )s s s  −   can be obtained from the work reported in 383 

Section 3.2.  384 

Letting 
1 2( ) ( ) ( ) ( ) ( )X s T s N s N s r s =   , 385 
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 (32) 387 

The discretized solution to Eq. (32) is given as: 388 
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 390 

4 Experimental work and results obtained 391 

In order to ensure the accuracy of the shape sensing carried out, experiments to calibrate the system were 392 

performed first, including the parameters of the model proposed in Section 2.2 and the axial positions of 393 

the FBG triplets.  Following that, and based on the results of that calibration, a test of the accuracy of the 394 

shape sensing was carried out.  To do so, discrete lateral forces were applied to the needle, to simulate 395 

three possible bending patterns of the needle when used in tissue.  Besides that, torsion was applied 396 

individually to the stylet, to test the limit of the rotation angle.  Finally, an ex vivo sample of pork tissue 397 

was used to simulate human tissue, to test the accuracy of the shape sensing under continuous loading in 398 

this way. 399 

 400 

4.1 Calibration of the system 401 

The calibration procedure was divided into two steps.  The first step was the calibration of the model of 402 

the local curvature.  To do so, a calibration device designed by the authors for this purpose was used – it 403 

consists of a pair of aluminium moulds and an absolute encoder, as shown in Fig. 6.  In this device, the 404 

aluminium moulds were machined with a set of high-precision semi-circular grooves of constant 405 

curvature, using a Computer Numerical Controlled (CNC) machine tool.  The two symmetrical moulds 406 

together could completely lock the stylet in the groove, to ensure that the curvature of the stylet was 407 



exactly the same as the grooves.  The setting of the absolute encoder (type, DF30, Jilin Province Sansheng 408 

Sensing Technology Co., Ltd) can be used to measure  , (as seen in Eq.(16)).  409 

During the calibration process the stylet passed through the absolute encoder into each of the grooves in 410 

the mould.  Next the stylet was manually rotated, at four random angles to cover 360°, as far as possible 411 

in each groove, as discussed in our previous work [36].  The first of these angles from the encoder, at the 412 

position when the stylet in the groove shows 0 = , was taken as the zero point of  (i.e., 0 = ).  In 413 

theory, the wavelengths of the FBGs will not shift, when the stylet is in the groove with 0 = , so the 414 

average of these wavelengths was used as the reference value for calculating  , rather than the 415 

theoretical Bragg wavelength at which the FBGs were written [37].  ( )T B t axial    + +  is set to 0 416 

during the calibration.  That means the temperature is constant during the calibration process and the 417 

needle is placed into the calibration mold without actually being stretched and twisted. The matrix of the 418 

structural parameters has been calculated by using the least squares method.  419 

The calibrated results of the model are as listed in Table 1.  The radial positions of the FBGs used were 420 

also calculated with 0.22eP = .  The values of   of the FBGs fixed in the same groove have a maximum 421 

deviation of 8.81°.  However, this is inconsistent with the processing technology used and should be 422 

seen as the error in the calibration.  On the other hand, this result also confirms the conclusions derived 423 

from the analysis of Eq.13 – namely that this method is less sensitive to the orientation. The calibration 424 

of r  obtained is close to our design value. 425 

 426 
Fig. 6 Illustration of the calibration device used in this work 427 

 428 

The second step undertaken was the calibration of the axial position of the FBG triplets, which was based 429 

on the calibration of the model of the local curvature.  The etching of the gratings carried out was 430 

relatively accurate, and the error mainly comes from the process of manually fixing the FBGs to the 431 

stylet.  This means that the interval between the FBG triplets does not need to be calibrated, but it is only 432 

the position of the first FBG triplet that must be calibrated.  Therefore, the experimental system was 433 

designed as shown in Fig. 7.  The needle designed (as discussed in Section 2) was fixed on a 2-DOF 434 

(Degrees of Freedom) platform for axial feeding (type RM-SLD-17-200-5-A) and rotation (type, RM-435 

RT-11-360-40 provided by ROBUSTMOTION Co., Ltd).   The FBGs fixed to the needle were connected 436 

to the interrogator (type TV-155, Beijing Tongwei Technology Co., Ltd.) via FC connectors.  The 437 

deformation of the needle was controlled by using a loading device, which was actuated by a micrometer 438 

(type 0503-000, Qinghai Measuring & Cutting Tools Co., Ltd).  The position of the needle tip was 439 

measured by a 3-axis measuring slide (type XYZLPG80, MISUMI), with an accuracy of 0.01mm.  In 440 



each measurement carried out, the probe was moved manually, until the probe tip and the needle tip were 441 

aligned. 442 

During the calibration of the axial position of the FBG triplets, the loading device was moved near the 443 

tip of the needle and it applied an offset of about 10mm, within the assumption of a small deformation, 444 

following which the tip offset, md , could be measured.  In addition, the tip offset could also be calculated 445 

by the method described in Section 3, and represented by cd .  The offsets in four mutually perpendicular 446 

directions were applied, and the tip offsets formed two datasets from measurements, md , and calculations, 447 

cd .  The calibration of the axial position of the first FBG triplet was described as an unconstrained 448 

optimization problem.  The classical golden-section search was selected to optimize the position of the 449 

first FBG triplet in the interval, 0-20mm, to minimize Eq (34), as shown below 450 

 minimize m c−d d  (34) 451 

The accuracy index of the calibration in the second step was set as the interval length (and is less than 452 

1mm).  Therefore, only 7 compressions ( ( )
7

0.61803 1/ 20 ) are required to achieve the index value. 453 

The search process used is shown in Fig. 8, where the error is defined as m c−d d .  The final search 454 

interval was compressed to 14.84mm - 15.53mm, where the midpoint of the interval was chosen as the 455 

final result of the axial position listed in Table 1. 456 

 457 
Fig. 7 Experimental system used in this work 458 



 459 
Fig. 8 Golden-section search process 460 

(The shaded area and the numbers above it represent the interval removed during the iteration and the order of 461 

iteration, respectively. The bounds of the initial interval according to the prior determination were not calculated 462 

empirically.) 463 

Table 1 Results of the calibration carried out 464 

Node Parameter matrix 
  [°] r [mm] Position [mm] 

Referential  

Bragg wavelength [nm] 

1 

204.44 141.07 1

210.37 82.95 1

25.30 259.19 1

 
 
−
 
 − 

 

55.39

68.48

174.43

−  

0.208

0.189

0.218

 15 

1530.15

1530.18

1530.10

 

2 

223.10 143.26 1

214.39 81.51 1

38.89 269.56 1

 
 
−
 
 − 

 

57.29

69.18

171.79

−  

0.221

0.191

0.227

 50 

1540.12

1540.11

1540.13

 

3 

210.91 138.97 1

237.78 85.89 1

18.03 295.67 1

 
 
−
 
 − 

 

56.62

70.14

176.51

−  

0.209

0.209

0.245

 85 

1550.04

1550.01

1550.05

 

4 

201.12 157.77 1

255.78 64.27 1

23.50 278.15 1

 
 
−
 
 − 

 

51.89

75.90

175.17

−  

0.210

0.217

0.229

 120 

1560.19

1560.18

1560.12

 

5 

154.65 142.53 1

222.156 93.89 1

44.22 242.40 1

 
 
−
 
 − 

 

47.34

67.09

169.66

−  

0.172

0.197

0.201

 155 

1570.22

1570.33

1570.06

 

 465 

4.2 Bending test experiments 466 

It is the position of the needle tip,# which is of most concern in surgeries, whether it is used to target 467 

lesions or to avoid obstacles.  In addition, considering the shape sensing method discussed in this paper, 468 

the position error at each point on the curve representing the shape of the needle is magnified as the arc 469 

length increases and eventually reaches a maximum at the tip of the needle.  This confirms that the 470 

position error of the needle tip was a good choice when selected as an index to evaluate the accuracy of 471 

shape sensing in this work.  In order to test the accuracy of the measurements, the following experiments 472 

were designed to simulate three bending patterns in real applications under discrete loads: single bending, 473 

double bending, and spatial bending.  The setup used for the experiments for the three patterns was as 474 

shown in Fig 9.  The three configurations of the loading devices used could achieve three bending patterns 475 

of the needle, respectively.  Furthermore, each pattern has been demonstrated from four different 476 



directions (0°,90°,180°and 270°), where the directions were controlled by the rotation of the 2-477 

DOF platform.  478 

Only the optimized shape is shown in Fig. 9, because the difference between the optimized shape and 479 

the unoptimized shape is small.  Since the main offset of the needle tip is in the x-y plane, the projection 480 

of the shape in the x-y plane was also plotted, so that the differences between the three patterns could be 481 

visualised more clearly.  The errors of the tip positions obtained are as shown in Table 2.  Although it is 482 

noted that a few experiments carried out show an error of >0.5mm, this appears in the double bending 483 

and spatial bending seen and overall, the mean error of each pattern is <0.5 mm, which is a satisfactory 484 

accuracy for routine CT scanning.  Despite the tip errors of the optimized shape not being significantly 485 

reduced during the experiments on single bending and spatial bending, they are reduced by 0.12mm 486 

during the experiment where double bending was used.  This probably occurs because the first loading 487 

point (s1=85mm) is exactly in the middle of the third triplet, as this allows the phenomenon mentioned 488 

in Section 3.2 to be more pronounced.  Therefore, the gradient-based optimized interpolation proposed 489 

in this work can be used to obtain a more accurate needle tip position in shape sensing. 490 

 491 
Fig. 9 Bending test 492 



(a), (b) and (c) are photographs of the experiments using single bending, double bending and spatial bending, 493 

respectively. The positions of the loading points are expressed in arc coordinates, and only the initial value was 494 

noted because the bending does cause a change of the loading point. (d), (e) and (f) are the optimized shapes of the 495 

needle after bending, corresponding to (a), (b) and (c) respectively.  Here 0°, 90°, 180°and 270° are the rotation 496 

angles of the 2-DOF platform. 497 

 498 

Table 2 Accuracy of the Test Results 499 

(the data in brackets represent the error of the optimized shape (used for comparison) 500 

Direction Tip error [mm] 

Single bending Double bending Spatial bending 

A 0.23(0.24) 0.29(0.18) 0.65(0.67) 

B 0.26(0.27) 0.64(0.50) 0.07(0.09) 

C 0.50(0.49) 0.32(0.13) 0.52(0.50) 

D 0.39(0.39) 0.42(0.38) 0.22(0.25) 

Mean 0.35(0.35) 0.42(0.30) 0.37(0.38) 

 501 

 502 

4.2 Torsion test experiments 503 

To verify the performance of the model for the local curvature discussed, the experimental setup 504 

shown in Fig. 10 were designed in such a way as to confirm that pure torsion, over a range of angles, 505 

does not affect the accuracy of the shape sensing reported.  The stylet was isolated and then clamped by 506 

using the clamping device shown in the figure.  In this way, the rotation applied by the rotary stage can 507 

simulate the possible torsion of the stylet during the process of puncturing the tissue sample and 508 

meanwhile the position of the needle tip can be considered constant.  The angle of the torsion can be 509 

obtained accurately from the rotary stage, where the torsion angle was increased from 0° to 30°, in 510 

increments of 5°.  511 

The experimental results obtained are shown in Fig. 11.  It can be seen that when the rotation angle 512 

reaches 25° ( 2.45rad/m = ), the tip offset increases suddenly.  Before reaching 25°, the error is   513 

<0.5mm, which is still acceptable for pure torsion.  Correspondingly, H  for each triplet also increases 514 

as the rotation angle increases, when the rotation angle is <25°.  However, this means that for a rotation 515 

angle exceeding 25° ( 2.45rad/m  ), this will lead to the failure of the model proposed in this work.  516 

This is mainly due to the helix angle being close to 90° and the small diameter of the stylet.  The reason 517 

why the initial value of H is not 0 is due on the one hand to the calibration error, and on the other the 518 

temperature difference change caused by the long time span over which the experiment was carried out.  519 

 520 



Fig. 10 Experimental set up for the torsion test carried out 521 

 522 

Fig. 11 Tip offset as a function of the angle (0 to 30°) caused by the torsion and H for the FBG triplets used in 523 

this work 524 

4.4 Biological tissue puncture experiments 525 

To more closely match the clinical applications for which the equipment would be used, a sample of ex 526 

vivo pork tissue was selected to further test the accuracy of the shape sensing method.  The experimental 527 

setup used is shown in Fig.12(a).  The 2-DOF platform was adjusted to a suitable starting position and 528 

when no tissue sample is present, the needle was driven to a specified distance where the position of 529 

needle tip at this time was measured and recorded as a reference point.  Following that, the 2-DOF 530 

platform was reset, the tissue sample was placed under the needle, and the needle travelled again the 531 

specified distance.  Here the thickness of the tissue was approximately 60mm and the linear feed rate 532 

was 0.3mm/s.  Due to the uneven force on the single-bevel tip, the needle tip will deviate from the 533 

reference and this phenomenon is very common and unavoidable in clinical practice.  These experiments 534 

were repeated four times and the results obtained from the measurements are as shown in Table 3.  The 535 

maximum error of the tip offset was 0.6mm, and the average error was 0.39mm.  Combining the results 536 

in Table 3 and Fig. 12(b), it can be seen that there are certain differences in the shape of the needle due 537 

to the inhomogeneity of the pork tissue used.  It is clear that the effect of tissue inhomogeneity on the 538 

bending direction of the needle was reflected in two aspects of the results obtained, as follows.  On the 539 

one hand, the tissue interacts with the bevel of the needle tip to generate lateral forces while on the other, 540 

the instability caused by the axial force exceeding the critical force causes the needle to deflect in any 541 

direction, where the needle is treated here as a pressure rod.  This phenomenon is very likely to occur 542 

when crossing the fascia and it was also observed in the experiment.  This result would seem to indicate 543 

a problem for the controllers of the steerable needles if they are purely relying on the predictions of the 544 

model. 545 

Table 3 Results obtained from the puncture tests carried out on the tissue sample 546 

No. Tip offset (mm)  Error (mm) 

1 14.26 0.05 

2 11.67 0.6 

3 14.78 0.39 

4 13.24 0.53 

Mean 13.49 0.39 

 547 



 548 
Fig. 12 Experimental set up for the biological tissue puncture experiment carried out 549 

(a) Shape sensing test using the ex vivo pork tissue sample.  550 

(b) The optimized shape of the needle after puncturing the ex vivo pork tissue sample.  Here A, B, C and D 551 

represents the results of the four experiments carried out. 552 

5 Conclusion 553 

In this work, a 0.6 mm diameter stylet, with five FBG triplets incorporated was designed and fabricated 554 

to measure the shape of the flexible needle.  In order to improve the accuracy of the sensing of its shape, 555 

a model of the local curvature was established.  In this model only the shifts of the Bragg wavelengths 556 

caused by the needle bending are inhomogeneous, which is of real importance for shape sensing in 557 

practical clinical applications.  It should be pointed out that although the Bragg wavelength shift caused 558 

by torsion is considered to be homogeneous, it is limited to a certain range of torsion angle.  However, it 559 

is also easy to ensure the homogeneity of these shifts by the processing technologies used, when the 560 

installation radii of the FBG sensors used are relatively large.  In summary, the model for the local 561 

curvature proposed in this paper can exclude the Bragg wavelength shifts caused by temperature, 562 

tension/compression and torsion under the condition of small torsion angles, to obtain accurate 563 

measurements of the local curvature. 564 

A further focus of this work has been to describe a complete algorithm for accurate shape sensing and to 565 

introduce gradient-based optimization in the interpolation of the curvature, based on the laws defining 566 

the deformation of the flexible needle.  The experiments carried out during bending tests show that using 567 

the algorithm for shape sensing proposed, when the needle tip was offset by ~15mm under discrete loads, 568 

the errors seen are all less than 0.5mm.  Gradient-based optimization reduces the mean error by 0.12mm 569 

in the experiments involving double bending: however, there is no obvious effect on the single bending 570 

and the space bending experiments carried out.  The puncture experiment undertaken with ex vivo 571 

biological tissues have demonstrated that the method of shape sensing shows a very good performance 572 

when under continuous loading.  In summary, it can be seen that the algorithm used for shape sensing 573 

proposed in this work performs better under both discrete and continuous loads.  In the special case where 574 

the local curvature changes drastically, the accuracy achieved is also sufficient that it still satisfies the 575 

requirements for clinical applications, which is very satisfactory. 576 

At present, the method discussed in this work currently only works offline.  In our future work, the aim 577 

is to enable online shape sensing which would be particularly valuable in clinical applications.  Given 578 

that shape prediction is particularly challenging and meaningful, future work will focus on the 579 

relationship between the force applied and the shape resulting.  580 

 581 
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