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Abstract

There has been a significant increase in the demand for temporary skilled workers in

the health sector. They provide volume flexibility, but are generally more expensive

than their permanent counterparts. In this paper, we propose a two-stage stochastic

optimization framework to inform recruitment decision making for a period of highly

uncertain demand in a setting where all patients must be served. The first stage identifies

the number of permanent positions to advertise, and the second stage determines the

number of temporary workers to recruit. Our framework accounts for the uncertainty in

the permanent recruitment process, stochasticity of the service delivery, and asymmetry

in demand information at the times of permanent and temporary recruitment. Under

a general setting of the problem, we characterize the optimal first- and second-stage

decisions analytically, propose fast numerical methods for finding their values, and prove

some of their monotonicity properties. A case study based on data from a geriatric ward

illustrates the application of our framework, and numerical experiments provide further

managerial insights.

Keywords: OR in health services, Blended workforce recruitment, Queueing, Stochastic

optimization, Demand and supply uncertainty

1. Introduction

In the past few decades, the healthcare sector has witnessed significant changes in the

way that jobs are structured. Chronic staff shortages (Bae et al., 2010), long lead times

in recruiting permanent staff (Lu & Lu, 2017), predictable and unpredictable variabilities

in patient demand (Seo & Spetz, 2013), and rising absenteeism and turnover among per-

manent staff (West et al., 2020) have led to a substantial increase in the use of temporary

healthcare workers (HCWs). In the UK, for example, the total hours of temporary nurses
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requested by the hospitals within the National Health Service (NHS) doubled from 2011

to 2015 (National Audit Office, 2016). Temporary workers provide volume flexibility, i.e.,

the ability to adjust staffing patterns flexibly and quickly in response to variations in

patient demand and (un)availability of permanent staff (Kesavan et al., 2014). However,

temporary skilled workers are more expensive for the provider than their permanent coun-

terparts. In fact, findings from a recent survey imply that savings of about half a billion

pounds could have been made in the UK’s NHS during 2018 if the hours worked under

temporary contracts had been covered by permanent staff (The Open University, 2018).

It is therefore important for healthcare providers to strike a balance between staffing costs

and service quality by recruiting the right mix of permanent and temporary HCWs.

Finding this mix is challenging for the following reasons. First, permanent and tempo-

rary recruitment decisions are not contemporaneous; advertising for permanent workers

typically starts well ahead of the service delivery, e.g., a few months in advance, whereas

recruitment of temporary workers occurs much later, e.g., a few days/hours in advance.

This implies an asymmetry in demand information, i.e., a more accurate demand in-

formation is available at the time of temporary recruitment than during the permanent

recruitment period. Second, there is uncertainty in recruitment since there is no guarantee

that all required positions (especially permanent ones) can be filled. Third, healthcare

providers often experience periods of highly uncertain demand. In the UK’s NHS, for

example, there is high uncertainty in predicting winter peak demand (NHS Improvement,

2018). The recent COVID-19 pandemic has also added to demand uncertainty; see, e.g.,

Thorlby et al. (2020) on fluctuations in emergency care demand during the pandemic. In

addition to making the decision on timing permanent advertisement more critical, this

calls for applying models other than the usual Poisson process for capturing demand

uncertainty.

We focus on recruitment decision making concerning a mix of permanent and tempo-

rary HCWs for a provider facing a highly uncertain demand period (HUDP). The main

trade-off in this decision making is that permanent HCWs are cheaper for the provider,

but their recruitment lead time, i.e., the time between advertisement and recruitment, is

substantially longer. Longer recruitment lead times for permanent HCWs have two impli-

cations for recruitment decision making: limited information about demand is available

when permanent positions are advertised; and some (or even all) of these positions may

not be filled in the desired time frame. Indeed, 10% of permanent nursing vacancies in

the UK’s NHS were not filled in 2020 (NHS Vacancy Statistics, 2021).
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We consider a setting in which patients’ requests arrive to the system during the

HUDP, and queue until they are served by a member of a pool of HCWs. The provider

must decide how many permanent HCW positions to advertise well ahead of the HUDP

when only partial information about the demand for service is available. We refer to

this decision as the first-stage decision. Once the permanent positions are advertised,

applications arrive and offers are made to qualified applicants. At the start of the HUDP,

the provider must then decide how many temporary HCWs to recruit given the number

of permanent HCWs recruited and the latest demand information. We refer to this as

the second-stage decision, and propose a two-stage stochastic optimization framework to

capture the dependence of the second-stage decision on that of the first stage. The ob-

jective is to minimize the expected cost of workforce plus the cost incurred by patients

while their requests are in the system. Our framework assumes that advertisement for

permanent positions must begin at an exogenously given time. However, we also inves-

tigate the benefit/loss of delaying this advertisement, which could lead to more accurate

demand information at the expense of a higher risk of not filling the advertised positions.

We model the patient demand as a Poisson mixture process, i.e., a Poisson process

with a random rate; see, e.g., Jongbloed & Koole (2001). As we will explain in §2, this

provides the desired features for demand modelling in the context of recruitment decision

making for service systems. We represent the uncertainty in the permanent recruitment

process by a probability distribution for the number of qualified applicants. The dynamics

of service delivery in the HUDP are captured by a generic delay queueing model, which

evaluates the expected system size, i.e., the mean number of requests waiting or being

served, in steady state.

We analytically characterize the optimal first and second-stage recruitment decisions

and propose fast numerical algorithms for finding their values. We prove that the optimal

first-stage decision is insensitive to the probability distribution of the number of qualified

applications, as long as the distribution support remains the same. We also prove that it is

never optimal to staff the system with only temporary workers. Using stochastic ordering,

we further prove that the optimal mean first-stage cost typically decreases when more

applications are likely to be received, and set out the conditions under which the optimal

first-stage decision and the corresponding cost increase when the demand rate becomes

more uncertain. All results are exact and obtained without specific assumptions on the

type or scale of the delay queueing model, and remain valid as long as the corresponding
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system-size function follows specific properties.

These properties are intuitive and we prove that they hold for three common queueing

models: (i) a single-server approximation model with Exponential inter-arrival and service

times; (ii) a single-server approximation model with Exponential inter-arrival and general

service times; and (iii) a multi-server model with Exponential inter-arrival and service

times. The first two models are approximations since they estimate the behaviour of a

multi-server system by inflating the service rate of a single-server queue, but are useful

as they provide further analytical tractability. In particular, we obtain a closed-form

expression for the optimal second-stage decision and the corresponding cost for model (i),

and prove that the optimal first- and second-stage decisions as well as their corresponding

costs increase with service time variability for model (ii).

We combine analytical results with numerical experiments to derive managerial in-

sights. This includes assessing the value of recruiting temporary HCWs, incorporating

demand rate uncertainty into recruitment decision making (instead of using only its aver-

age), and delaying advertisement for permanent positions. We also conduct a case study

using real data from a geriatric ward to demonstrate how our framework can be adopted

to guide nurse recruitment decision making in a complex environment involving multiple

types of resources.

2. Literature Review

Two main streams can be identified in the blended workforce literature. The first

stream seeks the optimal mix of workforce using single-stage optimization models; see,

e.g., Abraham (1988), Berman & Larson (1994), Jeang (1996), Bhandari et al. (2008),

Harper et al. (2010), and Dong & Ibrahim (2020). However, single-stage models assume

simultaneous recruitment of permanent and temporary HCWs, thus ignoring the asymme-

try in demand information at the times of temporary and permanent recruitment. This

shortcoming is addressed in the second stream of research, which focuses on two-stage

optimization models.

Kao & Queyranne (1985) propose a two-stage optimization for budgeting workforce

requirements. In the first stage of their model, the number of permanent nurses in each

skill class for a budget cycle is determined. In the second stage, given the number of

permanent nurses and the realized demand in each period, the numbers of overtime and

agency nurses to meet shortages are identified. Indeed, similar models are proposed in

the literature, as reported in the review by Qin et al. (2015). In particular, Pinker &
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Larson (2003) propose a variation in which the second-stage decision is divided into two

decisions that are made dynamically over two time intervals, one concerning the number

of temporary workers and the other focusing on the amount of overtime work. A more

recent study by Lu & Lu (2017) tests the results obtained from a two-stage model using

empirical data to investigate the impact of mandatory overtime legislation on staffing

ratios in nursing homes.

All two-stage models cited above ignore the dynamics of service delivery and assume

a linear relationship between demand and the number of servers required to meet this

demand. This amounts to nurse-to-patient ratio models in healthcare, which according to

Yankovic & Green (2011) can lead to under- or over-staffing because factors such as the

unit size and variability in service durations are not explicitly accounted for. This issue

is addressed in the recent work of Hu et al. (2022), which is the closest to our research.

Representing the dynamics of service delivery by an abandonment queueing model, they

propose a two-stage framework in which the first stage identifies the base-staffing lev-

els (i.e., permanent workforce) and the second stage determines the surge-staffing levels

(i.e., overtime and temporary workforce). Using a Poisson mixture process for modeling

demand, Hu et al. (2022) show that surge staffing is most beneficial when demand rate

uncertainty dominates the system stochasticity (as driven by random inter-arrival, service

and abandonment times). They also propose near-optimal two-stage staffing rules min-

imizing the sum of staffing and performance costs. Hu et al. (2022) extend their model

to allow for the demand rate prediction error in the second stage, and make several em-

pirical adjustments to their staffing rules to facilitate implementation in an emergency

department.

Similar to Hu et al. (2022), we adopt a Poisson mixture model for patient demand.

As illustrated in Jongbloed & Koole (2001) and Maman (2009), this captures the higher

variability relative to the standard Poisson process that is typically observed in patients’

arrival data. It also allows us to represent the asymmetry in demand information at

the times of permanent and temporary recruitment. In particular, we assume that the

distribution of the Poisson rate is available at the time of permanent recruitment and

the exact value of the rate (not the demand itself) is revealed at the time of temporary

recruitment. This follows the assumption made in Hu et al. (2022), and implies that

a degree of demand uncertainty remains at the time of temporary recruitment, which

matches the reality of service systems. Another similarity is that the dynamics of service

delivery and the resulting system stochasticity are modelled explicitly.
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Our study, however, differs from that of Hu et al. (2022) in several ways. First, Hu

et al. (2022) (and other two-stage studies cited above) assume that the base staffing

level can always be achieved, whereas we consider the uncertain nature of permanent

recruitment, thus accounting for the possibility that some positions are not filled. In

addition to making our models more realistic, this allows investigating the benefit of a

lower demand rate uncertainty as a result of a later advertisement for permanent HCWs

versus the associated risk of a shorter advertisement window. Second, Hu et al. (2022)

focus on abandonment queues, whereas we consider delay queues. Delay queues are

more appropriate for representing the services provided in inpatient or residential care

settings where, once patients are admitted, their requests rarely leave the system. The

same applies to diagnostic services in hospitals. Embedding delay queues in optimization

models are, however, more challenging as a stability constraint is required. Third, Hu

et al. (2022) derive staffing rules via an asymptotic approach that increases the system

scale to infinity. This may lead to significant errors in small systems, as illustrated in

Tables 2 and 3 in Hu et al. (2022). Our methodology addresses this problem by taking

an exact approach which works equally well with small systems. This is an important

feature given that the systems for residential or inpatient care are relatively small, as we

illustrate in our case study. Fourth, our models capture the impact of the service time

distribution on recruitment decisions, whereas the staffing rules in Hu et al. (2022) are

obtained by assuming Exponential service times.

3. The Two-stage Framework

Consider a HUDP preceded by a permanent recruitment period of length te as il-

lustrated in Figure 1. Suppose a decision has been made to advertise for permanent

positions at time t ∈ [0, te). This decision is exogenous as it depends on external factors,

e.g., the timing of nurses graduation (In §6, we explore the potential benefit/risk of a

later advertisement.) The problem addressed here is a two-stage decision problem. The

first-stage decision identifies the number of permanent full-time equivalent (FTE) posi-

tions to advertise at time t, denoted by a ∈ R+, and the second-stage decision determines

the number of temporary FTEs to recruit at time te, denoted by g ∈ R+, where R+ is

the set of non-negative real numbers. Note that the quantity of HCWs is measured in

FTEs, which are non-negative real numbers. This is consistent with previous studies on

blended workforce (e.g., Kao & Queyranne, 1985; Abraham, 1988), and also facilitates

the derivation of analytical results.
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Figure 1: Schematic diagram of permanent and temporary recruitment decision making process

We start with the formulation of the second-stage problem. Suppose patients’ requests

arrive for HCW services according to a Poisson process with rate λ during the HUDP.

The requests wait in a queue until they are served by a member of the pool of HCWs

(permanent or temporary). It takes a random amount of time to serve each request, and

the average of this time is set as the time unit, so that the rate of service delivery is equal

to one. We model the service delivery in the HUDP by a generic delay queueing system.

Assuming a steady-state is achieved, we denote by l(λ, s) the corresponding system-size

function evaluating the mean number of requests in the system given the demand rate is

λ > 0 and the size of the HCW pool is s ∈ R+ with s > λ. Clearly, if the traffic intensity

exceeds one; i.e., s < λ, there is no steady-state and this situation will be excluded from

the analysis. Following Lu & Lu (2017), we assume that each permanent HCW must

provide an additional ro ≥ 0.0 percentage of mandatory overtime work. The objective is

to minimize costs, with the cost parameters defined as follows.

Let cp, co, and ct be the cost rates of permanent, mandatory overtime, and temporary

work, respectively. Similar to Lu & Lu (2017), we assume that cp < co < ct. The first

inequality is in line with the UK’s NHS overtime payment, which is typically 1.5 times

of the standard hourly rate (Royal College of Nursing, 2021). The second inequality

is supported by various surveys indicating that temporary nurses cost the highest to the

employers; see, e.g., Vovak (2010) and National Audit Office (2006). Let cw be the waiting

cost incurred by patients per unit of time in the system, i.e., waiting in the queue and/or

being served. We opt to cost the total time the requests stay in the system, instead of

the time they are waiting in the queue, in order to reflect the nature of services provided

by HCWs. For example, a patient cannot be considered admitted or discharged until the

admission or discharge process is fully completed in an inpatient ward. We normalize the

cost rates so that cp = 1.0.

We assume the provider has full knowledge of λ at time te. This can be achieved using

a demand rate forecasting model such as the one proposed in Hu et al. (2021). The total

number of permanent HCWs, denoted by p, is also known at time te. Given p and λ, the
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second-stage problem is formulated as

v(λ, p) = min
g
{u(λ, p, g) : g ∈ R+, g > λ− p(1 + ro)}, (1)

where

u(λ, p, g) = p(1 + roco) + gct + l(λ, p(1 + ro) + g)cw, (2)

and the second constraint ensures the stability of the system (recall that service rate is

set to one). In the objective function u(λ, p, g), the first two terms yield the total staffing

cost and the last term gives the performance cost. We denote the optimal solution to

problem (1) by g∗(λ, p).

To formulate the first-stage problem, note that the rate of Poisson arrivals is unknown

to the service provider during the permanent recruitment period. As such, it is denoted by

the random variable Λd, for d ∈ [0, te). The distribution of this rate (and thus its mean)

can be estimated from historical data as we shall illustrate in §7. Let Qt represent the

(random) number of qualified applications received during the advertisement period (t, te]

following a ∈ R+ permanent FTE positions being advertised at time t. We assume that

offers are made to, and accepted by, qualified applicants on a sequential basis. Sequential

recruitment is a search strategy in which each applicant is screened immediately upon

arrival, and an offer is made if the applicant is sufficiently qualified (Van Ommeren &

Russo, 2014). Recruitment continues until a maximum of a permanent FTEs are recruited

or te is reached. Given n ∈ R+ the exact FTE of permanent HCWs in the system at time t

who are expected to be available during the HUDP, there will be n+min{Qt, a} permanent

HCWs at time te. The first-stage problem is therefore formulated as

m(n) = min
a
{E[v (Λt, n+ min{Qt, a})] : a ∈ R+}, (3)

where v(λ, p) is evaluated through the second-stage problem given in (1). Note that since

permanent HCWs are typically expected to give notices if they intend to resign, it is

reasonable to assume that n is known to the provider at time t. We denote the optimal

solution to problem (3) by a∗(n).

In order to characterize the optimal solutions to the first- and second-stage prob-

lems, given in Equations (3) and (1), respectively, we need to make the following set of

assumptions concerning the generic system-size function, l(λ, s).

Assumption 1. l(λ, s) satisfies the following properties on its domain {(λ, s) : λ >

0, s ∈ R+, s > λ}:
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A(i) It is continuous and twice differentiable on λ and s;

A(ii) limλ↓0 l(λ, s) = 0, lims↓λ l(λ, s) = limλ↑s l(λ, s) =∞, and lims→∞ l(λ, s) is finite;

A(iii) It is strictly increasing in λ, and strictly decreasing in s;

A(iv) It is strictly convex in s;

A(v) Its first order partial derivative with respect to s is strictly decreasing in λ.

Note that x ↑ y and x ↓ y denote x approaching y from left and right, respectively.

Since the number of servers is typically an integer value in queueing models, an extension

to non-integral server numbers is needed for Assumption 1. As we illustrate in §4, such

extensions exist for some common queueing models. These extensions are continuous and

twice differentiable, i.e., property A(i) is met. The first two limits in property A(ii) are

trivial and naturally hold. For the last limit in the same property, note that when the

number of servers tends to infinity, there will not be a queue in the system, and thus the

mean number of requests in the system will be finite. Property A(iii) is trivial. Property

A(iv) implies diminishing returns in queueing systems, i.e., the amount of improvement

achieved in performance as a result of one additional server reduces as the number of

servers increases. Property A(v) implies economies of scale in queueing systems, which

can be seen by changing the order of differentiation and noting that congestion always

increases with the arrival rate, but this increase reduces with the number of servers. In

§4, we formally prove these properties for three common queueing models.

Given Assumption 1, we propose

Proposition 1. For the second-stage problem given in (1),

g∗(λ, p) =

 0 if λ ≤ λ̃(p),

g̃(λ, p) if λ > λ̃(p),
(4)

where λ̃(p) is the unique root of function

φp(x) , ct + cw
∂l(x, s)
∂s

∣∣
s=p(1+ro), (5)

in the interval (0, p(1 + ro)) when p > 0, and λ̃(0) = 0. g̃(λ, p) in (4) is the unique root

of function

θλ,p(g) , ct + cw
∂l(λ, s)
∂s

∣∣∣
s=p(1+ro)+g

, (6)

in the interval ((λ− p(1 + ro))+,∞), where (x)+ = max{0, x} .
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The formal proof of Proposition 1, which is based on the Karush–Kuhn–Tucker (KKT)

approach to nonlinear optimization (Kuhn & Tucker, 1951), is given in the e-companion

to this paper (It also includes other proofs and a summary of notations.) Below, we

provide the intuition behind this proof.

Function θλ,p(g) given in (6) is in fact the derivative of the objective function provided

in (2) with respect to g. By assumption A(iv), the objective function is convex in g and

so its minimum occurs at a point g̃(λ, p) where the derivative is equal to zero. Hence,

g∗(λ, p) = 0 when g̃(λ, p) ≤ 0, and g∗(λ, p) = g̃(λ, p) otherwise (a negative g̃(λ, p) implies

that too many HCWs are already in the system.) To identify the values of λ for which

g̃(λ, p) ≤ 0, note that θλ,p(g) is strictly increasing in g and strictly decreasing in λ by

assumptions A(iv) and A(v), respectively. As such, g̃(λ, p) will be negative for sufficiently

small (and positive) values of λ. To find these values, we set g = 0 in θx,p(g) to obtain

φp(x) as given in Equation (5). Let λ̃(p) be the solution of φp(x) = 0. Since θλ,p(g) is

decreasing in λ, we will then have θλ,p(0) ≥ θλ̃(p),p(0) = φp(λ̃(p)) = 0 for λ ≤ λ̃(p). This

implies that g̃(λ, p) ≤ 0 when λ ≤ λ̃(p), and g̃(λ, p) > 0 otherwise.

Algorithm 1 in the e-companion outlines the steps for evaluating g∗(λ, p) based on

Proposition 1. This algorithm includes a function for evaluating λ̃(p) as the unique

root of φp(x) (given in Equation (5)) in the interval (0, p(1 + ro)). As proved in the

e-companion, φp(x) is continuous and strictly decreasing in x, with a positive value when

x ↓ 0, and a negative value when x ↑ p(1 + ro). Hence, its root can be obtained by a

bracketing method, such as Brent’s method (Brent, 1973), with the bracketing interval

set to [α1, p(1 + ro) − α2], where α1 and α2 are small positive numbers. Algorithm 1

also needs to evaluate the unique root of function θλ,p(g) (given in Equation (6)) in the

interval ((λ− p(1 + ro))+,∞). As shown in the e-companion, θλ,p(g) is continuous and

strictly increasing in g, negative when g ↓ (λ− p(1 + ro))+, and positive when g → ∞.

Its root can therefore be obtained by Brent’s method with the bracketing interval set as

outlined in Algorithm 1. Before proceeding to the first-stage problem, below we provide

the monotonicity properties of the optimal second-stage decision with respect to λ and p.

Corollary 1. The optimal second-stage decision, g∗(λ, p), is increasing in λ, and decreas-

ing in p.

Following Algorithm 1, we can obtain the optimal second-stage decision g∗(λ, p), and

thus the corresponding cost v(λ, p), for any values of λ and p. In theory, this should enable

us to evaluate the objective function of the first-stage problem given in (3) for different

values of a ≥ 0, providing an estimate for a∗(n). More specifically, let ht(·) and ft(·) be
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the probability density functions (pdfs) of Λt and Qt supported in intervals [0, λu) and

[0, qu), respectively, where λu and qu could be infinitely large. Expanding the first-stage

objective function, we then have

E[v (Λt, n+ min{Qt, a})] =
∫ λu

0

∫ qu

0
v(λ, n+ min{q, a})ft(q)ht(λ)dq dλ. (7)

Evaluating Equation (7) for a given a would require calculating a double integral over

(potentially) infinite intervals. This calculation would require evaluating the integrand for

many pairs of (λ, q), which requires evaluating two pdf functions and the optimal second-

stage cost v(λ, n + min{q, a}), which in turn requires evaluating g∗(λ, n + min{q, a}).

The computation time would therefore be significant, making this approach impractical.

Instead, we consider the structural properties of the objective function as elaborated

in the e-companion. In short, let us denote by ψn(a) the derivative of the objective

function of the first-stage problem conditioned on Qt = q, q > a with respect to a, i.e.,

∂E[v (Λt, n+ a)]/∂a. Following integral differentiation rules, we then have

ψn(a) = 1 + roco + cw(1 + ro)
∫ λ̃(n+a)

0

∂l(λ, s)
∂s

∣∣∣
s=(n+a)(1+ro)

ht(λ)dλ

− ct(1 + ro)
(
1−Ht

(
λ̃(n+ a)

))
, (8)

where Ht(·) is the cumulative distribution function of Λt. We now propose

Proposition 2. For the first-stage problem given in (3),

a∗(n) =


0.0 if ψn(0) ≥ 0.0,

min{ã(n), qu}, otherwise,
(9)

where ã(n) is the unique root of function ψn(a) in the interval (0,∞).

Proposition 2 leads to two important corollaries:

Corollary 2. a∗(0.0) > 0.0.

Corollary 3. a∗(n) is independent of ft as long as its support remains the same. Further,

when qu →∞, a∗(n) will be a hire-up-to policy evaluated as a∗(n) = (ã(0.0)− n)+.

Corollary 2 implies that it is never cost-effective to serve patients with only temporary

HCWs. The first part of Corollary 3 is due to the implicit assumption that ft is inde-

pendent of the value of a, i.e., advertising a larger or smaller number of positions does
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not change the number of applications. Under this assumption, it is intuitive that the

provider must always advertise for as many permanent positions as required (depending

on the cost parameters and the distribution of Λt) regardless of the potential number of

applications. Knowing that, for example, more or fewer applications are likely to arrive

in a permanent recruitment period should not influence this decision. The second part of

Corollary 3 implies that, when qu → ∞, evaluating ã(0.0) is sufficient for characterizing

a∗(n) for any value of n.

Algorithm 2 in the e-companion outlines the steps for obtaining a∗(n) based on Propo-

sition 2. The algorithm needs to evaluate ã(n) as the unique root of function ψn(a) in

the interval (0,∞). As shown in the e-companion, ψn(a) is a continuous and strictly

increasing function in a with a negative value at a = 0 and a positive value when a→∞.

The root of this function can therefore be obtained by Brent’s method given a value

au > 0 such that ψn(au) > 0. Note that each step of Brent’s method would also require

to evaluate ψn(a) for different values of a, which in turn requires evaluating of λ̃(n+ a)

using the function provided in Algorithm 1.

It is important that Algorithm 2 provides an accurate estimate for the optimal first-

stage decision by using function ψn(a), which involves only single integrals over finite

intervals, and does not require evaluating the optimal second-stage decision and its cost.

The computations are fast as a result, leading to the optimal decision in less than a

second in all the numerical experiments we conducted. It is also noteworthy that the

methodology proposed for evaluating a∗(n) lends itself to further analytical investigation,

leading to results such as the monotonicity properties given in the corollaries 4 and 5

below.

Corollary 4. a∗(n) increases with ct and cw, and decreases with co and n.

Corollary 5. m(n) increases with ct, cw, and co.

4. Special Cases

In this section, we consider three queueing models for the system serving patients’

requests, and show that the corresponding system-size functions meet the properties in

Assumption 1, and so can be applied with Propositions 1 and 2. We also explain the

benefits of using each of the three queueing models, and provide further analytical results

for two of them.
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In the first model, the system is represented by an M/M/1 queue — with Exponen-

tial independent and identically distributed (i. i. d.) inter-arrival times and services times

that are independent, and a single server — whose service rate is inflated by the number

of servers. This is a common approximation in queueing optimization models; see, e.g.,

Mandelbaum & Reiman (1998) and Anily & Haviv (2010). The single-server approxi-

mation model behaves exactly as the original multi-server system when the number of

customers in the system is equal to or larger than the number of servers. When this is not

the case, the single-server approximation overestimates the system performance because it

consolidates all service capacity into one server. This is less likely to happen when traffic

intensity, i.e., the ratio of the arrival rate to service rate, is high. The advantage of this

approximation is that it leads to explicit equations for congestion measures that can be

applied with non-integral server numbers. In particular, for the M/M/1 approximation

model,

l(λ, s) = λ

(s− λ) , (10)

with λ > 0 and s ∈ R+ with s > λ. All properties of Assumption 1 are easily verified for

this model. We then have the following proposition.

Proposition 3. For the special case of M/M/1 approximation,

λ̃(p) = p(1 + ro) + cw −
√

4ctcwp(1 + ro) + c2
w

2ct
, (11)

g̃(λ, p) = λ+
√
cwλ

ct
− p(1 + ro), (12)

and

v(λ, p) =


p(1 + roco) + λcw

p(1 + ro)− λ
if λ ≤ λ̃(p) ,

(−ct(1 + ro) + 1 + roco) p+ ctλ+ 2
√
ctcwλ if λ > λ̃(p).

(13)

Equation (12) implies that the number of temporary workers when λ > λ̃(p) is ob-

tained from an expression analogous to the square-root staffing law (see, e.g., Halfin &

Whitt, 1981), according to which the staffing requirement is equal to the offered load (λ in

our setting) plus a service quality coefficient multiplied by the square-root of the offered

load. The service-quality coefficient appears as
√
cw/ct in our formula. An adjustment is

also made to account for the number of permanent workers. The expression given in (12)

replaces the numerical procedure for obtaining g̃(λ, p) in Algorithm 1, and the expression

given in (11) replaces the function provided in Algorithm 1 for evaluating λ̃(p).

For the second model, we assume that the dynamics of service delivery are captured
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by an inflated M/G/1 queue, with G representing a general distribution for service times.

The system-size function in this setting is

l(λ, s) = 1 + τ2

2
λ2

s(s− λ) + λ

s
, (14)

where τ is the coefficient of variation (CV), i.e., the ratio of standard deviation to mean, of

the service time distribution (Gross et al., 2008). We then have the following proposition

for M/G/1 queues.

Proposition 4. The system-size function l(λ, s) given in Equation (14) meets the prop-

erties given in Assumption 1.

We prove an important result for M/G/1 queues in the following corollary. It implies

that, for a given n, a higher variability in service time distribution is compensated with

a larger number of permanent positions advertised. Similarly, for given λ and p, a higher

variability in service time results in a larger number of temporary HCWs. The first- and

second-stage optimal cost functions also increase with τ .

Corollary 6. In M/G/1 queues, g∗(λ, p) and its corresponding cost function, i.e., v(λ, p),

as well as a∗(n) and its corresponding cost function, i.e., m(n), all increase with τ .

The third model that we consider is an M/M/s queueing model. The mean number

of requests in this system is evaluated as

l(λ, s) = λC(λ, s)
s− λ

+ λ, (15)

where C(λ, s) is a continuous extension of the Erlang delay function such as

C(λ, s) =
(∫ ∞

0
λe−λx(1 + x)s−1xdx

)−1
, (16)

for each λ > 0 and s ∈ R+ with s > λ as defined by Jagers & van Doorn (1991). For this

system, we propose

Proposition 5. The system-size function l(λ, s) given in Equation (15) meets the prop-

erties given in Assumption 1.

The M/M/1 queue is useful for obtaining rough estimates of optimal decisions with

minimum computational effort. The M/G/1 queue captures the impact of service time

variability, while the M/M/s queue represents the impact of system scale accurately.
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More computational effort is needed for the last two models, however, as closed-form

expressions for λ̃(p) and g̃(λ, p) cannot be provided due to the complexity of the derivatives

of corresponding system-size functions.

5. Savings Evaluation

In this section, we assess the savings obtained from our model when compared to a

single-stage model with no temporary recruitment and a two-stage model in which the

uncertainty in demand rate is ignored. In our experiments, we assume that Λt follows a

Gamma distribution with mean ξ and CV κ. This assumption is motivated by the study

of Jongbloed & Koole (2001), and is verified empirically in our case study in §7. For

Qt, Pinker & Tilson (2013) propose a Poisson distribution. Since we need a continuous

distribution, however, we use a Log-Normal distribution with mean µr and CV κr instead.

5.1. Comparison with a Single-Stage Model with No Temporary Recruitment

Consider a single-stage model in which the provider has to decide the number of

permanent positions to advertise at time t knowing that there is no opportunity for

temporary recruitment. This is formulated as

msingle(n) = min
a

{
E [(n+ min{Qt, a})(1 + roco)+

l(Λt, (n+ min{Qt, a})(1 + ro))cw | S] :

P(S) ≥ γ; a ∈ R+
}
, (17)

where S is the event of the system being stable, and γ is the minimum probability of

this event as set by the decision maker. In (17), we condition the expected value in the

objective function on S and add the corresponding constraint to the optimization model

as in the single-stage decision making with uncertain demand rate, there is a likelihood

that the system becomes unstable for any value of a (unless ht has a bounded support).

The stability condition is represented mathematically as Λt < (n + min{Qt, a})(1 + ro),

and its probability can be evaluated for any given a by the law of total probability.

We evaluate the savings obtained from our two-stage model as compared to the single-

stage model with no temporary recruitment. In particular, we investigate the impact on

savings of demand rate uncertainty, as measured by its CV κ, for three different scale sce-

narios, ξ = 10.0, ξ = 50.0, and ξ = 100.0, using an M/M/s queue. We use the same queue

to also investigate the impact of ct, cw, co, ro, and n on savings. We set µr = 10ξ and

κr = 0.5 in our experiments to minimize the impact on savings of recruitment restrictions
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as these will be investigated separately. For each set of parameters, we evaluate the opti-

mal cost of the two-stage model by inserting the optimal first-stage decision returned by

Algorithm 2 in the objective function of the first-stage problem given in (7). The optimal

solution to (17) is estimated by complete enumeration over values of a ∈ [0.0, 0.1, . . . , 5ξ].

The results are plotted in Figure 2 for γ = 0.95.
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Figure 2: The savings of our model as compared to the single-stage model using an M/M/s queue. The
parameters not given in the plots are ξ = 10.0, ct = 1.5, cw = 0.5, co = 1.2, ro = 0.1, n = 0, µr = 10ξ,
and κr = 0.5.

The plots in panel (a) of Figure 2 suggest that savings from our model typically

increase with the system scale and the level of uncertainty in demand rate, exceeding

10.0% for κ ≥ 0.3 and ξ ≥ 10. They also indicate that savings of at least 3.9% are likely

to be gained with all three scale scenarios even when demand rate uncertainty is very

low, i.e., κ ≈ 0.1. This is a substantial amount of saving given the high share of staffing

cost in healthcare expenditure (see, e.g., The Kings Fund, 2021). Panel (b) suggests that

savings reduce with the cost rate of temporary HCWs, becoming negative for ct ≥ 4.5 and

ct ≥ 5.0 with κ = 0.4 and κ = 0.6, respectively. This implies that the single-stage model

may result in a lower cost than the two-stage model when ct is extremely high (bear in

mind that there always exists a risk of the system becoming unstable with the single-

stage model.) Panel (c) implies that savings typically decrease, but remain positive, as

cw increases. Panels (d) and (e) show mildly increasing trends for savings with respect

to co and ro, respectively. Panel (f) suggests that savings are initially stable with respect
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to n, but then decrease as n goes beyond a threshold. The plots in panels (b) to (f) are

obtained with ξ = 10.0, but we observed similar trends for ξ = 50.0 and ξ = 100.0.

We perform another set of experiments with anM/G/1 queue to investigate the impact

of service time variability, as measured by its CV τ , as well as recruitment parameters,

µr and κr. The results are presented in Figure 3 for ξ = 10. Panel (a) of this figure shows

that savings vary from 2.8% for κ = 0.2 and τ = 5.0 to 39.4% for κ = 0.6 and τ = 0.0.

Panels (b) and (c) suggest that savings are almost insensitive to µr and κr. This is mainly

because, in order to meet the stability constraint with reasonably small values of a, we

must have µr ≥ 20 for the set of parameters considered. As the starting value for µr is

already large, savings do not change as µr or κr increase.
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Figure 3: The savings of our model as compared to the single-stage model using an M/G/1 queue. The
parameters are ξ = 10.0, ct = 1.5, cw = 0.5, co = 1.2, ro = 0.1, n = 0, and (a) µr = 10ξ, κr = 0.5, (b)
τ = 1.0, κr = 0.5, and (c) τ = 1.0 and µr = 20.0.

5.2. Comparison with a Two-Stage Model with No Demand Rate Uncertainty

We consider a two-stage optimization framework similar to §3, but assume that the

decision maker ignores the demand rate uncertainty at time t, and works with the expected

demand rate, denoted by ξ. The first-stage problem then simplifies to

m(n) = min
a
{E[v (ξ, n+ min{Qt, a})] : a ∈ R+}, (18)

and its solution is obtained through the following proposition.

Proposition 6. The optimal solution to the first-stage problem with no demand rate

uncertainty as given in (18) is obtained from Proposition 2 with ψn(a) simplified as

ψn(a) = 1 + roco +


−ct(1 + ro), λ̃(a+ n) < ξ,

cw(1 + ro)
∂l(ξ, s)
∂s

∣∣
s=(n+a)(1+ro), λ̃(a+ n) ≥ ξ.

(19)
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In addition, when the service delivery is represented by an M/M/1 queue, we have

ã(n) =

√
ξcw(1 + ro)

1 + roco
+ ξ

1 + ro
− n. (20)

We evaluate the savings obtained from our model as compared to the model with no

demand rate uncertainty. In particular, we investigate the impact on savings of κ for three

different values of ξ using an M/M/s queue. We use the same queue to also investigate

the impact of ct, cw, co, ro, and n on savings. For the same reason as in §5.1, we set

µr = 10ξ and κr = 0.5. For the model with demand rate uncertainty, the cost is evaluated

as explained in §5.1. For the model with no demand rate uncertainty, the optimal cost is

evaluated by inserting the optimal a produced by Proposition 6 in the objective function

of the first-stage problem given in (7). The results are plotted in Figure 4.
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Figure 4: The savings of our model as compared to the model with no demand rate uncertainty using an
M/M/s queue. The parameters not given in the plots are ξ = 10.0, ct = 1.5, cw = 0.5, co = 1.2, ro = 0.1,
n = 0, µr = 10ξ, and κr = 0.5.

Panel (a) of Figure 4 suggests that savings will be small when demand rate uncer-

tainty is low and system scale is small. As the scale and/or demand rate uncertainty grow,

however, the savings are likely to increase, exceeding 2.5% for a moderate demand rate

uncertainty, i.e., κ ≈ 0.5, and a medium system, i.e., ξ ≈ 50.0. Panel (b) of Figure 4 sug-

gests that savings show a non-monotone behaviour with respect to ct, initially decreasing
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but then increasing. Panel (c) illustrates a decreasing trend for savings with respect to

cw. Panels (d) and (e) suggest slowly increasing trends for co and ro, respectively. Panel

(f) implies that savings reduce with n, becoming 0.0 for n ≥ 11.0. The plots in panels

(b) to (f) are obtained with ξ = 10.0, but we observed similar trends for ξ = 50.0 and

ξ = 100.0.

We perform another set of experiments with an M/G/1 queue to investigate the

impact of τ , µr and κr. The results are presented in Figure 5 for ξ = 10.0. Panel (a) of

this figure shows that savings decrease with τ , while panel (b) suggests that they increase

with µr up to a threshold, then stabilize. Panel (c) shows a mild decreasing trend for κr.
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Figure 5: The savings of our model as compared to the model with no demand rate uncertainty using
an M/G/1 queue. The parameters are ξ = 10.0, ct = 1.5, cw = 0.5, co = 1.2, ro = 0.1, n = 0, and (a)
µr = 10ξ, κr = 0.5, (b) τ = 1.0, κr = 0.5, and (c) τ = 1.0 and µr = 10.0.

Overall, when demand rate uncertainty is moderate to high, our two-stage approach

is likely to be beneficial. When demand rate uncertainty is low, on the other hand, the

simplified version of our two-stage approach which uses only the average demand rate

(as illustrated in Proposition 6) would suffice. Furthermore, except in situations where

ct is extremely high, temporary recruitment is likely to provide value, even if demand

rate uncertainty is very low. This value is likely to increase with the system scale, but

decrease with cw.

6. Delaying Advertisement

In §3, we assumed that advertisement for permanent HCWs must occur at time t due to

external factors. In this section, we consider the possibility of delaying the advertisement

beyond t. This is because one would expect that, as advertisement is delayed, there will

be a lower level of uncertainty for demand rate. The risk, however, is that with a shorter

window for advertising, a smaller number of qualified applications may be received. We

investigate this trade-off. We note that this is an important investigation, which to the
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best of our knowledge, has not been covered in the literature.

We consider the reduction in the number of applications and the reduction in demand

rate uncertainty by assuming that, for t ≤ t′ < te, Qt′ ≤st Qt and Λt′ ≤cx Λt, respectively,

where X ≤st Y denotes that X is smaller than Y in the usual stochastic order, and

X ≤cx Y denotes that X is smaller than Y in the convex order (see, e.g., Shaked &

Shanthikumar, 2007). To avoid unnecessary complication, we further assume that the

pdfs of Qt′ and Λt′ have the same support as those of Qt and Λt, respectively. Roughly,

Qt′ ≤st Qt states that Qt is more likely to take on large values than Qt′ , whereas Λt′ ≤cx Λt
implies that Λt is more likely to take on extreme values than Λt′ . Λt′ ≤cx Λt also implies

that E[Λt] = E[Λt′ ] = ξ, which is consistent with §3. In order to show the dependence of

the optimal first-stage decision and its cost on Qt and Λt, we expand the corresponding

notations defined in §3 to a∗(n,Qt,Λt) and m(n,Qt,Λt), respectively. We first analyze

the impact of reduction in application numbers and demand rate uncertainty separately.

From corollary 3, we know that the optimal first-stage decision is not affected by the

distribution of Qt, i.e., a∗(n,Qt,Λt) = a∗(n,Qt′ ,Λt). The optimal cost, however, decreases

as a result of Qt increasing in the usual stochastic order by the following proposition.

Proposition 7. Suppose Qt′ ≤st Qt, then m(n,Qt,Λt) ≤ m(n,Qt′ ,Λt).

The impact of Λt is more complex. When λu is finite, the following propositions set

out the conditions under which the optimal first-stage decision and the corresponding

cost show a monotone behaviour as Λt increases in the convex order.

Proposition 8. Suppose Λt′ ≤cx Λt. Then a∗(n,Qt,Λt′) ≤ a∗(n,Qt,Λt) if

(a) λu ≤ λ̃(n), and

(b) ∂3l(λ, s)
∂s∂λ2 ≤ 0.

Proposition 9. Suppose Λt′ ≤cx Λt. Then m(n,Qt,Λt′) ≤ m(n,Qt,Λt) if

(a) λu ≤ λ̃(n), and

(b) ∂2l(λ, s)
∂λ2 ≥ 0.

Condition (b) of Propositions 8 and 9 can be verified for M/M/1 and M/G/1 queues

analytically. Our numerical investigations also suggest that they hold for M/M/s queues.

Condition (a) is more restrictive as it imposes a relatively short interval for the support

of ht. For the special case of M/M/1 queues, for example, Equation (11) indicates that

λu should be less than 4.45 for condition (a) to apply when n = 5.0, ct = 2.0, cw = 0.5
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and ro = 0.1. For smaller values of n or ct, the upper bound λu would have to be even

smaller.

For the general situation in which the support of ht is unbounded, it is difficult to

derive analytical results, hence, we resort to numerical experimentation. For this, we

assume Λt follows a Gamma distribution with mean ξ and CV κ. Assuming an M/G/1

queue, we then obtain the optimal first-stage decision and the corresponding cost for

increasing values of κ ∈ [0.1, 3.0], while keeping ξ constant to ensure that Λt increases in

the convex order (Belzunce et al., 2016). Figure 6 summarizes the results, and depicts a

non-monotonic behaviour for the optimal first-stage decision (panels (a) to (c))) and its

cost (panels (d) to (f)).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
κ

0
2
4
6
8

10
12
14
16

m
(n
)

ct=1.25
ct=2.0
ct=3.0

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
κ

2
4
6
8

10
12
14
16
18

a
* (
n)

cw=1.0
cw=3.0
cw=6.0

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
κ

3

6

9

12

15

18

21

24

27

a
* (
n)

τ=1.0
τ=2.5
τ=5.0

(c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
κ

15

20

25

30

35

40

m
(n
)

ct=1.25
ct=2.0
ct=3.0

(d)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
κ

15

20

25

30

35

40

45

m
(n
)

cw=1.0
cw=3.0
cw=6.0

(e)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
κ

20

25

30

35

40

45

50

55

60

m
(n
)

τ=1.0
τ=2.5
τ=5.0

(f)

Figure 6: Optimal number of permanent positions (top panel) and the corresponding cost (bottom panel)
as a function of demand rate uncertainty. The parameters not given in the plots are ct = 3.0, cw = 3.0,
co = 1.2, ro = 0.1, n = 0.0, τ = 1.0, and ξ = 10.0. For cost evaluations, Qt is assumed to follow a
LogNormal distribution with µr = 15.0 and κr = 0.3.

More specifically, the plots at the top of Figure 6 illustrate that there exists a threshold

for κ, above (below) which a∗(n) shows a decreasing (increasing) trend as Λt increases in

the convex order. This highlights the different impact of demand rate uncertainty to that

of service time variability. In particular, we proved in Corollary 6 that the optimal first-

and second-stage decisions increase with service time variability. The results presented

here imply that as the uncertainty in the demand rate increases up to a certain threshold,

it is worth to invest in a larger number of permanent positions. Beyond this threshold,

however, it is better to advertise a smaller number of permanent positions (and wait for
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accurate information on demand rate) so as to avoid over-staffing. The plots also show

that the value of κ threshold increases with ct, but is insensitive to cw and τ . Similarly,

the plots in the bottom panels of Figure 6 suggest that there exists a threshold for κ,

above (below) which the optimal cost function, m(n), shows a decreasing (increasing)

trend as Λt increases in the convex order. This also contradicts the impact of service time

variability as proved in Corollary 6. We further observe in Figure 6 that the κ threshold

for m(n) (above which the decreasing trend occurs) increases with ct, decreases slightly

with cw and τ , and is significantly larger than the κ threshold for a∗(n).

The implication of these results is that, when the conditions of Proposition 9 are

met, the savings obtained from the reduction in demand rate uncertainty may be greater

than the increase due to fewer applications, thus making a delay in advertising beneficial.

When the conditions of Proposition 9 are not met, the situation is more intricate because

a reduction in demand rate uncertainty may in fact increase cost, especially if this uncer-

tainty is already high and the cost rate of temporary workers is small relative to the cost

rate of waiting. To gain further insight into this situation, we plot the optimal first-stage

cost as a function of κ for different levels of µr in Figure 7, assuming an M/G/1 queue.

In panel (b) of this figure, cw and τ are deliberately set to large values to highlight the

decreasing trend of cost.
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Figure 7: Optimal cost as a function of κ for different values of µr. The other parameters are ξ = 10.0,
ct = 2.0, co = 1.2, ro = 0.1, n = 0, and κr = 0.3.

Figure 7 shows that for large values of κ, the impact on cost of µr becomes negligible.

This is because, when κ is large, the optimal number of permanent positions will be small

(as illustrated in Figure 6), which implies that the number of qualified applications will

be less relevant. We further observe in Figure 7 that a delayed advertisement is more

likely to be beneficial when the current κ falls on the increasing side of the cost curve
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than when it is on the decreasing side. For example, assume µr = 15.0 for the current

advertisement epoch. Panel (a) in Figure 7 shows that, if κ = 1.0, a delayed advertisement

leading to a 13% reduction in the mean number of applications and a 50% reduction in

demand rate uncertainty would be beneficial (see points A and A’ corresponding to the

current and delayed advertisement). Yet, if κ = 2.5, a delayed advertisement with a 13%

reduction in mean application numbers would lead to a higher cost, even if the demand

rate uncertainty became zero (see points B and B’). In fact, when the current κ falls on

the decreasing side of the cost curve, advertising earlier, if feasible, is more likely to be

beneficial than later.

The above observations highlight that delaying advertisement beyond t is less likely

to be beneficial when demand rate uncertainty is already high and the cost of tempo-

rary recruitment is small relative to the cost of patients waiting. It also implies that

if the optimal cost with reduced application numbers and no demand rate uncertainty,

i.e., m(n,Qt′ , ξ), is larger than the current cost, i.e., m(n,Qt,∆t), there is no benefit

from delaying advertisement (Proposition 6 helps in evaluating m(n,Qt′ , ξ) by finding the

corresponding optimal first-stage decision.) Otherwise, a more detailed investigation is

needed, as illustrated in the following case study.

7. Case Study

We consider the geriatric department of an NHS hospital. The department has a total

of B = 80 beds and faces significant uncertainty in its winter demand. As an illustration,

Figure 8 depicts the empirical CV as well as the theoretical CV under the Poisson as-

sumption for daily arrivals using the department’s admission data during December and

January over the three-year period 2015-2018. The plots indicate a larger variability than

expected for a standard Poisson process, hence justifying our use of Poisson mixture mod-

els. The department needs to decide how many permanent nursing vacancies to create

and advertise for the winter period. Advertising for permanent nurses typically occurs

around May/June. Our aim in this section is to illustrate how our framework can be used

to guide decision making for nurse recruitment in the department.

We assume that patients arrive to the department according to a Poisson process with

a rate whose value is unknown to the decision maker during the permanent recruitment

period. This is similar to the assumption made in Hu et al. (2022) for arrivals to the

emergency department. Upon arrival, a patient is admitted to the ward if a bed and a

nurse are available. If all beds are taken, the patient joins a queue for beds. If a bed is

available but all nurses are busy, an admission request joins a queue for nurses, delaying
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Figure 8: Empirical CV and theoretical CV under Poisson assumption for daily admissions in (a)
December and (b) January.

the admission until a nurse becomes available. The delay in admission to an inpatient

department due to unavailability of a nurse is an important factor contributing to the

so-called “trolley wait” in emergency departments (Abo-Hamad & Arisha, 2013). Whilst

in beds, patients generate regular requests for nurses until the end of their length of stay,

at which point a discharge request is submitted. The nurse requests are served in the

order of regular, discharge, and new admissions by the nursing team. At the end of the

discharge process, the patient is discharged from the ward and the bed is cleaned and

prepared for the next patient. This workflow implies a nursing queueing system working

in conjunction with a bed queueing system.

In §7.1, we show how a simulation model capturing the interactions between the bed

and nursing queueing systems can be embedded in our two-stage framework to guide

recruitment decision making. We refer to this model as the multi-resource multi-server

(MRMS) model. In section §7.2, we show how a single-resource single-server (SRSS) and a

single-resource multi-server (SRMS) approximation, developed based on our analytical re-

sults, could speed up the calculations, and compare their accuracies to the MRMS model.

In §7.3, we use the SRMS approximation to shed some light on the benefit/loss of delay-

ing advertisement by investigating the trade-off of a more accurate demand information

versus the higher risk of not filling permanent positions.

7.1. The MRMS Model

We first develop a detailed discrete-event simulation model which includes all dynamics

of bed and nursing queueing systems. Following Yankovic & Green (2011), the model

considers two types of resources, beds and nurses, each of which has its own separate
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queue. We use the superscripts (b) and (n) to represent the association of a parameter to

the bed and nursing queueing system, respectively. Let λ(b) be the rate of patient arrival

during winter, and denote by Λ(b)
t the corresponding random variable as predicted at time

t when advertisement occurs. As Yankovic & Green (2011), we assume: (i) lengths of

stay in the department are i. i. d. as an Exponential distribution with mean 1/µ(b); (ii)

each patient generates regular requests, independently of other patients, during her stay

according to a Poisson process with a known rate λ(n); and (iii) admission, regular, and

discharge processing times as well as cleaning times are i. i. d. with known distributions.

Given patient arrival rate, λ(b), and number of nurses, s, the simulation estimates the

mean number of requests in the nursing system, l(n)(λ(b), s).

Next, we adapt the two-stage framework by modifying the first- and second-stage

formulations as

msim(n) = min
a

{
E
[
vsim

(
Λ(b)
t , n+ min{Qt, a}

)]
: a = 0, · · · , amax

}
, (21)

and

vsim(λ, p) = min
g

{
p(1 + roco) + gct + l(n)

(
λ(b), p(1 + ro) + g

)
cw :

g = dλ− p(1 + ro)e, · · · , gmax} , (22)

respectively, where dxe is the ceiling function of x, and amax and gmax are the respective

upper bounds for a and g. The optimal solution to (21) is denoted by a∗sim(n) and is

obtained by complete enumeration.

The parameters of the model are estimated as follows. For Λ(b)
t , we test the null hy-

pothesis of a Gamma distribution with shape and scale parameters η and ν, respectively,

as per Jongbloed & Koole (2001). This hypothesis implies a Negative Binomial distri-

bution for arrival counts with η experiments and success probability 1/(1 + ν). Using

the daily arrival counts of December over the three year period (i.e., 93 observations),

we estimate η̂ = 2.92 and ν̂ = 3.52 via maximum likelihood. Applying a Kolmogorov-

Smirnov goodness-of-fit test and bootstrapping (Jongbloed & Koole, 2001), a p-value

of 0.395 is obtained, indicating that the Gamma-distribution hypothesis for arrival rate

cannot be rejected. As such, we assume Λ(b)
t follows a Gamma distribution with mean

ξ(b) = η̂ν̂ = 10.3 patients per day and CV κ(b) = 1√
η̂

= 0.58. Based on our findings from

§5.2, the moderate value obtained for κ(b) indicates that there is value in incorporating

25



the demand rate distribution into the two-stage decision making process.

Our data gives a mean length of stay of 1/µ(b) = 6.48 days for geriatric patients. This

implies a traffic intensity of ξ(b)/(Bµ(b))×100 = 83.4% for the bed queueing system. The

processing times for regular requests are assumed to follow an exponential distribution

with rate µ(n) = 4 per hour, based on estimates provided in Lundgren & Segesten (2001)

and Dochterman & Bulechek (2004). Following Yankovic & Green (2011), we assume

that the admission and discharge processing times are uniformly distributed over intervals

[12, 60] and [10, 60] min, respectively, and the time to clean a room after the discharge of

a patient is 30 min. These timings were confirmed by the ward’s nursing team.

For λ(n), Lundgren & Segesten (2001) suggest 0.38 requests per hour, but we consider

λ(n) ∈ {0.4, 0.5} to cover situations with older and relatively more demanding patients.

Following Pinker & Tilson (2013), we assume that Qt follows a Poisson distribution with

mean µr. According to the hospital’s human resource department, a maximum of 20

qualified applications is likely to arrive over a six-month recruitment period starting from

May/June. As such, we consider µr ∈ {10.0, 12.0} so that the probability of receiving more

than 20 applications is small. For the remaining parameters, we consider κ(b) ∈ {0.58, 1.0},

ct ∈ {2, 3}, cw ∈ {1.5, 3.0}, co ∈ {1.5, 1.7}, n ∈ {0, 1}, and ro ∈ {0.05, 0.1}. The values

considered for κ(b) capture the current level of uncertainty in patient arrival data as well

as a situation with a more uncertain arrival rate. The values for ro and ct are consistent

with the estimates provided in Lu & Lu (2017), and the values of cw follow Hu et al.

(2022). The values for co capture the current overtime payment in the NHS as well as

payments in more expensive private providers. The combinations of these parameters

result in 256 scenarios.

For each of the 256 scenarios, we obtain a∗sim(n) and msim(n) via complete enumera-

tion with amax = gmax = 21, and l(n)(λ(b), s) estimated by running 50 replications of the

simulation model each over 30 days. The values of amax and gmax are set based on the

maximum value that Qt may take plus n. The computations are carried out in parallel

on a high performance computing system, taking around 3 hours to complete for each

scenario. As an example, Figure 9 illustrates the first-stage cost as a function of a for two

specific scenarios. The plot in the left panel of this figure implies that a∗sim(n) = 4, and

that underestimating the optimal a may not increase cost substantially, while overesti-

mating it may increase cost by as much as 61.22%. By contrast, the plot in the right panel

implies that a∗sim(n) = 9, and that overestimating the optimal a may not significantly

increase cost, while underestimating it may increase cost by as much as 40.66%. Overall,
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the results indicate that a∗sim(n) varies between 3 and 9 in the scenarios we considered,

and that the difference between optimal and highest first-stage costs (over the range con-

sidered for a) exceeds 30.0% in 163 scenarios, and reaches a maximum of 67.0%. These

observations highlight the importance of finding the optimal first-stage decision.
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Figure 9: First-stage cost as a function of a for the scenario with (a) ct = 2.0, cw = 1.5, co = 1.5, n =
1.0, ro = 0.1, µr = 12.0, λ(n) = 0.4, and κ(b) = 1.0, and (b) ct = 3.0, cw = 3.0, co = 1.5, n = 0.0, ro =
0.05, µr = 10, λ(n) = 0.5, and κ(b) = 0.58.

Since there is no explicit form for the system-size function, l(n)(λ(b), s), it would be

difficult to check if it follows the properties in Assumption 1. However, we can confirm

from the results that a∗sim(n) obtained from complete enumeration and its corresponding

cost msim(n) satisfy the properties proved in §3. In particular, we observe that a∗sim(n)

does not change with µr, as proved in Corollary 3, and that it shows an increasing

(decreasing) trend with respect to ct and cw (co and n), as proved in Corollary 4. We also

observe that msim(n) increases with ct, cw and co, as proved in Corollary 5.

7.2. The SRMS and SRSS Approximations

The MRMS model is complex to code and time-consuming to run. To speed up the

coding and calculations, we propose SRSS and SRMS approximations by assuming that

the dynamics of service delivery in the department are represented by an M/M/1 queue

and an M/M/s queue, respectively. Focusing on the nursing queueing system, these

approximations do not capture the dynamics of the bed system explicitly. In addition,

the SRSS approximation estimates the performance of the multi-server nursing queueing

system by an inflated single-server queue. For both approximations, we estimate the

demand rate as

λ = (λ(n) + 2µ(b))
(
λ(b)/µ(b)

)
,
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where the first term is the overall mean number of requests generated by a single patient

per unit of time and the second term is the the average number of patients in the bed

system. From this, we obtain Λt = (λ(n) + 2µ(b))
(
Λ(b)
t /µ(b)

)
, hence, Λt follows a Gamma

distribution with mean ξ = (λ(n) + 2µ(b))ξ(b)/µ(b) and CV κ = κ(b). As an illustration,

note that with ξ(b) = 10.3 patients per day, λ(n) = 0.5 requests per hour, and µ(b) =

1/6.48 patients per day, we obtain an average arrival rate of 821.528 requests per day,

or equivalently an average offered load of 8.55 (recall that µ(n) = 4 per hour), which

is relatively small. For example, the average offered load observed in the emergency

department considered in Hu et al. (2022) exceeds 59.0. This highlights the importance

of using an exact approach instead of large-scale asymptotic approximations for inpatient

settings.

We use Algorithm 2 to determine a∗(n) for all the 256 scenarios of §7.1 with both

SRSS and SRMS approximations. We then run the simulation model developed in §7.1

with da∗(n)e to obtain the corresponding cost. Our results indicate that da∗(n)e obtained

from the SRSS approximation is equal to a∗sim(n) in 108 out of 256 scenarios. This figure

increases slightly to 112 for the SRMS approximation. The average percentage difference

in cost for the SRSS and SRMS approximations, when compared to the MRMS model,

are relatively close at about 0.97%. We repeat our experiments with ξ(b) equal to 8.64,

7.41, and 6.17 patients per day, which yield traffic intensities of 70.0%, 60.0%, and 50.0%

for the bed queueing system, to assess the SRMS and SRSS approximations in less con-

gested departments. The number of matching scenarios and average difference in cost

as compared to the MRMS model are presented in Table 1 for these traffic intensities

including the original 80.0%. We observe that for both SRSS and SRMS approximations,

the accuracy typically reduces as traffic intensity decreases. The only exception occurs

at 70.0% traffic intensity, where the number of matching scenarios of SRMS approxima-

tion remains the same as that of 80.0% and the corresponding average difference in cost

reduces. We also observe in Table 1 that SRMS is more accurate than SRSS, especially

at lower values of traffic intensity. Overall, both SRSS and SRMS approximations are

reasonably accurate as long as the traffic intensity is not too low.
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Table 1: Summary of the comparison between MRMS model with SRSS and SRMS approximation models.

Traffic intensity
(%)

SRSS SRMS
Average difference

in cost (%)
# of scenarios with

matching a∗
Average difference

in cost (%)
# of scenarios with

matching a∗

83 0.97 108 0.97 112
70 1.33 80 0.8 112
60 1.92 32 0.95 72
50 2.47 28 1.083 64

7.3. Delaying Advertisement

As discussed in §7.3, delaying the advertisement may reduce the variability in demand

rate at the expense of a reduction in the number of qualified applications. We also

observed that delaying advertisement is less likely to be beneficial when demand rate

uncertainty is already high (κ > 1.0) and the cost of temporary recruitment is small

relative to the cost of patients waiting. To further investigate this, we numerically evaluate

the amount of reduction needed in demand rate uncertainty to make the cost of a later

advertisement equal to the current cost as a function of the reduction in the mean number

of qualified applications. Given the accuracy of the SRMS approximation illustrated in

§7.2, it is used in the analysis that follows.

We consider the scenario with λ(n) = 0.4, µr = 10.0, ct = 2.0, cw = 3.0, co = 1.5, n =

0.0, and ro = 0.05, as the benchmark scenario and evaluate its cost using the SRMS

approximation. We then reduce µr in steps of 5.0%, and evaluate the minimum reduction

in κ that makes the system cost equal to the cost of the benchmark scenario for the

resulting µr value. The calculation stops when, for a given percentage reduction in µr,

the cost with zero demand rate uncertainty falls above the benchmark cost. The results

are presented in Figure 10 for different levels of temporary cost rate, ct, and different

levels of current demand rate uncertainty, κ.
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Figure 10: The reduction required in demand rate uncertainty as a function of reduction in mean
application numbers. For panel (a), κ = 0.58, and for panels (b) and (c), ct = 2.0.
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The plots in panel (a) of Figure 10 show that a larger reduction in demand rate

uncertainty is needed to make a later advertisement beneficial as ct grows. They also

imply that reductions above 30% (25%) in mean application numbers for ct = 2.0 (ct = 3.0

and ct = 4.0) cannot be compensated even if we knew the demand rate. The plots in

panel (b) show that, when the current demand rate uncertainty is less than or equal to

1.5, the reduction required in demand rate uncertainty reduces with κ. This corresponds

to κ falling on the increasing side of the cost curve. In particular, for κ = 1.5, the required

reduction in demand rate uncertainty is relatively small, even when the mean application

number halves. Panel (c), highlights an opposite behaviour when κ is larger than or

equal to 2.0, corresponding to κ falling on the decreasing side of the cost curve. Panels

(b) and (c) imply that the maximum reduction in mean application numbers that can

be compensated by a reduction in demand rate uncertainty increases (decreases) with κ,

when κ is less than or equal to (larger than or equal to) 1.5 (2.0). Overall, Figure 10

provides valuable insights on how and when delaying advertisement may create value to

the provider.

8. Conclusions & Future Research

Given the long lead-time in recruiting permanent workers and the higher cost of tempo-

rary skilled workers, it is essential for healthcare providers to know how many permanent

positions they need to advertise well before a period of highly uncertain demand starts.

By representing the service delivery in such periods as a generic delay queueing model,

we proposed a two-stage stochastic optimization framework to inform recruitment deci-

sion making. The first stage focuses on permanent recruitment and the second stage on

temporary recruitment.

Our framework is based on the assumption that all patient requests must be served.

This makes it suitable for settings such as inpatient or residential care. Our solution

approach is exact and works well irrespective of the system scale. This is an important

feature since, as illustrated in our case study, the systems representing nursing care are

typically small, rendering asymptotic large-scale approximations inaccurate. Another im-

portant feature of our framework is that it accounts for the uncertainty in the permanent

recruitment process. This enabled us to investigate the timing of permanent advertise-

ment, which, to the best of our knowledge, has not been addressed in the literature.

By combining analytical results with numerical experiments, we derived the following

managerial insights. First, temporary staffing alone is never cost-effective. At the same
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time, unless the cost of temporary staffing is extremely high, there is value in recruiting

temporary workers. This value is likely to increase with the system scale and decrease

with the waiting cost. This result complements the findings from Hu et al. (2022) by

showing that temporary staffing is valuable even when demand rate uncertainty is very

low.

Second, when demand rate uncertainty is moderate to high, there is value in obtaining

the demand rate distribution and incorporating it into the recruitment decision making.

Otherwise, using only the average demand rate would suffice. We illustrated how this

average can be applied to estimate the optimal number of permanent positions. Third,

the optimal first- and second-stage decisions and their corresponding costs increase with

service time variability. Fourth, the optimal number of permanent positions and the cor-

responding cost show a non-monotone behaviour with respect to demand rate uncertainty.

In particular, both exhibit a decreasing trend when demand rate uncertainty exceeds a

threshold. This threshold increases with the cost of temporary workers and decreases

with the cost of patients waiting. The main implication is that delaying advertisement is

less likely to be beneficial when demand rate uncertainty is already high and the cost of

temporary recruitment is small relative to the cost of patients waiting.

Using real data, we illustrated how our framework can be applied for recruitment

decision making in inpatient departments. In particular, we showed how a detailed sim-

ulation model of the department can be embedded within our two-stage optimization

framework for estimating the optimal number of permanent nursing positions. This sim-

ulation model captures the complexities of nursing care in inpatient wards, including the

wide range of requests from patients and the availability of beds as the second type of

resource (in addition to nurses). We also highlighted that simple single-resource approx-

imations based on our analytical models provide reliable and sufficiently accurate results

with substantially less effort when traffic intensity is not too low. We further illustrated

how our models can be applied to evaluate the reduction in demand rate uncertainty that

makes a delayed advertisement beneficial as a function of the expected reduction in mean

application numbers.

Our proposed framework can be extended to capture cost functions involving other

performance metrics as long as the specified properties are met. Although we have not

considered time-varying demand, this is a future avenue for research that can benefit

from our formulation and methodology. The long-term commitment of service providers

to permanent workers may also be investigated by considering longer planning horizons.
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E-Companion for: A Framework for Optimal Recruitment of
Temporary and Permanent Healthcare Workers in Highly Uncertain

Environments

A. Proof of Proposition 1

The Lagrangean of the optimization problem in (1) is given by

L(λ, p, β; g) = p(1 + roco) + gct + l(λ, p(1 + ro) + g)cw − βg, (A.1)

where the constraint g > λ − p(1 + ro) is not included as it is always active, and so its

multiplier is equal to zero. By property A(iv), it is easy to verify that the optimization

problem is a convex programming, hence its optimal solution is the value g satisfying the

Kuhn-Tucker conditions

∂L(λ, p, β; g)
∂g

= 0,

β ≥ 0, g ≥ 0, βg = 0.

This leads to the following scenarios:

(i) β = 0: we must have g ≥ 0, g > λ− p(1 + ro), and

∂L(λ, p, β; g)
∂g

= ct + cw
∂l(λ, s)
∂s

∣∣
s=p(1+ro)+g = 0. (A.2)

(ii) β > 0: we must have g = 0, λ < p(1 + ro), and

∂L(λ, p, β; g)
∂g

∣∣
g=0 = ct + cw

∂l(λ, s)
∂s

∣∣
s=p(1+ro) − β = 0,

which gives

β = ct + cw
∂l(λ, s)
∂s

∣∣
s=p(1+ro). (A.3)

These scenarios imply that the optimal solution is g∗(λ, p) = 0 for values of λ and p which

yield a positive value for β given in (A.3) when λ < p(1 + ro). For other values of λ and p,

the value of g satisfying Equation (A.2) will be optimal as long as it is positive and larger
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than λ− p(1 + ro). To specify the optimal solution for different ranges of λ and p, we first

assume that p > 0, and define the function

φp(x) , ct + cw
∂l(x, s)
∂s

∣∣
s=p(1+ro), (A.4)

for x ∈ (0, p(1 + ro)). We show that φp(x) has a unique root in the interval (0, p(1 + ro)):

(i) by properties A(i) and A(v), ∂l(x, s)
∂s

is continuous and strictly decreasing in x; (ii)

by Lemma A.1, we have limx↓0
∂l(x, s)
∂s

= 0, and so limx↓0 φp(x) = ct, which is always

positive; and (iii) by Lemma A.2, limx↑s
∂l(x, s)
∂s

= −∞, and so limx↑p(1+ro) φp(x) = −∞.

As such, there exists a unique solution to φp(x) = 0, which we denote by λ̃(p). Now, we

consider three situations.

1. λ ∈ (0, λ̃(p)): we have φp(λ) = β > 0, and also λ < λ̃(p) < p(1 + ro). Hence, the

conditions of scenario (ii) are met for g = 0, and so g∗(λ, p) = 0.

2. λ = λ̃(p): we have φp(λ̃(p)) = 0, and so the conditions of scenario (ii) are not met.

However, defining the function

θλ,p(g) , ct + cw
∂l(λ, s)
∂s

∣∣∣
s=p(1+ro)+g

,

on g ∈ [0,∞), we obtain θλ̃(p),p(0) = φp(λ̃(p)) = 0. This, along with the fact that

λ = λ̃(p) < p(1 + ro), implies that conditions of scenario (i) are met for g = 0, and

so g∗(λ̃(p), p) = 0.

3. λ ∈ (λ̃(p),∞): we know that φp(λ) is negative for λ ∈ (λ̃(p), p(1+ro)), and undefined

for λ ∈ [p(1+ro),∞), and so the conditions of scenario (ii) are not met. However, we

show that a g̃(λ, p) ∈ ((λ−p(1+ro))+,∞) can be found satisfying θλ,p(g) = 0: (i) by

properties A(i) and A(iv), θλ,p(g) is continuous and strictly increasing in g; (ii) for λ ∈

(λ̃(p), p(1+ro)), we have limg↓0 θλ,p(g) = φp(λ), which is negative ; (iii) for λ ∈ [p(1+

ro),∞), lims↓λ
∂l(λ, s)
∂s

= −∞ by Lemma A.2, and so limg↓λ−p(1+ro) θλ,p(g) = −∞ ;

(iv) from (ii) and (iii), we conclude that limg↓(λ−p(1+ro))+ θλ,p(g) is always negative;

and (iv) by Lemma A.3, lims→∞
∂l(λ, s)
∂s

= 0, and so limg→∞ θλ,p(g) = ct, which is

always positive. As a result, there exists a unique value g̃(λ, p) > (λ− p(1 + ro))+

satisfying θλ,p(g) = 0. The conditions of scenario (i) are therefore met for g̃(λ, p),

and so g∗(λ, p) = g̃(λ, p).

For p = 0, the conditions of scenario (ii) cannot be met. However, following a similar
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argument to that of the situation 3, we can find a value g̃(λ, 0) ∈ (λ,∞) satisfying the

equation θλ,0(g̃(λ, 0)) = 0, and consequently the conditions of scenario (i). Therefore

g∗(λ, 0) = g̃(λ, 0), and the proof is complete.

Lemma A.1. limλ↓0
∂l(λ, s)
∂s

= 0.

Proof. We need to prove that for every ε > 0, there exists a δ > 0 such that

∣∣∣∣∂l(λ, s)∂s

∣∣∣∣ = −∂l(λ, s)
∂s

< ε, (A.5)

when 0 < λ < δ, where the equality in equation above is due to property A(iii). Since

limλ↓0 l(λ, s) = 0 by property A(ii), we can find a δ′ > 0 such that −l(λ, s) > −εh/2 for

any h > 0. Also, we always have l(λ, s+ h) > −εh/2. Combining these two inequalities,

we obtain
l(λ, s+ h)− l(λ, s)

h
> −ε. (A.6)

Taking the limit as h goes to zero and setting δ = δ′, the proof is complete.

Lemma A.2. lims↓λ
∂l(λ, s)
∂s

= −∞ and limλ↑s
∂l(λ, s)
∂s

= −∞.

Proof. To show that lims↓λ
∂l(λ, s)
∂s

= −∞, we first prove that ∂l(λ, s)
∂s

is unbounded on

s ∈ (λ, b] for any b > λ. Supposing that it is not true, i.e., ∂l(λ, s)
∂s

is bounded for all

λ < s < b. Let’s call this bound B. Then, by Mean Value theorem (Thomas, 2014), there

exists an ε ∈ (s, b) such that

l(λ, b)− l(λ, s)
b− s

= ∂l(λ, s)
∂s

∣∣
s=ε.

Thus,

l(λ, s) = l(λ, b)− ∂l(λ, s)
∂s

∣∣
s=ε(b− s),

and so,

|l(λ, s)| =
∣∣∣l(λ, b)− ∂l(λ, s)

∂s

∣∣
s=ε(b− s)

∣∣∣
|l(λ, s)| ≤ |l(λ, b)|+

∣∣∣∂l(λ, s)
∂s

∣∣
s=ε

∣∣∣|b− s|
≤ |l(λ, b)|+B|b− s|.

for all s ∈ (λ, b). However, this implies that l(λ, s) is bounded for all s ∈ (λ, b), which

is not true since lims↓λ l(λ, s) = ∞ by property A(ii). Hence, ∂l(λ, s)
∂s

is unbounded on

3



s ∈ (λ, b] for all b > λ. Now, since l(λ, s) is strictly convex in s by property A(iv), ∂l(λ, s)
∂s

strictly decreases as s approaches λ from above. Then, by unboundedness of ∂l(λ, s)
∂s

on

(λ, b], we must have lims↓λ
∂l(λ, s)
∂s

= −∞.

To prove limλ↑s
∂l(λ, s)
∂s

= −∞, we need to find an ε > 0 for any M > 0 such that
∂l(λ, s)
∂s

< −M , whenever s− λ < ε. Since lims↓λ
∂l(λ, s)
∂s

= −∞, there exists an ε′ > 0

such that ∂l(λ, s)
∂s

< −M , whenever s− λ < ε′. We can set ε = ε′.

Lemma A.3. lims→∞
∂l(λ, s)
∂s

= 0.

Proof. Suppose that lims→∞
∂l(λ, s)
∂s

= L 6= 0. Then, for any ε > 0, there is an M > 0

such that
∣∣∣∂l(λ, s)

∂s
− L

∣∣∣ < ε when s > M . Now, consider an arbitrary s > M . By the

Mean Value theorem, there is a point δs ∈ (s, s+ 1) such that

l(λ, s+ 1)− l(λ, s) = ∂l(λ, s)
∂s

∣∣∣
s=δs

.

Since M < s < δs, we have
∣∣∣∂l(λ, s)

∂s

∣∣∣
s=δs

− L
∣∣∣ < ε, and so |l(λ, s + 1) − l(λ, s) − L| < ε.

Taking the limit as s→∞, and noting that lims→∞ l(λ, s) is finite by property A(ii), we

obtain |L| < ε, which cannot be true if L 6= 0, hence lims→∞
∂l(λ, s)
∂s

= 0.
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B. Algorithm 1

Algorithm 1 Numerical method for evaluating the optimal number of temporary HCWs,
g∗(λ, p)
.
Require: l(x, y), λ, p, ct, cw, ro

1: if λ ≤ λ̃(p) then
2: g∗(λ, p)← 0
3: else
4: α← 0.001
5: while θλ,p((λ− p(1 + ro))+ + α) > 0 do
6: α← α/10.0
7: end while
8: gu ← ((λ− p(1 + ro))+ + 10.0
9: while θλ,p(gu) < 0 do

10: gu ← gu × 10
11: end while
12: g∗(λ, p)← root of θλ,p(g) in the interval [(λ− p(1 + ro))+ + α, gu]
13: end if
14: function λ̃(p)
15: if p = 0 then
16: return 0.0
17: else
18: α1 ← 0.001
19: while φp(α1) < 0 do
20: α1 ← α1/10.0
21: end while
22: α2 ← 0.001
23: while φp(p(1 + ro)− α2) > 0 do
24: α2 ← α2/10.0
25: end while
26: return root of φp(x) in the interval [α1, p(1 + ro)− α2]
27: end if
28: end function

C. Proof of Corollary 1

Since function θλ,p(g) is strictly increasing in g as shown in the proof of Proposition 1,

and strictly decreasing in λ by property A(v), its root, i.e., g̃(λ, p), must increase as λ

increases. This implies that g∗(λ, p) is increasing in λ. Further, since θλ,p(g) is strictly

increasing in p by property A(iv), its root, i.e., g̃(λ, p), must decrease when p increases.

This, combined with the fact that λ̃(p) is strictly increasing in p by Lemma C.1, proves

that g∗(λ, p) is decreasing in p.

Lemma C.1. λ̃(p) is strictly increasing in p.

Proof. By property A(iv), ∂l(x, s)
∂s

∣∣
s=p(1+ro) is strictly increasing in p. This implies that

5



φp(x) is also strictly increasing in p for all values of x ∈ (0, p(1 + ro)). From this, and the

fact that φp(x) is a strictly decreasing function of x, we conclude that the root of this

function, i.e., λ̃(p), increases strictly with p.

D. Proof of Proposition 2

Denoting the expected value in the first-stage problem given in (3) by y(n, a), and

conditioning on Qt, we obtain

y(n, a) , E[v (Λt, n+ min{Qt, a})] =
∫ a

0
E [v(Λt, n+ q)] ft(q)dq+E [v(Λt, n+ a)] (1−Ft(a)),

where Ft is the cumulative distribution function of Qt. Taking the derivative of y(n, a)

with respect to a and simplifying, we arrive at

∂y(n, a)
∂a

= ∂E[v(Λt, n+ a)]
∂a

(1− Ft(a)) = E
[
∂v(Λt, n+ a)

∂a

]
(1− Ft(a)) . (D.1)

For an arbitrary λ, using the Envelope theorem (Takayama, 1985), we then have

∂v(λ, n+ a)
∂a

= ∂

∂a
L(λ, n+ a, β; g)

∣∣
g=g∗(λ,n+a),β=β∗(λ,n+a)

= 1 + roco + cw(1 + ro)
∂l(λ, s)
∂s

∣∣∣
s=(n+a)(1+ro)+g∗(λ,n+a)

. (D.2)

where L(λ, n+ a, β; g) is the Lagrangean of the second stage problem given in Equation

(A.1) with p = n + a, and g∗(λ, n + a) and β∗(λ, n + a) are the corresponding optimal

solution and Lagrange multiplier, respectively. Taking the expectation of the above

expression, it follows that

E
[
∂v(Λt, n+ a)

∂a

]
= 1 + roco + cw(1 + ro)E

[
∂l(Λt, s)
∂s

∣∣∣
s=(n+a)(1+ro)+g∗(Λt,n+a)

]
. (D.3)
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Replacing g∗(Λt, n+ a) from Proposition 1, we obtain

E
[
∂v(Λt, n+ a)

∂a

]
= 1 + roco + cw(1 + ro)

(
E
[
∂l(Λt, s)
∂s

∣∣∣
s=(n+a)(1+ro)

,Λt ≤ λ̃(n+ a)
]

+E
[
∂l(Λt, s)
∂s

∣∣∣
s=(n+a)(1+ro)+g̃(Λt,n+a)

,Λt > λ̃(n+ a)
])

= 1 + roco + cw(1 + ro)
(
E
[
∂l(Λt, s)
∂s

∣∣∣
s=(n+a)(1+ro)

,Λt ≤ λ̃(n+ a)
]

+E
[
− ct
cw
,Λt > λ̃(n+ a)

])
= 1+roco+cw(1+ro)

∫ λ̃(n+a)

0

∂l(λ, s)
∂s

∣∣∣
s=(n+a)(1+ro)

ht(λ)dλ−ct(1+ro)
∫ ∞
λ̃(n+a)

ht(λ)dλ,

(D.4)

where the last term in the second equality is because g̃(λ, n+ a) is the root of function

θλ,n+a(g) given in Expression (6) for all values of λ > λ̃(n+ a). Denoting the expression

obtained above for E
[
∂v(Λt, n+ a)

∂a

]
by ψn(a), we have

∂y(n, a)
∂a

= ψn(a)(1− Ft(a)). (D.5)

Differentiating the equation above with respect to a, we obtain

∂2y(n, a)
∂a2 = ∂ψn(a)

∂a
(1− Ft(a))− ft(a)ψn(a),

which shows that the objective function is not necessarily convex. However, its minimum

can still be found as follows.

By Lemma D.2, ψn(a) is a continuous and strictly increasing function of a. Further, by

Lemma D.1, lima→∞ ψn(a) is always positive. Hence, if ψn(0) < 0, there exists a unique

solution to ψn(a) = 0, which we denote by ã(n). ψn(a) will then be negative (positive)

for a ∈ [0, ã(n)) (a ∈ (ã(n),∞)). On the other hand, if ψn(0) ≥ 0, then ψn(a) > 0 for all

a > 0.

First, suppose ψn(0) ≥ 0. Then ψn(a)(1− Ft(a)) will be non-negative for all a, and

so y(n, a) will be an increasing function of a. This implies that the minimum of y(n, a)

occurs at a = 0.

Next, suppose ψn(0) < 0. Two situations may arise: ã(n) < qu or ã(n) ≥ qu. If

ã(n) < qu, ψn(a)(1 − Ft(a)) will be non-positive for a < ã(n), and non-negative for

a > ã(n), thus implying that the minimum of y(n, a) occurs at a = ã(n). If ã(n) ≥ qu,

ψn(a)(1− Ft(a)) will be non-positive for a < qu, and zero for a ≥ qu, implying that the

7



minimum of y(n, a) occurs at a = qu (Note that any a ≥ qu will be optimal in this case.)

These lead to Equation (9).

Lemma D.1. lima→∞ ψn(a) is positive.

Proof. By Lemma A.3,lims→∞
∂l(λ, s)
∂s

= 0. From Lemma C.1, we know that λ̃(p) is

strictly increasing in p, so limp→∞ λ̃(p) =∞. Hence, lima→∞ ψn(a) = 1 + roco, which is

positive.

Lemma D.2. ψn(a) is continuous, and strictly increasing in a and n.

Proof. Continuity is trivial. Taking the derivative from ψn(a) with respect to a gives

∂ψn(a)
∂a

= cw(1 + ro)
∂λ̃(n+ a)

∂a

∂l(λ̃(n+ a), s)
∂s

∣∣∣
s=(a+n)(1+ro)

ht(λ̃(n+ a))

+ cw(1 + ro)2
∫ λ̃(n+a)

0

∂2l(λ, s)
∂s2

∣∣∣
s=(a+n)(1+ro)

ht(λ)dλ+ ct(1 + ro)
∂λ̃(n+ a)

∂a
ht(λ̃(n+ a))

= (1 + ro)
∂λ̃(n+ a)

∂a
ht(λ̃(n+ a))

(
ct + cw

∂l(λ̃(n+ a), s)
∂s

∣∣∣
s=(a+n)(1+ro)

)

+ cw(1 + ro)2
∫ λ̃(n+a)

0

∂2l(λ, s)
∂s2

∣∣∣
s=(a+n)(1+ro)

ht(λ)dλ

= cw(1 + ro)2
∫ λ̃(n+a)

0

∂2l(λ, s)
∂s2

∣∣∣
s=(a+n)(1+ro)

ht(λ)dλ,

(D.6)

where the last equality is because λ̃(n+ a) is the unique root of φn+a(x) given in Equation

(A.4). By property A(iv), the expression obtained for ∂ψn(a)
∂a

is always positive. For the

last part, taking the derivative from ψn(a) with respect to n gives

∂ψn(a)
∂n

= ct(1 + ro)
(
∂λ̃(n+ a)

∂n

)
ht(λ̃(n+ a))

+ cw(1 + ro)
(
∂l(λ̃(n+ a), s)

∂s

∣∣
s=(n+a)(1+ro)

(
∂λ̃(n+ a)

∂n

)
ht(λ̃(n+ a))

)

+ cw(1 + ro)
∫ λ̃(n+a)

0

∂2l(λ, s)
∂s∂n

∣∣
s=(n+a)(1+ro)ht(λ)dλ

= (1 + ro)
(
∂λ̃(n+ a)

∂n

)
ht(λ̃(n+ a))

(
ct + cw

∂l(λ̃(n+ a), s)
∂s

∣∣∣
s=(a+n)(1+ro)

)

+ cw(1 + ro)
∫ λ̃(n+a)

0

∂2l(λ, s)
∂s∂n

∣∣
s=(n+a)(1+ro)ht(λ)dλ

= cw(1 + ro)
∫ λ̃(n+a)

0

∂2l(λ, s)
∂s∂n

∣∣
s=(n+a)(1+ro)ht(λ)dλ

= cw(1 + ro)2
∫ λ̃(n+a)

0

∂2l(λ, s)
∂s2

∣∣
s=(n+a)(1+ro)ht(λ)dλ

8



which is positive by property A(iv).

E. Proof of Corollary 2

Setting n = a = 0.0 in Equation (8), we obtain ψ0(0.0) = 1 + roco − cg(1 + ro) =

1− cg + ro(co − cg) < 0.0, where the inequality is because 1 < co < cg by assumption. It

then follows from Proposition 2 that a∗(0.0) > 0.0.

F. Proof of Corollary 3

The first part is because ft does not appear in the expression for ψn(a). For the second

part, first note that, when qu → ∞, a∗(n) = 0.0 if ψn(0.0) ≥ 0.0, and a∗(n) = ã(n)

if ψn(0.0) < 0.0, by Equation (9). Next, we consider two situations. First, suppose

that ψn(0.0) ≥ 0.0. Then, since ψn(a) increases strictly with n by Lemma D.2, we have

ψn+x(0.0) > ψn(0.0) ≥ 0.0, implying that

a∗(n+ x) = a∗(n) = 0.0, (F.1)

for any x ≥ 0.0. Second, suppose that ψn(0.0) < 0.0 and so a∗(n) = ã(n) which is

a positive value. Then, since a and n only appear as (a + n) in the expression for

ψn(a), we have ψn(a) = ψn+x(a − x) for 0 ≤ x ≤ a. Setting a = ã(n), we obtain

ψn+x (ã(n)− x) = ψn (ã(n)) = 0, where the second equality is by definition. This implies

that

a∗(n+ x) = ã(n)− x, (F.2)

for 0 ≤ x ≤ ã(n). In particular, for x = ã(n), we obtain ψn+ã(n)(0.0) = 0.0 and

a∗(n+ ã(n)) = 0.0. Further, since by Lemma D.2, ψn(a) increases strictly with n, we have

ψn+x(0) > ψn+ã(n)(0) = 0, implying that

a∗(n+ x) = 0.0, (F.3)

for x > ã(n). Combining Equations (F.1), (F.2), and (F.3), we arrive at

a∗(n+ x) =


0.0 if ψn(0) ≥ 0.0,

(ã(n)− x)+ , otherwise,
(F.4)
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for any x ≥ 0. Setting n = 0.0 in Equation (F.4) and a change of variable yield

a∗(n) =


0.0 if ψ0(0.0) ≥ 0.0,

(ã(0.0)− n)+ , otherwise.
(F.5)

But ψ0(0.0) is always negative as shown in the proof of Corollary 2, and thus a∗(n) =

(ã(0.0)− n)+.

G. Algorithm 2

Algorithm 2 Numerical method for evaluating the optimal number of permanent positions
to advertise, a∗(n).

Require: l(x, y), ht, ct, co, cw, ro, n, qu, and function λ̃(p) from Algorithm 1
1: Evaluate ψn(0) from Equation (8) using λ̃(n) as input
2: if ψn(0) ≥ 0 then
3: a∗(n)← 0
4: else
5: au ← 10
6: while ψn(au) < 0 do
7: au ← au × 10
8: end while
9: ã(n)← root of ψn(a) in the interval [0, au]

10: a∗(n)← min{ã(n), qu}
11: end if

H. Proof of Corollary 4

(i) Taking the derivative of ψn(a) with respect to ct, we get

∂ψn(a)
∂ct

= −(1 + ro)
∫ ∞
λ̃(n+a)

ht(λ)dλ+
(
∂λ̃(n+ a)

∂ct

)
ht(λ̃(n+ a))ct(1 + ro)

+ cw(1 + ro)
(
∂l(λ̃(n+ a), s)

∂s

∣∣
s=(n+a)(1+ro)

(
∂λ̃(n+ a)

∂ct

)
ht(λ̃(n+ a))

)

= −(1 + ro)
∫ ∞
λ̃(n+a)

ht(λ)dλ

+
(
∂λ̃(n+ a)

∂ct

)
ht(λ̃(n+ a))(1 + ro)

(
ct + cw

∂l(λ̃(n+ a), s)
∂s

∣∣∣
s=(a+n)(1+ro)

)

= −(1 + ro)
∫ ∞
λ̃(n+a)

ht(λ)dλ,

which is negative. This, along with the fact that ψn(a) is strictly increasing in a by Lemma

D.2, implies that ã(n) and thus a∗(n) is increasing in ct.

(ii) Taking the derivative of ψn(a) with respect to cw yields

10



∂ψn(a)
∂cw

= ct(1 + ro)
(
∂λ̃(n+ a)

∂cw

)
ht(λ̃(n+ a)) + (1 + ro)

∫ λ̃(n+a)

0

∂l(λ, s)
∂s

∣∣
s=(n+a)(1+ro)ht(λ)dλ

+ cw(1 + ro)
(
∂l(λ̃(n+ a), s)

∂s

∣∣
s=(n+a)(1+ro)

(
∂λ̃(n+ a)

∂cw

)
ht(λ̃(n+ a))

)

= (1 + ro)
(
∂λ̃(n+ a)

∂cw

)
ht(λ̃(n+ a))

(
ct + cw

∂l(λ̃(n+ a), s)
∂s

∣∣∣
s=(a+n)(1+ro)

)

+ (1 + ro)
∫ λ̃(n+a)

0

∂l(λ, s)
∂s

∣∣
s=(n+a)(1+ro)ht(λ)dλ

= (1 + ro)
∫ λ̃(n+a)

0

∂l(λ, s)
∂s

∣∣
s=(n+a)(1+ro)ht(λ)dλ,

which is negative by property A(iii). This, along with the fact that ψn(a) is strictly

increasing in a by Lemma D.2, implies that ã(n) and thus a∗(n) is increasing in cw.

(iii) ψn(a) is clearly increasing in co. This, along with the fact that ψn(a) is strictly

increasing in a by Lemma D.2, implies that ã(n) and thus a∗(n) is decreasing in co.

(iv) By Lemma D.2, ψn(a) is increasing in n. This, along with the fact that ψn(a) is

strictly increasing in a by Lemma D.2, implies that ã(n) and thus a∗(n) is decreasing in

n.

I. Proof of Corollary 5

Taking the derivative of m(n) given in Equation (3) with respect to ct, we arrive at

∂m(n)
∂ct

= ∂

∂ct
min

{
E[v(Λt, n+ min{Qt, a})] : a ∈ R+

}
= ∂

∂ct
E [v(Λt, n+ min{Qt, a})]

∣∣∣
a=a∗(n)

= ∂

∂ct

[∫ a

0
E [v(Λt, n+ q)] ft(q)dq + E [v(Λt, n+ a)] (1− Ft(a))

] ∣∣∣∣∣
a=a∗(n)

=
[∫ a

0

∂

∂ct
E [v(Λt, n+ q)] ft(q)dq + ∂

∂ct
E [v(Λt, n+ a)] (1− Ft(a))

] ∣∣∣∣∣
a=a∗(n)

.

(I.1)

For an arbitrary λ, we then have

∂v(λ, n+ q)
∂ct

= ∂

∂ct
min {(n+ q)(1 + roco) + gct + l(λ, (n+ q)(1 + ro) + g)cw

: g ∈ R+, g > λ− (n+ q)(1 + ro)
}

= ∂

∂ct
[(n+ q)(1 + roco) + gct + l(λ, (n+ q)(1 + ro) + g)cw]

∣∣∣
g=g∗(λ,n+q)

= g∗(λ, n+ q)

11



Similarly, ∂v(λ, n+ a)/∂ct = g∗(λ, n+ a). Substituting these derivatives into Equation

I.1, we obtain

∂m(n)
∂ct

=
[∫ a

0
E [g∗(Λt, n+ q)] ft(q)dq + E [g∗(Λt, n+ a)] (1− Ft(a))

] ∣∣∣∣∣
a=a∗(n)

=
∫ a∗(n)

0
E [g∗(Λt, n+ q)] ft(q)dq + E [g∗(Λt, n+ a∗(n))] (1− Ft(a∗(n))),

which is clearly non-negative.

Similarly, since

∂v(λ, n+ q)
∂cw

= ∂

∂cw
[(n+ q)(1 + roco) + gct + l(λ, (n+ q)(1 + ro) + g)]

∣∣∣
g=g∗(λ,n+q)

= l(λ, (n+ q)(1 + ro) + g∗(λ, n+ q)),

and

∂v(λ, n+ a)
∂cw

= l(λ, (n+ q)(1 + ro) + g∗(λ, n+ a)),

we have

∂m(n)
∂cw

=
∫ a∗(n)

0
E [l(Λt, (n+ q)(1 + ro) + g∗(Λt, n+ q))] ft(q)dq

+ E [l(Λt, (n+ a∗(n))(1 + ro) + g∗(Λt, n+ a∗(n)))] (1− Ft(a∗(n))),

which is non-negative.

For co, since

∂v(λ, n+ q)
∂co

= (n+ q)ro,

and

∂v(λ, n+ a)
∂co

= (n+ a)ro,

we have

∂m(n)
∂co

=
∫ a∗(n)

0
(n+ q)roft(q)dq + (n+ a∗(n))ro(1− Ft(a∗(n))),

which is non-negative and the proof is complete.
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J. Proof of Proposition 3

Taking the derivative of l(λ, s) given in Equation (10) with respect to s, plugging it into

Equation (5), and setting the result equal to zero yields

ct −
cwx

(p(1 + ro)− x)2 = 0.

Solving the above equation for x ∈ (0, p(1 + ro)), we obtain

x = λ̃(p) = p(1 + ro) + cw −
√

4ctcwp(1 + ro) + c2
w

2ct
.

Inserting the derivative of l(λ, s) with respect to s in Equation (6), setting the result

equal to zero and solving for g, we obtain the value for g̃(λ, p) given in Equation (12).

Equation (13) is then obtained by evaluating the objective function in problem (1) for

g = g∗(λ, p).

K. Proof of Proposition 4

Properties A(i), A(ii), and A(iii) are easy to verify. For property A(iv), we obtain the

second derivative of l(λ, s) given in Equation (14) with respect to s as

∂2l(λ, s)
∂s2 =

(
1 + τ2

2

)(
2λ2(3s(s− λ) + λ2)

(s2 − λs)3

)
+ 2λ
s3 ,

which is positive when s > λ. For property A(v), we have

∂2l(λ, s)
∂λ∂s

=
(

1 + τ2

2

)(
−λs[(2s− λ)2 + λs]

(s2 − λs)3

)
− 1
s2 ,

which is negative when s > λ.

L. Proof of Corollary 6

Taking the derivate of l(λ, s) given in Equation (14) with respect to τ , we obtain

∂l(λ, s)
∂τ

= λ
(
λ τ2 − λ+ 2s

)
2s (s− λ) . (L.1)

This gives

∂v(λ, p)
∂τ

= cwτ λ
2

(p (1 + ro) + g∗(λ, p)) (p (1 + ro) + g∗(λ, p)− λ) ,
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which, given the stability constraint, is always positive, and so v(λ, p) is increasing in τ .

Taking the derivate of l(λ, s) given in Equation (14) with respect to τ and s, we obtain

∂2l(λ, s)
∂τ∂s

= λ2τ (λ− 2s)
s2 (λ− s)2 (L.2)

which is negative. This implies that λ̃(p), the route of function φp(x) given in (5) in the

interval (0, p(1+ro)), is strictly decreasing in τ . It also implies that g̃(λ, p), the unique root

of function θλ,p(g) given in (6) in the interval ((λ− p(1 + ro))+,∞), is strictly increasing

in τ . We conclude that, for given λ and p, g∗(λ, p) is increasing in τ . A similar argument

applies for m(n) and a∗(n).

M. Proof of Proposition 5

Property A(i) is easy to verify. For property A(ii), note that limλ↓0C(λ, s) = 0, lims→∞C(λ, s) =

0, and

lim
λ↑s−

C(λ, s) = lim
s↓λ+

C(λ, s) = lim
λ↑s−

B(λ, s)
1− λ(1−B(λ, s))/s = B(λ, s)

B(λ, s) = 1, (M.1)

where the second equality is by the relation between delay probability C(λ, s) in M/M/s

queues and blocking probability B(λ, s) in the associated M/M/s/0 loss queues (with 0

representing the waiting space). For the first part of property A(iii), note that

∂l(λ, s)
∂λ

=

(
C(λ, s) + λ∂C(λ,s)

∂λ

)
(s− λ) + λC(λ, s)

(s− λ)2 + 1. (M.2)

Using the relation between C(λ, s) and B(λ, s) given in Equation (M.1), we then have

∂C(λ, s)
∂λ

= (∂B(λ, s)/∂λ)(1− λ/s) + 1/s(1−B(λ, s))B(λ, s)
[1− (λ/s) (1−B(λ, s))]2 ,

which is non-negative because B(λ, s) is increasing in λ (Pacheco, 1993), λ < s, and

B(λ, s) ≤ 1. Hence, the derivative given in Equation (M.2) is non-negative. For the second

part of property A(iii) and property A(iv), Karsten et al. (2015) prove that the expected

sojourn time, denoted by w(λ, s), is strictly decreasing and strictly convex in s for M/M/s

queues. Since l(λ, s) = λw(λ, s), the same properties apply for l(λ, s). Property A(v) is in

fact economies of scale as explained in §3. This has already been proved in the extant

literature; see, e.g., Karsten et al. (2015).
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N. Proof of Proposition 6

For the first part, we apply Proposition 2 noting that ignoring demand rate uncertainty is

equivalent to assuming P(Λt = ξ) = 1.0. This implies that when ξ is smaller than λ̃(n+ a),

the third term in Equation (8) simplifies to

cw(1 + ro)
∂l(ξ, s)
∂s

∣∣
s=(n+a)(1+ro),

and the fourth term simplifies to zero. Similarly, when ξ is larger than λ̃(n+a), the fourth

term in Equation (8) simplifies to −ct(1 + ro) and the third term simplifies to zero. These

yield the expression in Equation (19).

For the second part, the expression given for ã(n) is obtained by replacing the derivative

given in (L.1) in Equation (19) and solving ψn(a) = 0 for a.

O. Proof of Proposition 7

First, note that Qt′ ≤st Qt implies that E [ω(Qt′)] ≥ E[ω(Qt)] for any decreasing function

ω(x). Also, note that, by insensitivity of a∗(n,Qt,Λt) to the pdf of Qt, we have

m(n,Qt,Λt) = E [v(Λt, n+ min{Qt, a∗(n,Qt,Λt)})] ,

and

m(n,Qt′ ,Λt) = E [v(Λt, n+ min{Qt′ , a∗(n,Qt,Λt)})] .

Hence, it suffices to show that

ω(q) , E [v(Λt, n+ min{q, a∗(n,Qt,Λt)})]

is decreasing in q. For q ≥ a∗(n,Qt,Λt),
∂ω(q)
∂q

= ∂

∂q
E[v(Λt, n+ a∗(n,Qt,Λt))] = 0. For

0 ≤ q < a∗(n,Qt,Λt), on the other hand, we have

∂ω(q)
∂q

= ∂

∂q
E [v(Λt, n+ q)]

= 1 + roco + cw(1 + ro)
∫ λ̃(n+q)

0

∂l(λ, s)
∂s

∣∣∣
s=(n+q)(1+ro)

ht(λ)dλ

− ct(1 + ro)
∫ ∞
λ̃(n+q)

ht(λ)dλ, (O.1)

where the second equality is obtained by replacing a with q in Equation (D.4). The

expression given in (O.1) is in fact ψn(q), which by Proposition 2 is negative when
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0 ≤ q < a∗(n,Qt,Λt). Hence, ω(q) is decreasing in q and the proof is complete.

P. Proof of Proposition 8

Λt′ ≤cx Λt implies that E[ω(Λt)] ≤ E[ω(Λt′)] for any concave function ω(λ). Define

ω(λ) ,
∂v(λ, n+ a)

∂a
, and note that ψΛt

n (a) = E [ω(Λt)], where we have expanded the

notation for ψn(a) defined in Equation (8) to indicate its dependence to Λt. From (D.2),

(4), and the fact that g̃(λ, p) is the root of θλ,p(g), we now have

ω(λ) , ∂v(λ, n+ a)
∂a

=


1 + roco + cw(1 + ro)

∂l(λ, s)
∂s

∣∣∣
s=(n+a)(1+ro)

λ ≤ λ̃(n+ a),

1 + roco − ct(1 + ro) λ̃(n+ a) < λ ≤ λu.

The first and second derivatives are

∂ω(λ)
∂λ

=


cw(1 + ro)

∂2l(λ, s)
∂s∂λ

∣∣∣
s=(n+a)(1+ro)

λ ≤ λ̃(n+ a),

0 λ̃(n+ a) < λ ≤ λu,

and

∂2ω(λ)
∂λ2 =


cw(1 + ro)

∂3l(λ, s)
∂s∂λ2

∣∣∣
s=(n+a)(1+ro)

λ ≤ λ̃(n+ a),

0 λ̃(n+ a) < λ ≤ λu,

respectively. By condition (b) in the proposition, ∂
2ω(λ)
∂λ2 is non-positive. By condition (a)

and Lemma C.1, λu ≤ λ̃(n) ≤ λ̃(n+ a), and so λ ≤ λ̃(n+ a) for any value a ∈ R+, hence,

∂ω(λ)/∂λ is continuous on λ ∈ [0, λu]. From these, we conclude that ω(λ) is concave

when the conditions of the proposition are met (Note that, without condition (a), the

first derivative would not be continuous, and so ω(λ) would not be concave.) As such,

when ψΛt
n (0) ≥ 0, we will also have ψΛt′

n (0) ≥ 0, thus a∗(n,Qt,Λt) = a∗(n,Qt,Λt′) = 0.

On the other hand, when ψΛt
n (0) < 0, we will either have ψΛt′

n (0) ≥ 0, which implies

that a∗(n,Qt,Λt′) = 0 < a∗(n,Qt,Λt), or ψΛt
n (0) ≤ ψ

Λt′
n (0) < 0, which implies that

a∗(n,Qt,Λt′) ≤ a∗(n,Qt,Λt).

Q. Proof of Proposition 9

First, note that Λt′ ≤cx Λt implies that E [ω(Λt′)] ≤ E [ω(Λt)] for any convex function

ω(λ). Second, note that m(n,Qt,Λt′) ≤ E[v(Λt′ , n+ min{Qt, a})] for all a ∈ R+. Hence,

it suffices to show that ω(λ) , E[v(λ, n+ min{Qt, a})] is a convex function of λ when the
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conditions of the proposition are met. To show the convexity of ω(λ), we obtain the first

and second derivatives as

∂ω(λ)
∂λ

= E
[
∂

∂λ
v(λ, n+ min{Qt, a})

]
= E

[
cw

∂

∂λ
l(λ, (n+ min{Qt, a})(1 + ro) + g∗ (λ, n+ min{Qt, a}))

]
,

and

∂2ω(λ)
∂λ2 = E

[
cw

(
∂2

∂λ2 l(λ, (n+ min{Qt, a})(1 + ro) + g∗(λ, n+ min{Qt, a}))

+∂2l(λ, s)
∂λ∂s

∣∣∣
s=(n+min{Qt,a})(1+ro)+g∗(λ,n+min{Qt,a})

× ∂

∂λ
g∗(λ, n+ min{Qt, a})

)]
.

It then follows from Proposition 1 that

∂2ω(λ)
∂λ2 = cwE

[
∂2

∂λ2 l(λ, (n+ min{Qt, a})(1 + ro) + g̃(λ, n+ min{Qt, a}))

+∂2l(λ, s)
∂λ∂s

∣∣∣
s=(n+min{Qt,a})(1+ro)+g̃(λ,n+min{Qt,a})

× ∂

∂λ
g̃(λ, n+ min{Qt, a}),

λ > λ̃(n+ min{Qt, a})
∫ ]

+ cwE
[
∂2

∂λ2 l(λ, (n+ min{Qt, a})(1 + ro)), λ ≤ λ̃(n+ min{Qt, a})
]
.

By condition (a) and Lemma C.1, λu ≤ λ̃(n) ≤ λ̃(n + min{q, a}), and so λ ≤ λ̃(n +

min{q, a}) for all a, q ∈ R+. This yields

∂2ω(λ)
∂λ2 = cwE

[
∂2

∂λ2 l(λ, (n+ min{Qt, a})(1 + ro))
]
,

which is non-negative by condition (b) of the proposition.
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R. Summary of Notations

Symbol Description
Parameters
t given advertisement epoch
te beginning of the highly uncertain demand period (HUDP)
t′ delayed advertisement epoch
ct, cp, co cost rates of temporary, permanent and mandatory overtime work
cw waiting cost incurred by patients per unit of time in the system
ro percentage of mandatory overtime work by permanent HCWs
n number of permanent HCWs available at time t who are expected to remain in their jobs during the HUDP
p total number of permanent HCWs in the system at time te
s number of servers available for service delivery
λ exact value of demand rate during the HUDP
λ̃(p) unique root of function φp(x) given in (5) in the interval (0, p(1 + ro))
g̃(λ, p) unique root of function θλ,p(g) given in (6) in the interval ((λ− p(1 + ro))+,∞)
α1, α2 small positive numbers used in Algorithm 1
λu, qu upper-bound for the support of ht and ft
ã(n) unique root of function ψn(a) given in (8) in the interval [0,∞)
au positive number used in Algorithm 2
ξ mean demand rate
κ coefficient of variation for the (random) demand rate
µr mean number of qualified applications received during (t, te]
κr coefficient of variation for the (random) number of qualified applications
τ coefficient of variation of the service time
γ minimum probability of the system being stable in single-stage decision making
λ(b) rate of patient arrival to the bed queueing system
µ(b) service rate for the bed queueing system
λ(n) rate of patients’ regular requests’ arrival to the nursing queueing system
µ(n) service rate of the regular requests in the nursing queueing system
ξ(b) mean of patients arrival rate to the bed queueing system
κ(b) coefficient of variation of patients arrival rate to the bed queueing system
Decision Variables
a number of permanent positions to advertise at time t
g number of temporary HCWs to recruit at time te
a∗(n) optimal number of permanent positions to advertise in the first stage given n
g∗(λ, p) optimal number of temporary workers to recruit in the second stage given demand rate λ and p permanent workers
Random Variables
Qt random number of qualified applications received during the advertisement period with pdf ft and cdf Ft
Λt random demand rate as predicted at time t with pdf ht and cdf Ht

Λ(b)
t random patient arrival rate to the bed queueing system as predicted at time t

Functions
u(λ, p, g) second-stage objective function given arrival rate λ, p permanent workers, and g temporary workers
v(λ, p) optimal second-stage cost given arrival rate λ and p permanent workers
m(n) optimal first-stage cost given n existing permanent workers
l(λ, s) mean number of requests in the system given arrival rate λ and s servers
C(λ, s) Continuous extension of the Erlang delay function given in Equation (16)
l(n)(λ(b), s) mean number of requests in the nursing system given patient arrival rate λ(b) and s nurse
φp(x) function given in Equation (5)
θλ,p(g) function given in Equation (6)
ψn(a) function given in Equation (8)
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