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Abstract

Waiting times for elective surgery constitute a key performance indicator for the

NHS. The principal policy response has been to introduce maximum waiting

time targets against which performance is measured and rewarded. The aim of

this thesis is to shed light on the mechanism of patients’ admittance for elective

surgery in UK by examining the whole distribution of their waiting times from

an empirical and theoretical perspective.

In Chapter 2, we empirically investigate the effect of government targets

on the distribution of patients’ waiting times by applying duration analysis

techniques to waiting time data from 2001/02 and 2002/03 for three specialties:

general surgery, trauma & orthopaedics and ophthalmology. In Chapter 3, we

examine further the variation in the way hospitals and surgeons manage their

waiting lists by exposing detailed patterns regarding the shape of the survival

and hazard curves of patients’ waits. We use an expanded dataset (1997/98

to 2005/06) both in a cross-sectional and across time framework controlling

for factors such as size, type and performance rating for hospitals and activity

level for doctors. We also address the issue of the evolution of waiting time

distributions over time.

Chapter 4 provides a theoretical supply model on how a hospital manages its

stock of patients given its objective function and the constraints it is faced with.

We derive the optimal waiting time distribution and identify important factors

that could explain the differences between the observed empirical patterns.
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CHAPTER 1

Introduction

A common characteristic of all health care systems is that people often have

to wait in person to see a physician or to receive treatment. They devote their

personal time to forming a queue -time that could be spent elsewhere- which

will grow until the cost in time due to waiting equals the value of the good or

service received by the marginal individual (Cullis, Jones and Propper, 2000).

However, in some health care systems, demanders of non-emergency hospital

care are allocated by specialised physicians to explicit waiting lists. Queuing

in such circumstances does not impose a cost in wasted time to the occupants

of the list as they queue in absentia (Lindsay and Feigenbaum, 1984). These

waiting lists constitute a feature of tax-financed systems, where coverage is

universal and consumers face zero price at the point of demand of health care.

Various reasons have been suggested to account for the existence of waiting

lists. Firstly, they serve as a means of prioritisation of patients on behalf of

physicians, usually based on the clinical urgency of medical conditions. Sec-

ondly, they facilitate the scheduling of available resources by using theater ses-
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sions at most efficient and flexible way, for example, by combining long complex

procedures with quicker routine ones (Appleby et al., 2005b). Moreover, waiting

time might correspond to a time period in which some clinical conditions might

improve and thus operations prevented. Hence, their existence enables clinical

purposes based on the argument that every surgical procedure comes with some

kind of risk (Mullen, 1992). Consultants might have various incentives to keep

their lists, such as encouraging implicitly or explicitly their patients to seek

private care when the former work both at the National Health Service (NHS)

and for the private sector (Hamblin, Harrison and Boyle, 1998). It is evident

that patients who prefer to be treated by particular physicians would have a

preference to follow them in private sector instead of remaining in the lengthy

waiting lists of NHS (Yates, 1987).

Most importantly, waiting lists serve as rationing devices in health care

systems where price is zero at the point of demand (Barzel, 1974). The number

of patients waiting at any point in time is being determined by the rate at

which people leave the list, by being admitted for surgery, self-deferring; being

removed due to clinical reasons or dying, relative to the rate at which people join

the list, by the decision by a consultant to admit them. Various determinants

can influence the entry to or the exit from the waiting list. At the same time,

Gravelle, Smith and Xavier (2003a) have demonstrated that waiting times and

waiting list sizes act as signals that have an impact upon both supply and

demand.

Long waiting lists and extensive waiting times are observed for elective

surgery -that is, routine, non-emergency clinical procedures- such as hip or

knee replacement, cataract surgery, general surgery, cholecystectomy, prosta-

tectomy, vaginal hysterectomy, varicose vein surgery, inguinal hernia repair,

coronary artery bypass grafting (CABG) and percutaneous translunimal coro-

nary angioplasty (PTCA). On the other hand, emergency care is not rationed

16



at all and is directly supplied by the hospital accident and emergency depart-

ments. Moreover, even within the group of different types of elective surgery

it has been reported that the waiting times for less urgent procedures such as

hip replacement and cataract surgery are systematically higher than the wait-

ing times for more urgent procedures such as CABG and PTCA (Siciliani and

Hurst, 2003; MacCormick and Parry, 2003).

The existence of long waiting lists and high waiting times has been an issue

in many countries. In the United Kingdom (UK) it has persisted since the

launch of NHS in 1948 and remains as one of the most significant concerns of

the English health care system. It is also present in the Netherlands (Brouwer

et al., 2003) and in Sweden (Hanning, 1996), where long waiting lists have for

many years remained a serious quality problem on the health policy agenda.

One study attempting to compare the extent of the problem among 20 countries

of the Organisation for Economic Co-operation and Development (OECD) and

investigating the possible causes for the variation in waiting times revealed that

countries with the highest waiting times were the UK and Finland followed by

Denmark, Norway, Australia and Spain (Siciliani and Hurst, 2003). As a result,

shortening waiting lists and reducing waiting times represent a significant health

policy concern leading governmental bodies to set targets and develop other

strategies for the amelioration of the problem.

Focusing on the UK, in 1948, NHS inherited a waiting list of around 500,000

patients but ever since and up to the late 1990s, the number of patients waiting

has been growing rapidly. More importantly, the actual waits that patients

faced until treatment have been also quite extensive. The highest peak was

reached in 1998 with 1.3 million patients awaiting admission for hospital treat-

ment half of whom had to wait at least 6 months and 6.5% of whom at least a

year. In addition, more than 450,000 people had to wait more than 3 months

17



for an outpatient appointment1.

Long waiting lists and the time spent on these have been a persistent source

of health policy and political concern in the UK. The existence, complexity and

persistence of the problem has been stimulating the interest of patients, physi-

cians of primary and secondary care, managers of trusts, politicians and policy

makers. The public’s main concern lies in the speed with which the queue moves

rather than the number of people waiting in front of them. The more they have

to wait the more anxious they become while their health status could gradually

deteriorate affecting both their personal and social life. General practitioners

and specialised consultants act according to their own perception of best clini-

cal practice prioritising patients according to medical urgency; yet, at the same

time, waiting lists do reflect upon their professional prestige. Managerial staff

aim at increasing the performance of the organisations they work for, focusing

on efficiency criteria and at the same time trying to abide by national standards.

Policy makers develop measures and initiatives to serve the basic principles em-

bodied in the NHS; universal coverage, free access to health care, high quality

of services delivered, efficiency and equity. Thus, considerable resources and

effort have been directed to reducing waiting lists and waiting times in UK as

they undoubtedly represent a key indicator of NHS’s overall performance.

The purpose of this thesis is to shed light on the mechanism of admitting

patients for elective surgery in the NHS by examining the distribution of their

waiting times. We depart from other studies that focus either on mean waiting

times or proportions of patients waiting more than a predetermined period (e.g.

6 months) by analysing the whole spectrum of patients’ waits, that is the entire

waiting time distribution. Moving one step further, an endeavour to identify the

factors that influence these waiting time distributions is made. In this respect,

the effect of the national target regime on elective waits plays a significant role.

1Historical time series available on http://www.performance.doh.gov.uk/waitingtimes/index.htm.
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The analysis is motivated by the extensive concerns on long lists and waiting

times in the NHS since its creation. In fact, understanding the factors leading

to particular waiting time distributions could enable physicians, health care

managers and policy makers handle them in a more efficient way. In conse-

quence, patients’ dissatisfaction of the health care system’s tardiness could be

weakened.

The aim of this thesis is three-fold. In the first part, we empirically in-

vestigate the effect of maximum targets on waiting times for elective surgery

in the NHS. Compared to the existing literature on the effect of targets on

NHS performance, the new element in this work is the application of duration

analysis, which enables the study of the whole waiting time distribution. The

use of this approach is motivated by the fact that waiting times reflect a spell,

with a well-defined start (decision to join a list) and finish point (hospital ad-

mission for treatment). Based on the insights provided by the first part, we

further study the level of variation of patients’ waiting time distributions by

highlighting their management by suppliers. In the second part, the focus on a

much more in-depth analysis of the diversity of waiting distributions succeeds

in exposing hospital tactics and physicians’ behaviours with respect to their

patients’ waits. This is also an empirical work that exploits the advantages of

the methodology of duration analysis, yet in a less-aggregated and across time

aspect that results in depicting distinct shapes and patterns of the survival

and hazard functions of waiting times. However, the need to understand and

provide a profound explanation of the patterns of distributions observed is im-

perative. This is where the third part of the study comes; to accomplish this,

we move on developing a theoretical supply model of how a hospital manages its

stock of patients for elective surgery. In particular, it is a utility maximisation

problem that derives the optimal behaviour of the hospital with respect to the

waiting time distribution of the patients it treats, given the constraints it faces.
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In that respect, this thesis contributes to the strand of literature that engages

with theoretical models of waiting times.

The introductory chapter is organised as follows. The next section describes

the elective health care system in UK. Then the various policy initiatives to cut

down the long waits are presented. In Section 1.3, we depict the existing litera-

ture on waiting times, both theoretical and empirical. The last section demon-

strates the rationale and aims of the current study and provides a presentation

of the next chapters.

1.1 The main characteristics of the system of elec-

tive surgery in UK

The British NHS is a central government agency and constitutes the principal

provider of health care in the UK. It is publicly funded and patients are not

charged directly for the services they receive. Almost all citizens are registered

within a NHS general practitioner (GP) who acts as a gatekeeper between pri-

mary and secondary health care (Gérvas et al., 1994; Glied, 2000; Forrest, 2003).

If patients experience any ill-health symptoms, they schedule an appointment

with their family GP who, after performing a series of diagnostic tests and if

it is found to be necessary, refers them to a hospital specialist. The specialist,

if necessary, orders further tests and after evaluating the patients’ condition,

decides whether or not they need to be admitted as inpatients. If this is the

case, patients, depending on how severe their condition is, are either admitted

immediately to receive treatment or are allocated to a waiting list for future

elective surgery.

It is worth emphasising the different levels of waiting elapsed between the

first clinical symptoms one faces and his/her admission for a surgical procedure

(Hamblin, Harrison and Boyle, 1998). As illustrated in Figure 1.1, the first
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Figure 1.1: Levels of waiting times within the NHS.

level incorporates the wait to see a GP, which is the first representative of the

health care sector the patient gets in contact with. If the patient’s medical

status requires further investigation he is referred to a specialist; therefore he

has to wait a further time period for a first appointment and subsequent eval-

uation by the doctor. This corresponds to the second level of waiting, which

is surely longer than the first one. It is now the specialist’s turn to perform

diagnostic tests and appropriate exams in order to deliver the correct diagnosis;

these might consist of blood tests, ultrasounds, x-rays, computed tomographies

(CTs) and Magnetic Resonance Imaging (MRIs). Thus, another level of wait

within the system is the one that includes the time for all relevant tests to

be completed. Finally, the last step in this ‘waiting ladder’ comprises of the

waiting time between joining the waiting list of a surgeon and admitted to hos-

pital for the actual operation. This thesis aims at investigating this last wait

that will be referred to as ‘waiting time for elective surgery’. Although there

are different levels of waiting throughout the whole system, they are definitely

not independent to each other; waiting lists management affects the outpatient

follow-ups of operated patients as well as the outpatient inflow2.

Historically, until April 1991, the GPs had no incentives to restrain refer-

2For an analytical review of the levels of waiting for an elective surgery see Appleby et al.
(2005a), page 21 and Harrison and Appleby (2005), page 7.
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rals for elective procedures as the cost of those was covered by geographically

defined entities, the Health Authorities. In 1991, as part of NHS reforms3, GPs

were given the option of becoming fundholders; they could hold a fixed budget

to cover the cost of a range of elective procedures for their patients. ‘District

Health Authorities’ represented the second type of purchaser in the internal

NHS market and were responsible for buying health care services for the pop-

ulation of specific geographical areas. Under the same reforms, hospitals were

renamed as NHS trusts and, although remaining public sector bodies, had to

compete with each other in order to negotiate contracts with the two purchaser

authorities mentioned above.

This reform created a direct incentive to contain referrals by GPs as they

were allowed to retain any budgetary surplus and use it to improve their pa-

tients’ care in other ways. However, there is some controversy with regards to

the net impact of the above mentioned policy shift. Le Grand, Mays and Mul-

ligan (1998) suggested that such restraint did not occur, while others showed

that fundholders had fewer patients admitted (Gravelle, Dusheiko and Sutton,

2002). Moreover, Croxson, Propper and Perkins (2001) suggested that fund-

holding gaming took place during the period of the 1991 reforms of NHS. They

argued that fundholders had an incentive to increase their referrals in the year

before they became fundholders and reduced them just after.

Fundholding was abolished in 1999 and was replaced by new organisations,

the Primary Care Groups (PCGs), which were later to become separate legal

entities as Primary Care Trusts (PCTs). All practices had to join their local

PCTs, which were responsible for the health care of their population by hold-

ing a budget to cover all types of NHS expenditure4. Lastly, a new type of

3For information on the NHS internal market see Appleby et al. (1990), Le Grand (1991);
Propper (1995); Le Grand, Mays and Mulligan (1998); Propper, Wilson and Söderlund (1998);
Propper and Söderlund (1998); Propper, Burgess and Green (2004) and Propper, Burgess and
Gossage (2007a).

4Department of Health (1997a,b).
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NHS trust, called foundation trust, was introduced in 2004 allowing for greater

financial and operational autonomy on behalf of the hospital. These trusts re-

mained within the NHS’s performance inspection system and were part of the

government’s goal to de-centralise the public services5.

1.2 Policy initiatives to tackle waiting lists and wait-

ing times for elective surgery in UK

Long waiting lists and excessive waiting times have stimulated the interest of

policy makers since the launch of NHS. A number of different initiatives have

been developed through the years to deal with this persistent problem. These

policy measures can be directed to influence the demand or supply of elective

care and can be of regulatory, financial, managerial or informational flavor.

Some examples of such policies over the years have been the following: in-

creases in funding, increases or better use of existing capacity (e.g. number of

doctors, nurses, beds), increases of operating and technical support (e.g. ac-

tivities of the National Access Patient Team, Waiting List Action Team, Task

Forces), set up of treatment centres and enhancement of day surgeries, intro-

duction of specialty programmes (e.g. targeting specialties with very long waits

such as ophthalmology and orthopaedics), greater involvement of the private

sector, increases in booking admissions, guidance and management on priori-

tisation of patients and referrals, switching activity away from hospitals (e.g.

support of GPs with special interests and expansion of nursing roles in com-

munity settings), increases of the initiatives of patients and staff (e.g. ‘patient

choice’ and ‘payment by results’), initiatives to reduce the number of people on

the lists, monitoring of waiting lists and publication of routine statistics and

5More information can be found at http://webarchive.nationalarchives.gov.uk/+/dh.gov.uk
/en/healthcare/secondarycare/nhsfoundationtrust/index.htm.
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performance measures either on the system overall (star-rating system) or on

specific fields (national targets for outpatients and inpatients)6.

Before reviewing in detail the use of performance measures and especially

the introduction of targets on inpatient waits, we will briefly pinpoint a couple of

issues. Interestingly, informing patients about the time they are going to spend

on lists is important as it eliminates the distress and the anxiety they feel due

to the uncertainty concerning the time they will receive treatment (Propper,

1990). The main role of the National Booked Admissions Programme, which

was firstly launched in 1998 as a pilot and was expanded later, was to give

patients the opportunity to be made aware of the date of their admission7.

Although, previously, most patients in need for an elective procedure were added

to a waiting list. However, the use of the booking system revealed management

difficulties for hospitals that had to deal with variation in emergency demand.

An additional initiative that strengthened the patients’ rights, gave them

the opportunity to be able to choose another hospital if they faced long waiting

times. Initially, this was set up as a strategy to reduce the number of people

waiting more than 6 months for surgery, yet later on, the view that patients

should select hospitals and not hospitals patients was widely established. At the

beginning, choice was introduced on a pilot basis for heart patients but from

December 2005 all patients requiring elective surgery were offered the choice

between 4-5 hospitals at the point where their GP decides to refer them to

a specialist8,9. At the same time, a new system called ‘Payment by Results’

6More information on the policy initiatives can be found in Harrison and Appleby (2005).
The authors further divide the policies adopted by the government into three categories: phase
1 (1997-2000), phase 2 (2000-2004) and phase 3 (2005-2008 and beyond).

7Comparisons of different admission methods will be discussed in Chapter 2.
8Building on the best: Choice, responsiveness and equity in the NHS - Department of

Health (2003), Choose and book: Patient’s choice of hospital and booked appointment -
Department of Health (2004), Choice at six months. Good practice - Department of Health
(2005).

9More information on the evaluation of the London Patient Choice Project was published
by Burge et al. (2005).
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was introduced to allow for the fact that money had to follow the patient to

the chosen hospital. This programme aimed at linking a hospital’s income to

the amount of work it performed, while at the same time it created incentives

for the hospital to improve performance in order to attract more patients and

reduce costs so as to survive financially.

Performance measures

Performance measures have been commonly used in the public sector in

order to improve accountability, increase productivity and reduce consumers

dissatisfaction of the services provided. This process involves a series of actions

starting with the development of well-defined and observable performance in-

dicators followed by their publication and subsequent monitoring (Bird et al.,

2005). Performance management could comprise of various types of measures

that could be less or more explicitly introduced. Yet, they are strongly linked to

either monetary or non-monetary rewards. Besides the field of education, the

health care service constitutes one of the commonest public sectors applying

aggressive targets in their fight against under-performance.

Some basic information regarding the performance of hospitals in England

and Wales has been available since the early 1980s. The ‘Health Services Man-

agement Centre’ of the University of Birmingham was the first to use perfor-

mance indicators based on routinely collected data. Following this attempt,

the government initiated a programme within NHS (it came as a series of grey

books) by publishing 123 performance indicators for the local health authori-

ties (Smith, 1990). Since 1999 there has been a large increase in the number

of published data on performance indicators of health care providers, with the

introduction of waiting times targets among the most important ones.

Besides the beneficial effect of performance indicators (publication of data,

systematic monitoring of agents, increased productivity, increase of the amount
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of effort towards targeted tasks, decrease of patient disutility and dissatisfac-

tion), a few problems have appeared in their use in the public sector; it is evident

that targets can produce perverse effects as well. Among the most important is

misinterpreting them due to complexity and inconsistency as well as having the

incentive to distort behaviour by the employment of manipulation, gaming and

inappropriate responses. Another significant worry is that well monitored as-

pects could receive a higher priority increasing the peril to shift attention away

from unmonitored, less concrete and poorly measured fields such as quality of

services (Propper and Wilson, 2003).

According to Smith (1993), performance measurement could encourage var-

ious undesirable outcomes such tunnel vision (shift away from unmonitored but

important tasks so as to concentrate to targeted features only), sub-optimisation

(managers pursuit their personal objectives instead of the ones set up centri-

cally), myopia (avoidance to consider long term attributes and concentration on

short term issues), convergence (organisations respond to performance manage-

ment by avoiding extreme performance behaviour resulting in a convergence of

all responses), ossification (behaviours are characterised by a strong attachment

to conventional patterns denying any innovative methodology), gaming (distort

behaviour so as to demonstrate achievement of the performance standards) and

misrepresentation (commitment of fraud).

These problems tend to appear quite frequently in multi-product public or-

ganisations that have multiple principals and face multiple incentives. For ex-

ample, take under consideration the different number of actors that are involved

in such an organisation: the users of the service, the payers, the providers, the

managers of the providers and the politicians of various levels of the govern-

ment. It not difficult to comprehend the extensive range of goals and incentives

these agents have10.

10For a more detailed discussion of these incentives look at Burgess and Ratto (2003) and

26



A characteristic example of such an organisation is the English health care

sector. The introduction of explicit national performance targets took place

with the publication of the NHS Plan in 200011. The proposed strategy con-

sisted of maximum waiting times for elective surgery that health care providers

had to meet, with rewards and penalties for successful and unsuccessful perfor-

mance. Rewards included greater autonomy for hospitals that performed well,

promotions of managers and positive advertising of the institution due to the

publication of waiting times. Penalties comprised of threats, demotions and

dismissals of managers in hospitals that performed poorly and ‘shaming’ of the

trust through the release of its poor performance. In particular, nobody had

to wait more than 18 months by the end of March 2000, 15 months by March

2002, 12 months by March 2003, 9 months by March 2004 and 6 months by

December 2005. Similar targets that focused on specific fields were introduced

for outpatients, cancer patients, patients attending ‘Accident & Emergency’

and patients waiting to book an appointment with their GP12.

Furthermore, an annual ‘star rating’ system consisting both of a small num-

ber of ‘key targets’ and a series of indicators in a ‘balanced scorecard’ was

applied for acute hospitals from 2001 to 200513. Scores ranged from 0 (unsuc-

cessful trusts) to 3 (successful trusts) stars based on the trusts’ performance

according to the criteria mentioned above. It is worth mentioning that six out

of the nine key targets were set up for waiting times with the other three being

financial balance, hospital cleanliness and improvement of the working lives of

staff.

In 2004, the government introduced a new maximum waiting time target

Besley and Ghatak (2003).
11The NHS plan: A plan for investment, a plan for reform, Department of Health (2000).
12A list of all the different waiting list targets announced since 1997 can be found at Appleby

and Coote (2002), page 26.
13Department of Health (2001, 2002), Commission for Health Improvement(2003), Health-

care Commission (2004, 2005).

27



of 18 weeks from the initial referral of a GP to a specialist until admission

for surgery. From the patient’s perspective, this new waiting time target was

quite desirable as it attempted to reveal hidden delays not previously measured

that indeed lengthened their actual waiting for treatment. Indeed, the govern-

ment moved into setting a target that takes into account the complete patients’

journey within the NHS; in other words it considers the total time patients

wait from GP referral to surgery, including any delays in waiting for diagnostic

tests and receiving the results. This time period is now known as ‘Referral To

Treatment’ (RTT)14.

After describing the NHS system, its evolution and the various policy initia-

tives to tackle waiting times, we turn to explore the theoretical and empirical

literature on healthcare provision.

1.3 Related Literature

1.3.1 Theoretical models

The existing literature on waiting times has been extensive15. Economic models

of waiting lists and waiting times have predominantly been developed in the

context of demand and supply models of health care markets. We first review

a series of basic demand models and then move towards the presentation of

frameworks that focus on the supply side of health care market, which is also

the focus of this thesis.

Lindsay and Feigenbaum (1984) develop a demand model of waiting list

queues in order to demonstrate how the healthcare market reaches an equilib-

rium and how changes in the waiting time, the service rate and other variables

affect this equilibrium. They investigate the decisions of the marginal patient in

14Information on RTT can be found at http://www.dh.gov.uk/en/Publicationsandstatistics
/Statistics/Performancedataandstatistics/ReferraltoTreatmentstatistics/DH 089757.

15See Cullis et al. (2000) for a survey.
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a steady state in which the numbers of people joining the list are equal to those

leaving the list. They consider two main assumptions; first, individual demand

is assumed to be unpredictable. This assumption provides a rationale for the

existence of queues and for the waiting lists to be clearing the market. Second,

delay in the receipt of the good lowers the value to the demander. Assuming

that the position in the queue is linked to the date of delivery, the value and

the number of people joining the list will be influenced by the length of the

list. Hence, it is the diminishing value placed on obtaining such a good that

results in demand meeting supply. Their main theoretical finding suggests that

increased service rate (capacity) is not necessarily resulting in reduced waiting

lists. The authors do not model the supply of elective care but just assume that

it is affected by a vector of unknown factors and the waiting time.

Extending on the framework of Lindsay and Feigenbaum (1984), a stream

of theoretical contributions has developed on similar lines in the literature.

These include Cullis and Jones (1986), Gravelle, Dusheiko and Sutton (2002),

Gravelle, Smith and Xavier (2003a,b) and Martin and Smith (2003). Some

authors take under consideration the patient’s choice between the public and

the private sector (Goddard, Malek and Tavakoli, 1995; Martin and Smith,

1999) and find that long waiting times in the public sector may encourage

patients to seek private surgery. Besley, Hall and Preston (1998, 1999) show

that longer waiting lists in the NHS are associated with greater demand and

purchase of private health insurance or private surgery out-of pocket.

In the majority of the articles mentioned above, waiting time is modelled

as a static phenomenon where perfect clearance in the health care market is

assumed. Thus, waiting times are known and deterministic. Among the first

to introduce a dynamic element in the analysis is Worthington (1987, 1991)

who applies queuing theory to hospitals waiting lists. A further step towards

dynamic modelling is achieved by Gravelle, Smith and Xavier (2003a), who

29



employ the methodology of dynamic optimisation in discrete time. They model

the utility function of the hospital manager to include not only current but

lagged waiting time indicators. They do not consider an equilibrium between

demand and supply, yet, for comparative-statics purposes, the authors assume

that providers care only about the effect of current actions on current utility.

Furthermore, one might be interested on the path of reaching a equilibrium

and more importantly on what happens in disequilibrium conditions. The for-

mulation of a comprehensive dynamic model is achieved by Siciliani (2006) who

uses optimal control theory to model hospital incentives within a continuous

time dynamic framework16.

With respect to the stand of literature that investigates the supply side

of elective care one of the first basic models was proposed by Iversen (1993).

Inversen focuses on the elective system of the National Health Service in Norway

and after constructing the production function of health services he models the

long-run equilibrium of a non-cooperative game between the hospital and its

sponsor, the government. He discovers that under this type of game, where

the hospital decides first and the government follows, excessive waiting times

exist under a stackelberg equilibrium. On the other hand, in a Nash equilibrium

where the two players act simultaneously, no excessive waits appear. In another

work, Iversen (1997) investigates the effect of the private sector on the waiting

times of NHS patients. The results suggest that concerns about minimising

the costs of public health care can also lead to maintaining longer waiting lists,

which could induce a shift of patients to the private sector.

Farnworth (2003) builds on Iversen’s work and develops a theoretical model

of how interactions among hospitals that charge different prices for health ser-

vices can determine and affect the equilibrium (average) waiting time. His

16This work is actually modeling the supply of elective services. Based on how expected
waiting time is perceived, the optimal path towards the (steady state) equilibrium is depicted.
The results are also extended to incorporate stochastic demand.
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findings suggest that, under specific circumstances, an increase in the price

charged to one hospital can lower the waiting time for all.

Another three contributions that examine whether waiting times are wel-

fare improving under specific behaviours or decisions of patients and doctors

are those of Olivella (2002), Hoel and Saether (2003) and Barros and Olivella

(2005). The first shows that the movement of patients from the public to the

private sector due to long waits on the former is welfare improving when the

public sector operates with over capacity and the private sector with under

capacity. The analysis is conducted within a framework in which the list is

prioritised by the level of severity of patient’s health status. The second work

reaches similar conclusions within a different structure. They also analyse wel-

fare considerations when there is a concern for equity and examine the optimal

tax/subsidy for private health care.

The work of Barros and Olivella (2005) focuses more on the strategic be-

haviour of doctors in selecting the milder cases to be treated in the private

sector (cream skimming). This study relates to the literature on prioritisation

of a list within the same specialty17 and addresses the rationing of public treat-

ment, that is, only cases that meet particular criteria are admitted. Given the

admissions requirement (rationing policy) and the co-existence, in the same

doctor, of private and public practice, there is scope for patient selection. The

find that full cream skimming18 takes place only with intermediate rationing

policies and partial cream skimming with very stringent (or lax) rationing poli-

cies. Additional studies on cream skimming of low severity patients are those

of Ellis (1998) and González (2005). Moreover, Xavier (2003), Siciliani (2005)

and Brekke et al. (2008) examine further the effect of competition on waiting

times. Unlike the other studies on competition, in which it is assumed that the

17The work on prioritisation is mainly concerned with across specialties differences. See
Cullis et al. (2000) for more details.

18That is, all milder cases are treated in the private sector.
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hospitals are local monopolists, the above papers model competition within a

Hotelling or a duopoly framework.

The last chapter of this thesis develops a model that also focuses on the

supply side of healthcare provision. It does not explicitly consider competition

with other hospitals, nor the strategic interaction with the government. The

aim of our model is the derivation of the whole waiting time distribution of a

given list, and the exploration of relevant supply side factors and their effect

on the optimal (steady state) admittance pattern. In that sense, the work of

Dixon and Siciliani (2009) is similar. Motivated by the drive to compare and

link the two main sources of NHS data on individual waiting times, they con-

struct two measures (i) the waiting time distribution of patients on a list (at a

census date) and (ii) the distribution of waiting times of patients treated. They

show under different conditions what those two measures capture and how they

are linked19. In Chapter 4 we develop the waiting time distribution of measure

(ii) within a supply model.

1.3.2 Empirical models

In the UK, economic models of supply and demand have also been tested empir-

ically (Lindsay and Feigenbaum, 1984; Martin and Smith, 1999, 2003; Gravelle

et al., 2003a; Martin et al., 2007). These studies use cross-sectional or panel

data to investigate the responsiveness of demand for or supply of health services

to waiting times.

In particular, Martin and Smith (1999) use HES data for 1990/1991 and

find a small elasticity of demand with respect to waiting time (-0.20). They

further conclude that increased resources may reduce waiting times without

greatly stimulating utilization. Yet, they use aggregate data of a small area

19However, they do not consider a model.
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(ward) level in England and their model equations are identified by exclusion

restrictions (Windmeijer et al., 2005). Gravelle et al. (2002) propose a model of

the admission process for cataract surgery for a three year period in an English

Health Authority and conclude that admission rates are negatively related to

waiting times and distance to hospital (elasticity was equal to -0.25). Martin

and Smith (2003) use small area panel data to estimate supply and demand

functions for seven specialties and all specialties combined, finding that the

demand elasticity varies between specialties, but is always small. Gravelle,

Smith and Xavier (2003a) develop a dynamic demand and supply model, again

tested using panel data, and find that supply increased and demand decreased

(estimated elasticities for two different models are -0.30 and -0.21) in response to

measures of the previous period waiting time. The authors again use aggregate

hospital utilization data at health authority level for 24 quarters during the

years 1987-1993.

Siciliani, Stanciole and Jacobs (2009) use data for 137 hospitals during the

period 1998-2002 and estimate the elasticity of hospital’s costs with respect

to waiting times (in both cross-sectional and panel data). The results indicate

(whenever significant) inelastic costs and a U-shaped relationship between costs

and waiting times.

Empirical evidence of the effect of waiting time targets in the UK will be

analysed in detail in Chapter 2. Indicatively, it is mainly conducted in a before

and after framework, as for example in Harrison and Appleby (2005), Hauck and

Street (2007), Propper et al. (2007b, 2008a). Propper et al. (2010) introduce

a measure of ‘target pressure’ and examine the kernel densities of waits before

and after the policy initiative.

The use of duration analysis in the study of waiting times literature is

scarce and sporadic. MacCormick and Parry (2003) investigate the differences

in waiting times for four diagnoses of elective general surgery using a sample of
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918 patients in a tertiary level hospital in New Zealand. The authors use the

non-parametric techniques of duration analysis to compare the waiting times of

patients for the four diagnoses. Their findings show that different waiting time

thresholds exist for different diagnoses. The authors, therefore, are in favour of

the application of distinct waiting times that will reflect and correspond to the

natural history of each disease.

Levy et al. (2005) examine whether extra funding for CABG operations in

British Columbia, Canada (1991-2000) had an effect on the time patients spent

on waiting lists. In particular, the authors compare the waiting time until

surgery for equal proportions of patients in synthetic cohorts before and after

the funding became available. Their data set consists of 9,231 records whose

waiting times are treated as duration times. The authors find that time to

CABG shortens after the introduction of the supplementary funding –possibly

due to hospital capacity utilization– and at the same time this effect is not

uniform across different priority groups.

Furthermore, Sobolev et al. (2005) conduct a survival analysis of a cohort

of 1,928 patients waiting to be admitted in the Division of Vascular Surgery at

Queens University in Kingston, Canada for four different surgical procedures

due to vascular disease. Duration analysis reveals different patterns of wait-

ing time distributions and variations among different procedures are compared.

Mainly, they observe shorter times for more urgent groups, although in some

comparisons less urgent patients had a significant chance of admission to more

urgent cases. Patient-related delays in scheduling operations, availability of hos-

pital resources, anticipated length of stay in the IC and cancellations of booked

surgeries may account for this phenomenon. The concern that waiting times

for elective surgery might be determined not only by how many patients are on

the list and the urgency of their condition but also by waiting list management

has been reported previously by the same authors (Sobolev et al., 2000, 2001).
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The studies mentioned above attempt to address and investigate different

questions using duration analysis. Although the adopted design is not the

same among them, they clearly show that duration analysis can reveal various

patterns of waiting times distributions. Some of the limitations of these studies

involve small sample size, observation of not statistically significant results and

in some studies exclusion of censored observations. Our work employs the

technique of duration analysis20 for elective surgery in the UK. We deviate

from the above mentioned studies in terms of both coverage and scope. Firstly,

we provide a wide and systematic analysis of UK waiting time data both across

time and at different degrees of disaggregation (hospitals, operative procedures,

physicians). Secondly, we use a much larger sample. Most importantly, we

utilise duration analysis, and its unique insights, to study the effect of waiting

time targets.

1.4 Rationale and aims of the study

As mentioned previously, this thesis is related to the strand of literature that

examines the elective health care system in UK. Interest in the elective waiting

list mechanism is motivated by its complexity and the view that waiting for

treatment represents a key indicator for NHS performance. The core strategy

in England since the publication of the NHS Plan has been to use maximum

waiting times targets every hospital should abide to.

The main purpose of this thesis is to investigate the elective admission

process by taking under consideration the waiting times of all patients on the

list and not just measures of central tendency such as mean or median waiting

time. In consequence, we look into the whole waiting time distribution of

patients, empirically, with the application of duration analysis techniques and

20Our empirical methodology is discussed in detail in Chapter 2.
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theoretically, with the development of a supply model that derives endogenously

the entire optimal waiting time distribution of patients.

The second chapter of the thesis explores the impact of government targets

on the distribution of waiting times of elective patients in the NHS21. How does

the probability of admission for any given patient vary during the time that

they wait and how is it affected by the targets? What incentives do targets

create to hospital managers? Do hospitals change their behaviour as a result

of the targets?

In order to address these issues we estimate the survival and hazard func-

tions of patients’ waits at the level of specialty and operation of all NHS hos-

pitals in UK. We start examining the waiting times distribution at such an

aggregated level due to the universal nature of the policy initiative; maximum

targets were addressed to all elective patients of every medical specialty in all

trusts all over UK. We also explore differences by type of admission (waiting

list, booked, planned surgeries) and by a small set of seven trusts geographically

spread across England. In order to identify changes of responses to targets we

utilise data for two years, 2001/2002 where the maximum target was set for 15

months and 2002/2003 where the target was trimmed down to 12 months. We

focus on three elective specialties; general surgery, trauma and orthopaedics

and ophthalmology.

The third chapter of the thesis aims at examining further the variation in the

way hospitals and physicians manage their waiting lists. The rationale of this

piece of work lies in exposing detailed patterns regarding the shape of survival

and hazard curves of patients’ waits. It is an informative piece of investigation

as we learn more about the hospitals’ and doctors’ behaviour on waiting list

21The second chapter of the thesis is derived from Dimakou et al. (2009). Regarding the
division of responsibilities among the co-authors, I was responsible for all the analyses under-
taken while Professors David Parkin and Nancy Devlin were the project supervisors. John
Appleby provided useful information on HES data.
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administration and patient admittance for treatment. To achieve this goal, we

expand the initial empirical analysis by exploring wait data for a greater time

period (financial years from 1997 to 2005) for an expanded set of hospitals at

less aggregated levels. We further examine the waiting time distributions of

elective patients by specific consultants.

In particular, we apply the methodology of duration analysis either in a

cross-sectional or an across time framework controlling for factors such as size,

type and performance rating for hospitals and activity level for doctors. We

also address the issue of the evolution of waiting time distributions over time.

In the fourth chapter of the thesis, we build on our empirical findings and

develop a supply model of how a hospital manages its waiting lists given its

objective function and the constraints it is faced with. This chapter focuses

at matching important empirical patterns of the waiting times distributions of

hospitals’ patients and identifying possible factors that could explain the ob-

served distributions. Two are the distinct features of our theoretical framework

(i) the dynamic element of the model and (ii) the derivation of the entire opti-

mal waiting time distribution of patients treated at the steady state. On that

basis, we also construct and compare the corresponding survival and hazard

functions. We solve the model numerically and perform several comparative

statics exercises.

As a whole, this thesis explores the mechanism of patients’ admittance for

elective surgery in UK and their associated waiting time distribution from both

an empirical and a theoretical perspective. The former reveals both the great

level of variability in the shape of the survival and hazard curves of patients’

waiting times and their evolution over time. The latter contributes to the

theoretical literature on waiting times models by deriving endogenously the

waiting time distribution and provides valuable insights on the potential factors

that may explain the distinct empirical behavioural patterns.
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CHAPTER 2

The impact of government targets on

waiting times for elective surgery in the

NHS

2.1 Introduction

Long waiting lists and extensive waiting times for elective surgery have been

a persistent source of health policy and political concern in the UK and other

OECD countries (Siciliani and Hurst, 2003). Waiting lists function, in part,

as a non-price rationing device to reconcile the differences between supply and

demand that arise when coverage is universal and those demanding -patients or

their agents- face zero price at the point of demand (Cullis, Jones and Propper,

2000). Waiting times and waiting list sizes act as signals that have an impact

upon both the supply of and demand for health care (Gravelle, Smith and

Xavier, 2003a).

Policies intended to reduce waiting lists may impact on either supply or de-
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mand or both. Supply-side responses include extra funding for elective surgery,

tackling supply bottlenecks, provider monitoring and management of waiting

lists. Demand management includes promulgating guidelines for appropriate

referral and explicit methods for prioritising patients. Historically, UK NHS

policies on waiting tended to reflect a view that waiting lists were a backlog of

untreated patients, which could be addressed by short-term increases in activity

(Hamblin, Harrison and Boyle, 1998).

More recently, the emphasis of policy has shifted from waiting lists to wait-

ing times, on the grounds that patients and policy makers are more concerned

about the speed with which the queue moves -and thus the time spent on the

list- rather than the number of people waiting.

While current NHS policy combines a number of the supply- and demand-

side strategies noted above, the main strategy in England since the publication

of the NHS Plan in 20001 has been to use waiting times targets (Harrison and

Appleby, 2005). These stipulate maximum waiting times for elective surgery

that health care providers should meet, with rewards and penalties for success-

ful and unsuccessful performance. The inpatient waiting time target has been

progressively reduced from 18 months in March 2000 to 15 months in March

2002, 12 months in March 2003, 9 months in March 2004 and 6 months in De-

cember 2005 (Appleby et al., 2005b). The most important feature of the targets

lies in their national and universal character; they apply to all elective patients

of every medical specialty in all trusts all over UK. Furthermore, in 20042, the

government presented a new target for the end of 2008, which incorporated a

maximum wait of 18 weeks from initial referral of a patient by a general practi-

tioner for an outpatient consultation and any subsequent treatment, including

a hospital stay if needed. It is apparent that in recent years more attention

1The NHS plan: A plan for investment, a plan for reform, Department of Health (2000).
2The NHS Improvement Plan: Putting people at the heart of public services, Department

of Health (2004).
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is drawn on the complete patients journey within the NHS, that is the total

waiting time of patients from GP referral to surgery.

Since 2000, there has been substantial progress in reducing waiting lists,

overall waiting times and the number of patients waiting over 6 months, as

Figure 2.1 demonstrates.

Figure 2.1: Provided-based inpatient waiting lists and times in the English
NHS, Quarterly, 2000-2006. Source: King’s Fund, London.

However, seven years after the introduction of the NHS plan and despite the

considerable resources and effort that have been directed to reducing waiting

lists and waiting times, the number waiting for inpatient treatment is around

750,000, with just over 1,000 still waiting 6 or more months, and just over

a quarter still waiting over 3 months. A further one million are waiting for

an outpatient appointment; and around one million are waiting for various

diagnostic tests to be carried out, although the extent of the overlap between

these latter figures is impossible to determine3.

3http://www.performance.doh.gov.uk/waitingtimes/index.htm
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There are a number of concerns relating to the use and impact of these

targets, especially, as they become even more stringent. Principal among these

is the extent to which targets distort clinical priorities, by changing the order,

and thus speed, with which patients are treated. The National Audit Office

reports that 20% of consultants surveyed in three specialties stated they had

changed the order they had prioritised patients in order to meet government

targets4.

In one respect, this changed order of priorities might be considered not as

an unwanted or unanticipated side effect, but rather as an intended outcome.

Although there is evidence to suggest that the length of a patient’s wait may

have influenced clinical decisions to admit even before the introduction of tar-

gets (Harrison and Appleby, 2005), presumably the targets reflect an explicit

view that whatever clinical or social factors previously determined priority for

treatment did not place sufficient weight on time waited, in particular, max-

imum time waited. However, if providers are meeting targets by substituting

less urgent cases, with less ability to benefit, for more urgent cases, with higher

ability to benefit, then this would be a potential cause for concern on both

economic and ethical grounds.

The challenge in analysing the number, importance and effect of these

changes in admission decisions arising from the targets is that the admission

criteria without targets are neither clearly specified nor consistent. Individual

clinicians assess patients’ conditions according to their own personal judge-

ments of clinical urgency. There are neither gold standard admission criteria

nor any systematic scoring system in widespread use in the UK to aid between-

patient prioritisation. Cullis and Jones (1976) advocated such an approach

over 25 years ago, and there are examples of such systems from other countries

4Inpatient and Outpatient waiting in the NHS. Report by the Comptroller and Auditor
General., National Audit Office (2001).
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(Siciliani and Hurst, 2003; Hadorn and Holmes, 1997).

More fundamentally, neither the way in which providers meet the targets

nor what differentiates successful from unsuccessful hospital trusts with respect

to the targets are clear. For example, targets may be met mainly by increasing

surgical throughput -reducing waiting times for all patients- or by substituting

higher wait for lower wait patients, or a mix of both. The targets create incen-

tives which might be expected to affect both manager and clinician behaviour.

Evidence on the effects of the targets tends to focus on average waiting times

or the total number of those waiting for specified periods; the effect on the dis-

tribution of waiting times is less well understood. Harrison and Appleby (2005)

compared waiting times distributions for orthopaedic surgery before and after

the introduction of targets, with differences in the distributions used to identify

changes in admission patterns. The results suggested that “...any reordering of

cases had less to do with substituting very short wait (presumed urgent) cases

with longer wait (presumed less urgent) cases but rather that the latter dis-

placed some (less urgent) ‘filler cases’ -that is, those with short operating times

which could be used to make best use of available theatre time”. However,

these results rely on relatively crude before-and-after comparisons of waiting

times distributions, so the conclusion remains somewhat speculative. The same

view is also supported by Propper et al. (2008a) who state that shorter waiting

times might have been achieved by targeting less needy patients but actually it

was not evident that it happened.

Only a few other papers in the existing literature of waiting times exam-

ine the effect of targets on the elimination of long waits in the NHS and the

subsequent improvement of hospitals performance. As mentioned in chapter 1,

Smith (1990, 1993), Propper and Wilson (2003) and Bird et al. (2005) review

the effects of performance management in health care and in the public sector.

They all agree that such indicators can be manipulated by public organisations
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(e.g. hospitals) so as to falsely declare accordance to targets. Yet, they do not

provide any theoretical or empirical model to support their views.

Another attempt to reveal the effects of the different policy initiative of

waiting time targets in England is made by Alvarez-Rosete et al. (2005) and

Bevan and Hood (2006a,b). They all conclude that the target regime trimmed

down the waiting times of elective patients5,6. However, the former study only

employs descriptive statistics in a simple before-and-after analysis of a very

small number of indicators, where both the quality and comparability of the

data between the countries tested is questionable, while in the latter, statistical

analysis of waiting times is only limited to plain illustrations of frequencies

of patients waiting specific periods of time, with no consideration at all on

wait distributions or more sophisticated modelling. Further, the presence and

mechanism of gaming is not straightforwardly demonstrated.

Thus, the segment of research that followed (Hauck and Street, 2007; Prop-

per et al., 2007b, 2008a,b, 2010; Besley et al., 2008, 2009) utilise a mixture

of econometric models to estimate the effect of targets on performance in the

health sector7. They all take advantage of the different timing and nature of

5Alvarez-Rosete et al. use performance data for England, Scotland, Wales and Northern
Ireland in an attempt to compare a variety of indicators (health indicators such as mortality
ratios and life expectancies, NHS expenditure per capita, availability of hospital beds, staff
numbers, activity measures and waiting times) for years 1996/1997 (before the devolution)
and 2002/2003 (after the devolution).

6The two studies by Bevan and Hood examine whether the star-rating system for NHS
trusts improved performance in England. In the first, the authors, after presenting the per-
centages of patients waiting longer than 6 and 12 months for treatment for 1999-2005, conclude
that the stricter policy of ‘naming and shaming ’ in England created lots of pressure to reduce
waiting times for elective surgery. As a result, it ameliorated performance but at the same
time gaming was evident. In the second, the authors, after providing assumptions regarding
the way the government sets priorities and measures performance (idea of synecdoche) and
regarding the gaming (defined as hitting the target and missing the point), they conclude that
targets have operated as ‘management and terror ’ in order to achieve wait reductions drawing
parallels with the Soviet regime.

7Hauck and Street analyse routine data collected over a six year period in three English and
one Welsh hospital close to the English-Welsh border employing the techniques of OLS and
PROBIT estimation. Propper et al. (2007b, 2008a) use the difference-in-difference methodol-
ogy to compare performance in reducing waiting times in England and Scotland while Besley,
Bevan and Burchardi (2008, 2009) undertake the same analysis for England and Wales.
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the policy measures of elective treatment (natural experiment) between Eng-

land and Scotland/Wales and similarly report greater reductions of extensive

waiting times of elective patients in England compared to the other two.

Interestingly, Propper et al. (2010) introduce a measure of ‘target pressure’

defined as the ratio of the number of patients at the end of the previous quarter

whose waiting times will exceed the end of the quarter target if left untreated

divided by the total number of patients waiting at the end of the previous

quarter. By illustrating the kernel densities of waits before and after the policy

initiative, they suggest that the distribution of waits in England was slightly

pulled leftwards at the right tail, especially for 2003/2004. However, these com-

parisons are not very informative. The authors conclude that targets achieved

their objective and led to a significant fall of inpatient waiting times, however,

not due to the gaming activities that had been advocated by some. Further-

more, among their findings of the effects of the target regime are the increase

of elective admissions, the unchanged order in which patients were treated, the

same percentage of urgent cases and the absence of any impairment of quality

indicators. Although some evidence of waiting list manipulation was evident

-an increase of suspensions and removals- it did not cause any alterations to

overall patient outcomes.

The aim of this chapter is to empirically identify the impact of government

targets on the distribution of waiting times in the NHS. We depart from the

above-mentioned studies by exposing the whole spectrum of patients’ waits

and its possible alteration due to the imposition of universal targets. The

relevant literature does not pay much implicit attention to the examination and

evolution of waiting time distributions; due to the fact that previous studies

rely on relatively crude before-and-after comparisons of average waiting times

or wait distributions, the effect of targets on the distribution of waiting times

remains to be investigated. Therefore, there is scope for further research so as
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to enlighten the waiting list system and its response to policy initiatives.

The focus on a more in-depth analysis of the waiting time distributions is

motivated by the following considerations. Firstly, the same average waiting

time might correspond to totally different waiting time distributions. Although

averages of waiting times might remain constant over years, a whole series of

distinct hospitals’ behaviours with respect of admissions rates might have taken

place. Secondly, it would be helpful to acquire as much information as possible

regarding the ways hospitals and physicians behave in the process of decision-

making -decision to join a list, decision to admit for treatment- of patients’ flow

into the system.

To achieve this, we employ the techniques of duration analysis that are

proven a valuable tool in dealing with variables that represent time periods; on

top of this, they reveal the overall distribution of such spells. We use adminis-

trative data on three specialties -general surgery, trauma and orthopaedics and

ophthalmology- for all the NHS trusts in England.

Specifically, we address the following questions: (i) How does the probability

of admission for any given patient vary during the time that they wait? (ii)

How is the probability of admission for any given waiting time affected by the

targets? (iii) Can variations in waiting times be explained by clinical, patient,

or provider-level characteristics? (iv) What implications may be drawn from

our results with respect to providers managerial responses to the targets?

The structure of the remainder of the chapter is as follows. The next section

outlines the features of the methodology employed and describes the data. In

Section 2.3, the main findings of the empirical analysis are discussed. These

include empirical estimation of the waiting time distributions at different levels

of disaggregation and in relation to the introduced waiting time targets, as

well as covariate analysis determining the importance of patients’ and clinical

characteristics on the waiting times. Section 2.4 provides concluding remarks.
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2.2 Methodology: Duration analysis of waiting times

data

Duration analysis is the usual label applied in econometrics to a set of techniques

known in biomedical sciences as survival analysis, in other social sciences as

time-to-event analysis and in engineering as failure-time analysis or reliability

analysis. It consists of parametric and non-parametric methods for estimating

survival and hazard functions, explained below, which permits comparison of

the duration of states of interest for different groups and estimation of the

impact of explanatory variables on duration (Cox and Oakes, 1984; Collett,

2003)8.

In Economics and other disciplines interest is drawn to variables that come

in the form of a specified time period or duration, which is the time elapsed

until a certain event occurs9. A well defined origin (date of entering the state

of interest) and exit (date of leaving the state of interest) define the spell length

or spell duration. In Economics, these data are referred to as duration data.

In the context of this study, we are interested in the duration of waiting,

which is a state initiated by referral to join a list and terminated by admission

for treatment. The duration of waiting is treated as a continuous variable in our

empirical analysis. The following graph depicts the process of creating duration

spells of various lengths (waiting times) for all individuals admitted for surgery

within 2002/2003.

8For more information on survival analysis techniques see Miller, Gong and Muñoz (1981);
Allison (1984); Kalbfleisch and Prentice (1980); Fleming and Harrington (1991); Elandt and
Johnson (1999) and Hosmer, Lemeshow and May (2011).

9Examples of applications from different disciplines that use duration analysis techniques
are shown in Table 2.8 at the end of this Chapter.
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Figure 2.2: Wait spells of patients admitted for surgery during 2002/2003.

Duration analysis offers several advantages in analysing waiting time data.

First, as mentioned before, it looks at the distribution of waiting times, which

generates deeper insights than methods that focus on average waiting times.

Secondly, it takes account of the fact that waiting times are not usually normally

distributed. Thirdly, it allows for censored observations, where either the date

of referral or of admittance is not known. However, in this study the data

set does not include censored observations; this will be explained in the next

section of the chapter.

2.2.1 Survival and Hazard functions

Two key concepts in duration analysis are survival functions and hazard func-

tions. Let t be the length of a completed spell. It is the realisation of a

continuous non-negative random variable T with a probability density function

(pdf), f(t), and a cumulative distribution function (cdf), F (t). In the survival

analysis literature, f(t) is also known as the “failure probability function” and

F (t) as the “failure function”.

The failure function (cdf) represents the probability that duration time is
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less or equal than some value t.

F (t) = P (T ≤ t), t ≥ 0. (2.1)

This implies that the survival function, S(t), which is the complement of F (t),

is equal to:

S(t) = P (T > t) = 1− F (t), t ≥ 0. (2.2)

It represents the probability that an individual survives from the time origin

to some time beyond t. The mean survival time is the area under the survival

curve:

E(t) =

∫ ∞

0
S(t)dt.

Both F (t) and S(t) are probabilities and therefore inherit the properties of

probabilities. In particular, the survival function lies between zero and one;

it is equal to one at the start of the spell (t = 0) and is then decreasing as t

increases. The first order derivative is negative, while the second can be either

positive or negative:

0 ≤ S(t) ≤ 1, S(0) = 1, S(∞) = 0,
∂S

∂t
≤ 0,

∂2S

∂t2
>< 0.

The pdf is the limiting value of the probability of failing to survive within the

interval t and (t+∆t) as ∆t tends to zero:

f(t) = lim
∆t→0

P (t ≤ T < t+∆t)

∆t
. (2.3)

This density function does not summarise probabilities; it may be greater than

one in value but it is always non-negative:

f(t) ≥ 0.
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Easily seen from the following two formulae, the pdf is the slope of the cdf and

the cdf is the area under the curve of the pdf:

f(t) =
∂F (t)

∂t
= −∂S(t)

∂t
and F (t) =

∫ t

0
f(t)dt.

The hazard function, h(t), is widely used to express the risk or hazard of failure

at some time t and is obtained from the probability that an individual fails to

survive in the interval (t, t+∆t) conditional on survival up to that time.

h(t) = P (t ≤ T < t+∆t|T ≥ t).

This conditional probability can be expressed as a probability per unit time by

dividing by the time interval ∆t, to give a rate. The hazard function h(t) is the

limiting value of this quantity as ∆t tends to zero. So,

h(t) = lim
∆t→0

P (t ≤ T < t+∆t|T ≥ t)

∆t
, (2.4)

which is equal to f(t)
S(t) =

∣∣S′(t)
S(t)

∣∣.
The function h(t) is also known as the hazard rate, the instantaneous death

rate, the intensity rate, the force of mortality or the inverse Mills ratio. In the

context of our application, h(t) is the instantaneous rate of admission.

It should be stated that the hazard rate is not a probability and therefore

does not have the properties of probabilities. Like the f(t), the only restriction

implied by its specification is that h(t) ≥ 0.

Moreover, the integrated or cumulative hazard function, H(t), shows the

expected number of failures that have occurred by time t:

H(t) =

∫ t

0
h(t)dt.
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It follows that

h(t) = − ∂

∂t

[
logS(t)

]
, S(t) = exp

[
−H(t)

]
and H(t) = − logS(t). (2.5)

It is important to note that whatever functional form is chosen one can derive

all the other functions from it. In practice, it is advantageous to model the

hazard function and derive the other functions from that.

2.2.2 Specific functional forms of the survival and hazard func-

tions

The hazard rate h(t) is particularly useful in duration data analysis as it repre-

sents the risk of failure at some time t. Sometimes, there is available information

as to how this rate could change over time and specific distributions of h(t) are

adopted. Yet, more often, there is no obvious shape for it and any distribution

over non-negative values could be a possible candidate.

The commonest functional forms that have been used in the literature com-

prise of the exponential, weibull, log-normal, log-logistic, generalised gamma

and gompertz. These distributions have been described by several authors using

different parameterisation; we mainly follow the specification given by Collett

(2003). The various functional forms for the survival and hazard functions of

the above distributions are summarised on Table 2.1.

2.2.3 Estimation of the survival and hazard functions

The survival function can be estimated by various methods among which the

most important are the life table estimator and the Kaplan-Meier estimator

(KM). The life table is one of the oldest techniques to present lifetime data by

illustrating the survival experience of a cohort of individuals who are grouped
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Table 2.1: Functional forms for the survival and hazard functions
Hazard function Survival function Parameters

Exponential λ e−λt λ

Weibull λγtγ−1 e−λtγ λ, γ

Gompertz λeθt exp
(
λ
θ (1− eθt)

)
θ, λ

Lognormal

1
σ
√

2π
t−1 exp

(
− (log t−µ)2

2σ2

)
1−Φ( log t−µ

σ )
1− Φ

(
log t−µ

σ

)
µ, σ

Log-logistic eθktk−1

1+eθtk
(1 + eθtk)−1 θ, k

Generalised gamma

θλρθtρθ−1 exp

(
−(λt)θ

)
Γ(ρ)

1−Γ
(λt)θ

(ρ) 1− Γ(λt)θ(ρ) λ, θ, ρ

Source: Collet (2003)

in well defined time intervals. However, our interest lies on the non-parametric

estimation of the survival function using the KM or product limit estimator.

To begin with, suppose we have a single sample of ungrouped complete

duration times. Their survival function can be estimated by the ‘empirical

survival function’ given below:

Ŝ(t) =
number of observations with duration spells ≥ t

number of observations in the data set
.

We assume that the estimated Ŝ(t) is constant between two adjacent fail-

ures, hence when we plot it against t a step-function is created. Similarly, the

‘empirical distribution function’ F̂ (t) is given by F̂ (t) = 1− Ŝ(t).

To incorporate censored observations in the analysis some modification is

needed. Kaplan and Meier (1958) provided such extension by the introduction

of the “product limit or Kaplan-Meier” estimate. It is defined as follows: Sup-

pose that we have information on n individuals and that there are k distinct

times t1 < t2 < ... < tk at which failures occur. Some of these individuals might

be right-censored (denoted as c). Thus, we suppose that there are k failures

times amongst the individuals where k ≤ n. If we rank them in ascending

order, the j-th is given by t(j), for j = 0, 1, 2, ...r. If dj represents the number
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of individuals observed to fail at time tj , nj the number of individuals at risk

at time tj , and δ an infinitesimal time interval, then the probability that an

individual fails within the interval (tj − δ, tj) is given by dj/nj . The estimated

probability of survival is given by (nj − dj)/nj . Given the way these intervals

were constructed, the probability of surviving from tj to (tj+1 − δ) is one and

the joint probability of surviving from (tj−δ) to tj and from tj to (tj+1−δ) can

be estimated by (nj − dj)/nj . As δ tends to infinity, this becomes the estimate

for the probability of surviving between tj and tj+1. The KM estimate for the

survivor function is obtained by the following formula:

Ŝ(t) =

j∏
t=0

nj − dj
nj

.

This represents the product of one minus the number of failures divided by

the number of individuals at risk or the product of one minus the “exit rate”

at each of the duration times. From the estimated S(t) one can derive the

estimates for F (t), f(t), H(t) and h(t).

The standard error of the KM estimate, that is the square root of the

estimated variance of the estimate, is given by the Greenwoods formula:

se
{
Ŝ(t)

}
≈ Ŝ(t)

{
t∑

t=0

dt
nt(nt − dt)

} 1
2

.

At the tails of the Ŝ(t) distribution, the estimate of the variance using the

above formula can underestimate the true variance. Alternative formulas are

used to avoid such problem (Peto et al., 1977).

The KM estimate is formed as a product of a series of estimated probabilities

and is the limiting value of the life table estimate as the number of intervals

tends to infinity and their width tends to zero. For the above reason, it is also

known as the product-limit estimator of the survival function.
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An alternative way to estimate the survival function especially for smaller

samples is the Nelson-Allen estimate. For more details, visit Collett (2003).

Estimation of the hazard function can be also achieved by the life-table and

the KM estimates. In practice, estimates of the hazard function obtained by

the KM estimator
{
ĥ(t) =

dj
nj(tj+1−tj)

}
tend to be irregular. However, there

are a number of ways for smoothing the hazard function, such as the kernel

smoothed estimate, enabling the identification of any possible patterns.

2.2.4 Comparison of the survival functions of two or more groups

of duration data

The simplest way of comparing the survival times obtained from two groups of

individuals is to graphically plot the corresponding estimates of the two survival

functions on the same axes. Moreover, hypothesis testing enables us to assess

whether a possible difference between the survival curves of the two groups

is real or a result of chance variation. Two of the commonest non-parametric

procedures to evaluate group differences are the log-rank test and the Wilcoxon-

Breslow-Gehan test. Below we summarise the different methods and formulas

for testing the equality of survival functions across groups.

Definitions-Hypotheses-Test statistics

Let t1 < t2 < ... < tk represent the ordered failure times, dj be the number

of individuals observed to fail at time tj , nj is the number of individuals at

risk just before tj , and dij and nij denote the same things for group i, where

i = 1, 2, ..., r.

The null hypothesis that there is no difference in the survivor experience

of the individuals in the r groups is tested against the alternative that at least
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one of these is different from the others.

To access the above hypotheses we evaluate the difference between the ob-

served number of individuals in group i that fail at time tj and the expected

number of failures given the null hypothesis is true.

The expected number of failures group i at time tj is eij = nijdij/nj .

By summing the differences between the observed and expected failures over

the total number of failure times, in the i groups, we get a test statistic of:

U =
k∑

j=1

W (tj)(d1j − e1j , ..., drj − erj),

where W (tj) is a positive weight function that takes the value of zero when nij

is zero.

Placing different weights at each failure time (tj) gives rise to different tests:

Test W (tj)

Log-rank 1

Wilcoxon-Breslow-Gehan ni

Tarone-Ware
√
ni

Peto-Peto-Prentice S̃(tj)

Fleming-Harrigton Ŝ(ti−1)
p
[
1− Ŝ(ti−1)

q
]

Note that S̃(tj) is the estimated KM survival function value for the combined

sample at failure time ti and S̃(tj) =
∏

ℓ:t≤tj

(
1− dℓ

nℓ+1

)
.

2.2.5 Duration analysis of waiting times

In our application, a survival function shows the probability of a person remain-

ing -or surviving- on the waiting list beyond a given time. In other words, the

survival function shows the percentage of people admitted to hospital from the

waiting list and the variations in this proportion as waiting time increases. It
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also provides an estimate of the average waiting time as the integral of the sur-

vival function, though for data that are not censored this is merely an alterna-

tive calculation to a straightforward mean. An advantage of survival functions

is the ability to observe patterns of waiting list behaviour over time; the same

average waiting time might be generated by very different distributions of wait-

ing time, reflecting different ways of managing lists. We estimate the survival

functions using the non-parametric KM estimator described above. Survival

functions can be compared between different groups, defined by, for example,

illness, treatment, doctor or patient characteristics, and the log-rank test can be

used for statistical testing of differences between them. The impact of variables

that affect waiting time patterns can also be analysed.

The hazard function shows the rate at which patients leave the waiting list

at a given time. Specifically it represents the probability that an individual is

admitted for surgery conditional on having waited in a list up to that time. For

example, if the hazard function is constant -the instantaneous rate remains the

same at all times- this generates an exponential survival function of the form

S(t) = e−(λ)t, where λ is the hazard rate. The advantage of examining hazard

functions is that it may reveal patterns of waiting list behaviour that would not

otherwise be apparent. For example, if management effort in clearing waiting

lists varies over time, the probability of a patient being admitted at a particular

time will vary -as the length of time that they have had to wait increases, the

probability of being admitted may rise, fall or remain constant.

Regression analysis can also be employed on duration data. Parametric es-

timation models for durations have two flavours, which depend on assumptions

about the hazard rate. Proportional hazard (PH) models assume that there is

a baseline hazard function that depends on time but not on other variables that

affect duration, and is therefore common to all individuals. These other vari-

ables, which are usually assumed to be time-invariant, essentially scale the haz-
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ard function for each individual. A valuable technique in estimating PH models

is the semi-parametric Cox regression, which does not require any assumption

about the hazard rate, simply the impact on it of the other variables. Acceler-

ated failure time (AFT) models allow scaling to vary over time. Although these

are therefore more flexible, they are entirely reliant on assumptions about the

underlying hazard function; there is no equivalent of Cox regression.

2.3 Waiting times data

2.3.1 The structure of Hospital Episode Statistics

In UK there are two official waiting time datasets. The first comprises the

Hospital Episode Statistics (HES) database which provides the waiting times

of patients treated in a given financial year10. Each year’s data consists of all

admissions within that year and records both the date the patient was placed

on the waiting list and the date he was admitted to the hospital to receive

treatment. Thus, the measure of waiting time is constructed by the difference of

the two dates. The second source of data stems from the Department of Health

waiting list returns11, a cross-sectional measure which contains the time patients

spend on the list at a particular census date. The above measures of waiting

times are fundamentally different. For more details see Dixon (2004) and Dixon

and Siciliani (2009). Due to the fact that the first offers complete waiting times

of treated patients -even thought the spells are generated retrospectively- while

the second constitutes a snapshot of incomplete waiting times currently on the

list, it serves best the scope of our research to work with HES.

Data were provided by the HES database of the Department of Health. This

10http://www.hesonline.nhs.uk
11http://www.performance.doh.gov.uk/waitingtimes/index.htm and
http://www.dh.gov.uk/en/Publicationsandstatistics/Statistics/Performancedataandstatistics

/HospitalWaitingTimesandListStatistics/index.htm
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service is run by the ‘Health and Social Care Information Centre’12 through

‘Northgate Information Solutions’. HES data cover episodes of care for NHS-

funded admitted patients that were treated in NHS trusts, primary care trusts

or in the independent sector. It constitutes a record-level database of hospital

admissions in all NHS trusts in England since 1989, with more than 12 million

inpatient records per year, and outpatient records since 2003, comprising more

than 40 million records per year. Although private hospitals are not included,

private patients treated in NHS hospitals are. Information on personal, admin-

istrative, geographical and clinical characteristics is submitted on an annual

base by NHS Trusts to the ‘NHS Wide Clearing Service’ and from December

2006 to the ‘Secondary Uses Services’ (SUS). The latter, after making the data

available to the commissioners, include them in their database. At a particu-

lar and pre-arranged date, SUS send an extract from their database to HES.

After this point HES data is fixed as opposed to SUS data that keep changing.

The next step in the processing cycle comprises the validation and cleaning of

the extract by HES. Data quality reports and checks are completed at various

stages in the above cycle.

As stated in the previous paragraph, before making information available,

HES data quality team is responsible for cleaning all incoming data13. HES

performs checks and makes corrections where errors are identified. This cleaning

system consists of four stages; provider mapping, automatic cleaning, manual

cleaning and derivation. They also generate quality reports and derive new

variables that might be of interest for providers and HES users. Yet, the fact

that data are gathered from a large number of trusts with each of them having a

different administrative system can create concerns about the quality of data as

a whole. There might be well-organised trusts that provide high quality data,

12It was previously known as the ‘NHS Information Centre’.
13http://www.hesonline.nhs.uk/Ease/servlet/ContentServer?siteID=1937&categoryID=376
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but at the same time there might be trusts with poor information systems.

Thus, HES sets special data quality indicators to improve the quality of the

data collected. It is worth mentioning that the quality of the data is inspected

at various stages of the process; at SUS and both during the HES administration

of it and even after its publication.

Furthermore, data security and patient confidentiality issues are quite crit-

ical so as to limit the possibility of identifying particular individuals -either

patients or consultants- through sensitive information. That is the reason why

HES provides tables with data in an aggregated form while a ‘Data Access Ad-

visory Group’ is responsible for dealing with requests for sensitive data. The

original HES protocol, which was updated in 2009, and the HES user guide

supply guidelines for the handling of data aiming at protecting the privacy of

individuals and meeting all the required security standards14.

More specifically, the data are collected by financial year and among oth-

ers include information on specialty, diagnosis, operation, healthcare resource

group, admitting hospital, type of admission, waiting times, length of stay and

patient characteristics such as age, sex, ethnicity and residence. Through the

years HES has been updating the items it provides and has been enriched with

new variables such as codes of GP practice, pseudonymised consultant codes

and socioeconomic domains.

2.3.2 Exploratory data analysis

HES data for 2001/2002 and 2002/2003 covering the English NHS are analysed.

Due to the fact that we have the waiting times for all the admissions recorded

in each year the data are complete with respect to date of admission; hence

they are not right-censored. This analysis focuses on elective care; it excludes

emergency and maternity cases, which are not counted as part of waiting lists.

14http://www.hesonline.nhs.uk/Ease/servlet/ContentServer?siteID=1937&categoryID=331
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Data are included on all three principal routes to admission for elective surgery:

waiting lists, where there is no exact date of admission; booked admissions,

where there is an exact date for admission; and planned, where there is an exact

date of admission for a course of treatment over time or a second operation.

As shown in Table 2.2, waiting times for elective surgery are asymmetrical;

for both years, they are positively skewed with long right tails and have an

average of at least 130 days for all methods of admission (waiting lists, booked

and planned) and 155 days if admission takes place by waiting lists. Another

feature of interest is the huge standard deviations observed for all the cases,

revealing the extent of the variability of waits.

Table 2.2: Descriptive statistics of the variable waiting time.
2001/2002 2002/2003

elective waiting list elective waiting list

Number of observations 1639007 1052279 1709155 1042757
Mean 130.29 155.67 134.39 161.43

Standard deviation 157.93 155.73 159.78 154.17
Median 70 101 75 112
Minimum 1 1 1 1
Maximum 4236 3691 7577 5102
Skewness 2.94 1.92 3.26 2.09
Kurtosis 21.95 11.32 29.58 16.74

Figure 2.3 illustrates the kernel densities of the patients’ waiting times ad-

mitted from a waiting list. The kernel density estimation is a non-parametric

way to estimate the probability density function (pdf) of a random variable. It

is a data smoothing process in which the smoothing parameter (the bandwidth)

has a strong influence on the derived estimate. The kernel densities of Figure

2.3 illustrate that overall waiting times distributions are skewed to the right

with the bulk of the distribution lying way below 500 days of wait. However, as

the rest of the chapter (and Chapter 3) will show, duration analysis is a much

more informative estimation technique.
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Figure 2.3: Kernel densities of waiting times, 2001/2002 (top) and 2002/2003
(bottom).

The probability of remaining on the waiting list past a certain point in

time (survival function) may be more interesting than expected waiting time,

especially for policymaking. In particular, with regards to the impact of waiting

time targets, which is a major focus of this chapter, the kernel density can only

provide information on whether the bulk of the distribution lies around the set
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targeted waiting time. However, the hazard function can lend more insight on

the ‘failure’ mechanism, that is, the response of the admission mechanism to

the set target. The hazard rate allows to approximate the probability of exiting

the list within an incremental interval, conditional on having ‘survived’ up to

that point. It thus approximates the conditional probability of leaving the list

given the amount of time on test, rather than the unconditional probability

(pdf), and as such is more meaningful.

As we will see, we can utilise the hazard rate to essentially establish whether

there is increased probability (or not) of patients being treated ‘around’ the

interval of the waiting time target. The duration analysis technique can help us

with the question: given that the patients’ duration is approaching the waiting

time target, what is the probability of exiting the list? The unconditional

probability (pdf) does not take into account the time that has elapsed and the

pre-announced waiting time target.

We obtained HES data on each episode, including specialty, diagnosis, op-

eration, admitting hospital and type of admission, and on the characteristics of

the patient whose episode it was, including age, sex, ethnicity, and residence.

The data were anonymous with respect to patients.

We evaluate data from three specialties: general surgery; trauma and or-

thopaedics and ophthalmology. These were chosen because together they con-

stitute more than 50% of the patients waiting for elective treatment. Initial

analysis reveals some patients who appear to have waited an implausibly long

time -some greater than ten years- which is most likely the result of coding prob-

lems; consequently, the 0.1% of patients whose waits appeared to be longer than

three years were excluded.

We analyse the data at three levels. The incentives associated with waiting

times targets apply to the hospital, so it is appropriate to analyse overall hospi-

tal waits. However, given the possibility of systematic differences in waiting list
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management between specialties within any hospital, we examine the waiting

times separately for the three specialties. Moreover, it is possible that waiting

lists are managed differently for particular operations, so we also focus on the

four most frequently performed procedures within each specialty, as described

in Table 2.3.
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2.4 Results

We start off by analysing the managing of waiting times according to clini-

cal characteristics; that is specialty, operative procedure and admission source.

We then explore the overall waiting times of a selected set of NHS hospitals

for both years. In all levels of analysis, the survival and hazard functions are

estimated non-parametrically and the long-rank test for significance of differ-

ences is performed. Also, note that the HES data are very rich and a fine level

of disaggregation of the data is possible. This generates a very large set of

possible analyses; here only a fraction of the results generated is reported. Key

differences or similarities between the data that were selected for presentation,

and those not shown, are identified.

2.4.1 Estimation of survival and hazard functions

Variation in the probability of admission by specialty and operative

procedure

Figure 2.4 presents survival curves for all patients admitted15 in each of the

three specialties during 2001/2002. In effect, these show the proportion of

patients who remain on the waiting lists at each point in time. At time 0,

all patients are on the list and the curve falls as they leave the list by being

admitted. The graphs have been truncated at two years, as this helps to display

more clearly the patterns for the very large majority of patients that have

waiting times below that level.

The shortest waiting times are for general surgery and the longest are for

trauma and orthopaedics, but examining the shapes of the curves shows a

more complex picture than that. Until around three months the rate at which

patients are admitted from a list is similar for ophthalmology and trauma and

15In Figures 2.4, 2.5 and 2.6 admission method is by waiting lists.

64



0.
00

0.
25

0.
50

0.
75

1.
00

91 182 273 365 456 547 600 638 730
waiting time (days)

general surgery trauma & orthopaedics ophthalmology

     

Figure 2.4: Kaplan–Meier survival curves for three specialities, 2001/2002.

orthopaedics, both being very much slower than for general surgery. After that

the admittance rate becomes relatively faster for ophthalmology until, by 15

months, survival on the ophthalmology waiting list is similar to that of general

surgery. The corresponding survival curves for 2002/2003 (not shown) are very

similar. The log-rank test for equality of the survival functions demonstrates

statistically significant differences between waiting times for the three specialties

for both years, suggesting systematic differences in waiting times and admission

patterns between surgical specialties.

Figure 2.5 shows the estimated hazard functions for 2001/2002 and 2002/2003,

with the national waiting list targets for those years represented by the bold

dashed lines. The hazard functions are all characterised by ‘peaks’; there is

initially an increasing probability of admission as waiting time increases, this

reaches a maximum, after which there is a decreasing probability. The exact

nature of this effect is different in each specialty.
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Figure 2.5: Hazard curves for three specialities, 2001/2002 (top) and 2002/2003
(bottom).
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In 2001/2002, for general surgery, increased waiting list activity is observed

by peaks in the curve at 4 and 15 months; for ophthalmology, at exactly 15

months; and for orthopaedics between 15 and 18 months. The waiting list

target for that year was 15 months.

The waiting time target for 2002/2003 was 12 months. The hazard curves for

that year show, in every case, that the peaks occurred earlier than in 2001/2002.

For general surgery, the main peak in probability of admission in 2002/2003

reduced to 12 months; for orthopaedics between 12 and 15 months; and for

ophthalmology to around 14 months.

We now turn to examine the management of the lists in terms of the most

common procedures in each specialty. The top graph in Figure 2.6 shows the

survival curves for the four most common procedures within general surgery

for 2001/2002 and the bottom graph shows the corresponding hazard curves.

The shortest waiting times were for excision of skin lesions, followed by inguinal

hernia, gall bladder excision and varicose vein ligation. The log-rank test for

equality of the survivor function showed that these differences are statistically

significant.

Each operation has a peak close to the waiting time target of 15 months,

though excision of skin lesions has an additional earlier peak at 3 months.

For 2002/2003 (not shown), the peaks for every procedure again occur earlier,

between 12 and 15 months, coincident with the lower target time. However the

earlier peak for excision of skin lesions at 3 months is unchanged. Earlier peaks

are observed in other occasions (see Chapter 3). The most prominent possible

explanation for this phenomenon is prioritisation in the admission process, also

verified in the theoretical model of Chapter 4. Given that hospitals undertake

some sort of prioritisation of cases based on clinical urgency, we would expect

an early peak due to more urgent cases being scheduled for earlier periods. In

addition, another plausible explanation could be some sort of informal/internal
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Figure 2.6: Survival (top) and hazard (bottom) curves for the four most common
general surgical procedures, 2001/2002.
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management of the list based on targets set by the hospitals at distinct points,

say 3 months, 6 months etc, before the pre-announced universal and formal

waiting time targets. Thus, earlier peaks could also represent clinical preference

for a particular date of admissions, unrelated to the set target.

These results are broadly replicated in analyses of procedures in the other

two specialties. In each case there are statistically significant differences in

waiting times between the most common procedures within each specialty, and

peaks in the hazard functions are at around 15 months for 2001/2002 and be-

tween 12 and 15 months for 2002/2003 -both coinciding with the prevailing

waiting time target for those years.

Variation in the probability of admission by type of admission

While patients can be admitted to hospital from a variety of sources, the three

principal routes are waiting lists, booked admissions, and planned admissions.

Waiting times targets apply only to patients on waiting lists. Figure 2.7 shows

the survival curves for 2001/2002 by admission method and Figure 2.8 shows

the hazard curves for both 2001/2002 and 2002/2003.

Booked admission patients have the lowest waiting times and waiting list

patients the longest; the differences between the three routes are statistically

significant. The survival curves show that the proportion of patients waiting for

planned admissions reaches that of waiting list patients at around 15 months.

Booked admissions have two hazard curve peaks, a larger one at 3 months for

both years and a smaller one at 15 months in 2001/2002 and at 12 months for

2002/2003.

The hazard rates for planned admissions have very small variations over

waiting times, but the very slight peaks that are observable are similar to those

for booked admissions. However, waiting list admissions have a more notable
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Figure 2.7: Survival curves by type of admission, 2001/2002.

peak which reduces from around 15 months in 2001/2002 to between 12-15

months in 2002/2003.

These results also point to the direction of a change in the list management

due to the implementation of the target, since the ‘move’ of peaks is more ap-

parent in the case of waiting lists, rather than planned or booked admissions.

A somewhat contrary observation is that we would not expect any peaks at the

target times for planned admissions because these are not subject to waiting

times targets; however, there are in fact peaks (albeit slight). One plausible

explanation is that part of the managerial response to targets may include re-

classifying patients between waiting list and planned admissions.

Variation in the probability of admission by hospital

We further analyse the data for a selection of seven trusts to highlight the

variations between different hospitals. These were selected to give a reason-
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Figure 2.8: Hazard rates by type of admission, 2001/2002 and 2002/2003.
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able geographic spread across England, and Table 2.4 shows the NHS Regional

Offices within which they are located.

Table 2.4: Seven trusts and their equivalent NHS Regional Offices.
Trust Regional Office

Manchester University Hospital North West
Nottingham University Hospital Trent
Southampton Hospital South East
Newcastle Upon Tyne Hospitals Northern and Yorkshire
Birmingham Heartlands and Solihull West Midlands
Royal Free Hospital North Central London
Guys and St.Thomas Hospitals South East London

Figure 2.9 shows the hazard curves for each trust for each year. The patterns

and peaks in admission probabilities at each point in time differ greatly between

providers. Some do not have notable peaks; for these providers, the probability

of admission did not vary much over waiting time. In particular, the hazard

curve for the Royal Free Hospital is almost horizontal in both years. All of

the peaks, for those providers that have them, occur at lower waiting times

in 2002/2003 compared to 2001/2002, although the extent of this differs. For

example Newcastle Upon Tyne Hospital has a main peak of between 6 and

12 months for both years, with only a small difference between them. Other

providers changes were much larger, for example, the main peak for Birmingham

Heartlands & Solihull reduced from a little more than 15 months in 2001/2002

to 12 months in 2002/2003, an almost exact mirroring of the change in targets.

Much variation is observed at a hospital level. Indeed the implementation of

the targets in the UK identifies cases, to a more or lesser extent, that appear to

exhibit increased instantaneous probabilities of patients admission (‘peaks’ in

the hazard curves) around the time of the target. This disaggregated analysis

is extended in Chapter 3, in an attempt to identify patterns of variation across

hospitals and even physicians, as well as across time.
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Figure 2.9: Hazard rates for seven NHS Hospital Trusts, 2001/2002 (top) and
2002/2003 (bottom).
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2.4.2 Duration analysis with covariates

In this section, we explore the adjustments of the survival and hazard rate func-

tions for the effects of covariates representing patient and clinical characteristics

that may impact on waiting times, using parametric PH and AFT models under

different distributional assumptions and Cox regression.

For the AFT models, the dependent variable is waiting time until admission;

for the PH models it is the hazard rate. For both models, the independent

variables are Age, (calculated as age minus 50, the average for the sample),

and a series of dummy variables representing sex, admission category, main

specialty, patient classification and ethnicity (see Table 2.5). Together, these

define a reference group of people that are male, 50 years old, NHS patients,

admitted in general surgery, admitted to inpatients and white. The dummy

variables are therefore Female; Private patient; Orthopaedics; Ophthalmology;

Day case; Black; Indian; and Other ethnicity. We analysed data for both

years, but because the results were very similar we report analyses only of the

2002/2003 data.

Table 2.6 shows the results from four alternative AFT models. It should

be noted that the very large sample size means that the statistical significance

of each coefficient is a poor guide to its practical significance16. The only

coefficients that are not statistically significant are those for Black, in all spec-

ifications, and for Female in the AFT Log-normal specification. All models are

statistically significant with high log-likelihood values; the sign and magnitude

of the estimated coefficients is similar regardless of the particular assumptions

made about the distribution. We are unable to distinguish statistically between

the different models according to goodness of fit criteria, and indeed they pro-

duce very similar results.

16See Johnson (1999), and references therein, for an analysis on the relation between sample
size, significance and power of tests.
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Table 2.5: Description of variables

Name Description of variable
Age at the start of episode It is the age in years calculated from the date an episode

starts and the date of birth. Recode of patients younger
than 1 year old.

Sex It defines the sex of patients:
• male
• female

Administrative category
on admission

It is an administrative measure on category of admission.
It includes:
• NHS patients
• private patients

Main specialty It is the specialty under which the consultant is contracted
by the hospital. We are going to investigate the following
specialties:
• general surgery
• trauma and orthopaedics
• ophthalmology

Patient classification Patients are classified as
• ordinary admissions
• day cases

Ethnic group It specifies the ethnic group of patients. Although from
April 2001 new codes have been created, the old ones are
still accepted. For our analysis they have been recoded as:
• white
• black
• indian
• any other ethnic group

Date of decision to admit It is the date a consultant decided to include a patient in
the waiting list for a surgical procedure. The patient might
be admitted immediately or some time later.

Date of admission It is the date the patient was admitted to the hospital.
Waiting time It is the period in days from the date of decision to admit

to the date of admission.

Because of this, we will restrict our discussion to the AFT-Exponential

model. The antilog of the constant term is the average waiting time for the

reference group as defined above, i.e., e4.91 = 136.5 days. Although Age has a

significant coefficient, this translates into an increase of less than one days wait-

ing time for a one-year increase in age, other things being equal. The changes in

waiting times for Female or Indian are also less than one day. Such differences
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are obviously of no account -but other findings are of more interest. Other

things being equal, private patients wait on average 99 fewer days; orthopaedic

and ophthalmology patients wait on average 74 and 71 more days; day case

patients wait on average 30 fewer days; ethnic groups other than Black, White

and Indian wait on average 33 fewer days.

Table 2.7 shows the results from the PH models. All covariates are, again,

statistically significant, apart from Black. The results from the parametric

models are consistent statistically, functionally and quantitatively with those

from the Cox regression.

Since there is very little to choose between the different models, the results

presented above concerning the impact of the independent variables may be

taken as representative. Some variables have no real impact on waiting times,

such as age and sex; however, some -such as whether the patient is NHS or

private- have an impact on waiting times that is significant in both statistical

and practical terms.
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2.5 Concluding remarks

Statistics on average waiting times, and on performance against targets, show

that the NHS has made considerable progress in improving its performance in

this respect since 2000. The analysis conducted in this chapter confirms that

conclusion. By examining not only the central tendency but also the nature of

the underlying distribution of waiting times, we offer new insights into the way

waiting targets are being managed, as well as revealing some important issues.

First, the hazard functions by specialty, by procedure and to a lesser extent

by hospital, show that the period of time at which the probability of admission

peaks coincides with the prevailing waiting times target; and that the introduc-

tion of shorter targets coincides with a reduction in the waiting time at which

this peak occurs. Is this causal or a coincidence? It cannot be claimed that

the conditions that prevailed in the two periods were identical. In addition to

changed waiting times targets, there were other measures, including increased

spending on elective surgery and the greater use of private sector hospitals to

overcome supply bottlenecks in the public sector. However, although these

measures may have had an influence on the ability to reduce waiting times, the

coincidence of the timing that we have observed is highly suggestive that the

targets have influenced the way in which waiting times have been reduced17.

Specifically, one interpretation of the observed peaks is that management

and surgeon efforts have been directed to avoiding breaching the institutional

targets, since the rewards and penalties focus on the number of patients treated

before or after the target, and that there is therefore an increasing probability of

admission as the target approaches. However, once a target has been breached,

the extent to which it is breached is less important, so the probability of admis-

17As shown in the following chapter, similar patterns in admission rates are observed for
the coming years while the targets get stricter.
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sion falls and priorities are directed elsewhere. If increased resources for elective

surgery were the sole explanation for reduced waiting times, one might instead

expect an equal effort devoted to the admission and treatment of everyone

irrespective of whether their admission is before, at or beyond the target.

Further evidence suggesting the dominance of targets as the driver of change

comes from the observation that, both at the level of procedures and of hospi-

tals, the peaks in the probability of admission that are evident at or around the

target wait changed over the two years, while other observable peaks, such as

those at 3 months for all general surgical procedures and for booked and planned

admissions, remained unchanged. One could speculate that these peaks repre-

sent some clinical preferences for a date of admission or perhaps an approximate

division between more and less urgent cases, but since these clinical thresholds

are below the targets they are not affected. Thus, prioritisation of the list with

urgent cases treated quicker can explain the earlier peaks observed. With re-

gards to later -after the target- peaks, as in the case of of Newcastle Upon Tyne

Hospital (Figure 2.9), this can be explained again by some clinical preference

for a ‘maximum’ acceptable waiting time. In addition, if penalties from breach-

ing the target are proportional to the ‘length’ of breach, then one could justify

an increased admissions rate at a later point.

Another striking finding from the analyses is the wide variation in waiting

time distributions and implied admission tactics by hospital, specialty and by

procedure. We suggest that the differences between trusts reflect the level and

type of activity employed by them at any given time. Some hospitals exhibit

great effort to tackle excessive waits; some manage only the longest waiters;

while others appear to tackle the whole spectrum of the waiting times distri-

bution. This is consistent with the findings of qualitative research (Appleby

et al., 2005a). One possible interpretation is that, notwithstanding the signif-

icant differences that are evident between entire hospitals in their pattern of
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admissions, and the observable response in the probability of admission to a

change in waiting times targets at all levels, the managerial influence that this

implies is more generally overwhelmed by the decision processes of individual

clinical teams, each pursuing quite different priorities and admissions criteria.

Targets may be met equally, but the ways in which they are met are quite

different.

An alternative interpretation is that the differences in the probability of ad-

mission between specialty or procedure are determined by inherent differences

in patient characteristics, such as the severity of their condition, operation type,

clinical difficulty in performing it, and whether the surgery can be performed

as a day-case. However, in the absence of data enabling comparisons of the

health status of patients (Appleby and Devlin, 2004) and the lack of any ob-

jective means of differentiating between surgical procedures on these grounds,

for example judging the excision of skin lesions to be clinically more important

than varicose veins, such explanations would be highly speculative.

Can variations between individuals’ waiting times be explained by clinical,

patient or provider-level characteristics? These results suggest that they can,

although more analyses are needed to answer this properly. From an equity

point of view, it is useful to know that characteristics such as age and sex do not

affect waiting times in any important way, and that we can be confident about

those findings because of the very large sample size. Some findings suggest

that more investigation is required, for example the difference in waiting times

for ‘Other’ ethnic groups. However, some large differences are of immediate

interest.

Of particular interest is the very large difference between NHS and private

patients -which in this context is private patients using NHS accommodation

or services- suggesting that private patients have a considerable advantage in

access compared to NHS patients, even though the two groups use exactly the
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same facilities and services. Private work undertaken by the NHS is at the dis-

cretion of the responsible NHS body, usually the hospital. The main reason for

carrying out such work is to generate income -around 300 million in 2001/2002-

and to recruit and retain consultants in areas where their access to private fa-

cilities, and hence private income, is limited. The rules and guidance governing

the treatment of private patients in NHS facilities are complex. However, a re-

cent code of conduct18 re-emphasises a key point of previous guidance; private

work in NHS hospitals should not ‘interfere with the organisation’s obligations

to NHS patients’. Our finding that patients treated privately by the NHS had

significantly shorter waits than other, NHS, patients suggests, but does not

prove, that private patients can buy priority of access over NHS patients.

Also, as suggested, it is possible that trusts may have to some extent met

their targets by adjustments such as reclassifying patients included on waiting

lists as planned cases and reclassifying day-cases as outpatients19.

The application of duration analysis to waiting times data offers an impor-

tant means of improving the understanding of waiting times management and

of gauging the behavioural responses to policy measures. Research at the next

chapter uses these techniques to analyse differences between the waiting times

distributions of trusts who differ by size and type and those who are successful

and unsuccessful in meeting the waiting times targets in each period, as well as

examining the extent to which differences in the probability of admissions are

evident at still greater levels of disaggregation, such as by individual consultant.

18A Code of Conduct for Private Practice: Guidance for NHS Medical Staff. Department
of Health, London (2003).

19Inappropriate Adjustments to NHS Waiting Lists. National Audit Office (2001).

82



T
ab

le
2.
8
:
E
x
a
m
p
le
s
o
f
a
p
p
li
ca
ti
o
n
s
fr
o
m

d
iff
er
en
t
d
is
ci
p
li
n
es

th
a
t
u
se

d
u
ra
ti
o
n
a
n
al
y
si
s
te
ch
n
iq
u
es

S
tu
d
ie
s

S
u
bj
ec
t

M
e
d
ic
in
e
a
n
d

b
io
lo
g
y

G
eh
an

,
19

65
C
om

p
a
ri
so
n
of

ti
m
es

u
n
ti
l
re
m
is
si
on

b
et
w
ee
n
tw

o
gr
ou

p
s
of

le
u
ka
em

ic
p
at
ie
n
ts

(c
on

tr
o
l
gr
ou

p
an

d
g
ro
u
p
tr
ea
te
d
w
it
h
6-
m
er
ca
p
to
p
u
ri
n
e)
.

F
ei
gl

an
d
Z
el
en
,
19

65
A
n
a
ly
si
s
of

m
or
ta
li
ty

ra
te
s
of

tw
o
gr
ou

p
s
of

le
u
ka
em

ia
p
at
ie
n
ts

a
lo
n
gs
id
e
w
it
h
m
ea
su
re
m
en
t
of

th
ei
r
w
h
it
e
b
lo
o
d
co
u
n
t,
w
h
ic
h
is

a
co
n
ti
n
u
ou

s
ex
p
la
n
at
o
ry

va
ri
a
b
le
.

P
ik
e,

19
66

T
im

es
el
ap

se
d
b
et
w
ee
n
in
d
u
ce
d
ca
rc
in
og

en
es
is

an
d
m
or
ta
li
ty

fr
o
m

va
gi
n
al

ca
n
ce
r
in

ra
ts

ex
p
er
i-

m
en
ts
.

C
ro
w
le
y
an

d
H
u
,
1
97

7
T
u
rn
b
u
ll
et

a
l.
,
19
74

G
ai
l,
19

72

In
v
es
ti
g
at
io
n

of
th
e
eff

ec
t
of

h
ea
rt

tr
an

sp
la
n
t
to

th
e
su
rv
iv
al

of
p
at
ie
n
ts

of
th
e
S
ta
n
fo
rd

h
ea
rt

tr
an

sp
la
n
t
p
ro
gr
am

m
e.

D
o
b
b
s,

19
80

M
u
rr
ay

et
al
,
19

93
S
u
rv
iv
o
rs
h
ip

of
to
ta
l
h
ip
-r
ep

la
ce
m
en
ts
.

M
u
en
ch
ow

,
1
98

6
C
om

p
a
ri
so
n
of

th
e
ti
m
es

ti
ll
th
e
ar
ri
va
l
of

an
y
fl
y
in
g
in
se
ct

o
n
m
a
le

an
d
fe
m
a
le

fl
ow

er
s
o
f
th
e

sp
ec
ie
s
C
le
m
at
is

li
gu

st
ic
if
ol
ia
.

E
n
g
in
e
e
ri
n
g

N
el
so
n
an

d
H
ah

n
,
1
97

2
A
n
a
ly
si
s
o
f
th
e
ti
m
e
n
ee
d
ed

fo
r
m
ot
or
et
te
s
to

fa
il
op

er
a
ti
n
g
b
y
in
cr
ea
si
n
g
th
e
te
m
p
er
a
tu
re
.

S
h
o
om

an
,
19

83
;
M
u
sa

et
al
,
19

87
S
of
tw

ar
e
re
li
ab

il
it
y.

B
u
ll
ou

gh
et

al
,
1
99

9
R
el
ia
b
il
it
y
a
n
al
y
si
s
fo
r
st
ru
ct
u
ra
l
in
te
gr
it
y
as
se
ss
m
en
t
of

a
U
K

n
u
cl
ea
r
p
la
n
t.

J
ar
d
in
e
et

a
l,
20

07
A
p
p
li
ca
ti
on

of
th
e
w
ei
b
u
ll
p
ro
p
or
ti
on

al
h
az
ar
d
s
m
o
d
el

to
a
ir
cr
a
ft

a
n
d
m
ar
in
e
en

gi
n
e
fa
il
u
re

d
at
a
.

P
ei
ra
v
i,
20

10
R
el
ia
b
il
it
y
o
f
ai
r
to

ai
r
m
is
si
le

fu
se

el
ec
tr
on

ic
s.

E
c
o
n
o
m
ic
s
a
n
d

S
o
c
io
lo
g
y

L
an

ca
st
er
,
1
97

9,
19
9
0

N
ic
h
el
l,
19

79
B
u
tl
er

et
al
,
19

85

D
u
ra
ti
on

an
al
y
si
s
of

u
n
em

p
lo
y
m
en
t
sp
el
ls
.

T
u
m
a
et

al
,
19

77
T
h
e
im

p
ac
t
of

in
co
m
e
m
ai
n
te
n
an

ce
on

m
ar
it
al

d
is
so
lu
ti
o
n
an

d
re
m
a
rr
ia
g
e
ra
te
s.

K
en
n
an

,
19

85
A
n
a
ly
si
s
o
f
th
e
d
u
ra
ti
on

in
d
ay

s
of

62
co
n
tr
ac
t
st
ri
k
es

th
at

co
m
m
en

ce
d
w
it
h
in

1
96

8-
1
97

6
in

U
S

m
an

u
fa
ct
u
ri
n
g.

F
o
rs
te
r
an

d
J
on

es
,
2
00

1
E
x
p
lo
ra
ti
o
n
of

th
e
ro
le

of
to
b
ac
co

ta
x
es

in
st
ar
ti
n
g
an

d
q
u
it
ti
n
g
sm

o
k
in
g
u
si
n
g
d
u
ra
ti
o
n
a
n
a
ly
si
s.

C
h
u
n
g
et

al
l,
19

91
E
x
a
m
in
at
io
n
of

th
e
le
n
gt
h
of

ti
m
e
u
n
ti
l
an

in
m
at
e
is

a
rr
es
te
d
a
ft
er

b
ei
n
g
re
le
as
ed

fr
o
m

p
ri
so
n
.

D
o
lt
on

an
d
v
o
n
d
er

K
la
a
u
w
,
19

95
M
o
d
el
li
n
g
th
e
ex
it
of

te
ac
h
er
s
fr
om

th
ei
r
p
ro
fe
ss
io
n
.



CHAPTER 3

Variability of waiting time distributions by

hospitals and doctors

3.1 Introduction

The analysis undertaken in the previous chapter has established that targets

have played an important role in the cut of long waiting times. We conclude

that, first, the period of time at which increasing probability of admissions

takes place -illustrated by peaks in hazard curves- coincides with the prevailing

waiting times target. It is also evident that the introduction of stricter waiting

time targets leads to leftward shifts of the new peaks. Second, the patterns of

admissions for elective surgery by a waiting list -illustrated by different survival

curves- vary between different specialties, operative procedures and providers.

Initially, the analysis concentrated on the differences between specialties as a

whole, the second part revealed waiting times variations by type of operation

and the last part explored differences between selected hospitals across England.
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The aim of this chapter is to examine further the variation in the way hos-

pitals and physicians manage their waiting lists. We pose questions in two

directions: the first focuses on the behaviour of the hospitals. How do trusts

admit patients for elective surgery? Are the waiting time distributions of pa-

tients of distinct hospitals exhibiting similarities? What are the commonest

patterns of wait distributions? How have waiting time distributions evolved

through years? The second direction focuses on the behaviour of physicians. Is

there variation in the way doctors manage their waiting lists? How do doctors

with similar activity levels regulate the flow of their patients? What is the

behaviour of doctors with respect to elective admission across time?

This chapter is also motivated by the small area variation literature that

emphasizes large differences in the utilization rates of medical services between

geographical regions1. Even when controlling for age and sex, a great proportion

of variation in the use of hospitals remains (e.g. number of admissions, length

of stay, average expenditure per patient and input of physician effort). Possible

explanations proposed by this literature include the different way medical teams

practice medicine2, differences in the incidence and prevalence of the disease,

socioeconomic or ethnic characteristics of the population and different supply

of health care resources. Here we focus on revealing variation in the waiting

time distribution of patients and hence the admission rates of different hospitals

and physicians.

A more detailed investigation of hospitals’ behaviour and the identification

of distinct admissions patterns sets the basis of Chapter 4. In Chapter 4 we

develop a supply-side theoretical model for the optimal admissions behaviour

of hospitals and the derived waiting time distribution. Based on the disaggre-

1Indicatively, Wennberg and Gittelsohn (1973) Folland and Stano (1990), Cohen et al.
(1992), Eibich and Ziebarth (2013).

2For example, different surgical styles, different beliefs among doctors regarding the efficacy
of procedures and more defensive medicine against a more aggressive view.
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gated and detailed empirical observations of Chapter 3, we can replicate these

distinct patterns in our theoretical model, and most importantly, relate them

to particular supply-side factors.

In addressing these questions, there is an additional aim, to assess whether

or not duration analysis should be more widely applied to waiting time data

and thus represent a useful tool for systematic exploration of the hospitals’

waiting time distributions and their evolution through time. A simple average

waiting time cannot reveal the ways a hospital employs to change its behaviour

in order to face the problem of long lists and waiting times. In other words,

we also aim at evaluating the potential role of duration analysis to capture the

changes in hospitals’ tactics, that are expressed by changes of the waiting time

distributions of their patients.

The present study also implements the techniques of duration analysis to

HES data, yet, for an expanded time period that ranges from 1997 to 2005.

Focusing on hospitals, the investigation involves comparisons by overall waits,

by specialty and operative procedure (thus moving towards a less aggregated

analysis of the waiting time distributions). We begin with a more detailed

examination of the waiting time distributions of two of the seven trusts intro-

duced in the previous chapter (part I). This study further attempts to compare

the wait distributions of hospitals controlling for attributes such as size, type

and performance rating (part II). The final part of the analysis on hospitals

is devoted to the evolution of their waiting time distributions over time (part

III). Focusing on physicians with similar activity levels, again, the examination

consists of comparisons by specialty and operative procedure.

Specifically, the analysis comprises of the estimation of survival and haz-

ard curves performed either in a cross-sectional (comparisons of a set of hos-

pitals/doctors at specific years) or an across time framework (waiting times

distributions of one hospital/doctor through years). The selection of this ap-
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proach is supported by two arguments; the first emerges from the technical

advantages of both the long-rank test, that succeeds in revealing statistically

significant differences between distinct survival curves and the non-parametric

estimation of hazard functions that exposes differences in the probability of

patients’ admissions. Since there are no known mathematical functional forms

to fit the empirical admission patterns as waiting time increases, application of

non-parametric analysis is advantageous. The second reflects the nature of the

available HES data that do not include variables on hospitals characteristics

(e.g. information on capacity, hospital workload and finances). The study by

Propper et al. (2010) uses data from various sources3, yet there is a risk of

under- or over-estimation of results due to the lack of proper matching between

data from different sources. This is the reason why we do not perform any

further regression analysis.

The rationale of this chapter of the thesis lies in exposing detailed patterns

regarding the shape of survival and hazard curves of patients’ waits. It is

an informative piece of investigation as we learn more about the hospitals’

and doctors’ behaviour on waiting list administration and patient admittance

for treatment. Using trusts and consultants as units of analysis allows us to

observe in a more disaggregated level how health care providers with different

characteristics perform within the NHS. On top of that, it is among their own

interest to show performance excellence and achieve NHS goals by supplying

high quality services when needed. No one can argue against the imperative

role that ‘time until treatment’ plays for patients, institutions, doctors and the

state itself.

The main finding of this chapter is a significant variation in the waiting

time distributions of patients among hospitals and even more when comparing

3HES database of England, the Scottish morbidity record for Scotland, census data for Eng-
land, public expenditure statistical analyses data, ONS population trends, data on workforce
and finances of English hospitals from the Department of Health.
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doctors. However, one can rightly ask which are the factors responsible for

producing specific distributional patterns. What is the role of hospital bud-

get, capacity levels, cost of treatment and national targets in managing waiting

lists? Which attributes could account for changes in the wait distributions?

Development of a theoretical supply model that attempts to interpret the men-

tioned differences of the distribution of patients’ waiting times is presented in

Chapter 4.

The structure of the rest of the chapter is as follows. A brief presentation of

the data set is presented in the next section, followed by a graphical illustration

of the results and relevant concluding remarks.

3.2 Data

We further obtained HES data on the specialties of general surgery, trauma

and orthopaedics and ophthalmology for 9 years (1997/1998 to 2005/2006)4. A

graphical presentation of yearly admissions by specialty and type of admission

is presented in Figures 3.1 and 3.2, while Figure 3.3 demonstrates the kernel

densities of elective waits (admission method: waiting list) by year.

The majority of the procedures are general surgeries followed by orthopaedic

ones while ophthalmologic procedures have the smaller percentages. Yet, there

is a steady increase on admission numbers of all specialties through years. More-

over, there is evidence of a decline of patients admitted via waiting lists with a

simultaneous raise of booked and planned admissions.

Although data were truncated at 730 days, estimation of the kernel densities

reveals the before-mentioned point that waiting times are positively skewed.

4The expressions ‘1997/1998’ and ‘1997’ will be used interchangeably throughout the thesis.
They both refer to the financial year starting in April 1997 and finishing in the end of March
1998. The same stands for all the years of the analysis.
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Figure 3.1: Number of yearly admissions by specialty.
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Figure 3.2: Number of yearly admissions by type of admission.

The first part of the distribution represents patients whose waits are quite

short. It is clear that there is an increase of the number of patients with such

waits admitted for surgery. The second part of the distribution illustrates the
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Figure 3.3: Kernel densities of waiting times by year, waiting time(top) and log
of waiting time(bottom).
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gradual decrease of the number of patients who have waited longer periods.

Long right tails reveal that some patients wait far too long to be treated. It is

obvious that for years 2003, 2004 and 2005 the second part of the distribution

changes. Moreover, the graphs of the log of waiting times gradually shift left-

wards at the right tail suggesting a cut of the long waiters. However, although

it is obvious that there are changes on waiting time distributions over years, yet

this illustration cannot easily expose them. A more informative presentation

that uses duration analysis techniques is provided in the next section of the

chapter.

Since the aim of the analysis is to examine the level of variability among

hospitals, data are further classified according to size and type of NHS trust.

Taking under consideration information on NHS trust clustering by the Depart-

ment of Health5 we classify hospitals by size (large acute, medium acute, small

acute) and by type6 (acute, specialist, teaching). After excluding trusts with

missing data over the 9 year period, a set of 52 hospitals remains for further ex-

amination. Moreover, based on the performance star-rating system adopted by

NHS ranging from 2000 to 2005, we develop an additional grouping of hospitals

consisting of good and bad performers.

Clusters reflect the largest part of hospital’s activity; in acute trusts, a large

proportion of their expenditure covers acute activity while specialist trusts offer

specialist acute services (e.g. orthopaedic and children’s hospitals). We define

as excellent performers those trusts that acquired a 3 star rating for all five

years the performance star rating system was in action and as bad performers

those that had the worst evaluations (zeros and 1 star ratings). In particular,

our set of hospitals consists of: seven large acute trusts, thirteen medium acute

hospitals, twelve small acute hospitals, twelve teaching hospitals (five in London

5http://ratings2004.healthcarecommission.org.uk/cluster.asp. We further matched this in-
formation with a list of trust clusters we obtained from the Department of Health.

6The HES variable on the type of provider has not been helpful.
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and seven outside London) and eight specialty hospitals (four orthopaedic, three

children’s and one specialist for reconstructive surgery and rehabilitation).

In this chapter, we are focusing on consultant teams7 that exhibit high ac-

tivity levels and particularly on those that performed more than 1000 surgeries

per year for at least one year of our 9-year dataset.

3.3 Results

Our results comprise of two subsections. The first part examines the wait-

ing time distributions of patients either among different hospitals in a cross-

sectional framework and of the same hospital over time. The second part focuses

on the investigation of waiting time distributions by physicians.

3.3.1 Behaviour of trusts

This subsection consists of a much less aggregated analysis for two of the seven

trusts examined in Chapter 2, the cases of Birmingham Heartlands & Solihull

and Royal Free Hampstead (part I), an illustration of distinct patterns of wait

distributions through a selection of survival and hazard curves of specific trusts

grouped by size, type or performance rating (part II). Lastly, an example of

evolution of waiting time distributions over time is presented using data for

Hammersmith hospital (part III).

Part I: Less aggregated analysis by hospital

The case of Birmingham Heartlands & Solihull

Figure 3.4 shows the survival and hazard curves of overall waiting times for

elective surgery for Birmingham Heartlands & Solihull. For 2001/2002, at time

0, all patients are on the list, at around 2 months (57 days) 50% of them have

7The HES variable is described as ‘Pseudonymised consultant team code’.
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been moved from the list to be treated and at around 4.5 months (143 days)

the proportion increases to 75%. The same pattern characterises the waiting

time distribution of elective patients for 2002/2003. Hazard curves reveal no-

table peaks at a little more than 15 months for 2001/2002 and 12 months for

2002/2003. It is obvious that this trust attempts to adjust to national targets

by changing the probability of moving patients from its lists for admission.

What is not clear, though, is whether it maintains the same behaviour for all

specialties and different operative procedures.

Analysis at the level of specialty and type of operation illustrates variability

in trust responses (Figures 3.5 and 3.6). Figure 3.5 demonstrates the estimated

survival and hazard functions by different specialties for years 2001/2002 and

2002/2003. In particular, patients waiting for general surgery tend to wait

shorter periods than patients scheduled for orthopaedic or ophthalmologic pro-

cedures. According to 2001/2002 survival curve, 50% of patients is moved off

the general surgery list at around 1 month (34 days), the orthopaedic list at

4 months (111 days) and the ophthalmologic list at 6.5 months (194 days).

At around 8 months the survival curves of the last two specialties intersect.

Similar results are observed for the subsequent year, yet the difference between

orthopaedic and ophthalmologic specialties diminishes.

In addition, the probability of admission does not remain constant and

exhibits different patterns for each specialty. For general surgery, increased

waiting list activity is observed as peaks in the curve for people waiting 3,

8 and 11 months for 2001/2002 and 2, 6, and 12 months for 2002/2003; for

orthopaedic surgeries, between 12 to 15 months for 2001/2002 and at 12 months

for 2002/2003; for ophthalmology the greater peak is located at around 15

months for 2001/2002 and a little less than 12 months for 2002/2003. An

interesting finding in the bottom right graph of Figure 3.5 is the presence of a

late peak of orthopaedics at 547 days -and an increasing hazard at 730 days-
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that probably represent the hospital’s efforts to clear the last occupants of the

list. This particular peak of orthopaedics molds the overall survival curve of

Birmingham Heartlands & Solihull for 2002/20038. Two insights can be drawn

from the specialty level analysis. Firstly, it is clear that the trust does not adopt

the same behaviour in managing different surgical lists; general surgery waiting

lists follow a very different pattern than the other two specialties. Secondly, it

shows the effects of waiting times targets; the probability of admission for those

whose wait approaches a target increases and falls when their wait exceeds the

target.

Figure 3.6 shows the estimated survival and hazard functions by different

selective operative procedures. The shorter waiting times are for cholecystec-

tomy, inguinal hernia and varicose vein procedures and the longest for lens

prosthesis and hip replacement. Furthermore, it is worth emphasising that the

three general surgical waiting lists do not consist of patients waiting more that

1 year, while lens prosthesis and hip replacement do. The hazard curve for

2001/2002 reveals the following patterns: for cholecystectomy, peaks are at 2

and 6 months, for inguinal hernia at 2 and 8 months, for varicose vein at 2

and 7 months, for lens prosthesis at almost 15 months and for hip replacement

at between 12 and 15 months. The hazard curve for 2002/2003 demonstrates

that as the targets become tougher, the peaks change towards the lower waiting

times. A peak at exactly 12 months, which is the target of that year, is ob-

served for hip replacements and a little less than 12 months characterises lens

prosthesis.

8See Figure 3.4.
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The case of Royal Free Hampstead

Birmingham Heartlands & Solihull exhibits great management activity to

tackle excessive waiting times for its patients. Quite different behavioural re-

sponses are observed by the Royal Free Hampstead trust in London. Analysis

of the overall waiting times of the trust reveals that Royal Free patients have to

wait a little longer for treatment, relative to the other hospital, as the rate of

admission changes slower (Figure 3.7). For 2001/2002 there is a small peak at

around 3 months and another one at around 17 months while for the following

year the hazard curve remains almost constant after a small increase at the

beginning. Therefore, after about four months, the probability of admission for

elective surgery is independent of the time patients spent on waiting lists.

According to official returns of waiting lists for elective surgery9, Birming-

ham Heartlands & Solihull had achieved the national waiting time targets for

2001/2002, while Royal Free had not. One limitation of the official waiting

list statistics of that year was that broad time intervals of waiting were used

(eg. patients waiting for 12-17 months). Thus, we cannot calculate exactly the

number of people waiting more than 15 months. However, none of their pa-

tients had to wait more than 12 months at the end of 2003, thus both hospitals

achieved the waiting time target for the following year. Conversely, based on

NHS performance ratings, both trusts had no inpatients waiting longer than

the standards for both years tested10.

Yet, less aggregated analysis at the level of the three specialties reveals

greater variation in the shape of survival and hazard curves (Figure 3.8). Gen-

eral surgeries have the quickest admissions compared to the other two special-

ties. However, ophthalmologic procedures are managed quicker for patients

having waited above 456 days in 2001/2002 and above 547 days in 2002/2003.

9http://www.performance.doh.gov.uk/waitingtimes/index.htm
10Department of Health, NHS Performance Ratings 2001/2002, 2002/2003.
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Interestingly, comparing the two survival curves of ophthalmology, we find that

there is an important decrease of long waiters in the second year and a simul-

taneous increase of patients waiting less than 182 days. Similar to Birmingham

Heartlands & Solihull the survival curves of ophthalmology and orthopaedics

intersect.

In 2001/2002, the probability of admission for general surgeries spikes at 3

and a little after 15 months while a year later the first peak is of much higher

intensity and the second peak (noticeably milder) moves forward. The other

specialties follow different patterns with the presence of higher intensity peaks

at around 456 days for ophthalmologic and 547 days for orthopaedics that do

change significantly the next year.

At the less aggregated level of waiting lists for different operations, the image

is much clearer (Figure 3.9). An seen for Birmingham Heartlands & Solihull,

the three types of general surgery exhibit quicker admission rates, however, for

2001/2002, patients waiting more than 273 days for lens prosthesis are admit-

ted faster than varicose veins and cholecystectomy patients. For 2001/2002,

varicose vein procedures have constant hazard rates, cholecystectomy is char-

acterized by a peak at 15 months while lens prosthesis exhibits a high intensity

peak at the same period. On the other hand, the hazard curve of hip replace-

ments is monotonically increasing with maximum probability of admissions at

638 days. In the case of inguinal hernia, we observe an early peak at around 3

months and after remaining constant for some time it starts increasing again.

For 2002/2003, the hazard curves follow completely different patterns.
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Figure 3.4: Overall waiting times of Birmingham Heartlands & Solihull for
years 2001/2002 and 2002/2003.
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Figure 3.5: Waiting times by specialty of Birmingham Heartlands & Solihull
for years 2001/2002 and 2002/2003.
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Figure 3.6: Waiting times by operation of Birmingham Heartlands & Solihull
for years 2001/2002 and 2002/2003.
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Figure 3.7: Overall waiting times of Royal Free Hampstead for years 2001/2002
and 2002/2003.
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Figure 3.8: Waiting times by specialty of Royal Free Hampstead for years
2001/2002 and 2002/2003.
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Figure 3.9: Waiting times by operation of Royal Free Hampstead for years
2001/2002 and 2002/2003.
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Part II: Comparison across different types of hospitals

The next step in our decomposition comprises of comparisons of different

groups of hospitals and aims at revealing patterns in their survival and hazard

curves. Figures 3.10 and 3.11 illustrate the survival curves of seven large acute

trusts for 1999/2000 and 2000/2001 respectively.

As mentioned already, a survival function is represented as a monotonically

decreasing function that declines from 1 to 0 as waiting time increases. Hence,

all survival curves initiate at 1 as all patients are initially on the list and as

they are admitted for treatment the curves gradually decrease until they reach

0 when the list clears. However, distinct patters on the wait distributions are

evident. For the financial year 1999/2000, as the survival curves of Bradford

and Berkshire & Battle are far away from the origin they exhibit the worse

admission rates. On the other hand, the rest of the curves are closer to the

origin with the one of Wirral showing quicker admission rates.
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Figure 3.10: KM curves for large acute hospitals for 1999/2000.
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The log-rank test for equality of the survivor functions demonstrates statis-

tically significant differences between waiting times for the seven trusts.

Additional information can be derived from a closer observation of the

curves and their various shapes. Let us first discuss the most important aspects

of the observed variations. Using the terminology of Weon and Je (2011, 2012),

survival curves vary in terms of ‘shape’ and ‘scale’. Scale refers to changes in

the position of the curve (closer or further away from the origin), while shape

refers to changes in the slope of the survival curve. Clearly, the slope of the

survival curve is changing as duration increases; however, there are plenty of

instances where the change in the slope is more abrupt. The sharpest change

in slope is evident with a change in curvature (sign of the second derivative).

However, we also observe cases where, without a change in the sign, the mag-

nitude of the second derivative changes drastically at particular points in time.

Note that these prominent changes in the shape of the survival function are

captured as spikes in the hazard curves.

Noticeable observations in our example (Figure 3.10) are: (i) There is a steep

fall (up until around 20 days) of the survival curve for Plymouth trust which

implies augmented removal of short waiters off the list. After this striking fall

the curve decreases slower until it reaches 0. (ii) The majority of the survival

curves decrease monotonically without any change in curvature (they remain

convex, e.g. Wirral Hospital). (iii) Taking a look at the admission rates of

Berkshire & Battle a different pattern emerges; the curve is first concave and

for patients waiting more than 273 days it becomes convex. Finally, due to the

fact that survival curves exhibit various shapes many of them intercept with

others in one or more points.

The tactics of hospitals are different for 2000/2001 (see Figure 3.11). Ply-

mouth behaves much worse relative to the previous year, especially with regards

to the waiting times of patients until 365 days. Comparing its admission rates
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Figure 3.11: KM curves for large acute hospitals for 2000/2001.

with the ones of Berkshire & Battle we infer that although it admits quicker

patients waiting up to 250 days it delays substantially the treatment of long

waiters. It is worth mentioning that its survival curve changes curvature more

than once. Furthermore, the managing of the list could be identical in specific

parts of the distributions as in the cases of Bradford and Cornwall (their curves

coincide up until 200 days) or with Wirral and Norfolk & Norwitch (they have

similar admittances in middle of the distributions).

Figure 3.12 illustrates the hazard rates for the seven large acute trusts for

1999/2000 and 2000/2001. In the first year, two trusts exhibit high-intensity

peaks, that is increasing probabilities of admissions, for patients waiting 547

(Norfolk & Norwitch) and 456 days (Bradford). There are lower-intensity wider

peaks such as the ones by Plymouth and Devon & Exeter. Additionally, there

are trusts with almost constant hazard rates (Berkshire & Battle and Wirral).
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Figure 3.12: Hazard curves for large acute hospitals, 1999/2000 (top) and
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In 2000/2001, some peaks shift leftwards (Bradford and Plymouth), some shift

rightwards (Cornwall) while others remain unchanged (Devon & Exeter and

Wirral).

To sum up, it is evident that although all trusts are exhibiting high surgical

activity levels (large acute trusts) they develop distinct waiting time distribu-

tions that change over years. This is also the case when we perform comparisons

among medium acute, small acute, specialist, teaching and good/bad perfor-

mance trusts. Selected diagrams from each category aim at exposing the great

level of variation between their waiting time distributions. Log-rank tests for

equality of the survival functions was performed for all comparisons demon-

strating statistically significant differences between all relevant waiting times.

Figures 3.13 and 3.14 depict the waiting time distributions among thirteen

medium acute trusts. Although hospitals exhibit similar activity levels they

manage quite differently their waiting lists. In the first figure, for the year

1998/1999, there is one trust that admits 75% of its patients after having waited

3 months or less (Poole) while in other trusts (Royal Surrey County, Worthing

& Southlands, Newham) the same percentage is achieved for patients whose

waits are up to around 400 days. The rest of the hospitals are characterised by

admission rates between the two extremes. An additional pattern not observed

previously belongs to Walsall, whose curve falls linearly almost until 0, leaving

a huge right tail representing the clearance of the last occupants of its list.

In 2004/2005, all survival curves have shifted leftwards towards the origin and

are much more concentrated than before, implying reduced waiting times for

all waiters. Comparison of two hospitals that show similar behaviour at the

beginning (Walsall and Bromley) shows different tactics later on with the former

focusing on the long waiters and the latter on handling well the short waiters.

In line with the survival curves, the hazard rates among medium acute trusts

exhibit great variability that ranges, in the first year, from distinctive peaks to
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Figure 3.13: KM curves for medium acute hospitals, 1998/1999 (top) and
2004/2005 (bottom).
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Figure 3.14: Hazard curves for medium acute hospitals, 1998/1999 (top) and
2004/2005 (bottom).
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multi-peak and quasi constant hazards. Walsall hospital exhibits two peaks,

the first one corresponding to the visible change in the slope of the survival

curve at about 180 days. Poole has a quite wide and smooth peak with high

admittance rates spanning from about 91 to 182 days (consistent with a smooth

and close to the origin survival function). The hazard of Basildon & Thurrock

ends up at a steep increasing rate, although Bromsley appears to have a quite

constant instantaneous admittance rate.

Further, in year 1998/1999 the majority of peaks are located around 547

days while 6 years later increasing probability of admissions is observed for

people with shorter waiting times. It is clear that peaks have moved leftwards;

one plausible interpretation of which could be attributed to the hospitals’ efforts

to meet national targets. As a result the majority of the peaks are now situated

around 365 days, with some of course before and some after this point.
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Figure 3.15 demonstrates the survival and hazard curves of twelve small

acute hospitals for 2005/2006. Due to a smaller overall number of admissions,

there are survival curves with visible steps, as is the case for East Somerset,

South Warwickshire and Royal West Sussex in the first graph. Considerably

quick admissions characterise East Somerset until the first three months of wait;

only about 10% of patients wait for more than three months, but they take long

to be treated. On the other hand, Royal West Sussex performs the worst; 50%

of elective patients will have to wait more than 6 months in order to be treated.

Patients are initially taken off the list at a decreasing rate and later on at an

increasing one. The rest of the hospitals, clustered between those two, exhibit

similar behaviour.

As regards to the equivalent hazard curves, the hazard curve for East Som-

erset starts off and remains much higher for until about three months. The very

increased instantaneous probability of admissions observed is attributed to the

fact that about 90% of the list is admitted for surgery within three months.

It then decreases until it becomes zero between 182 and 273 days of wait; no

patients are admitted during this period (this is also reflected in the constant

survival). As the survival steps down, the hazard exhibits another peak of

smaller intensity, and this process is repeated until the list is cleared. Many

trusts have increased probability of admissions at around 6 months, which is

the target of that year, yet there are others with peaks at extended waiting

times (e.g. at 9 months or even more than a year).

We now turn to specialist hospitals. Analysis undertaken among four or-

thopaedic hospitals reveals differences on the scale of their survival curves (Fig-

ure 3.16). The Royal Orthopaedic Hospital admits quicker its patients, followed

by the Royal National Orthopaedic, Nuffield Orthopaedic and finally by Robert

Jones & Agnes Hunt Orthopaedic. The last two curves intersect more than once

for patients that wait more than a year. The corresponding survival times for
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Figure 3.15: Survival and hazard curves for small acute hospitals for 2005/2006.
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the 25% , 50% and 75% admission rates of the four hospitals are illustrated in

Table 3.1.

Table 3.1: Survival times for four orthopaedic hospitals.

Proportion of patients

still on the list

Hospital Patients 75% 50% 25%

The Royal National Orthopaedic 4149 34 97 223
Nuffield Orthopaedic 5420 55 139 303

Robert Jones & Agnes Hunt Orthopaedic 4154 93 187 336
Royal Orthopaedic Hospital 8792 32 76 147

A slightly different pattern appears when we control for the type of surgery

(total hip replacements only): (i) Besides an intersection at 91 days, the first

two curves (yellow and blue) are quite similar to their corresponding overall

waiting time graph (ii) This is not the case for the other two hospitals. Robert

Jones & Agnes Hunt Orthopaedic admits quicker patients whose waits range

from 91 to 400 days compared to Nuffield Orthopaedic. These findings suggest

that more disaggregated analysis -by operative procedure- reveals patters that

depart from the overall waiting time, and additionally variation still persists

even when we control for the same treatment procedure (in terms of type and

size of resources required).

Increasing probabilities of admissions expressed by peaks in the hazard

curves are as follows: According to the order of their survival curves, the Royal

Orthopaedic Hospital has a two-mode peak between 365 and 456 days, followed

by the peak of the Royal National Orthopaedic at 456 days, the wider peak

of low intensity by Nuffield Orthopaedic again at 456 days and lastly the one

by Robert Jones & Agnes Hunt Orthopaedic at 547 days. As for the hip re-

placements, Royal National and Robert Jones & Agnes Hunt Orthopaedics have

monotonically increasing hazard rates that diverge from the overall admission

pattern while the other two have quite similar curves to it.
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Figures 3.17 and 3.18 demonstrate the waiting time distributions of a set

of teaching hospitals in London for years 2002/2003 and 2005/2006. For the

first year, the admission rates by St George’s are the worst of all as its curve

is far away from the origin. It is worth mentioning the different tactics by

Hammersmith and Chelsea & Westminster hospitals with the former handling

quicker the short waiters (<200 days) while delaying admission to long waiters

compared with the latter that does the opposite. In 2005/2006, all curves

are more concentrated and have shifted leftwards showing better waiting list

administration. Interestingly enough, Hammersmith decreases significantly the

admission rates for the short waiters, or in other words, the 75% of the patients

with the shorter waits as illustrated by the convexity of its survival curve for this

segment. Among all, Hamstead performs the best and Chelsea & Westminster

the worst.

In 2002/2003, with the exception of Hammersmith that exhibits a high

intensity peak between 365 and 456 days, the rest of the hospitals have low

intensity wider peaks and Hamstead a constant hazard rate. Three years later,

all trusts exhibit earlier peaks, a remark supporting the argument of increased

elective activity to catch the national targets. However, we also observe delayed

peaks that probably account for efforts to treat patients that have remained in

the lists for an unexpectedly long time.

Figure 3.19 depicts the 2002/2003 survival and hazard curves of eight hospi-

tals that had different performance ratings between financial years 2000 to 2004.

In particular, Basildon & Thurrock, Devon & Exeter, Countess of Chester, Sun-

derland and Queen Victoria have scored excellent (3 stars) in the performance

rating for NHS trusts during the period 2000/2001 to 2004/2005. On the other

hand, Weston area, Bristol and Bath have showed bad performance grades.

Although the patterns of survival rates appear to vary substantially by hospi-

tal, results are not as expected with some of the good performers having slow
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admission rates (e.g. Countess of Chester) and bad ones having curves close to

the origin (e.g. Bristol). Besides these two exceptions, the rest of the trusts

behave as expected. Peaks on the hazard curves are taking place for various

waiting times suggesting a great amount of variability in hospital’s decision to

admit its patients.
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Figure 3.16: Overall waiting times (1st column) and hip replacements (2st
column) in four orthopaedic hospitals for 2002/2003.
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Figure 3.17: Survival curves for teaching hospitals in London, 2002/2003 (top)
and 2005/2006 (bottom).
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Figure 3.18: Hazard curves for teaching hospitals in London, 2002/2003 (top)
and 2005/2006 (bottom).
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Figure 3.19: Survival and hazard curves for good and bad performers for
2002/2003.
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Part III: Comparisons over time

In an attempt to understand how admission rates and increasing probabil-

ities of admission evolve over years, the next step in our analysis explores the

waiting time distribution of hospitals over time. Of all the analyses performed

we have selected to present the example of Hammersmith hospital as it shares

common characteristics with many of the other trusts. Figures 3.20 and 3.21

demonstrate the survival and hazard curves of Hammersmith from March 1997

to April 2006 while Figure 3.22 summarises distinctive patterns of the admission

rates of nine trusts between 1997 and 2005.
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Figure 3.20: Evolution of survival curves of Hammersmith from 1997 to 2005.

The trends in the survival curves of Hammersmith hospital differ markedly

between the nine year period. Admission rates for the first two years are quite

slow but they do ameliorate gradually as time passes. One can observe that

the curves shift leftwards year by year, mainly in a parallel manner, implying

a proportional decrease of the waiting time of patients (scale change in the
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survival curves). It is also clear that much effort is devoted to reduce extremely

long waits; while 20% of patients had to wait more than a year in 1997 and

1998, less than 10% wait more than a year during the following four years and

none is waiting such a period in 2003, 2004 and 2005. Of great importance is

the fact that for the last two years Hammersmith increased the waiting times of

people waiting less than 6 months compared to the equivalent waits of previous

years. Graphically, this is represented by a rightwards pivot of the first part

(0-182 days) of the waiting times distribution that also led to a change in the

curvature of the survival curves. Even though the hospital cuts further long

waits, at the same time, it delays the admission of short waiters. In essence, as

years pass, Hammersmith hospital clears its stock of patients quicker, however,

after some point in time there is a trade-off between short waiters and long

waiters.

Comparison of the survival curves for 1997 and 2005 of another eight trusts

besides Hammersmith hospital (Figure 3.22) reveals different behaviour by hos-

pitals across time. Two distinct patterns are evident after the nine year period:

(i) there are hospitals that manage to reduce the waiting times of the subset

of elective patients that experiences long waits while at the same time increase

the waiting times of short waiters and (ii) there are hospitals that achieve to

decrease the waiting time of all their patients on lists.

Graphically, the first outcome is generated by an intersection between the

two survival curves and the second by a leftward shift of the 2005 survival curve.

Clearly, the level of substitution of high wait for low wait patients in the first

case varies in terms of magnitude; it can be of the same (the created parts before

and after the intersection of the two lines have equal area as is is the case for

Hamstead and Nuffield hospitals) or different size (the two areas are unequal as

we observe for South Manchester, Southampton and Hammersmith hospitals).

Under the last scenario, the reduction of long waiters might be greater compared
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to the increase of short waiters (Southampton and Hammersmith) or vice versa

(South Manchester). Even when hospitals increase the admission rates of all

their patients (e.g. the cases of Great Ormond Street, Norfolk, St George’s and

Bradford hospitals), the change in scale of the new survival curve differs; the

shift could be parallel or not, quite big or smaller.

In Figure 3.21, increasing probabilities of admission represented by peaks

are present for every year. In fact, what characterises the evolution of the

hazard distribution over time is a leftward shift of these peaks; in 1997 the

peak is at around 600 days, in 1998 moves to exactly 547 days, the next year

shifts slightly leftwards resulting at 456 days in 2000 and 2001 (while of greater

intensity), in 2002 it progresses towards 365 days that actually reaches in 2003

and finally in 2004 and 2005 the peaks are located between 365 and 182 days

after two additional leftward shifts.
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Figure 3.21: Evolution of hazard curves of Hammersmith from 1997 to 2005.

This behaviour is consistent with the general way of conduct of many trusts
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that increase elective activity as targets approach and decrease it after the tar-

gets. Sometimes peaks coincide with the corresponding target while in other

points in time they are very close to them. For instance, in the case of Ham-

mersmith hospital, in 2001, the peak coincides with the national target of 15

months announced for that year while in 2005 it is clearly moving to catch up

the target of 6 months.

In conclusion, the hospitals are trying to catch up with the new tougher

targets by increasing their efforts in admitting patients with shorter waiting

times. In other words, in order not to breach the increasingly stricter targets

their hazard rates tend to shift leftwards in accordance with the target move-

ment. It seems that after an action (new target issued by the government), a

reaction follows (shift of the peaks in patients waiting times distributions).

123



0.000.250.500.751.00

91
18

2
27

3
36

5
45

6
54

7
63

8
73

0
w

ai
tin

g 
tim

e 
(d

ay
s)

 
H

am
st

ea
d

0.000.250.500.751.00

91
18

2
27

3
36

5
45

6
54

7
63

8
73

0
w

ai
tin

g 
tim

e 
(d

ay
s)

 
N

uf
fie

ld

0.000.250.500.751.00

91
18

2
27

3
36

5
45

6
54

7
63

8
73

0
w

ai
tin

g 
tim

e 
(d

ay
s)

 
S

ou
th

 M
an

ch
es

te
r

0.000.250.500.751.00

91
18

2
27

3
36

5
45

6
54

7
63

8
73

0
w

ai
tin

g 
tim

e 
(d

ay
s)

 
S

ou
th

am
pt

on

0.000.250.500.751.00
91

18
2

27
3

36
5

45
6

54
7

63
8

73
0

w
ai

tin
g 

tim
e 

(d
ay

s)

 
H

am
m

er
sm

ith

0.000.250.500.751.00

91
18

2
27

3
36

5
45

6
54

7
63

8
73

0
w

ai
tin

g 
tim

e 
(d

ay
s)

 
G

re
at

 O
rm

on
d 

S
tr

ee
t

0.000.250.500.751.00

91
18

2
27

3
36

5
45

6
54

7
63

8
73

0
w

ai
tin

g 
tim

e 
(d

ay
s)

 
N

or
fo

lk

0.000.250.500.751.00

91
18

2
27

3
36

5
45

6
54

7
63

8
73

0
w

ai
tin

g 
tim

e 
(d

ay
s)

 
S

t G
eo

rg
e’

s

0.000.250.500.751.00

91
18

2
27

3
36

5
45

6
54

7
63

8
73

0
w

ai
tin

g 
tim

e 
(d

ay
s)

 
B

ra
df

or
d

F
ig
u
re

3.
2
2:

P
a
tt
er
n
s
o
f
su
rv
iv
a
l
cu
rv
es

in
1
9
9
7
(b
lu
e
li
n
e)

an
d
2
00

5
(r
ed

li
n
e)
.



3.3.2 Behaviour of physicians

Focusing on how physicians manage their waiting lists we find evidence of great

variation in the waiting time distributions of their patients. Figures 3.23, 3.24,

3.25 and 3.26 demonstrate the survival and hazard rates for a set of high activ-

ity general surgeons either by overall waiting list or by operative procedure, for

particular financial years. Analysis of the evolution of waiting time distribu-

tions over time is presented for two physicians that exhibit distinct behavioral

patterns (Figures 3.28 and 3.29).

Our results are as follows: (i) Elevated level of variability is evident in the

survival curves of general surgeons in 2004. Plasticity in the survival curves

ranges from smoothly decreasing curves to curves characterised by substantial

change of curvature as waiting time increases. In accordance with this finding

are results from a more disaggregated analysis performed in 2000 by a single

operation (primary repair of inguinal hernia).
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Figure 3.23: Survival curves of high activity general surgeons in 2004/2005.
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As expected, the survival curves are stepwise because the number of pa-

tients is much smaller relative to the aggregate waiting time distribution (for

all procedures). Even though we control for high activity surgeons and type

of procedure, variation is extensive. As a consequence, there are doctors that

admit the majority of their patients within 3 months while others delay con-

siderably their admittance.
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Figure 3.24: Survival curves for primary repair of inguinal hernia in 2000/2001.

(ii) The presence of great variation in the shape of hazard curves is another

finding of this analysis. In Figure 3.25, increasing probabilities of admission are

observed for patients having waited various periods. These peaks can be quite

wide or steep, of high or low intensity and additionally there are doctors that

admit patients in the same rate and have almost constant hazard curves.

(iii) Furthermore, we can point out the behaviour of two doctors (green and

red lines) that show early peaks of great magnitude for patients waiting less than
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3 months. This pattern that involves the presence of peaks at the beginning of

the hazard function is related to their survival curves. The equivalent survival

curves of the two doctors in Figure 3.23 are the first two that start decreasing

steeply from 1. On the other hand, in the same figure, the doctor’s survival

curve represented by yellow, that is characterised by a concave part, implying

considerably delays for patients’ treatment, corresponds to the last curve to

start rising in the hazard rates graph. Finally, monotonically increasing hazard

rates are also present.
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Figure 3.25: Hazard curves of high activity general surgeons in 2004/2005.

Similar patterns are observed when we control for the type of operation.

Figure 3.27 illustrates a summary of five distinct patterns of the hazard rates

with the equivalent survival curves. Of great interest is the red hazard line that

starts with an early strong peak, then falls, has a couple of peaks at around 3

months, decreases again until it reaches 0, has a final peak and becomes 0 once
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again. This corresponds to the survival curve located closer to the origin that

exhibits a steep fall and represents a doctor that removes quickly its patients

from the list.
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Figure 3.26: Hazard curves for primary repair of inguinal hernia in 2000/2001.
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Figure 3.27: Five patterns of survival and hazard curves for doctors performing
primary repair of inguinal hernia in 2000/2001.
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Over time analysis of the waiting time distributions by physicians comprises

the final part of this chapter. We conclude that doctors manage their waiting

lists differently across time although they all face similar pressure regarding

compliance to national targets.

In particular, variability of the survival and hazard curves of patients’ waits

appears in a greater level compared to the analysis based on hospitals. We

observe reductions of the waiting times of all patients (parallel shifts of survival

curves towards the origin), trade-offs of short waiters for long waiters (parts of

the waiting time distributions shift leftwards and other parts rightwards) but

at the same time increases in the waiting times of all or subsets of patients.

Although doctors’ behaviour does not follow the pattern of gradual smooth

changes in patients’ waiting time distributions as demonstrated for Hammer-

smith hospital, there is evidence for substantial reductions of long waiters.

Notwithstanding we performed various analyses, we decided to present the

waiting time distributions of two doctors showing different admission rates with

the first having more concentrated survival curves over time than the second. In

accordance with this, the hazard curves of the second exhibit greater variation

regarding the peaks. In general, the shape of the curves can be monotoni-

cally increasing, exhibiting one or more peaks earlier or later as waiting time

increases.
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Figure 3.28: Evolution of survival and hazard curves by physician - doc1.
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Figure 3.29: Evolution of survival and hazard curves by physician - doc2.
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3.4 Concluding remarks

This chapter investigates the way hospitals and consultants manage their wait-

ing lists by estimating the survival and hazard functions of the waiting times of

their patients. We find evidence of great variation in waiting time distributions

and implied admission tactics both by hospital and by physician. In addition,

the more disaggregated the analysis the greater the observed variation. On top

of that, greater variability is present in the doctors’ survival and hazard curves

compared with those of hospitals.

The patterns of survival rates appear to vary substantially by hospital and

by doctor. In particular, there is significant variation in both the shape and

scale of their survival curves. Our findings suggest that some curves, while

retaining the same curvature, exhibit abrupt changes in the magnitude of the

slope, while others alter from convex to concave or vice versa. These distinct

differences in the slope (magnitude or sign) of the survival functions, correspond

to spikes in the hazard curves. Additionally, there are survival curves that move

closer to the origin and others that shift rightwards, in a parallel way or not.

The different shapes reflect differences in the second order derivative of the

removal rate of individuals from the list and variation in the shifts implies that

hospitals admit all patients with a slower or quicker rate compared to others.

Consequently, trends in hazard curves also differ markedly between various

sets of hospitals and consultants. We observe trusts/doctors with notable peaks

of high intensity, others with very short wider peaks and finally some with

constant hazard rates expressed as straight lines. Furthermore, it is worth

mentioning two additional issues: the number of peaks varies and they can be

located earlier or later in the waiting time distribution. Lastly, we report the

appearance of cases in which hazards are illustrated as monotonically increasing

probabilities of admission. These results indicate differences in the management
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of the lists, in the decision process and admissions criteria, even when we control

for particular characteristics of the list (type of hospital, operation, and even by

physician). At hospital level we compare waiting time distributions controlling

for size (large, medium, small acute), type (acute, specialist, teaching) and

performance rating and indeed confirm sufficient heterogeneity. A promising

path for future research would entail a more systematic empirical analysis of

the heterogeneity in hospitals’ behaviour. This can be inferred by a regression

analysis, similar to the one conducted in Chapter 2, in which the focus would

now be on supply side factors (size of hospital with number of beds or number of

admissions as proxies and type of hospital in dummy variable format, hospital’s

budget, performance rating etc).

Focusing on comparisons across time, the effect of targets on waiting time

distributions is evident; lots of peaks are situated exactly at the wait period

that coincides with the set target for the specific financial year. However, first,

there might be additional peaks along the distribution representing increased

admission activity for different groups of patients with respect to their waiting

times and second, there are cases in which peaks do not coincide with corre-

sponding targets. One plausible explanation of this finding could be that trusts’

and doctors’ decisions are influenced by several factors besides meeting targets

to ameliorate performance, such as severity of patients’ medical status, hospital

budget and available resources.

In addressing the question of how waiting time distributions by hospitals

have evolved over time the answer would include the following points. First

and foremost, much effort has been directed in reducing extremely long waits.

The new element in the study is that we find that some hospitals admit all

their patients quicker while others cut long waiters by delaying the admission

of short waiters whose waits are by far below the corresponding target. In

essence, as years pass, hospitals clear the stock of their patients quicker, how-

134



ever, after some point in time there is a trade-off between short waiters and

long waiters. Regarding the evolution of the hazard curves over time, hospitals

tend to increase their efforts in admitting patients with even shorter waiting

times in order to catch up with the stricter targets. In other words, in order not

to breach the increasingly tougher targets their hazard rates tend to shift left-

wards in accordance with the target movement. Although this way of conduct

is also observed by doctors, analysis at that level exhibits much more variation.

Furthermore, all the analyses in this chapter support the usefulness of du-

ration analysis techniques and their wider application in the hospitals setting.

Illustration of waiting time distributions of patients by KM and hazard curves

can be proven an informative tool of auto-evaluation by every hospital. They

could have the opportunity to assess how well they manage their waiting lists

and detect consultants that could improve their performance. However, one

could possibly argue that one limitation is that this methodology can be used

in a retrospective manner as it handles completed spells. This caveat can be

easily overcome as these techniques can allow for the utilisation of censored

observations.

To conclude, this chapter brought in the surface various patterns of waiting

time distributions as both survival and hazard curves differ even when we inves-

tigate the admitting behaviour of one health care provider. Interpreting these

patterns constitutes the aim of the following chapter that develops a theoretical

model on how the hospital manages its waiting list, focusing on the supply side

of healthcare provision. Although we previously emphasised the significant role

of targets, we are now attempting to examine additional attributes that could

explain specific distributional patterns. One of the main questions we seek to

explore is: How changes in the objective and cost function of the hospital, level

of capacity and budget, demand for elective health care, severity of patients’

medical status and national targets affect the distribution of patients’ waiting

time?
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CHAPTER 4

A theoretical model of waiting times for

elective surgery

4.1 Introduction

This chapter presents a theoretical model of how a public hospital manages

its stock of patients for elective surgery. It aims at identifying the optimal

waiting time distribution of a hospital given its objective function and the

constraints it faces. Patients that have been referred to clinical physicians by

general practitioners and are eligible for surgery join the NHS waiting lists of the

former. The patients clinical pathway comes to an end when they are admitted

to hospital to receive treatment, after having waited for a period of time. The

focus of the model is on the selection mechanism that the hospital employs

when taking patients out of its list. It is primarily a supply side model that

illustrates the trade-offs in the decisions the hospital makes while managing its

waiting lists, given its overall attitude towards admissions and the constraints

it is faced with.
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The closest analyses to this paper come from Iversen (1993), Olivella (2002)

and Siciliani (2006). Although they all develop supply models of health care,

they have quite distinct rationales and raise different issues. Yet, none of them

obtain the optimal waiting time distribution of patients, which is the main

contribution of this paper. Iversen (1993) models the long-run equilibrium

of a non-cooperative game between the hospital and the government in an

attempt to understand the mechanism of waiting in the National Health Service

in Norway. According to Inversen, the hospital derives utility when the number

of admissions increases and when the waiting time is reduced and maximises

its objective function subject to its resources that are set by the governments

decision for budget allocation. The government’s utility function incorporates

a part that reflects its willingness to pay function net of the costs, since it

is financing the budget of the hospital. He concludes that excessive average

waiting times exist only under a Stackelberg equilibrium1.

Olivella (2002) analyses the consequences of prioritisation in waiting lists

by introducing different severity levels of patients’ health status. In particular,

he assumes that the actual waiting time of a patient is a function of the average

waiting time and the severity of the patient’s health status. Waiting time is

increasing with increases of average waits and can either increase or decrease

with severity, for different severity levels. He maximises a utilitarian social

welfare function by minimising the social costs of health care. Three separate

situations are examined in which: (i) the private sector does not exist (ii) the

private sector sets the fees monopolistically and (iii) the public sector regulates

the private fees2.

Siciliani (2006) formulates a dynamic model using optimal control theory to

1Farnworth (2003) builds on Iversen’s framework and develops a theoretical model of how
interactions among hospitals that charge different prices for health services can determine and
affect the equilibrium expected waiting time. He discovers that, under specific circumstances,
an increase in the price charged to one hospital can lower the waiting time for all.

2Iversen (1997) studies only the latter case under the assumption of zero total profits.
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examine hospitals’ incentives within a continuous-time dynamic framework. He

analyses not only the steady state, but also possible optimal paths towards the

steady state. He also considers the effects of exogenous shocks on both demand

and supply of healthcare. The utility function of the hospital is influenced

by the number of treatments supplied, the current size of the waiting list and

the expected waiting time. Two different specifications for the formulation of

waiting time are assumed. In the first case, expectations are myopic and the

waiting time is perceived to be proportional to the waiting list. In the second

case, specialists estimate future supply on the basis of current supply, hence

waiting time is proxied by clearance time. The first model results in an increase

of supply and waiting list towards the steady-state value given that the initial

waiting list size is lower than the steady-state value. The author also derives

the optimal supply path to reach waiting list targets which depends on the

time horizon. The second reaches similar conclusions given the responsiveness

of demand is low.

The last two papers allow for the interaction between the public and the

private sector while the first one does not. In Iversen (1993) and Siciliani

(2006), the emphasis is on the hospital decisions on optimal expected waiting

time. However, in Olivella (2002), the focal point lies in the influence of waiting

times on patients’ welfare raising at the same time some prioritisation issues3.

An important aspect of our work is that the emphasis lies on waiting time dis-

tributions, while the existing literature on waiting times utilises average waiting

times only. Dixon and Siciliani (2009) is an exception. Their paper describes

and maps the distribution of patients already treated (HES data) with the dis-

tribution of patients waiting on the list (waiting list returns). At the steady

state, a comparison between the two distributions is performed, under different

3A study by Barros and Olivella (2005) develops a supply model of waiting lists for public
hospitals when private doctors are able to select the patients they treat. The authors conclude
that doctors do not necessarily treat the milder cases.

138



assumptions on the hazard function, however, the waiting time distributions

are not derived within a model.

Our main contribution is the derivation of the whole waiting time distri-

bution in the maximisation problem. The hospital’s optimisation problem is

solved at the steady state and obtains the optimal number of patients admitted

for surgery for every single waiting time. That means that we derive the opti-

mal steady state probability density function of waiting times. On that basis,

we also explore and compare the corresponding survival and hazard functions.

Within this context, we focus on identifying important determinants of the

hospital’s admissions patterns, their implications and their connection with the

empirical findings of the previous two chapters.

This chapter is organised as follows. The next section provides the descrip-

tion of the model, the waiting list and distribution and the hospital’s maximi-

sation problem. Sections 4.3, 4.4 and 4.5 present the numerical solution and

several comparative statics exercises. We identify, thus, the impact on the hos-

pital’s managing of the waiting list of several supply side factors. The influence

of the introduction of universal waiting time targets is also analysed. The last

section concludes.

4.2 Model

The model has two main elements: a set of patients that are currently waiting

to be treated and the hospital that supplies healthcare. The government will be

introduced through the policy measures it sets up in order to reduce waits and

monitor the hospital’s performance (waiting time targets). As already stated,

the focus of the model is on the supply side and in particular on the optimal

behaviour of the hospital while managing its waiting list.

Our model determines the waiting time of each patient treated, allowing us
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to examine the optimal behaviour of the hospital when admitting patients, who

have been waiting different periods of time for treatment and pinpoint a set of

important determinants. The two main players of the model, patients currently

waiting to be treated, and the hospital and analysed below.

4.2.1 Patients

There are currently Lt patients in the waiting list. Patients in the waiting

list are characterised by the severity of their disease, denoted by s = 1, 2, ...p,

where s is increasing in severity, and the time they have been in the list, their

waiting time4, or equivalently, their duration, d = 1, 2, ...q. Thus, d denotes the

period elapsed between joining the waiting list of a specialist and admittance

for surgery at the hospital. The minimum possible waiting time is one period

(d = 1) and the maximum time a patient can wait is q. That is, patients do

not wait infinitely so that a maximum finite duration exists. Thus, i(s, d) ∈ Lt

is one of the patients, at time t, that has been in the stock for duration d with

severity level s. Denote kt the overall number of patients from the list that are

being treated at any period t, hence kt ⊆ Lt. The overall number of patients

treated consists of subsets of patients classified according to their duration and

severity levels, kd,s,t; thus k2,1,t shows the number of patients treated at t with

duration two and level of severity one.

We do not explicitly consider the decay in health from waiting. A patients’

severity does not alter with time, and hence with their waiting. In other words,

even if waiting time does cause deterioration to the health status, it does not

make the patient’s condition to move to the higher severity level and conse-

quently, s is not a function of d.

The inflow of patients in the list, and equivalently, the demand for elective

4The terms ‘waiting time’ and ‘duration’ will be used interchangeably throughout the
chapter.
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health care at the beginning of time t is given by:

xt = f(Et−1(d), Zt)

where Et−1(d) denotes the expected or perceived waiting time based on avail-

able information at t − 1, and Zt is a vector of demand factors. These could

include socio-economic conditions and morbidity rates. For example, it is ob-

vious that increased morbidity indexes would lead to a rise in the demand of

health services. Given that the focus of the model is on the supply side, we

treat Zt, which can be viewed as potential demand for health care, as exogenous

and fixed. The inflow of patients is decreasing in expected duration; the higher

the expected waiting time at the beginning of t, the lower the demand for pub-

lic health care. As standard in the literature5, waiting times act as rationing

devises in order to equilibrate demand and supply, similar to what prices do.

Thus, extensive expected waiting times can reduce demand of elective surgeries,

by discouraging GPs from making referrals and specialists from adding patients

to their lists or encouraging patients to seek private insurance.

We set the inflow to be:

xt = Zt − θEt−1(d) (4.1)

where Zt is the exogenous level of potential demand for health care and θ

denotes the sensitivity of the inflow of patients to expected duration. Although

the negative relation between expected duration and inflow is not explicitly

modeled here, it can depend on the option of private health care provision. The

expectation formation on waiting time will be formally determined in Section

4.2.3.

5See for instance Cullis et al. (2000), pages 1215-16 and 1229, Goddard et al. (1995), Iversen
(1997), Besley et al. (1999), Martin and Smith (1999), Gravelle et al. (2002), Siciliani and
Hurst (2005) and Siciliani (2006). Section 1.3.2 (pages 32 - 33) in Chapter 1 review empirical
findings on the elasticity of demand to waiting time.
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4.2.2 Hospital

The utility of the hospital

The hospital’s utility for health care provision at any point in time t is given

by

Ut = g(kt) =
∑
d

∑
s

g(kd,s,t). (4.2)

The hospital derives utility from treating patients of distinct severity levels at

different durations. g(kd,s,t) denotes the hospital’s (monetary or non-monetary)

gain from treating k patients of severity s and duration d. Recall that in our

framework the waiting time (d) is not a choice variable, but it is endogenously

determined. The hospital chooses optimally the number of patients of each

severity and duration at time t, and this choice determines the average waiting

time implicitly.

The properties of the utility function are summarised in the following three

assumptions:

Assumption 1 For a given number of patients treated of the same severity

level (i.e. fixed k and s), the higher the waiting time, the lower the hospital’s

utility.

That is, the hospital gains more utility from treating today 100 severe patients

that have waited for two months rather than having them waiting for four

months.

g(kd1,s,t) > g(kd2,s,t) where k and s are unchanged and d2 > d1

This implies that the hospital will prefer to treat as many people as possible

faster; and in the relevant literature6 it is equivalent to the assumption that

the more a patient waits the higher are his/hers waiting costs, and thus the

6See Iversen (1993) and Siciliani (2006).
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lower the hospital’s utility. This assumption reflects the hospital’s consideration

of the well-being of the patient (some form of altruism), as well as explicit

benefits provided to hospitals by the health care system when times and lists

are managed appropriately.

Assumption 2 For a given number of patients treated of the same duration

(i.e. fixed k and d), the higher the severity, the higher the hospital’s utility.

That is, treating 100 severe cases that are waiting for two months gives

more utility than treating 100 mild cases that are waiting for two months.

g(kd,s1,t) < g(kd,s2,t) where k and d are the same and s2 > s1

Differentiating patients according to the severity of their disease allows for

some form of prioritisation, which is reflected in the hospital’s utility. Similar

to the model here, Olivella (2002) also allows for different severity levels in a

continuous manner. The positive utility from more severe cases stems not only

from an assumed altruistic hospital character but in essence from the role of

the hospital per se; to treat the ones that most need it. At this point we should

mention the fact that this view constitutes one of the NHS core principles; good

healthcare available to all with specific goals to meet the needs of everyone, to

be free at the point of delivery and to be based on clinical need, not ability to

pay. Thus, some prioritisation is allowed based on the gravity of the medical

condition of the patients waiting.

Alternatively, assumptions 1 and 2 can be regarded as the benefits of pa-

tients from treatment according to their needs (severity of disease and quick

admission). This formulation, in which the benefits of the patients enter into

the utility function of the provider, is also present in Ellis (1998) and Ellis and

McGuire (1986).
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Assumption 3 For the same d and s, g(kd,s,t) is concave in kd,s,t ∈ [0, k] and

exhibits a turning point.

Thus, up until some point, increasing the number of patients treated (of

the same duration and severity) increases the hospitals’ utility. However, from

that threshold level of activity and onwards, the hospital’s utility declines as

more patients are treated. The same is assumed for example in Siciliani (2006)

for average waiting time. Assuming otherwise, (i.e. monotonically increasing

utility) could create problems with the management of the list; the hospital

would use up all of its budget and capacity to treat as many patients as possible

within the same period, at the detriment of the remaining patients, whose

treatment would be postponed for much later (due to the lack of adequate

resources). We discuss this feature further while presenting the solution to the

model, and also show the implications of relaxing assumption 3 in Section 4.3.

The cost of the hospital

With respect to the cost of health care provision, we assume that the hospital

is capacity constrained and has a budget allocated for elective surgeries given

by Bt. The hospital’s cost from providing health care can be decomposed into

two separable parts:

Ct = c(kt; k̄) +
∑
d

∑
s

ct(kd,s,t).

The first part is the hospital’s scale cost and is denoted by c(kt; k̄) while the

second is the hospital’s duration and severity specific cost and is denoted by

ct(kd,s,t). The former is a function of the overall number of treated patients (kt)

in relation to the limit number of patients, k̄, the hospital can treat given its

capacity. When Zt > k̄, the hospital cannot treat all the patients that demand
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elective healthcare at t and thus a waiting list and waiting times emerge7. In

addition, whenever optimal kt > k̄, the hospital operates above its capacity.

The second part of the cost function is sensitive to the patients’ waiting times

and severity levels. Assumption 4 relates to hospital’s scale cost and Assump-

tions 5 and 6 to hospital’s patient-specific cost.

Assumption 4 Once the capacity limit of the hospital is reached the scale cost,

c(kt; k̄), is increasing in kt.

Thus, even though the hospital would prefer to treat all its patients immediately

and unless there is a capacity expansion (increase of inputs e.g. more operating

theaters, more clinic space, more beds, more doctors), treating more patients

at t irrespective of their severity or their durations becomes increasingly costly.

This formulation is analysed in more detail in Section 4.3 (pages 160 – 161).

Assumption 5 For the same severity and a given number of treated patients,

treating quicker is more costly.

The duration-specific cost assumes that for the same severity and number of

treatments, cost is deceasing in duration. Thus, treating today 100 patients of a

severity level that have just entered in the list is more costly than treating today

100 patients of the same severity that have been on the list for two months. In

other words, the quicker a patient is treated, the higher the cost for the hospital

and similarly the slower a patient is treated, the lower the cost for the hospital.

We therefore assume that the hospital’s cost due to waiting is monotonically

decreasing in duration.

7When Zt < k̄, the hospital can treat all the patients demanding healthcare will idle
capacity (kt < k̄), provided that its budget is sufficient. In this case, all patients are treated
at t, no waiting list is formed and duration is one for all Lt.
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The relation between average waiting time and the cost of the hospital has

been analysed by a number of contributions. Originated by Iversen (1993) such

a relationship is not necessarily monotonic, some empirical evidence of which is

provided by Siciliani et al. (2009). Inversen argues that for low waiting times,

an increase in duration reduces the provider’s cost. However, there might be a

point over which higher levels of duration increase costs. This increase might

be driven by higher administrative and medical resources required to manage

a long waiting list.

In our model, we take under consideration Inversen’s first point by allowing

the hospital’s cost to decline in duration. This further implies that it is hard

for the hospital to treat patients quickly or equivalently some waiting allows

the hospital to better time manage the list and its resources. Otherwise, a list

would never be created. The increased costs due to long waits will be intro-

duced in our model distinctly from Iversen (1993). Long waits will be monitored

and ‘punished’ with the implementation of an extra non-smooth cost when we

include the implementation of waiting time targets by the government. The

introduction of such targets, which corresponds to a fundamental health care

policy change will be analysed separately in Section 4.4.2.

Assumption 6 For the same waiting time and a given number of treated pa-

tients, treating more severe cases is more costly.

The severity-specific cost assumes that for the same duration and number of

treatments the cost is increasing in severity. This could be so in terms of both

medical materials and number of personnel and/or hours of work, since a more

severe case might require a more complex treatment and a prolonged length of

stay at the hospital after surgery. The same assumption is supported in both

Ellis’s (1998), Olivella’s (2002) and Barros and Olivella’s (2005) frameworks
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that incorporate patients of different severity levels.

Before setting the maximisation problem of the hospital, the following sub-

section analyses the waiting list, the distribution of waiting times and the steady

state framework under which the hospital operates.

4.2.3 Distribution of waiting time and the Steady State

We start by describing the evolution of patients’ treatment at a certain hospital

at time t. The variables of interest are the inflow, the stock and the outflow of

patients of severity s at calendar time t. Denote xs,t the inflow, or new arrivals,

to the list of severity s at the beginning of t. kd,s,t is the amount of patients of

severity s that were treated at the end of t and that had waited d periods to be

treated. Note that the minimum possible duration is one period, thus, patients

that enter the list at the beginning of a period and exit at the end of the same

period are said to have duration one8. Lastly, Ψd,s,t−1 represents the stock of

patients of severity s that are waiting for d periods at time t and are yet to be

treated.

8In other words we assume that entry to the list takes place only at the beginning of a
period and admission for treatment at the end of a period. So, no one can wait for less than
one period (d = 1).
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The hospital’s list at period t

At any point in time t the entire stock of people waiting of severity s is

Ls,t = xs,t (new inflow at t)

+ (xs,t−1 − k1,s,t−1) (untreated patients from t− 1, Ψ2,s,t−1)

+ (xs,t−2 − k1,s,t−2 − k2,s,t−1) (untreated patients from t− 2, Ψ3,s,t−1)

+ (xs,t−3 − k1,s,t−3 − k2,s,t−2 − k3,s,t−1) (= Ψ4,s,t−1)

+ (xs,t−4 − k1,s,t−4 − k2,s,t−3 − k3,s,t−2 − k4,s,t−1) (= Ψ5,s,t−1)

(4.3)

·

·

·

+ (xs,t−(q−1) − k1,s,t−(q−1) − k2,s,t−(q−2) − ...− k(q−1),s,t−1) (= Ψq,s,t−1)

+ (xs,t−q − k1,s,t−q − k2,s,t−(q−1) − ...− kq,s,t−1) = 0

The list, therefore, includes the number of patients that entered at t (xs,t) and

the number of untreated patients from the previous periods (t− 1, t− 2, ..., t−

(q − 1)). In particular, the number of untreated patients from t− 1 consists of

the inflow of patients at t − 1 minus the ones that received treatment at the

end of t − 1 (xs,t−1 − k1,s,t−1). We set this equal to Ψ2,s,t−1 which shows the

number of patients on the current list, Ls,t, that have waited for one period and

are currently (at time t) waiting for a second period. Similarly, the number of

untreated patients from t− 2, that is, the number of patients currently on the

list that are waiting for at least three periods, is given by the inflow of patients

at t−2 minus the ones that received treatment at t−2 and the ones that received

treatment at t− 1 (xs,t−2 − k1,s,t−2 − k2,s,t−1 = Ψ3,s,t−1). The same stands for
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the untreated patients from the previous periods (t − 3, t − 4, ..., t − (q − 1)).

Given that q is the maximum duration any patient can wait, the ‘bottom’ of the

list is given by the untreated patients at t that joined the list in time t− (q−1).

These patients, Ψq,s,t−1, are waiting for q periods and will be treated at t with

probability one. The last line of (4.3), which is by construction equal to zero,

shows that the untreated patients from t− q were ‘cleared’ in period t− 1 after

having waited for the maximum duration.

The waiting list at t can also be expressed as,

Ls,t = xs,t +Ψ2,s,t−1 +Ψ3,s,t−1 +Ψ4,s,t−1 + ...Ψq,s,t−1 = xs,t +

q∑
d=2

Ψd,s,t−1

For notation simplicity let Ψ1,s,t−1 = xs,t, then we can write Ls,t =
∑q

d=1Ψd,s,t−1.

Treating patients at period t

Faced with a waiting list of size Ls,t, the hospital moves towards getting patients

off it to be admitted for surgical treatment. The admittance process is as

follows. Firstly, the hospital will treat k1,s,t patients from the new arrivals;

k1,s,t denotes the number of patients treated at t with waiting time one (d =

1). In addition, the hospital treats k2,s,t from the untreated stock of t − 1

(xs,t−1 − k1,s,t−1 = Ψ2,s,t−1). Thus, k2,s,t(≤ Ψ2,s,t−1) is the number of patients

treated at t with a waiting time of two periods. In the same way, k3,s,t is the

number of patients the hospital treats at t from the untreated stock of t − 2

that have waited for three periods, and so on. Schematically, for each duration
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we have:

d = 1 : xs,t − k1,s,t = Ψ2,s,t

d = 2 : xs,t−1 − k1,s,t−1 − k2,s,t = Ψ3,s,t

d = 3 : xs,t−2 − k1,s,t−2 − k2,s,t−1 − k3,s,t = Ψ4,s,t

d = 4 : xs,t−3 − k1,s,t−3 − k2,s,t−2 − k3,s,t−1 − k4,s,t = Ψ5,s,t (4.4)

·

·

·

d = q − 1 : xs,t−(q−2) − k1,s,t−(q−2) − ...− k(q−2),s,t−1 − k(q−1),s,t = Ψq,s,t

d = q : xs,t−(q−1) − k1,s,t−(q−1) − ...− k(q−1),s,t−1 − kq,s,t = 0

The total number of patients of severity s that the hospital chooses to treat

in period t is given by the following summation:

ks,t =

q∑
d=1

kd,s,t

Note that the patients treated at t having waited for q periods, kq,s,t, should be

exactly equal to the patients that entered at t− (q−1) and were still untreated

by t− 1, Ψq,s,t−1. This is shown in the last row of (4.4).

At the end of period t, the untreated stock of patients that will transfer to

next period’s (t+1) waiting list will be the sum of Ψ2,s,t,Ψ3,s,t, ...,Ψq,s,t. Apart

from this set of patients the t+ 1 waiting list will also include the new arrivals

(xs,t+1). In the same fashion as Ls,t we have:

Ls,t+1 = xs,t+1 +Ψ2,s,t +Ψ3,s,t + ...Ψq,s,t = xs,t+1 +

q∑
d=2

Ψd,s,t =

q∑
d=1

Ψd,s,t

where as before we set xs,t+1 = Ψ1,s,t.
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The same evolution of treatments applies for both low and high severity

conditions. Aggregating for the severity levels at each duration d and noting

that

kd,t =

2∑
s=1

kd,s,t and Ψd,t =

2∑
s=1

Ψd,s,t

the overall next period list, including all levels of severity, would be

Lt+1 = xt+1 +Ψ2,t +Ψ3,t + ...Ψq,t =

q∑
d=1

Ψt. (4.5)

Finally aggregating for both the severity and duration levels the total number

of patients treated at time t for all severity levels and durations is

kt =
∑
d

∑
s

kd,s,t.

The distribution of waiting time

Since we have constructed the hospital’s waiting list and have described the way

the hospital treats patients, we can now present the waiting time distribution.

In our theoretical model waiting time is modelled as a discrete variable. The

distribution of waiting time depicts the whole spectrum of the relative frequency

of patients having waited distinct periods of time until treatment at t. This is

the probability function (PF) of waiting time, denoted as f(d). Given the fact

that waiting time is discrete, PF is equal to:

f(d) = P (D = d).

Although the PF shows the probability of a patient having waited for d

periods until treatment, the cumulative function (CF) corresponds to the prob-

ability of having waited d periods or less:

F (d) = P (D ≤ d).
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In the waiting time literature, another two representations of the waiting

time distribution are important; the survival function and the hazard function.

The former is defined as the complement of CF, that is S(d) = 1 − CF , and

hence it represents the probability that an individual is waiting more than d

periods:
S(d) = P (D > d).

The hazard function, usually denoted as h(d), depicts the probability that

a patient is removed from the list to be treated with waiting time d conditional

on having waited on the list up to that duration. Thus,

h(d) = P (D = d|D ≥ d).

The following table describes the PF, the CF, the survival function and the

hazard function of waiting time9.

Table 4.1: Waiting Time Distribution

d f(d) F(d) Survival Function Hazard Function
P (D = d) P (D ≤ d) P (D > d) P (D = d|D ≥ d)

0 0 0 1 0

1
k1,t

kt

k1,t

kt
1− k1,t

kt
=

∑q
d=2 kd,t

kt

k1,t

kt

2
k2,t

kt

k1,t+k2,t

kt
1− k1,t+k2,t

kt
=

∑q
d=3 kd,t

kt

k2,t∑q
d=2 kd,t

3
k3,t

kt

k1,t+k2,t+k3,t

kt
1− k1,t+k2,t+k3,t

kt
=

∑q
d=4 kd,t

kt

k3,t∑q
d=3 kd,t

· · · · ·
· · · · ·
· · · · ·

q − 1
kq−1,t

kt

∑q−1
d=1 kd,t

kt

kq,t

kt

k(q−1),t

k(q−1),t+kq,t

q
kq,t

kt
1 0 1

9Appendix A analyses the continuous counterparts of the waiting time distribution, which
were employed in the duration analysis of Chapters 2 and 3.
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The average waiting time of patients

The mean waiting time of patients treated at time t is calculated as

d̄t =

q∑
d=1

dft(d) =

q∑
d=1

d
kd,t
kt

= 1× k1,t
kt

+ 2× k2,t
kt

+ ...+ q × kq,t
kt

.

Note that an important distinction of this work is the derivation of the whole

waiting time distribution. This implies that we do not need to relay on any

assumption about the evolution of the waiting list and hence the evolution of

average waiting time. However, we need to determine how expected waiting

time will be formulated at the beginning of time t (i.e. before the actual du-

rations are realised), since the demand for health care (the inflow of patients)

takes place at the beginning of time t. Two different expectations formations

can be assumed. If individuals are myopic, then expectation formation will be

based on all available information up until the end of period t− 1, thus

EME
t−1 (d) =

q∑
d=1

dft−1(d) =

q∑
d=1

d
kd,t−1

kt−1
= 1× k1,t−1

kt−1
+ 2× k2,t−1

kt−1
+ ...+ q × kq,t−1

kt−1

where superscript ME stands for myopic expectations. Expectations are

formed backwards, thus individuals, while deciding whether to enter in the

list assume that the hospital will behave in the future, the same way it behaved

in the past. Perceived average waiting time at the beginning of t is assumed

to be equal to last period’s realised average duration. If, on the other hand,

individuals are forward looking, then expectation formation will be rationally

set given the available information up until the end of t− 1,

ERE
t−1(d) = Et−1

(
q∑

d=1

d
kd,t+d−1

xt

)
= Et−1

(
1× k1,t

xt
+ 2× k2,t+1

xt
+ ...+ q ×

kq,t+(q−1)

xt

)

where superscript RE stands for rational expectations. Here individuals form

expectations on how the hospital will behave in the future and thus on how

the hospital will treat the new cohort of patients that will enter at t. This is

rational formation, since it takes into account that the future service rates of
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the hospital need not be the same as the past ones.

The steady state

It becomes clear that our system is dynamic, since current flows affect future

stocks and flows. As will be seen in the next section, the way the hospital

chooses to treat patients today will have an impact on the future waiting list

and consequently on the future decisions of the hospital. For instance, as shown

in equation (4.5), the t + 1 list depends upon outflow decisions at t, which in

turn are influenced by previous decisions.

Within this dynamic framework we focus on the steady state behaviour of

the hospital, and thus on the steady state waiting time distribution. At the

steady state (i) inflow and outflow of patients at any given point are equal10,

that is, xt = kt and (ii) the optimal number of patients treated from each

duration and severity (kd,s,t) may depend on the waiting time elapsed between

decision to join a list and actual treatment, but is independent of calendar time

t. Consequently, both the inflow and outflow of patients are also time-invariant.

Under this condition, the steady state waiting list and the steady state

waiting time distribution are described in Table 4.2. Note that at the steady

state, the survival function shows the proportion of untreated patients for each

waiting time, that is, Ψd
k = Ψd

x . The steady state expected duration is derived

as

E(d) =

q∑
d=1

df(d) =

q∑
d=1

d
kd
k

= 1× k1
k

+ 2× k2
k

+ ...+ q × kq
k
, (4.6)

and, since it is time-invariant and k = x it is equivalent for both the myopic

and the rational execrations formation.11

10If for all t, xt > kt the waiting distribution would be explosive.
11The waiting time distribution can also be viewed as the number of periods required in order

to treat current inflow, xt. This is how Dixon and Siciliani (2009) construct the distribution
and it is identical to ours at the steady state.

154



Table 4.2: Waiting Time Distribution at the Steady State

Duration List PF Survival Function

0 0 0 1

1 x k1
k 1− k1

k = Ψ2
k

2 x− k1
k2
k 1− k1+k2

k = Ψ3
k

3 x−
∑2

d=1 kd
k3
k 1−

∑3
d=1 kd
k = Ψ4

k

· · · ·
· · · ·
· · · ·
q x−

∑q−1
d=1 kd

kq
k 0

The main differences between our theoretical waiting time distributions and

the empirical ones in Chapters 2 and 3, stem from the treatment of time and the

steady state condition. In contrast to the empirical distributions, here, time is

discrete, both in terms of the passage of time and the waiting time (duration).

In other words, entry and exit from the list takes place only at distinct points

in time and the time of wait (duration) is also discrete. Consequently, the

probability, survival and hazard functions here denote the discrete counterparts

of the continuous empirical ones developed in the previous chapters. In addition,

our theoretical model is solved under the steady state condition, in which inflow

and outflow are equated; an assumption that cannot be made when dealing with

empirical observations.

The main implication of those differences is on the shape of the hazard

functions. In the theoretical model, since we are at the steady state, and thus

the list clears, the theoretical hazards always reach one. On the contrary this

is never observed with the Kaplan-Meier hazard estimates of the HES dataset.

Moreover, the discrete hazard function can be interpreted as a conditional prob-
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ability, while the continuous hazard function cannot.

4.2.4 Hospital’s maximisation problem

The hospital maximises its utility function, g(kd,s,t), for the whole spectrum of

kd,s at time t subject to its constraints,

max
{kd,s,t}d,s

E0

∞∑
t=0

q∑
d=1

2∑
s=1

g(kd,s,t)

Subject to
∑
d

∑
s

c(kd,s,t) + c(kt) ≤ Bt

0 ≤ kd,s,t ≤ Ψd,s,t−1

xt = Zt − θEt−1(d)

d ≤ q

The first constraint corresponds to the budget constraint of the hospital12.

The second constraint states that the amount of patients of duration d and

severity s treated at time t (kd,s,t) must be between zero and the number of

untreated patients in the list for that duration and severity. In other words,

the number of people selected for treatment at time t cannot exceed the corre-

sponding number of people waiting. Third, the hospital takes the evolution of

patients inflow into account, and lastly we impose that the maximum waiting

time is q (set to 36 in the numerical simulations).

At the steady state the number of entries to the list is equal to the number

of patients treated at any point in time (xt = kt) and the optimal kd,s,t are

time-invariant. Consequently, the hospital’s maximisation problem becomes:

12Here, unlike in Ellis and McGuire (1986), the budget allocated to the hospital is exoge-
nously given. In the numerical solution (Section 4.3) the budget value is tied to the treatment
cost relative to the hospital’s capacity, representing some sort of a cost-based reimbursement
system.
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max
{kd,s}d,s

q∑
d=1

2∑
s=1

g(kd,s)

Subject to
∑
d

∑
s

c(kd,s,) + c(k) ≤ B

0 ≤ kd,s ≤ Ψd,s

k = Z − θE(d)

d ≤ q

Recall that k =
∑

d

∑
s kd,s, the steady state expected duration is defined in

equation (4.6) as E(d) =
∑

d d
kd
k and Ψd,s = ks −

∑d−1
h=1 kh,s. In addition, note

that at the steady state the restrictions that kd,s ≤ Ψd,s are satisfied as long as

kd,s are non-negative13. Thus, at the steady state the Lagrange function reads:

max
{kd,s}d,s

L =
∑
d

∑
s

g(kd,s) + λ

(
B −

∑
d

∑
s

c(kd,s)− c(k)

)

+
∑
d

∑
s

vd,skd,s ++µ (Z − θE(d)− k)

(4.7)

where λ is the lagrangian multiplier of the hospital budget constraint, vd,s is

the lagrange multiplier of the Kuhn-Tucker constraint kd,s ≥ 0, and µ is the

multiplier for the condition that ensures that the steady state inflow and outflow

are equal.

Solving the hospital’s problem gives rise to 2(d×s)+2 Karush–Kuhn–Tucker

(KKT) conditions. For each kh,m where h = 1, 2, ...q and m = 1, 2,

13At the steady state,

kd,s ≤ Ψs,d ⇔ kd,s ≤ ks−
d−1∑
h=1

kh,s ⇔ ks−
d∑

h=1

kh,s ≥ 0 ⇔
q∑

h=1

kh,s−
d∑

h=1

kh,s ≥ 0 ⇔
q∑

h=d+1

kh,s ≥ 0

which holds given that kd, s ≥ 0.
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∂L

∂kh,m
=

∂
∑

d

∑
s g(kd,s)

∂kh,m
− λ

(
∂
∑

d

∑
s c(kd,s)

∂kh,m
+

∂c(k)

∂kh,m

)
+ vh,m

− µ

(
θ
∂E(d)

∂kh,m
+

∂
∑

d

∑
s k

∂kh,m

)
= 0

∂L

∂vh,m
= kh,m ≥ 0, vh,m ≥ 0 and vh,mkh,m = 0

∂L

∂λ
= B −

∑
d

∑
s

c(kd,s)− c(k) ≥ 0, λ ≥ 0 and λ
∂L

∂λ
= 0

∂L

∂µ
= Z − θE(d)− k = 0

Given that we do not allow for interaction terms in both the hospital’s utility

(
∑

d

∑
s g(kd,s)) and the treatment-specific cost (

∑
d

∑
s c(kd, s)) functions, the

derivative of the Lagrange function with respect to kh,m simplifies to:

∂L

∂kh,m
=

∂g(kh,m)

∂kh,m
− λ

(
∂c(kh,m)

∂kh,m
+

∂c(k)

∂kh,m

)
+ vh,m − µ

(
θ
∂E(d)

∂kh,m
+ 1

)
= 0.

From this we can derive the optimal number of patients of each severity

level treated after having waited d durations as a function of all the structural

parameters (denoted z) of the model, ∀{d, s} k∗d,s = k∗d,s(z). Although the

first order conditions can be derived analytically, given the number of KKT

conditions, the maximisation problem is solved numerically in Matlad after the

parameter values are inserted (employing the fmincon command).

4.3 Numerical Solution

The solution to the hospital’s problem and the corresponding waiting time

distribution will be obtained numerically under different functional forms and

structural parameters of the hospital. Apart from the restrictions implied in

Assumptions 1-6, generally accepted by the literature, empirical information on
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hospital’s gain from treatments and their cost structures as function of wait-

ing times is limited. We start by assuming a set of functional forms for the

key elements of the model and then perform a series of comparative statics for

alternative forms. The key empirical data that we use to discuss the appropri-

ateness of each model specification are the waiting time distributions, described

in detail in the previous chapters.

The utility of the hospital, Ut =
∑

d

∑
s g(kd,s,t) is a function of (d × s)

variables. The main specification for g(kd,s,t) is assumed to be a polynomial of

third order,
g(kd,s) = ad,sk

3
d,s + bd,sk

2
d,s + cd,skd,s + e,

where ad,s < 0, bd,s > 0, cd,s > 0 are functions of duration and severity and

e ≥ 0 is a constant. Time t is suppressed for simplicity.

This specification fulfills Assumptions 1-3 laid out in Section 4.2.2. The

cubic function ensures that g(kd,s) is concave in kd,s ∈ [0, k] for a given set

of d, s, which implies that after some threshold level of activity the hospital’s

utility declines as the number of patients treated from the same severity and

duration increases. Moreover, the fact that ad,s, bd,s, cd,s depend on duration

and severity allows for a differentiation of the hospital’s utility with regards

to the duration or severity of a given set of patients. For a given number of

treatments with the same severity level, the combined impact of ad,s, bd,s, cd,s

is decreasing in d and for the same waiting time is increasing in severity.

As an illustrative example, Figure 4.1(a) presents the hospital’s utility func-

tion from treating up to 250 milder cases with waiting times ranging from 1 to

8 periods. The highest utility curve corresponds to patients treated within the

same period (duration one); up until approximately 180 patients the hospital’s

utility is increasing, although after that, the hospital derives disutility from

treating more patients with waiting time of one period. After the indicated

threshold level, the marginal benefit from treating an extra patient becomes
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Figure 4.1: Illustrative Example: Hospital’s Utility

negative, ensuring that not all of the hospital’s resources are used up for the

treatment of very short waiters, at the expense of very long waiters. Similarly,

the second highest curve denotes the utility from treating patients with dura-

tion two, in which case the turning point happens at around 130 patients. It

is clear that for the same number of treatments smaller duration is preferred.

This is ensured by the ad,s, bd,s, cd,s and corresponds to the vertical differences

across the utility curves. Similarly, as shown in Figure 4.1(b), for the same

waiting time (d = 1), the hospital derives higher utility treating more severe

cases relative to milder ones. In addition, the turning point for s = 2 is more

to the right (around 210 patients) which indicates that the hospital would also

prefer to treat them faster.

In the following subsection, we will allow for two extra functional forms of

the utility function of the hospital g(kd,s,t) and analyse their implications: (a)

a monotonically increasing function with increasing rates (quadratic) and (b)

a monotonically increasing function with decreasing rates (logarithmic).

On the cost side, the hospital is faced with a scale cost, as well as a cost

specific to the duration and severity of each treatment. The scale cost reflects

the capacity constraint of the hospital and thus refers to the overall number
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of treatments irrespective of the waiting time or the severity of the treated.

Denoting the full capacity number of patients as k̄, the scale cost is assumed to

take the following functional form:

c(kt) = τ(kt − k̄)2.

Deviations from full capacity are costly for the hospital. This holds the same

for both under and over capacity14. However, note that at the optimum the

hospital would prefer to be operating above its capacity limit, rather than with

idle capacity, since for the same scale cost it is better to treat more patients

rather than less15. The magnitude of this cost is given by parameter τ . A

small τ implies that operating over capacity is relatively less costly for the

hospital. Similarly, a higher value for τ suggests that it is more expensive

for the hospital to operate when capacity constrained. In the later case, for

example, it is relatively more expensive for the hospital to out-source equipment

or personnel.

The default duration and severity specific cost, c(kd,s,t), is set equal to:

c(kd,s,t) = ρd,skd,s,t.

That is, c(kd,s,t) is linear in kd,s,t and ρd,s is decreasing in d and increasing in

s for the same number of treatments. Our specification implies that (i) for the

same duration and severity, as the number of treatments increases the cost for

those treatments increases linearly, (ii) for the same severity level and number

of patients treated, the cost at lower durations is higher (i.e.
∂ρd,s
∂d < 0) and (iii)

for the same waiting time and number of patients treated, more severe cases

cost most (
∂ρd,s
∂s > 0). Subfigure 4.2(a) below shows the duration-specific cost

for the first 8 durations and for up to 300 severe treatments. The highest cost

14Given the quadratic specification, the scale cost is identical for the same positive or
negative deviation from k̄.

15This holds as long as the budget is ample relative to the treatment-specific cost.
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curve corresponds to treatments with one period of waiting time. In the same

lines, the severity-specific part of the cost function is depicted in Figure 4.2(b)

for fixed duration at 2. In the comparative statics below, we allow, amongst

other things, for the duration and severity specific cost to have a quadratic

specification.
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Figure 4.2: Illustrative Example: Hospital’s Duration and Severity Specific
Costs

Finally, the evolution of inflow is given by xt = Zt − θEt−1(d). As stated

before, Zt represents potential demand in terms of number of patients and θ

the responsiveness of this potential demand to the expected waiting time. We

always ensure that potential demand is greater than the hospital’s capacity,

Zt > k̄, so that the hospital is capacity constrained.

4.4 Comparative Statics I: No severity levels

We start with the simplest case in which patients are not differentiated by the

severity of their condition and there is no waiting time target. The default

parametarisation and the maximisation problem under the benchmark specifi-

cation are depicted in Table 4.3.
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Table 4.3: Benchmark functional specifications and parameters

g(kd,t) = adk
3
d + bdk

2
d + cdkd + e Utility from treating k patients with duration

d

where ad = −0.0002 + 0.0001
d parameters of the cubic utility function

bd = 0.02− 0.01
d

cd = 2 + 5
d and e = 0

c(kd,t) = ρdkd,t Cost from treatments at duration d

where ρd = 20
d2 parameter of the linear duration cost function

c(k) = τ(k − k)2 Scale cost of the total number of patients
treated

where k̄ = 900 Hospital’s capacity in terms of number of pa-
tients

τ = 10 sensitivity of cost to deviations from full ca-
pacity k̄

B = 7000 Hospital’s budget
Z = 1200 Potential demand for healthcare
θ = 50 Sensitivity of inflow to expected waiting time
q=36 Maximum allowed waiting time

Hospital’s Maximisation Problem

max
{kd}

L =
∑
d

g(kd) + λ
(
B −

∑
d

c(kd)− c(k)
)
+
∑
d

vdkd ++µ (Z − θE(d)− k)

For each kh, h = 1, 2, ..., q, we have:

∂L

∂kh
= (3ahk

2
h+2bhkh+ch)−λ

(
ρh + 2τ(k − k̄)

)
+vh−µ

(
θ
(
h
k − kh
k2

−
∑
d ̸=h

d
kd
k2

)
+1
)
= 0

∂L

∂vh
= kh ≥ 0, vh ≥ 0 and vhkh = 0

∂L

∂λ
= B −

∑
d

c(kd)− c(k) ≥ 0, λ ≥ 0 and λ
∂L

∂λ
= 0

∂L

∂µ
= Z − θE(d)− k = 0

Table 4.4 shows the number of patients treated from each duration and the

waiting time distribution of the benchmark model. Based on those structural
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parameters, the hospital treats 917 patients (17 patients above its capacity

limit) at the steady state. The optimal maximum waiting time is 13 periods

(q∗ = 13). Thus, q∗ is the ‘bottom’ of the list and the last patients on the

waiting list were treated after having waited for 13 periods (entered the list 12

periods ago). Given that we are at the steady state, this is equivalent to saying

that it takes 13 periods to clear the inflow of patients. Average duration is 5.65

periods. One can also see that the number of patients treated is decreasing in

duration; the hospital treats 154.48 patients with duration one, 102.67 patients

with duration two, 86 patients with duration three and so on.

Table 4.4: Benchmark Model - Results

Duration Optimal kd Survival pf Hazard Rate

0 0 1 0
1 154.481 0.83156 0.16844 0.16844
2 102.677 0.71960 0.11196 0.13463
3 86.047 0.62578 0.09382 0.13038
4 76.759 0.54208 0.08370 0.13375
5 70.417 0.46530 0.07678 0.14164
6 65.574 0.39380 0.07150 0.15366
7 61.571 0.32667 0.06714 0.17048
8 58.066 0.26335 0.06331 0.19382
9 54.854 0.20354 0.05981 0.22711
10 51.768 0.14710 0.05645 0.27732
11 48.625 0.09408 0.05302 0.36044
12 45.237 0.04475 0.04932 0.52431
13 41.042 0 0.04475 1
k 917.119 E(d) 5.6576

The mechanisms that drive the hospital to behave in such a way depend

mainly on its utility, cost and inflow interactions. The hospital would prefer to

treat as many patients as possible immediately (with duration one), however

this comes at a higher cost. The vertical differences across utility curves and

duration specific cost curves reflect this. Additionally, given the cubic specifica-

tion assumed, the turning point in each utility curve for d = 1, 2, ...q serves as a

threshold for the amount of patients selected from each duration. In particular,

this feature restrains the hospital from excessive ‘front-loading’ of treatments.
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Another reason that restricts the hospital from treating too many patients up

front is the impact of a small expected waiting time on future inflow. If the list

is cleared quickly, then expected duration will be low and hence a higher num-

ber of patients will demand healthcare in the following period. Therefore, at

the steady state, the hospital also takes into account the impact of its behaviour

on the inflow of patients.

Figure 4.3 shows the graphical representations of (a) the probability function

(b) survival function and (c) the hazard function for the benchmark model.
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Figure 4.3: Benchmark Model - Graphs

The probability function, that is the instantaneous probability of receiving

treatment, is declining and becomes zero for duration 14. This shape is due

to the hospital’s treating pattern, which admits more patients with shorter

durations. In the second graph, the survival curve starts at one, as all patients

165



are waiting to be treated at duration zero; they are all part of the stock. As

the hospital removes people off the list for treatment, the survival function is

monotonically decreasing reaching zero at d = 13. The hazard curve exhibits

a spike at d = 1, and after waiting period two, it increases monotonically until

reaching unity. The observed decline between durations one and two it due

to the largest proportion (0.168) of treatments taking place within the same

period.

The shape of the benchmark theoretical survival curve matches the ‘typi-

cal’ empirical survival function (e.g. see Figure 2.4 in Chapter 2). That is, it is

convex implying that patients are taken off the list as a decreasing function of

waiting time (d)16. On the other hand, as already explained, the main differ-

ence among the theoretical and empirical hazard functions is due to the steady

state condition. In general, the first spike is observed in both cases, while it is

only the theoretical hazard that then continues increasing until 1.

4.4.1 Changes in the Structural Parameters of the Model

The following subsections present steady state comparative statics under chang-

ing parameters and/or functional specifications.

16The degree of convexity is higher (i.e. survival curve closer to the origin) with the intro-
duction of severity levels.

166



Changes in the Utility function

We start our analysis by changes in the parameters of the cubic utility specifi-

cation. In particular, our first set of results focuses on increasing, in absolute

terms, the size of ad,s. This implies that the third order term in the utility func-

tion gains in importance which results in (i) the turning point of each u(kd) hap-

pens at a smaller number of treatments, that is, the maximum utility point shifts

to the left for all kd, d = 1, 2, ..., q (ii) the utility level at each kd gets smaller,

i.e. all utility curves shift downwards and (iii) the u(kd) curves for d = 1, 2, ..., q

get closer to each other. Table 4.5 and Figure 4.4 illustrate the optimal number

of patients treated from each duration and selected survival and hazard curves

when ad is changed. Recall that ad = − 2
10000 + 1

10000d in the benchmark spec-

ification. In the example presented below (absolute) ad is altered by changing

the size of the positive term as follows: 1.5
10000d ,

1.2
10000d ,

1
10000d ,

0.6
10000d ,

0.3
10000d .

As (absolute) ad increases three patterns of the hospital’s behaviour are

apparent; the hospital treats less patients of the first duration, more patients

of medium durations and less patients of relatively long durations. The overall

number of treatments marginally increases, as average duration decreases. In

addition, when moving from specification (3) to (4) and (5), the long waiters

are eliminated and thus the optimal waiting time to clear the list is reduced

from 13 to 12 periods. A higher cubic term results in a more equal distribution

of treated patients across durations and a quicker clearance waiting time. This

is clearly seen when comparing case (1), in which the cubic term is very weak,

with case (5). In (1) the hospital treats many patients ‘up front’, but then 46

patients are admitted for surgery in duration 36. In column (5), on the other

hand, patients are somehow more equally distributed in 12 durations.

Given the observed substitution of short and long waiters for more treat-

ments at medium durations, the survival functions intersect (see Figure 4.4(a)).
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Table 4.5: Changes in the cubic term of the utility function:
(1) (2) (3) - Bench (4) (5)

d
\
ad − 2

10000
+ 1.5

10000d
− 2

10000
+ 1.2

10000d
− 2

10000
+ 1

10000d
− 2

10000
+ 0.6

10000d
− 2

10000
+ 0.3

10000d

0 0 0 0 0 0
1 235.8466 170.9073 154.4790 131.6770 122.6675
2 112.1458 101.4629 102.6735 100.9167 101.0130
3 88.3879 82.1707 86.0451 88.7859 91.1851
4 76.5333 71.9129 76.7650 81.5564 84.7460
5 69.0047 65.2905 70.4137 76.3871 79.7426
6 63.6013 60.5982 65.5741 72.2755 75.4063
7 59.4561 57.1276 61.5751 68.7540 71.3787
8 56.1264 54.5171 58.0666 65.5722 67.4438
9 53.3747 52.5433 54.8552 62.5752 63.4168
10 51.0297 51.0949 51.7704 59.6394 59.1371
11 0 50.0854 48.6364 56.6653 54.3043
12 0 49.4302 45.2400 53.5491 48.3578
13 0 49.0816 41.0254 0 0
14 0 0 0 0 0
. 0 0 0 0 0
. 0 0 0 0 0
. 0 0 0 0 0
36 45.7799 0 0 0 0
k 911.286 916.222 917.119 918.353 918.798

E(d) 5.7743 5.6756 5.6576 5.6329 5.6240
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Figure 4.4: Changes in ad (Table 4.5)

Comparing the survival curves for specifications (2) and (5), we notice that in

the first case, the percentage of patients waiting more than two periods is about

70%, although for case (5) it is about 76%. Up until the intersection, the former
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survival curve is closer to the origin implying that more patients are treated

‘up front’ (until duration 5.5). On the contrary, around 5% of patients are still

waiting for treatment beyond 12 periods in (2), but for case (5) no one is left

untreated, since q∗ = 12. With regard to the hazard functions, the most notice-

able decrease between durations one and two is observed for case (2), since it

is in this case that the largest number of patients gets treated within the same

period.

As the (absolute) magnitude of the cubic term gets weaker, the utility from

treating patients in the first durations gets larger. Thus, the hospital strongly

prefers to treat patients as quickly as possible. However, given its cost structure

and budget, this can be achieved at the expense of very long waiters. This

behaviour also ensures that future inflow is restrained (through higher average

waiting times) and a steady state distribution is attainable.

Table 4.6: Changes in ad - approaching zero

(1) (2) (3) (4) (5)
d
\
ad Bench 0.8ad 0.5ad 0.35ad 0.2ad

0 0 0 0 0 0
1 154.4812 168.4779 221.3891 263.0500 248.9558
2 102.6771 111.3854 153.4201 199.9500 279.4706
3 86.0469 92.4839 130.7895 177.9600 268.5102
4 76.7595 81.8446 118.0173 165.5900 0
5 70.4167 74.6426 109.3474 0 0
6 65.5741 69.3091 102.8531 0 0
7 61.5711 65.0947 0 0 0
8 58.0661 61.6785 0 0 0
9 54.8541 58.8270 0 0 0
10 51.7684 56.4072 0 0 0
11 48.6248 54.3782 0 0 0
12 45.2369 0 0 0 0
13 41.0424 0 0 0 0
14 0 0 0 0 0
. 0 0 0 0 0
. 0 0 0 0 0
. 0 0 0 0 0
36 0 21.5534 75.2341 97.1230 104.6517
k 917.1193 916.0826 911.0507 903.6730 901.5883

E(d) 5.6576 5.6783 5.7790 5.9265 5.9682
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As shown in Table 4.6 and Figure 4.5, decreasing (absolute) ad further away

from the benchmark, the waiting time distributions become more unequal and

the survival functions obtain distinct steps. For example, in specification (5),

88% of patients are treated within the first three durations, and the rest leave

the list after having waited the maximum possible time (36 periods).
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Figure 4.5: As ad approaches zero (Table 4.6)

Changes in the linear term of the utility function

In general, as cd increases the turning point of the utility curves shifts towards

the right for all kd, d = 1, 2, ..., q, all utility curves shift upwards and the vertical

distances between the u(kd) curves for different durations increase. Table 4.7

and Figure 4.6 illustrate the optimal number of patients treated from each du-

ration and selected survival and hazard curves when cd is changed. Recall that

cd = 2 + 5
d in the benchmark specification. As cd increases the overall number

of treatments decreases17 and average waiting time goes up. The percentage of

17This does not hold for case (1). Note that for this specification, the hospital is not using
all of its budget.
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Table 4.7: Changes in the linear term of the utility function:

Optimal kd at Steady State
(1) (2) (3) (4) (5) (6)

d\cd 0.45cd 0.8cd cd 2cd 4cd 5cd

0 0 0 0 0 0 0
1 128.3336 147.4386 154.4812 198.5575 257.4583 273.5851
2 94.6469 101.2871 102.6771 124.0844 153.9678 164.4531
3 84.6172 86.7711 86.0469 99.3437 117.8449 125.1002
4 79.0586 78.6071 76.7595 85.2973 96.3200 101.2245
5 75.1512 72.8971 70.4167 75.6574 80.6091 83.4923
6 72.0150 68.3509 65.5741 68.3352 67.4907 68.2875
7 69.2773 64.4164 61.5711 62.3771 54.7588 0
8 66.7484 60.7795 58.0661 57.2937 0 0
9 64.3171 57.2270 54.8541 52.7317 0 0
10 61.9047 53.5839 51.7684 48.4472 0 0
11 59.4361 49.5733 48.6248 0 0 0
12 56.8616 44.6784 45.2369 0 0 0
13 0 31.9083 41.0424 0 0 0
14 0 0 0 0 0 0
. 0 0 0 0 0 0
. 0 0 0 0 0 0
. 0 0 0 0 0 0
35 0 0 0 0 35.8577 41.2901
36 0 0 0 41.7161 43.2633 46.9872
k 912.3679 917.5189 917.1193 913.8414 907.5705 904.4201

E(d) 5.7526 5.6496 5.6576 5.7232 5.8486 5.9116

patients treated up front (short periods of wait) increases, while very long wait-

ers start to accumulate. The lists are lengthened. The hospital, thus, creates

more asymmetrical waiting time distributions which are characterised by more

‘front loading’, but at the same time by long tails to the right. On the contrary,

when the linear term is quite small, we see a more balanced admissions pattern

within 12-13 periods of wait.

Looking at the survival curves, specifications (1) and (3) intercept at around

d = 8. It is obvious that as cd increases the hospital admits quicker the short

waiters by delaying the admittance of long waiters. In specifications (4) and (5)

the survival curves have shifted greatly towards the origin (quicker admittance

rates for durations 7 and 10 respectively), but a long tail persists that would
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eventually reach zero at the maximum allowed duration (d = 36). Regarding

the graph of the hazard functions, there is a small decline of the hazard between

durations 1 and 2 (the largest number of patients are treated at period 1) after

which it increases and reaches 1 at the relevant q∗. Note that the hazard curve

for case (5) reaches 0 for duration 7, remains as such for another 28 periods and

finally becomes 1 at period 36 when the last 43 patients are treated. Although

not presented here, similar trade-offs are observed when we alter the quadratic

term (bd) of the utility function.
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Figure 4.6: Changes in cd (Table 4.7)

Hence, varying the hospital utility allow us to obtain two distinctive types of

waiting lists attesting to the flexibility of the theoretical model developed here.

In one case hospitals ‘front load’, treating many patients as quickly as possible

at the detriment of a small fraction that is forced to wait for long periods or

in the other, the hospital selects a smooth waiting list distribution where most

people have to wait for more than 2 periods but no patients is forced to wait

for long periods of time.

We now briefly present the steady state waiting time distributions in the

cases where the utility function is (a) quadratic, U(kd) = bdk
2
d + cdkd + e and
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(b) logarithmic, U(kd) = γdlog(kd) + g, both depicted in Figure 4.7.
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Figure 4.7: Quadratic and Logarithmic Utility specifications

With a quadratic utility function the steady state distribution becomes as

follows: the majority of people are treated within the same period and the rest

of people receive treatment at the largest possible duration (here 36). Why is

this the case? Since the quadratic utility curves have no turning point and since

u(k1) is always the highest, the hospital treats as many patients as possible with

duration one (given the costs and the capacity it faces). However, once this is

done, the remaining of patients are treated at the maximum possible waiting

time, since this is the only way to maintain a steady state average waiting

time and inflow. Consequently, the survival graph becomes a one step function,

since 780 patients are treated with duration one, and the rest 126 after having

waited for 36 periods. On the contrary, a logarithmic utility function results in

a very smooth waiting time distribution, in which the hospital treats patients

in each duration. Again, the number of treated patients is decreasing in d, with

more treated up front, however, as the utility curves are now increasing at a

decreasing rate (with no turning point), sufficient utility is obtained even when

a small number of patients, kd, is admitted from each d.

These two functional form assumptions serve as the two extremes of the
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hospital behaviour discussed above, highlighting the trade-off in place. On the

one hand, hospitals have an incentive to ‘front load’, treat as many patients

in the first few periods. On other hand hospitals must ensure that they can

deal with the current inflow under a control waiting list. Therefore, if the first

incentive is strong enough (quadratic) survival functions become a step func-

tion otherwise when utility gains do not change as dramatically with duration,

survival functions are very smooth (logarithmic).

Changes in the duration specific cost function

The benchmark duration-specific cost function is ρdkd, with ρd = 20/d2. The

hospital’s budget constraint has two distinct cost parts. The allocation of the

budget is thus driven by (i) the number of patients that can be accommodated

beyond its capacity, k̄ (scale cost) and (ii) how quickly or slowly the patients

(up until k̄) can be taken off the list (duration specific cost). It is plausible to

assume that a different cost structure and/or capacity imply a different budget.

The benchmark budget (7000) has been set proportionally to those two costs

(average unit cost (ρd) times capacity). Here, for the purpose of comparative

statics, we will be changing the hospital’s duration specific cost for a fixed

budget.

In the first example (scenario A), we start by increasing ρd as follows:

20
d2
, 40
d2
, 60
d2
, 80
d2
, 120

d2
. The cost is increased without altering the vertical differ-

ences across the cost curves for d = 1, 2, ..., q. That is, the cost of treating one

patient with d = 2 is always 1/4 of the cost for d = 1, the cost of one treatment

with duration three is 1/9 of the cost for d = 1 and so on. As shown in Table

4.8, increases in the duration related cost, force the hospital to treat a smaller

overall number of patients. Since we are at the steady state, this translates

both into a smaller outflow and inflow of patients and a higher average dura-

tion. When ρd is set to 60
d2

the hospital admits 900 patients, and beyond that
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Table 4.8: Changes in Duration - specific cost, ρd - scenario A

(1) (2) (3) (4) (5) (6)
d\ρd 20

d2 40/d2 60/d2 80/d2 120/d2 140/d2

0 0 0 0 0 0 0
1 154.4790 126.2565 65.0407 32.0208 0 0
2 102.6735 96.3698 100.0166 107.1027 111.3901 66.3736
3 86.0451 83.8812 94.5169 102.4093 107.4771 113.4318
4 76.7650 76.2876 89.0702 96.7338 102.2487 116.4574
5 70.4137 70.8878 84.2797 91.3367 97.2365 112.9873
6 65.5741 66.6642 79.9049 86.1202 92.4303 107.1499
7 61.5751 63.1327 75.7371 80.8972 87.6852 99.8770
8 58.0666 60.0316 71.6095 75.4715 82.8624 91.2815
9 54.8552 57.1950 67.3731 69.6123 77.8273 80.9324
10 51.7704 54.4996 62.8597 62.9372 72.3969 67.4743
11 48.6364 51.8371 57.8218 54.5908 66.3120 41.2621
12 45.2400 49.1159 51.7281 39.5397 0 0
13 41.0254 46.1696 0 0 0 0
14 0 0 0 0 0 0
k 917.12 902.33 899.95 898.78 897.87 897.23

E(d) 5.6576 5.9534 6.0008 6.0246 6.0427 6.0554∑
c(kd)/B 0.5813 0.9923 0.999 0.9978 0.9935 0.9890

cost, it operates marginally bellow capacity. In effect all the budget is allocated

to the duration specific cost (last row in Table 4.8). Regarding the waiting time

distributions we mainly observe a reduction in the number (and proportion) of

patients treated with very short waiting times. Since, the unit cost for ‘up

front’ treatments is increased, the hospital postpones the quick admissions for

later on. In fact, after specification (2) k1 is drastically decreased and becomes

zero for the last two columns. Due to this, we also observe a reverse in the

number of treatments as duration increases. This behaviour is depicted in the

survival functions, with the curvature shifting from convex to concave for short

durations. The survival curves (1) and (3) of Figure 4.8 intersect around d = 7,

with the benchmark survival being closer to the origin up until that point. For

specification (5) less patients are (cumulatively) waiting for treatment after the

intersection, and the list is cleared at a lower duration (q∗ = 11).

In the following comparative exercise (scenario B), we compare the hospital’s
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Figure 4.8: Changes in ρd - Scenario A (Table 4.8)

behaviour altering the coefficient of the duration related cost as such18:

20

d4
,
20

d2
,
20

d
,
20

d0.7
,

20

d0.65
,

20

d0.6
.

In this way, we change the vertical differences across the cost curves for different

durations. Note that for d = 1, the unit cost of treatment is always the same

for all specifications and equal to 20. As the power of d decreases, the vertical

differences in the cost functions decrease as the c(kd) for d = 2, 3, 4... get closer

to the cost curve for d = 1 (i.e. the cost curves are now higher and get closer

to the top one). Thus, when ρd = 20
d2
, c(kd) decreases very fast as d increases,

although in the case where ρd = 20
d0.6

, the cost is decreasing slowly, which

implies a relatively high unit cost for treating patients with medium, as well as

short, durations. The unit cost for the first 10 durations for those two cases is

presented below.

18Note that a steady state waiting time distribution cannot be obtained for powers lower
than 0.6, unless the hospital’s budget is increased.
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Cost of one treatment for durations 1 to 10
ρd\d 1 2 3 4 5 6 7 8 9 10
20
d2 20 5 2.22 1.25 0.80 0.56 0.41 0.31 0.25 0.20

20
d0.6 20 13.20 10.35 8.71 7.61 6.83 6.22 5.74 5.35 5.02

Table 4.9: Changes in Duration Specific Cost, ρd - scenario B

1 2 3 4 5 6 7
d\c(kd) 20

d4 kd
20
d2 kd

20
d kd

20
d0.8 kd

20
d0.7 kd

20
d0.65 kd

20
d0.6

0 0 0 0 0 0 0 0
1 155.47 154.4812 150.0629 140.22 95.0348 57.0160 7.3750
2 103.82 102.6771 98.6871 93.864 84.9860 87.6120 98.5508
3 87.02 86.0469 82.3820 79.647 83.3582 92.0918 103.7143
4 77.636 76.7595 73.4491 72.077 81.8523 92.3116 103.7342
5 71.187 70.4167 67.5425 67.131 80.0004 90.6354 101.4706
6 66.238 65.5741 63.2104 63.535 77.7817 87.7783 97.7656
7 62.107 61.5711 59.8411 60.736 75.2015 83.9948 92.9022
8 58.438 58.0661 57.1134 58.437 72.2477 79.3210 86.8986
9 55.023 54.8541 54.8304 56.464 68.8785 73.6404 79.5329
10 51.681 51.7684 52.8665 54.711 64.9986 66.5824 70.1962
11 48.165 48.6248 51.1496 53.118 60.4339 57.0834 56.8056
12 44.177 45.2369 49.6465 51.663 54.7698 31.1057 0
13 38.349 41.0424 48.2915 50.261 0 0 0
14 0 0 0 0 0 0 0
k 919.31 917.12 909.07 901.8640 899.54 899.17 898.95

E(d) 5.6138 5.6576 5.8185 5.9628 6.0091 6.0165 6.0211
% Dur Cost 0.467 0.581 0.882 0.995 1.000 0.999 0.998

When the duration-specific cost increases in this way, the hospital treats less

and less patients overall, reaching its capacity level while average waiting time

increases. In addition, the duration required to clear the list gradually decreases

from 13 to 11 periods and in general less patients are treated within the same

period. In line with Scenario A, as the duration specific cost rises, the hospital

is allocating almost all its budget to it. The last two columns of Table 4.9

exhibit a different admittance behaviour. The duration-specific cost curves are

all close to the top one (c(k1)), which implies that it is relatively more costly to

treat significant amount of patients in the first few periods of wait. As a result,

the hospital starts by treating only a few patients within one period (only 7.3 in

the last case) and continues with increased number of treatments up until d = 4,
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treating 14% less patients in the first 3 periods comparing to the benchmark

case. After that, the decreasing feature of the cost structure induces the hospital

to adopt the ‘typical’ admittance pattern in which the number of treatments

decreases with duration. In Figure 4.9(a), survival curve 7 moves further away
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Figure 4.9: Changes in ρd - Scenario B (Table 4.9)

from the origin until d = 6. This indicates a slower admittance rate relative to 4

for small waiting times. After the intersection, the admittance rates for higher

ρd are increased. Due to an increasing number of treated patients for durations

one to four, the survival function 7 starts off decreasing at a decreasing rate,

and it then exhibits a change in curvature. Similarly, the hazard function is

now monotonically increasing, with a noticeable increase between durations 1

and 2. Thus, the ‘usual’ spike in d = 1 is not observed in this case.

Once again, the model proves to be quite flexible in accounting for different

patterns of waiting time distributions. In altering the relative cost of duration

specific treatment we highlight the trade-offs the hospital faces. When costs

of early treatments are relatively high, the incentive to ‘front load’ diminishes

leading to an initially concave survival function. This pattern is strongly rein-

forced when a quadratic duration cost specification is used, as shown next.

178



Quadratic Cost Function

We now turn to examine the case in which the duration specific cost of the

hospital is quadratic, c(kd,t) = ρdk
2
d,t. Due to the quadratic term, the share of

the duration specific cost in the hospital’s budget is considerably greater, thus,

the budget is increased now to 30,000 and the unit cost is decreased to 1/d2.

Selected comparative statics are depicted in Table 4.10 and Figure 4.10. With

Table 4.10: Changes in ρd - Quadratic Cost Function

(1) (2) (3) (4) (5) (6)
d \ ρdk2d 1

d2 k
2
d

2
d2 k

2
d

4
d2 k

2
d

6
d2 k

2
d

7
d2 k

2
d

8.5
d2 k

2
d

0 0 0 0 0 0
1 141.99 101.32 55.640 29.469 20.833 9.1729
2 103.83 98.023 89.242 71.610 58.794 32.174
3 89.450 89.818 93.320 92.164 87.781 63.162
4 81.141 83.650 91.191 97.538 99.889 94.644
5 75.391 78.832 87.620 97.024 102.92 119.37
6 70.976 74.831 83.582 93.927 101.50 133.27
7 67.314 71.314 79.277 89.387 97.592 135.46
8 64.122 68.082 74.700 83.768 91.959 126.21
9 61.225 65.006 69.746 77.063 84.781 104.74
10 58.479 61.983 64.200 68.914 75.791 65.349
11 55.786 58.906 57.637 58.169 63.880 0
12 53.092 55.685 48.790 28.417 0 0
13 0 0 0 0 0 0
k 922.80 907.45 894.95 887.45 885.72 883.55

E(d) 5.544 5.851 6.101 6.251 6.286 6.329

a higher quadratic cost, the hospital treats a smaller overall number of patients

at a higher average waiting time. Thus, as the unit cost progressively increases,

lesser patients are treated quickly (with waiting of one or two periods) and

from specification (3) and onwards the number of treatments is increasing in

d for small durations. However, the clearance waiting time (q∗) remains the

same until case (4), and it actually decreases at high ρd levels. This could be

attributed to the smaller number of overall treatments. The above mentioned

admittance pattern is also reflected in the shapes of the survival and hazard

functions. Apart from the first survival curve (dotted line) in Figure 4.10, all
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Figure 4.10: Changes in ρd - Quadratic Cost Function (Table 4.10)

others start off further away from the origin and are concave for short durations.

That is, the number of patients still waiting for treatment is decreasing, but at

a decreasing rate. The shift in the curvature takes place at higher durations as

ρd increases. The survival curves intersect. Thus, for instance, at d = 3, 63.6%

of patients are still waiting to be treated in case (1), while 88.1% are waiting in

case (6). However, at d = 8 (after the intersection) the reverse holds; 24.7% are

still on the list for (1) against 19.2% for case (6). Similarly, the hazard curves

for specifications (3), (5), (6) are always increasing.

Concave survival functions are also observed empirically, especially at a

disaggregate level. For example, in the specialty of ophthalmology (and in par-

ticular the operation of lens prosthesis) of Birmingham Hospital the concavity

of the survival function is clear.

Changes in the budget of the hospital

Table 4.11 and Figure 4.11 illustrate the optimal number of patients treated

from each duration and the relevant survival and hazard curves when the hos-

pital has a higher budget, B, at its disposal. By increasing the budget of the

hospital, we observe an increase in the total inflow (xt) and outflow of patients
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(kt) and a quicker list clearance (q∗ gets smaller). At the same time, the ex-

pected waiting time decreases. Ceteris paribus, with a bigger budget for elective

surgery, the hospital has the opportunity to both treat above its capacity (scale)

and to manage the (larger) list quicker.

Table 4.11: Changes in Budget - Optimal kd at Steady State

Lists Proportions (PF)
(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

d\B 3150 7000 10500 20000 30000 3150 7000 10500 20000 30000
0 0 0 0 0 0 0 0 0 0 0
1 109.081 154.481 155.691 164.198 168.299 0.121 0.168 0.168 0.175 0.177
2 96.490 102.677 103.776 111.424 115.479 0.107 0.112 0.112 0.119 0.121
3 86.600 86.047 87.477 94.821 99.054 0.096 0.094 0.095 0.101 0.104
4 79.839 76.759 78.643 85.405 89.755 0.089 0.084 0.085 0.091 0.094
5 74.654 70.417 72.822 78.695 83.114 0.083 0.077 0.079 0.084 0.087
6 70.329 65.574 68.598 73.254 77.698 0.078 0.072 0.074 0.078 0.082
7 66.476 61.571 65.299 68.428 72.883 0.074 0.067 0.071 0.073 0.077
8 62.859 58.066 62.599 63.841 68.314 0.070 0.063 0.068 0.068 0.072
9 59.311 54.854 60.330 59.211 63.728 0.066 0.060 0.065 0.063 0.067
10 55.676 51.768 58.376 54.199 58.863 0.062 0.056 0.063 0.058 0.062
11 51.726 48.625 56.618 48.190 53.331 0.057 0.053 0.061 0.051 0.056
12 47.097 45.237 55.047 37.832 0 0.052 0.049 0.059 0.040 0.000
13 40.359 41.042 0 0 0 0.045 0.045 0.000 0.000 0.000
14 0 0 0 0 0 0 0 0 0 0
k 900.50 917.12 925.28 939.50 950.52 E(d) 5.99 5.65 5.49 5.21 4.98

% c(kd) 0.999 0.581 0.392 0.218 0.149

Moving from the benchmark budget, (2), to (4) more patients with dura-

tions d = 1, 2, ..., 10 are admitted for treatment and the long waiters of dura-

tion 13 are eliminated. Despite the fact that the hospital now treats 23 more

patients, it does so quicker (q∗ = 12) and at a lower average waiting time.

Comparing specifications (3) and (4), where q∗ stays the same at 12 periods,

the hospital decides to treat a greater proportion of patients with d = 1, 2, ..., 8

while reducing the proportion of admitted people from the remaining periods.

This behaviour reveals that increased budgets permit the hospital to reduce the

number of people waiting a lot and admit more patients quickly. Increasing the

budget beyond 30,000 is not affecting the steady state waiting time distribu-

tion. Given the fixed cost structure and capacity, the hospital cannot absorb
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the excess funds (thus, the budget constraint holds strictly as an inequality).

For the list to get shorter, we need to increase the hospital’s capacity in line

with the budget. This result indicates that policies aimed at improving hospital

performance as regards waiting lists, must account for both types of investment,

namely, monetary budget (flow) and capacity (stock).
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Figure 4.11: Changes in the hospital’s budget (Table 4.11)

The more funds the hospital has for elective surgery, the more the survival

curves shift towards the origin without intersecting (Figure 4.11(a)). The ad-

mittance rates for treatment get greater throughout. The list also clears earlier,

shown by the fact that they reach the x axis at 13, 12 and then 11 periods.

Regarding the hazards, with the exception of a small decline between d = 1

and d = 2 (this is the case because, in all specifications, the hospital admits

the larger number of patients for d = 1), they are all monotonically increasing

and shifting to the left. As the list is gradually getting empty, the probability

of treatment given still on the list gets bigger.
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Changes in the scale capacity of the hospital

We continue our analysis with changes in the specification of the hospital’s

scale cost, c(k) = τ(k − k̄)2, both in terms of numbers of patients (k̄) and the

sensitivity to deviations from full capacity (τ).

Changes in capacity (k̄)

As expected, steady state outflow (inflow) and expected waiting times are very

responsive to the hospital’s capacity. As k̄ increases, the optimal waiting time

to clear the list q∗ decreases drastically, and the hospital treats more and more

patients at shorter durations (Table 4.12). When capacity approaches the po-

tential demand for health care (Z set at 1200), the distribution should eventu-

ally get eliminated19.

For relatively low capacity levels (below the benchmark case), long waiters

at the bottom of the list are showing up. The hospital is heavily constrained,

and given potential demand, attempts to restrain inflow by increasing expected

waiting time, which for k̄ = 700 is almost 10 periods.

As shown in Figure 4.12, with increased capacity, the survival curves move

closer to the origin and reach the x−axis quicker. Similar patterns are observed

for the hazard curves. Specification (2) (dotted line) is an exception, since it

stays to the left of the benchmark curve until they intersect at d = 11. The ad-

mittance rate is higher due to the smaller overall treatments (100 patients less).

19Given that the hospital’s funds are in line with its high capacity and duration costs. Recall
that here, for comparative statics reasons, the budget is fixed. That is why, when capacity is
increased a lot, the hospital operates below capacity, since its budget is insufficient.
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Table 4.12: Changes in Scale Cost: k̄
(1) (2) (3)-Bench (4) (5)

d\k̄ 700 800 900 980 1050

0 0 0 0 0 0
1 148.990 149.791 154.479 174.033 232.567
2 97.083 97.972 102.673 121.634 206.351
3 80.017 81.017 86.045 105.555 182.870
4 70.446 71.530 76.765 96.455 160.426
5 63.985 65.137 70.414 89.943 136.109
6 59.182 60.360 65.574 84.610 106.131
7 55.399 56.601 61.575 79.865 18.235
8 0 53.487 58.067 75.368 0
9 0 50.835 54.855 70.912 0
10 0 48.522 51.770 66.295 0
11 0 0 48.636 0 0
12 0 0 45.240 0 0
13 0 0 41.025 0 0
. 0 0 0 0 0
. 0 0 0 0 0
. 0 0 0 0 0
34 46.978 0 0 0 0
35 47.566 40.867 0 0 0
36 48.131 41.475 0 0 0
k 717.78 817.60 917.12 964.67 1042.69

E(d) 9.644 7.648 5.658 4.707 3.146
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Figure 4.12: Changes in k̄ (Table 4.12)
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Changes in τ

Recall that τ denotes how costly it is for the hospital when deviating from its full

capacity. As τ increases, there is a decline in the overall number of treatments

Table 4.13: Changes in Scale Cost: τ

(1) (2) (3) (4) (5)
d\τ 0.5 5 Bench 50 100

1 2 3 4 5
d 0.5 5 10 50 100
0 0 0 0 0 0
1 169.712 153.956 154.481 151.145 150.384
2 116.735 103.217 102.677 98.547 97.508
3 100.211 87.161 86.047 81.636 80.506
4 90.760 78.454 76.759 72.394 71.268
5 83.916 72.723 70.417 66.342 65.306
6 78.257 68.576 65.574 62.024 61.152
7 73.136 65.364 61.571 58.799 58.163
8 68.186 62.754 58.066 56.327 55.997
9 63.103 60.573 54.854 54.413 54.451
10 57.549 58.719 51.768 52.935 53.394
11 50.846 57.075 48.625 51.814 52.731
12 0 55.621 45.237 50.996 52.387
13 0 0 41.042 50.421 52.288
14 0 0 0 0 0
k 952.410 924.193 917.119 907.794 905.534

E(d) 4.952 5.516 5.658 5.844 5.889

and an expansion in both the clearance of the list and average waiting time, E(d)

(Table 4.13). Since it gets costlier for the hospital to operate above capacity,

the overall number of treatments approaches 900 patients. Overall, a higher τ

leads to a smaller number (and percentage) of patients treated quicker, at short

durations up until d = 7 and there are more long waiters.

As depicted in Figure 4.13, the survival and hazard curves move propor-

tionally further away from the origin.
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Figure 4.13: Changes in τ (Table 4.13)

To sum up, when the budget or the scale cost structure of the hospital

is altered, the corresponding response is an overall change in the admittance

patterns. In particular, when the budget, capacity or the ability to operate

above capacity are increased, the survival curves shift inwards, closer to the

origin, and the hazard function shift upwards, reaching one faster. Therefore,

the scale empirical differences observed when comparing the estimated survivals

across different hospitals or specialities could be attributed to differences in the

above mentioned parameters of the trust.

4.4.2 Waiting Time Targets

The waiting time target is imposed at an individual level, ‘no patient should

wait more than d̂ periods since he/she is added to the list’, and is incorporated

to our model in the cost function of the hospital, Ct, as an extra steep cost at

the limit of the target. Denoting the targeted duration as d̂, then the extra cost

faced by the hospital is:

c̃(d) =

 0 if d ≤ d̂

ϕdkd,s if d > d̂
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Two are the important characteristics of our target structure: how restric-

tive the waiting target is (given by the level of d̂), and the magnitude of the

cost/punishment when the target is breached (c̃(d̂)).

The first waiting time target we are introducing in the benchmark specifi-

cation is a 12 period target; this indicates that no one should wait more than

12 periods until admittance for hospital treatment. In other words, the waiting

time to clear the list should be q∗ = 12, although without the target the bench-

mark steady state clearance waiting time is 13 periods (Column (1) in Table

4.14). For waiting times above d̂ = 12 we start by assuming that ϕd is flat and

independent of duration, meaning that the unit cost from breaching the target

is the same irrespective of the duration at which the ‘long’ waiters are treated.

Table 4.14: Optimal kd - Changes in the penalty of a target at 12 periods

(1)-Bench (2) (3) (4) (5) (6)
d \ϕd 0 5 10 20 30 50
0 0 0 0 0 0 0
1 154.4812 153.9767 153.4176 151.3251 150.9161 150.2007
2 102.6771 102.2808 101.8348 100.2629 99.9077 99.2741
3 86.0469 85.6767 85.2890 84.1744 83.8453 83.2729
4 76.7595 76.4430 76.1077 75.6485 75.3814 74.9038
5 70.4167 70.1717 69.9334 70.3173 70.1210 69.7870
6 65.5741 65.4184 65.2958 66.7112 66.6173 66.4662
7 61.5711 61.5332 61.5549 64.1887 64.2155 64.2793
8 58.0661 58.1807 58.3886 62.4078 62.5636 62.8640
9 54.8541 55.1606 55.6029 61.1587 61.4510 61.9989
10 51.7684 52.3209 53.0535 60.3044 60.7417 61.5388
11 48.6248 49.5179 50.6211 59.7590 60.3409 61.3825
12 45.2369 46.6442 48.2648 59.4528 60.1763 61.4559
13 41.0424 39.2652 36.7460 0 0 0
. 0 0 0 0 0 0
. 0 0 0 0 0 0
. 0 0 0 0 0 0
35 0 0 0 0 0 0
36 0 0 0 1.5387 1.0048 0
k 917.12 916.59 916.11 917.25 917.28 917.42

E(d) 5.658 5.668 5.678 5.655 5.654 5.652

As seen is Table 4.14, when the target is introduced and the penalty from
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breaching it is not costly enough, the hospital starts by reducing the number

of patients waiting at d = 13 (by increasing the admittance of patients in the

durations before the targeted one). As the penalty from treating patients after

having waited for 12 periods gets heavier, the hospital sets k13 equal to zero,

but a couple of patients are left for treatment at the bottom of the list. Finally,

for ϕd = 50 and above, the target is met. Although the overall number of

treatments and expected duration are very much in line with the pre-target

levels, the two waiting time distributions are distinct. Comparing columns

(1) and (6), a trade-off between short and longer waiters is present; with a

high penalty for treatments beyond the 12th period, the hospital is reducing

the number of patients treated quickly, up until duration five, postponing the

treatments for subsequent periods. The biggest increases in numbers of patients

are observed in the periods right before the waiting time target. Finally, the

41 patients treated in (1) after waiting for 12 periods are eliminated in (6).

What happens when the target gets more stringent in terms of the waiting

time? Table 4.15 depicts the hospital’s response when the waiting time target

is reduced to 11 periods. Here, the hospital is, ceteris paribus, asked to treat

86 patients quicker. The process of reaching target gets clearer. At low penalty

levels, the hospital gradually reduces the number of patients previously waiting

for more than 11 periods (k12, k13). As the penalty of breaching the target

gets more sizeable, the hospital starts the process of eliminating the ‘breached’

waiters. However, this is done by creating a very long tail (treatments at the

bottom of the list). This way, average waiting time is increased and overall

treatments are lowered. The patients with d = 13 are eliminated first and

then the ones that waited for 12 periods. When the cost becomes sufficiently

high (ϕd = 350), the longest possible waiters are eliminated and the target is

reached.
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Table 4.15: Optimal kd - Changes in ϕd for a target at 11 periods

(1)-Bench (2) (3) (4) (5) (6) (7)
d\ϕd 0 10 20 30 50 200 350
0 0 0 0 0 0 0
1 154.481 152.377 149.418 151.027 154.163 143.779 140.675
2 102.677 101.071 98.9741 100.713 103.551 95.3737 92.2389
3 86.0469 84.5882 82.7928 84.8542 87.8870 81.0117 78.4098
4 76.7595 75.5039 74.0738 76.4493 79.6936 74.6669 73.0670
5 70.4167 69.4379 68.5165 71.1991 74.5861 71.9036 71.5471
6 65.5741 64.9628 64.6670 67.6418 71.1136 71.0848 72.0047
7 61.5711 61.4334 61.8929 65.1367 68.6386 71.3932 73.5101
8 58.0661 58.5197 59.8721 63.3486 66.8300 72.3675 75.5618
9 54.8541 56.0346 58.4074 62.0776 65.4945 73.7357 77.8857
10 51.7684 53.8564 57.3600 61.1942 64.5093 75.3344 80.3324
11 48.6248 51.8920 56.6229 60.6094 63.7910 77.0638 82.8222
12 45.2369 43.9444 40.1972 40.2263 0 0 0
13 41.0424 41.0311 39.3670 0 0 0 0
. 0 0 0 0 0 0 0
. 0 0 0 0 0 0 0
. 0 0 0 0 0 0 0
36 0 0 0 8.0352 14.5387 6.2070 0
k 917.119 914.652 912.161 912.512 914.797 913.921 918.055

E(d) 5.658 5.707 5.757 5434.572 5.704 5.722 5.639
%DurC 0.5813 0.693312 0.788721 0.776367 0.687224 0.723142 0.534304

The following graphs show the hospital’s successful behaviour as the waiting

time target gets more rigid for the same flat penalty set at ϕ = 2000. We show

the survival and hazard curves for the pre-target case together with the cases

where the target is set at 11, 9 and finally 7 periods.

Once again we see how the hospital is managing to reach the ever restrictive

targets. The trade-off between shorter and longer waiters is also apparent in the

survival curves. Survival curves (1) and (2) have similar shapes and intercept

at about d = 8 and. (1) and (3) intersect at about 6 periods, and the two trade

off areas are already bigger. Up until d = 6, the cumulative admittance rate

is higher for the pre-target case (1), although the opposite occurs afterwards.

For example, the percentage of patients waiting on the list for more than two

periods is 72% for (1), although it is about 83% for case (3). On the contrary,

189



0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Duration

  No Target   (1)

Target at 11 (2)

Target at 9   (3)

Target at 7  (4)

(a) Survival Functions

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Duration

  No Target   (1)
Target at 11 (2)
Target at 9   (3)
Target at 7  (4)

(b) Hazard Functions

Figure 4.14: Changes in the waiting time target - flat penalty

the percentage of patients still on the list after 8 periods is 26% for (1) and only

15.2% for (3). In the latter, no one is waiting more than 8 periods. Moreover,

in the three periods prior to the 8 period target, the hospital treats 394 patients

or about 42% of the total admissions, but with no target the hospital treats half

the amount. In survival curve (4) the waiting time target is set at 7 periods,
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and the hospital manages its list, by having no treatments from durations one

and two (i.e. the minimum waiting time for all patients is 3), 71 patients of

waiting time three, 155 from d = 4, and the rest 698 patients treated in the

last three periods prior to the targeted level. The curve starts off very far away

from the origin and is decreasing at a decreasing rate until d = 5. The hazards

curves move inwards as the targets get more stringent, reaching one at the

corresponding target. In addition, they get steeper as the waiting time target

is approached indicating the high admittances close to the target.

Therefore, at the steady state with the same resources, the hospital manages

to eliminate the long waiters (i.e. patients previously treated after the set

target) by reducing the amount of very short waiters and at the same time

increasing the amount of medium waiters (increased treatments in the periods

prior to the target). This ‘manipulation’ of the waiting time distribution is

necessary so as to keep the steady state expected duration and overall number

of treatments controlled. Note that for the targets set at 9 and 7 periods, overall

admissions are increased and average waiting time is lowered, relative to the

pre-target situation.

When the penalty structure is increasing in duration (for d > d̂, ϕd = αd),

the cost at longer waits is rising. Thus, the unit cost from breaching the target

at, say, d = 36 is much bigger than at d = 20. In particular, when ϕd is set such

that it matches the flat cost right after d̂, we observe that, in the process of

meeting the target, the hospital puts more effort in reducing the patients pre-

viously waiting straight after the targeted duration and has a smaller incentive

to leave people for treatment at the end (36). In addition, the hospital meets

the target ‘easier’, that is at a lesser penalty.

Let us consider now a case where a universal target is implemented to a set

of hospitals differing with regards to the level of capacity. The penalty from

breaching the target is increasing in waiting time (after d̂). In particular, we
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have ϕd = 20d and the target level is first set at 12 periods and then at 9. We

focus on three cases where the capacity is 1050, 900 and 800 patients. The

pre-target optimal lists are replicated in Table 4.16 together with the results

from the two targets.

Table 4.16: Waiting Time Targets and different capacity

Lists - No target Lists - Target at 12 Lists - Target at 9
(1) (2)-Bench (3) (1) (2)-Bench (3) (1) (2)-Bench (3)

d\k̄ 1050 900 800 1050 900 800 1050 900 800
0 0 0 0 0 0 0 0 0 0
1 232.567 154.479 149.791 232.567 150.200 104.740 232.567 87.878 0
2 206.351 102.673 97.972 206.351 99.275 43.919 206.351 62.780 0
3 182.870 86.045 81.017 182.870 83.269 0 182.870 74.383 0
4 160.426 76.765 71.530 160.426 74.915 0 160.426 88.451 0
5 136.109 70.414 65.137 136.109 69.786 54.032 136.109 101.064 68.137
6 106.131 65.574 60.360 106.131 66.458 65.657 106.131 112.273 136.502
7 18.235 61.575 56.601 18.235 64.279 74.860 18.235 122.371 174.333
8 0 58.067 53.487 0 62.863 82.737 0 131.605 203.640
9 0 54.855 50.835 0 61.992 89.743 0 140.133 228.412
10 0 51.770 48.522 0 61.540 96.095 0 0 0
11 0 48.636 0 0 61.396 101.960 0 0 0
12 0 45.240 0 0 61.450 107.420 0 0 0
13 0 41.025 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0
. 0 0 0 0 0 0 0 0 0
. 0 0 0 0 0 0 0 0 0
. 0 0 0 0 0 0 0 0 0
35 0 0 40.867 0 0 0 0 0 0
36 0 0 41.475 0 0 0 0 0 5.489
k 1042.69 917.12 817.60 1042.69 917.42 821.16 1042.69 920.94 816.51

E(d) 3.146 5.658 7.648 3.146 5.652 7.577 3.146 5.581 7.670

Clearly, in the case with ample capacity (1050) the pre-target list is cleared

in 7 periods and the targets have no impact. In case (2) both the 12 period

and 9 period targets are met. In particular, with the more restrictive target,

the hospital ends up treating a few patients more (relative to the pre-target

distribution) and at a slightly lower average waiting time. The majority of the

patients are again treated with waiting times just prior to the targeted level,

and apart from d = 1, the number of treated patients is increasing in duration.
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When the hospital has the capacity to treat 800 patients, it only meets the 12

period target, by decreasing the short waiters (durations 1-5), eliminating the

very long waiters (35 and 36 periods of wait), and increasing the admissions

in medium durations. However, the hospital fails to reach the 9 period target

(with 5.5 patients treated after 36 periods of wait).

The first two subfigures in Figure 4.15 show the survival and hazard curves

for the hospital with capacity of 900 patients, when we move from the pre-target

distribution to a 9-period target. The waiting time target is achieved while the

after target survival curve’s curvature has changed (to concave). The hazard

function moves leftwards (attaining unity at the corresponded targeted period),

and it gets steeper prior to the target. The last two subfigures show the case of a

hospital with capacity of 800 patients. The waiting time target is not achieved,

however the steady state response of the hospital is apparent. The majority of

patients (99%) are treated with maximum wait of 9 periods, and this is only

attainable with decreasing the number of short-waiters substantially. Similarly,

the spike of the hazard function moves inwards and close to the targeted waiting

time.

The introduction of the waiting time targets allows us to theoretically ex-

plore the waiting list management of the hospital, when such an important

policy shift is implemented, as in the case of NHS since 1999-2000. Other

things being equal, the waiting time target can be achieved by reducing both

the long and short waiters, at the expense of higher admittance rates in medium

durations (prior to the target). This distinct pattern is also observed to a higher

or lesser degree in particular hospitals analysed in Chapter 3. Figure 3.22 com-

pared the survival curves of nine hospitals at a pre-target year (1997) and an

after-target year (2005, target set at 6 months). More than half of the hospitals

exhibit the trade-off between short and long waiters. In the same lines, the re-

sponse of the hazards curves is also similar; the peaks of the estimated hazard
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Figure 4.15: Survival and Hazard Functions - Impact of Targets to different
capacity (Table 4.16)

functions are moving inwards following the introduced targets.

Another empirically observed response to the waiting time target is an over-

all inwards shift of the survival curve towards the origin, which implies an

improvement in admittance rates throughout the distribution. This pattern

can be replicated here only if we allow for the budget or capacity parameters

to change at the same time. Indicatively, we present a case below where in

conjunction with the target, τ is decreasing. Hence, as the waiting time gets

stricter the hospital’s access to outsourcing is ameliorated.

As one can see from Figure 4.16, the survival curves shift inwards in line
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Figure 4.16: Waiting time targets and changes in τ

with the tougher waiting time targets. Therefore, since it is less costly for

the hospital to deviate from its capacity (by outsourcing for example private

hospitals/clinics), the institutional target is achieved by increased admittances

at any given duration.

4.5 Comparative Statics II: Severity Levels

Patients are now differentiated according to the level of severity of their health

condition. We have two types of severity (s = 1, low) and (s = 2, high). This

allows the hospital some degree of prioritisation of the list. We start with the

parametarisation presented in the following table.
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Table 4.17: Parameters specification with two levels of severity

g(kd,s,t) = ad,sk
3
d + bd,sk

2
d + cd,skd Utility from treating k patients with duration

d and severity s

where for the case of low severity: parameters of the cubic utility function for low
severity

ad,1 = −0.0002 + 0.0001
d

bd,1 = 0.02− 0.01
d

cd,1 = 2 + 5
d

and for the case of high severity: parameters of the cubic utility function for
high severity

ad,2 = (−0.0002 + 0.0001
d ) ∗ 0.9

bd,2 = 0.02− 0.01
d

cd,2 = 3 + 5
d

c(kd,s,t) = ρd,skd,s,t Cost from treatments at duration d and sever-
ity s

where ρd,1 = 20
d2 parameters of the linear duration and severity

cost function
and ρd,2 = 30

d

c(k) = τ(k − k)2 Scale cost of the total number of patients
treated

where k̄ = 900 Hospital’s capacity in terms of number of pa-
tients

τ = 10 sensitivity of cost to deviations from full ca-
pacity k̄

B = 13500 Hospital’s budget
Z = 1200 Potential demand for healthcare
θ = 50 Sensitivity of inflow to expected waiting time
p = 0.7 Proportion of the milder treatments (s = 1)
q=36 Maximum allowed waiting time

The more severe cases have a higher utility gain, but at the same time

they are more costly (for any given d)20. Given the magnitude of those two

trading-off forces and in relation as well to the costs and gains of the milder

cases, the hospital admits for surgery the severe cases ( 30% of the overall

20Given that the treatment specific cost has now increased (due to the high severity pa-
tients), the budget of the hospital is appropriately adjusted.
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Table 4.18: Steady State List with Severities

Duration list1 list2 Agg List

0 0 0 0
1 147.922 141.765 289.686
2 96.075 81.802 177.877
3 78.818 52.199 131.016
4 68.982 0 68.982
5 62.223 0 62.223
6 57.045 0 57.045
7 52.847 0 52.847
8 0 0 0
. 0 0 0
. 0 0 0
. 0 0 0
35 39.219 0 39.219
36 40.322 0 40.322
k 643.45 275.765 919.218

E(d) 7.3044 1.6752 5.6156

treatments) much quicker (q∗ = 3 and average duration at 1.6). At the same

time the hospital also treats less severe cases (in a pattern similar to before) up

until d = 7 and then the last 80 patients are treated at the end (after 35 and

36 periods of wait). The overall number of treatments is 919 and the overall

average waiting time is 5.6 periods, although milder patients wait on average

much more than more serious cases (Table 4.18).

Thus, the hospital prioritises the more severe cases. However, given that

this entails a higher cost for the quicker treatment of the more severe patients

(c(kd,2)), some of the milder cases are prolonged until the maximum possible

duration, due to the budget the hospital has available.

As shown in Figure 4.17, the survival curve for the more severe is very close

to origin, decreasing quite steeply and reaches zero after only three periods of

wait. On the other hand, the survival function for the milder cases is further

away from the origin throughout, decreasing much slower until d = 7, after

which point it flattens, until the maximum duration of 36. The aggregate

survival curve still displays the same long right tail, however, we also observe
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a change in the rate of decrease. Thus, the cumulative admittance rates are

relatively larger for the first three durations, and then slow down after that

period of wait. In other words, the survival’s (decreasing) slope is much steeper

before d = 3 relative to after.
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(b) Survival Functions for s = 1, 2

Figure 4.17: Survival Functions with two Severity Levels (Table 4.18)

The majority of the treatments take place within the same period (d = 1),

thus, the aggregate hazard curve decreases between d = 1 and 2. In addition,

since the more severe cases are treated within the first three periods, we observe

a second drop in the hazard function between durations 3 and 4. After that

the conditional probability of being treated keeps increasing until duration 7,

drops to zero for the next 28 periods and finally reaches one at duration 36.

As shown in Figure 4.18, the hazard curves for the two levels of severities

are quite distinct. The hazard for s = 2 is quite steep, attaining one (i.e.

clearance of the list) in three periods, while the hazard for s = 1 attains unity

only in duration 36. The aggregate hazard curve is now more ‘volatile’ relative

to the case with no severities. Apart from the typical first spike at d = 1 (since

again the largest percentage of patients are treated after one period of wait),

the hazard is decreased substantially at d = 4, due to the clearance of the more
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Figure 4.18: Hazard Functions with two severity levels (Table 4.18)

severe patients.

4.5.1 Changes in the Structural Parameters of the Model

Changes in the utility function

Suppose that the gain the hospital obtains from treating more severe cases

increases, by lowering (absolute) ad,2. Recall that such a change implies that

the turning point for U(kd,2) moves to the right and the utility level at each

kd,2 gets larger (the utilities shift upwards).

As depicted in Table 4.19, the hospital has a higher incentive to treat the

more severe patients quicker. Therefore, as (absolute) ad,2 decreases, the list for

s = 2 clears faster and in specification (4) all severe cases are treated within the

same period (no waiting time distribution). In doing so, the hospital decreases a

little bit the overall patients treated, coming mainly from the milder cases, while

the aggregate average waiting time rises. In addition, although marginally, the

treatment of patients of severity one is pushed further down (admitted for

surgery slower).
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Figure 4.19: Changes in ad,2 - Increasing Utility for High Severity patients
(Table 4.19)

Looking at the survival and hazard functions (Figure 4.19), the most notice-

able changes between specifications (1) and (4) are observed during the first

3 durations, since it is that part of the overall distribution that is changing,

driven by the quicker admittance of the severe cases.

We now consider the case where the utility specification for the milder cases

is also altered. In particular, we assume that the cubic term for s = 1 is

increased (in absolute terms) reducing the hospital’s incentive to treat a lot of

less severe patients up front. Table 4.20 and Figure 4.20 compare the steady

state waiting time distribution for the benchmark specification (1) and the one

in which ad,1 = 2(−0.0002 + 0.0001/d), and ad,2 = 0.5(−0.0002 + 0.0001/d),

denoted (2).

Comparing (1) to (2), the incentive to ‘front load’ the more severe cases

in increased and at the same time the incentive to balance out the list of the

milder cases in strengthened. Thus, what we observe here is that the list for

s = 2 gets cleared quicker (from q∗2 = 3 to 2 periods), while the patients with

s = 1 are admitted for treatment in a much smoother way, relative to (1).

There are no long waiters at the end, but their inflow clears in 18 periods.
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Table 4.20: Changes in both ad,1 and ad,2

Aggregate Lists Lists - Severity 1 Lists - Severity 2
(1) (2) (1) (2) (1) (2)

ad,1 = 2ad ad,1 = 2ad ad,1 = 2ad
d\ad,s Bench ad,2 = 0.5ad Bench ad,2 = 0.5ad Bench ad,2 = 0.5ad

0 0 0 0 0 0 0
1 289.6864 283.7640 147.9216 97.8804 141.7648 185.8836
2 177.8773 151.7322 96.0751 61.5906 81.8022 90.1416
3 131.0161 49.7792 78.8176 49.7792 52.1985 0
4 68.9825 43.2234 68.9825 43.2234 0 0
5 62.2233 38.8548 62.2233 38.8548 0 0
6 57.0450 35.6430 57.0450 35.6430 0 0
7 52.8470 33.1528 52.8470 33.1528 0 0
8 0 31.1466 0 31.1466 0 0
9 0 29.4858 0 29.4858 0 0
10 0 28.0912 0 28.0912 0 0
11 0 26.9146 0 26.9146 0 0
12 0 25.9215 0 25.9215 0 0
13 0 25.0845 0 25.0845 0 0
14 0 24.3821 0 24.3821 0 0
15 0 23.8025 0 23.8025 0 0
16 0 23.3500 0 23.3500 0 0
17 0 23.0009 0 23.0009 0 0
18 0 22.7549 0 22.7549 0 0
19 0 0 0 0 0 0
. 0 0 0 0 0 0
. 0 0 0 0 0 0
. 0 0 0 0 0 0
35 39.2189 0 39.2189 0 0 0
36 40.3221 0 40.3221 0 0 0
k 919.2186 920.084 643.453 644.0588 275.7656 276.0252

E(d) 5.61563 5.5983 7.3044 7.4291 1.6752 1.3266

Overall the changes in average waiting time or total number of treatments are

minimal. Despite those sizeable differences, note that the aggregate steady state

outflows are not changing a lot for d = 1, 2 (first two columns of Table 4.20).

That is, the two opposing drives (more severe patients but less milder patients

treated quicker) offset each other at the aggregate level. This result also shows

in Figure 4.20(a), where, the two aggregate survival curves are diverging from

one another after d = 2. However, beyond that point, the two curves deviate

noticeably and intersect at duration 15. Cumulatively, the benchmark case has
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a higher admittance rate (until d = 15), but specification (2) clears the list

much faster (at q∗ = 18).
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Figure 4.20: Changes in utilities of both milder and severe cases

With regards to the hazard structures, specification (2) exhibits a clear spike

at d = 1, it then decreases until d = 3, and after that in keeps on increasing

steadily until the overall list is emptied at waiting period 18. In contrast, the

hazard of the benchmark, while with more fluctuations, stays on top of (2) until

waiting time 7. It then drops to zero and reaches one at the maximum possible

period.
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Changes in the Duration and Severity Specific Cost

We continue by analysing the optimal behaviour of the hospital when the dura-

tion and severity specific cost is altered. We concentrate in changing the power

of ρd,s, which affects the vertical distances among the cost functions, making

sure that the cost function of the more severe is still higher than the one of the

milder cases. Table 4.21 depicts selected results, as ρd,s.

(1) (2) (3) (4)

ρd,1:
20
d 0.4

20
d 0.3

20
d 0.25

20
d 0.2

ρd,2:
30
d 0.6

30
d 0.4

30
d 0.3

30
d 0.3

As the treatment specific cost increases, we observe that a lesser number

of patients are treated up front, at the aggregate level. In specification (4)

admittance for elective surgery starts only after two periods of wait. Overall

number of treatments and aggregate average waiting time remain unchanged.

The reduction in very short waiters is reflected in both severity levels, although

it is much more sizeable for s = 2 (see last three columns of Table 4.21). At

the same time, the very long (mild) waiters of specification (1) are at first

substituted by a smaller amount of more severe long waiters (2), and then

eliminated, as the distribution of treated concentrates in the middle. It is

important to notice the interplay in the admittance rates between the two

severity levels. The hospital prefers treating more severe cases quicker, but

this comes at an ever growing cost. Moving from (1) to (2), both individual

average waiting times increase. However, from specification (2) onwards, there

is a trade-off in the ‘delaying’ of patients: In (3) milder patients are waiting on

average much less than severe patients; In (4) this gap is reduced.
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Figure 4.21 depicts the survival and hazard curves for specifications (1), (2)

and (4)21. As ρd,s increases, we see the trade-offs between shorter and longer

waiters in subfigure (a). Originally, much more patients were treated within

the first 8 waiting periods, but a few were left for the end. In (2) more patients

are still waiting to be treated (until d = 10), but less are waiting until the end.

Finally, in (4), the curvature becomes concave (until approximately duration 6)

and then switches to convex. In all three survival curves, we observe changes

in the rate of change of the slope. With regards to the hazard curves, apart

from (4) which monotonically increases, the other two exhibit three spikes, as

the consequence of the change in the second derivative of survival curves (1)

and (2).
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Figure 4.21: Changes in the cost structure of both milder and severe cases

4.5.2 Waiting Time Targets with Severity Levels

As already discussed in Section 4.4.2, the waiting time targets are introduced at

an individual level, and the hospital is faced with a penalty proportional to the

number of patients and/or the periods after which the target level is surpassed.

Recall that the benchmark parametarisation with severities has a long right

21The time span on Figure 4.21 has been reduced to 20 periods of wait, so as to have a
clearer picture of the graphs. That is why, hazards (1) and (2) are not reaching one.
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tail (since 80 of the milder patients are treated in periods 35 and 36). Table 4.22

and Figure 4.22, present the hospital’s optimal response for a target starting

at 17 periods of wait and decreasing to 14 and finally 11 periods of wait. The

penalty from breaching the target is set at 400 irrespective of the severity level.

All targets are met with the overall number of treatments and aggregate waiting
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Figure 4.22: Changes in the waiting time targets

time remaining almost at the same pre-target levels. Similarly to the case with

no severities, at the aggregate level, the hospital’s efforts to avoid breaching
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the institutional target entail trading-off between short and long (‘breached’)

waiters. As confirmed by Figure 4.22, aggregate survival functions reach zero at

the corresponding targets, but their intersections suggest the above mentioned

trade-offs. The hazard curves move inwards, reaching one at the ever restrictive

targets, with much variation and different peaks during the first few durations.

However, having a closer look at the admission patterns across severities

provides us with more insight on the hospital’s behaviour. The first target (17

periods of wait) is achieved by manipulating the treatment of the milder cases

almost exclusively; the admittance rates of s = 2 remain virtually unchanged.

On the contrary, when the more restricted target of 14 periods in imposed, the

average waiting time for s = 2 is increased, while for s = 1 decreases. For s = 1

both short and long waiters are decreased (at the expense of medium waiters),

although in the case of s = 2 short waiters are substituted for long waiters.

Thus, although before the introduction of the target all severe cases were treated

within the first three periods, now 27 patients are postponed treatment until the

targeted waiting time (d = 14). The average waiting time for s = 2 increases

from 1.68 (pre-target) to 2.85 periods of wait. This pattern gets considerably

evident when the target is set at 11 periods; 38% of the more severe patients

are treated just before the target (d=10 and 11). Their waiting time further

increases to 4.84.
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These results provide evidence of trade-offs across both the duration and the

severity of the patients on the list. Elimination of the long-waiters (which were

milder cases) is achieved by delaying the admittance of short-waiters (which

corresponded to more severe cases). In other words, our theoretical model sug-

gests that targets change the order by which the hospital takes patients off the

list so as to influence the speed of patients treated. This is achieved by sub-

stituting less urgent cases for more urgent cases. The introduction of stricter

targets distorts clinical priorities. The hospital, thus, is considering both the

target and the severity of patients when admitting patients for treatment. It

is important, however, to stress that this result is observed as a comparative

statics exercise in which the introduction of the target is the only factor we

allow to change. As discussed in Section 4.4.2 this result would be different

if the hospital, together with the introduction of the waiting time target, was

also allocated with more operational resources (increased budget, capacity or

outsourcing).

4.6 Concluding Remarks

In the final chapter of this thesis, we develop a theoretical model of the supply

side for healthcare provision. Two are the distinct features of our theoretical

framework (i) the dynamic element of the model and (ii) the derivation of the

entire optimal waiting time distribution of patients treated at the steady state.

The focus of the chapter is on, first, matching important empirical patterns

of the hospitals, and second identifying possible factors that can explain the

observed patterns and the differences among them.

Our theoretical model proves to be quite flexible in accounting for different

patterns of waiting time distributions. Differences in the parameters of the
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utility of the hospital account for two distinct admissions patterns: (i) the

hospital ‘front loads’, treating many patients are quickly as possible, at the

expense however of a small fraction that waits for long. Thus, more emphasis is

put on increased short waits, and (ii) the hospital prefers a ‘smoother’ waiting

list distribution where patients receive treatment more gradually, but no one

waits extensively; the emphasis is on the long waits. When the treatment

specific cost is different, we observe again differences in the shape of the survival

curves, but now the curvature is altered. When the cost for quick treatment

is increased, the survival curves exhibit concave parts. Finally, changes in the

resources allocated to elective surgery (budget, capacity, cost of operating above

capacity) produce changes in the instantaneous admissions rate for the whole

distribution, thus we observe shifts in the positing of the survival (and hazard)

curves.

The introduction of waiting targets provides additional insight of the hos-

pitals’ response to such a policy shift. Other things being equal, the hospital

manages to eliminate the long waiters (i.e. patients previously treated after the

set target) by reducing the amount of very short waiters and at the same time

increasing the amount of medium waiters (increased treatments in the periods

prior to the target). This trade-off between shorter and longer waiters has also

been empirically confirmed at several levels in Chapters 2 and 3. In addition,

increased admission rates throughout the waiting list can be attained when,

together with the target, more spending for elective surgery is allowed.

The identified essential patterns of the hospital’s behaviour are also ap-

parent with the introduction of different severity levels. What is important

to highlight here is that the aggregate survival curves and hazard curves get

‘richer’ shapes, matching the empirical estimated distributions in Chapters 2

and 3 closer. Survival curves display various changes in the rate of change of

the (decreasing) slope, and hazard functions are more volatile, showing more
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spikes. This could suggest that in practice some form of prioritisation is also

taking place, since, the extra variation is a result of interplays not only over the

patients waiting time, but also across their level of severity (more versus less

urgent cases). Furthermore, when allowing for differences in the severity of the

patients’ health status, the introduction of strict waiting time targets affects

the prioritisation of the list.

The theoretical model succeeds in replicating the distinct waiting time dis-

tributions observed empirically and at the same time provides valuable insight

on the potential factors that may explain the distinct behaviour patterns.
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CHAPTER 5

Epilogue

Much attention has been devoted by academics and policy makers to the ques-

tion of whether the policy measure of targets has been meeting its objective.

In other words, did hospitals meet the targets? Is there anybody waiting more

than the corresponding maximum target set by the government? However, in

accordance with this query should lie another one aiming at examining the ways

employed by hospitals to abide to national standards. Thus besides seeking an

answer to the before mentioned question, questions such as ‘How did hospi-

tals meet the targets?’ ‘How are they managing the lists and waiting times of

their patients?’ and ‘What are the steps taken to improve performance?’ are

of similar importance. From both a policy and academic perspective it would

be essential to comprehend the actions taken to manage the process of elective

admissions, in an attempt to learn from the successful trusts and at the same

time avoid poor management from the under-performing institutions.

This thesis investigated these exact issues by unwinding the whole waiting

time distribution of patients. Our main contribution was exposing the great
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level of variability in waiting time distributions and implied admission tactics

by hospital, specialty and operative procedure. Furthermore, we found that the

wait distributions tend to change over time. The results from the theoretical

model successfully replicated the distinct waiting time distributions observed

empirically and at the same time provided valuable insights on the potential

factors that may explain these distinct behavioural patterns.

Previous studies have shown that hospitals have eliminated the extremely

long waits for elective treatment. The evidence we presented confirms this pos-

itive effect of targets on hospitals’ performance. Not only did we find evidence

that waiting times have indeed decreased, but as a result of the more detailed

view of the waiting time distributions after the estimation of the survival and

hazard functions, we were able to detect details in their patterns. In particular,

we found that increasing probabilities of admission expressed as peaks in the

hazard curves coincided with the prevailing waiting time target and that the

introduction of shorter targets coincided with a reduction in the waiting time

at which the new peak occurred. This implies that providers tend to increase

their effort as the target approaches and decrease it after the target.

As seen in Chapter 3, the patterns of survival rates differed substantially

by hospital and by doctor. In particular, we observed a significant variation

in both the shape and scale of their survival curves (plasticity). Some curves,

while retaining the same curvature, exhibited abrupt changes in the magnitude

of the slope, while others altered from convex to concave or vice versa. These

distinct differences in the slope (magnitude or sign) of the survival functions,

corresponded to spikes in the hazard curves. Additionally, we found evidence of

survival curves that move closer to the origin and others that shift rightwards,

in a parallel way or not. The different shapes reflect differences in the second

order derivative of the removal rate of individuals from the list and variation

in the shifts implies that hospitals admit all patients with a slower or quicker
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rate compared to others.

Trends in hazard curves also differed markedly between various sets of hos-

pitals and consultants. We observed trusts/doctors with notable peaks of high

intensity, others with very short wider peaks and finally some with constant

hazard rates expressed as straight lines. Lastly, we reported cases in which

hazards were illustrated as monotonically increasing probabilities of admission.

These results indicate differences in the management of the lists, in the decision

process and admission criteria, even when we control for particular character-

istics of the list (type of hospital, operation, and even by physician).

In the final chapter of the thesis, we managed to incorporate the waiting

time distribution of patients within the utility maximisation model of the hospi-

tal. As a result, our model proved useful in interpreting the different empirical

patterns. Differences in the parameters of the utility of the hospital, the treat-

ment specific cost and the hospital resources accounted for distinct admissions

patterns and hazard rates. With the introduction of waiting time targets, other

things being equal, the hospital managed to eliminate the long waiters by re-

ducing the amount of short waiters (trade-off). The introduction of different

severity levels led to the appearance of ‘richer’ shapes of the survival and haz-

ard curves, matching the empirical estimated distributions in Chapters 2 and

3 closer. Furthermore, when allowing for differences in the severity of the pa-

tients’ health status, the introduction of strict waiting time targets affects the

prioritisation of the list.

Finally, future research can be directed towards a more thorough empirical

investigation on the influence of hospital characteristics on waiting times for

elective surgery. These were not included in the regression analysis performed

in Chapter 2 as they were not part of HES data. However, as Chapter 3

indicated, there is scope in undertaking a systematic empirical analysis on the

impact of supply-side factors at a hospital level on the observed waiting time
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distributions. Moreover, the theoretical model could be expanded to include the

demand side in a more explicit manner (e.g. considering alternative treatments

(private hospitals), the possibility of decay of health status while waiting or the

gatekeeping role of GPs in determining ‘effective’ demand). A very interesting

but at the same time challenging path for future research is also the derivation

and exploration of the hospital’s admission patterns off the steady state (off-

equilibrium behaviour of providers).
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