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ABSTRACT

The compactness defined by Warner and McLean is
extended to arbitrary L-fuzzy sets where L is a fuzzy
lattice, i1i.e., a completely distributive lattice with an
order reversing involution. It is shown that with our
compactness we can build up a satisfactory theory. The
different definitions of compactness in L-fuzzy
topological spaces are stated and other characterizations
of some of these notions are obtained. We also study
their goodness and establish the inter-relations between
the compactnesses which are good extensions.

Good definitions of L-fuzzy regularity and normality
are proposed.

Following the lines of our compactness we suggest
two definitions of L-fuzzy local compactness that are
good extensions of the respective ordinary versions. A
comparison between them is presented and some of their
properties studied. A one point compactification is also
obtained.

By introducing a new definition of a locally finite
family of L-fuzzy sets and combining it with our
definition of compactness, we propose an L-fuzzy
paracompactness and study some of its properties.

Good definitions of L-fuzzy countable and sequential
compactness and the Lindelof property are introduced and
studied.

We also present, in L-fuzzy topological spaces, good
extensions of S-closedness and RS-compactness. Some of
their properties are examined.

Good L-fuzzy versions of almost compactness, near
compactness and a strong compactness are put forward and
studied. A comparison between these compactness related
concepts 1s also presented.



NOMENCLATURE

The following list contains the most frequently used

classical symbols. Some of them will be also used to

represent fuzzy concepts. A list of the most frequently

used fuzzy notations will be given later on.

max

X, Sh

(A,Sa)

*A

xeX

x£X
{xeX; P}

{*}
A-B

the set of the natural numbers

the set of the rational numbers

the empty set

partial order relation and its negation

strict partial order relation and its
negation

maximum

join

meet

order reversing involution (def. 1.1.9)
a topological space

a subspace of a topological space (<5)
the closure of the set X

the interior of the set X

the power set of X

the characteristic function of A

x 1is an element of X

X 1s not an element of X

the set of all elements x in X satisfying the
condition (s) P

the singleton set having the element x

the set {x; xeAhA, xiB}



o<q the relation "is properly contained in" on a

power set and its negation

s,1 the relation "is contained in" on a power set
and its negation

(A Joed OT (Aé)aej indexed family of sets

the union of the family A ) T

agﬁ Aa“ AQQ A a’ae’

(respectively 79 .

A 1 1 A the intersection of the family (Aa)

aej a aeJ

(respectively 79 .
fX>»Y a function from X to Y

T i i .
aeT Aa the cartesian product of the family (Aa)aej

f@, £f1@® the image of A and the inverse image of A
" under f

f® , £ 1(yy the image of x and the inverse image of y
~ under f

flA the restriction of the function f to the set A

m
(xm)melN or (x me¥® a seciuence of terms xp

m.
( ) or (x 1)ielN a subsequence of (*J or
Xﬁql ieIN m el
p 0. .
(X )melN resPectively

xm"‘ x the sequence &R)NMEN converges to x

xm X the negation of the statement =xm X

Ci first countable
C2 second countable
v the quantifier "for each"

pr (L) the set of all prime elements (def. 1.1.12) of
a lattice L

M(L) the set of all union irreducible elements
(def. 1.1.13.) of a lattice L

n the a-th projection map
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A list

will now be

the family of all finite subsets of the

collection 4.

the smallest and the largest element of a
lattice L

e 1s way below b (def. 1.1.4)

the union of all minimal sets relative to a
(def. 1.1.16)

the i1ntersection of |3(@ and M(L) where ael

of the most frequently used fuzzy notations

given with a reference to where they first

appear in the text.

LX

suppf

pr (LX)

M (LX)

the set of all L-fuzzy sets on X (def. 2.1.1)
the support of an L-fuzzy set £ (def. 2.1.4)
the empty fuzzy set in X (def 2.1.1)

the full fuzzy set in X (def. 2.1.1)

X
the set of all prime elements of L (remark
2.1.5)

X
the set of all coprime elements of L (remark
2.1.7)

an L-fuzzy point of X (def. 2.1.6)
. y
a coprime element of L (def. 2.1.7)
the L-fuzzy point, x* is a member of the

L-fuzzy set f (def. 2.1.6)

f the join of the family
(respectively £) of L-fuzzy sets (remark 2.1.3)

' feW f the meet of the family (fj )i€]

(respectively E) of L-fuzzy sets (remark 2.1.3)

the image of an L-fuzzy set g under a function
f (def. 2.2.1)

the inverse image of an L-fuzzy set g under a



function £ (def. 2.2.2)

S.)

a net in X of term SeM(IRg) (def. 2.3.1)
m 'mebd m

supp Sm the support of the term Sm of a net (Sm)meD
(remark 2.3.2)

h(S ) the height of the term Sm of a net (sm)m€D
(remark 2.3.2)
m
(xm ) an a-net of term xam where x 1s 1its
am meD

support and am its height (def. 2.3.8)
(X (3" an L-fuzzy topological space (def. 3.1.1)
&,3"'a) a subspace of an L-fuzzy topological space
(X,7) (def. 3.2.3)
cl (f) the closure of an L-fuzzy set f (def. 3.1.5)
int (f) the interior of an L-fuzzy set f (def. 3.1.5)

X
S » x the net (5 ) converges to x_ eM(L ), 1i.e.,
m a a

m ‘meb
X, 1s a limit g01nt of Sm)meg (def. 3.1.9(1))

m(5) the set of all continuous functions from a
topological space (<5 to a lattice L with
its Scott topology (remark 3.2.5)

i, 6 the set {xeX; f(x)”"p} where f belongs to an
L-fuzzy topology 3' and pepr (L) (remark 4.6.9)

iL (y) the ordinary topology with subbase <p(V) =
{1 (f); pepr(L) and fe?} u {x} where (X,7) is

an L-fuzzy topological space.

C first countable (def. 3.4.1)

C2 second countable (def. 3.4.2)

10



INTRODUCTION

The theory of fuzzy sets was introduced by Zadeh
[108] in 1965 with the purpose of developing a
mathematically precise framework to deal with
indefiniteness, with the vagueness that exists in the
real world. This has caused great interest among pure
and applied mathematicians and experts in other areas.
Since then, work has been done by many authors, in
several directions, which has resulted in the formation
of a new mathematical field called "Fuzzy Mathematics".

Fuzzy set theory can be thought of as a mathematical
model for imprecise concepts. A fuzzy set is a sort of
generalized "characteristic function", whose "degrees of
membership" can be more general than "yes" or '"no", that
is, a membership function which describes the gradual
transition from membership to nonmembership. This notion
replaced the rigid membership relation of ordinary set
theory by the flexible grade of membership.

In [108], Zadeh defined fuzzy sets in terms of
functions from a set to the closed unit interval and
introduced basic notions such as fuzzy union,
intersection and complement.

In 1967, Goguen [38] extended the concept of fuzzy
set by replacing the unit interval by an arbitrary
lattice with both a minimal and a maximal element, thus,
introducing the notion of an L-fuzzy set. He showed how

the language of categories and functors could be used to
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describe a fuzzification of whole theories in a unified
manner.

Interest has been aroused in the application of
fuzzy sets to such fields as artificial intelligence,
optimization, pattern recognition and decision theory.

General topology was one of the first branches of
pure mathematics to which fuzzy sets have been applied
systematically. It was in 1968, that Chang [18] made the
first attempt to formulate a theory of fuzzy topological
spaces. He showed for the first time that basic
topological notions can be extended to fuzzy topological
spaces. He introduced the notion of fuzzy topological
space and also defined fuzzy image and fuzzy inverse
image under a function and extended a number of
properties of functions, such as continuity, to fuzzy
topology. He adopted Zadeh's fuzzy sets.

Since the early eighties, the intensity of research
on fuzzy topology, that is a branch of fuzzy mathematics,
has sharply increased. As remarked by Lowen [57], while
topology classifies objects (spaces, functions, filters
etc...) 1into classes, those which fulfill and those which
do not fulfill a certain property (compactness,
continuity, convergence, etc...) and the theory is
developed mainly on classes of objects which have "good"
properties; fuzzy topology, also classifies and studies
those objects not having a given property, into

subclasses, each of which is characterized by the fact

that its objects have an approximate - to a certain

degree - form of that property. Concerned about

12



developing a technique with which we can measure a degree
to which a space has a given property or not, we have,
for instance, the works by Lowen [57], Wuyts and Lowen
[104], Lowen and Lowen [52] and Rodabaugh [83].

The notion of point plays an important role in
general topology. In spite of the fact that many
important results had been obtained in fuzzy topology
without this notion, it is impossible not to deal at all
with the notion of point. So, the fuzzification of
points was necessary. A point is a minimal object in the
sense of the relation of belonging, that is, nothing can
belong to a point. A peculiarity of fuzzy set
mathematics is the absence of such minimal objects.

In Chang's work [18], he did not define fuzzy
points, but introduced neighbourhoods and sequences of
fuzzy sets.

The fuzzy point problem was avoided by Hutton [44]
and others, adopting the so called "pointless approach",
where either a fuzzy topological theory or a fuzzy
neighbourhood theory is built up without reference to
points.

Many mathematicians tried to define fuzzy point and
its membership relation. In 1974, Wong [103] based on
the notion of fuzzy singleton introduced by Zadeh [109],
defined fuzzy points as fuzzy singletons and fuzzy
membership with strict inequality. But in 1979, Gottwald

[40] showed that Wong's definition of fuzzy membership
was not good and some of the results were not correct.

Gottwald [40], Ghanin et al [36] and Kerre [47] used

13



the concept of fuzzy singleton, not mentioning points.

Sarkar [86, 87], Srivastava et al [91, 92], Deng
[20, 27], de Mitri and Pascali [69], Bulbul [10, 11] and
others worked with a modified version of Wong's fuzzy
membership and with his definition of fuzzy point. But
Wong's definition as well as this version exclude the
crisp points that are the classical points.

Pu and Liu [80] including crisp points in fuzzy

A

points, considered the fuzzy membership relation and
introduced quasi-coincidence. These two relations are
connected as follows: a fuzzy point belongs to a fuzzy
set if and only if it is not quasi-coincident to its
complement.

Wang, 1in [96], introduced the notion of a molecule,
which is a kind of fuzzy point.

In [99], Warner, considering a frame L defined
L-fuzzy points locale-wise by frame homomorphisms to the
two-point set, and so corresponding bijectively to prime
elements. Membership emerges in terms of

Kerre and Ottoy in [48] gave a detailed survey of
the various definitions of fuzzy points and corresponding
neighbourhood theories.

In [54], Lowen introduced another definition of
fuzzy topology that is a restriction of the point-fuzzy
set approach in which I=[0,1] and the fuzzy topology on a
set X contains all the constant maps from X to [0,1]. In
[54], Lowen gave some reasons to adopt this constant maps
approach and in [58] he and Wuyts insist on the

advantages of this definition. In [85], Rodabaugh
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pointed out some reasons to justify non-stratified
spaces, that is, spaces without the requirement that all
the constant maps are in the topology.

The third definition of fuzzy topological space is
due to Hutton [44]. Realising that if L is a fuzzy
lattice, a completely distributive lattice with an
order-reversing involution, then LX is also a fuzzy
lattice, he defined pointless fuzzy topological spaces.
His studies are related to lattice theory.

Different definitions of fuzzy topology and several
approaches to fuzzy topology have been pointed out. We
have the Chang-Goguen fuzzy topological category which
uses the point-fuzzy set approach. We also have Lowen's
category called the constant maps approach and Hutton's

category which represents the pointless approach to fuzzy

topology.
In [84], Rodabaugh introduced a new fuzzy
topological category called Fuzz. It is a generalization

of ordinary topology, of the pointless approach, the
point-fuzzy set approach and the constant maps approach

to fuzzy topology. In this work he also summarizes the

previous approaches.

In [68], Mingsheng pointed out a new approach for
fuzzy topology with fuzzy logic and studied the
neighbourhood structure of a point and the convergence of
nets and filters. He remarked that a fuzzy topological
space was defined as a classical subset of the fuzzy
power set of a non-empty classical set which is closed

for finite intersection and any union operations, i.e.,
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fuzzy objects were being investigated by crisp methods.
Then he used the semantics of fuzzy logic, a fuzzy
method, to investigate topology and to propose a
topology whose logical foundation is fuzzy, observing
that we can consider other topologies based on
many-valued logics. In this work he defined bifuzzy
topology, fuzzy topology and fuzzifying topology.

In [4]1] Hazra, Samanta and Chattopadhyay gave a new
definition of fuzzy topology by introducing a concept of
gradation of openness of fuzzy subsets and then studied
fuzzy continuity. In [19] they modified the definition
of gradation function and then studied subspaces of fuzzy
topological spaces, gradation preserving maps and the
category of fuzzy topological spaces. With this
modification, their definition of fuzzy topological
spaces coincides with the already introduced concept of
smooth topological spaces [82], where the lattices L and
L' in Ramadan's smooth topological spaces [82] are taken

both equal to [0,1].

In [16], Chakraborty and Ahsanullah introduced
another category for fuzzy topological spaces and also a
new category for fuzzy sets. Within the categories
considered another peculiarity of L-fuzzy spaces, up to
the time that [16] was published, was the nonavailability
of the subspace topology for any fuzzy subset of any
fuzzy space, that is, subspaces made sense only for crisp
subsets of L-fuzzy spaces. In the approach of
Chakraborty and Ahsanullah [16] to fuzzy topology,

subspaces may be defined on any fuzzy set.

16



In the same year Chakraborty and Banerjee presented
in [17] a different category for fuzzy topological
spaces, that includes as subcategories, both the
categories of Chakraborty and Ahsanullah [16] and
Rodabaugh [84] and hence Chang-Goguen [18, 38], Lowen
[54] and Hutton's categories [44].

Macho Stadler and Prada Vicente [60], working with
Chang's definition of fuzzy topological spaces, defined
fuzzy topological subspaces for arbitrary fuzzy sets,
which coincides with the usual definition given in [80]
for crisp sets of fuzzy spaces.

In the unpublished work "A new approach to fuzzy
topological spaces and fuzzy perfect mappings", R.D.
Sarma and N. Ajmal [88] proposed yet another approach to
defining a fuzzy topological space. This approach is
net-theoretic and the fuzzy topological spaces obtained
form a category. In their work, they claim that their
category, which is a subcategory of the Chang-Goguen
category, 1s free from the drawbacks of Chang-Goguen's
category. For instance, in their category, a rich
convergence theory can be developed, projections are open
and there are many properties of general topology for
which it is more suitable.

In [25] Dang et al. worked on fuzzy supratopological
spaces.

In [56] Lowen introduced the so called "goodness
criterion”" and in [98], Warner generalised this criterion
to a continuous frame L.

Compactness is one of the most important notions in

17



pure mathematics. Therefore it is natural to pay
particular interest to it in fuzzy topology.

The first definition of compactness in a fuzzy
topological space was suggested in 1968 by Chang [18].
But very soon the disadvantages of this definition became
clear and compactness in fuzzy topology was shown to be
far more complex than in general topology.

The next compactness results are due to Goguen [39],
who proved a Tychonoff theorem for finite products.
Goguen was the first to point out a deficiency in Chang's
compactness theory by showing that the Tychonoff theorem
is false for infinite products.

After that, Wong [102] treated compactness, defined
sequential and countable compactness and in [103] he
introduced local compactness.

Weiss [101] dealt with a subfamily of the family of
all fuzzy topologies on a fixed set, induced fuzzy
topological spaces. Since no member of a Weiss subfamily
is compact in the sense of Chang, he introduced a new
notion of compactness. Lowen [53] gave a new definition
of a compact fuzzy space which, when restricted to Weiss'
subfamily, 1s generalised by Weiss' definition. However,
Lowen was able to obtain only a finite Tychonoff theorem.

Lowen, in [54], the work in which he altered the
definition of a fuzzy topological space, gave a different
definition of compact fuzzy space and obtained a
Tychonoff theorem for an arbitrary product. In this
paper he also proved that Chang's compactness is not a

good extension.

18



In [35] Gantner, Steinlage and Warren proposed a
definition of L-fuzzy compactness, where L is a
completely distributive lattice (the so-called
a-compactness (ael)). With restrictions on a, they
obtained a Tychonoff theorem for an arbitrary product and
a one-point compactification.

In [56], Lowen studied different kinds of
compactness notions that had already been introduced and
added two more notions, ultra fuzzy compactness and
strong compactness. He worked in fuzzy topological
spaces as defined in [54]. He showed which of these
compactnesses are good extensions, studied the
implications between them and analysed for which notions
there is a product theorem.

Hutton, in [44], introduced a strong definition of
compactness and proved the Tychonoff theorem in L-fuzzy
topology where L is a fuzzy lattice.

Wang [95] defined the notion of a-net and introduced
a new kind of compactness in fuzzy topological spaces,
the so-called N-compactness, by using a-nets from the
point of view of convergence. N-compactness has almost
all the properties that ordinary compactness has in
general topology.

Li, in [49], proposed two more kinds of fuzzy
compactness, Q"-compactness and strong Q-compactness,
based on Q-neighbourhoods and convergence of nets.

Peng [78] and Zhao [110] generalized N-compactness
to L-fuzzy topological spaces, where L 1is a complete

completely distributive lattice.
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Hohle [42] introduced a different concept of L-fuzzy
compactness, called probabilistic compactness, where L is
a complete Boolean Algebra. A convergence theory is
developed, and the new concept of compactness is
introduced by means of l-ultrafilters. This compactness
is useful in probability theory.

Eklund and Gahler [31] defined fuzzy compactness by
means of nets and compared this with two modified versions,
one of which uses a covering property and the other uses
filters. In [32] they defined compactness by means of
almost bounded nets.

Ganguly and Saha, in [34], presented a definition of
fuzzy compactness by filters.

In [15], Chadwick proposed another fuzzy compactness
that is a modification of Wang's N-compactness.

Prada Vicente and Macho Stadler, in [79], introduced
the notion of t-prefilter and obtained a characterization
of t-compactness [35] by means of maximal t-prefilters.

In [100], Warner and McLean suggested a definition
of L-fuzzy compactness, where L is a frame. By
considering L a continuous spatial frame they proved the
goodness of this definition.

In [66], Meng mentioned that Wang, in a work in
Chinese, generalised Lowen's compactness [54] to a
general L-fuzzy topological space. In this work Meng
obtained new characterizations for Lowen's compactness in
L-fuzzy topological spaces, where L is a fuzzy lattice.

Xu, in [105], referred to another L-fuzzy

compactness which it would seem exists only in a work in
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Chinese, that is weaker than N-compactness [95].

In [67], Meng mentioned that Wang, in a work in
Chinese has generalized ultra fuzzy compactness [56] to
L-fuzzy topological spaces.

Thus, many papers dealing with compactness have been
written and various kinds of fuzzy compactnesses have
been introduced and studied. However, each of them has
its own limitation, some more and others less. As Eklund
[30] remarked, in fuzzy topology the notion of
compactness is almost a nuisance.

In this work we propose an extension to arbitrary
L-fuzzy sets, of the compactness defined in [100].
Working with a fuzzy lattice I, we study some properties
of this new definition. We also propose some good new
definitions of countable, sequential, local, almost,
nearly, strong and RS-compactness, as well as, new good
ones of paracompactness, Lindeloffness and S-closedness
and study some of their properties. Good definitions of
regularity and normality are also introduced. We compare
our definition of an L-fuzzy compact set with the other
good definitions already introduced in L-fuzzy
topological spaces, as well as present a comparison
between our concepts of compactness; S-closedness;

almost, nearly, strong and RS-compactness.

21



The thesis is divided into twelve chapters as follows
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From

Lattice theory

L-fuzzy set theory

Fuzzy topological spaces

Compactness in L-fuzzy topological spaces
Countable compactness, Sequentialcompactness
and Lindelofness

Local compactness in L-fuzzy topological spaces
Paracompactness in L-fuzzy topological spaces
Some weaker forms of compactness

S-closedness in L-fuzzy topological spaces
RS-compactness in L-fuzzy topological spaces
S-compactness in L-fuzzy topological spaces

A comparison between the concepts introduced in
chapters VIII, IX, X and XI and some related

properties

chapter V on, L will be always a fuzzy lattice.
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CHAPTER I

Lattice Theory

This chapter consists essentially of some
definitions and results on lattice theory upon which this
work 1is based. Our purposed is to make this work
reasonably self-contained. For more details we refer to

Johnstone [45], Gierz et al. [37] and Birkhoff [8].

We divide this chapter in two sections.

We devote the first section to some basic

definitions.

The second section 1is reserved for some related

properties.
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1l. Basic definitions

Definition 1.1.1. Birkhoff [8]
A directed set D is a set with a partial order *
such that for each pair m,j of elements of D, there

exists an element k of D having the property that k”m and

k*5 .

Definition 1,1.2. Birkhoff [8]

A lattice L=L (i/,v) is a set L equipped with a
partial order in which every finite subset has a join
and a meet, where meet and join are denoted by A and v

respectively.

Definition 1.1.3. Birkhoff [8]

A complete lattice is a lattice in which every set
has a join and a meet. We denote L the largest element
of L, VL, by 1 and its smallest element, AL, by 0. We
consider 0 as the join of the empty set and 1 as the meet

of the empty set.

Definition 1.1.4. Gierz et al. [37]

Let L be a complete lattice. We say that e is way
below b, in symbols e«b, if and only if for any directed
subset D of L the relation b"vD always implies the

existence of deD with e”d.

Definition 1.1.5. Gierz et al. [37]

A continuous lattice L is a complete lattice in

24



which for all eel, e=v {xX€L; x«e} .

Definition 1.1.6. Johnstone [45]
A locale or a frame L is a complete lattice

satisfying the infinite distributive law

eA(vS) = v {eAX; xeS}

for all eel and all SfL.

Definition 1.1.7. Glierz et al. [37]

A lattice L is called completely distributive if

and only if it is complete and the following condition

holds:
A iv_e. . \4
xel |[jeJdi ] fek Miex r ()
where for each iel and for each jej., e. e I, and K is

the set of all maps f :I=xadlh such that for every iel,

f(i)edi.

Definition 1,1.8. Birkhoff [8]
Let A be a set that is equipped with a partial
order. Then BcA is called a chain in A if and only if

each two elements in B are related.

Definition 1.1.9. Birkhoff [8]

An order reversing involution on a lattice L is a
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map x>x' from L to L satisfying:

(1) if e i b then Db' " €'

(11) e"' =-e

Definition 1.1.10. Hutton [44]
A fuzzy lattice is a completely distributive lattice

with an order reversing involution.

Definition 1.1.11. Johnstone [45]
A frame morphism is a map between frames which

preserves finite meets and arbitrary Jjoins.

Definition 1.1.12. Gierz et al. [37]

An element p of a lattice L is prime if and only if
p*l and whenever e,bel. with eAb”p then e”p or b”p. The
set of all prime elements of a lattice L will be denoted

by pr (L) .

Definition 1.1.13. Gierz et al. [37]

An element a of a lattice L is coprime or union
irreducible if and only if a*0 and whenever e,bel. with
a“evb then a”e or a’b. The set of all coprime elements

of a lattice L will be denoted by M (L) .

Definition 1.1.14. Johnstone [45]

A frame L 1is called spatial if and only if for all

e, bel, with e”b there is a prime p with e*p”b.
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Defipition 1.1.15, Gierz et al. [37]
& subset U of a complete lattica L is called Scott

gpen if and only if it ig an upper sec and is
inacceggibnle by directed joins, i.e.:
(i) 1f 26U and =sb then bedT
(11] if D is a directed subset of L with VYDeU then
thara iz a deD with QeU.

The set of all Scott open gubseta of L ia a topology

and iz called the ScorLt Lfopologqy of L.

Defipicion 1.1.16. [51, 97, 50, 110]
Let L be a complete lattice, «el and ¢=BcL. B is

called a minimal set relative to o if and oanly if VEwx and

for each set AclL satisfving YAzoa and for each beB, there

exists esh such that bae.

Bemark 1.1.17. Wang [37]

The unicn of minimal sets relative to ¢ iE a minimal
gt relative to x. We shall denota the union of all
minimal gete relative to asl by gle) and by E:igi tha sat

BlalnMiL} .

Definition 1.1.18. Birkhoff [&8]
A maximal 2lement of a subset A of a partially ordered
set L i3 an =lement x such thar for no eed it is true

that x<e.
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Definition 1.1.19. Johnstone [45]
A point of a frame L is a frame morphism from L to the

frame {0,11}.

Remark 1.1.20. Johnstone [45]
When L is a frame, there is a one-to-one correspondence
between the points of L and the prime elements of the

lattice L. Therefore we can regard points of L as prime

elements of L.
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2. Some properties

Proposition 1.2.1. Blyth and Janowitz [9]
Let (L,') be a complete lattice with an order
reversing involution. Then for any family (e”)"g] °f

members of L we have:

. \VA v
() ieg °r 2F ©r
‘o A 1
(11) jieg ©1

Proof

See theorem 17.1 of [9].

Proposition 1.2.2. Johnstone [45]
A locale L is spatial if and only if every element
is a meet of primes, that is, every element is a join of

coprimes.

Proof
See in Johnstone [45] pp43 and proposition 2.17 in

Wang [97].

Proposition 1.2.3. Gierz et al. [37]
Every completely distributive lattice is a

continuous frame and is therefore spatial.

Proof
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See 1in Gierz et al. [37] pp72 and section 1.3.7 and

1.3.12.

Proposition 1.2.4. Johnstone [45]

Let L be a frame. Then the power set P(pr (L)) is a
frame and the map ml~»P (pr (L) ) defined by <E£x) =
{pepr (L); p"x} is a frame morphism. Its image 1is
therefore a topology on pr(L) . The map (p is injective if

and only if L is spatial.

Proof

See Johnstone [45] pp4l and 42.

Lemma 1.2.5. (Zorn's lemma) Dugundji [29]
If each chain in a nonempty partially ordered set

has an upper bound, then the set has a maximal element.

Proposition 1.2.6. Wang [97]
Let L be a complete lattice. Then L 1is a completely
distributive lattice 1if and only if for every ael, a has

a minimal set, and hence 13(a) exists.

Proof

See theorem 2.11 in [97]

Proposition 1.2.7, Zhao [110]
Let L be a completely distributive lattice. If
aeL\{0}, then B (a) 1is a minimal set relative to a.

Furthermore if aeM(L) then /B (@ 1s a directed set.
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Proof

See lemma 4.1 in [110].

Example 1.2.8. Wang [97]
Let L = [0,1].
Thus pr(L) = [0,1), ML) = (0,1], for every ae(0,1]

/3@ = [0,a) and B(0) = {0}.

Proposition 1.2.9. Gierz et al. [37]
Let L be a continuous lattice. Then the sets of the

form {gel; exqg} form a basis for the Scott topology on

L.
Proof

See remark 3.2 pp68 and proposition 1.10 (ii) ppl04
in [37]

Proposition 1.2.10. Gierz et al. [37]
Let L be a completely distributive lattice. Then

the sets of the form ({xel; x"e} generate the Scott

topology.

Proof
See [37] ppl66 and pp205.

Proposition 1.2.11. Warner and McLean [100]
The Scott topology of a completely distributive
lattice L is generated by the sets of the form {xel; x"p}

where pepr (L) .

Proof

See proposition 2.1 in [100].
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CHAPTER II

L-fuzzy set theory

This chapter is concerned with the definitions and
some properties of L-fuzzy sets, L-fuzzy points, image
and inverse image of L-fuzzy sets that we shall use
later on. We also present the definitions of nets,

a-nets, sequences and a-sequences in the L-fuzzy context.

We divide this chapter in three sections.

The first section contains the definitions and some
properties related to L-fuzzy sets and L-fuzzy points.
Section two is devoted to image and inverse image
of L-fuzzy sets.
The third section is reserved for the definitions of

nets, a-nets, sequences and a-sequences.

Although, some of the definitions, results and
proofs we refer to are given only for L-fuzzy sets where

1=[0,1], they are totally similar for a fuzzy lattice L.
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1. L-fuzzy sets and L-fuzzy points

In the following, let X be a nonempty set and let
=L (i,v,A,") be a fuzzy lattice with a smallest element 0
and a largest element 1 (0*1). We consider 0 as the join

of the empty set and 1 as the meet of the empty set.

Definition 2.1.1. Goguen [38]
An L-fuzzv set f on X is a function f:X—>L. The set

X
of all L-fuzzy sets on X will be denoted by L .

The L-fuzzy sets on X defined by f(x) = 0 for every
xeX and g(x) = 1 for every xeX will be denoted by o and X
respectively. We call them the empty L-fuzzy set and

the full L-fuzzy set on X respectively.

Definition 2.1.2. TWeiss [101]

A crisp set on X is an ordinary subset of X. In
particular, its characteristic function from X to L is an
L-fuzzy set. We shall denote the characteristic function

of a set AfX by

Remark 2.1.3. Goguen [38]

To the set LX, of all L-fuzzy sets, can be given
whatever operations L has and these operations in LX will
obey any law valid in L which extends point by point.
Thus, since L is a fuzzy lattice, L 1is also a fuzzy
lattice, with the partial ordering f*g if and only if
f(x)*g(x) for all xeX, for f,geLX, and the operations of

meet and join as:
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X
f (x)Ag(x) for each xeX and for f,gel

(1) (fAg) (x)
(ii) (fvg) x) = f(x)vg(x) for each xeX and for f,gel

(ii1) 15 ot) ) = .gg £.® - VI{fi(x), iej, for each
xeX and for f.elL for each iej.

: r A - A . i . leq h

(1v) [ied L1 (x) iag fl.(x) A{fi (x), 1ej; for eac

xeX and for fAeLX for each iej.

We shall call fvg the union of f and g, fAg the
intersection of f and g and read f*g as "f is contained

in g" .

Definition 2.1.4. Weiss [101]
Let f be an L-fuzzy set on X. The support of f is

defined by suppf = {xeX; f(x)>0}.

Remark 2,1.5.

Warner [99] determined the prime elements of the
frame LX of all L-fuzzy sets on X. We have pr(LX) =
{Xb; xeX and pepr (L)} where for each xeX and each pepr (L)

Xp:XﬂiJlS the L—fuzzy set defined b¥ Xp ) = ﬁ?‘oghgiﬁkse

By remark 1.1.20., the points of the frame L are

in one-to-one correspondence with the prime elements of

Yy
L. . Therefore we have the following:
Definition 2.1.6. Warner [99]
These x, , in remark 2.1.5., are called the L-fuzzy
Ir
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points of X and we say that x 1is a member of an L-fuzzy
Jr

set £ on X and write x ef if and only if £(x) fp.
£

Remark 2.1.7,
Since the prime elements of LX are the functions

XptX-~L defined by x"(y) where xeX and

1 Bther&ise
pepr (L), the coprime elements of LX are the functions

xa :X"L defined by xtf(yy = % 8%Eér%£se where xeX and

aeM (L) . As these may be identified with the L-fuzzy
points Xp of X, we shall refer to them as the L-fuzzy
points xg sM(LX) where M(LX) is the set of all coprime
elements of LX. In this case, that is, when erMiLX), we
shall call x and a the support of x (x-suopx”) and the

height of x* (a = h(x ), respectively.

Remark 2.1.8. Warner [99]

Since L is spatial, by proposition 1.2.2. we have

that every L-fuzzy set on X is a meet of L-fuzzy points in
Y
pr(L ) and so, every L-fuzzy set on X is a join of L-fuzzy

X
points in M(L ).
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2. Image and inverse image of L-fuzzy sets

In the following, let X and Y be nonempty ordinary
sets, let f X>Y be a function and let L be a fuzzy

lattice.

Definition 2.2.1. Chang [18]

For an L-fuzzy set g on X, the image of g under f is
the L-fuzzy set on Y defined by

flg) () =¥{g(x); xef 1 (y)} for each yeY.

Definition 2.2.2. Chang [18]
For an L-fuzzy set g on Y, the inverse image of g
under f is the L-fuzzy set on X defined by f 1) &K =

g(f(x)) for each xeX.

The following is well-known.

Proposition 2.2.3. [18, 62, 81]

For a family (g”)”~gd of L-fuzzy sets on X and a

family (h™)" of L-fuzzy sets on Y we have:
(i) fa1MmY) = (f"1 (hi))’
(ii) if h. h. then £ 1 .,) fa (., )
i1 1 1
1 2 1 2

(iii) if gi ~ g. then £ (@. ) < f£f(@g )
1 2 1 2

(iv) £(f 2 (h.)) T h.. If f is onto then f(f 1(hiH

1
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) (£(gi))' ~ £ @) if £ is onto

(Vi) gi < £-1 (f(g.)). If £ is injective then

£f1(f@Bt)) = si
(wvit) £1 ¥ B Lk ot (hix
(viid) €' Ay Py g per (g
B £ 1l 3 = #F £y
(x) By ¥ & T
(xi) f£(g™ £ (£(g”))" if f is injective

Proposition 2.2.4. Malghan and Benchalli [62]
For a family (g.). T of L-fuzzy sets on X and an

L-fuzzy set h on Y we have:

(1) if g. ~ *3 then suPP9-1 £ supp g”
1 2 1

v A
SUPP  yog i hE  SUPP g%

fm

supp , o
J=1 = ) =321

supp gi
J
(iv) £ (supp gi) = supp f(gi)

v) f 1(supp h) = supp f 1 (h)
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3. Nets and Sequences

In the following, let X be a nonempty ordinary set

and let L be a fuzzy lattice.

Definition 2.3.1. Zhao [110]

Let D be a directed set, X a nonempty ordinary set
and let M(LX) be the set of all coprimes of LX. A net in
X 1is a function Sﬂ}»M(Ly). For meD, we shall denote S @)

by Sm and the net S by (Sm)m€D

Remark 2.3.2.

If (S

) B is a net in X,, then S_ is an L—fuzzy
m’me m

point in M(Ly). Thus we shall denote by supp Sm and

h(Sm) the support and height of S , respectively.

Definition 2.3.3.

Yy .
Let fel. and let (S5 ) B be a net in X. The net
m’'me

Sm)meDlS —————————
SmAf for each meD, i.e.,, f(supp Sm)£ h(Sm) where h(Sm)

is the height of the L-fuzzy point Sm in M(Ly).

Definition 2.3.4.
A sequence in X is a function Szﬂkﬂﬂay) where N is
the set of all natural numbers. We shall denote S(m) by

Sm and S by Sm)mﬂN

Remark 2.3.5.

We say that the sequence (sm)melN in x is contained
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in peld

if and only if £ (supp smbzntsml for each meN,

whares hism} iz the height of Sm'

Defipition 2.3.8,
Anet T= [T) o in X is called a gubpet of a net 5

- {EkaED in X if and conly if there is a functcion J:E-D
gueclhh that Ti = EJ{i} for each ieE and for each keaD thare

ig meE guch chat J(plzk whenewver Eap®m.

Definition 2. 3.7,
h .
A seqmuence T = :Tm] N 1P X is called a pubgeguende

aof 2 sequence S5 = (8 ) in X if and only if there iz a

m’ mel
saruenca J of matural numbers such thakt T.l = SJti} Eor
each ieWN and for each msel chere is reM such that J{i)=zm

whenever i=r.

Definition 2.3.8. Zhao [110]

A met {80 .. i called an a-net [weM{L)) if and
only if for esach TEE*{m}. the net hi{5) = {htsm}J“ED is
eventually greater than ¥y, i.e2., there is m €D such that
h{EmﬂtT whenever mE where htsm] i the height of the
L-fuzzy point EmEM[LxJ. If h:Sm} = & for all msD., tchen

we shall say that (5 ) iz a constant ax-net

' el

Remark 2.3.9.

When D ig the s=t of all natural numbers in

definition 2.3.8., [Smjmﬁn is ralled an o - Hefuence .
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CHAPTER III

Fuzzy topological spaces

Different definitions of fuzzy topology have been
stated in the literature J[e.g. 18, 54, 44, 88, 41, 39].
The first basic notion of fuzzy topology is due to Chang
[18]. In [54], Lowen required that a fuzzy topology had
one more axiom, which included the constant fuzzy sets.
Here we adopt Chang's definition of fuzzy topology and
consider that of Lowen as a special case (definition

3.2.1.)

This chapter is divided in four sections.

Our main goal in section 1 is to establish the basic
notions and results of L-fuzzy topology that here we
shall deal with. We also present some results, obtained
by us, that will be necessary later on, as well as, some
definitions that we propose.

Section 2 is reserved for some special L-fuzzy
topological spaces and some related properties.

The third section is devoted to some special
functions with some of their properties.

In the fourth section we concentrate on countability
and separation axioms. Here we propose new good

definitions of regularity and normality.
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Although, some of the definitions, results and
proofs we refer to are given only for J[o,1]-fuzzy
topological spaces, they are totally similar for an

L-fuzzy topological space where L is a fuzzy lattice.
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l. Some basic definitions and assertions

In the following, let X be a nonempty set and let

L=L(",v,a,") be a fuzzy lattice with a smallest element 0

and a largest element 1 (0*1) .

Definition 3.1.1. Chang [18]

X
An L-fuzzv topology on X is a subset J of L , the

set of all L-fuzzy sets, having the following properties:

(1) the L-fuzzy sets 0 and X belong to 9.

(ii) if f, g are in 9 then fag is in J.

(1ii)if (ﬁJ]éJT is a famlly in 9'ther1JéGT %. is in 9.
The pair (X*), where 9 is an L-fuzzy topology on X,

is called an L-fuzzy topological space (for short L-fts).

If (X9 1is an L-fuzzy topological space, we say
that an L-fuzzy set f is open or 9'-open in the L-fuzzy
topological space (X9 if and only if fe9\ We say that

X

fel, is closed or 9'-closed in the L-fts 9" if and only

if f£'€9\

Definition 3.1.2. Wong [103]
Let X,9) be an L-fts. A collection Sc9 is said to
be a base for 9" if and only if for each fe9’, there is a

collection EtS such that f = Vg.

Definition 3.1.3. Wong [103]

Let 9" be an L-fts. A collection jfeJ is said to
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be a subbase for 7 if and only if the family of all

finite intersection of members of /f forms a base for 3.

Proposition 3.1.4.
Let (X,;) be an L-fts. Then feS-if and only if for
all pepr (L) and for every xeX such that f(x)"p, there is

efT with gsf and g(x)"p.

Proof

Necessity:
Take g=f.

Sufficiency:

Suppose that fiJ. Let 9%

{ged; g<f}.

Since”""g € vy ( f* Vy.qg. But for all @ST* we have
g-ggj.g<f ¢ Thus, there is xeX with g(x) £ |[gVy#g] (%) cf (x)
for all @ST*. So, f ®¥) $ (@°g-.g] x)

By the spatiality of L (proposition 1.2.3.), there
exists gepr(L) such that f (x)and |ggg-.g] (x)—<3* Then

f(x)$g and g(x)"g for all ST , yielding a contradiction.

Definition 3.1.5. Pu and Liu [80]
Let (X,J) be an L-fts and let felX . The interior of
f, int(f), and the closure of £, cl(f), are defined as
follows:
int (f) = v {€ST; g~f}

cl (f) = A {gelX; gaf and g'e"}
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Remark 3.1.6.

(1) Evidently int(f) is the largest open L-fuzzy
set contained in f and int(int(f)) = int(f). Similarly
cl(f) 1is the smallest closed L-fuzzy set containing f and
cl(cl (f)) = cl(f). Pu and Liu [80]

(ii) (cl (f) )' = int(f') and (int(f))' = cl(f') Pu
and Liu [80]

(iii) for a family tadﬁeﬂ of L-fuzzy sets we have:

V . _ - l
€7 CL(fy) ~ ¥ f3 Jej int<Vslnc(:ij £j’ and 1f

J is finite, CLIED) 1 (4fa £9) Azad 171m
Definition 3.1.7.

Let (X,J) be an L-fts and let felX . The L-fuzzy set
f is called:

(i) Regularly open [7] 1if and only if f=int (cl(f)).

(1i) Regularly closed [7] if and only if
f=cl (int (f)).

(iii) Semiopen [7] if and only 1f there exists ged
such that g”fscl(g).

(iv) Semiclosed [7] if and only if there exists a
closed L-fuzzy set g such that int(g)"*f"g.

v) Regularly semiopen [23] 1if and only if there
exists a regularly open L-fuzzy set g such that
grfrcl(g)

(vi) Regularly semiclosed [23] 1f and only if there
exists a reqularly closed L-fuzzy set g such that
int (g) “"f"g.

(vii) pre-open [75] if and only if fsint(cl (f))
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(viii) ore-closed [75] if and only if cl (int (f))sf.

Remark 3.1.8. Azad [7]
Let (X,y) be an L-fts and let feLX.
(1) f is semiclosed if and only if int(cl(f))"f.
(1i) f is semiopen if and only if cl(int(f) ) .
(iii) the closure of an open L-fuzzy set is a
regularly closed L-fuzzy set.
(iv) the interior of a closed L-fuzzy set is a

regularly open L-fuzzy set.

Definition 3.1.9.

Let (X,?) be an L-fts, let be an L-fuzzy point in
M(LX) and let Sm)meB be a net. The L-fuzzy point
xaeM(LX) is called a:

(1) limit point [110] of <Sm)meD (or (Sm)meD
converges to x ) if and only if for each closed L-fuzzy
set f with f(x)%a there exists mgl) such that mAmO

implies that Sm%ﬁ, i.e., f(supp Sm)ip(s ) where supp Sm

m
and h(Sm) are the support and the height of (sm)meD
respectively.
Notation S,—>X
th "a

(1i1) cluster point 1110] of Sm)meB if and onlv if
for each closed L-fuzzy set f with f (x) we have that
for all jeD there is meD such that m"j and S"f/ 1i.e.,
f(supp Sm)"h(Sm) .

(iii) Q@ - cluster point of (5 ) , 1if and only if for

each closed L-fuzzy set f with f(x)”a we have that for

all jeD there is meD such that m"j and Sm*int(f), 1i.e.,
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(int (f) ) (supp Sm) " *h(Sm) .

(iv) S - cluster point of (Sm)meD if and only if for
each closed L-fuzzy set f with f(x)”a we have that for
all jeD there is meD such that maj and S “cl (int(f)) ,
i.e., (cl(int(f))) (supp Sm)”"h(Sm).

v) Semi - S - cluster point of (sm)meD if and only
if for each semiclosed L-fuzzy set f with f(x)”a we have
that for all jeD there is meD such that m*j and
S*cl (int (f)), i.e., (cl(int(f))) (supp Sm)"*h(Sm).

(vi) Semi - 9 - cluster point of (Sm)mgD if and only
if for each semiclosed L-fuzzy set f with f(x)”a we have
that for all jeD there is meD such that m"j and
Sm~int (f), di.e., (int(f)) (supp Sm) " h(Sm).

(vii) pre-cluster point of (Sm)mgD if and only if for
each pre-closed L-fuzzy set f with f(x)”a we have that
for all jeD there is meD such that m*j and S*f, 1i.e.,

f(supp Sm)”*h(Sm) .

Proposition 3.1.10.
Let (X,T) be an L-fts. An L-fuzzy point XﬂEM(LV) is
a cluster point of a net in (X,J) if and only if this net

has a subnet converging to x".
Proof

The same as that given by Pu and Liu [80] in theorem

13.2.
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2. Some special L-fuzzy topological spaces

Definition 3.2.1. Pu and Liu [81]
An L-fuzzy topological space (X,”) is fully
stratified if and only if each L-fuzzy set on X taking a

constant value on X is open.

Definition 3.2.2, Mashhour et al. [64]
An L-fts (X, 3) is said to be extremallv disconnected

if and only if cl(f) e U for every fe3".

Definition 3.2.3. Gantner et al. [35]

Let K1i7) be an L-fts and AcX. Let U be the set of

restrictions {fl|A; Then 3' is an L-fuzzy topology
on A and we say that @&, 3') is an L-fuzzy subspace of
X, J)

Definition 3.2.4. Wong [103]

et [ X , 3" )I be a family of L-fts's, let X be

1 A a 'Aed
the cartesian product X, and let tta :X>»X* be the
Aeu A A A
Ath-projection map. Let jf = in"1 (X" ; AeJd and i
v

AJ

and let B be the family of all finite intersections of

members of ;jf. The L-fuzzy topology 3'on X, having f as a
subbase and B as a base, 1is called the product topology.
The pair ,3") is called the L-fuzzy product space of the

L-fts's (X*, 3X ), Aed.
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Remark 3.2.5. Warner [98]
Let (X,<9 be a topological space. The set F of all
continuous functions from (X,S) to L with its Scott

topology forms an L-fuzzy topology, which will be denoted
by ¢(S) .

When L= [0,1] , then F is the set ub) of lower
semicontinuous functions from <5 to [0,1] (Lowen

[54])

Remark 3.2.6.

Let <5 be a topological space. Lowen [54] has
called a [0,1]-fuzzy topological property Pf a good
extension of a topological property P if and only if:
(X,5) has P if and only if (X,c3()) has Pf, where w(5) is
the J[o,1]-fuzzy topology of lower semicontinuous
functions. Warner [98] has extended the definition of
goodness to an L-fuzzy property where L is a continuous

frame. Then we have the following:

Definition 3.2,7.
Let (X,5) be a topological space. An L-fuzzy
topological property Pf is a good extension of a

topological property P if and only if:

the topological space (X,5) has P if and only if the
L-fuzzy topological space (X,cj(8)) has Pf, where <j () is
the L-fuzzy topology of continuous functions from (X,5)

to L with its Scott topology.
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Definition 3.2.8. Lowen [54]
Let X, 3% be an L-fts. The L-fuzzy topology 7 on X
is called topological if and only if there is a topology

5 on X with 9" = u(5).

Proposition 3.2.9.

Let (X,5) be a topological space. Then we have the
following:

(1) An L-fuzzy set feLV is open in (X,w(5)) if and
only if f 1 ({tel; t?e})e<t for every eel.

(1i) An L-fuzzy set feLV is open in X,w(5)) if and
only if f 1 ({tel; tS$p})e«5 for every pepr(L).

(11i) An L-fuzzy seéifeL is closed in (X,w(5)) if
and only if f 1 ({telL; t"b}) 1is closed in (X,5) for every

bel.

Proof
(1) Necessity:

If few () then f is a continuous function from (X,5)
to L with its Scott topology. Thus, since for any eel
the set {tel; t”e} 1is Scott open (proposition 1.2.10.),

we have that f 1 ({tel; t"e})e 5.

Sufficiency:

Since L 1is completely distributive, the sets of the
form {tel; t"e} where eel. generate the Scott topology
(proposition 1.2.10.). Therefore if f 1 ({tel; t"e})e 8
for every eel then f e w(b)

(ii) This follows as in (1) from the fact that the

Scott topology of a completely distributive lattice L is
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generated by the sets of the form {telL; t"p} where
pepr (L) (proposition 1.2.11.).

(1ii) felX is closed in (X,u(S)) if and only if
f'a) (8) if and only if f,-1 ({tel; t"e})e 8 for every eel
if and only 1if f-1 ({tel; t"e'=b})e 8 for every bel if and
only if (f 1 ({teL; t”b}))' 1is closed in X,<8) for every
bel. if and only if f 1 ({tel; t"b}) is closed in X,«5) for

every bel.

Proposition 3.2.10.
Let K «) be a topological space. Then 25 if and

only if *A is open in (X,u(b)).

Proof

This immediately follows from proposition 3.2.9..

Proposition 3.2.11. Warner [99]

Let (X,0) be a topological space. The family

(£1101) ,where f|iUl x) =|ei xeUi, 1s a base for w(«b).
ied 1 N 1if x @l

Proof

See lemma 6 in Warner [99].

Lemma 3.2,12.
Let (X,5 Dbe a topological space, let f be an
L-fuzzy set in the L-fts (X,w(S)) and pepr (L). Then

(cl(f)) 1 ({tel; t$2}) £ cl(f 1 ({teL; t$p}))
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Proof

Firstly we are going to prove that any closed set C
in X< with C2f 1 ({telL; t"p}) satisfies C 2
(cl(£f)) 1 ({teL; t*p})

Let C be a closed set in (X,6) with C 2
f-1 ({tel; t"p}) and let g:X-»L be defined by g(x) =1 if

xeC and g(x) = p otherwise.

Since for every eel g *({telL; tre}) = , we

have g 1 ({telL; t"e}) closed in <5 for all eelL. Thus,
by proposition 3.2.9., g is closed in (X,w(S)).

We also have gaf. Thus, g”®cl(f). Then, C =
g_1 ({telL; t”p})2(cl (f))_2 ({tel; t’p}).

Therefore, since f 1 ({telL; t"p})L£cl(f 1 ({teL; t"p}))
and cl(f 1 ({teL; t"p})) 1is closed in (X,<5), we have

1 (f_1 ({telL; t"p})2(cl(f)) 1 ({tel; tSp}).

Proposition 3.2.13.

Let (X,5) be a topological space and AfX.

Considering the L-fts (X,w(d)), eel and f(x) %f Xeh
if x«A !
_ if xecl (d) . _
we have cl(f) ) otherwise and int (f) x) =
Je 1f xeint (4)
{fo otherwise
Proof
. _ e 1if xecl (A rgy if xeint (A)
Let ? (x) d@ otherwi'se and h(*> - {o otherwise
We shall prove that cl(f) = g and int(f) = h.

Since for every belL g 1 ({tel; t"b}) =

r X if b=0
cl @& 1if e”b and b*0 is closed in X,<5), by proposition
o) if e”b and b*o
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3.2.9., g is closed in (X,w(5)). We also have gsf.
Thus, fscl(f)scl(g) = g. Therefore, we have
cl(f) X = 0 for all xicl(A) and cl(f) = e for all xeA.
From cl(f)ig we obtain (cl(f)) ~{tel; t*e})f
g-1 ({telL; t*e}) = (cl(Ar))'. Hence cl(f) (x) = e for all
x€cl(A) and cl(f) (x) = 0 for all x*cl A and cl(f) = qg.

Similarly, for every bel, h ~{telL; t"b}) =

{int (A) if e™b is in 5' so' proposition 3.2.9.,

h e ¢j(k5). We also have hif. Then, hiint(f)if. Thus, we

have int(f) (x = 0 for all x£fA and int(f) ) = e for all
X e int (A).

Since int(f) e uw(5) and int (f) if we obtain
(int (£)) _1({teL; t*0})£ f 1 ({telL; t*0}) = A and

(int(f)) 1 ({teL; t*0})Sint @)

ie 1f xeint (A), that is, 1int (f)=h
{o otherwise

Hence int(f)’X' -

Corollary 3.2.14.
Let [X,8) be a topological space and ASX.
Considering the L-fts K< (B)), eelL and f x) =

. ] f xeint (cl (A)
{o otherwise' we have int (cl<&>><® = {® ftherwise

Proof

This immediately follows from proposition 3.2.13.

Proposition 3.2.15.
Let (X,5) be a topological space. Then we have the
following:

(1) If A is a pre-open set in (X,5) then xA is a
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pre-open L-fuzzy set in ((X,u(<hH)).
(1i) If A is a semiopen set in (X,S) then *A is a

semiopen L-fuzzy set in (X,u(b)).

Proof

(1) Since A is a pre-open set in (X,S) we have AS
int (cl(A)). Thus *A s *int(cl(A)) and' by corollary
3.2.144., *int(cl(A)) - int(cl (*A>>. Therefore *A

sint (cl(*A)).

Hence *A is pre-open in (X,cj(S)).

(ii) Since A is a semiopen set in (X,S), there
exists Ue6 such that Uf£Afcl U) . Thus, ~“g”A”cl (U and
by proposition 3.2.13 (v =cl * since UeS, by
proposition 3:2.10., * ew(S).

Hence *A is semiopen in (X,cj(5))

Lemma 3.2.16.

Let (X,J) be an L-fts and let S be a nonempty family
of L-fuzzy sets. Then an L-fuzzy set f is a union of
elements of £ if and only if for all pepr(L) and for all

xeX with f(x)”"p there is gef such that gsf and g(x)"p.

Proof
Necessity:

Let f be an L-fuzzy set, pepr(lL), let xeX with
f(x)Sp and let f = g _

Thus gj &)4p, which implies that there is gef

such that g(x)"p.

53



Sufficiency :
Let f be an L-fuzzy set such that for all pepr(L)
and for all xeX with f(x)=fp there is ge$ with gsf
and g(x)=fp. Let e = {he$; hsf} and suppose that h < f.
Therefore there exists xeX with . )<f(x), so
(hig h) (X
f x) v. h (x). By the spatiality of L (proposition
1.2.3.), there is gepr(L) such that f(x)"g and

nde h (x)"q, yielding a contradiction.

Lemma 3.2.17.
Let X,<5) be a topological space. If £ is a
semiopen L-fuzzy set in (X,uw>(5)) then f is semicontinuous

as a function from (X,S) to L with its Scott topology.

Proof
Let f be a semiopen L-fuzzy set in (X,w(5)). We
want to prove that f is semicontinuous, i.e., £ 1 (V) 1is a

semiopen set in (X,S) for each Scott open set V in L.

Since ({telL; t"p}) is a 13338 for the Scott
topology (proposition 1.2.11.), £f£-1 (uv.) = uf-1(V.) and
i i

any union of semiopen sets is a semiopen set, it will
suffice to prove that f 1 ({telL; t"p}) 1is semiopen in
(X,S) for every pepr(L).

Because f is a semiopen L-fuzzy set in (X,w(5)),
there is g e u(S) with gsfscl (@ . Thus g-1 ({teL; t*p}) £
f 1 ({teL; t"p})£(cl(g)) 1 ({tel; t"p})£ cl(g-1 ({tel; t’p})
for all pepr(L) where the last inclusion is due to lemma

3.2.12.

Since g e td(5), by proposition 3.2.9., g-1 ({tel; t"p})

54



%5 for all pepriL}. Hence £ '{{celL; t4p}) is semiopen in

(X,8) for all pepriL).

Propogition 2.2 .18,
Let (¥X,5) be a topological space. Then every

gemiopen L-fuzzy set in (X,wi{d)) is a union of slements

of the collection B = [f.l:liEJ where fitx} =

ey if xel, semiopen in [X,3)
10 otherwise

Broof

Let pepr (L), xeX and let g be a semiopen L-fuzzy set
in {X,w{d}) with gi{x)4p. From lemma 3.2.16. it will
suffice to prove that there is i1&J such thakt fiﬂg and
£ X1 4D. |

Since g{xi4p, by the contimity of L [proposition
1.2.3.), there is belL such that beg(x}, bip.

Take EoiL such that hmoﬁg{x} .

Therefore gix}eH = {qgel; &g} which is Scott open
in L (propoeition 1.2.9.). By lemma 3.2.17., =ince g is
semiopen in (X, w{dl), g is samicontinueus, By the
sarmicontinuity of g, there iz a semiopen get U in (¥X,&)
with x€U such that g(U )eH.

Thus gixjze for all xeU and e;hp gince Enbbﬁp.

e 1if xeU
0 0

Thersfars, fﬁsg anrl fﬁ{x}#p where futxl = {O otherwise

Froposition 3.2.153. MeLean and Warner [65]
If L is a frame and T is an L-fuzzy topoleogy oo a

get X, then the map @#:F-P {(ExprilL}} defined hy ¢if} =
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{(x,p); pLf(x)} for every feU is a frame morphism and
0(9") 1is a topology on Xxpr(L) . If L is spatial then the

L-fuzzy topology V is isomorphic as a frame to the

topology o(J) =

Proof
Firstly we would like to remark that since L is a
frame, J is itself a frame [99]. For the proof of our

proposition we refer to theorem 6 in [65].

Proposition 3.2.20. McLean and Warner [65]
Let L be a continuous frame and let (X,3) be a
topological space. Then the topology 0 & (5)) on Xxpr (L)

is the product topology 5x0 (L) .

Proof

See theorem 6 1n MclLean and Warner [65].
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3. Some special functions

Definition 3.3.1.
Let (XfJx) and (Y,”) be L-fts's. A function

f: X IK)=>(YJy) is called:

(1) continuous [18] if and only if f g for
every 2. ..

(1i) semicontinuous [7] if and only if f 1 (g) 1is
semiopen in (X,SX) for every geS", i.e., f 1(g is
semiclosed in (X,SX) for every closed L-fuzzy set g in

(Y,Sy) .

(iii) almost continuous [7] if and only if f 1 (g)e J

for all regularly open L-fuzzy set g in

(iv) weakly continuous [7] if and only if f 1 (g)i

int(f 1 (cl(g))) for all ge?Y.

(v) open [103] if and only if f(g)e SY for every

(vi) almost open [74] if and only if f(g)e 3Y for
every regularly open L-fuzzy set g in (X,?A).
(vii) strongly continuous [33] if and only if

f(cl(g))if(g) for every gelX.

(viii) dirresolute [23] if and only if f-1(g) 1is
semiopen in (X,SX) for every semiopen L-fuzzy set g in
(Y,yy), i.e., £ 7g) 1is semiclosed in (X,") for every

semiclosed L-fuzzy set g in (Y,")

(ix) pre-continuous [75] if and only if f 1 (g) 1is

pre-open in (X,AA) for every g€9%.
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(x) M-pre-continuous [75] if and only if f 1 (g9) is
pre-open in (X,U ) for every pre-open L-fuzzy set g in

(Y,vy) .

Definition 3.3.2. Nanda [75]

Let (X,y) and (Y,y*) be L-fts's and let 3% be the
L-fuzzy topology on X which has the set of all pre-open
L-fuzzy sets of (X,3) as a subbase. A mapping
f: X vy », v*) is called "“-continuous if and only if
f:X y)—>(, y") 1s continuous and f: X, y)=>(, y*) is said
to be 9 -continuous if and only if f: X y*)—=>(, y") 1is

continuous.

Proposition 3.3.3. Pu and Liu [81]

Let £X* v ) be a family of L-fts's and let
A a >Aed

(X,y) be the L-fuzzy product space of the L-fts's

(XA, ), AedJ. Thus:
A

(1) For every AeJ the Ath-projection map nA:X—»XA is

continuous.

(i) If X», 3 ) is fully stratified, then the
A

projection t":X-»X" is an open map.

Proof

See theorem 2.2. in Pu and Liu [81]
Proposition 3.3.4. Mukherjee and Sinha [71]
Let (X,yx) and (Y,?") be L-fts's and let

f: X 3" >, yy) be an almost continuous and almost open
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map. Then the inverse image of any regularly open L-fuzzy
set in (Y,3' ) is a regularly open L-fuzzy set in (X, ?x),
i.e., the inverse image of any regularly closed L-fuzzy

set in (Y,?y) is a regularly closed L-fuzzy set in

(x,yx) .

Proof

See theorem 3.5. in [71].

Proposition 3.3.5. Mukherjee and Sinha [71]
Let (X,7X) and (Y,J?) be L-fts's and let
f:X 3%)" (Y, ?2Y) be an almost continuous map with
f 1 (cl(h))scl(f 1(h)) for all heST*. Then the inverse
image of any regularly open L-fuzzy set in (Y,Jy) 1is a

regularly open L-fuzzy set in (X,JA).

Proof

See theorem 3.6. 1in [71]

Proposition 3.3.6. Allam and Zahran [3]
Let &,3%) and (Y,J") be L-fts's and let
f:X 3&x)>({,JY) be a weakly continuous map with
f1(cl hid (f 1t ) for every regularly open L-fuzzy
set h in (Y,”) . Then the inverse image of any regularly

open L-fuzzy set in (Y,yy) 1s regularly open in (X,?x).

Proof

See theorem 3.10. in [3].
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Proposition 3.3.7. Nanda [75]
Let (X,”) and (Y,7%) be L-fts's. If f: X J)>», 7%

is M-pre-continuous, then f is o'-continuous.

Proof

See theorem 3.3. in [75].

Proposition 3.3.8. Allam and Zahran [3,26]

Let 3%x) and (Y,”") be L-fts's and let
f: & 3% »(, JY) be a weakly continuous map with
int (£ 1 (h))if "~intih)) for every regularly semiopen
L-fuzzy set h in (Y,3"Y). Then the inverse image of any
regularly closed L-fuzzy set in (Y,Jy) 1s regularly
closed in , 1.e.( the inverse image of any
regularly opeh L-fuzzy set in (Y,J”) is regularly open in

X, IJx) .

Proof
See theorem 3.10. in [3] and corollary 4.12. in

[26]

Proposition 3.3.09. Singal and Rajvanshi [90]
Let 3%) and (Y,?Y) be L-fts's and let
f: X 3IK)  3y) be a weakly continuous open map. Then f

is almost continuous.

Proof

See theorem 3.4. in [90]
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Proposition 3.3.10. Mukherjee and Sinha [70].

Let ) and (Y,”) be L-fts's and let
f: @,9;) W,BY) be an irresolute map. Then the inverse
image of any semiclosed L-fuzzy set in (Y,") 1is

semiclosed in (X, ")

Proof

See theorem 2.5 in [70].

Proposition 3.3.11. Mukherjee and Sinha [71]
Let (X,7X) and (Y,7Y) be L-fts's. Then a map
f:X3%)—>%,3y) is almost continuous if and only if

cl(f "gdMf 1(cl(g)) for all semiopen L-fuzzy sets g in

(Y,yy) .

Proof

See theorem 3.4. in [71].
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4. Countability and Separation axioms

Definition 3.4.1. McLean and Warner [65]

An L-fts (X,J) is first countable. C , if and only

if for each xeX and each aeM(L) there exists a countable
family of closed L-fuzzy sets (f")76j with f*(x)£a such
that for every closed L-fuzzy set g with g(x)”*a there is

ied with g~f*.

Definition 3.4.2. McLean and Warner [65]

axiom of countability if and only if it has a countable

base.

Remark 3.4.3.

If (X,%) is a topological space then the L-fts
(X,» b)) is first countable (second countable) if and
only if the topological spaces (pr(L), O0(L)) and (X,0)

are both first countable (second countable) [65].

Proposition 3.4.4,

Let (X(7) be a Ci L-fts. If an L-fuzzy point

X

xaeM(L ) 1s a cluster point of a seguence @m) N

(X,ii) , then (sm)me(N has a subsequence converging to xff.

in

Proof

This 1s totally similar to the proof of theorem

13.4. (4 in [80].
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Definition 3.4.5. Warner and McLean [100]

An L-fts (X,7) 1is Hausdorff if and only if for every
p,g9 e pr(L) and every pair x,y of distinct elements of X,
there exist f,g el with f£(x)Sp, gl(y)"g and #zeX) f(z) =o

or g(z) =o .

Proposition 3.4.6. (The goodness of Hausdorfness)
Warner and McLean [100]
Let (X,5) be a topological space. Then (X,<5) 1is

Hausdorff if and only if (X,u(5)) is Hausdorff.

Proof

See proposition 3.1. and definition (H3) in [100].

Proposition 3:4.7.
Let (X,7) be a Hausdorff L-fts. Then no net in
X
(X,7) converges to two L-fuzzy points in M(L ) with

different supports.

Proof

Let (sm)meD be a net in (X,7) converging to two
fuzzy points x*, y~ e M(LV) with x*y.

Thus, by definition 3.1.9. (i), for all closed
L-fuzzy sets f,g with f (x and g(y)"*/3 there are mQ,
eD such that mam implies that f (supp Sm)th(Sm) and Umm&
implies that g(supp Sm)”*h(Sm) where h(S ) is the height
of S . Therefore there is m eD such that m"m implies
f (supp Sm) ® h(Sm) and g(supp Sm) h(Sm) .

Let deD with dAm2 and S

d:Zy
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Thus f(z)”"r and g(z)f=r. Hence there exists zeX with
f(z)*1 and g(z)*1l, contradicting the Hausdorfness of

X, T)

Definition 3.4.8.

An L-fts (X,7) 1is regular if and only if for every
pepr (L), for each xeX and each closed L-fuzzy set f such
that there is yeX with y if' (i.e. f(y)"p') and f(x) = 0,

A

there are u,ved with x%eu (i.e., u(x)”p), y ev for every

yPif and (VzeX) u(z)=0 or v(z)=0.

Theorem 3.4.9. (The goodness of regularity)
Let (X,S) be a topological space. Then (X,5) is

regular if and only if (X,u(S)) is a regular L-fts.

Proof
Necessity:

Let pepr (L), xeX and let f be a closed L-fuzzy set
in (X,c3()) such that there is yeX with f(y)”p' and
fx = o.

Therefore, F={teX; f(t)2p' }*<p is closed in (X,5)
(proposition 3.2.9. (iii) ) and xiF. From the regularity
of (X,6), there are Ux, Uf € S with erx, FCUF and
UxnUp = o .

Let and v=*
X UF

Thus u,v e w(5) (proposition 3.2.10.), u(x) = 1%p
and for every y.if', y ev because y if implies that vyeF,
hia
then yeUF and v(y) = % ¢

We also have (VzeX) u(z)=0 or v(z)=0 because 1if
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zeX and u(z)*0 then zeUx which implies zeU: and v (z)=0.

Hence (Xfcg (S)) is regular.

Sufficiency:
Let xeX, pepr(L) and let F be a closed set in (X,9)
with xiF*<p.

Consider f:X-»L defined by f (y)

yeX.

We have f closed in (X,u(5)), there is yeX with

f x) =0 since x«iF. By proposition 3.2.9. (iii) , f is

closed in (X,u(S)), since f 1 ({tel; t"qg}) =
X if g=o
IF if g* 0 and p'"g is closed in X,<5)
4 if g* o and p'"g
Thus, from the regularity of (X,w(S)), there are
open L-fuzzy sets u,v with u(x)”p; for every yPif', ypev
and (VzeX) u(z)=0 or v (z)=0.
Let Ux = {teX; u(t)”p} and Up = {teX; v (t)"p}.
Therefore, Ux, Ug e 5 (proposition 3.2.9. (1)), erx
and FcUp because if yeF then yp«i‘ which implies yPev and
then yeU,. We also have anUﬁ = P because if teUx then

u(t)”p which implies v (t)=0 and tf£Up.

Hence (X,3) 1is regular.

Definition 3.4.10.
An L-fts (X,T) is normal if and only if for all
pepr (L) and for every pair f,g of closed L-fuzzy sets

such that there are x,yeX with xPif (£ (x)p') and
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y e3' (g(y)®™p' ) and (VzeX) £f£(z)=0 or g(z)=0, there are
P
u,v € ii with for every zp«f', zpev (v(z)=fp); for every

zPéq’, zPeu and (VzeX) u(z)=0 or v(z)=0.

Proposition 3.4.11. (The goodness of normality)

Let (X,6) be a topological space. Then X, <5 is

normal if and only if (X,w(S)) is normal.
Proof
Necessity:

Let pepr(L) and let f,g be closed L-fuzzy sets in
(X,u(5)) such that there are x,yeX with f (x) sp' and
gly)>p' and (VzeX) £(z)=0 or g(z)=0.

Therefore, F = {teX; f(t)"p'} and G = {teX; g(t) p'}
are closed sets in (X,5) (proposition 3.2.9. (iii)) and
FnG = ([ because if teF then f(t)”"p' which implies g(t) =0
and then tiG.

From the normality of (X,5), there are U%, U e $with
FcUp, GcUg and UpnUG = <

Let u = Xr and v = xTT
UG UF

Thus, u,v e w(6) (proposition 3.2.10.), for every
z~f', z"ev; for every z"gg', z%eu and (VzeX) u(z)=0 or
v(z)=0. In fact, if Zhif then f(z)”"p' which implies
zeF and then zeUp and v(z)=1"p, 1i.e., zPev. In the same
way we obtain zpeu for every zpig'. We also have
(VzeX)u(z)=0 or v(z)=0 because if zeX and u(z)*0 then

zeUG which implies =zeUp and then v(z)=0.

Hence (X,u(S)) is normal.
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Sufficiency:
Let F*p and G<p be closed sets in (X,S) with FnG = 9
and let pepr (L).

Consider f:X-»L and g:X-»L defined by

f(y» = {0’ if y*F and 3** * {o’' if yS for each y6X'
respectively.

We have that f,g are closed L-fuzzy sets in (X,u(5))
(@s in sufficiency of theorem 3.4.9.). Since F#p and
G*<p, there are x,yeX with xPif and yPig’. We also have
(VzeX) £f(z)=0 or g(z)=0 because if zeX and f(z)*0 then
zeF which implies zsiG and then g(z)=0.

Thus, from the normality of <5 (S)), there are
u,v e cj) with zPev for every zPif'; zPeu for all zPig'
and (VzeX) u(z)=0 or v(z)=0.

Let Up = {teX; v(t)”"p} and UG = {teX; u(t) " p}.

Therefore, FcUp, U"nG because yeF implies f(y)=p'
and then y~f' thus y"ev, i.e., yeUp and in the same way
we obtain GcU”. We also have Up and UG e 5 (proposition
3.2.9. (1)) and UpnUG = 9 because if teU” then v (t)" p
which implies u(t)=0 and then teUn

Hence (X,<5) is normal.
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Chapter IV

Compactness in L-fuzzy topological spaces

This chapter is concerned with compactness in
L-fuzzy topological spaces where L is a completely
distributive lattice. We present our definition of
compactness for arbitrary L-fuzzy sets and study some of
its properties. We then concentrate on the other
versions of L-fuzzy compactness introduced by various
authors, set up their goodness and establish their
interrelations.

Lowen [54] introduced in 1976 a good fuzzy
compactness for [o,1]-fuzzy topological spaces, which we
shall call here Lowen fuzzy compactness. Meng pointed
out in [66] that in 1988, in a work in Chinese, Wang
generalised it to L-fuzzy topological spaces by means of
a-nets, for L a fuzzy lattice. In [66], Meng obtained
some other characterizations for Lowen's compactness in
L-fuzzy topological spaces (which we shall call here
Lowen L-fuzzy compactness) by means of remote
neighbourhood families, R-covers, a-filters and families
of closed L-fuzzy subsets which have the finite
intersection property. Lowen [55] , in 1977, proved the
Tychonoff product theorem for Lowen fuzzy compactness.

In 1978, Gantner, Steinlage and Warren [35]
proposed, for a fuzzy lattice 1L, the so-called

*
a-compactness and a -compactness in L-fuzzy topological
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spaces, observing that it is possible to have degrees of
compactness. In this work they obtained the Tychonoff
product theorem but with restrictions on a or on the
lattice L.

In the same year, 1978, Lowen [56] suggested two
more good definitions of compactness in [o,1]-fuzzy
topological spaces, namely the well known strong fuzzy
compactness and ultra-fuzzy compactness. For both, a
Tychonoff product theorem was obtained in the same work.
In this paper, he also showed that, in [0,1]-fuzzy
spaces, a-compactness [35] 1s a good extension but
af—compactness [35] 1s not.

In 1993, Warner and McLean [100] generalized strong
compactness [56] to an L-fuzzy topological space, for a
completely distributive lattice L. It was proved that it
is a good extension and also that compact Hausdorff
L-fuzzy spaces are topological. In this work we shall
call it just compactness.

Also in 1993, Meng [67] mentioned that, Wang, 1in a
work in Chinese, generalized ultra-fuzzy compactness to
L-fuzzy topological spaces, for L a fuzzy lattice. In
[67], Meng also presented another characterization of
this generalization that here will be called
ultra-L-fuzzy compactness.

Hutton [44], in 1980, obtained the Tychonoff product
theorem using a definition of compactness called here
H-compactness. For doing so, in his pointless framework
he gave a "pointless" definition of the product of fuzzy

topological spaces. He worked in a fuzzy lattice L
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In 1983, Wang [95] introduced N-compactness, by
means of a-nets, in [0,1]-fuzzy topological spaces. This
compactness is defined for arbitrary fuzzy sets and has
some desirable properties. But, as remarked by Chadwick
[15], because an N-compact fuzzy set has to attain a
maximum value, it is possible to have fuzzy sets which
are never N-compact, even if the fuzzy topology has only
a finite number of open fuzzy sets. In 1987 Zhao [110]
generalized N-compactness to L-fuzzy topological spaces
where L is a fuzzy lattice. He also proved that this
generalization, which will be called here
N-L-compactness. has the same properties as
N-compactness. In this work, Zhao, besides the a-nets
characterization of N-L-compactness, presented a
geometrical characterization by means of
R-neighbourhoods.

In 1993, Xu [55] mentioned that in a paper by him,
in Chinese, a new L-fuzzy compactness was introduced.
This compactness we shall call here X-compactness.

Thus, many papers on L-fuzzy compactness have been
written and different kinds of compactness have been
introduced. However, each of them has its own
disadvantage. Some of them are not good extensions, some
do not satisfy results related to separation axioms, for
some the Tychonoff product theorem does not hold and so
on. In spite of N-L-compactness having good properties,
it also has its disadvantage as mentioned above.

Our aim is to suggest for arbitrary fuzzy sets a

good definition of compactness with the satisfactory
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properties of N-L-compactness whilst avoiding Chadwick's
drawback. This might well have applications not

accessible to the stronger N-L-compactness.

We divide this chapter into seven sections.

In the first section we introduce our definition of
compactness for arbitrary fuzzy sets and study some of
its properties.

The second section is devoted to the Tychonoff
Product Theorem for compactness.

In the third section we obtain results related to
separation axioms.

The fourth section contains other characterizations
of this compactness.

The fifth section is reserved for the goodness of
N-L-compactness and a comparison of compactness with
N-L-compactness.

In the sixth section we state the other definitions
of compactness in L-fuzzy topological spaces where L is a
completely distributive lattice and study them with
respect to their goodness.

Finally in the seventh section we establish the
interrelations between the compactness which are good

extensions.
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1. Compactness in L-fuzzy topological spaces

Definition 4.1.1. Gantner, Steinlage and Warren [35]

Let (X,?) be an L-fuzzy topological space, where L
is a completely distributive lattice with an order
reversing involution and let ael. A collection Bc!7 is
called an «-shading (resp. a -shading) of X if, for each
xeX, there exists feS with f(x)>g (resp. f(x)"g). A
subcollection i? of an a-shading (resp. af—shading) S of X
that is also an g-shading (resp. a*—shading) is called an
a-subshading (resp. a%—subshading) of B. The L-fuzzy
topological space (X3") 1is called a-compact (resp.

*
a —compact) if and only if each a-shading (resp.

*

g -shading) of X has finite g-subshadmg (resp.

*
g —-subshading) .

Definition 4.1.2. Lowen [56]
Let KSI) be a [0,1]-fuzzy topological space. (X, )
is called strong fuzzy compact if and only 1if it is

g-compact for each ge [o,1).

Definition 4.1.3. Warner and McLean [100]

Let (X,?) be an L-fts where L is a completely
distributive lattice. (X,7) 1is called compact if and
only if for every prime p of L and every collection
(f*)”ed of open L-fuzzy sets with 7 x) for all
xeX, there is a finite subset F of J with ,V. fi o SP

for all xeX.
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Now we give the definition proposed by us.

Definition 4.1.4.

Let (X,J) be an L-fts where L is a fuzzy lattice and
let gelX . The L-fuzzy set g is said to be compact if and
only if for very prime pel and every collection (f7"]
of open L-fuzzy sets with fi (x)"p for all xeX with

g(x)£p', there exists a finite subset F of J with

(ieF f1i) f°r a11 xeX with g(x)-P'

If the L-fuzzy set is the whole space X, then we say
that the L-fts (X,J) 1s compact. In this case,

definition 4.1.4. reduces to definition 4.1.3.

Remark 4.1.5..

We would like to draw attention to the fact that,
when we say, for all xeX with g(x)”p', it means for all

X
L-fuzzy points xpepr(L ) such that xp<m'.
This can be restated as follows:

The L-fuzzy set g is compact if and only if for

every prime pel, every collection (f")”ed of open L-fuzzy

xPig' there exists iej with xPef., has a finite
1

subcollection with this property.
Theorem 4.1.6. (The goodness of compactness)

Let (X,5) be a topological space. Then (X,8) is

compact if and only if (X,u(5)) is a compact L-fts.
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Proof

In [100], Warner and McLean proved the goodness of
compactness for L a continuous lattice (proposition 4.4.
in [100]) . Since we are working with L a fuzzy lattice
(definition 1.1.10.), we have L a completely distributive
lattice. By proposition 1.2.3. we know that every
completely distributive lattice is a continuous frame.

Hence we have our result.

Proposition 4.1.7.

Let (X,ii) be an L-fts where II is a finite subset of
Yy

L” . Then (X,?) is compact.
Proof

This immediately follows from definition 4.1.4.
Proposition 4.1.8. Warner and McLean [100]

Let (X,J) be an L-fts where X i1s a finite set. Then

(X,J) 1is compact.

Proof

See proposition 4.6. 1in Warner and McLean [100]

In spite of the fact that the proof of our next
theorem has already been given by Warner and McLean
[1oo], we included it here because we shall need it later

in proposition 4.7.8..

Theorem 4.1,9. Warner and McLean [100]
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Let (X,y) be a fully stratified compact Hausdorff

L-fts. Then (X,y) 1s topological.

Proof

By definition 3.2.8. we need to exhibit a topology 5
on X such that y = u(S) .

Let 8 = {UeP(X) ; Xy e J} .

We shall show that y = w(5).

Since by proposition 3.2.11. <j(®) is generated by 8
and the constant functions from X to I, we have that
u @8)ey.

Now we are going to show that Jew@®), i.e., every
fey is a continuous map from (X,S) to L with its Scott
topology. By proposition 3.2.9. it is sufficient to
prove that for every fey and for all pepr(L) we have
<xsX' f(x)"p} 6 Sie., £(x)4p} € Y-

Let f&3" , pepr(L) and let eeX such that f(e)”p and
gepr (L)

Then, by the Hausdorffness of (X,y) (definition
3.4.5.), for each xeX such that f(x)ip, there are Iy v hx
e J with gA(e)nL hx(x)yp and (VzeX) gX(z)=O or hX (z)=0.

Therefore, x*"x hx v fj (x)"p for all xeX. So, by

f(x)ip
compactness there are xi,...,xm e X with f(x*)ip
Vie{l, ...,m} such that fvhxv...v h ) £ P for all

~ X1 TP
xeX.

Thus, for all yeX with f(y)ip, there is je{l,...,m}

with hX3. (v) ip which implies that gX3.(y) = 0.
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m
Let Kk =.A gx. -*
M 1=1 1

We have that k e?, k (y)=0 for all yeX with f(y)ip

and since Ig (e)ig for every 1 and gepr (L), follows that
u
1

kg (e)*qg.

So, for each eeX with f(e)”p and for each gepr(L)

there is kq&ﬁ with kq(e)iq and kq(y)=0 for all yeX with
1
f (yMp.

Let s = v k .
€ gepr (L) g
We have that seeT, sg (y) =0 for all yeX with f (y) ip

and se (e)”g for all gepr(L).

Since L is spatial by proposition 1.2.3., each of
its elements, except 1, is a meet of primes by

proposition 1,2 .2 . and hence sg (e)=l.

Let g = 0¥ S,
fe)p
Therefore ge?, g(y) =

0 for all yeX with f(y)ip and

g(y) = 1 for all yeX with f(y)"p.

Hence

*{xeX; f(x)$p} €

Proposition 4.1.10.

Let ((X,J) be an L-fts. If h and g are compact

L-fuzzy sets, then hvg is compact as well.

Proof

Let h and g be compact L-fuzzy sets. Let pepr (L)
and let (£~ jJ be a family of open L-fuzzy sets with

fij (x)"p for all xeX such that (hvg) (x)ap'. But if
(hvg) (x) ip' then h(x)"p'

or g(x)£p' because pepr (L) and
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we always have that if h(x)ap' or g(x)*p' then
(hvg) (x)"p'. So, from the compactness of h and g, there

are finite subsets F2 of J with 4 (x)"p for
all xeX such that h(x)ap' and i.V fi ® f£p for all xeX

such that g(x)sp'. Then, [.V uF fzx (x)"p for all xeX

1 2

such that h(x)ap' or g(x)ap'.

f (x)*p for all xeX with (hvg) (x)ap'

Thus, 1I\e/PluF2 x

Hence hvg is compact.

Corollary 4.1.11.
Let (X,J) be an L-fts. Every L-fuzzy set g with

finite support is compact.

Proof
Let g be an L-fuzzy set with finite support. By
remark 2.1.8. we have that each L-fuzzy set is a join of
functions of the form gx, : X >» L where
P ¥ j>{§' éghgr;ige
pepr(L). So, g is a finite join of functions gé,. Thus,
from proposition 4.1.10. it will suffice to prove that

any gx, 1is compact.

Let pepr (L), plepr(L), yeX and let

: X » L
x = {Po ity =x
if y * x
{ytif p; £ P'

We have H {xeX; gf,
» if p; kK P' 7’
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For every family (f.)igJd of open L-fuzzy sets with

Y5 f1j (x)4p for all er:]we must show that there is a

finite subset F of J with f+j x)=fp for all xeH.

If p# £ p' we have H =

If p' 1 p we have H = {y}, then 25 (y)"p
implies that there is i¢ej such that £* (y)” p. Thus
o
there exists a finite subset F = {iQ} of J with

(ieF £1) Hence g* 1s compact.

Proposition 4.1.12.
Let (X,J) be an L-fts. If g is a compact L-fuzzy

set, then for each closed L-fuzzy set h, hAg is compact

Proof

Let g be a compact L-fuzzy set and let h be a closed
L-fuzzy set.

Let pepr(L) and let (£%)"gd be a family of open

L-fuzzy sets with |*j £ (x)"p for all xeX with

(hag) (x) ip' .
Thus, B = (5)j€j J{h'} is a family of open L-fuzzy
sets in (X,9) with kj (x)"p for all xeX with g(x)ip'.

In fact, for each xeX with g(x)ip', 1if h(x)ip' then
(hAg) (x)ip' which implies that f*9 (x)"p, thus

(keS k) X"P- if h(x)”"p' then h' (x)"p which implies that

keB k] X)SP- From the compactness of g, there is a

finite subfamily 9 of B, say £ = {fi(...,f , h'} with
(ke& k) &Hp for aii XeX with g(x) ip' . Then,
(1e{l m}l] X*"P for aii1 xeX with (MhAg) (x)ip'. 1In
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fact, if (hAg) (x)fp' then g(x)sp', hence (kgg kj (x)Sp.

Therefore, there is keS such that k(x)"p. However
h(x)ip' , that is, h' (x)"p, so f...,m}™) " p for
all xeX with (hAg) (x)ip'. Hence hAg is compact.

Corollary 4.1.13.
Let & ,S) be an L-fts. If g is a compact L-fuzzy
set, then each closed L-fuzzy set contained in g is

compact as well.

Proof

This immediately follows from proposition 4.1.12.

Proposition 4.1.14.

Let (X,3") and (Y,”) be L-fts's and let
f: X 3%)>»F, 3") be a continuous mapping such that f 1 ()
is finite for every yeY. If g is a compact L-fuzzy set

in (X,JX), then f(g) is a compact L-fuzzy set in (Y,3y).

Proof

Let g be a compact L-fuzzy set in (X,SA) Let
pepr(L) and let (f%)"gJd 136 a family of open L-fuzzy sets
in (Y,yy) with fij (y)"p for all yeY with f (@ (y)ap'

Then (f 1 (f%))"ed is a family of open L-fuzzy sets in

(X,3"x) with f1(f ")jx)"p for all xeX with g(x)ip'.

In fact, since each ffaLY and f is continuous, f_;(fﬂ e
3% for every iedJ. We also have f-1 (f")3 x)"p for
all xeX with g(x)—p' because if g(x)ip' then

f@ (fx®)ip'. So, B f x = ' f; (f(x)) " p.
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From the compactness of g in (X,?") there exists a

finite subset F of J with f_1(fi)J(x)Ap for all xeX
with g(x)*p'. Then f+ (y)"p for all yeY with
f(g) (y)*p'. m fact, 1if f(g) (y)*p' then, by definition
2.2.1., v {g(x) }tap' , which implies that there is
xef ()
xeX with g(x)"p' and f x = y. So, £t (y) =
ieF fiJ (f(x)) = isF f 1(fi>] (x)"P+ Hence f(g) is

compact in (Y,9y

A

When g = for some AfX, f 1 (y) does not need to be

finite.

Remark 4.1.15.
If (X,J) ,is a Hausdorff L-fts and f is a compact

L-fuzzy set, we do not necessarily have f a closed

L-fuzzy set. For example:
Let X = [0,1] and let V be the [0,1]-fuzzy topology
{Xy. ; U usual open crisp set in X} .

X,3") is Hausdorff because for every q,pe [0,1) =
pr([0,1]) and for every pair x,y of X with x*y there
exist f,g€? with f£(x)"p, g(y)”q and (VzeX) £f(z)=0 or
g(z)=0. In fact, given x*y in [0,1], there are open
crisp sets U , U such that xeU , yeU and UnU = <.

Then take f = and g=Xy . So, f and g are in J,

f(x)=1"p for every pepr(L), g(y)=i"g for every qgepr(L).

We also have that if zeX and f(z)="u (z)*0 then zeUi,

1
SO z«U2 because Dlny =¢>. Thus g(z)=rgz(z)=0.
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et f: X >L = [0,1]

X > =
3
Clearly f is not closed. But f is compact. In
fact, if pe 1[0,2/3) then {xeX; f(x)sp'} = {xe [0,1]1;

p'sl/3} = 9 and given pe [2/3, 1] and a family (fi)ied of
open [0,1]-fuzzy sets with fi ®) > p for all xeX
with f x)p', i.e., for all xeX, we have that fij x)

= 1 for all xeX because f* = xA where 1lb 1s an open set
i

in the topological space X = [0,1]. So, u U. =X and by
iej
compactness there is a finite subset F of J with u U. =
ieF
X. Thus, (x) =1>P for all xeX. Hence f is

compact.

Proposition 4.1.16.
Let (X,97 be a Hausdorff L-fts and let FcX such that

.X? is a compact L-fuzzy set in (X,?) . Then r is a

closed L-fuzzy set in (X,?).

Proof

Let pepr(L) and xeF'. We shall show that there
exists fed with f(x)”"p and f-Xp, . Therefore by
proposition 3.1.4. we have x,. eJ and so . is a closed
L-fuzzy set.

For all vyeF, by the Hausdorffness of (X,3"), there
are gy, hy eJ with gy (X)"p, hy (y)"p and (VzeX) h”(z)=0 or
g™. (z)=0. Thus, $ = <(hy)"eF is a family of open L-fuzzy
sets with [Y%F hyj (z)"p for all zeF. Then by the

compactness of Xp , there is a finite subfamily S of §,
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\Y h 1 (@) for

say s. = K ..... *Vm} with L {(1#..., wyl
all zeF
A
Let £ = 71
ie{lf...,m}
Then fST, f(x)"p and f"p, . In fact, since each

g eJ, feT and from g (x)"p for all ie{l,...,m} and
yi yi
pepr (L), f(x)"p. We also have fs*p, because if zeF',

, (z)=1 and if zeF, there is ke {1,...,m} with h (z) “p,
F vk

SO g (z)=o and f(z)=o

Lemma 4.1.17.

Let fI) be an L-fts, feLX, pepr (L) and let f be a
compact L-fuzzy set in (X,?). Then {xeX; f(x)ip'} 1is
compact in the ordinary topological space (X,5) where & =

{UcX; Xu eT}

Proof
Let 136 a family of open sets in the subspace
H = {xeX; f(x)"p'} of (X,5) with H = u F.. Therefore,
ied 1
for each ied there is Ogeé such that Fk = OinH. So,,
(*o ) is a family of open L-fuzzy sets in &3") with
x ied
(i€j *o.) (x)=1k for all xeH. From the compactness of £
]
there is a finite subset K of J with J (x) “p,
IV = —
xX.e. , SeK go_ (x)=1 for all xeH. Then u F. H and H
X 1eK

is compact in (X,<5)

Lemma 4.1.18. Liu and Luo [50]
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X
Let (X,y) be an L-fts, x@®X, fel.' such that for
every eel, "|xeX. f(x)>} is closed in (X-3** Then f &kq)
= A v f(}), where $ 1s a neighbourhood base at the
UeB yeU
point xg in the topological space (X,5) where 6 =

{UcX; x;; ed}.

Proof

See lemma 3 in Liu and Luo [50].

Lemma 4.1.19. Liu and Luo [50]
Let X3") be a fully stratified L-fts and let felX
such that for every bel X{xeX. f(x)>} is cl®sed- Then f

is closed as well.

Proof

See proposition 1 in Liu and Luo [50].

Proposition 4.1,20.
Let (X,ii) be a fully stratified L-fts and (X,5) be a

Hausdorff topological space, where & = {UcX; Then

each compact L-fuzzy set is closed.

Proof

Let f be a compact L-fuzzy set in (X,i{i) . Then from
lemma 4.1.17. the set H = {xeX; f(x) "p'} is compact in
(X,%) for every pepr(L) . Because <5 1is Hausdorff by
hypothesis, H is closed in (X,<5), which implies that
is closed in X,ii) for every pepr (L).

Since, by proposition 1.2.2., for all bel, b =

v {P'; pepr(L) and p'sb}, we have that X{xeX; f(x)>} =
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A /?, v is closed in (X,if) . Then by lemma 4.1.19 f is
pepr (L
p' sb
closed in (X, II) .

Lemma 4.1.21. Warner and McLean [100]
Let (X,ii) be an L-fts and let c¢pfii) be the topology
on X x pr(L) given by the image of 1xLX » P (Xxpr (L))
where o(f) = {(x,p}; pP"f ® } (proposition 3.2.19). Then
the following are equivalent:
(1) (X,ii) 1is compact
(1i) for every pepr (L), Xx{p} 1s a compact subspace
of (Xxpr (L) , (i) ).
(iii) for every pepr(L), Xx{gepr(L); Jg'p} 1is a

compact subspace of (Xxpr(L), <()).

Proof

See lemma 4.3 in Warner and McLean [100]
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2. The Tychonoff Product Theorem

Theorem 4.2.1. Alexander's subbase theorem

Let (X,J) be an L-fts, gelX and let y be a subbase
for 9. If for every prime p of L and every collection
(f*)~67 of subbasic open L-fuzzy sets with x) "p
for all xeX with g(x) sp', there is a finite subset F of
J with (x)"P for all xeX with g(x)2>=p', then g is

compact in (X,?).

Proof
Let pepr(L) . Let us say 9" has the finite union

property (for short FUP) in H = {xeX; g(x)"p'} if and

A

only if for any c”™... eS, there exists xeH with

A

cC ®Xv...vcm (x)"p. Then g is compact if and only if no
9" with the FUP in H satisfies fj (x)"p for all xeH.
Let Seif have the FUP in H and let 9 = {£; 1i?cBc9 and
B has the FUP in H}.
Then % is nonempty since it contains g and 9: is
partially ordered by inclusion. We now prove that each

chain in 9: has an upper bound.

Let {2h for iel} be a chain. Then clearly gc u B.
iel 1

and to conclude that u $. A 1t remains to show that u

iel iel

B.i has the FUP in H. Let B&e u jﬁ. be finite;, then each
*led

element of Bg appears first in some B”, therefore all of

Bg appears in the largest, say B”, of this finite set of

{B.}. Since B. has the FUP in H, for any b , ... b e B. (
there exists xeH with b (X)v...vb x) “p. Therefore, u
iel

B® is an upper bound for the chain ({B"}.
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Hence by lemma 1.2.5., there exists a maximal member D.

We must show that S does not satisfy 5 (%) |p
for all xeH.

Since gcDc? it suffices to show that P does not
satisfy fJ (x)$p for all xeH.

By our assumptions on the subbase i, no
subcollection i+ of i that has the FUP in H satisfies
fgy* f (x)*p for all xeH. Since D has the FUP in H, Dny
is a subcollection of i that has the FUP in H, SO Drer
does not satisfy f) (x)"p for all xeH. Hence, it
will suffice to prove that £f 1 fADnif £ -

Since i 1s a subbase (definition 3.1.3.), each deD

is of the form I\e]jT (sh a .. .a sim'l) , for my elN, s._. eir for
each iej and je{l, ..., nu} Then Sya @ Sj'm'i d for all
iej. We are going to prove that, for each iej we must
have some Jj.e{l, ..., m.} with s.. e ynZ). It follows
that d= i.éf}' (sli a.asp )lré7 St4 for s.. eifnD,
1 1
that is, and the proof will be complete.
Given deD and c¢., ... ¢ €7 such that ¢ a ...ac id,
1 m 1 m

we are going to show that c*eZ), for some i.

If %) but ced, then no open set containing c
belongs to J. In fact, suppose that ced, ceD, be? and
that cib. Then Du{c} does not have FUP in H by
maximality of D, so there are d* ..., dm &) such that,
for every xeH, (div. . .voIlrg' (x)ip. But then

(d*. ..vd™Wb) (x)"p for all xeH, so we must have b£X>.

86



If ¢, hiX but c,bed, then CAb¢l). In fact, Du{c} and
Du{b} do not have FUP in H, so there exist di, dm+ j
eX such that, for all xeH (d”*...wd%wWc) (x)and
(dj+1v. ..vd Jjtmvb) (x)Sp. By letting d = d* ...vd"+m# we

then have that for all xeH (dvc) (x)*p and (dvb) (x)"p,

whence (dv(cAb)) x) “p since p is prime. Hence CAbiD.
These results extended to ¢, ..., cm €X and
C1' . ey Cm ed 1mgly Cfa..acm}X.
It now follows that, if Cir ever cmLX but are open,
and dACfi..acm and de?, then d<iX. The contrapositive of

this says that 1f &%) and ca “.acmAd for cieJ, then Cf%)

for some 1.

Theorem 4,2.2.

be a family of L-fts's and let g.
Aed

be a compact L-fuzzy set in (X%, ) for each Aed. Then

Lec ( (3v % » )

the product set g = A%J r&l(gA) is compact in the L-fuzzy

product space (X,9").

Proof

To prove this result we apply theorem 4.2.1. to the
subbase if = (u™) ; Aed and u” e7x 1 of the L-fuzzy

product topology 9" on X (definition 3.2.4.)

We must show that given pepr (L), no Gcif having the
FUP in H = {xeX; g(x)£fp'}, satisfies fj (x)"p for all
xeH.

Let pepr (L), "Sef having the FUP in H and for each
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AeJ, let = {he?x ; ) eg}.
A

Then each e has the FUP in H. Indeed, if h,

hm e?fﬁ , then since e has the FUP in H, there exists xeH

such that ™'t ) ®) v. ..vn"1 (h > (x)sp. In other words,
V X) = xx e Hx = (xx«Xx; gx (xx)ip'} and
hi(gx)v...V% (§.) P. Therefore, for each AeJ, £a does

not satisfy |fVg fj (x*p for all x"eH”, because gA is
compact. It follows that, for each Aed, there exists y’e

Hx "ith (fisxf) 'V *?-

Let y=(yA)Xed eH and for each AeJ define

{nx (h); het?*}.

Then ficlf> implies £ = u W ; and
AedJ A

| €«c“1 () ) (v) 7 het?lA] = v|h & (v) ); he”j = {h(yp)} =

fic! fi <> =

fge ) ") “p. Therefore, fgg, Y fj (y)-P and then
A > v A

£ f (x)"p 1s not satisfied for all xeH.

Theorem 4.2.3.

The L-fuzzy product space (X,?) of the indexed

family (X,, Jv ) of L-fuzzy spaces is compact if
t A XA 'Aed

and only if for each Aed (XA’ JXA) is compact.

Proof

Necessity :

This follows from proposition 4.1.14. and the fact

that the projection maps na XX, are continuous, onto

and (X,J) by hypothesis is compact.

Sufficiency :

This immediately follows from theorem 4.2.2.
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3. Separation axioms

Theorem 4.3.1.

Let X, 9) be a compact Hausdorff L-fts. Then (X,9)

is regular.

Proof

Let pepr (L), xeX and let f be a closed L-fuzzy set
in (X,S) such that there is yeX with y &f' and f (x) =0.
By definition 3.4.8. we need to prove that there are u,
vs? with xpeu; for every yPif', yPev and (VzeX) u(z)=0 or
v (z)=0 .

Let F = {teX; f£(t)2=p'}. We have that x£F because
f(x)=0 and p'*0 since pepr (L).

Since X, fI) is Hausdorff for each yeF there exist

fy, gy e 7 with fy (x)"p, gy (v)"p and (VzeX) fy (z)=0 or

gy (z)=o.

Let d = (qy) yeF *

We have hj (z)"p for all zeF. In fact, if zeF,
gz (z)AP-

Since f is closed and (X,?) is compact, by corollary
4.1.13. we have f compact.
Therefore, there is a finite subfamily $ of d, say £

= {gy » e*+. gy} with hv$ hj (z)Sp for all =zeF.

Let u = .

+a1 fy. and v =

x=1 gy°
We have u, v e &, u(x)”p; for every yPe £, yPev and
(VzeX) u(z)=0 or v (z)=0. In fact, since each f and g
yi yi
is open we have u,v e 7. For each y*, £ (x)"p, soO
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u(x)”"p since p is prime and v(y) . (i-i 3y J(y) *

(heiB h) for every ypif'» i-e., for every yeF. We

also have that (VzeX) u(z)=0 or v (z)=0 because if zeX and

u (z)*0 then for all ie{l, k}y £ (z)*0 which implies
vi
that for all ie{l, k} g (z)=0. So v (z)=0.

Hence (X,J) 1is regular.

Theorem 4.3.2.
Let (X,J) be a compact Hausdorff IL-fts. Then 3"

is normal.

Proof

Let pepr(L) and let f,g be closed L-fuzzy sets such
that there are x,yeX with xpif’ and yPQq' and (VzeX)
f(z)=0 or g(z)=0. By definition 3.4.10. we need to

prove that there are u,v e 7 with for every z_if', z_eu;

P P

ng', zPev and (VzeX) u(z)=0 or wv(z)=0.

For every xeX with x

for every z
Pﬁf’, i.e., f(x)ap', we have
g(x)=0 because pepr(L), so p'*0 and by hypothesis we
must have g(x)=0. So, since (X,”) 1is regular by
theorem 4.3.1., by definition 3.4.8. for each xeX with
f(x)ip' there are Us s de with x eu ; for every zpig',
zpevX and (VzeX) uX(z):O or g{(z)=0.

Let d = (ux)xeF where F = {teX; f(t)ap'}.

We have hj (z)"p for all =zeF because for every
zeF ' u (z)"'p.

Since f is closed and (X,sn 1is compact, by corollary

4.1.13. we have f compact.
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Therefore, there is a finite subfamily B of d, say B

= |ux ..... u | with tv2 h) (z)$p for all zeF.

Let u u and v A

We have u, v e 7; for every z if', z eu; for every
r' K

zPiq', zPev and (VzeX) u(z)=0 or v(z)=0. In fact,

A

evidently u, v e J and u(z)= ux .| "z”=[h€s * ~or

all zPif', i.e., for all =zeF. Since for each je{l,...,k}

v (z)ip for all z gg' and p€pr(L) we have v(z) =
3 *

a V (z)®p for all z ig‘. We also have (VzeX) u(z)=0 or
J P!
v(z)=0 because 1f zeX and u(z)*0 then there is je{l,...,k}
such that u (z)*0 which implies v (z)=0 and then
3 3
Vv (z)=o0.

Hence (X,?) 1s normal.
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4. Other characterizations of compactness

Proposition 4.4.1.

Let (X,?) be an L-fts. Then geL>A<

is compact if and
only if for every aeM(L) and every family (fi)igd of
closed L-fuzzy sets with 87 £1) for all xeX with

g &)—oi, there exists a finite subset F of J with

|"A™ £ (x)"a for all xeX with g(x)fa.

Proof

This immediately follows from definition 4.1.4.

Theorem 4.4.2,

Let (X,J) be an L-fts. Then geLX is compact if and
only if every constant a-net (sm)meD contained in g,
i.e., Sm"g for every meD, has a cluster point x* eM(LX),
with height a, contained in g, i.e., x"g, that is,

A

g(x)"a, for each aeM(L).
Proof
Necessity:

Let aeM(L) and let (S

) R be a constant a-net
m ‘me

(definition 2.3.8.) contained in g without any cluster

point (definition 3.1.9.) with height a contained in g.
Then, for each xeX with g(x)"a, erMiLV) (remark

2.1.6.) 1is not a cluster point of Sm)meD i.e., there

are N eD and a closed L-fuzzy set £ with f (x)ia and

S ~"f for each m"N_ .
m X X
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Let x1, ..., xk be elements of X with g{x.x)"a for
each i1e({l, k}. Then there are Nxij, Nxk in D

and closed L-fuzzy sets fxi with fxi(xl)”a and S~ " i

for each mAin and for each ie{l, k}. Because D 1is a
directed set, there is NeD, NiNAi for every ie{l,..., k},
such that Smifxi for each ie{l, k} and for each m”"N.
Let d = (fx)xeg with
g (x)
Then A . f (yv)ia for all yeX with g(y)fa because
X
f (y) . We also have that for any finite subfamily B =
{ﬁ%, ka} c J there is yeX with g(y)”*a and
k k
A f 1 (Y)Aa since S i.A f i for each m”N because
1=1 X m 1=1 X
S if i for each ieﬁ;” , k}, and for each m”"N.
m X 1

Hence g is not compact by proposition 4.4.1.

Sufficiency:

Suppose that g is not compact.

Then by proposition 4.4.1. there exists aeM(L) and a
collection d = (£f")"gd of closed L-fuzzy sets with
["A] £7] (x)"a for all xeX with g(x)za but for any finite

subfamily B of d there is x€X with g(x)=>=ft and

(f.is £1) (x)20t-

Consider the family of all finite subsets of d,
L (d)

NG

, with the order B iB if and onl¥ if BcB_.. Then
172 17 2
is a directed set.
- (d)
So, writing xff as S$ for every Be2 , XS a
constant a-net contained in g because the height of Sg

for all Be2 * is a and S$7g for all BRe2”, i.e., g(x)2:a.

"SB*"Be2” also satisfies the condition that for
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each closed L-fuzzy set f"eB we have xa = "fi-

Let yeX with g(y)"a.

Therefore iéj fq (y)l;a, 1.e., there exists jed with
fi (y)

Let BO = {fD}

so, for any B-SQ, s$-f Bg £, < fIZéBo £. = I
Thus, we got a closed L-fuzzy set £, with fj(y)”"a and
Boe2A such that for any B#E% Séﬁfr, that means that
vy eM &V) is not a cluster point of (Sg%%gg(A) for all yeX
with g(y)“a.

Hence the constant a-net has no cluster

point with height a, contained in g.
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Definition 4.5.1. Wang [95]

Let (X,?) be a [0,1] - fuzzy topological space and
X
™.

let ge [0,1 The fuzzy set g is said to be N-compact if

and only if every a-net (Sm)meD contained in £, i.e.,

A

Sm~f for each meD; has a cluster point with height a, x"e

M([0,1]1X), contained in f (x~f), for each ae(0,1].

Remark 4.5.2.

In definition 4.5.1. the notion of a-net is
different from our definition 2.3.9.. To Wang a net
Sm"meD 'S ca=*te® an “-net (ae(0,1]) if and only if the

net (h(Sm))mgD converges to a in (0,1].

Definition 4.5.3. Zhao [110]

Let (X,7) be an L-fts where L is a fuzzy lattice.
Let aeM () and let d = (£fM)" be a family of closed
L-fuzzy sets. The family d is called a family of
g-R-neighbourhoods of an L-fuzzy set £ if and only 1if for
every xeX with f (x) sa there is fred such that f"ix"a.
The family d is called a family of a -R-Neighbourhoods of
f if and only if there exists yep*(a) such that d is a
family of y-R-Neighbourhoods of f. The L-fuzzy set f is
said to be N-L-compact if and only if for each aeM(L),
each family d of a-R-Neighbourhoods of f has a finite
subfamily ® such that $ is a family of

a —-R-Neighbourhoods of f.
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Remark 4.5.4.
Let K3") be an L-fts. Even if the L-fuzzy topology

3" has only a finite number of open L-fuzzy sets it is
possible to have L-fuzzy sets which are not N-L-compact.
For example:

Consider X= (0,1), L= 1[0,1], f£f:X-»L and 3' =
X—>X

{x, @@ f'}.

The L-fts (X,J) is not N-L-compact. In fact,
considering a=1 e M(L) = (0,1] and the closed L-fuzzy set
f we have that f(x)<1 for all xeX but there is not

Je/3*(1) = (0,1) such that f (x) <v for all =xeX.

Proposition 4.5.5. Zhao [110]

Let K3") be an L-fts and felX. Then f is
N-L-compact 1f and only if every a-net (Sm)m€D contained
in f has a cluster point with height a, erNKLV),

contained in f, for each aeM(L).

Proof

See theorem 6.2 1n Zhao [110].

Remark 4.5.0.

We have a-net in proposition 4.5.5. meaning the same

as in definition 2.3.9.
Proposition 4.5.7,

Let 3" be an L-fts. If gelX is N-L-compact then

it is compact.
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Proof
This immediately follows from proposition 4.5.5. and
theorem 4.4.2. or by definition 4.5.3. and proposition

4.4.1. as well since v/3*@ = a for every aeM(L).

Theorem 4.5.8. (The goodness of N-L-compactness)
Let (X,5) be a topological space. Then (X<5) is

compact 1f and only if (X,u(<5)) 1is an N-L-compact L-fts.

Proof
Necessity:

Let aeM(L), let (Sm)mgD be an a-net in the L-fts
(X,u>(5)) with xm=supp Sm for every meD. By proposition

4.5.5., to prove the N-L-compactness of (X< (S)), it will

suffice to shdw that Sm)meD has a cluster point 1in
(X,u(s) ) .

Since (Sm)mgD is an a-net in (X,u(5)), (xm)meD is a
net in (X,9). From the compactness of (X,<5), the net

(xm)meD has a cluster point x in (X,8).

Yy .
We shall prove that x"eMilL ) is a cluster point of

S,)

- that 1s, for each closed L—fuzzy set f with

meD
f(x)"a we have that for all jeD there is meD such that
m—j and £ (xm)£h (Sm) .

For each closed L-fuzzy set f with f(x)”a, since by

*
proposition 1.2.7. B8 (@ 1s a minimal set relative to a,
there is 2e/3 :a) with f(x)iA”a. Since 6m)meD is an
a-net and Ae3 (a), by definition 2.3.9., there is mQD
such that h(S_)=A for all m™m_.
m’ m o

Let H = {teX; f' (t)"A' }.
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Since f'ecj(6), by proposition 3.2.9. HeS . We also
have that xeH, so by the fact that x is a cluster point
of @m)meg in (X,8), for each jeD there is meD such that

m*j , mtno and xmeH. We have then f (xm) . Thus,
“ h (Sm>-
Hence xaeM(LX) is a cluster point of (Sm)meD and by

proposition 4.5.5. (X,to(8)) is N-L-compact.

Sufficiency :
If (X,u(5)) 1is N-L-compact, by proposition 4.5.7. it

is compact. Then by theorem 4.1.6. (X<5) 1s compact.

Definition 4.5.9.

Let X,ii) be an L-fts and feLv. The L-fuzzy set £
is said to be '™M(L) accessible 1if and only if for every
directed subset H of J = {aeM(L); f(x)"a for some xeX}

with VH eM(L) we have VH eJ.

Proposition 4.5.10.
Let (X,J) be an L-fts and let f be an N-L-compact

set in (X,7). Then f is M(L) accessible.

Proof

Let H be a directed subset of J = {aeM(L); f(x)"a
for some xeX} with vHeM(L). We need to prove that £
being N-L-compact implies VH ej, i.e., there is xeX with
f (x) "vH. Since by proposition 4.5.5., f N-L-compact
implies that every a-net contained in f has a cluster

point with height a, contained in f, which implies that
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there is xeX with f(x)f<x, it will be sufficient to prove
that there exists an a-net contained in f where a=vH.

So, we are going to exhibit an vH-net contained in

Since HcJd, for each meH there is xmeX such that
f(xm)"™m. We also have, by proposition 1.2.7., that
/3*(VH) 1s a minimal set relative to VH e M(L) and 1is a
directed set as well. From the fact that [ VH) is a
minimal set relative to VH we have for each 763* VH),

there is m €H such that m *7 .
If If

So, for each 7y VH) there exists mﬁeH and xmye X
with £ (xmr) Amf £ 7.

Consider the net (S7) (Vjj) where supp S* = xmy
and h(SO) = 7.

Actually' yelR* (Vh) is an a-net where a=vH because

* *
for each bke/3 (@) , there exists 7068 (@) such that h(S7) =

7 *b whenever 77A7Q (take 7Q = D) We also have

(Sy)ye/3* (Vn) contained in £/ i.e., £ (supp S ) 2 h(S )

because f (xmr) 2:7 for each <jefi*@H)

Now we are going to state a result obtained by Zhao

in [110] which we shall use to prove our next theorem.

Proposition 4.5.11. Zhao [110]
Let (X,7) be an L-fts. If g is an N-L-compact
L-fuzzy set, then for each closed L-fuzzy set h, gAh is

N-L-compact.

Proof

See theorem 4.9. 1n Zhao [110].
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Theorem 4,5.12.
Let (X,ii) be an L-fts and gelX . The L-fuzzy set g

is N-L-compact if and only if g is compact and for each

closed L-fuzzy set h in (X,2T), gAh is M(L) accessible.

Proof
Necessity :

From proposition 4.5.7., g N-L-compact implies g
compact. If h is a closed L-fuzzy set then by
proposition 4.5.11. gAh is also N-L-compact. Then by

proposition 4.5.10. gAh is M(L) accessible.

Sufficiency:

Suppose that g is not N-L-compact. Then there exist
aodwﬂﬂ and a family = (fﬂ 16LI<r.of closed L-fuzzy sets
with 7"AK f"j (x)"aQ for all xeX with g(x);=ao but for any
finite subfamily $ of d and any w/3 (aQ) there is xeX

with g(x)ay and AS fij(x)sr.

From the compactness of g, by proposition 4.4.1.,
there is a finite subset F of K with (i%F ffJ(x);ﬁo for
all xeX with %(X)A%

Let h = iéF fI'

So, h is a closed L-fuzzy set. Now we are going to
prove that gAh is not M(L) accessible.

We need to exhibit a directed set H, HcJ = {<xeM(L);
(gAh) (x)"a for some xeX} with VH e M(L) but VH i J.

Take H = ﬁ?[ao).

By proposition 1.2.7., v/¥*(aQ) = og and since aQ <

M(L) , /3*@Q) is a directed set. Then VH = dg eM (I) and

vH=aQ i J because (gRh) (x)"aQ for every xeX because if
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g(x)”*ao then "Ap fij (x} ~ aQ which implies (gAh) (x)£ aQ

and if g(x)”aQ then immediately (gAh) (x)"aQ. We also

have HcJ because for any "eH = (@ @) there is xeX with
g(x)sy and h(x) = fiJ(x)sir, which implies
(ghh) (%)

Remark 4.5.13.
Let (X,ii) be a [0,1]-fuzzy topological space and let
fe[0,1]1X. The [0,1]-fuzzy set f is (0,1] accessible if

and only if there is xQX such that f &q) = v{f(t); teX} .

Necessity :

In fact, if f is (0,1] accessible then for every
Y£J={ae (0,1]; f (x) for some xeX} with VY e (0,1] we
have VY e J. Let 2 = (0,1In{f(t); teX} . Thus, we have
Zz£J and VZ e(0', 1] then VZ e J. Therefore there is xqgsX
such that £ @O)NVZ and then we have f mb) = VZ. Hence

fxQ) = v{f @ ;5 teX} .

Sufficiency:

Let Y£J = {ae(0,1]; f(x) for some xeX} with VY

e(0,1] . If there is xQX with f (x ) = v {f(t); teX}, then
Y£J = (0, f(xo)]. Thus VY i VJ = f(xo) and since VY*0,
we have VY ej. Hence f is (0,1] accessible.

Remark 4.5,14.

By remark 4.5.13., proposition 4.5.10. is a
generalization of the following result obtained by Wang
in [95]

"If (X,J) 1is a [0,1]-fts and f is N-compact in (X,{i)

then there is x@X such that f(x )=v{f(t); teX}".
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6. Other compactnesses in L-fuzzy topological spaces

Definition 4.6.1. Hutton [44]

Let (I, 3) be a fuzzy topological space where L is a
fuzzy lattice. An open cover d of a fuzzy set f is a
collection of open fuzzy sets such that f-g® ¢9- A
subcollection $ of a cover dof f that is also a cover of
f, i.e., f-ggB 9/ is called a subcover of f. The fts
(L,7) 1is said to be H-compact if and only if every open

cover dof a closed fuzzy set f has a finite subcover.

Remark 4.06.2.
In 1968, Chang [18], defined compactness for a
[0,1]-fts (X,?) as follows: "(X,T) is Chang compact if

and only if every open cover of X has a finite subcover".

Lowen [54] showed that Chang compactness is not a
good extension by exhibiting a compact topological space
(X,S) such that the [0,1]-fts (x,u(S)) is not Chang
compact.

Since H-compactness implies Chang compactness, we

can conclude that H-compactness is not good as well.

Definition 4.6.3. Lowen [54]

Let (X,;) be a [0,1]-fts. X,3") is called fuzzy
compact if and only if for each a€[o,l] and each
collection (f")"gJd of open fuzzy sets with 4 ®
for every xeX and for each ce(0,a], there is a finite

subcollection (fi)leF with f*j (x)"a-e for every

xeX.

Definition 4,6.4. Wang [66]

Let (X,y) be an L-fts where L is a fuzzy lattice.
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(X,?) 1s said to be Lowen L-fuzzv compact if and only if
for each aeM(L) and every a-net (sm)meD in &»?) and each
re/3*(a), (Sm)meD has a cluster point xr eM(L ), with

height r.

Proposition 4.6.5. Meng [66]

Let (X,?) be an L-fts. Then (X,”) 1is Lowen L-fuzzy
compact 1if and only if for each aeM(L) and each re/3 (a),
each family d of r-R-neighbourhoods of X has a finite
subfamily 23 such that B is a family of a-R-Neighbourhoods

of X.

Proof

See theorem 2.5 in Meng [66].

Proposition 4.6,6.
Let (X,?) be an L-fts. Then (X,7) is Lowen L-fuzzy
compact if and only if for every pepr(L), every jeh such

A

*
that r'e/9 (p') and every family (£7) of open L-fuzzy
sets such that 7 (x)” for all xeX, there exists a

finite subset F of J with Lv f3 (x)"p for all xeX.

Proof
By proposition 4.6.5. we have that (X,”) 1is Lowen

L-fuzzy compact if and only if for every aeM(L), every
*

<&ef (@) and every family of closed L-fuzzy sets
such that léJ (x)~5 for all xeX, there exists a finite
subset F of J with (x)*a for all xeX.

So, (X,”) 1is Lowen L-fuzzy compact if and only if

for every a'=p e pr(L), every <b'=relL such that r'=be
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/3*(p'=a) and every family (f")"eJ of open L-fuzzy sets

(ff = g”) such that fI (x)® y for all xeX, there
exists a finite subset F of J with f1j (x)"p for all
xeX.

Proposition 4.6.7.
Let (X,T) be a compact L-fts. Then (X,T) is Lowen

L-fuzzy compact.

Proof
*
Let pepr (L), yeh such that y' &3 (p') and let
(f*)"g] be a family of open L-fuzzy sets with
fij (x)*y for all =xeX.
*
Since y'e/3 (p') implies that y'eM(L), 1i.e., v€pr(L);

by the compactness of (X,T) there is a finite subset F of

J with 33 (x) "~ for all xeX. But, because y'€/3*p')
and by proposition 1.2.7. vi*(p') = p', we have y'<p’'; so
Yy \p. Then (x)*p for all xeX. Hence, by

proposition 4.6.6., (X,T) is Lowen L-fuzzy compact.

Theorem 4.6.8. (The goodness of Lowen L-fuzzy
compactness)

Let (X,9%) be a topological space. Then (X,<5) 1is
compact if and only if the L-fts (X,cj(S)) 1is Lowen

L-fuzzy compact.

Proof
Necessity :
By theorem 4.1.6., X,<5) compact implies that the

L-fts X, §G)) is compact. Hence by proposition 4.6.7.
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X, G(GB)) is Lowen L-fuzzy compact.

Sufficiency:
Let (AY)IeE be an open cover of (X,S) and let
pepr (L) . Then, by proposition 3.2.10, (*A ) is a
i iej
family of open L-fuzzy sets in (X,u(S)) and we also have

ied *a . I" =1dy f°r a11 X€X and f°r ai1 7€h such that
p') . From the Lowen L-fuzzy compactness of
X, o5 ) and theorem 4.6.7., there is a finite subset F

of J with | xA j(x)"p, 1i.e. ieF XA. (x)=1 for a1

xeX. Thus u A. = X and hence (X,6) is compact.
ieF x
Remark 4.6.9.
Let (X,T) be an L-fts where L is a fuzzy lattice and
let iP (f) = {xeX; f (x)"p} where fed and pepr(L) . Then
the collection <) = {iP (f) ; peplr(L) and fe?} u{x} is a

subbase for some ordinary topology, iE (7), on X.

Definition 4.6.10. Lowen [56]
Let (X,?) be a [0,1]-fuzzy topological space. (X,T)
is said to be ultra-fuzzy compact if and only 1if the

topological space (X,i"Q ©~ (J)) is compact.

Definition 4.6.11, Wang [67]
Let (X,9" be an L-fts. (X,7) 1s said to be
ultra-L-fuzzy compact if and only if the topological

space X, 1 (")) is compact.

Proposition 4.6.12

Let (X,?9 be an ultra-L-fuzzy compact L-fts. Then
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(X,J) 1is N-L-compact.

Proof

Let (Sm)meD be an a net in  Let ©~ Dbe the
support of Sm for each meD.

So, (xm)meD is a net in the ordinary topological
space (X, 1 (7)) . Since (X,7) is ultra-L-fuzzy compact
we have that &, i (J) ) 1is compact. Thus, (xm )meD has a
subnet (xmi) ., converging to some xeX.

So, (S .). is a subnet of (sm)m€D converging to

mi 1eE
erM(Ly). In fact, if f is a closed L-fuzzy set with
f(x)”a, since by proposition 1.2.7. /B3 (@ 1s a minimal
set relative to a, there is aQ®/3 (a) such that f(x)"aQa.
Let U = {teX; f (t)*a'}. Since a”epr (L) and f'ed, we
have that Ueyﬁ(?). We also have that xeU. Thus, because

xmi-»x in (&, iE (y) ), there exists jbeE such that iAi°

implies that xmi €U, that is, f(xmi)”aQ for every iziQ.
*

Moreover, since (S ) is an a-net and a e¢3 (@) , there
i ieE o
is i1i,eE such that h (S )*a_ for every i1 . Take 1i.eE
i My o 2
il :b i .
such that i max 5 So, f(Xml)E§OS h(smj? for

every 1i-i2- Hence Sm LN
1
Therefore, by proposition 3.1.10., xf is a cluster

point of <Sm)mé6D

Hence, by proposition 4.5.5., (X,y) 1is N-L-compact.

Theorem 4.6.13. (The goodness of ultra-L-fuzzy
compactness)

Let X <5 be a topological space. Then ,<5) is
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compact 1f and only if the L-fts (X,u(5)) is

ultra-L-fuzzy compact.

Proof
Necessity:

If (X,5) 1is compact then we need to prove that
X, 1T (u(b))) is a compact topological space.

Let (Ai)ied be a subbasic open cover of
X, 1L (w(5))). Thus each is of the form ({xeX; f(x)"p}
for some feu®) and pepr (L) or A"=X. By proposition
3.2.9., feu () implies that for each pepr (L), {xeX;f(x)"p}
e6 . So, (A")"gJ is an °pen cover of ((X«5) . By the

compactness of (X,<5), there exists a finite subset F of J

such that u A. = X.
ieF 1
Hence (X, iL (u(5))) is compact.
Sufficiency:

If (X u(b)) is ultra-L-fuzzy compact then by
proposition 4.6.12. (X, u(5)) is N-L-compact. From
theorem 4.5.8., (X, u(5)) N-L-compact implies that (X,5)

is compact.

Definition 4.6.14. Xu [105]

Let !7) be an L-fts where L is a fuzzy lattice and
let fel. . The L-fuzzy set f is called X-compact if and
only if for any aeM(L), each family d of
a -R-Neighbourhoods of f has a finite subfamily £ such

that £ is a family of a -R-Neighbourhoods of f£f.
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Proposition 4.6.15.

Let (X,y) be an L-fts and let felX . The L-fuzzy set
f is X-compact if and only if for each prime pel and
every collection (f.)"%ej of open L-fuzzy sets such that
there is yelL with y'e o* (p') and f+J (x) =y for all
xeX with f(x)—+*', there exist a finite subset F of J and

y*L with y'e/3 (p') such that f (X)%yl for all xeX

e 1
with f(x)iy'

Proof

By definition 4.6.14. we have that f is X-compact if
and only if for every aeM(L) and every family (£7)"*gJd of
closed L-fuzzy sets such that there is &%;Va) with

) (x) 5 for all xeX with f (x) 26, there exist a
finite subset F of J and 6AO*(a) such that

7 (x)*" for all xeX with f (x)s6i. And this is

clearly equivalent to our result.

Proposition 4.6.16.
Let (X,J) be an L-fts and let f be a compact L-fuzzy

set of (X,3"). Then f is X-compact.

Proof
Let pepr(L) and let (£fM)" 138 a family of open
L-fuzzy sets such that there is yel with y'e0*(p') and

2y (x) "y for all xeX with f(x)2:y'. Since y'e/3*(p'),

yepr (L) . By the compactness of f, there is a finite
subset F of J such that " &)y for all xeX with
f(x)*y'
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Hence f is X-compact by proposition 4.6.15.

Theorem 4.6.17. (The goodness of X-compactness)
Let (X,5) be a topological space. Then (X,8) 1is

compact if and only if the L-fts X, u(8)) is X-compact.

Proof
Necessity :

If (X,6) is compact, by theorem 4.1.6., the L-fts
(X,w(<5)) 1is compact. Then from proposition 4.6.16.

(X,cj€0)) 1s X-compact.

Sufficiency :

This is similar to the sufficiency of theorem 4.6.8.

Theorem 4.6.18. (The goodness of a-compactness for a*l)
Let ,<5) be a topological space and let ael with
a*l. Then <5 is compact if and only if X, td5)) 1is

a-compact.

Proof
Necessity :
e1U1
Let d = (£ be a family of basic open L-fuzzy
iej

sets in (X, g ©)) such that for each xeX there is iej
with 7 (x)>a. By proposition 3.2.11., we consider

e Jh.. .. if xeU.ed

71T/ \ %%_ 1 L
‘ <) M to otherwise for all xeX and each iej.

e.U.
Let £ = iUI’ there is iej with a<e, an? fii1 1 e

Therefore u U. = X.
iej 1

By the compactness of (X,<5), there exists a finite
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subset F of J with u U. = X.

ieF
Hence for each xeX there is ieF with 1 (x)>a and
X, cj(d)) 1is a-compact.
Sufficiency :
Let (A""7j be an open cover of (X,5) . Then by
proposition 3.2.10. (*, ) is a family of open L-fuzzy
1 iej
sets in X u (5)). Since u A. = X, for each xeX there
iej
is iej with *A (x) = 1>a. So, by the a-compactness of

1

X, cj5)) there exists a finite subset F of J such that

for each xeX there is ieF with *A (x)>a, 1i.e., xA () =1.
i 1

Hence u A. =X and (X,S) 1is compact.
ieF 1

Remark 4.6.19.

1 -compactness 1is not a good extension.

In fact, it is immediate from definition 4.1.1. that
every L-fts is l-compact. So, by considering X=[0,1]=L
with the discrete ordinary topology 6, we have that (X,S)

is not compact but (Xfw(S)) 1is l-compact.

Remark 4.6.20.

By proving that if X is infinite and 8 is the finite
complement topology on X then (X, ©(8)) is not a*-compact
for any ae(0,1], Lowen [54] showed that a*-compactness is

not a good extension.
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7. Relations between the good definitions of compactness

in L-fuzzy topological spaces

Proposition 4.7.1.

Let (X,7) be an X-compact L-fts. Then (X,3") 1is

Lowen L-fuzzy compact.

Proof

Let pepr (L), vyelL such that y'e/3 (p') and let (f")"ed
be a family of open L-fuzzy sets with By fi)(x)A for
all xeX. By the X-compactness of (X,7) there exists a
finite subset F of J and y& ef*(p') such that X £ T fij (%)
=y for all xeX. Since by proposition 1.2.7. vi*(p') =
p' we have y'"p', i.e., y~p. So, fij (x)"p for all
xeX.

Hence, by proposition 4.6.6., (X,ii) 1is Lowen L-fuzzy

compact.

Remark 4,7.2.

We can have an N-L-compact L-fts (X,”) which is not
ultra-L-fuzzy compact.

Consider L = [0,1], X = IN.

For each ae(0,1) there exists melN such that

(m-1) /m<a’m/ (m+l)

Let €[ (m-1)/m, a), 1ie{l, ..., m} and let
fa 1f x>m
fla, ayp - n ay) & if x=1i ie{l, ..., m)

Let J consist of <pX and all those L-fuzzy sets that
are complements of the L-fuzzy sets above.
We have that K3") is N-L-compact and it is not

ultra-L-fuzzy compact (see example 5.2. [95]).

I11



Remark 4.7.3.

We can have a compact L-fts 3") which is not
N-L-compact.

Consider X= (0,1), L = [0,1], f£f:X->»L and 7 =
XX

By remark 4.5.4. (X,7) 1s not N-L-compact and by

proposition 4.1.7. it is compact.

Remark 4.7,4.

We can have an X-compact L-fts ,i7) which is not
compact.

Consider X = [0,1] =L and 7 the fuzzy topology with

a subbase consisting of X, (p and all the L-fuzzy sets

fX gj = A ¢ ify ¥ ¥ for each xeX and t<i/2.
(1) (X,?) 1is not compact.

In fact, by taking p<i/2 and considering the family

¥ = (fx°)xsx where VP ' we have that (x€X £x°) (y> m ;>p

for all yeX and there is no finite subfamily B of d with

. . (t
1f¥B fj (y) >0 for all yeX because if B
B (fv o o

Ji/2 if y e 33,

***> xnJ and t
o
vt

o if yv £ {xi7 ..., Xmé

then igp ) (@)

(ii) (X,?) 1is X-compact.
In fact:

If peli/2, 1) and 4 is a family of subbasic open

L-fuzzy sets with fj (y) 3f for an y€x for some y>p
then xe”. Therefore there exists a finite subfamily B of
d B = {x}, and y”p such that 5 y) > for an
yeX.
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If pefo,1/2) and 4 is a family of subbasic open
L-fuzzy sets with fj (y) >7 for yeX for some y>p and if
Xed, there exists a finite subfamily $ of 4, B = {X} and

vy~ p such that 5 (y) >T1 for all vyeX. If Xid then 4

teTc [o,1/2)
xezZcX

(1/2 1f vyeZ
Soy (y) [VT if y«Z

Take T any finite subset of T, Z1 and finite subset
of Z and y such that max TI1>yi>P-

Let B = teT

1
xeZ
1

Therefore (y) I1/2 1t y 6 2t > r, for all
'max T if in
1 1
veX.
Hence (X,J) 1s X-compact since Alexander's subbase

theorem is valid for X-compactness (see this remark in

[105]

Remark 4.7.5.

We can have a Lowen L-fuzzy compact L-fts which is
not X-compact.

Consider X =L = [0,1].

For all xeXnO let x = p/q in smallest terms and then

put fx = | + g *{x} for all S[N' O-s-g-1-

Let & xeX, x irrationalj and let ©~ =
[ {'{x}

fa; xeXn(D, x=p/q, <N, 0"s"g-1].

Let 3'be the fuzzy topology on X generated by S =
(ft)t€ o 1] where ft (y) = t for all yeX.

We have that ip(®) = {i (f); feST} is generated by
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£ (o, L] )f6y and is the discrete ordinary topology
1

on X for all pel0,1). (See counterexamples pp 451 in

[56] ) .

So, X, T) 1is not X-compact.

In fact:
Take p = 1/2 and consider the family "= (f) f€g-u3- of
1 2
open L-fuzzy sets. Then f &)=1>y for all xeX where
ye @/2, 1) and since 1 (7) = ({xeX; f(x)>p})fe” 1is the

discrete topology for every pe[0,1l) there is no finite
subfamily S of d and y”e 4/2,1) with fj ® > y* for
all xeX.

Hence [X,J) 1s not X-compact.

But we have that X,3") is Lowen L-fuzzy compact (see

pp 451 in [56] ) .

Theorem 4.7.6.

The relations we have established between
ultra-L-fuzzy compactness, N-L-compactness, compactness,
X-compactness and Lowen L-fuzzy compactness are the

following :

ultra-L-fuzzy £ N-L-compactness £ compactness &£
compactness

X—-compactness %>Lowen L-fuzzy
compactness
Proposition 4.7.7.
Let (X,J) be a Hausdorff Lowen L-fuzzy compact

L-fts. Then (X,7) is compact.

Proof

Let aeM(L) and let (S ) be a constant a-net in
m 'meb
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(X,J) where supp S” = xm.

We want to prove that (Sm)meD has a cluster point zft
in X with height a, i.e., there is zeX such that for each
closed L-fuzzy set f with f(z)fa we have that for all JjeD
there is meD such that m"j and f(xm)"a.

By the Lowen L-fuzzy compactness of (X,?) we have
that given w/3 (@), (Sm)m€D has a cluster point x' eM(L )
with height y and support x*. So, by proposition

3.1.10., (Sm)meD has a subnet (Pg)g€D converging to x*.

Let f be a closed L-fuzzy set with f(x")fa. So,

*
since /3 (@ 1is a minimal set relative to a by proposition

1.2.7., there is y”/3 (@ such that f(x )fy”*a.

Since (P ) is an a-net, by the Lowen L-fuzzy
qgq i

compactness of (X,?), has a cluster point vy e

P ~
Pl ep
X . . a1 L
M(L") with height y and support vy So, by proposition

3.1.10., (P.)

has a subnet converging to y

P A
g’ gew y

We also have that this subnet of (g)g€D converges

to X@

because P, -~>x*. By—progpsition 3.4.7. we have
xY=y

Therefore x® is a cluster point of (S ) 2~ . As £
y m ‘meD

is a closed L-fuzzy set with f(xy)”yi and x* is a

cluster point of (sm)meD/ for all JjeD there is meD such

that m"j and f(xm)

Proposition 4.7.8.
Let [X,J) be a Hausdorff compact L-fts. Then 3"

is ultra-L-fuzzy compact.
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Proof

We need to prove that (X, iL (9") 1is compact.
Let u&&X%F be a family of subbasic open sets in
|
(X,iT (BI)) such that X = u A.
L ied 1

So, each Ai is of the form Ai = {xeX; f(x)"p, feii and
[]

pepr (L)} and XA J (x) =1"p for all xeX and all pepr (L)

By theorem 4.1.9. we have 9cu(<5) where $ = {AcX; xA
eii} . Therefore we have that if feii then fe(j«b) which, by
proposition 3.2.9. (i), implies that {xeX; f(x)"pled for
all pepr(L). So, "{xeX; f(x)"'p} e J for everY pepr(l).

By the compactness of the L-fts (X,ii), there is a

finite subset F of J such that .V, xA (x)"p for all =xeX,

X .e NV x (x)=1 for all xeX. Therefore X = u A.
1elF .
ieF 1

Hence (X, i”(ii)) 1is compact.

So we have the following:

Theorem 4.7.9.
In a Hausdorff L-fts compactness, ultra-L-fuzzy
compactness, N-L-compactness, X-compactness and Lowen

L-fuzzy compactness are equivalent.

Remark 4.7.10.

Since we have heard of X-compactness and Lowen
L-fuzzy compactness only very recently and they seem to
have been studied only in works in Chinese, we do not
know what work has been done on them. We do not even
know if Lowen L-fuzzy compactness has been defined for

arbitrary L-fuzzy sets or not.
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Chapter V

Countable compactness, sequential compactness and

Lindelofness

In this chapter we introduce good definitions of
L-fuzzy countable and sequential compactness and the
Lindelof property for L a fuzzy lattice. FEach of them is
defined on arbitrary L-fuzzy sets and their properties
studied.

The first attempt to define the Lindelof property,
sequential and countable compactness was done by Wong
[102]. But his definitions are not good.

Following the lines of Gantner, Steinlage and
Warren's a-compactness (definition 4.1.1.), Malghan and
Benchalli defined countable compactness and the Lindelof
property in [61].

Sequential compactness was also studied by Xuan
[107] . His definition is based on N-compactness
(definition 4.5.1.).

In [1], Abd El-Hakeim introduced and studied
N-compactness and N-sequential compactness in fuzzy
neighbourhood spaces.

All of these works were developed on [0,1]-fuzzy
topological spaces. As far as we know, none of these
notions has been introduced in L-fuzzy topological spaces

for L * [0,1].
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We divide this chapter into 3 sections.

In the first section we present our definitions of

countable compactness, Lindelofness and sequential

compactness. In this section we also prove their

goodness.

The second section is reserved for other
characterizations of countable compactness.
In the third section we study some of their

properties.

From this chapter on, L will be always a fuzzy

lattice.
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1. Proposed definitions and their goodness theorems

Definition 5.1.1.

Let (X,7) be an L-fts and geLxﬁ The L-fuzzy set g
is said to be countably compact if and only if for every
prime pel. and every countable collection (f7)"gJ of open
L-fuzzy sets with M ® for all xeX with g(x)ap' ,
there exists a finite subset F of J with X)"P for

all xeX with g(x)"p'.

If g is the whole space, then we say that the L-fts

(X,?) 1s countably compact.

Theorem 5.1.2. (The goodness of countable compactness)
Let (X, be a topological space. The L-fts
(X,w (5)) 1is countably compact if and only if (X,S) is

countably compact.

Proof
Necessity:
This is similar to the proof of sufficiency in our

theorem 4.6.8.

Sufficiency:

Let pepr(L) and let be a countable family of
open L-fuzzy sets in (X, u(5)) with fij(x)"p for all
xeX.

Therefore (f/ ({tel; t”p}))”"gK is an open cover of
(X,5) . In fact, since f .e u(S) for all ieK and {tel; t"p}

is Scott open, £f71 ({tel; t”"p})eS for every ieK. We
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also have fTl ({tel; t=fp}) = X because for each xeX
there is ieK with f"x"p, 1i.e., for every xeX there is
ieK with xef”iftel; tp})

From the countable compactness of (X,5), there

exists a finite subset F of K with 71 ({tel; t"p}) =
X. Therefore, v f. x ip for every xeX because for
lie* 1J
each xeX there is ieF such that f£”(x)"p.
Hence X, w(5)) 1is countably compact.

Definition 5.1.3.

Let (X,7) be an L-fts and let gelX . The L-fuzzy set
g is said to be Lindelof if and only if for every prime
pel and every collection (f")"gj of open L-fuzzy sets
with 4 (x)"p for all xeX with g(x)”"p', there is a

countable subcollection of (f.). T with this property.

If g is the whole space, then we say that the L-fts

(X,7) 1is Lindelof.

Theorem 5.1.4. (The goodness of Lindelofness)
Let (X,5) be a topological space. The L-fts

(X,c3(6)) is Lindelof if and only if (X,S) 1is Lindelof.

Proof

This is similar to the proof of theorem 5.1.2.

Definition 5.1.5.
Let X 3" be an L-fts and let gelL”. The L-fuzzy set
g 1is said to be sequentially compact if and only if each

constant a-sequence Sm) N contained in g (i.e., Smlg
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for every melN) has a subsequence converging to an L-fuzzy
point xa<sM(IX) ( with height a, contained in g (i.e.,

A

x *g), for each aeM(L).

If g is the whole space, then we say that the L-fts

(X,J) 1is sequentially compact.

Theorem 5.1.6. (The goodness of sequential compactness)
Let (X,5) be a topological space. The L-fts
(X,u(5)) 1is sequentially compact if and only if (X,S) is

sequentially compact.

Proof
Necessity:

Let (xm)me[N be a sequence in (X,5) and aeM(L) . Then
mg)mﬂN is a constant a-sequence (remark 2.3.9.) in
(X,u(db)). From the sequential compactness of (X, w(<5)),

m.
(x«) melN has a subsequence ( converging to some
XaeM(LX) .

Let P be a closed set in (X,5) with x£P. Then *p is
a closed L-fuzzy set in (X w(S)) by proposition 3.2.10.

and since x«P, *p (x)=0"a.

m.
Since x”7Sx", by definition 3.1.9. (i), there is melN
m. m.
such that i”mQ implies that , i,e-' *p(x 1)%a for
m. A
every i-mQ, that is, x 1 <V for every i”m . Then

xml)AgN is a subsequence of @%)mem and x"%x-x.

(

Hence (X,<5) 1s sequentially compact.

Sufficiency:

Let aeM(L) and let (sm)mg®N be a constant a-sequence
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with supp (S ) = xm for each melN.

Then (xm)meW is a sequence in (X,<5). Since (X,0)

sequentially compact, the sequence
m .
subsequence (x 1)jelN converging to some xeX.
m .
We shall prove that (x x) converges to xa, i.e.,
ieDSI

(xm)me (™ has a

for each closed L-fuzzy set f with f(x)fa there exists

m.
méﬂN such that iAmo imglies that f (x )Ea.

Let f be a closed L-fuzzy set in K, < (B)) with
f %)

Let H = {teX; f' (t)"a'}. Since f/ew(5)> by

proposition 3.2.9. we have H5.

m.
Since x is a limit Roint of (x X)LdN .

We also have that xeH.

there exists modN

such that i"mQ implies that x e, i.e., f(x 1)”%a for

every i-mQ.
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2. Other characterizations of countable compactness

Proposition 5.2.1.
X
Let (X,7) be an L-fts. Then gel. 1s countably
compact if and only if for every cxeM(lL) and every

countable collection H%)IGF of closed L-fuzzy sets with

r 1

A, f, (x)ia for all xeX with g(x)”a, there exists a
iej- ij 1
finite subset F of J with fij (x)%a for all xeX with
g x)
Proof

This immediately follows from definition 5.1.1.

Theorem 5.2.2.

Let X, 9) be an L-fts. Then geLX is countably
compact if and only if every constant a-sequence (sm)m6(N
contained in g has a cluster point erMiLX) with height

a, contained in g, for each aeM(L).

Proof
Necessity:

Let aeM(L) and let (sm)me[N/ where support and height
of S% are respectively supp Sm = xm and h(Sm) = a, be a
constant a-sequence contained in g without any cluster
point with height a contained in g.

For each melN define a closed L-fuzzy set £ = A{f; £
is closed in (X,J) and ftxl) ~ for all ie®N with i”m} .

Thus, d = is a countable family of closed

L-fuzzy sets with fmj x) for all xeX with g(x)act.
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In fact, 1if xeX and g(x)s<x, then xaeM(EX) is not a
cluster point of (Sm)me[N, i.e., there are Jje®N and a
closed L-fuzzy set g* with g*(x)”a and S"*g (g* (x1)*a)
for each isj . Thus, f%g* and f" x) "g* X . So,
fj(x)*a, which implies fmj (x) "a.

We also have that for any finite subfamily Bed there
is xeX with g(x)sa and f (x)sa. In fact, 1if B =

if} . :% } since fm(xl)A for every ielN with ism, we
1 . k

have r Dk ﬁﬁj(%l)—« for every is max {Ji# ..., Jjfc}.

Hence g 1s not countably compact.

Sufficiency:

Suppose that g is not countably compact. Then there
exist aeM(L) and a countable collection d = (ff ToTh of
closed L-fuzzy sets with iém fi) for all xeX with
g(x)sa but for any finite subfamily B of d there is

xaeM (LX) with x"~g and |f fij(x)sa.

Thus, for each melN there is xmeX with g(xm)sa and
(™) sa.

Therefore 6m TeIN where supp%n=xm and h(SmJ=a, is a
constant a-sequence contained in g with no cluster point
with height a contained in g. In fact, if yeX and g(y)sa
then fL (y)*a. Thus, there exists jelN with f. (y)"a.

We also have asLAl fL (m)ifj(xm) for all ms] Hence, vy

is not a cluster point of (5 )

s for all yeX with

g W
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3. Some properties

Proposition 5.3.1.

Let (X, 3) be an L-fts. Every compact L-fuzzy set g

is countably compact and Lindelof.

Proof

This 1s immediate from the definitions.

Theorem 5.3.2.
Let (X,9) be a second countable (C2) L-fts. Then

geLV is compact if and only if g is countably compact.

Proof
Necessity:

This follows from proposition 5.3.1.

Sufficiency:
Let pepr(L) and let (f*)"ed be a family of open
L-fuzzy sets with 77 ® "p for all xeX with g(x)2:p'.
Since (X,9) is C2 (definition 3.4.2.), 9 has a

i
o

countable base $ = &h) NG Then f1 =3=1 ka where i,
may be infinity.

Thus, ;e is a countable family
ke{l,2,...,10}

of open L-fuzzy sets with L gg for all xeX

with g(x)sp'. By the countable compactness of g, there
exists a finite subcollection $i of SO with this

property. Each member he$i satisfies h=sf® for some iej.
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In fact, if heSB* then h=bi#k, for some i'ej and

k'e{l,...,1 } because S$ic$q and h i AT SN

f£i'

Let if = {fi; h*fL, beSj.

Therefore if is a finite subcollection of (fi)ied
with £ f 1K) for all xeX with g(x)sp' because

1ri J
satisfies this property.

Hence g is compact.

Proposition 5.3.3.
Let (X,?) be an L-fts. If g is a sequentially compact

L-fuzzy set, then g is countably compact.

Proof

Let g be a sequentially compact L-fuzzy set and let
“m*rnelN be a constant a-sequence contained in qg.

Thus, by the sequential compactness of g,
has a subsequence converging to some xa<4MQY), contained
in g. From proposition 3.1.10. x” is a cluster point of

Hence g is countably compact by theorem 5.2.2.
Theorem 5 .3 .4 .
Let (X,3) be a Ci L-fts. If g is a countably

compact L-fuzzy set, then g is sequentially compact.

Proof

Let g be a countably compact L-fuzzy set and let
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(S ) be a constant a-sequence contained in g. Thus,
m melN <
by theorem 5.3.2., (Sm)m6[N has a cluster point xaeM(L ),

with height a, contained in g.
Since (X,7) 1is C (definition 3.4.1.), by
proposition 3.4.4., (Sm)me[N has a subsequence converging

to Xa.

Hence g is sequentially compact.

Proposition 5.3.5.
Let X2I) be an L-fts and let g be a sequentially
compact L-fuzzy set. Then each closed L-fuzzy set h

contained in g is sequentially compact as well.

Proof
Let oteM(l) and let h be a closed L-fuzzy set

contained in G- Let (S be a constant a-sequence

m)mﬁN
contained in h.

Thus, Sm)mﬂN”lS contained in g as well and from the
sequential compactness of g, there exists a subsequence
(Ti) €N of (sm)melN converging to an L-fuzzy point

X
x*eM(L ) with x"ig, 1i.e., for each closed L-fuzzy set f
with f(x)%@ there is m%lN such that iAmo imglies that
T~f. But T.sh for every ielN and since h is a closed

L-fuzzy set, h(x)foc, i.e., =x"sh.

Hence h is sequentially compact.
Proposition 5.3.6.

Let 17 be a Ci L-fts and let g be a compact

L-fuzzy set. Then g is sequentially compact.

127



Proof

Let asM(L) and let (Sm)nEjN be a constant a-sequence
contained in g.

From theorem 4.4.2., (Sm)me[N has a cluster point
xaeM(Lv) contained in g.

Since (,J) 1is C , by proposition 3.4.4. (sm)me[N has
a subsequence converging to xA

Hence g is sequentially compact.

Proposition 5.3.7,

Let (X,JX) and (Y,iiY) be L-fts's, let
f: & 7X)>» (¥, iiy) be a continuous mapping such that f 1(y)
is finite for every yeY and let g be a sequentially
compact L-fuzzy set of (X,?x). Then f (g0 is a

sequentially compact L-fuzzy set of [{Y,ii") .

Proof

Let aeM(L) and let (sm)me[N be a constant a-sequence
contained in f(g) with supp Sm = ym. Then f(g) (ym) for
every nmelN, i.e., v{g(z); zeX, f(z) = ym}"a for every melN.
Thus, for each meIN there is xmeX with g(xm)s:@a and f (xm) =
ym . Therefore &™)me[N is a constant «-sequence contained
in g.

From the sequential compactness of g, (xg) Dlhas a

subsequence (Xﬁl) converging to some erNﬁLX)
contained in g.

Now we are going to prove that the subsequence
m

(O i€ 1IN of eVmsIN converges to ya = f(x)a.

In fact, for each closed L-fuzzy set h in (Y,JY)

with h(y)”a we have that £ 1(t) is closed in (X,JX) and

128



m .
flh ® =h(y)a, i.e., x~f£''(h). Since (x") ieW

converges to x , there exists mQIN such that i"mo implies

m. a m. m.
that x £ 1(), i.e., h(y ) =£f G x )*a for all

m.
iimo, that is, yol”h for every ifmQ.

Hence f(g) is sequentially compact.

When <3=X%a for some AfX, f-1(y) does not need to be

finite.

Theorem 5.3.8.

Let x , be a countable family of L-fts's

and let X be their product. X is sequentially compact if

and only if (Xm, 9} ) 1s sequentially compact for each
m

meIN.

Proof
Necessity:

This follows from proposition 5.3.7. and the fact
that the projection maps nm:Xa% are onto, continuous and

X by hypothesis is sequentially compact.

Sufficiency:
Let aeM(L) and let (sm)mElN be a constant «-sequence

in X, where supp Sm = xm for each meIN. Then xm 1is of the

form xm = (x™m) . for each melN.
j eIN
s11 21
Thus,, (%ﬂ)mﬂN (Xa roxXg ).
1m
(Xa v "'),
. _ 12 1m
We have that (%%m%mﬂN = (x&l x x ! ) 1s
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a constant a-sequence in Xi. Since (X* 9% ) is

. im.
sequentially compact, the constant a-sequence (xa )p.my

1k 1k

has a subsequence (xg xa m, ...) converging to

in X, X ). As O%,)g% ) 1s also sequentially compact,

2k 2k 2k
the constant a-sequence @( ]y xa 2, vy a m ) in
2k 2k
X2 has a subsequence (xfl .., x>~ m, ...) converging to
x> ] X2, ?x )+ So,
a 2
rkr rkﬁ
reIN (xé l, ceen Xa .) subsequence of the a-sequence
rkf r%ﬁ_i
(xa / rog . ) in the sequentially compact
L-fts Xr, 9 ), converging to x* in Xr>
Ar r r
rk rk
Since x*~ , ..., X ;, -..) 1s a subsequence of the
! rhr—l
a-sequence (xa a m , we have that the
sequence (E{, ey km, ...) 1s a subsequence of the
monotone increasing sequence &F_l , k£_l ) . So,
1 r-i . I .
k3T < kD k. for each relN-{1}.
Hence (va3 H I ki
a ‘mIN - (<xa ‘..... xa 1 eee) ...
iﬁ%l jkm‘ x

A

(x ; e, X is a subsequence of the constant

a-sequence (sm)refN and we are going to show that this
subsequence converges to x* where x = (x1, ..., xXr, ...)
in the product X, that is, for each closed L-fuzzy set h

with h(x)4a there exists m elN such that m"m implies that

km
h (xm)*a.

Firstly we want to remark that except for the first
i ,m

r-1 terms, the sequence (xff 1, ..., xﬁ:m, ...) 1s a
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rk rkt rk® .

r r+1
subsequence of the a-sequence (xft , ee*> xa ' xa
k- k™
..) that converges to xft. So (xa , ..., xa ,
converges to x? for each reiN.
Since h = (g. ) where g. is closed in
el 3e *e
K. , Jv ) for each e e {1, . g}, it is sufficient to

'e

prove that for each closed L-fuzzy set £ =V n.l(g.)

with f(x)ta there exists m elN such that m™m implies that

km
f (xm)~ta.
q
Let £ =V «Tl (9. ) (g. closed in XK. , 3% ))
fe-'e de Je }
e
q
with f(x)"a. Thene¥{ 9' (x-'e)”a. Thus, g. ((x%)"«* for
j K"
each eefll,» ..... g} . Since x e m => xje, there exists m_elN
. .m
J k
such that implies that g(x e m)\a for each ee{l,

g}. Let mQ = max {me; ee{l,...,g}}
244 gq m
A\

Therefore, f(x m) = n.l .gu )1 (xm) £f or each
o~ J

1
\Y%
m (aeM (1) )

Hence X is sequentially compact.

Proposition 5.3.9.

Let (X,?) be a CL-fts. Then (X,”) 1s Lindelof.

Proof
Let pepr(L) and let (£fM)" be a collection of open

L-fuzzy sets with fy] ® "p for all xeX.

Since (X,?) 1s C\ 7 has a countable base B =
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Then £~ = le ka where i_o may be infinity.

meIN' =
Thus, £o (bik;iej is a countable family of
ke{1, ..., 10}
open L-fuzzy sets with , bk ® "p for all xeX. We
~ 1k

have that each member b"k of £g is less than or equal to

f,.
X
Let y = ifiﬁ bIk Af.i,,b.kk e£05.
Thus, vy is a countable subcollection of (%.Mb}_with
fyj (x) |[p for all xeX because f£q satisfies this
property.

Hence (X,”) 1is Lindelof.

Theorem 5.3.10.
Let 3" be an L-fts and let g be a Lindelof
L-fuzzy set. Then g is countably compact if and only if

g 1is compact.

Proof
Necessity:

Let pepr(L) and let (£M)" be a family of open
L-fuzzy sets with fyj (x)%p for all xeX with g(x)"p'
Since g is Lindelof, there exists a countable

subfamily (ff)ieK with fil (x) "p.
From the countable compactness of g, there is a

finite subfamily (£

) , with v f. (%)

1 1€(1’ eeeg K-f ie{l, W k}

dp for all xeX with g(x)"p'.

Hence g is compact.
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Sufficiency :

This follows from proposition 5.3.1.

Proposition 5.3.11.
Let (X,y) be an L-fts and let h and g be countably
compact (Lindeldf) L-fuzzy sets. Then hvg is countably

compact (Lindeldf) as well.

Proof

This is similar to the proof of proposition 4.1.10.

Proposition 5.3.12.
Let (X,7) be an L-fts and let g be a countably
compact (Lindeldf) L-fuzzy set. Then for each closed

L-fuzzy set h, hAg is countably compact (Lindeldf).

Proof

This is similar to the proof of proposition 4.1.12.

Proposition 5.3.13.

Let (X,JX) and (Y,iiy) be L-fts's, let g be a
countably compact (Lindeldf) L-fuzzy set of {X.If ) and
let f: X Jdx)=>(Y,Jy) be a continuous mapping such that
f 1(y) is finite for every yeY. Then f(g) 1is a countably

compact (Lindeldf) L-fuzzy set of (Y,Jdy).

Proof

This is similar to the proof of proposition 4.1.14.

When for some AfX, f 1(y) does not need to be

finite.
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Chapter VI

Local compactness in L-fuzzy topological spaces

In this chapter we focus on local compactness in
L-fuzzy topological spaces.

In ordinary topology there are two ways to define
local compactness. One of them, more truly "local" in
nature than the other, implies the continuity of the
locale of open sets.

Here we present the two corresponding formulations
of L-fuzzy local compactness, both of which are good

extensions of those in ordinary topology and study their

properties. We prove that one of them, in the case L =
[0,1], implies the continuity of the locale of fuzzy open
sets. We also obtain a one point compactification.

Local compactness was introduced in [0,1]-fuzzy
topological spaces by Wong [103]. In [22], Christoph
weakened Wong's definition. Both worked with Chang's
compactness (remark 4.6.2.).

By using a-compactness (definition 4.1.1.), Gantner,
Steinlage and Warren defined local a-compactness in
L-fuzzy topological spaces [35] and obtained, with some
restrictions on a, a one point compactification.
Rodabaugh [83], also using a-compactness (a*-compactness)
defined local a-compactness (local a*-compactness) and

introducing a-Hausdorffness obtained an extension of the
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one point compactification proposed by Gantner, Steinlage
and Warren [35].

Malghan and Benchalli [106], weakening the
definition of local a-compactness given in [35],
introduced another definition of local a-compactness
(local a*-compactness), but in [0,1]-fuzzy topological
spaces.

Each of these local compactnesses failed to produce
fuzzy versions of important results, such as the

regularity of locally compact Hausdorff spaces.

This chapter is divided in six sections.

In the first section we present the proposed
definitions and prove their goodness.

The second section is reserved for the proof of the
fact that, in the case of L = [0,1], one of the proposed
definitions implies the continuity of the locale of fuzzy
open sets.

In the third section we establish some properties of
the proposed definitions. We obtain fuzzy versions of
the main classical properties of local compactness, but
leaving to section five the regularity of locally compact
Hausdorff L-fts's.

In the fourth section we present a comparison
between the proposed L-fuzzy local compactnesses.

The fifth section contains the proof of the
regularity of weakly locally compact Hausdorff L-fts's

and a fuzzy version of k-spaces as well as the proof that
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every weakly locally compact L-fts is a k-space.
The last section is devoted to the one point

compactification.

Remark

If (X,5) 1is a topological space then we shall say
that (X,5) is locally compact 1if and only if each xeX has
a base of compact neighbourhoods. And we shall say that
(X,9 1is weakly locally compact 1if and only if each xeX

has a compact neighbourhood.
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1. Proposed definitions and their goodness theorems

Definition 6.1.1.
Let X, 3% be an L-fuzzy topological space. An

L-fuzzy set k is very compact if and only if for some eel
it is of the form k(x) = j® otherwise and for every

prime p of L and every collection (f£.K _ of open L-fuzzy
sets with e f1 (x)"p for all xeD, there 1is a finite
subset F of J with 9 (x)*p for all =xeD.

Remark 6.1.2.
In definition 6.1.1. D is the support of k and it is

simply required that *D be compact.

Remark 6.1.3.

Clearly a very compact L-fuzzy set is compact.

Definition 6.1.4.

An L-fuzzy topological space X9") is locally
compact if and only if for all xeX, for every pepr (L) and
for every open L-fuzzy set g with g(x)”"p, there exists a
very compact L-fuzzy set k and fe7 such that g*k"f and

f (%) Sp.

Theorem 6.1.5. (The goodness of local compactness)
Let (X,5) be a topological space. Then (X,6) 1is
locally compact if and only if the L-fts (X,w(5)) 1is

locally compact.
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Proof
Necessity:

Let xQeX, pepr(L) and let f be a basic open L-fuzzy
set 1n <¥X,0(5>) with £ x) - otherwise* “ and f (xo>k-

Thus, x elUeS and by the local compactness of (X,6),

there are C compact in (X,5) and VeS such that xceVLCLU.

By defining g(x) = i é’jcfh}e(isvfise and k(x) =
i f h ksf, , =bi d
(B SniEGiee  have gokef @) glx)-bip and xg
compact in (X,td(5)). In fact, obviously gsk™f, gecd(<b)

and g (xQ)"p and from the compactness of the subspace
C, &) of K 5 we have by the goodness of compactness
(theorem 4.1.6.) that (C,id(5c)) is compact. Hence xc 1is

compact 1in (X,u(5)).

Sufficiency:

Let xoeX, pepr (L) and let UeS with erU.

By considering £ (x) = (b oth”"wise where bk' we
have feu () and f(xQ)"p. By the local compactness of
(X,w(6)), there are a very compact L-fuzzy set k and a
getd(5) such that g*ksf and g(xQ)”"p where k(x) =

feel, if xeDSX , .
\0 otherwise and *D 1S comPact in (X,cd(5)). Since

gecd(5) and g (xQ)™p, there is a basic open L-fuzzy set

h(x) - {o otherwise such that hs9sksf and h <«0>k-  Then
VEDEU, xQ@Ve6b and D is compact in (X,S) because since *D
is compact in (X,cd(S)) the L-fuzzy subspace (D,cd(<5D)) of
(X,cd(S)) is compact and by lemma 4.1.21. Dx{p} i1is a

compact subspace of (Dxpr(L), S”xtpCL)), thus projection

from Dx{p} onto D give the compactness of D in (X,5).
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Definition 6.1.6.

ILet X 3) be an L-fts. We say that K fI) 1is weakly
locally compact 1f and only if for all xeX and for every
pepr (L) there exist a very compact L-fuzzy set k and fed

such that k*f and f(x)"p.

Theorem 6.1.7. (The goodness of weak local compactness)
Let (<5 be a topological space. Then (X,5) 1is
weakly locally compact if and only if the L-fts (X,u(b))

is weakly locally compact.

Proof

This is similar to the proof of theorem 6.1.5.
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2. The continuity of the locale

Theorem 6.2,1.

Let (X,J) be a fully stratified locally compact

[0,1]-fuzzy topological space. Then the locale 3 is

continuous.

Proof

We know that 3' is isomorphic to the topology 0@3") on
Xxpr (L) (proposition 3.2.19) and in this case on
Xxpr ([0,1]) = Xx [0,1)

Since 1if a topological space X,<5) is locally
compact then 5 is a continuous lattice [45], it is only
necessary to prove that the topological space (Xxpr (L),
0(3")) is locally compact in order to deduce the
continuity of the locale 0(@3") and therefore of 3.

Let (xq, PQ) e Xx [0,1) and 0(f) e 0(3") such that

Then f(xq) > and by the local compactness of (X,J),

there are a &3 and a very compact L-fuzzy set k with

Therefore (xq, PQ) e 0(g) £0 (k) £0 (f) in Xx[0,1). As 0 (k

- j‘X,p) ¢ Xxpr ﬂO; XeD, e>p| and since *D is compact in

(X,3%, the L-fuzzy subspace (D” ) of (X3 1s compact
and by lemma 4.1.21. C=Dx{pepr (L) ; p"gq} 1is compact in
Xx [0,1) for all gel[O0,1).

Take ge[0,1l) such that pQ<g<e.

Then V=0(gAq) e 0(3") where q denotes here the

constant fuzzy set with value g. We also have &g, pQ) e
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VECE<ME) . In fact, since g(xq)>pQ<q, (gAq) (xQ)>pQ, i.e.,
(x , pQ)eV and C£0(f) because for every (x,p) e
Dx {pepr (L) ; psq}, f(x)fe>gqfip. Now we are going to check
that VEC.

ool selt] = (0] e w0 s gUPR] < J(100]
x [0,1) p<qj£ Dx[0,e) n Xx[0,q) = Dx[0,q) 5 px[0,q] - (

Hence (Xx[0,1), <p(3)) 1is locally compact.
Remark 6.2.2.

We were unable to extend this result to L-fuzzy

topological spaces.
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3. Some properties

Proposition 6.3.1.

A fully stratified compact Hausdorff L-fts (X,ii) 1is

locally compact.

Proof

By theorem 4.1.9. we have that & = w() where & =
{UeP (X) ; }. Since compactness and Hausdorffness are
good extensions (theorems 4.1.6. and 3.4.6. respectively),
(X,8) 1is compact Hausdorff, so is locally compact.
Hence, by the goodness of local compactness (theorem

6.1.5.), (X,J) 1is locally compact.

Proposition 6.3.2.

A compact L-fts (X,J) 1is weakly locally compact.

Proof
Given xeX and pepr (L) Jjust take X as the required
very compact L-fuzzy set k and the open L-fuzzy set f£f.

Then k—f and 1=f (x)"p.

Proposition 6.3.3.

Let (X3"x) and (,3"Y) be L-fts's and let
h: (X:Srx)->(Y,JY) be a continuous open surjection. If
(X,JX) 1is locally compact then (Y,JY) is also locally

compact.

Proof

Let pepr(L), yeY with h(x)=y and let such that
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f(y)Ap-
Then h“l (f)e3'x and h"1 (f) x) =f (h x) )=f (y) £p. Since

X,9"v) 1is locally compact, there are a very compact k in
(X,”) and 9" with g(x)”p such that g”k”h"1l(f) . Since
h is an open mapping, higJe”Y and h(g) (y) = v{g(z);

z€h 1(y)}"p because h(x)=y and g(x)"p. We also have
h(g)~*h (k) *h (h-1(f) )=f and h(k) very compact in (Y,Jy)

because k is very compact in X3"x), 1i.e,. k(x) =

If" otherwise and *D is comPact 1n X' V ; we have

ie 1f zeDSX
h kK k(@ i zeh 10 =¥,71 ) A0 otherwise
- 1

10 otherwise and since *Dis comPact in X'V ' h is

continuous and h(* = "h (D) / by proposition 4.1.14.

D
is compact in (Y,")

Hence (Y,3"Y) is locally compact

Proposition 6.3.4.
Let O@Yy) be an L-fts and let FcX such that . is
closed in X,3'x) . If (X,¥X) is locally compact then the

subspace (F,3"F) is locally compact.

Proof
Let pepr(lL), =xeF and fp edp such that fp (x)"p.
Then there is fed” such that fp=f|F, so f(x)"p.
From the local compactness of (X,}), there are a very
e el if zeDSX

compact L-fuzzy set k(z) = 0 ofherwise and %e&§ such

that g*k"f and g(x)"p. Therefore g| =g &' and gp (x)"p
We also have g"kp”*fp with “DnF compact in (F,9) where

. £ zeDnF . .
kF (z2) = W§ &therwise In fact, since 18 closed and
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XD 1is compact in X,3"x), by proposition 4.1.12. *DnF =
Xda*f 1s compact in (X,3"x) . Then *DnF is compact in

(F-V o

Hence (FJTr) is locally compact.

Theorem 6.3.5.

Let (X, , ) be a family of fully stratified
t X XX Aed

L-fts's. Then the product L-fuzzy topological space X is
locally compact if and only if each X is locally compact

and all but finitely many X* are compact.

Proof
Necessity:

Since, the A-th projection, UA;X>XA, is a continuous
open surjection (proposition 3.3.3.) and X is locally
compact, by proposition 6.3.3., X. 1is locally compact for
each Aed.

Now let pepr(L), x€X and let f be an open L-fuzzy
set in X with f(x)4p-

Thus, by the local compactness of X, there are an

open L-fuzzy set g in X with g(x)”"p and a very compact

L-fuzzy set k(z] e if zeD§X !
0 otherwise such that 3aksf e Then'
m
there is a basic open L-fuzzy set A ngl(g ) such that
=1 M Bx
moo1
iv~y (gA ) "g"k"f. Therefore xD = X
W % suppk
m
X-supPiVx!(Q > *m -1.
X X xQfSupp n (gA.
X X
m m m 1
Ay - = Ay _i A T
=1%supp nx (gx ) i=1 » (supp(g
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Thag W supp\ 018 Byl Wgyuppgx k) = Xy for all xi

{aA” xm}. Since nA is continuous, *suppk is compact

in X and " (*suppk) = XA' we have proposition 4.1.14.

X compact for each X except possibly Xe{Xi7 ..., Xm}.

Sufficiency:

Let pepr (I) , xeX and let f = . ~(fa ) be a basic
1 X

open L-fuzzy set in the product L-fts X such that f(x)"p,

where f. is an open L-fuzzy set in X, . We assume that
1 Al

the set ({Xi( ...» Xm} is expanded to include all X for

which X,A is not compact.
m
We have that f(x) = f* (x* )"p implies for all
1 Ai

iejl, ..., m} £ X )'p. From the local compactness of
A1 Ai
each X , there are open in X* and a very compact
Ad Ad Ad
if z e D s X
' X 1 Ai Ai in X with g. x. )ip
C 1 otherwise Ai x Ai
m

Thus, the L-fuzzy set g :i§xt

W

and 9x,akg .3£X. ) {gA&)

gx x...* gx x DI %X is an open L-fuzzy set in

m X*{X1# ..., Xm}

Xand gx) = L™ L gx ) w = X g & @)=
1 i i i i
m
(x* )™ (pepr(L)). We also have
Ai Ai
m m

9 * ill "x! @©Ox.)a k - iil V (kX.> af'
m

= 121~ > a. <Z) = iil kx. (ZX,> -
v X X X X

m (e if z, eD
AL X X X X =
"0 otherwise
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A

.m e if z e n, u%} @%.) £ X
i=1 1 i=1 i 1

_ and
0 otherwise

m
Asuppk - *SUPP iV A (kXi) = iQlSUPp TIA(kx
Hl l
1 1
m m
. A = * —
i=1 *supp ﬂ%}(kx ) iél E&i g#supp k )
1 1
y , X ... Xy . X X- is compact
SUPP ky SUPP k .  xL{x x k1l
T 1 i — mJ
by theorem 4.2.2. since xs p k is compact for every
Xy
ie{l, ..., m} and X 1is compact for every

x* (N Xn )’

Remark 6.3.6.

By considering weak local compactness instead of
local compactness we can obtain, in the same way, the
results obtained in propositions 6.3.3. and 6.3.4. and in

theorem 6.3.5.
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4. A comparison of our proposed L-fuzzy local

compactnesses

Theorem 6.4.1.
Let (X,J) be a fully stratified Hausdorff L-fts.
Then {X,ii) 1is locally compact if and only if (X,J) 1is

weakly locally compact.

Proof
Necessity :

This immediately follows from the definitions.

Sufficiency :
Let xeX, pepr(L) and let geff such that g(x)”"p.
We want to show that there are a very compact

L-fuzzy set ¢ in (X,if) and jed such that g*c”j with

A

j (%) *p.
By the weakly local compactness of [X,ii) there are a
very compact L-fuzzy set k(y) = j® otherwise and fe7 such

that k*f and f(x)"p.

Since f(x)”p and kaf, we have k(x)”"p which implies
that xeD.

From the fact that k is a very compact L-fuzzy set
in (X,ii), we have that *D is compact. So, the L-fuzzy
subspace (D,”) is compact. As (X,T) is a fully
stratified Hausdorff L-fts, we have (0,3"'D) fully
stratified Hausdorff.

Thus, (O,3'd) 1is a fully stratified Hausdorff compact

L-fts. Therefore, by proposition 6.3.1., (D,”) is
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locally compact.

We have gD = g|D xeD and gD (x)$p. Then, by the
local compactness of (D,”) there are a very compact
L-fuzzy set cD<y = otherwise in (D' V and V fD such
that gD~CD~hQ with hD (x) “p.

Since hbDeJD, there exists h*3" such that hD=h*|D.

Let celX such that c(y) = |g © yeX-V anc® j=hAf~*

Thus, g”*c”j, ¢ 1s a very compact L-fuzzy set in
(X,V), jeV and 7 (x)4p-

* *

In fact, because h and f&3", h Af = JjeV. Since

h*(x) = hD (x)"p f(x)”"p and pepr(L) we have (h*Af) (x) =

j(x)"p. As cD is a very compact L-fuzzy set in (O,3"D),
Xy is compact in (O,3"D). So Xy is compact in (X,J) and
then ¢ is a very compact L-fuzzy set in (X,V). Now we

are going to show that g”*c”j.

Since gD ©~ cD, gD (y)2:b for all yeV. So g”c. From
k*"f we have f(y)=0 for all yeX-D. Since for every yeD
h (y)=hD (y)”cD (y), we have h*(y)=0 for all yeD-V and
h (y)"b for all vyeV. Then j (y) = (h*Af) (y)sf(y)=o for
all yeX-D and j(y)sh*(y)=0 for all yeD-V and 7J (y)ih*(y)"b

for all yeV. Therefore j’c.
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5. Further properties

Theorem 6.5.1.

Let (X, SI) be a weakly locally compact Hausdorff

L-fts. Then (XSI) is regular.

Proof
Let xeX, pepr(L) and let h be a closed L-fuzzy set
such that h(x)=0 and there is yeX with h' (y)-P-

A

We want to show that there exist u, ve? with u(x) " p,
v(y)*p for every yeX with h' (y)"p and (VzeX) u(z)=0 or
v (z)=0.

Since (X,J) 1s weakly locally compact, there exist a

very compact L-fuzzy set k and an open L-fuzzy set £

such that kaf and f(x)|p where for each yeX k(y) =
Because k is a very compact L-fuzzy set,

Xq 1s compact. Thus, the L-fuzzy subspace (D,”") 1is
compact. From the Hausdorffness of (X,”), we have the
Hausdorffness of (D, . So, by theorem 4.3.1., (D, ™)
is regular.

From the fact that (X,J) 1s Hausdorff and x” is
compact in (X,7), we have by proposition 4.1.16. that x/
is a closed L-fuzzy set in (X,J).

Since k"f and f(x)"p, we have k(x)"p. Thus k(x)*0

and xeD. We also have f(y)=0 for every yéD.

Case 1:
Since (D,”d) is regular and xeD if there is yeD such

that h' (y)sp, then there are ub, v~ " with uD (x)"p,
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(y) &2 for every yeD with h'(y)fp and (VzeD) uD (z)=0 or
(z) =0.

* *
Because uD# vD&3TX there exist u , veJ such that

uD=U"Id and VD = V"Id -
Take u = u*Af and v = v v*D, .
Thus u, v e 5 and we are going to show that they

satisfy what we want.

*
Since u_(x)pr and xeD, u (x) = ul :)fp, We also
have f (x)4p. From the fact that p is prime we conclude
that u(x) = u (x)Af(x) |p.

If yeD and h'(y)-p, then vD (y)4p- So, v (y)"P and

A

hence v (y) *p. If yeD' and h'(y)”"p, then x*,(y) =1 "p
and hence viyj’p. Therefore for every yeX with h' (y)sp

we have v(y)|sp.

If zeX and u(z)*0 then u*(z)*0 and f(z)*0. From
f(z)*0 we conclude that =zeD. Thus from u (z)*0 we have
$
uD (z)"0 which implies v (z) = v (z)=0. And since zeD,

Xq, (z)=0. Therefore v(z)=0.

Case 2:

If there is no yeD with h' (y)”p, then take u=f and
v = *D'm

Thus u, v eJ, u(x) = f x) "p and for every yeX with
h' (y)sp we have v (y)”"P because in this case h' (y)-p
implies y£D and so v (y)="D, (y)=1lfpe We also have
that (VzeX) u(z)=0 or v(z)=0. In fact, 1f u(z)=£f(z)*0
then zeD and so v (z)=XD, (z)=0 .

Hence (X,T) is regular.
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Theorem 6.5.2.

Let X, 9% be a locally compact Hausdorff L-fts.

Then (X,J) is regular.

Proof
Since every locally compact L-fts is weakly locally

compact we have this result from theorem 6.5.1.

Definition 6.5.3.
An L-fts (X, 9% is said to be a k-space if and only
if the closed L-fuzzy sets are those feLX for which fl|p

is closed in (F,9"F) for each compact L-fuzzy subspace

(F,=V e

Theorem 6.5.4.
Let X, 9) be an L-fts. Then (X*) 1s a k-space if
X
and only if the open L-fuzzy sets are those fel. for

which f|F e?F for each compact L-fuzzy subspace (F"p).

Proof
Necessity:
We always have that f|F €9F for every F£X if £fe9".
Now let feLX be an L-fuzzy set such that fl|p &9F for
each compact L-fuzzy subspace (F,gr).
Then f'|F is a closed L-fuzzy set in (F"p) for each
compact L-fuzzy subspace (F,9%). Since X 9") is a

k-space, f' is closed in (X,V) . So, fed\
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Sufficiency:

We always have that f|p is closed in (F,?p) for every
FEX 1f £ is closed in (X, T).

Now let feLm‘be an L-fuzzy set such that flp is

closed in @U3T) for each compact L-fuzzy subspace

Then f'{f eJ; for each compact L-fuzzy subspace

(F,7 Thus, Dby hypothesis, f'e?. Therefore f is

fﬁ
closed in (X,dJ) .

Theorem 6.5.5.

Let (X,5) be a topological space. Then (X<5) 1is a

k-space if and only if X, t;(5)) is a k-space.
Proof
Necessity:

By theorem 6.5.4. it is sufficient to prove that for
every feLX such that flp is an open L-fuzzy set in
(F,u(Sp)) for each compact L-fuzzy subspace (F,u(Sp)) we
have feu (b)

Let feLX be such that f|p is open in (F,u(Sp)) for
each compact L-fuzzy subspace (FAD(SQ ) .

Thus, by proposition 3.2.9., H = {xeF; f(x)”"ple6cF
for each pepr (L) and for each compact L-fuzzy subspace
E, w(Sp)) .

Therefore, by the goodness of compactness (theorem
4.1.6.), H = Fn{xeX; f(x)"p} 1is open in (F,Sp) for each
compact subspace (F,5F) and each pepr(L) . So, by the

fact that (X,5) 1is a k-space, {xeX; f(x)"p} 1is open in
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(X,5) for every pepr(L). Then, by proposition 3.2.9.,

few (5)

Sufficiency:

Let USX such that UnC is open in C for each compact
subspace C of (X,<5).

Thus, by theorem 4.1.6. and proposition 3.2.10.,

= * | eu(6r) for each compact L-fuzzy subspace
C U IC L

(F, w(S )). So, by the fact that (X,u(S)) 1is a k-space

Y unc

and by .theorem 6.5.4., a%ern (S)

Hence Ue<5.

Theorem 6.5.6.
Let (X,7) be a weakly locally compact L-fts. Then

(X,ii) 1is a k-space.

Proof

By theorem 6.5.4. we only need to prove that if feLy
is such that f|p is open in (F,3p) for each compact
L-fuzzy subspace (F,JF) then f is open in (X,J).

Let feLy be such that flp is open in (F,9"F) for each
compact L-fuzzy subspace (Flﬁr).

We want to prove that feSI. For this, let pepr(L) ,
xeX with f(x)”"p. By proposition 3.1.4., it is sufficient
to show that there is ged such that g*f and g(x)"p.

By the weakly local compactness of (X,ii), there are

a very compact L-fuzzy set k(x) = j® otherwise and he?

such that k”h and h(x)"p.
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Since k is a very compact L-fuzzy set, *D is compact

in (X,J), so (,9'd) is a compact subspace.

Thus, by our assumptions on f, f|D e&SIp. Then there
exists flﬂ'such that £D = f*k)—

Take g=f Ah.

Therefore, ge3\ g=f and g(x)"p. In fact, since f
and he? we have @3". As h(x)”p and ksh we have k(x)"p
which implies that xeD. Because f(x)”"p and xeD we also
have f*(x) = f(x)"p. Thus g(x)”"p since pepr (L). Now we
are going to prove that g*f.

Since k*h and k(x)=0 for every xeD, h(x)=0 for every
xeD. So, g(x)=0 for every xeD and then g(x)"f(x) for

*

every xeD. If xeD then f (x) =f (x) which implies that

g(x) = (f Ah) (x)sf (x) =f (x) for every =xeD. Hence g~f .

Theorem 6.5.7.
Let (X,7) be a locally compact L-fts. Then (X,7) 1is

a k-space.

Proof

Since every locally compact L-fts is weakly locally

compact we have this result from theorem 6.5.6.
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6. One point compactfication

Definition 6.6.1.

Let (X,9%v) be an L-fts which is not compact, but is
locally compact and Hausdorff. Take some object outside
X, denoted by the symbol © for convenience and adjoin it
to X forming the set Y=Xu{oo} . Fuzzy topologize Y by
defining as a subbase the collection

y = {f!; f&€Ix}u{xB ; xB 6 £} Where:

(1) f1 € LY defined by fl(x) =\ 0 if §i§ for each
f¥5X-
(11) .. BcX; x»n is compact in (X,?v)
e - { M aj A
- f xeB
*
(iii) For *B ‘B £ xeB

Let 7Y be the L-fuzzy topology on Y having if as a

subbase.

The L-fuzzy space (Y,ii ) is called the one point

compactification of (X,7X).

Theorem 6.6.2.
Let (X(3%) be a locally compact Hausdorff space which

is not compact and let (Y,?) be its one point

compactification. Then {Y,ii ) i1s a compact Hausdorff
IL-fts, (X,?x) 1s a subspace of (Y¥,7 ) and cl X = Y.
Proof

(1) Clearly X, 9x) is a subspace of (Y,ii").

(1) cl (X)=Y. 1In fact, if cl(X)*Y in (Y,yy) then cl X
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is an L-fuzzy set of the form:
if xeX
cl&WX)’ = 5,1 i ¥

The complement of cl(X) 1is then the open L-fuzzy set
L xeX
I

X=o00

cl ®)' ® = {°10

Since if is a subbase for 9' and (cl(X))'e9Y, there

are B., ...,, B_in L cee/ /g
1 m i’ m
A . A 4 S
*
BiGD Bmoo
Thus e'=l, so e=0 and X = Xg v vV Xp Hence
i m

(X,9V) .is compact, vyielding a contradiction.
(iii) (¢,Jy) 1is compact. In fact:
Let pepr(L) and let d = (£fM)" be a collection of

9Y ~subbasic open L-fuzzy sets with f*3 (y)"p for all

yeY.

This collection must contain an element of the type

Xq ¢ Then x-q &)=1ljp for all xeX-B.

00 00

By taking all the members of d different from X

"o

*
and restricting them to X, we have a collection d of 9v

open L-fuzzy sets with iv h (y)ip for all yeB. Since xn
~he” 1 B
*
1.s compact, there is a finite subcollection of d , say
m
{hx, ..., hm}, with hujiy”p for all yeB. Then
'r m n

1,i=ihi v’\bCD (yv):fp for all yeY-
Hence, by theorem 4.2.1., (Y,9y) 1is compact.
(iv) (Y,9"Y) is Hausdorff. In fact:
Since (X,9"x) is Hausdorff (definition 3.4.5.), given

p,g9 e pr(lL) and x,y e X with x*y, there exist fp, gq e 9'X

with £ xX)", g (y)"g and (VzeX) f (z)=0 or g (z)=0.
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Hence (fp)j(x)AP. (g99)i1(y)Sq and (VzeY) (fp)1 (z)=0
or (gg)i(z) =° where (fp)i and (gq)l are defined as in

definition 6.6.1.(1).

Suppose now that xeX and y=oo.

Since xeX and {X,if ) is locally compact, given p,q e
pr(L) and fed with f(x)”"p; there are k very compact and
g3"x such that g”k™f and g(x) |p. Then *suppk is compact

and since (X,3"x) 1s Hausdorff, we have by proposition

4-1-16- *suppk closed in (X' V Thus, * suppk € © and
(suppk) e Therefore g*x)“? where g*"Y¥-“L is defined
A 9i(2) = {g(z) if B

*<suppk) J YL is defined by * (suppk)> (@) =

0 if zesuppk ’ ».
1 if ze{oo}ju (X-suppk) an "ie Y'

We also have (VzeY) gi(z)=0 or X (suppk) (z)=0
because :

If z=0o then g (z)=0.

If zesuppk then x (suppk) (z) *

If z e X-suppk, g(z)=0 and then g (z)=0.

Hence (Y,JY) is Hausdorff.

Remark 6.6.3.
In this section, considering weak local compactness
instead of local compactness, we can obtain the same

results in the same way.
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Chapter VII

Paracompactness in L-fuzzy topological spaces

In this chapter we suggest a good definition of
L-fuzzy paracompactness and study some of its properties.

Some definitions of paracompactness were presented
in [0,1]-fuzzy topological spaces by Malghan and
Benchalli [61], Luo [59], Abd El-Monsef and al [2] and
Bulbul and Warner [13]. The works [13] and [2] are based
on fuzzy compactness (definition 4.6.3.) and [61] and
[59] are based on a-compactness (definition 4.1.1.).

In L-fuzzy topological spaces, paracompactness was
studied by Chen [21] and Xu [106] . The first one based
on N-L-compactness (definition 4.5.3.) and the latter
based on X-compactness (definition 4.6.14.).

By introducing a new definition of a locally finite
family of L-fuzzy sets and combining it with our
definition of compactness for arbitrary L-fuzzy sets, we
propose a different L-fuzzy paracompactness which is
defined on arbitrary L-fuzzy sets. We also study some of
its properties such as:- paracompactness 1is a good
extension; is inherited by closed L-fuzzy subsets; the
product of a compact L-fts and a paracompact space is
paracompact and prove that a Hausdorff paracompact space

is regular.
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This chapter is divided in three sections.

In the first section we present the proposed
definition and prove its goodness.
In the second section we study some of its

properties.
The third section is devoted to the regularity of a
paracompact Hausdorff L-fts and to the paracompactness of

the product of a paracompact L-fts with a compact L-fts.
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1. Proposed definition and its goodness

Definition 7.1.1.

A family of L-fuzzy sets in an L-fts is said
to be locally finite in an L-fuzzy set g if and only if
for each pepr (L) and for each xeX with g(x)ip' ; there are
an open L-fuzzy set r with r(x)”"p and a finite subset Jg

of J such that (VzeX) £7(z)=0 or r(z)=0 for every ied-JQ.

When g is the whole space X, we shall directly say

locally finite, omitting "in an L-fuzzy set g".

Definition 7.1.2.

Let (X, 3) be an L-fts. A family (£j)-61 of L-fuzzy
sets 1is said to be a refinement of the family (gj)jej of
L-fuzzy sets if and only if for each iel there is jedJd

with f .sg..

Definition 7.1.3.

An L-fuzzy set g in an L-fts (X3") is said to be
paracompact if and only if for every pepr(L) and every
family (£")”el of open L-fuzzy sets with 7 ® p
for all xeX with g(x)ip', there exists a family (gj)jgd
of open L-fuzzy sets that is a refinement of (£%)"~ ,

locally finite in g and 9j] (x)"p for all xeX with

g(x)ip

If the L-fuzzy set g is the whole space X, we say

that the L-fts (X,J) 1is paracompact.
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Theorem 7.1.4. (The goodness of paracompactness)

Let (X,6) be a topological space. Then X,<5) is

paracompact if and only if (X,u(<b)) 1s a paracompact
L-fts.
Proof
Necessity:
Let pepr(L) and let 4 = be a family of open
L-fuzzy sets in (X,u(S)) with (x)"p for all xeX.
Thus, B = ({xeX; f*(x)”"p})~gl is an open cover of
(X,5). In fact, since f"s w(5) for every iel, by

proposition 3.2.9. ({xeX; f"(x)"ple«b for all iel. We also

A

have that for each xeX there is iel such that f*(x)"p, so
B is an open cover of (X,5).

From the paracompactness of (X,<5), B has a locally
finite open refinement £ that covers X. Since S is a
refinement of B, for each CeS we can take fi5e4 such that
Cc {xeX; fic (x)Sp}.

Therefore B = ("AfHc) is a family of open
L-fuzzy sets in (X,u(5)) with hj (x)"p for every xeX
and 1s a refinement of 4. In fact, evidently D is a

refinement of 4 because for each h=*cAf"ce&l) there is

~ ficC such that h g. We also have hef, h (x)fp for

every xeX because for every xeX there is C*e'S such that
xeC* which implies that for all xeX there is C*ef such
that “c*(x)= 1%p and fic*(x)"p since C*c ({xeX; fic* (x)"p},
so "c*AfiC* K)"P (P is prime) . Hence hj &)"p for
every xeX.

We now prove that D is locally finite.

161



For each xeX, take Bx<S with xeB". such that Bx
intersects only a finite number of members of £, which is
possible because is locally finite. So, for each xeX
and for each pepr (L), there exists an open L-fuzzy set

r=*B with r(x)=1"p such that (VzeX) h(z)=0 or r(z)=0 for
X

all but finitely many he®,  In fact, r(x)”"p and retd (5)
and we also have that (VzeX) h(z)=0 or r(z)=0 for all but
finitely many heB because h (z) = U CAfic (z)*0 and r (z) =

Xr, *0 if and only if zeCnBX and we have that BnC*0 only
n>
X

for a finite number of Ceg. Thus B is also locally
finite.

Hence (X,td(S)) is paracompact.
Sufficiency:

Let d be an open cover of (X,5).

Thus, (*u™Ueai "s a family of open L-fuzzy sets in
(X, o () ) with x) =1 "p for all xeX and for all
pepr (L) .

From the paracompactness of (X,td(S)), there exists a
locally finite open refinement £ with f (x)"p for all
xeX and for all pepr(L).

Let B = ({xeX; f(x)"p})fag,

Therefore B is a refinement of d and an open cover
of (X,5 . In fact, since & i1s a refinement of (""" Uesi'
for each feSf there is Ue” such that fs* so {xeX;f (x) "p}

A

c {xeX; (xJ”p} = U and B is a refinement of d.
We also have that for all xeX there exists feg with
f(x)|lp, so S is a cover of (X,5) . Actually B is an open

cover of (X,S) because each fee belongs to @& and by
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proposition 3.2.9. each {xeX; f(x)"p}e<s.

Now we are going to prove that £ is locally finite,
that 1is, for all xeX there exists Ked with xeK such that
{(xeX; f (®) :£p}InK>0 for at most finitely many £

Since £ is locally finite, let xcEX and reu(<h) with
r(xQ)"p such that (VzeX) f(z)=0 or r(z)=0 for all but
finitely many fee, say f , ..., fm-

Let K = {xeX; r(x)"p}.

Thus, by proposition 3.2.9. Kb and since r (xQ)"p,
we have xqg€K. We also have ({xeX; f(x)"p}lnK*<A for at
most finitely many fef because if ye{xeX; £f(x)4p}nK then
r(y)4p and f(y)”*P which implies that feff~ ..., £ }.
Therefore $ 1is locally finite.

Hence (X,5) 1s paracompact.
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2. Some properties

Proposition 7.2.1.

Every compact L-fuzzy set in an L-fts is paracompact.

Proof

This immediately follows from the definitions.

Proposition 7.2.2.
Let (X,y) be an L-fts, let h be a paracompact
L-fuzzy set and g a closed L-fuzzy set. Then gAh is a

paracompact L-fuzzy set.

Proof

Let pepr (L) and let (f%)”"6] =d be a family of open
L-fuzzy sets with 37 (x)"p for all xeX with
(gAh) (x)-p'.

Thus, B=siu{g'} is a family of open L-fuzzy sets with
(kefi k) X~P for a*l xeX with h(x)ap' . In fact, for each
xeX with h(x)ap', 1if g(x)sp' then (gAh) (xj*p' which

implies that fij (x)*p, thus kI (%) *p. If g(x)"p'
then g' (x)"p which implies that kj &)fp.

From the paracompactness of h, there exists a family
£ of open L-fuzzy sets that is a refinement of B, locally
finite in h and ké@ k (x)"p for all xeX with h(x)ap'.

Let {ke(?; there is f.ed, k"~f.}.

*

Evidently £ 1is an open refinement of d and also 1is

locally finite in gAh. We also have that v "k (x)"p for
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all xeX with (gAh) (x)sp’. In fact, otherwise there is
xeX with (gAh) (x)ap' and V jJA (x)sp. But we have
>
kj (x)"p which implies that there exists such

that ki () =p.

such that kfﬁ? and since k1

k2=g'. Therefore,
contradiction.

Hence gAh is

Corollary 7.2.3.

Let (X,J) Dbe

L-fuzzy set, then

is paracompact as

Proof

Since S is a refinement of 2,

*

because v k (x)sp,
~keC
pAkl(xbsk ® =g (xX)sp, yielding a

paracompact.

an L-fts. IF g is a paracompact
each closed L-fuzzy set contained in

well.

This immediately follows from proposition 7.2.2.
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3. Further properties

Lemma 7.3.1.

Let (X,J) be a paracompact L-fts, pepr(L) and let A
= (f )igIl be a family of open L-fuzzy sets with
iel f1i) for all xeX- Then' there exists a family
(g"1i"I = B of open L-fuzzy sets with g™y (x)"p for
all xeX and B locally finite, such that g~fy for all

iel.

Proof

From the paracompactness of (X,T), A has a locally
finite refinement © = (h.) . with each h.e? and

3 3eF 3

h.j (x)"p for all xeX. Every h" 1is assoclated with a
containing set from d. Hence there is defined a mapping
& :J»I such that thf& for all Jjed. For iel we put

Q)
g.= v h. where g. = 9 if there is no j with #(3) = i
1 #(Jj)=1i 3 1

By the construction of # we have that each geST,

and (g.). satisfies v g-]l(x)ip for all xeX. For xeX
there are an open L-fuzzy set r with r(x)”"p and a finite
subset Jg of J such that (VzeX)h”(z)=0 or r(z)=0 for
every jed-JQ. So, we have g™ (z)*0 and r(z)*0 only when
i=#(j) for Jjed

Hence S is locally finite.
Theorem 7.3.2.

Let X, T) be a paracompact Hausdorff L-fts. Then

X,ST) 1is regular (definition 3.4.8.).
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Proof

Let pepr (L), xeX, and let f be a closed L-fuzzy set
in (X,7) such that there is yeX with f(y)”"p' and f (x) =0.

Let F = {teX; f(t)sp'}.

We have that =x==F. Since (X,T) is Hausdorff
(definition 3.4.5.) for each yeF there exist f , e J

with £ x)™, gy (y)"p and (VzeX) £*.(z)=0 or g~ (z)=0.

Let 4 = (gy)y€F A {f'}-

We have Wea h (z)"p for all zeX. In fact, if zeF
then gz (z)"p and if ziF then f' (z)"p, so NION h (z)"p for
every zeX. From the paracompactness of (X,T) and from
lemma 7.3.1., there is a family B = (k ) p u {kQ} of
open L-fuzzy sets that is a refinement of d, locally

finite and v k v k (z)"p for all zeX, where k sg f°r
yeF Y

each yeF and k sf'

Thus, for our point x in X and our p in pr (L), there
are reT with r(x)”"p and a finite subfamily Bg of $ such
that (VzeX) b(z)=0 or r(z)=0 for every beE-BQ.

Therefore, there are redJ with r(x)”"p and a finite subset
Fg of F such that (vzeX) k™. (z)=0 or r(z)=0 for every
yEF-Fo.

Since for each yeF kysg and because fy(z)=0 or

(z)=0 or f_ (z)=0 for

y

gbwz)=0 for all zeX, we have that ky

all zeX and for all yeF.

Let u = rAfY%Fny% and v = vF k

ye y

We have u,v eJ, u(x)”"p; for every zeX with f(z)zp’,

v(z) p and (VzeX) u(z)=0 or v(z)=0. In fact since r,

167



each f and ky are open L-fuzzy sets we have u,ved. As
each f satisfies fy x)=fp and r(x)S$p, from the fact that

A

p 1is prime we have u(x)"p. For every zeX with f(z)fp',
that is, zeF, we have v (z)”"p because Vv (z) (yeF ky)

for all zeF. We also have u(z)=0 or v(z)=0 because if
zeX and u(z)*0 then r(z)*0 and f (z)*0 for every yeFQ.
Thus, from r(z)*0, we have ky (z)=0 for every yeF-FQ and

from £ (z)*0 for every yeFQ, we have ky (z)=0 for every

yeF . So, v(z)= Vv k (z)=0 .
yeF Y

Hence (X,J) 1is regular.

Theorem 7.3.3.
Let &, {) be a paracompact L-fts and let (Y,?") be a
compact L-fts. Then the product XxY is a paracompact

L-fts.

Proof
Let pepr(L) and let A be a family of open L-fuzzy
sets in the product space XxY with fj &k,y)"p for all

(x,Vy)eXxY. Select for each (x,y)eXxY, gxyeég hxyé%Y

with gxy (x)"p and hxy (y)"p such that A 2

-1 -1
teq ( ) a ™ (h ) where ny, n, are the projection maps.

This is possible because for every (x,y)e XxY there is
feA such that f(x,y)”"p and since f is an open L-fuzzy set

in the product space XxY (definition 3.2.4.),

b gX; Y% "1 (xy) A (hxy) ' So there are 9Xys3X and
hxy Y
hxye%¥-With o which implies

168



gxy (x)"p and hxy (y)"P-
Therefore, for a given xeX, (hxy)ygY¥ = 1? is a family

of J"-open L-fuzzy sets with |Cgg cj (z2)fp f°r all z2eY-

Thus, by the compactness of (Y,JY), there exists a
finite subfamily <1 of <, say (1" (x) )i€{lf m(x)}'
m(x)
with v, h (z2)"p for all z2eY.

[i=] nxyi (X)
m(x)

Let gx = i=1 gx¥i (x) =

Thus, since each _® &x, gxy (X) X jp for every
ie{1, , m(x) } and pepr (L) we have g and gx (x)"p.
Therefore (gX )X€)\(f is a family of VA -open L-fuzzy sets

with [x\éﬁ ng (zl)ip for all zieX.
From the paracompactness of ®K,3%), there is a family

D of 3v-open L-fuzzy sets that is a refinement of

gx)xeX' locally finite and djtz*fp for all z"X.

For each deD take x.eX with d*g , which is possible
a xd

because D is a refinement of (gX)X£§f
ie{l, ..., m(xd)}

Thus, H is a family of open L-fuzzy sets in the

product space with hj (z)"p for all zeXxY because, for
each z = (Zl’ Z yeXxY there is d1e2) with dl(f iip and
corresponding to it there exists h | ( e £, with
4 %e *

i v \ (z )& Further from the choice of g ;.

ayi a’ 2 xdyi xd
and
from t 1(d) att,* (h , s)-t 1@ . Jatt Th , )

2 x<W 1 v i (x> 2 xdyi<zxd>

it follows that H is a refinement of d.
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Now we are going to prove that H is locally finite.

Let (Xo’io) e XxY.

A

Since P is locally finite, there are a "-open

L-fuzzy set g with g(xQ)"p and a finite subfamily Xg of P

such that Mz eX) d(z ) = 0 or g(zi)=0 for every deD-T>Q.
et W_ = In"1(@d)ATr'l (h ros )
© 1 2 xd* a dD)
ie{l, ...,m(xd)}

and let r = n_]I @ .

We have r (xQ,yo)”"p and (VzeXxY) h (z) =0 or r(z)=0 for
every h€«-HQ. In fact, r(zQ,yo) = n"1(Q (xQ,yQ) =
g(xQ)*p. We also have that if z= (z,z" eXxY¥ and h(z)*0

then h(z) = n 1(d)An 1 P L) (2 =
1 2  xdyi (xd)

(z,)

. . *0. p L) * h
d(zl)a hx(jx'x(xd) (Zz) 0 So d(zl) 0 and >

Xo¥ex X3
*0 which implies that g(zi)=0 for every deT)-DQ hence

r(z)=0 for every heW-tf . Thus, H is also locally finite.

Hence XxY is paracompact.
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Chapter VIII

Some weaker forms of compactness

The aim of this chapter is to introduce good
definitions of almost and near compactness in L-fuzzy
topological spaces. These weak compactnesses are defined
for arbitrary L-fuzzy sets and their properties studied.

In ordinary topology, near compactness was
introduced by Singal and Mathur in [89] and almost
compactness was studied by many authors such as Cameron
[14]. A topological space (X,S) 1is said to be almost
compact (nearly compact) if and only if for every open
cover (AI)XeE of X, there is a finite subset F of J with
U cl(A.i) = X (Iéjll int (cl (A'l)) = X).

Almost and near compactness were introduced and
studied by several authors in [0,1]-fuzzy topological
spaces. Some of them, such as Di Concilio and Gerla [28],
Es [33], Mukherjee and Sinha [72] and Mukherjee and Ghosh
[73], based their work on Chang's compactness (remark
4.6.2.), which is not a good extension of compactness
[54]. Some others, such as Allam and Zahran [3] and
Mashhour and al. [64], adopted a-compactness (definition
4.1.1.). In [12], Bulbul and Warner used fuzzy
compactness (definition 4.6.3.) to produce in [0,1]-fts

good extensions of these dilutions.

In L-fuzzy topological spaces, where L is a fuzzy
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lattice, almost compactness was defined by Chen [20], by

means of a-nets.

This chapter is divided in three sections.

The first section contains the proposed definitions

and their goodness.

The second section is reserved for other
characterizations of these weak compactnesses.

And lastly, the third section is devoted to some

properties.

172



1. Proposed definitions and their goodness

Definition 8.1.1.

Let X, 3) be an L-fts and let gelX . The L-fuzzy set

g 1s said to be almost compact if and only if for every

pepr (L) and every collection of open L-fuzzy sets
with f3J (x)"p for all xeX with g(x)ap' , there exists
a finite subset F of J with cl(f?)j (x)"p for all xeX

with g(x)"p'

If g is the whole space, then we say that the L-fts

(X,7) 1is almost compact.

Definition 8.1.2.

Let K if) be an L-fts and let geLy. The L-fuzzy set
g 1s said to be nearly compact if and only 1if for every
pepr (L) and every collection (£M)" of open L-fuzzy sets
with (x)"p for all xsX with g(x)”"p', there exists
a finite subset F of J with | F int (cl(f"))j (x)"p for

all xeX with g(x)"p'.

If g is the whole space, then we say that the L-fts

X,3") 1s nearly compact.

Theorem 8.1.3. (The goodness of almost compactness)
Let (X,5) be a topological space. Then (X,5) 1is
almost compact 1f and only if (X,cj(()) is an almost

compact IL-fts.

Proof
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Necessity:
Let pepr(L) and (£f7"jJ = A be a family of basic
open L-fuzzy sets in (X,u(b5)) with f£f (x)fp for all

x€X. Thus, by proposition 3.2.11., for each iej,

e.U. /e. 1f xeU"ed
consider f+ (x) = ftl X (x) = jgl otherwise -

Since |.VT f.I (x)ip for all xeX, for each xeX there

e.U.
is iej such that f.1 1 (x)ip, i.e., e.ip.
C e eiU1
Let U = {U% there 1is 1iej with pfe” and £ eA}.

Thus, £ is a family of open sets covering (X,5).

From the almost compactness of (X,5), there is a
finite subfamily £ of U, say {U, ..., Um) such that
iefr, Y., myCtUgp =X

Since, by proposition 3.2.13., cl(f.) x =

e, if xecl (U.,) ~
X X we have . . (x)*p for
0 otherwise ie{l, V. m}lcl(fi)
all xeX.
Hence (X,c3j€)) 1s almost compact.
Sufficiency :
Let be an open cover of (X,<5)
Thus, by proposition 3.2.10., (* ) is a family
x iej
of open L-fuzzy sets in Huw(<5)) . We also have
(x) =1"p for all xeX and for all pepr (L)
From the almost compactness of (X,u(<b)) there exists
a finite subset F of J with Cl(x ) ® =1"p for
all xeX and for all pepr(L).
Since, by proposition 3.2.13. cl {, = Xcl(Ai) we

have g, *Cl(AI)}(X)=1 for all xeX. So, L u cl(h;) =X.

Hence (X,5) is almost compact.
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Theorem 8.1.4. (The goodness of near compactness)
Let (X,5) be a topological space. Then (X,S) is
nearly compact if and only if the L-fts (X,u(8)) 1is
»

nearly compact.
Proof

By using corollary 3.2.14., this is similar to the

proof of theorem 8.1.3.
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2. Other characterizations

Proposition 8.2.1.
A\
Let (X,?) be an L-fts. Then gel 1is almost compact
if and only if for every aeM(L) and every family (fi)ied

A

of closed L-fuzzy sets with fij (x)%a for all xeX with

g(x)”a, there exists a finite subset F of J with

int(f7)j (x)"a for all xeX with g(x)fa.

Proof
This immediately follows from the definition and

remark 3.1.6.

Theorem 8.2,2.

Let 3" be an L-fts. Then geLy is almost compact
if and only if every constant a-net (sm)meD contained in
g, has a O-cluster point (definition 3.1.9. (iii)

Yy
x*eM(L ), with height a, contained in g, for each aeM(L).

Proof

This is similar to the proof of theorem 4.4.2.

Theorem 8.2.3.
Let (X,3) be an L-fts. Then geUX"is almost compact
if and only if for every pepr (L) and every collection
of regularly open L-fuzzy sets with [7*] ] ®
for all xeX with g(x)f£p' , there is a finite subset F of J

with cl(f£?) (x)"p for all xeX with g(x)"p'
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Proof
Necessity:
Let pepr(L) and let (f.)ied be a collection of

regularly open L-fuzzy sets (definition 3.1.7.(i)) with

Since each f. is a regularly open L-fuzzy set £/
for each ied. Then by the almost compactness of g, there
is a finite subset F of J with cl(f?)j (x)"p for all

xeX with g(x)ap'

Sufficiency:
Let pepr(L) and let (f")"eF be a collection of open
L-fuzzy sets with 73 (x)"p for all xeX with g(x)ap'.
From remark 3.1.8. (iv) (int(cl (f) is a regularly
open L-fuzzy set for each ieJ. Then, by our hypothesis,
there exists a finite subset F of J with

cl (int (cl (f") ))J ®) "p for all xeX with g(x)=p'.

From remark 3.1.8. (iii) cl(f") is a regularly closed
L-fuzzy set, so cl(fi) = cl(int(cl(fi))). Therefore
(ieF ®)SP for all xeX with g(x)ip'.

Hence (X,7) 1is almost compact.

Proposition 8.2.4,

Let (X,7) be an L-fts. Then gelX is nearly compact
if and only if for every aeM(L) and every family (£
of closed L-fuzzy sets with f* (x)fa for all xeX with
g(x)>a, there exists a finite subset F of J with

~"gF cl(int(fA))J (x) for all xeX with g(x)"a.
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Proof

This immediately follows from the definition and

remark 3.1.60.

Theorem 8.2.5.

Let (X, fT) be an L-fts. Then geLy is nearly compact
if and only if every constant a-net (sm)meD contained in
g has a 5-cluster point (definition 3.1.9. (iv) )

erMiLy), with height a, contained in g, for each aeM(L).

Proof

This is similar to the proof of theorem 4.4.2.

Theorem 8.2.6.

Let K i7) be an L-fts. Then geLX is nearly compact
if and only if for all pepr(L) and every collection
(f*)~ed of regularly open L-fuzzy sets with 79 (x) *p
for all xeX with g(x)"p', there exists a finite subset F

of J with (x)"p for all xeX with g(x)"p'.

Proof

This is similar to the proof of theorem 8.2.3.
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3. Some properties

Proposition 8.3.1.

Let (X,ii) be an L-fts and let g,h be almost compact

L-fuzzy sets. Then gvh is almost compact.

Proof

This is similar to the proof of proposition 4.1.10.

Proposition 8.3.2.
Let (X,J) be an L-fts, let g be an almost compact
L-fuzzy set and h be a clopen L-fuzzy set. Then hAg is

almost compact.

Proof

This is similar to the proof of proposition 4.1.12.

Corollary 8.3.3.
Let (X.II) be an almost compact L-fts. Then each

clopen L-fuzzy set is almost compact in (X,ii).

Proof

This immediately follows from proposition 8.3.2.

Proposition 8.3.4.

Let & 3"x) and (Y,ii") be L-fts's; let
f:X 9 »({, 9y) be an almost continuous mapping such that
f 1(y) is finite for every yeY and let g be an almost
compact L-fuzzy set of (X,JX). Then f(g) 1is an almost

compact L-fuzzy set of (Y,7 ).
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Proof

Let pepr(L) and let (f)i€j be a family of regularly
open L-fuzzy sets of (Y,Jy) with fij(y)fp for all yeY
with f£(g) (v)'p' .

Thus, from the almost continuity of f, (f

is a family of open L-fuzzy sets in (X,TX) . We also have
_ + ' A 1 1

Aﬁ%j f 1(fQ J(X)EP for all xeX with g(x)”"p' because if

g(x)”"p' Chen £ (@ ¢ x) )=p', so f Mf*Hfx) =

(ied fi) (£(x))+P-

From the almost compactness of g in (X,”), there
exists a finite subset F of J with ideF cl(f"1(fi) (x)Sp
for all xeX with g(x)"p'.

Therefore cl(f")J(y)4p for all yeY with
f(g)(y)Ap'. In fact, 1if £f(g) (y)sp' then x"f-i {g(x)}

*p7 which implies that there is xeX with g(x)2z>' and

f ® =y. So, cl (fi)] (y) = Cl(fi)J(f(X)) =
(ieF f"1(cl(fi))] ® = [EVF cl(f"1(cl(fi)))] ® *

cl(f 1(f ))J (x)"p where the last equality is due to
the fact that cl(f”) is regularly closed by remark 3.1.8.
(iii) and then f 1(cl(f")) is closed by the almost
continuity of f£.

Hence f(g) 1is almost compact by theorem 8.2.3.

When g=*A for some AfX, f 1(y) does not need to be

finite.

Proposition 8.3.5.
Let X, 3"x) and (¢, Jy) be L-fts's, let

f:X 0 )»¥ 9 ) be a weakly continuous mapping such that
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f 1(y) is finite for every yeY and let g be a compact

L-fuzzy set of (X,"). Then f (g 1is almost compact in
(Y,yy)
Proof

Let pepr(L) and let (f£7"3j be a family of open
L-fuzzy sets in (Y,Jy) with 2 (y)*p for all yeY with
£ ) *

Thus, 173 £'1(fi) x)"p for all xeX with g(x)ip"'.

By the weak continuity of f (definition 3.3.1.

(iv)), £ 1(fi)i int(f_1(cl(fi))). Then

int(f 1(cl (£ ))] ® "p for all xeX with g(x)ip'.

Since g is compact, there is a finite subset F of J with
1% int (f 1(cl(§.ﬂ)% (x)%p for all xeX with g(x)ip'

Therefore XXF cl 62) (v)"p for all yeY with

f(g) (y)*p' » In fact, 1if f(g9) (y)ap' then x"f-i {g(x)}

ip' which implies that there is xeX with f (x)=y and

[}
g & ip' . So, cl(fi)] » = CKL)] (F®) =
lgF f (cl(fI)) (x)1 i"F int(f"1(cl(fi))) (x)fp.

Hence f(g) is almost compact

When g=*A for some AfX, f 1(y) does not need to be

finite.

Proposition 8.3.6.

Let (3%) and ({,3"Y) be L-fts's, let

f: X% 3%)>(,J ) be a strongly continuous mapping such
that £ 1(y) 1is finite for every yeY and let g be an

almost compact L-fuzzy set of (X,J ). Then f(g) is

181



compact in (Y, ")

Proof

Let pepr(L) and let (f.)ied be a family of open
L-fuzzy sets in [Y,Jy) with _y; f, (¥)"p for all yeY with
f @ y*p'

Since f is strongly continuous (definition 3.3.1.
(vii)), it is continuous as well. So, (£ 1(£f"))"~gd is a
family of open L-fuzzy sets in (K 9%) and we also have
g £ i 1(x)lp Wor 31 weX WYV g(x)"p'.

From the almost compactness of g, there is a finite

subset F of J with Vg cl(f_L(fIn (x) “p for all xeX with

g(x)sp' . Then p"f cl(f 1( £ )J ) =

tXF f<cl(f 1i(fi)))j(y) - [iiF £(f i (fi))j(y) * [iSF £fiJ ()

for all yeY with f (9) (y)?p', where the inequality before
the last one 1is due to the strong continuity of f£f.

Hence f(g) is compact in (Y,").

When g=*A for some AfX, f 1(y) does not need to be

finite.

Proposition 8.3.7,
Let (X,T) be an L-fts and let g and h be nearly

compact L-fuzzy sets. Then gvh is nearly compact.

Proof

This is similar to the proof of proposition 4.1.10.
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Proposition 8.3.8.
Let (X,9) be an L-fts and let g be a nearly compact
L-fuzzy set and let h be a regularly closed (definition

3.1.7. (ii)) L-fuzzy set. Then hAg is nearly compact.

Proof

This is similar to the proof of proposition 4.1.12.

Corollary 8.3.9.
Let (X,3) be a nearly compact L-fts. Then each

regularly closed L-fuzzy set is nearly compact.

Proof

This immediately follows from proposition 8.3.8.

Corollary 8.3.10.
Let (X,”) be an L-fts and let g be nearly compact
L-fuzzy set and let h be a clopen L-fuzzy set. Then hAg

is nearly compact.

Proof
This immediately follows from proposition 8.3.8.

since h clopen implies h regularly closed.

Corollary 8.3.11.
Let &K3") be a nearly compact L-fts. Then each

clopen L-fuzzy set is nearly compact.

Proof

This immediately follows from corollary 8.3.10.
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Proposition 8.3.12.

Let X,yx) and (Y,yy) be L-fts's, let
f: @,9A)ﬁ>W,J} be an almost continuous (definition
3.3.1.(iii)), almost open (definition 3.3.1. (vi)) mapping
such that f 1(y) is finite for every yeY and let g be a
nearly compact L-fuzzy set of (X,?") . Then f (g is

nearly compact in ((,Jy).

Proof

Let pepr (L) and (£fM)" be a family of regularly
open L-fuzzy sets in (Y,Jy) with fjj (y*p for all
yeY with f(g) (y)"p'

By proposition 3.3.4., (£ *(fj))-e] is a family of
regularly open L-fuzzy sets in (X,ii ). We also have

Y £ O1(f.) xX) “p for all xeX with g(x)"p'.

From the near compactness of g and theorem 8.2.6.,

there exists a finite subset F of J with

Vp £ 1(f3)] ® P for all xeX with g(x)ap'

Thus, f+9 (y)*p for all yeY with f (@ (v)sp' . 1In
fact, if f(g) (y)ap' then Xg{f-i(y)j {g(x)}ap' which
implies that there is xeX with g(x)”"p' and f (x)=y. So,

ieF £i] <yp» - (ieF - (1IF £" (fi>) (x)te-

Hence by theorem 8.2.6. f(g) is nearly compact.

When g=*A for some AfX, f 1(y) does not need to be

finite.

Proposition 8.3.13.
Let X,3"x) and (Y,3"y) be L-fts's, let

f:X ?2x)>»{, {7 ) be an almost continuous mapping with
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f 1(cl(h))”cl(f1 (h) ) for all heJ such that f£-1(y is
finite for every yeY and let g be a nearly compact

L-fuzzy set of (X,TV). Then f(g) 1s nearly compact in

(Y, Ty) .

Proof

By using theorem 8.2.6. and proposition 3.3.5., this

follows as 1in proposition 8.3.12.

When <3=Xz for some AfX, f 1(y) does not need to be

finite.

Proposition 8.3.14.

Let (X,7X) and (Y,3"Y) be L-fts's, let
f: X 3%)>(,3y) be a weakly continuous mapping such that
f 1(y 1is finite for every yeY, with £ 1(cl (h))scl (£ 1(h))
for every regularly open L-fuzzy sets h in (Y,ii ) and let
g be a nearly compact L-fuzzy set of {X,ii ). Then f(g) is

nearly compact in (Y,3"Y).

Proof
By using theorem 8.2.6. and proposition 3.3.6., this

follows as 1in proposition 8.3.12.

When g = xA for some Aex, f 1(y) does not need to be

finite.

Proposition 8.3.15.

Let (X,JX) and (Y,Jy) be L-fts's, let
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f:(X,Jv)->»(Y,TV) be an almost continuous mapping such that

f-1(y) 1is finite for every yeY and let g be a compact

L-fuzzy set of (X,JX). Then f (g 1s nearly compact in

(v,jy) -

Proof

Let pepr(L) and let (f7)"gd be a family of regularly

open L-fuzzy sets in (Y,”) with (v)"p for all yeY

with f(g) (y) ap

From the almost continuity of f, (£ s a

family of open L-fuzzy sets in (X,J ). We also have

f 1(€,)) (x)*p for all xeX with g(x)2:p/ because if

g(x)ap' then £f(g) (f(x))ap' , so £.Y¥Y £ 1(£f.)](x)

iS3 1ii) (£(x))tp-

By the compactness of g, there is a finite subset F

of J with f 1(fj] ® |lp for all xeX with g(x)ap'.

Then fij (y)"p for all yeY with £ (g (v)ap'.

Hence by theorem 8.2.6. f(g) 1s nearly compact.

When g=XA for some ASX, f 1(y) does not need to be finite.
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Chapter IX

S-closedness in L-fuzzy topological spaces

In this chapter we introduce S-closedness in L-fuzzy
topological spaces. S-closedness is defined for
arbitrary L-fuzzy sets and is a good extension. We give
other characterizations of S-closedness and study some of
its properties.

In ordinary topology, S-closedness was introduced by
Thompson in [93] and also studied by several authors [14,
46, 63, 76, 94]. A topological space (X,3) is said to be
S-closed if and only if for every semiopen cover (A%)"ed
of X,, there is a finite subset F of J with g cl(Al)=X.

S-closedness was introduced and studied in

[0,1]-fuzzy topological spaces by Mashhour, Ghanim and

Fath Alla in [64]. In their work they adopted
a-compactness (definition 4.1.1.) and defined aS-closed
fuzzy spaces. In [4], Allam and Zahran extended

aS-closedness to arbitrary fuzzy sets.

In [23], Coker and Es, considering Chang's
compactness (remark 4.6.2.), defined S-closed [0,1]-fuzzy
topological spaces.

Bulbul and Warner in [12], using fuzzy compactness
(definition 4.6.3.), presented a good definition of

S-closed [0,1]-fuzzy topological spaces.
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This chapter contains three sections.

In the first section we present our definition and
establish its goodness.

In the second section we obtain some other
characterizations of the proposed S-closedness.

The third section focuses on some properties.

188



1. Proposed definition and its goodness

Definition 9.1.1.

Let (X,9) be an L-fts and let gelLX. The L-fuzzy set
g 1s said to be S-closed if and only if for every pepr (L)
and every collection (f ~ j of semiopen L-fuzzy sets
(definition 3.1.7. (iii)) with (x)"p for all xeX
with g(x)sp', there exists a finite subset F of J with

cl(fi)J (x)"p for all xeX with g(x)ap'.

If g is the whole space, then we say that the L-fts

(X,T) is S-closed.

Theorem 9.1.2. (The goodness of S-closedness)
Let (X,9%) be a topological space. Then (X,6) is

S-closed if and only if the L-fts (X,c56)) 1is S-closed.

Proof
Necessity :
By using proposition 3.2.18. and proposition
3.2.13., this is similar to the proof of the necessity of

theorem 8.1.3.

Sufficiency :
By using proposition 3.2.15. and proposition 3.2.13.
this is similar to the proof of the sufficiency of

theorem 8.1.3.
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2. Other characterizations

Theorem 9.2.1.

Let (X,J) be an L-fts and let gelX . Then g is
S-closed if and only if for all pepr(L) and every
collection (f")”ed of regqularly closed L-fuzzy sets with

6@&? fij(x)$p for all xeX with g(x)”"p', there is a finite

subset F of J with f*1 (x)"p for all xeX with g(x)”"p'
Proof
Necessity:

Let pepr(L) and let (f.). T be a collection of
regularly closed L-fuzzy sets (definition 3.1.7. (ii))
with 4 (x)"p for all xeX with g(x)"p'.

Since every regularly closed L-fuzzy set is a
regularly semiopen L-fuzzy set because 1if f=cl (int(f"))
then int(fi)sfi<cl (int(fi)), we have that fi is a
regularly semiopen L-fuzzy set for each iej.

Therefore, from the S-closedness of g there exists a

finite subset F of J with cl (fi)V (x)Sp for all xeX
with g(x)ap'. Since every regularly closed L-fuzzy set
is closed, then fi]l(x)"p for all xeX with g(x)sp'.
Sufficiency:

Let pepr(L) and let (f;)q...be a collection of
semiopen L-fuzzy sets with (x)*p for all xeX with
g ® £p' .

Thus, for each iej there exists freJ such that

hj -f-[-cl (h") . So we have cl (f=cl (fr) and by remark
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3.1.8. (iii) cl(h.) 1is regularly closed.

Since f£7cKhjJ for every iej and fi (x)"p for

all xeX with g(x)*P', we have cMh”j (x) =fp for all
xeX with g(x)sp'.
Thus, by hypothesis, there exists a finite subset F

of J with y.F cl(hi)J (x)"p for all xeX with g(x)ap',

(i cl(f.) (x)"p for all xeX with g(x)ap'.
e 1 (1
Hence g is S-closed.

Theorem 9.2.2.
Let (X,?) be an L-fts and let geI%K The L-fuzzy set

g is S-closed if and only if for all pepr(L) and every

collection (£M)" of regularly semiopen L-fuzzy sets
with 37 (x)"p for all xeX with g(x)”"p', there exists
a finite subset F of J with cl(f™)] (x)"p for all xeX

with g (x) 2pp' .

Proof
Necessity:

Since every regularly open L-fuzzy set is an open
L-fuzzy set, we have that every reqularly semiopen
L-fuzzy set is a semiopen L-fuzzy set. Hence the result

follows immediately.

Sufficiency:

Let pepr(L) and let (£7)" be a collection of
semiopen L-fuzzy sets with NV fI (x)"p for all xeX with
g(x)sp'.

Thus, for each iej there exists freJd such that
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hIs{.scl(hﬂ Then, int(cl(h”))s int(cl(f"))£

int (cl (17))* cl (int (cl (hi))) = clfl), the last equality
is due to the fact that from remark 3.1.8. (1ii) cl(h?)
is a regqularly closed L-fuzzy set. Thus, from f”cl (h")
and int (cl (f.))"cl (") we have (int (cl (f ))vE~-cl (In)

and from int(cl(h™))sint (cl (£~ (int (cl (f))vE® we have

int (cl (hi) (int (cl (fi)))vfi®cl (hi) = cl (int (cl (In) )) .
Then, (int (cl1(f£")))vE” is a regularly semiopen L-fuzzy
set for every ied with (int (c1 (£ ))vE x) *p for all
xeX such that g(x)”"p'. So, by hypothesis, there is a
finite subset F of J with cl (int (cl (£%)))vEr (x)"p
for all xsX such that g(x)"p'. Then

cl (int (cl (£") ))vel (") | ® "p for all xeX with

g(x)”p'. Since cl (int (cl (£” ))vcl (fi)=cl (f.), we have
cl(fi)j(x)"p for all xeX with g(x)ap'.

Hence g is S-closed.

Proposition 9.2.3.

Let (X,?) be an L-fts. Then gel” is an S-closed
L-fuzzy set if and only if for all aeM(L) and for every
collection (fi)i of semiclosed (definition 3.1.7. (iv))
L-fuzzy sets with *Aj fiJ &k)2:a for all xeX with g(x)"a,
there exists a finite subset F of J with éIéF int(fl)l(x)

J
for all xeX with g(x)“*a.

Proof

This immediately follows from the definition.
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Theorem 9.2.4.

Let (XSI) be an L-fts. Then geLy is an S-closed
L-fuzzy set if and only if every constant a-net (Sm)mgD
contained in g, has a semi-0O-cluster point (definition

y
3.1.9. (vi)) x"elVKL ), with height a, contained in g, for.

each aeM (L) .

Proof

This is similar to the proof of theorem 4.4.2.
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3. Some properties

Proposition 9.3.1.
Let (X,J) be an L-fts and let g and h be S-closed

L-fuzzy sets. Then hvg is S-closed as well.

Proof

This is similar to the proof of proposition 4.1.10.

Corollary 9.3.2.
Let (X,J) be an L-fts. Every L-fuzzy set g with

finite support is S-closed.

Proof
By using proposition 9.3.1., this is similar to the

proof of corollary 4.1.11.

Proposition 9.3.3.
Let (X,ii) be an L-fts and let g be an S-closed
L-fuzzy set. Then for each regularly open L-fuzzy set h,

hAg is S-closed.

Proof
By using theorem 9.2.1., this is similar to the

proof of proposition 4.1.12.
Corollary 9.3.4,

Let (X,7) be an S-closed L-fts. Then each regularly

open L-fuzzy set is S-closed in (X,7).
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Proof

This immediately follows from proposition 9.3.3.

Corollary 9.3.5.
Let (x,y) be an L-fts. If g is an S-closed L-fuzzy

set, then for each clopen L-fuzzy set h, hAg is S-closed.

Proof
This follows from proposition 9.3.3. because if h is
clopen, h=int (h)=cl(h) then, int(cl(h))=h, i.e., h is

regularly open.

Proposition 9.3.6.

Let (X,ii,) and (Y,fTY) be L-fts's. Let
f:(X,ﬁA)€%Y,ﬁY) be an almost continuous (definition
3.3.1. (iii)), almost open (definition 3.3.1. (vi))
mapping such that £ 1(y) is finite for every yeY and let
g be an S-closed L-fuzzy set in (X,J ). Then f(g) is an

S-closed L-fuzzy set in (Y,iin).

Proof
By using theorem 9.2.1. and proposition 3.3.4., this

is similar to the proof of proposition 4.1.14.

When g=*A for some AfX, f 1(y) does not need to be

finite.

Proposition 9.3.7.

Let X, 3"x) and (Y,J ) be L-fts's. Let
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f: & J) Dbe a weakly continuous mapping
(definition 3.3.1. (iv)), such that £ 1(y) is finite for
every yeY, with £ 1 (cl (h) )scl (£1 h) ) for every regularly
open L-fuzzy set h in (Y,”) and let g be an S-closed

L-fuzzy set in X, 3"x). Then f (g 1s S-closed in (Y,

Proof
By using proposition 3.3.6. and theorem 9.2., this

is similar to the proof of proposition 4.1.14.

When g=*A for some AfX, f 1(y) does not need to be

finite.

Proposition 9.3.8.

Let (X,Iy) and Wﬁ%i) be L-fts's. Let
f: X 3%)>» ¥, Ty) be an irresolute almost continuous
(definition 3.3.1. (iii) (viii)) mapping such that f 1 (y)
is finite for every yeY and let g be an S-closed L-fuzzy

set in (X,?X). Then f(g) is S-closed in (Y,J ).

Proof

Let pepr(L) and let (f7")"ed be a family of semiopen

L-fuzzy sets in (Y,Ty) with 29 (y)"p for all yeY with
f@ WP .

Since f is irresolute, (£1 (") )¢ej is a family of
semiopen L-fuzzy sets in (X,7 ). We also have

f a(f")j(x)"p for all xeX with g(x)”*p' because if

g(x)2p' then f£( (E ®ap'. So UT £ :f)I K

='iYj

From the S-closedness of g in (X,?Y), there exists a
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finite subset F of J with (in Cllf-Ifj11 (x)"p for all
xeX with g(x)ip'
Therefore, cl(fi)](y)Ap for all yeY with
f(g)(y)ap'. in fact, if f (@ () "' then
! {g )}sp' which implies that there is xeX with

g(x)ap' and f(x)=y. So, cl(f..) cl(fi)] (f (%))
= £f1(cl (f1)) cl (£1(fi))] ® "p where the
last inequality is due to proposition 3.3.11

Hence f(g) 1is S-closed.

When g=*A for some AfX, f 1(y) does not need to be

finite.
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Chapter X

RS-compactness in L-fuzzy topological spaces

This chapter is reserved for RS-compactness in
L-fuzzy topological spaces. We prove the goodness of the
proposed definition, obtain different characterizations
of it and study some of its properties.

In ordinary topology, RS-compactness has been
introduced by Hong [43] and has also been studied by
Noiri [77] . A topological space <5 is said to be
RS-compact 1if and only if every regularly semiopen cover
of X has a finite subfamily whose interiors cover X [43].
In [77], Noiri claimed without proving that this is
equivalent to every regularly closed cover of X has a
finite subfamily whose interiors cover X. Similarly to
our proof of theorem 10.2.2. one can prove that these are
also equivalent to every semiopen cover of X has a finite
subfamily whose interiors of closures cover X. Here we
use this last characterization of RS-compactness to prove
the goodness of our definition. In the same way as we
proved our theorem 10.2.3. we can prove that ordinary
RS-compactness 1s also equivalent to every regularly
semiopen cover of X has a finite subfamily whose
interiors of closures cover X.

In [0,1]-fuzzy topological spaces, RS-compactness

was studied by Coker and Es [24]. Their definition is
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along the lines of Chang's compactness (remark 4.6.2.).
Also in [0,1]-fuzzy topological spaces, Allam and Zahran,
using the concept of a-shading (definition 4.1.1.),

suggested another version of this concept.

This chapter is divided in three sections.

In section 1 we introduce our definition and
establish its goodness.
The second section contains other characterizations

of RS-compactness.

In the third section we focus on some properties.
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1. Proposed definition and its goodness

Definition 10.1.1.

Let (X,7) be an L-fts and let geLX. The L-fuzzy set
g is said to be RS-compact if and only if for all pepr(L).
and every collection (f")" of semiopen L-fuzzy sets
(definition 3.1.7. (iii)) with f*jixj*p for all xeX
with g(x)£p', there is a finite subset F of J with

]
int (cl ﬁA))J x) "p for all xeX with g(x)£p'

If g is the whole space, then we say that the L-fts

(X,J) 1is RS-compact.

Theorem 10.1.2. (The goodness of RS-compactness)
Let (X,S) be a topological space. Then (X,5) is
RS-compact if and only if the L-fts (X,u(5)) is

RS-compact.

Proof
Necessity:

By using proposition 3.2.18. and corollary 3.2.14.,
this is similar to the proof of the necessity of theorem

8.1.3.

Sufficiency :
By using proposition 3.2.15. and corollary 3.2.14.
this is similar to the proof of the sufficiency of

theorem 8.1.3.
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2. Other characterizations

Theorem 10.2.1.

Let (X,7) be an L-fts and let geLX. Then g 1is
RS-compact if and only if for all pepr(L) and every
collection (f.). T of regularly closed L-fuzzy sets
(definition 3.1.7. (ii) ) with (x)*p for all xeX
with g(x)2p', there is a finite subset F of J with

int(f7)j (x)"p for all xeX with g(x)"p'.

Proof

This is similar to the proof of theorem 9.2.1..

Theorem 10.2.2.

Let 3" be an L-fts and let geL%L The L-fuzzy set
g 1is RS-compact if and only if for all pepr(lL) and every
collection (f")"*gd of regularly semiopen L-fuzzy sets

wiCh (isj fi) x):tP for all xeX with g(x)sp', there exists

a finite subset F of J with A% int(fx) (x)"p for all xeX

leF
with g(x)"p'

Proof
Necessity:

Let pepr(L) and let (f")”"ej be a family of regularly
semiopen L-fuzzy sets (definition 3.1.7. (v) ) with

% (x)"p for every xeX with g(x)£p'.

Thus, for each iedJ there exists a regularly open
L-fuzzy set fu such that h*f <cl(hi). So, by definition

3.1.7. (1) , fr=int (cl ") ) and we also have cl (f =cl ()
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and that is a semiopen L-fuzzy set.
Therefore, by the RS-compactness of g, there is a

finite subset F of J with int (cl(f?)) (x)"p for all

xeX with g(x)ip'; i.e., (igF hi] ««>& * Since h”int (ft),
ng int;k%J% (x)%p for all xeX with g(x)ip'.
Sufficiency:
Let pepr(L) and let (f-)yjej 136 a family of regularly

closed L-fuzzy sets with (x)"p for all xeX with
g(x)sp'

Since each f* is a reqularly closed L-fuzzy set £f*
is a regularly semiopen L-fuzzy set (proved in the
necessity of theorem 9.2.1.).

Therefore, by our hypothesis, there exists a finite
subset F of J with int(£%) 3 (x)"p for all xeX with

g(x)ip'

Hence, by theorem 10.2.1., g is RS-compact.

Theorem 10.2.3.

Let (X,J) be an L-fts and let geLx. The L-fuzzy set
g is RS-compact if and only if for all pepr(L) and every
collection (f%)"gd of regularly semiopen L-fuzzy sets
wiith (x)"p for all xeX with g(x)ip', there exists
a finite subset F of J with int(cl(fi))j x) “p for all

xeX with g(x)ip'.
Proof
Necessity:

Let pepr(L) and let (£fM)" be a family of regularly
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semiopen L-fuzzy sets with iXJ f] ® for all xeX with

g (x)ip'

Thus, by theorem 10.2.2. and the RS-compactness of
g, there is a finite subset F of J with int (%)  (x)"p
for all xeX with g(x)”*p'. Therefore,

int(cl(f")) | (x)"p for all xeX with g(x)”"p' because

int (fi)”int (cl (£f1)) .

Sufficiency:

Let pepr(L) and let (f7)"gj be a family of regularly
closed L-fuzzy sets with 373 £ (x)"p for all xeX with
g(x)ap'

As showed in the necessity of theorem 9.2.1., each
f* is a regularly semiopen L-fuzzy set. So by our
hypothesis there exists a finite subset F of J with
3 p int (cl (£7) )J ® "p for all xeX with g(x)ap'. But each
fi is regularly closed, so is closed, i.e., cl(f")=fi.

Thus int(fi)j (x)"p for all xeX with g(x)ap’

Hence, by theorem 10.2.1., g is RS-compact.

Proposition 10,2.4.

Let (X,J) be an L-fts. Then gelX is an RS-compact
L-fuzzy set if and only if for all aeM(L) and for every
collection (f")"”gj of semiclosed L-fuzzy sets with

f* (x)"a for all xeX with g(x)”*a, there exists a
finite subset F of J with cl (int (fi))Jj ) for all

xeX with g(x)"*a.
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Proof

This immediately follows from the definition.

Theorem 10.2.5.

Let (X,T) be an L-fts. Then geLV is an RS-compact
L-fuzzy set if and only if every constant a-net (sm)mED
contained in g has a semi-6-cluster point (definition
3.1.9.  (v)) erMCLX), with height a, contained in g, for

each aeM (L) .

Proof

This is similar to the proof of theorem 4.4.2.
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3. Some properties

Proposition 10.3.1.
Let (X,J) be an L-fts and let g and h be RS-compact

L-fuzzy sets. Then hvg is RS-compact as well.

Proof

This is similar to the proof of proposition 4.1.10.

Proposition 10.3.2.

Let (X,7) be an L-fts and let g be an RS-compact

L-fuzzy set and h a regularly semiopen L-fuzzy set. Then

hAg is RS-compact.

Proof

By using theorem 10.2.2. and the fact that if h is
regularly semiopen L-fuzzy set (definition 3.1.7. (v))
then h' is also regularly semiopen, this is similar to

the proof of proposition 4.1.12..

Proposition 10.3.3.
Let (X,7) be an L-fts and let g be an RS-compact
L-fuzzy set and h a regularly closed L-fuzzy set. Then

hAg is RS-compact.

Proof
Since h regularly closed L-fuzzy set implies h
regularly semiopen (proved in the necessity of theorem

9.2.1.), by proposition 10.3.2. hAg is RS-compact.
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Proposition 10.3.4.

Let (X,9%) and (Y,”) be L-fts's. Let
f: m,9g e%Y,TiJ be an almost continuous (definition
3.3.1. (iii)), almost open (definition 3.3.1. (vi))
mapping such that f£-1(y) is finite for every yeY and let
g be an RS-compact L-fuzzy set in (X,?x). Then f (g 1is

an RS-compact L-fuzzy set in (Y,3y).

Proof

Let pepr(L) and let (f")"gj be a family of regularly

closed L-fuzzy sets with 29 (yv)"p for all yeY with
f@ @ *p'.
Thus, by proposition 3.3.4., (f (£.)). T is a

family of regularly closed L-fuzzy sets in (X,T ). We
also have £ 1(f.7)j (x)"p for all xeX with g(x)"p'
because if g(x)”p' then f (9 (f x) )sp', so
isj f"<fi>) (X)=U j £1i) (E<x)>*P-
From the RS-compactness of g in (X,TV) and by
theorem 10.2.1., there 1is a finite subset F of J with

int (f 1(fi))j(x)"p for all xeX with g(x)’p'.
Thus, p~ f[4VF int (f-1) (f+))j (y) =
E"F £ (Ant(£_1(£f1)))] (y)s int (cl(f (Ant(£"1(£f1)))))J ¥
tvp int (cl (£ (€ “(£.)))) (yJs .Vp int (cl (f)) (y) =

int(£%)J (v for all yeY with f(g) (y)>p', where first
inequality is due to the fact that since each £ 1(fi) is
closed we have, by remark 3.1.8. (iv), int (£-1(£f")) 1is
regularly open and so by the almost openness of f we have

f(int(f 1(£7)))e?Y. And last equality is due to the
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closedness of each f£7.

Hence, Dby theorem 10.2.1., f(g) is RS-compact.

When g=*A for some ASX, f 1l(y) does not need to be

finite.

Proposition 10.3.5.

Let 3"x) and (Y,?") be L-fts's. Let
f: & U )»( 3y) be a weakly continuous mapping
(definition 3.3.1. (iv)) such that int(f 1(h))"
f 1(int(h)) for each regularly semiopen L-fuzzy set h in
(Y,3"yv) with £ 1(y) finite for every yeY and let g be an
RS-compact L-fuzzy set in (X,J”») . Then f(g) is an

RS-compact L-fuzzy set in (Y,

Proof

Let pepr(L) and let (f£%)* be a family of regularly
closed L-fuzzy sets with |73 £ (y)"p for all yeY with
£f@ @ sp#.

Thus, by proposition 3.3.8., (f 1(f.)). T is a
family of regularly closed L-fuzzy sets in (X,ii ). We
also have f 1(fA)j (x)"p for all xeX with g(x)"p'
because if g(x)ap' then f(g) (f(x))sp', so £¥; £ 1(f) (x)

lle];I fH(f ®

From the RS-compactness of g in (X2IV) and by
theorem 10.2.1., there is a finite subset F of J with

int (£ 1(fi1))3J(x)"p for all xeX with g(x)"p'.

Since every regularly closed L-fuzzy set 1is

regularly semiopen (proved in the necessity of theorem
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9.2.1.) we have that each f. is a regularly semiopen.

So, by hypothesis, int(f_;(fi))sf:ﬁ(int(fi)) for each ieF

and then f1(nt (f1))J ® "p for all xeX with g(x)fcp'.
For yeY with v {g(x)} = f£(9) (y)ap' , we have
xef-1(y)
f ® =y for some xeX with g(x)ap' . So, ™~ & 1int(f")| (v =
]
int(fi) (f(x)) = f—l(int(fi))] xX) "p for all yeY

with f(g) (y)ap'.

Hence, by theorem 10.2.1., f(g) is RS-compact.

When g=*A for some AfX, f 1l(y) does not need to be

finite.

Proposition 10.3.6.

Let (X,?x) and (,9"Y) be L-fts's. Let
f:X 3%)>»(, 9y) be a weakly continuous open mapping such
that £ 1(y) 1is finite for every yeY and let g be an
RS-compact L-fuzzy set in 3"v). Then f (g0 is an

RS-compact L-fuzzy set in (Y,7Y).

Proof

By proposition 3.3.9., f is also almost continuous.
So this follows from proposition 10.3.4. since f open
mapping implies f almost open mapping (definition

3.3.1.(v) (vi)).

When <3=Xa for some AfX, f 1(y) does not need to be

finite.

Proposition 10.3.7.

Let (X,7X) and (Y,3"Y) be L-fts's. Let
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f: X, J )>(,J ) be a semicontinuous (definition 3.3.1.

(1i1)) mapping such that £ 1(y) 1is finite for every yeY

and let g be an RS-compact L-fuzzy set in (X,”) . Then
f(g) 1s almost compact in (Y,3"Y) (definition 8.1.1.).
Proof

Let pepr(L) and let (f%)"£j be a collection of open
L-fuzzy sets with £3J (y)"p for all yeY with
f(g) (y)"p'. Thus, by the semicontinuity of f,
(f 1(£%))"ed is a family of semiopen L-fuzzy sets in
(x,yx) We also have f 1)l (x)*p for all xeX with
g(x)£p' because 1if g(x)ap' then f(g) (f(x))£fp', so
wy f o= oy 7 EE)DP

Thus, by the RS-compactness of g, there is a finite
subset F of J with int(cl(f 1(f")))] ® "p for all xeX

with g(x)"p'

For all yeY with v {gx } = £ (@ () ap', we
xef-1(y)
have f (x)=y for some xeX with g(x)"p'. So,
isp cl(fi > ) - Y F ci(f.) 1(£E(x)) = i~rF f"1(cl(fi))IX)
*[y F int (cl (f"1(cl(fi))))] (x)s[ivp int(cl(f"1(fi)))] (x)fp

where the inequality * is due to the fact that since f is
semicontinuous and cl(f®) is closed, £ 1(cl(f")) is
semiclosed, so by remark 3.1.8. (1) we have

int (cl(f"1(cl(fi))))"£1 (cl (£])) .

Hence f(g) 1s almost compact

When g="A for some AfX, f 1(y) does not need to be

finite.
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Proposition 10.3.8.

Let ,3%) and (Y, 9%) be L-fts's. Let
f: X3'V)>(®,3V) be an irresolute mapping (definition
3.3.1. (viii)) such that £ 1 (y) 1is finite for every yeY
and let g be an RS-compact L-fuzzy set in (X,!7) . Then

f (@ 1is S-closed in (Y,").

Proof
Let pepr(L) and let (f")” be a collection of
semiopen L-fuzzy sets with f*3 (y) =fp for all yeY with

f@ )7

Thus, by the irresoluteness of f, (f 1(f.)). T is a

i) 16J
family of semiopen L-fuzzy sets in {X;ﬁge. As 1in the
proof of proposition 10.3.7., we have ?ﬂé} f *(fﬁ )(x)yp
for all xeX with g(x)”"p'. Now the proof follows exactly

as in our proof of proposition 10.3.7. where here the

justification of the inequality * is the fact that since

f is irresolute and cl(ff is semiclosed,, f l(cl(f1 is
semiclosed, so by remark 3.1.8. (i) we have
int (cl(f"1 (cl(fi))) )1if™l (cl(fi)) .

Hence f(g) is S-closed.

When g=*A for some AfX, f 1(y) does not need to be

finite.
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Chapter XI

S-compactness in L-fuzzy topological spaces

In ordinary topology strong compactness was
discussed by Atia et al. [6]. A topological space (X,5)
is called strongly compact if and only 1if every pre-open
cover of X has a finite subcover.

In [0,1]-fuzzy topological spaces, strong
compactness has been introduced by Nanda [75]. His
definition is based on Chang's compactness (remark
4.6.2.).

In this chapter a good definition of strong
compactness 1is introduced in L-fuzzy topological spaces.
To avoid confusion between this strong compactness and
the strong fuzzy compactness introduced by Lowen
(definition 4.1.2.), we shall call it here S-compactness,
in ordinary topology as well as in L-fuzzy topology. We

define S-compactness for arbitrary L-fuzzy sets and study

its properties.

This chapter is divided in three sections.

In the first section we present our S-compactness
and prove 1its goodness.

The second section contains other characterizations
of S-compactness.

The third section is reserved for some properties.
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1. Proposed definition and its goodness

Definition 11.1.1.

Let (X, 3) be an L-fts and let geLV. The L-fuzzy set
g is said to be S-compact if and only if for every prime
pel. and every collection (f%) © of pre-open L-fuzzy sets
(definition 3.1.7. (viii)) with igJ f. (x)"p for all xeX
with g(x)”"p' , there exists a finite subset F of J with

(x)"p for all xeX with g(x)sp'

If g is the whole space, then we say that the L-fts

(X,J) is S-compact.

Theorem 11.1.2. (The goodness of S-compactness)
Let (X,5) be a topological space. Then <5 1is

S-compact if and only if the L-fts (X,u(b5)) 1is S-compact.

Proof

Necessity:

Let pepr(L) and let (f%)"gd be a family of pre-open

L-fuzzy sets in &uw (b)) with 4 ® "p for all =xeX.
Thus, (£~ ({teL; is a family of pre-open
sets in (X,5) that covers X. In fact, since for each xeX

A

there exists iej with f7(x)"p, for each xeX there is iej
with xef”1l ({telL; t"p}). Then fT ftel; p~t})2X. We
also have that, for each iej, fT"ftel; t"p}) 1is pre-open
in (X,5) because for every iej, f£7int (cl (f.)) which

implies f7x({tel; t"p})L£(int(cl(fi))) 1({teL; tp}).

Since int(g)sg and int(g)eu(5) for every geLy and
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{telL; t"p}) is Scott open, we have, by proposition
3.2.9., (int @ ) 1({telL; t™p})eS, so (int (9) ) 1 ({teL;pft} )
£ int (g-1({tel; t"p})). Therefore, by considering
g=cl(f.), we have “Mtel/1 t'phE
(int(cl(fi))) 1 ({teL; tdp})Lfint]| (cl(fi)) 1 ({tel; tfp})
From lemma 3.2.12. we obtain £71 ({telL; t"p} )£
int (cl (fT1 ({teL;t"p}))) and then *~ ({telL; t"p}) is
pre-open for every iej.

From the S-compactness of (X,6), there is a finite
subset F of J with £71 ({tel; t7p})2X. So, for every
xeX there is ieF such that f*(x)"p, 1i.e., 37 (x)"p

for all xeX.

Hence (X,cj6)) 1s S-compact.
Sufficiency:

Let (A.). T be a pre-open cover of (X,8S).

Thus, (*a ) is a family of pre-open L-fuzzy sets

i ie]
[]

in (X,w(S)) with J (x)=1"p for all xeX and for all
pepr (L) . In fact, since is pre-open for every iej,

Atfint (cl(At)) and then *A .-*int(cl(A,)) ¢ Since, by

corollary 3.2.14., #j_nt (cl (A.)) = int<cl (*Ai ))» we have

*A “int (¢l (™A ), so xA 1is pre-open in (X,w(S)) for all
i i i
iej. We also have that for all xeX there is iej such

that xeA”. So, for all xeX there exists iej with

*A (xX) =1 which implies that Y jJ x =1 "p for all xeX
i A1’

and for all pepr(L).

From the S-compactness of (X,w(S)), there exists a
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finite subset F of J with (x)"p for all xeX and

(ieF

]
for every pepr(L), thus J x) =1 for all =xeX.

Therefore i.lé'lF Al’ 2X.

Hence (X,5) is S-compact.
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2. Other characterizations

Proposition 11.2.1.

Let X, 3) be an L-fts. Then geL>’g

is S-compact if
and only if for all aeM(L) and every collection (f*)"gd
of pre-closed L-fuzzy sets (definition 3.1.7. (viii))
with i-A, f .l (x)ia for all xeX with g(x)”a, there exists a

finite subset F of J with (x)"a for all xeX with

g ®

Proof

This immediately follows from the definition.

Theorem 11.2.2.

Let (X,7) be an L-fts. Then geLV is S-compact if
and only if every constant a-net (Sm)mgD contained in g,
has a pre-cluster point (definition 3.1.9. (vii))

Yy
x*eM(L ), with height a, contained in g, for each aeM(L).

Proof

This is similar to the proof of theorem 4.4.2.
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3. Some properties

Proposition 11.3.1.
Let {X,ii) be an L-fts. If h and g are S-compact

L-fuzzy sets, then hvg is S-compact as well.

Proof

This is similar to the proof of proposition 4.1.10.

Corollary 11.3.2.
Let 9" be an L-fts. Every L-fuzzy set g with

finite support is S-compact.

Proof

This is similar to the proof of corollary 4.1.11.

Proposition 11.3.3.
Let X3") be an L-fts. If g is an S-compact L-fuzzy
set, then for each pre-closed L-fuzzy set h, hAg is

S—compact.

Proof

This is similar to the proof of proposition 4.1.12.

Proposition 11.3.4.
Let K 2I) be an L-fts and Jgjas defined in 3.3.2.
Then f is S-compact in X, 3") if and only if f is compact

in (X,3%).

216



Proof
Necessity:

Let pepr(L) and let (f.)ied be a collection of
subbasic 3%-open L-fuzzy sets with fij(x)"p for all
xeX such that f(x)"p'

Thus, each f* is a pre-open L-fuzzy set in (X,7)
and, by the S-compactness of f, there is a finite subset
F of J with £33 (x)"p for all xeX such that f(x)"p'.

Hence, by theorem 4.2.1., f is compact in {X,3%")

Sufficiency:

Let pepr(L) and let (£%)"gJ be a collection of
pre-open L-fuzzy sets in (X,T) with % (x)"p for all
xeX with f x) "p' .

Since every pre-open L-fuzzy set in (X,3) 1is an 3%,
by the compactness of f in (X,37), there exists a finite
subset F of J with jIZF f1 (x)"p for all xeX such that
f (x)sp'.

Hence f is S-compact in (X,7).

Proposition 11.3.5.
Let (X,3) be an L-fts. If g is an S-compact L-fuzzy
set in {X,3), then for each closed L-fuzzy set h in

(X,3”"), hAg is S-compact in (X,J).

Proof
By proposition 11.3.4. g is compact in {X,3%”) and
since h is closed in (X,T"), from proposition 4.1.12.,

hAg is compact in (X,3") .
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Hence, by proposition 11.3.4., hAg is S-compact in

(x.y) .

Proposition 11.3.6.

Let X 3 and ({, 3% be L-fts's and let
f: X 3>, 3% be a E'-continuous mapping (definition
3.3.2.) such that f-1(y) is finite for every yeY. Let g

be an S-compact L-fuzzy set in 3") . Then f (g 1is
*

S-compact in (¥, 38 ).

Proof

Let pepr(L) and let (£f")"gd be a collection of
*
pre-open L-fuzzy sets in (Y, 3" ), that is, each f. is a

S”-subbasic open L-fuzzy set; with (%) for all

wg Tx
yeY such that f(g) (y)-p' .

Since, by definition 3.3.2., f:(& J,)>»({, 3") is
continuous, each £ 1(f,.)e3¥). We also have that

1

f 1(£")j(x)"p for all xeX such that g(x)ip' because if

g(x)ap' then f(g) (E(x)) = v {g(z) tap', so
z6f_1(f (X))

g f fi») x) - (iij £1) <t ) fo—
By the S-compactness of g in (X,3"), from

proposition 11.3.4., g is compact in (X,3"")
Thus, there exists a finite subset F of J with

iTF f l)g’?i; (x)"p for all xeX such that g (x)zp'. Then,

GIf fi) {yJ& for all yeY with £f(g) (y)"p' because
f(£1(1))] (v }p for all yeY such that £f(g) (y)>p'.
Therefore, by proposition 4.2.1., f(g) is compact in

¥, S

<IJ*
Hence, from proposition 11.3.4., f(g) 1s S-compact
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When g=*A for some AfX, f 1(y) does not need to be

finite.

Proposition 11.3.7,

Let (X,9") and be L-fts's and let
f:(X,JA)ﬁ>@}7x) be an M-pre-continuous mapping
(definition 3.3.1. (x)) such that f 1(y) is finite for
every yeY. If g is S-compact in (X,”), then f (g 1is

S-compact in (Y,").
Proof
Since, by proposition 3.3.7., f is <k'-continuous;

this follows from proposition 11.3.6.

When g=*A for some ASX, f 1(y) does not need to be

finite.
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Chapter XII

A comparison between the concepts introduced in chapters

VIII, IX, X and XI and some related properties

This chapter 1is devoted to a comparison between
S-compactness, compactness, almost compactness,
S-closedness, near compactness and RS-compactness, as
well as, to some properties related to extremally

disconnected L-fuzzy topological spaces.

This chapter is divided in two sections.

Section one contains a comparison between these
compactness related concepts and a condition for almost,
near, RS-compactness and S-closedness to be equivalent.

In section two we obtain some properties that follow

from this comparison.
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1. A comparison between compactness; almost, near, RS and

S-compactness and S-closedness

Theorem 12.1.1.
Y
For an L-fuzzy topological space (X,i{i) and gel the
following implications hold:
g nearly compact
(ii) (vi)
4 (1iv)
(i) (iii) (vii)
g S-compact = g compact = g almost compact < g RS-compact
) W~ (viii)

g S-closed

Proof
(1) Let pepr(L) and let (f.)e T be a family of open
L-fuzzy sets such that f* (x)"p for all xeX with
g(x)ap'.

Since each f"eJd, £~ is pre-open (definition 3.1.7.
(vii)). So, by the S-compactness of g (definition
11.1.1.), there is a finite subset F of J such that

f37 (x)"p for all xeX with g(x)ap'.

Hence g 1is compact (definition 4.1.4.).

(i1) and (iid) Let pepr(L) and let (f£7"7J be a family
of open L-fuzzy sets such that 7 (x)"p for all xeX
with g(x)ap'.
By the compactness of g there is a finite subset F
of J such that "Vp f+j (x)"p for all xeX with g(x)ap'. So,
cl CEAJ x) pand yp int(cl(fi))J(x)Ap for all xeX
with g(x)ap' because intf"=f"sint(cl(f"))scl(f.) .

Hence g is nearly compact and almost compact
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(definitions 8.1.1., 8.1.2.).

(iv) Let pepr(lL) and let (£7"J be a family as above.

By the near compactness of g there is a finite

subset F of J such that int(cl(fi))j (x)"p for all xeX
with g(x)2=p'. So cl(fi)j (x)"p for all xeX with
g(x)ap'.

Hence g is almost compact.

v) Let pepr(L) and let (£")"gJd be a family as above.
Since each f?eJ, f is semiopen (definition 3.1.7.
(iii)) as well. So, by the S-closedness of g (definition
9.1.1.), there is a finite subset F of J such that

Vp cl(f?)j(x)"p for all xeX with g(x)ap'.

Hence g is almost compact.

(vi) and (vii) Let pepr(L) and let (f.). T be a family
as above.

Since each f%eJ, f* is semiopen as well. So, by the
RS-compactness of g (definition 10.1.1.), there is a
finite subset F of J such that igF int (¢l (£7))) (x)Sp for
all xeX with g(x)"p'.

Hence g is nearly compact and almost compact

(viii) Let pepr(L) and let (fi)igd be a family of
semiopen L-fuzzy sets such that f*3 (x)"p for all xeX
with g(x)ap'

By the RS-compactness of g there is a finite subset

F of J such that fl%F int(cl(fg ) (x)"p for all xeX with

g(x)”*p'. so, cl(fi) (x)fp for all xeX with g(x)"p'.

Hence g is S-closed.
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Remark 12.1.2,
The implications in theorem 12.1.1. are the only
ones that are wvalid, since the others are not wvalid in

ordinary topology [43,77] and all these concepts are good

extensions.

Theorem 12.1.3.

For an extremally disconnected L-fts (X,J)

(definition 3.2.2.), the following are equivalent:

(1) X, 9 isalmost compact
(ii) %,9") isnearly compact
(1i1) XK,9" 1is S-closed

(iv) X, i) 1s RS-compact

Proof

Considering theorem 12.1.1., to prove these
equivalences, 1t is sufficient to prove that 9" almost
compact extremally disconnected L-fts implies that & 9")
is RS-compact.

Let &9 be an almost compact extremally

disconnected L-fts. Let pepr(L) and let (f*)"ed a
family of semiopen L-fuzzy sets with 7 (x)"p for all
xeX.

Thus, for each iej there is g®eJ such that
g”fiicl (gi) . Therefore LVJj cl(gi) (x)"p for all xeX.

Since (X,9) is extremally disconnected, cl(g")e9" for each

ied. So, by the almost compactness of 9" there is a

finite subset F of J with cl(gi)j (x)$p for all xeX.

Because cl(f") = cl(g®) and cl(g")e9', we have int(cl(f"))
= cl(gi). Then int (cl (fi))J ® "p for all xeX.

Hence (X,9") is RS-compact.
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2. Some properties

Proposition 12.2.1.

Let &KSI) be an L-fts and let g be an L-fuzzy set
with finite support. Then g is nearly and almost

compact.

Proof
By corollary 4.1.11. g is compact. Thus, by theorem

12.1.1. this result follows.

Proposition 12.2.2.

Let ,3"x) and (Y,Jy) be L-fts's where (Y,”") 1is
extremally disconnected. Let £: & 3"™)>(, 3¥Y) be an
almost continuous mapping such that f 1(y) 1is finite for

every yeY and let g be an S-closed (nearly compact)

[RS-compact] L-fuzzy set in 3"v) . Then f (g0 1is an
S-closed (nearly compact) [RS-compact] L-fuzzy set in
(Y,Jdy) .
Proof

Since g is an S-closed (nearly compact) [RS—compact]

L-fuzzy set, by theorem 12.1.1., g is also almost
compact. So, by proposition 8.3.4., f(g) 1is almost
compact in (Y,3"Y) . Because (Y,7Y) is extremally
disconnected, by theorem 12.1.3. f(g) is S-closed (nearly

compact) [RS-compact] in (Y,?Y) .

When g=XA for some AfX, f-1(y) does not need to be

finite.
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Proposition 12.2.3.

Let ,3"x) and (Y,7y) be L-fts's with (Y,Jy)
extremally disconnected. Let f: X 9%) (Y, Jdy) be a weakly
continuous mapping such that f 1(y) is finite for every
yeY and let g be an S-closed (nearly compact)

[RS-compact] L-fuzzy set in (X,”x). Then f(g) 1is an
S-closed (nearly compact) [RS-compact] L-fuzzy set in

(Y, Jy) .

Proof

Since f is weakly continuous and (Y,”) is
extremally disconnected, f is almost continuous. In
fact, 1f h is a regularly open L-fuzzy set in (Y,fTy) then
h=int(cl(h)) and since (Y,?y) 1is extremally disconnected
we have cl(h)6?y, thus h=cl (h). Then by the weak
continuity of f, f 1(h)sint(f 1(cl(h)))=int(f 1(h)) .
Hence f 1(h)e9%x and f is almost continuous.

Therefore we have our result from proposition

12.2 .2.

When g=*A for some ASX, f 1(y) does not need to be

finite.

Proposition 12.2.4.

Let (X,JX) and (Y,!7y) be L-fts's with (Y,9")
extremally disconnected. Let f: M,9¥)ﬂﬂY,7Y) be a
semicontinuous mapping such that f-1(y) is finite for
every yeY and let g be an RS-compact L-fuzzy set in

(X,3%) . Then f (g is RS-compact in (Y,Jdy).
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When g=XA for some ASX, f 1(y) does not need to be

finite.

Proof

By proposition 10.3.7. f(g) 1s almost compact in
(Yf7Y) . Since (Y,3"Y) is extremally disconnected, Dby

theorem 12.1.3., f(g) 1s RS-compact.

Proposition 12.2.5.

Let (X,7X) and (Y,”) be L-fts's with (,3"Y)
extremally disconnected. Let £: X 3 )»(, be an
irresolute mapping such that f 1(y) is finite for every
yeY and let g be an RS-compact L-fuzzy set in X,1i7 ).

Then f () is RS-compact in (Y,")

Proof
By proposition 10.3.8. f (g0 is S-closed in (Y, 3"Y).
Since (Y,7y) is extremally disconnected, by theorem

12.1.3., f(g) is RS-compact.

When sr=XA for some ASX, f 1(y) does not need to be

finite.
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