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Abstract: We construct Lewis-Riesenfeld invariants from two dimensional point trans-

formations for two oscillators that are coupled to each other in space in a PT-symmetrical

and time-dependent fashion. The non-Hermitian Hamiltonian of the model is conve-

niently expressed in terms of generators of the symplectic sp(4) Lie algebra. This allows

for an alternative systematic approach to find Lewis-Riesenfeld invariants leading to a

set of coupled differential equations that we solve by using time-ordered exponentials.

We also demonstrate that point transformations may be utilized to directly construct

time-dependent Dyson maps from their respective time-independent conterparts in the

reference system.

1. Introduction

While in general time-independent quantum non-Hermitian Hamiltonian systems are fairly

well understood [1–4], and have also found many applications, their time-dependent ver-

sions pose a more technical challenge. These type of systems are especially interesting as

their exceptional points do not signify a transition from a physical to a non-physical region

as is typical in a time-independent setting, but merely mark the boundary in parameter

space between different types of qualitative behaviour [5–8]. In turn this feature gives rise

to new types of physical effects observed for instance in their associated von-Neumann

entropies [9, 10] and instantaneous energy spectra [6]. Naturally to solve the governing

time-dependent Schrödinger equation (TDSE) is more challenging and due to their non-

Hermitian nature one needs to construct in addition a time-dependent metric operator to

obtain a meaningful quantum theory [11–17]. Both tasks can be facilitated by the use of

Lewis-Riesenfeld (LR) invariants [18].

In general LR-invariants have proven to be extremely useful tools in the endeavour to

obtain exact, or very good approximate solutions [19], to the time-dependent Schrödinger

equation (TDSE), as they reduce the latter to a simpler eigenvalue equation with time-

independent eigenvalues where time simply plays the role of a standard parameter. While
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this feature holds for time-dependent Hermitian [20] as well as for time-dependent non-

Hermitian systems [21–25], in the latter context LR-invariants also facilitate the construc-

tion of the Dyson map η(t), which in turn factorises the metric operator ρ(t) = η†(t)η(t)

that is essential in setting up a well-defined quantum theory for the non-Hermitian system.

Using the LR-invariant IH(t) allows to bypass solving the time-dependent Dyson equa-

tion, which usually boils down to a set of coupled differential equations. Instead the task

is reduced to mapping the non-Hermitian LR-invariant associated with a non-Hermitian

HamiltonianH(t) to a Hermitian one related to a Hermitian Hamiltonian h(t) by means of a

similarity transformation Ih(t) = ηIH(t)η−1. Moreover, it was recently shown [7] that when

constraining the invariant IH(t) to be an involution and in addition require it to commute

with the PT -operator, i.e. a simultaneous parity and time-reversal, it becomes identical to

the time-dependent C(t)-operator, which is directly related to the time-dependent metric

as ρ(t) = PC(t).
Thus, for the various reasons mentioned above it is important to have effective means

to construct LR-invariants in an efficient manner. The standard construction relies on an

inspired Ansatz for the invariant leading usually to a set of complicated coupled differential

equations. Following [7] we demonstrate here how these equations can be solved in an

efficient manner using time-ordered exponentials. In the main part of the paper we follow

an alternative route and construct invariants from point transformations. Previously this

was carried out for one-dimensional Hermitian [26] and non-Hermitian systems [27]. Here

we generalise this approach to the more complicated two-dimensional setting. Moreover we

show that one can use the point transformations to directly construct the time-dependent

Dyson map for a non-Hermitian time-dependent Hamiltonian as indicated in [28].

As a concrete model we discuss two harmonic oscillators that are coupled to each other

in space in a PT -symmetric fashion with explicitly time-dependent coefficient functions.

The Hamiltonian can be expressed conveniently in terms of generators of the symplectic

sp(4) Lie algebra.

Our manuscript is organised as follows: In Section 2 we recall some well known features

of the symplectic sp(4) Lie algebra, in particular two representations, that are essential to

set up our model. In Section 3 we construct the LR-invariants for our non-Hermitian model.

In the first part we express the invariants in terms of the sp(4) Lie algebraic generators and

solve the set of coupled differentials equations that arise from substituting this Ansatz into

the LR equation by means of time-ordered exponentials. In the second part we construct

the invariants from two dimensional point transformations using suitable reference Hamil-

tonians. Moreover, by acting with the point transformation on the more easily obtainable

Dyson map of the time-independent reference Hamiltonian, we construct their correspond-

ing time-dependent Dyson map and time-dependent Hermitian Hamiltonian counterpart.

Our conclusions are stated in Section 4.

– 2 –
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2. Mathematical preliminaries - the symplectic sp(4)-algebra

It is almost always convenient to express the model to be studied in terms a well-defined

Lie algebra. In our case we take this to be the symplectic Lie algebra sp(4,F) over the field

F = R or F = C. Its generators are defined as the set of (4× 4)-matrices M satisfying

ΩM +MᵀΩ = 0, with Ω =

(
0 I
−I 0

)
, (2.1)

where I denotes the (2× 2)-unit matrix, see for instance chapter 16 in [29]. One may find

the following Hermitian matrices solutions to (2.1) that commute with Ω

J0 =
ı

2

(
0 I
−I 0

)
, J1 =

ı

2

(
0 σ1

−σ1 0

)
, J2 =

ı

2

(
σ2 0

0 σ2

)
, J3 =

ı

2

(
0 σ3

−σ3 0

)
.(2.2)

Here the σi with i = 1, 2, 3 are standard (2×2)-Pauli matrices. The anti-Hermitian matrices

Q1 =
ı

2

(
−σ3 0

0 σ3

)
, Q2 =

ı

2

(
0 I
I 0

)
, Q3 =

ı

2

(
σ1 0

0 −σ1

)
, (2.3)

K1 =
ı

2

(
0 σ3

σ3 0

)
, K2 =

ı

2

(
I 0

0 −I

)
, K3 = − ı

2

(
0 σ1

σ1 0

)
, (2.4)

anti-commute with Ω and also solve (2.1), see e.g. [30]. We notice that these matrices are

related to the standard gamma matrices occurring in the Dirac equation as J1 = ı/2γ1,

J2 = ı/2γ2, J3 = ı/2γ3, K2 = ı/2γ0, Q2 = ı/2γ5, reflecting the fact that the Sp(4) group

is isomorphic to the O(3, 2) de Sitter group [31].

The ten generator J0, Ji, Qi,Ki, for i = 1, 2, 3 obey the commutation relations

[Ji, Jj ] = ıεijkJk, [Ji,Kj ] = ıεijkKk, [Ji, Qj ] = ıεijkQk, (2.5)

[Ji, J0] = 0, [Ki, J0] = ıQi, [Qi, J0] = −ıKi, (2.6)

[Ki,Kj ] = −ıεijkJk, [Qi, Qj ] = −ıεijkJk, [Ki, Qj ] = ıδijJ0, (2.7)

which is easily verified for the matrix representation (2.2)-(2.4), with εijk denoting the

standard Levi-Civita tensor and δij the Kronecker delta symbol. We observe that this

algebra remains invariant under the following antilinear symmetries

PT : J0 → J0, J1 → −J1, J2 → J2, J3 → J3, Q1 → −Q1, Q2 → Q2, Q3 → Q3, (2.8)

K1 → K1, K2 → −K2, K3 → −K3, ı→ −ı,
P̃T : J0 → −J0, J1 → J1, J2 → J2, J3 → −J3, Q1 → −Q1, Q2 → −Q2, Q3 → Q3, (2.9)

K1 → −K1, K2 → −K2, K3 → K3, ı→ −ı,

– 3 –



LR-invariants from 2D point transformations

Alternatively we may express the generators in terms of the coordinates x, y with corre-

sponding momenta px, py and non-vanishing commutators [x, px] = [y, py] = ı as

J0 =
1

4

(
p2
x + p2

y + x2 + y2
)
, (2.10)

J1 =
1

2
(xy + pxpy) , J2 =

1

2
(xpy − ypx) , J3 =

1

4

(
p2
x − p2

y + x2 − y2
)
, (2.11)

Q1 =
1

2
(ypy − xpx) , Q2 =

1

4

(
p2
x + p2

y − x2 − y2
)
, Q3 =

1

2
(xpy + ypx) , (2.12)

K1 =
1

4

(
p2
x − p2

y − x2 − y2
)
, K2 =

1

2
(xpx + pyy) , K3 =

1

2
(xy − pxpy) . (2.13)

One verifies that the generators expressed in this manner also satisfy the relations (2.5)-

(2.7). This Hermitian representation was already known to Dirac, see [31]. In this case the

PT -symmetry (2.8) corresponds to the mappings

PT ± : x→ ±x, y → ∓y px → ∓px, py → ±py, ı→ −ı. (2.14)

Identifying the parity operator as P = eıπJ3 and the time-reversal operator T as complex

conjugation, the adjoint action of PT on all the generators leads precisely to the mapping

in (2.8).

3. Time-dependent PT-symmetrically coupled oscillators from sp(4)

Let us now introduce the non-Hermitain model we will be investigating, the time-dependent

version of two oscillators coupled to each other in a complex PT -symmetrical fashion in

space

H =
a(t)

2

(
p2
x + p2

y

)
+

1

2

[
ωx(t)x2 + ωy(t)y

2
]

+ iλ(t)xy. (3.1)

Here a(t) is the inverse of a time-dependent mass, ωx(t) and ωy(t) are time-dependent force

constants and λ(t) is the time-dependent coupling strength between the two coordinates.

For the time-independent scenario, i.e. ȧ = ω̇x = ω̇y = λ̇ = 0, this system was previously

studied in [23, 32, 33]. Given the representation of the sp(4) Lie algebra (B.1)-(B.4), we

can express this Hamiltonian entirely in terms its generators

H =
a(t)

2
(J0 +Q2) +

Ω+(t)

2
(J0 −Q2) +

Ω−(t)

2
(J3 −K1) + iλ(t) (J1 +K3) , (3.2)

with Ω±(t) := ωx(t) ± ωy(t). For the (4 × 4)-matrix version of the Hamiltonian H(t) the

four instantaneous eigenvalues are easily computed to

ε±± = ±1

2

[
a(t)Ω2

+(t)± a(t)
√

Ω2
+(t)− 4λ2(t)

]1/2

. (3.3)

It should be stressed at this point that these are not the energy eigenvalues of the time-

dependent system, since H is non-Hermitian, see e.g. [16]. For the time-independent case

this agrees with the values found for the ground state in [23, 32, 33], so that in analogy to

that scenario we will speak of a PT -symmetric and spontaneously broken regime.

We identify P = 2J3 as the parity operator from the relation PHP = H† and the

time-reversal operator T as standard complex conjugation.

– 4 –
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3.1 LR-invariants from a Lie algebraic expansion

The defining relation for the Lewis-Riesenfeld invariants IH(t) is that it satisfies the Lewis-

Riesenfeld equation introduced in [18]

ı~∂tIH(t)− [H, IH(t)] = 0. (3.4)

Most attempts to explicitly construct IH(t) by solving (3.4) start by making a suitable

general Ansatz for the invariant. Considering a system with an underlying Lie algebra g

it is suggestive to simply expand the invariant in terms of the Lie algebraic generators Xi

for i = 1, . . . , rank g, as IH =
∑10

i=1 ci(t)Xi. Here it will be slightly more convenient to

assume

IH = c1(t) (Q1 −K2) + c2(t) (Q1 +K2) + c3(t) (J2 +Q3) + c4(t) (J2 −Q3) (3.5)

+c5(t) (J1 +K3) + c6(t) (J1 −K3) + c7(t) (J0 − J3 +K1 +Q2)

+c8(t) (J0 + J3 −K1 −Q2) + c9(t) (J0 + J3 +K1 +Q2) + c10(t) (J0 − J3 −K1 +Q2) .

The Ansatz (3.5) is a priori not obvious but chosen in hindsight to generate simpler con-

straints thereafter when substituting it into the Lewis-Riesenfeld equation (3.4). In doing

so we obtain the ten constraints for the time-dependent coefficient functions

ċ1 = ac8 − 2ωxc9 − ıλc6, ċ2 = 2ωyc10 − ac7 + ıλc6, ċ3 = ωxc6 −
1

2
ac5 + 2ıλc10,

ċ4 =
1

2
ac5 − ωyc6 − 2ıλc9, ċ5 = ωyc3 − ωxc4 + ıλ (c2 − c1) , ċ6 =

1

2
a (c4 − c3) , (3.6)

ċ7 = ωyc2 − ıλc4, ċ8 = −ωyc1 + ıλc3, ċ9 =
1

2
ac1, ċ10 = −1

2
ac2.

Thus, given the functions a(t), ωx(t), ωy(t), λ(t), we have to solve the system (3.6) for the

unknown time-dependent coefficient functions ci(t), with i = 1, . . . , 10.

3.1.1 Solutions from time-ordered exponentials

Next we solve the system of coupled first order differential equations (3.6) by means of

time-ordered exponentials following [7]. For this purpose we first re-write (3.6) as a matrix

equation

∂t~c = M~c, with M =



0 0 0 0 0 −iλ 0 a −2ωx 0

0 0 0 0 0 iλ a 0 0 2ωy
0 0 0 0 −a

2 ωx 0 0 0 2iλ

0 0 0 0 a
2 −ωy 0 0 −2iλ 0

−iλ iλ ωy −ωx 0 0 0 0 0 0

0 0 −a
2

a
2 0 0 0 0 0 0

0 ωy 0 −iλ 0 0 0 0 0 0

−ωx 0 iλ 0 0 0 0 0 0 0
a
2 0 0 0 0 0 0 0 0 0

0 −a
2 0 0 0 0 0 0 0 0



, (3.7)

– 5 –
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so that the general solution can be expressed in terms of time-ordered exponential as

~c(t) = T exp

[∫ t

0
M(s)ds

]
~c(0) (3.8)

=

∞∑
n=0

T

[∫ t

0
M(t1)dt1

∫ t1

0
M(t2)dt2 . . .

∫ tn−1

0
M(tn−1)dtn

]
~c(0), (3.9)

with t > t1 > . . . tn > 0 and T denoting the time-ordering operator. When the matrix

M(t) commutes for different times, i.e. [M(t),M(t′)] = 0 for t 6= t′, this expression can

be evaluated directly, as the time-ordering can be dropped so that (3.8) just becomes a

matrix exponential

~c(t) = exp

[∫ t

0
M(s)ds

]
~c(0) =

∞∑
n=0

1

n!

[∫ t

0
M(s)ds

]n
~c(0). (3.10)

The commutativity requirement on M(t) imposes the functions a(t), ωx(t), ωy(t), λ(t) to

be proportional to each other. Indeed, when making this assumption we find some general

solutions to the Lewis-Riesenfeld equation (3.4) in this manner. However, the solutions are

rather involved including also the 10 constants from the initial condition ~c(0) and we will

therefore not present here the generic expression.

Instead we make a few concrete and well-motivated choices that lead to simpler expres-

sions. First of all we take the proportionality to be a(t) = λ(t), ωx(t) = αλ(t), ωy(t) = λ(t),

leaving us with an arbitrary constant α. Moreover, keeping in mind that we would like

to employ the invariants in the construction of metric operators, we make use of the ob-

servation made in [7], that restricted Lewis-Riesenfeld invariants become time-dependent

C(t)-operators, which when multiplied with the parity P operator becomes the metric op-

erator ρ(t) = PC(t). The key restriction to be imposed is the involution property I2
H = I.

Let us now see how this is implemented for the invariant (3.5), which when expressing the

sp(4)-generators in the matrix representation (2.2)-(2.4) acquires the form

IH(t) = ı


−c1(t) −c4(t) 2c9(t) c6(t)

c3(t) c2(t) c6(t) 2c10(t)

−2c8(t) −c5(t) c1(t) −c3(t)

−c5(t) −2c7(t) c4(t) −c2(t)

 . (3.11)

This expression squares to I when implementing the following constraints

c1 =
√

4c8c9 + χ+ − 1, c2 =
2 (c4c6c8 − c3c5c9)

χ+

+
χ−
χ+

c1, (3.12)

c7 =
c1c4c5

χ+

− c8c
2
4 + c9c

2
5

χ+

, c10 = −c1c3c6

χ+

− c9c
2
3 + c8c

2
6

χ+

, (3.13)

where we abbreviated χ± = c3c4± c5c6. With these constraints we also obtain det IH = 1.

Next we chose an initial condition that respects these constraints also at the time t = 0 as

~c(0) = (0, 0, 1, 1, 0, 0, 0, 0, 0, 0). Evaluating the matrix exponential (3.10) by acting on this

– 6 –
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vector as the chosen initial condition yields the solution

c1(t) = c2(t) =
ı

2
√

1 + α
(C− − C+) , (3.14)

c3(t) =

√
1 + α+ α

2
√

1 + α
C− +

√
1 + α− α
2
√

1 + α
C+, c4(t) =

√
1 + α+ 1

2
√

1 + α
C− +

√
1 + α− 1

2
√

1 + α
C+, (3.15)

c5(t) =
1− α
a+

S+ +
1− α
a−

S−, c6(t) =
α− 1

2
√

1 + αa+
S+ +

1− α
2
√

1 + αa−
S−, (3.16)

c8(t) = −c7(t) =
ıS+

a+
+
ıS−
a−

, c9(t) = −c10(t) =
ıS−

2
√

1 + αa−
− ıS+

2
√

1 + αa+
, (3.17)

where

C± = cos

[
a±
2

∫ t

λ(s) ds

]
, S± = sin

[
a±
2

∫ t

λ(s) ds

]
, a± =

√
2

√
1 + α± 2

√
α+ 1.

(3.18)

We convinced ourselves that these solutions for the time-dependent coefficient function do

indeed satisfy the constraints (3.12) and (3.13).

3.2 LR-invariants from two dimensional point transformations

3.2.1 The general scheme

We will now utilise two dimensional point transformations to construct LR-invariants and

time-dependent Dyson maps for the above system. In general, point transformation are

canonical transformations in time and configuration coordinate space extended to a phase-

space transformation. Here we define the point transformations Γ as the map that maps the

TDSE for a two-dimensional time-independent reference Hamiltonian H0(χ, v), depending

on the coordinates χ, v, to the TDSE for a two-dimensional time-dependent non-Hermitian

target Hamiltonian H(x, y, t)

Γ : H0(χ, v)Ψ(χ, v, τ) = ı~∂τΨ(χ, v, τ) → H(x, y, t)Φ(x, t) = ı~∂tΦ(x, y, t), (3.19)

[χ, v, τ ,Ψ(χ, v, τ)] 7→ [x, y, t,Φ(x, y, t)] . (3.20)

The wave functions Ψ and Φ are implicit functions of the coordinates and time χ, v,τ

and x, y,t, respectively, defined by the associated TDSEs. The variables χ, v, τ , Ψ are

understood in general as functions P , Q, R, S of the new set of independent variables x,

y, t, Φ

χ = P (x, y, t,Φ), v = Q(x, y, t,Φ), τ = R(x, y, t,Φ), Ψ = S(x, y, t,Φ). (3.21)

For concrete systems one may be forced naturally to drop some of the dependences or

simply relax them for convenience.

The key feature is now that the point transformation Γ defined via (3.19) can be applied

to various other quantities that otherwise need to be constructed in a more complicated

and involved manner. In particular, when acting solely on the Hamiltonian H0, the map

leads to the LR-invariant IH(x, y, t) for the target system we are interested in. Moreover,

– 7 –



LR-invariants from 2D point transformations

when acting on the time-independent Dyson map for the reference Hamiltonian we obtain

directly the time-dependent Dyson map for the time-dependent target Hamiltonian.

We summarise the relations between various types of Schrödinger equations and Lewis-

Riesenfeld eigenvalue equations as follows:

H0(χ, v)Ψ(χ, v, τ) = ı~∂τΨ(χ, v, τ)
Γ−→ H(x, y, t)Φ(x, t) = ı~∂tΦ(x, y, t)

l
Ψ(χ, v, τ) = e−ıτE/~Ψ̃(χ, v)

l

l
Φ(x, y, t) = eıα(t)/~Φ̃(x, y, t)

l
H0(χ, v)Ψ̃(χ, v) = EΨ̃(χ, v)

Γ−→ IH(x, y, t)Φ̃(x, t) = ΛΦ̃(x, y, t)

l
h0(χ, v) = ηH0(χ, v)η−1

Ψ̃(χ, v) = ηψ̃(χ, v)

l

l
Ih(x, y, t) = η(t)IH(x, t)η−1(t)

Φ̃(x, y, t) = η(t)φ̃(x, y, t)

l
h0(χ, v)ψ̃(χ) = Eψ̃(χ, v)

Γ−→ Ih(x, t)φ̃(x, y, t) = Λφ̃(x, y, t)

l
ψ(χ, v, τ) = e−ıτE/~ψ̃(χ, v)

l

l
φ(x, y, t) = eıα(t)/~φ̃(x, y)

l
h0(χ, v)ψ(χ, v, τ) = ı~∂τψ(χ, v, τ)

Γ−→ h(x, y, t)φ(x, y, t) = ı~∂tφ(x, y, t)

Let us briefly explain the diagram by descending down the first column starting in the

top left corner with TDSE for the time-independent non-Hermitian reference Hamiltonian

H0(χ, v) that is mapped by factorization of the wave function into the time-independent

Schrödinger equations (TISE). In the next step we carry out a similarity transformation us-

ing the time-independent Dyson map to obtain the time-independent Schrödinger equation

for the Hermitian Hamiltonian h0(χ, v), which again by factorization of the wave function

is subsequently mapped to the TDSE for the time-independent Hermitian Hamiltonian

h0(χ, v).

In the second column we map the TDSE for the time-dependent non-Hermitian tar-

get Hamiltonian H(x, y, t) to the eigenvalue equation for the non-Hermitian LR-invariant

IH(x, y, t) with time-independent eigenvalue Λ by factorising off the LR-phase from the

wave function. The eigenvalue equation for the Hermitian LR-invariant Ih(x, y, t) is then

obtained by means of a similarity transformation using a time-dependent Dyson map, which

when extracting again the LR-phase is converted into the TDSE for the time-dependent

Hermitian Hamiltonian h(x, y, t).

All steps in each of the two columns have been successfully carried out for a number

of explicit systems. However, in comparison the calculations in the second column are

considerably more complicated than those in the first. Thus, the idea is to bypass these

steps by means of a point transformation Γ relating in the diagram the various equations

horizontally. We are especially interested in the construction of the non-Hermitian LR-

invariant IH(x, y, t) from the time-independent Hamiltonian H0(χ, v), the time-dependent

Dyson map η(t) from the time-independent Dyson map η and the Hermitian Hamiltonian

– 8 –
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h(x, y, t) from the action of Γ on the TDSE satisfied by h0(χ, v)

Γ : H0(χ)→ IH(x, t), (3.22)

Γ : η → η(t), (3.23)

Γ : h0(χ, v)ψ(χ, v, τ) = ı~∂τψ(χ, v, τ) → h(x, y, t)φ(x, y, t) = ı~∂tφ(x, y, t), (3.24)

The second mapping follows by decomposing Γ : Ψ̃(χ, v) → Φ̃(x, y, t) into Γ : ψ̃(χ, v) →
φ̃(x, y, t) and the remainder Γ : η → η(t). Let us now turn to our concrete model.

3.2.2 Point transformation Γ for a general target Hamiltonian

We consider here a slightly modified version of the Hamiltonian in (3.1) given by

H(x, y, t) =
a(t)

2

(
p2
x + x2

)
+
b(t)

2

(
p2
y + y2

)
+ ıλ(t)xy, (3.25)

which in terms of the generators of the sp(4)-algebra is expressed as

H = a(t) (J3 + J0) + b(t) (J0 − J3) + ıλ(t) (J1 +K3) . (3.26)

We will now employ two dimensional point transformations in the study of this system

to obtain a non-Hermitian invariant IH(x, y, t) as well as the time-dependent Dyson map

η(t). Taking (3.25) as the target Hamiltonian satisfying the TDSE

H(x, y, t)Φ(x, y, t) = ı~∂tΦ(x, y, t), (3.27)

we choose for our reference Hamiltonian a time-independent version of (3.25) given by

H0(χ, υ) =
α

2

(
p2
χ + χ2

)
+
β

2

(
p2
υ + υ2

)
+ ıΛχυ, α, β,Λ ∈ R, (3.28)

satisfying the TDSE

H0(χ, υ)Ψ(χ, υ, τ) = ı~∂τΨ(χ, υ, τ). (3.29)

We simplify the general functional dependences (3.21) to

χ = χ(y, t), υ = υ(x, t), τ = τ(t), Ψ = A(x, y, t)Φ(x, y, t). (3.30)

and convert all the partial derivatives in the TDSE from the (χ, υ, τ) to the (x, y, t)-variables

obtaining the point transformed differential equation

ı~Φt +
~2

2

βτ t
υ2
x

Φxx +
~2

2

ατ t
χ2
y

Φyy +B0,x(x, y, t)Φx +B0,y(x, y, t)Φy−V0(x, y, t)Φ = 0, (3.31)

with

B0,x(x, y, t) = − ı~υt
υx

+
~2

2

τ t
υ2
x

(
2βAx
A
− βυxx

υx
− αυxυyy

χ2
y

)
, (3.32)

B0,y(x, y, t) = − ı~χt
χy

+
~2

2

τ t
χ2
y

(
2αAy
A
−
βχyχxx
υ2
x

−
αχyy
χy

)
, (3.33)

V0(x, y, t) =
τ t
2

(
βυ2 + 2iΛχυ + αχ2

)
− ı~

(
At
A
− Axυt
Aυx

− Ayχt
Aχy

)
(3.34)

− ~2τ t
2A

[
α

χ2
y

(
Ay,y −

Axυy,y
υx

−
Ayχyy
χy

)
+

β

υ2
x

(
Axx −

Axυxx
υx

− Ayχxx
χy

)]
.
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The motivation behind the first two assumptions in (3.30) is dictated by the form of the

target differential equation and the fact that there are no Φxy terms present. There are in

fact other choices to ensure this term to vanish, but for now this simplification is adequate

for the construction of the point transformation. Similarly, the last factorization property

in (3.30) ensures that there are no nonlinear Φ2
x and Φ2

y terms. Having τ only being a

function of t is to reduce the complexity of the calculation.

3.2.3 Point transformation Γ for the target Hamiltonian H(x, y, t)

The target Hamiltonian is chosen to be the one in (3.25) with associated TDSE

ı~Φt +
~2

2
a(t)Φxx +

~2

2
b(t)Φyy −

(
1

2
a(t)x2 +

1

2
b(t)y2 + ıλ(t)xy

)
Φ = 0. (3.35)

Comparing this equation directly with the differential equation (3.31) leads to the five

constraints

a(t) =
βτ t
υ2
x

, b(t) =
ατ t
χ2
y

, B0,x(x, y, t) = 0, B0,y(x, y, t) = 0, (3.36)

V0(x, y, t) =
1

2

(
a(t)x2 + 2ıλ(t)xy + b(t)y2

)
. (3.37)

To guarantee that a(t) is different from b(t) we introduce the three real valued functions

µ(t), σ(t) and r(t), and solve the first two constraints with

υ(x, t) = µ(t)x+ γ1(t), χ(y, t) = σ(t)y + γ2(t), τ(t) =

∫ t

r(s)ds, (3.38)

where γ1(t) and γ2(t) and real valued constants of integration. Using these expressions in

the third and fourth constraints of (3.36) yields the two equations

~
αrAx
Aσ2

= ı

(
σt
σ
x+

(γ2)t
σ

)
, and ~

βrAy
Aµ2

= ı

(
µt
µ
y +

γt
µ

)
. (3.39)

These two equations are solved by

A(x, y, t) = exp

{
ı

2αβ~r
[βyµ (2γt + yµt) + αxσ (2(γ2)t + xσt)] + δ(t)

}
, (3.40)

where δ(t) is a real valued function resulting from integration. We proceed next with these

expressions in the fifth and final constraint in (3.37), yielding

1

2

[
ı~
(

2δt +
µt
µ

+
σt
σ

)
− r

(
αγ2

1 + 2ıλγ1γ2 + βγ2
2

)
+

1

r

(
(γ1)2

t

α
+

(γ2)2
t

β

)]
(3.41)

− σ

βr2

[
βr3 (ıΛγ1 + βγ2)− rt(γ2)t + r(γ2)tt

]
x+ ı (λ− Λrσµ)xy

− µ

αr2

[
αr3 (ıΛγ2 + αγ1)− rt(γ1)t + r(γ1)tt

]
y +

1

2

[
σ (rtσt − rσtt)

βr2
−
βr
(
σ4 − 1

)
σ2

]
x2

+
1

2

[
µ (rtµt − rµtt)

αr2
−
α
(
µ4 − 1

)
r

µ2

]
y2 = 0.
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We notice immediately that the xy-dependent term vanishes for

λ = Λrσµ. (3.42)

We set γ1 = γ2 = 0 ensuring that the x and y dependent terms vanish. The x and y

independent terms vanish for

δ(t) = c1 −
1

2
ln(µσ), (3.43)

where c1 is a real time-independent integration constant. Finally we notice that the coeffi-

cient functions for the x2 and y2 terms amount to two independent dissipative Ermakaov-

Pinney equations [34,35]

σtt −
rt
r
σt + β2r2σ2 =

β2r2

σ3
, and µtt −

rt
r
µt + α2r2µ2 =

α2r2

µ3
. (3.44)

The solutions to these two equations are

σ(t) =

√√
1 + c2

2 + c2 cos

[
2β

∫ t

r(s)ds

]
, (3.45)

µ(t) =

√√
1 + c2

3 + c3 cos

[
2α

∫ t

r(s)ds

]
, (3.46)

respectively, where c2 and c3 are constants.

With this we have completed the construction of the point transformation Γ and we

can use it next to obtain a non-Hermitian invariant for the target Hamiltonian (3.25) as

well as the time-dependent Dyson map. These calculations will be carried in terms of the

generators of the generators of the sp(4) Lie algebra and so it is instructive here to present

how the point transformation acts on the individual generators.

3.2.4 LR-invariants from Γ

We now use the point transformation Γ defined by the equations (B.5)-(B.14) and (B.15)

to obtain the non-Hermitian invariant for the target Hamiltonian (3.25). Acting directly

on the reference Hamiltonian (3.28) and not the TDSE, we obtain

IH(t) =
β

2σ2
(J3 + J1 + J0 +Q2) +

α

2µ2
(J0 +Q2 − J3 −K1) +

σt
rσ

(K2 −Q1) (3.47)

+
µt
rµ

(K2 +Q1) +
1

2

(
σ2
t

βr2
+ βσ2

)
(J3 −K1 + J0 −Q2)

+
1

2

(
µ2
t

αr2
+ αµ2

)
(K1 − J3 + J0 −Q2) + iΛσµ(J1 +K3).

We have verified that this expression for the invariant IH(t) does indeed satisfy the Lewis-

Riesenfeld equation (3.4).
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3.2.5 Time-dependent Dyson map from Γ

Next we use the point transformation Γ to obtain the time-dependent Dyson map for

the target Hamiltonian (3.25). To do so we must first determine the time-independent

Dyson map for the reference Hamiltonian (3.28). We make the following Ansatz for the

time-independent Dyson map

η = exp[κ1(Q3 − J2) + κ2(Q3 + J2)], κ1, κ2 ∈ R, (3.48)

and act adjointly with it on the reference Hamiltonian (3.28). The requirement for the

non-Hermitian terms to vanish to ensure that we are left with a Hermitian Hamiltonian

results in the two constraining equations

2Λ cos[2
√
κ1κ2] =

(α+ β)(κ1 + κ2) sin[2
√
κ1κ2]

√
κ1κ2

, (3.49)

and

2Λ cos[2
√
κ1κ2] =

(α− β)(κ1 − κ2) sin[2
√
κ1κ2]

√
κ1κ2

. (3.50)

These equations are easily solved for κ1 and κ2

κ1 =
1

2

√
α

β
arctanh

[
2
√
αβΛ

α2 − β2

]
and κ2 = −1

2

√
β

α
arctanh

[
2
√
αβΛ

α2 − β2

]
. (3.51)

The resulting Hermitian Hamiltonian is then given by

h0 = ηH0η
−1 (3.52)

=
(α+ β)∆− (α− β)3

4αβ
J3 +

(β − α)∆ + (α+ β)3

4αβ
J0

+
(α2 − β2 −∆)

4αβ
[(α+ β)K1 − (α− β)Q2] ,

where we introduced the abbreviation

∆ :=

√
(α2 − β2)2 − 4αβΛ2 (3.53)

Now that we have determined the time-independent Dyson map, we can act on it with

the point transformation Γ to obtain

Γ(η)→ η(t) = exp[κ2
µ

σ
(Q3 − J2) + κ1

σ

µ
(Q3 + J2) +

βκ1σµt + ακ2µσt
αβr

(K3 + J1)]. (3.54)

Acting adjointly with this map on the time-dependent non-Hermitian invariant (3.47) does

indeed produce a Hermitian invariant given by

Ih(t) =η(t)IH(t)η(t)−1 =
1

4

{
2α

µ2
(J0 − J3 −K1 +Q2) +

2β

σ2
(J0 + J3 +K1 +Q2) (3.55)

+
4µt
rµ

(K2 +Q1) +
1

α

[
(α2 + β2 + ∆)µ2 +

2µ2
t

r2

]
(J0 − J3 +K1 −Q2)

+
4σt
rσ

(K2 −Q1) +
1

β

[
(α2 + β2 −∆)σ2 +

2σ2
t

r2

]
(J0 + J3 −K1 −Q2)

}
.

Given that this invariant is Hermitian we conclude that equation (3.54) is a Dyson map

for the target Hamiltonian (3.25)
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3.2.6 Time-dependent Hermitian Hamiltonian from Γ

We now wish to determine the time-dependent Hermitian Hamiltonian which is related to

the target Hamiltonian (3.25) via the time-dependent Dyson equation

h(t) = η(t)H(t)η−1(t) + i~∂tη(t)η(t)−1. (3.56)

In general this equation is difficult to solve due the presence of the time-derivative terms

on the Dyson map. Here we show that alternatively we can instead use the point transfor-

mation to find η(t) and h(t) directly.

We start by acting with the point transformation Γ on the time-independent Hermitian

Hamiltonian constructed in (3.52) which leads to a time-dependent Hermitian invariant

for this Hamiltonian, Γ(h0) → Ih(t). We verify that the result is indeed the Hermitian

invariant given in equation (3.55). Subsequently, corresponding to the last step in our

scheme outlined in section 3.2.1, we act with Γ on the entire TDSE satisfied by h0 and

identify from the resulting equation the time-dependent Hermitian Hamiltonian

h(t) =
rα

µ2
(J0 − J3) +

rβ

σ2
(J0 + J3)− rµ2

4α
(α2 − β2 −∆)(J0 − J3 +K1 −Q2) (3.57)

− rσ2

4β
(β2 − α2 + ∆)(J0 + J3 −K1 −Q2).

This Hamiltonian is indeed the one on the right hand side in (3.56) and is indeed the

Hermitian Hamiltonian for the invariant constructed in (3.55).

4. Conclusions

As our two main results we showed first of all that the previously observed feature that

LR-invariants can be obtained directly from the action of point transformation on a time

dependent Hamiltonian generalised from one to two dimensions. Furthermore we showed

that time-dependent Dyson maps and time-dependent Hermitian counterparts can also

be obtained by means of the action of the point transformation on the corresponding

time-independent Dyson maps and TDSE, respectively. Hence this approach completely

bypasses to solve the time-dependent Dyson equation (3.56) directly.

Here we are content with a proof of concept, but naturally it would be interesting to

explore this scheme further, as for instance constructing the metric operator from the Dyson

map and investigate its properties, start with different types of reference Hamiltonians,

construct all related eigenfunctions and explore the energy spectra in all PT -regimes.

Regarding the model itself our analysis has clearly demonstrated that it is extremely

advantageous to express the model entirely in terms of the generators of the sp(4)-Lie

algebra, which not only greatly simplifies the computations when compared to this in

coordinate or momentum space, but also provides a more systematic framework.

Thus we may compare the two approaches. When the Hamiltonian can be expressed

in terms of the generators of a closed algebra, we can also expand the invariant in terms

of the same generators. The Lewis-Riesenfeld equation then leads to a well-defined system
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of coupled differential equations. Here we employed time-ordered exponentials to find

some simple algebraic solutions with the imposition of some constraints. As previously

demonstrated these type of equations may also be solved by other means. In contrast,

the point transformation approach is more direct and once set up, it leads inevitably to a

solution. However, it does require an element of guess work setting up a suitable reference

Hamiltonian for a given target Hamiltonian.

Acknowledgments: RT is supported by EPSRC grant EP/W522351/1.

Appendix A Two dimensional point transformations

In this appendix we provide the details on how to derive central equations (3.31) and (3.32)

to (3.34) given in the main body of the paper.

We wish to determine the point transformation which maps the TDSE (3.29) for the

reference Hamiltonian to that of the target Hamiltonian (3.27). The wavefunctions Ψ and

Φ are implicit functions of the variables (χ, υ, τ) and (x, y, t) respectively with assumed

functional dependence

χ = χ(x, y, t), υ = υ(x, y, t), τ = τ(x, y, t), Ψ = R(x, y, t,Φ(x, y, t)). (A.1)

We first compute the total derivatives of Ψ with respect to the variables x, y and t

dΨ

dx
= Ψχχx + Ψυυx + Ψττx = RΦΦx +Rx (A.2)

dΨ

dy
= Ψχχy + Ψυυy + Ψττy = RΦΦy +Ry (A.3)

dΨ

dt
= Ψχχt + Ψυυt + Ψττ t = RΦΦt +Rt. (A.4)

We solve this system of equations for the unknown functions Ψχ, Ψυ and Ψτ obtaining

Ψχ =
1

J
{RΦ [υy (Φtτx − τ tΦx) + υx (τ tΦy − Φtτy) + υt (Φxτy − τxΦy)] (A.5)

Ry (τ tυx − υtτx) +Rt (τxυy − υxτy) +Rx (υtτy − τ tυy)} ,

Ψυ =
1

J

{
RΦ

[
χy (τ tΦx − Φtτx) + χt (τxΦy − Φxτy) + χx (Φtτy − τ tΦy)

]
(A.6)

+Ry (χtτx − τ tχx) +Rx
(
τ tχy − χtτy

)
+Rt

(
χxτy − τxχy

)}
,

Ψτ =
1

J

{
RΦ

[
χy (Φtυx − υtΦx) + χx (υtΦy − Φtυy) + χt (Φxυy − υxΦy)

]
(A.7)

+Ry (υtχx − χtυx) +Rt
(
υxχy − χxυy

)
+Rx

(
χtυy − υtχy

)}
,

where

J = χt (τxυy − υxτy) + χx (υtτy − τ tυy) + χy (τ tυx − υtτx) (A.8)
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is the Jacobian. We also compute the second derivatives of Ψ with respect to x and y

obtaining

d2Ψ

dx2
= 2τx (υxΨυ,τ + χxΨχ,τ ) + τ2

xΨτ ,τ + Ψττx,x + Ψυυx,x + υ2
xΨυ,υ (A.9)

+ 2υxχxΨχ,υ + χ2
xΨχ,χ + Ψχχx,x,

d2Ψ

dx2
= Φ2

xRΦ,Φ + 2ΦxRΦ,x +RΦΦx,x +Rx,x, (A.10)

d2Ψ

dy2
= 2τy

(
υyΨυ,τ + χyΨχ,τ

)
+ τ2

yΨτ ,τ + Ψττy,y + Ψυυy,y + υ2
yΨυ,υ (A.11)

+ 2υyχyΨχ,υ + χ2
yΨχ,χ + Ψχχy,y,

d2Ψ

dy2
= Φ2

yRΦ,Φ + 2ΦyRΦ,y +RΦΦy,y +Ry,y. (A.12)

To remove the nonlinear terms present in (A.10) and (A.12) we factorise the wavefunction

as

Ψ = A(x, y, t)Φ, (A.13)

such that RΦ,Φ = 0. To greatly reduce the difficulty of the calculation we also choose to

simplify the functional dependence of τ to

τ = τ(t). (A.14)

We make one final simplification on the functional dependence of χ and υ to ensure there

are no ΦXY terms present in the resulting point transformed differential equation, that

being

χ = χ(y, t) and υ = υ(x, t). (A.15)

We stress here though that this a choice, and there are other simplifications which would

lead to the same outcome.

With all of the simplifications we may now use equations (A.5)-(A.7) and (A.9)-(A.12)

to obtain

Ψχ =
1

χy
(ΦAy +AΦy) , (A.16)

Ψυ =
1

υx
(ΦAx +AΦx) , (A.17)

Ψχ,χ =
1

χ3
y

[
Ay
(
2χyΦy − Φχy,y

)
+ χy (ΦAy,y +AΦy,y)−AΦyχy,y

]
, (A.18)

Ψυ,υ =
1

υ3
x

[Ax (2υxΦx − Φυx,x) + υx (ΦAx,x +AΦx,x)−AΦxυx,x] , (A.19)

Ψτ =
1

τ tχyυx

[
χy (υx (ΦAt +AΦt)− ΦAxυt −AυtΦx)− ΦAyχtυx −AχtυxΦy

]
. (A.20)

Substituting these expressions into the TDSE for the reference Hamiltonian (3.29) yields

the point transformed differential equation given in (3.31).
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Appendix B The point transformation Γ acting on the sp(4) generators

In the appendix we present the details on how the point transformation acts on the gen-

erators of the sp(4)- Lie algebra. Denoting the generators for the reference Hamiltonian

with primes as

J ′0 =
1

4

(
p2
χ + p2

υ + χ2 + υ2
)
, (B.1)

J ′1 =
1

2
(χυ + pχpυ) , J ′2 =

1

2
(χpυ − υpχ) , J ′3 =

1

4

(
p2
χ − p2

υ + χ2 − υ2
)
, (B.2)

Q′1 =
1

2
(υpυ − χpχ) , Q′2 =

1

4

(
p2
χ + p2

υ − χ2 − υ2
)
, Q′3 =

1

2
(χpυ + υpχ) , (B.3)

K ′1 =
1

4

(
p2
χ − p2

υ − χ2 − υ2
)
, K ′2 =

1

2
(χpχ + pυυ) , K ′3 =

1

2
(χυ − pχpυ) , (B.4)
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the action of the point transformation Γ on them are then computed to

J ′0
Γ−→ 1

4

[
J0 − J3 −K1 +Q2

µ2
+
J0 + J3 +K1 +Q2

σ2
+

2 (K2 −Q1)σt
βrσ

(B.5)

+
(J0 + J3 −K1 −Q2)

(
β2r2σ2 + σ2

t

)
β2r2

+
2 (K2 +Q1)µt

αµr
.

+
(J0 − J3 +K1 −Q2)

(
α2µ2r2 + µ2

t

)
α2r2

]

J ′1
Γ−→ J1 −K3

2µσ
+

1

2
(J1 +K3)

(
µσ +

µtσt
αβr2

)
+

(Q3 − J2)µt
2αrσ

+
(J2 +Q3)σt

2βµr
, (B.6)

J ′2
Γ−→ (J1 +K3) (αµσt − βσµt)

2αβr
+
µ (Q3 − J2)

2σ
− σ (J2 +Q3)

2µ
, (B.7)

J ′3
Γ−→ 1

2

[
J0 − J3 −K1 +Q2

µ2
+

2 (K2 +Q1)µt
αµr

− J0 + J3 +K1 +Q2

σ2
(B.8)

+
(J0 − J3 +K1 −Q2)

(
α2µ2r2 + µ2

t

)
α2r2

+
2 (Q1 −K2)σt

βrσ

−
(J0 + J3 −K1 −Q2)

(
β2r2σ2 + σ2

t

)
β2r2

]
,

Q′1
Γ−→ σσt (J0 + J3 −K1 −Q2)

2βr
− µµt (J0 − J3 +K1 −Q2)

2αr
−Q1, (B.9)

Q′2
Γ−→ 1

4

[
J0 − J3 −K1 +Q2

µ2
+
J0 + J3 +K1 +Q2

σ2
+

2 (K2 +Q1)µt
αµr

(B.10)

+
2 (K2 −Q1)σt

βrσ
−

(J0 − J3 +K1 −Q2)
(
α2µ2r2 − µ2

t

)
α2r2

−
(J0 + J3 −K1 −Q2)

(
β2r2σ2 − σ2

t

)
β2r2

]
,

Q′3
Γ−→ (J1 +K3) (αµσt + βσµt)

2αβr
+
µ (Q3 − J2)

2σ
+
σ (J2 +Q3)

2µ
, (B.11)

K ′1
Γ−→ 1

4

[
J0 − J3 −K1 +Q2

µ2
− J0 + J3 +K1 +Q2

σ2
+

2 (K2 +Q1)µt
αµr

(B.12)

+
2 (Q1 −K2)σt

βrσ
−

(J0 − J3 +K1 −Q2)
(
α2µ2r2 − µ2

t

)
α2r2

+
(J0 + J3 −K1 −Q2)

(
β2r2σ2 − σ2

t

)
β2r2

+
2 (Q1 −K2)σt

βrσ

]
,

K ′2
Γ−→ µµt (J0 − J3 +K1 −Q2)

2αr
+
σσt (J0 + J3 −K1 −Q2)

2βr
+K2, (B.13)

K ′3
Γ−→ −J1 −K3

2µσ
+

1

2
(J1 +K3)

(
µσ − µtσt

αβr2

)
− (Q3 − J2)µt

2αrσ
− (J2 +Q3)σt

2βµr
. (B.14)

The time-derivative Ψτ when expressed in terms of the Lie algebraic generators then trans-
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LR-invariants from 2D point transformations

forms as

i~τ tΨτ
Γ−→ i~Ψt + r (J0 − J3 +K1 −Q2)

(
α
(
µ4 − 1

)
2µ2

+
µ2
t

2αr2

)
+

(K2 +Q1)µt
µ

(B.15)

+
1

2
r (J0 + J3 −K1 −Q2)

(
β
(
σ4 − 1

)
σ2

+
σ2
t

βr2

)
+

(K2 −Q1)σt
σ

.
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