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The Unnecessity of Assuming Statistically
Independent Tests in Bayesian Software

Reliability Assessments
Kizito Salako, Xingyu Zhao

Abstract—When assessing a software-based system, the results of Bayesian statistical inference on operational testing data can
provide strong support for software reliability claims. For inference, this data (i.e. software successes and failures) is often assumed to
arise in an independent, identically distributed (i.i.d.) manner. In this paper we show how conservative Bayesian approaches make this
assumption unnecessary, by incorporating one’s doubts about the assumption into the assessment. We derive conservative confidence
bounds on a system’s probability of failure on demand (pfd), when operational testing reveals no failures. The generality and utility of
the confidence bounds are illustrated in the assessment of a nuclear power-plant safety-protection system, under varying levels of
skepticism about the i.i.d. assumption. The analysis suggests that the i.i.d. assumption can make Bayesian reliability assessments
extremely optimistic – such assessments do not explicitly account for how software can be very likely to exhibit no failures during
extensive operational testing despite the software’s pfd being undesirably large.

Index Terms—conservative Bayesian inference, CBI, dependability claims, independent software failures, operational testing, software
reliability assessment, statistical testing

✦

1 INTRODUCTION

C ONSIDER a software-based on-demand system subjected to
black-box operational testing. During testing, an assessor

observes the system – in particular, the software – as it responds to
each demand in a random sequence of demands. By noting those
demands the software correctly responds to, and those it fails on,
the assessor intends to gain enough confidence to support claims
of the system being sufficiently reliable1. For example, confidence
in the system’s unknown probability of failure on demand (pfd)
– X say – being sufficiently small. A Bayesian approach to
gaining such confidence typically requires 2 things of our assessor:
i) prior to operational testing, the assessor must scrutinise all
evidence related to the system’s operational readiness. Via such
probing and the assessor’s domain expertise, the assessor forms
beliefs about which ranges of pfd values are most likely, and
which ranges are less so. Examples of evidence include formal
analyses of a codebase, the performance of a system during
operation [1], the historical performance of similar systems [2],
[3], and improvements in software development approaches [4];
ii) the assessor must postulate a statistical model – in essence, a
family of stochastic processes, any of which could characterise the
occurrence of the system’s successes and failures during operation.
These processes should exhibit statistical properties consistent
with the assessor’s beliefs.

For the statistical model it is often assumed that software
failures and successes are the outcomes of independent, identi-
cally distributed (i.i.d.) Bernoulli trials. This is mathematically
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1. This work focuses on software reliability; i.e. only software failures are

considered to cause system failure.

convenient and guarantees the strong law of large numbers – i.e.,
operational testing statistics converge almost surely to dependabil-
ity measures of interest (e.g. pfd). The i.i.d. assumption can also
be reasonable on practical grounds: a typical justification is when
demands are rare, and the states/properties of the software and its
operational environment are effectively “reset” inbetween these
rare demand occurrences. Nevertheless, we must point out that
any statistical model used in reliability assessment – including
one reliant on the i.i.d. assumption – is necessarily a postulate.
One does not (cannot?) know with complete certainty that such
model assumptions are valid in practice. The skeptical assessor
allows for the possibility that the i.i.d. assumption does not hold,
even if this is unlikely. By incorporating their skepticism into the
assessment, our assessor can investigate whether their doubts have
a significant impact on their confidence in the system. In the best
case, their confidence is insensitive to significant departures from
the i.i.d. assumption. But in the worst case, ignoring the slightest
failure correlations could lead to seriously misplaced confidence
and dangerously optimistic reliability claims.

To aid the skeptical assessor, this work presents a new appli-
cation of conservative Bayesian inference (CBI) techniques for
reliability assessments. The paper’s research contributions are:

1) incorporating a formal notion of “doubting” the i.i.d. assump-
tion into reliability assessments (Section 5);

2) a novel CBI technique that accounts for correlated opera-
tional testing outcomes (Sections 4, 5 and Appendices B, C);

3) a theorem that gives conservative posterior confidence
bounds on a system’s pfd (Section 5 and Appendices B, D).

The paper’s outline: Section 2 gives critical context, while
Section 3 reviews CBI. Section 4 introduces a statistical model for
(possibly) dependent system failures/successes. The conservative
confidence bounds on pfd in Section 5 are applied in Section 6,
and discussed in Section 7. Section 8 concludes the paper.
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2 RELATED WORK

2.1 The i.i.d. Assumption in Reliability Assessments

Statistical models with the i.i.d. assumption have a long history of
being used in software reliability assessment. Thayer et al.’s [5]
model was one of the earliest, used in early works on random
testing [6]. Regulatory bodies have recommended using the i.i.d.
assumption in reliability assessments when appropriate [7].

But there are reasons to doubt the assumption. For instance,
the possibility of “failure clustering”; where a system receives se-
quences of inputs from its operational environment that cause the
system to fail. These inputs form trajectories through a system’s
failure region – the subset of inputs that cause system failure.
Failure regions can have topologically interesting properties that
allow for failure clustering [8], [9]. These observations informed
random testing approaches [10] and approaches for assessing
systems with recovery block fault-tolerance [11], [12].

2.2 Weakening the i.i.d. Assumption: Statistical Models

Various statistical models that weaken the i.i.d. assumption in-
clude: Chen and Mill’s binary Markov chain [13], Goseva-
Popstojanova and Trivedi’s Markov renewal process [14] (ex-
tended in [15] by Xie et al.), and Bondavalli et al.’s Markov
model [16] with benign-failure states. Classical statistical infer-
ence produces “point estimates” for these models’ parameters,
using only data from operational testing. Such estimates do not re-
flect an assessor’s uncertainty about whether the i.i.d. assumption
holds or not. Indeed, fitted parameter values imply that the models
either exhibit dependence, or they do not – there is no room for
uncertainty here. In contrast, Bayesian inference – our preferred
approach – allows for such uncertainty. In this paper, within a
Bayesian framework, we model the system’s failure process as a
Markov chain introduced by Klotz [17]. The Klotz model predates,
is consistent with, and has (at most) as many states/parameters as,
the models in [13], [14].

Another advantage of Bayesian approaches is the assessor’s
beliefs (about the unknown pfd) are explicitly accounted for in
the assessment; beliefs that are justified by various forms of
reliability evidence. And, although models of dependent system
failures/successes have been developed, none of the assessment
approaches using these models provide demonstrably conservative
statistical support for the skeptical assessor. Particularly when
such support is justified by operational testing and other forms of
reliability evidence. To the best of our knowledge, ours is the first
approach to guarantee conservatism in the face of i.i.d. uncertainty.

2.3 (Conservative) Bayesian Methods for Assessments

Bayesian methods have been applied in various assessment scenar-
ios, e.g. [2], [18] involve hierarchical models, while [19]–[22] all
use families of Beta prior distributions. More recently, conserva-
tive Bayesian inference (CBI) methods have been developed to: i)
address the usual challenge of eliciting a suitable prior distribution
from an assessor – a prior that captures all, and only all, of an
assessor’s beliefs/views about the pfd; ii) give support for the most
pessimistic reliability claims allowed by the reliability evidence.
Thereby, CBI prevents dangerously optimistic claims.

Bishop et al. [23] introduced CBI, illustrating its use in assess-
ing safety-critical systems. Povyakalo et al. [24] use CBI to obtain
the smallest probability of the system surviving future demands,
and Salako [25] applies CBI to assessing binary classifiers. While

Flynn et al. [26], [27] apply CBI in the assessment of autonomous
vehicle safety. Littlewood et al. [28] show how CBI supports
dependability claims when evidence suggests a new system is
an “improvement” over an older system it replaces. Salako et
al. [29] extend this work, by considering more general “improve-
ment arguments” for a wider range of assessment scenarios. Our
application of CBI differs from these in 2 important ways: it allows
for dependent testing outcomes during operational testing, and it
incorporates skepticism of the i.i.d. assumption into assessments.

CBI methods are closely related to robust Bayesian analy-
sis [30]–[33], which studies how the results of Bayesian inference
are impacted by uncertainty about the inputs to inference –
inputs such as the prior distribution and the statistical model.
In particular, Lavine [32] outlines methods that reveal how un-
certainty about the statistical model (specifically, about the so-
called sampling distribution) impacts inference. This uncertainty
is represented by a suitably general joint prior distribution over
the family of stochastic processes defined by the statistical model.
Subject to constraints on this prior, algorithms give the largest and
smallest values for posterior measures of interest – e.g. posterior
expectations. Our use of CBI parallels the statistical techniques
of Lavine, but applied to reliability assessments. Also, Lavine
considers likelihoods consisting of products of the same functional
form, while we do not (in order to weaken the i.i.d. assumption).

Draper [34] also tackles the problem of statistical model un-
certainty in Bayesian inference, but offers an alternative solution.
If one is uncertain about a model’s assumptions – specifically,
assumptions that constrain the structural/functional forms of the
related family of stochastic processes – one could replace the
model with an expanded model. This expanded model encom-
passes all of the stochastic processes defined under the original
model, as well as other stochastic processes that violate the
assumptions in question. A suitable prior distribution over this
expanded model has to be defined. Draper argues for this Bayesian
hierarchical model as a way of addressing model uncertainty. We
concur, and further argue for the inference to be conservative; our
results are guaranteed to be conservative, while Draper’s are not.

For uncertainty about finitely many alternative models, Peric-
chi et al. [35] use discrete prior distributions over these alterna-
tives. In principle, this is a hierarchical model akin to Draper’s
approach, but in more abstract terms within the robust Bayes
framework. Our results lie at the intersection of Pericchi et al.
and Draper’s ideas, within a reliability assessment context.

2.4 On-demand vs Continuously Operating Software
This work focuses on assessing on-demand systems: i.e. systems
that do not operate continuously, taking action only when certain
operating conditions (i.e. demands) arise [36], [37]. Reliability
assessments for such systems can use “discrete-time” statistical
models (e.g. Bernoulli processes) with appropriate reliability
measures (e.g. pfd). Contrast this with continuously operating
software2 [38]; for assessing these systems, it is more appro-
priate to employ “continuous-time” statistical models (e.g. non-
homogeneous Poisson processes) and consider reliability measures
like failure-rates. Software reliability growth models (SRGMs) are
an extensive family of stochastic processes used in predicting the
future reliability of continuously operating, evolving software (e.g.
software with bugs that are discovered and fixed overtime). If bug
fixing is successful without introducing new software bugs then,

2. Such software can have downtime due to, say, maintenance or upgrades.



3

ceteris paribus, the software becomes more reliable with each
fix; i.e. reliability “grows”. Singpurwalla and Wilson [39] give
an overview of early SRGMs, while Miller [40] details a unified
mathematical characterisation of large SRGM subfamilies. Also,
see Bergman and Xie’s review of early Bayesian SRGMs [41].

3 REVIEW: BAYESIAN RELIABILITY ASSESSMENT

Statistical inference for reliability claims comes in different
flavours. The classical “frequentist” confidence statement, e.g.
95% confidence in a pfd bound b, typically means that with a
sufficiently large number of i.i.d. tests, there is no more than a 5%
chance that the software succeeds on all the tests despite having
a pfd worse than b. While the Bayesian approach, instead, treats
pfd as a random variable, with a “prior” probability distribution
representing an assessor’s evidence-based beliefs about the pfd
before operational testing. The assessor updates their beliefs (via
Bayes Theorem) upon seeing testing evidence. This yields a
“posterior” distribution. Reliability claims can be made using this
posterior; claims that reflect the assessor’s updated judgements.
For example, after seeing a sufficiently large number of successful
tests, the assessor’s Bayesian “confidence” in a pfd bound b – i.e.
their conditional probability of the pfd being less than b – is 95%.

Specifically, we recall the standard Bayesian approach to
assessing an on-demand system [7], [42], [43], in which the
i.i.d. assumption is adopted. An i.i.d. Bernoulli process represents
the stochastic failure behaviour of the system’s software. We
denote by X the system’s unknown pfd due to software failures.
According to the operational profile [44], n demands are randomly
submitted to the software and no failures are observed (this is the
usual requirement when assessing a safety-critical system using
operational acceptance testing). Let b be the required upper bound
on pfd. Bayesian inference then gives an assessor’s posterior
confidence in b after observing n tests without failure3:

P (X ⩽ b | n demands without failure)

=
P (X ⩽ b, n demands without failure)

P (n demands without failure)
(1)

In practice, Bayesian reliability assessments require that one
specifies a prior distribution representing one’s beliefs about the
possible values of pfd. CBI relaxes this by requiring only a partial
specification of the prior distribution, when such specifications
can be justified by evidence obtained prior to operational testing.
Such partial specifications – so-called prior knowledge (PK) –
take various forms. Most notably, the form of confidence bounds;
e.g. being 90% confident that the pfd is no greater than 10−3,
partly because IEC 61508 Safety Integrity Level 3 [45] was a
strict requirement in the system’s development. When an assessor
articulates their beliefs as PKs, there is an infinitely large set D of
all prior distributions that satisfy these PKs. CBI then determines
the worst support the priors in D can give for a reliability claim;
e.g. the smallest posterior confidence (1) an assessor can have:

inf
D

P (X ⩽ b | n demands without failure) (2)

The solution of (2) identifies a prior with posterior confidence that
is the infimum value; no other prior that satisfies the PKs can give
a smaller value for posterior confidence (1). In this sense, CBI
results are conservative. This “worst case” prior encodes within it
the most conservative assessor beliefs consistent with the PKs.

3. ... as well as P ( failure-free operation | n demands without failure).

4 A STATISTICAL MODEL OF TESTING OUTCOMES

The Klotz model [17] is a stationary random process consisting
of possibly dependent Bernoulli trials. As a model of a system’s
failure process it generalises the i.i.d. Bernoulli process used
in reliability assessments. During operational testing, a random
sequence of demands is submitted to the system. On each demand,
the system either successfully handles the demand or fails. So, we
have a sequence of random variables T1, . . . , Tn, each taking the
values 0 or 1, corresponding to success or failure, respectively. In
this paper we follow the usual convention of upper-case letters for
random variables and lower-case for their realisations.

The Klotz model is characterised by a “frequency” parameter x
and a “dependence” parameter λ. Here, x is the system’s pfd while
λ is the probability that a failure is followed by another failure. So,
P (T1 = 1) = P (Ti = 1) = x and P (Ti = 1 | Ti−1 = 1) = λ
for i = 2, . . . , n. By requiring the process be 1st-order stationary,
we have P (Ti = 1 | Ti−1 = 0) = (1−λ)x

1−x for i = 2, . . . , n (see
appendix A), which yields Figure 1. The transitions in Figure 1

Fig. 1: The Klotz model with dependent Bernoulli trials [17].

need to lie between zero and one, so

0 ⩽ x < 1, max {0, (2x− 1)/x} ⩽ λ ⩽ 1 (3)

Inequalities (3) define a subset R of the unit square (Figure 2a).
Suppose the system succeeds on all n demands during opera-

tional testing. For (x, λ) ∈ R, the Klotz likelihood function gives
the probability of observing this sequence of successes4:

L(x, λ;n) := (1− x)

(
1− (1− λ)x

1− x

)n−1

(4)

Different values of (x, λ) can alter the dependence structure and
functional form of the Klotz likelihood: i) x = λ is the special
case of independent testing outcomes, with L(x, x;n) = (1−x)n;
ii) when λ > x, successes (and failures) tend to cluster during
testing – i.e. positive dependence. In the extreme, λ = 1 and we
have L(x, 1;n) = (1−x); iii) lastly, when λ < x, successes and
failures tend to alternate more often – i.e. negative dependence. In
the extreme, x = 1

2−λ and we have L( 1
2−λ , λ;n) = 0.

The assessor’s uncertainty about x and λ is captured by a
joint prior distribution of (X,Λ) over R. The assessor’s posterior
confidence (1) is:

P (X ⩽ b | n demands without failure) =
E[L(X,Λ;n)1X∈[0,b]]

E[L(X,Λ;n)]
(5)

where the indicator function 1x∈S equals 1 if x ∈ S, and is 0
otherwise.

4. We define L(1, 1;n) := lim(x,λ)→(1,1) L(x, λ;n) = 0, where the
limiting process involves only (x, λ) values in R.
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(a) (b) (c)

Fig. 2: a) A depiction of the region R defined by inequalities (3), and the subsets of R defined by PKs 2 and 3. All prior distributions of (X,Λ) have domain
R; b) A prior distribution that gives the theorem’s infimum – depicted “from above”, looking down on its domain R. The pfds c1∗, c2∗, c∗1 , c∗2 satisfy the
theorem’s constraints; c) Probabilities of the shaded rectangular regions are given by integrals of f(x) from PK1.

In Section 5, via CBI (i.e. constrained nonlinear optimisation
of (5) in the vein of (2)), we derive conservative posterior confi-
dence bounds on pfd.

5 CONSERVATIVE CONFIDENCE (PFD) BOUNDS

We now present conservative posterior confidence bounds on pfd
for the skeptical assessor. We begin by formalising the assessor’s
beliefs as a collection of 4 constraints called “prior knowledge”.
These PKs only weakly specify the joint prior distribution of
(X,Λ). Firstly, the assessor’s prior distribution of X is continuous.

Prior Knowledge 1 (continuous prior distribution of X). A
density function f(x) gives the assessor’s prior confidence in pfd
bound u – i.e. P (X ⩽ u) =

∫ u
0 f(x) dx for all u ∈ [0, 1].

Secondly, the assessor does not rule out negatively or posi-
tively correlated testing outcomes (see Figure 2a).

Prior Knowledge 2 (confidence in negative correlation). ϕ1 ×
100% confident that the outcomes of successive tests are nega-
tively correlated, i.e. P (Λ < X) = ϕ1.

Prior Knowledge 3 (confidence in positive correlation). ϕ2 ×
100% confident that the outcomes of successive tests are positively
correlated, i.e. P (Λ > X) = ϕ2.

Thirdly, the assessor is relatively confident that the i.i.d.
assumption holds, and bound b is satisfied, but not so confident
as to make testing unnecessary. A straightforward extension of the
theorem presented here accounts for less confidence.

Prior Knowledge 4 (confidence in bound and independence). For
a target system pfd b, ϕ1 ⩽ P (X ⩽ b) ⩽ 1− ϕ2

An assessor with these 4 beliefs has conservative posterior
confidence bounds given by this theorem (see appendix B):

Theorem. Let D be the set of all prior distributions over R and
assume 0 < b < 1/2. Using (5), the optimisation problem

inf
D

P (X ⩽ b | n demands without failure)

s.t. PK1, PK2, PK3, PK4

is solved by the prior in Figure 2b, since the infimum equals the
value of P (X ⩽ b | n demands without failure) for this prior.
The infimum takes the form 1

1+Q , where Q is

∫ 1
b

(
(1− x)n1x∈(b,c∗1)∪(c∗2 ,1)

+ (1− x)1x∈(c∗1 ,c
∗
2)

)
f(x) dx∫ b

0

(
(1− x)n1x∈(0,c1∗)∪(c2∗,b)

+ (1−2x)n−1

(1−x)n−2 1x∈(c1∗,c
2
∗)

)
f(x) dx

(6)

and the pfds c1∗, c
2
∗, c

∗
1, c

∗
2, are the unique values of r, s, v, w,

respectively, that solve

argmin
0⩽r<s⩽b

| gl(r)− gl(s) |, argmin
b⩽v<w⩽1

| gu(v)− gu(w) |

s.t. gl(0) ⩽ gl(r), gl(b) ⩽ gl(s) ,
gu(b) ⩽ gu(v), gu(1) ⩽ gu(w) ,∫ s

r f(x) dx = ϕ1 ,
∫ w
v f(x) dx = ϕ2 ,

0 ⩽ r < s ⩽ b ⩽ v < w ⩽ 1

for gl : [0, 1/2] → [0, 1] and gu : [0, 1] → [0, 1] defined as

gl(x) = (L(x, x;n)− L(x, 0;n))1x∈[0, 12 ]

gu(x) = (L(x, 1;n)− L(x, x;n))1x∈[0,1] (7)

Numerical estimates for c1∗, c2∗, c∗1, c∗2 may be computed using
“root-finding” algorithms such as that in Appendix D.

If the assessor has no doubts about the i.i.d. assumption, this
CBI result is given by traditional Bayesian inference. That is,

Corollary. Let Q be given by (6) in the theorem, when ϕ1 = ϕ2 =
0. Then the infimum is given by traditional Bayesian inference,
using the prior density f(x). That is,

inf
D

P (X⩽b | n demands without failure)=

∫ b
0 (1− x)nf(x) dx∫ 1
0 (1− x)nf(x) dx

(8)

However, if the assessor begins operational testing with beliefs
captured by PKs 1, 2, 3 and 4 – i.e. beliefs that only partially
specify a joint prior distribution of (X,Λ) – then the CBI theorem
identifies a joint prior that is consistent with these beliefs, is unique
up to zero probability events, and that gives the smallest posterior
confidence in the pfd upper-bound b (see Figure 2b).

This CBI prior assigns probability density only to the indicated
thick black line segments in R; the rest of R has zero probability5

(Appendix B). For example, prior to testing, the conservative

5. Expressing this formally involves projections from R to the interval [0, 1].
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(a) stationary points for gl and gu (b) ϕ1 = 0.05, ϕ2 = 0.05, b = 0.0001 (c) ϕ1 = 0.05, ϕ2 = 0.05, b = 0.0001

Fig. 3: The stationary points of gl, gu and the pfds c1∗, c2∗, c∗1, c∗2 are all monotonically decreasing functions of n.

assessor expects negatively, or positively, dependent test outcomes
with probabilities ϕ1 = P (c1∗ ⩽ X ⩽ c2∗, Λ = 0) =

∫ c2∗
c1∗

f(x) dx

and ϕ2 = P (c∗1 ⩽ X ⩽ c∗2, Λ = 1) =
∫ c∗2
c∗1

f(x) dx, respectively.
Or consider the probabilities of the 2 shaded rectangular regions in
Figure 2c. The non-zero contributions to these probabilities come
from the thick black line segments that intersect these regions;
i.e. P (x1 ⩽ X ⩽ x2, λ1 ⩽ Λ ⩽ λ2) =

∫ x2

c2∗
f(x) dx and

P (x3 ⩽ X ⩽ x4, λ3 ⩽ Λ ⩽ 1) =
∫ x4

x3
f(x) dx.

5.1 Conservative Beliefs for Failure-free Testing
The CBI prior Figure 2b encodes conservative beliefs. In particu-
lar, the pfd values c1∗, c2∗, c∗1, c∗2 indicate where (in R) doubts in
the i.i.d. assumption should be placed for conservative posterior
confidence. The R locations between (c1∗, 0) and (c2∗, 0) along
the λ = 0 edge represent statistical dependence that is unlikely to
produce failure-free testing if the unknown pfd actually satisfies
the bound. And if the pfd does not satisfy the bound, the locations
between (c∗1, 1) and (c∗2, 1) along λ = 1 represent dependence
likely to produce failure-free testing. Note that the assessor has
been unable to rule out these extreme beliefs prior to testing, since
these beliefs are consistent with the PKs.

These beliefs depend on the number n of required failure-
free tests; the “c”s become smaller if n becomes bigger. Because,
the “c”s are defined with respect to the stationary points of the
theorem’s “g” functions – themselves dependent on n. Figure 3a
plots how the x values for these stationary points tend to zero as n
increases. Figure 3b shows the consequence of this – c1∗ decreases
towards zero and c2∗ decreases towards a non-zero value dependent
on f(x). Figure 3c tells a similar story – c∗1 decreases towards the
bound 10−4, and c∗2 towards a non-zero value dependent on f(x).
This asymptotic behaviour is reasonable: the greater the amount of
failure-free operation required during testing, the smaller the pfd
is expected to be for a system that performs this well (even when
one is doubtful of the tests being i.i.d.).

Informally, beliefs in i.i.d. tests “lie on the boundary” of the
set of conservative beliefs that express doubts about i.i.d. tests,
and confidence from beliefs in i.i.d. tests (8) is well-approximated
by conservative confidence from the theorem. Indeed, by the
dominated convergence theorem [46], (6) tends to

∫ 1
b (1−x)nf(x) dx∫ b
0 (1−x)nf(x) dx

as ϕ1 and ϕ2 tend to 0 (since c1∗, c∗1 tend to c2∗, c∗2 respectively).

6 RESULTS: ASSESSMENT USING THE THEOREM

6.1 Practical Context and Guidance
The theorem gives conservative confidence in a pfd bound b, when
an on-demand system is subjected to black-box operational test-
ing. A bound such as b = 10−4; a target pfd used in the assessment
of the Sizewell-B nuclear power plant safety protection system in
the United Kingdom6 [47], [48]. To gain 99% confidence in this
bound – using the i.i.d. assumption under a classical statistical
inference approach – requires between 104 and 105 test demands
[48], [49]. In this section, we will use similar orders of magnitude
of test demands to illustrate the theorem’s use.

In particular, the theorem can be used during acceptance
testing to check the robustness of confidence (8) to doubts about
the i.i.d. assumption; we illustrate how to do this in the rest of this
section. When applying statistical techniques like the theorem,
one may follow the guidance from Littlewood and Strigini [50]
and Lyu et al. [38] on performing statistical testing. See Parnas
et al. [49] for additional discussion on evaluating safety-critical
software, including random test-case (e.g. demand) selection. For
nuclear safety applications in particular, [7], [51] give guidance on
reliability assessment using statistical techniques.

More generally, the theorem can be applied in any black-box
testing phase where failure-free operation can be used to gain
confidence (i.e. (8)) in the software. Such testing would typically
involve subjecting (some part of) the software to a large number
of randomly generated demands in a simulated environment.
For example, in accordance with integrity level 4 (see IEEE
1012:2016 [52]), one may apply the theorem during component, or
integration, testing phases for safety-critical software. For nuclear
safety-critical software testing phases, see also IEC 60880 [53].

6.2 Examples: Prior Beliefs and Confidence in a Bound
The analyses in the rest of this section show how: i) confidence
based on the i.i.d. assumption can be very optimistic as failure-
free tests accumulate; ii) some forms of doubt about the i.i.d.
assumption significantly impact confidence, while other forms do
not; iii) surprisingly, failure-free testing can eventually undermine
confidence in the system satisfying the bound.

6. This was the target pfd for a hardwired secondary safety subsystem; a
software-based primary safety subsystem had a more modest 10−3 target pfd.
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(a) Beta prior distributions of pfd (b) ϕ1 = 0.05, ϕ2 = 0.05, b = 0.0001 (c) ϕ2 = 0.05, b = 0.0001, Beta(1, 10000)

(d) ϕ2 = 0.05, b = 0.0001, Beta(2, 20000) (e) ϕ1 = 0.05, b = 0.0001, Beta(1, 10000) (f) ϕ1 = 0.05, b = 0.0001, Beta(2, 20000)

Fig. 4: Sensitivity analyses showing which forms of PK have the biggest impact on (conservative) posterior confidence c.

TABLE 1: A summary of 3 Beta prior distributions of pfd

α β E[X] = α
α+β

P (X ⩽ 10−4)

2 20000 0.0001 0.6
1 10000 0.0001 0.63

0.1 1000 0.0001 0.83

The PK1 density f(x) can be from any family of continuous
distributions over the interval [0, 1]. Beta densities are often used
in practice [7], [19], [21]. Consider 3 alternative f(x); the Beta
distributions in Figure 4a with parameters/properties in Table. 1.
Let these represent prior beliefs of 3 assessors that differ in how
confident they are that the system satisfies the bound.

Suppose the assessors are a little skeptical of the tests being
i.i.d. (e.g. ϕ1 = ϕ2 = 0.05). Figure 4b shows how posterior
confidence c evolves as operational testing evidence mounts. For
each Beta prior, the posterior confidence (8) under an i.i.d. as-
sumption is plotted against the CBI posterior confidence 1

1+Q for
our skeptic. In all cases, confidence from assuming independence
is initially comparable to conservative confidence – the relevant
pair of curves for each Beta prior almost overlap initially.

However, as more failure-free testing is observed – i.e. as n

grows – “i.i.d.”-based confidence grows and tends towards cer-
tainty. While conservative confidence grows more slowly, reaches
a maximum, and then tends towards zero. Appendix C proves this
zero limiting behaviour will occur whenever an assessor allows
for the possibility of positively correlated tests (i.e. ϕ2 > 0).
In the limit of large n, “i.i.d.”-based confidence can be the most
optimistic confidence can be, while still remaining consistent with
an assessor’s informed views/beliefs about the unknown pfd.

If the evidence available to an assessor before testing justifies
being very confident in the bound, then the initial closeness
between the “i.i.d.”-based posterior confidence and the confidence
given by CBI can continue for longer before ultimately diverging.
In Figure 4b the pair of curves for the Beta(0.1,1000) prior – i.e.
for the very confident assessor – stay closer together for longer,
compared to the curves for the least confident assessor with prior
Beta(2,20000). The greater the prior confidence in the bound, the
greater the posterior confidence when testing begins (i.e. small n).

6.3 Sensitivity Analysis: How Failure-free Tests and
Skepticism about i.i.d. Tests Impact Confidence
The nature of an assessor’s skepticism determines whether their
conservative posterior confidence ultimately grows or shrinks dur-
ing operational testing. At one extreme, some forms of doubt have
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no noticeable impact on confidence when no failures are observed
during testing. The possibility (however likely) of negatively
correlated tests has no apparent effect on conservative confidence.
For example, an assessor might intentionally seek to “stress” the
software during testing, by randomly including a disproportionate
number of test demands that are thought will likely cause the
software’s failure. If stressful demands are adequately interspersed
with significantly less stressful ones, one might expect the testing
outcomes (i.e. the software’s successes/failures) to exhibit some
negative dependence (i.e. non-zero ϕ1) – so a failure is quickly
followed by successes, then another failure relatively soon after-
wards, etc. However, when no failures occur, Figures 4c, 4d show
that the “rise and fall” of CBI confidence in Figure 4b is unaf-
fected by varying one’s prior confidence in negative dependence.
Intuitively, the more successes occur, the less likely these are from
a system undergoing negatively dependent tests.

At the other extreme are positively correlated tests. Figures 4e,
4f both show that the smaller ϕ2 is, the closer conservative con-
fidence gets to the confidence under the i.i.d. assumption. When
ϕ2 = 0, conservative confidence grows to certainty as the number
of successes grows (Appendix C). While the larger ϕ2 is, the more
conservative confidence becomes. Here, confidence in positive
correlations (i.e. large ϕ2) may be due to pessimistic reasons for
the failure-free tests – i.e. “success clustering” can occur even if
the software is unreliable. The tests could be unrepresentatively
“easy” for the software to correctly respond to, or the test oracle
is incorrect so failures go undetected [54], [55].

So, failure-free testing can undermine one’s confidence in a
system’s pfd. Such conservatism is not unique to CBI – even with
classical inference, confidence bounds can be quite conservative
initially, becoming optimistic (compared to the CBI bounds) after
many tests. Indeed, using the Klotz likelihood (4) when λ = 1,
the probability of succeeding on all n tests (despite the pfd being
worse than 10−4) is at most (1 − 10−4) = 0.9999. That is,
a system with a pfd worse than 10−4 may be almost certain to
succeed on all tests if the tests are strongly positively correlated.
This bleak result holds for all n; so, increasing the number of
failure-free tests does not increase one’s confidence in the system.

7 DISCUSSION

7.1 Skepticism about Model Assumptions
Software reliability assessments should be conservative: to wit,
only when test results stand up to the most critical scrutiny can
confidence be justifiably placed in the system satisfying a pfd
bound. Conservative assessments require a skeptical assessor. In
Bayesian terms, our assessor holds conservative beliefs about
what the evidence implies for a system’s reliability, and about
the validity of statistical modelling assumptions.

This paper illustrates a general, incremental approach to deal-
ing with doubts about any statistical model assumptions: we offer
a demonstrably conservative form of Draper’s ideas [34]. For a
model property one is doubtful of, one can check the sensitivity
of claims based on the model by using a slightly more general
model (that has the original model as a special case and weakens
the property in question) for inference. “Slight” model generalisa-
tions keep models from becoming unnecessarily complex, ensure
generalisations cover all scenarios covered by the original models,
and minimize eliciting increasingly complex prior distributions.

This incremental approach is a “win-win”. If the i.i.d. assump-
tion is not too optimistic, “i.i.d.”-based confidence doesn’t depart

significantly from the CBI theorem’s conservative confidence
based on the Klotz model. If the i.i.d. assumption is too optimistic,
sensitivity analysis using the theorem can reveal this – in such
circumstances, caution is warranted when relying on “i.i.d.”-based
reliability claims. And if, in turn, one has doubts about the Klotz
model, then a generalisation of the Klotz model can be used to
check if “Klotz model”-based confidence is sensitive to doubts.

7.2 Limitations and Future Work

Let us highlight some Klotz model shortcomings. It does not
distinguish between different success/failure types. Future work
might consider using the models of [16], [56], [57] with CBI,
to check the robustness of “Klotz model”-based claims. These
models account for the cumulative impact of benign failures.

The Klotz model uses the relative sizes of x and λ to charac-
terise all pairs of successive Bernoulli trials as being identically
positively, negatively, or zero correlated. Consequently, the Klotz
model is unable to express non-stationary dependence, such as
may be due to software updates that remove, or inadvertently
add, faults to the software. The model cannot capture dependence
across time either; such as periodic correlations over relatively
short, or relatively long, runs of demands. Such periodicity can
arise if demands that cause software failure are more likely at cer-
tain times when (or certain locations where) operating conditions
tend to be more stressful (e.g. for software ensuring aircraft safety,
unfavourable weather along a flight path may be more likely at
certain times of the year, or more likely along certain flight paths).
CBI models with time-dependent correlations are worth exploring.

On the use of pfds we make the following comment. When
the failure process is stationary, pfds make sense. The probability
of the system failing on the n-th demand is the same for all
n. But for time-dependent failure probabilities, there are more
suitable dependability measures – such as the probability of future
failure-free operation. Strigini [57] makes a related point in a
classical inference context. Even in the present context of posterior
confidence bounds on pfd, it’s worth investigating whether other
dependability measures are more/less robust to i.i.d. doubts.

We have formalised (via PK1) and illustrated how any
Bayesian reliability assessment using a continuous prior, f(x), can
conservatively incorporate doubts about “i.i.d.”. However, when
eliciting f(x) proves too challenging, future work could extend
the theorem to work with partially specified f(x). For example,
prior to testing, one might justifiably have some confidence in
the software containing no faults [58]. In effect, f(x) becomes
discontinuous, with a non-zero probability of the pfd being zero.
For such scenarios, preliminary results suggest significantly better
agreement between “i.i.d.”-based and “Klotz model”-based poste-
rior confidence, even with a very large number of successful tests.

In general, the “elicitation challenge” remains an open prob-
lem for Bayesian approaches. In light of this, best practice ap-
proaches should be followed when eliciting PKs [59], [60], while
sensitivity analyses (as illustrated in Section 6) is crucial and
practical for checking the robustness of confidence to PK changes.

This work has not considered model selection or validation.
One might envisage applying CBI to conservatively gain confi-
dence in the i.i.d. assumption, or using Bayes factors and CBI
to conservatively determine which modelling assumptions lead to
more trustworthy predictions about future system reliability.

The theorem could be extended to account for failures during
testing, e.g. when assessing machine learning applications, or
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extended to support conservative claims for software modules in a
fault-tolerant configuration (e.g. extending Singh et al. [20]).

8 CONCLUSIONS

When assessing software using operational testing it is natural
to ask, “is it appropriate to assume the software’s failures and
successes arise in an i.i.d. manner?”. For many practical scenarios
there are well-known reasons to doubt the i.i.d. assumption. A
few statistical models which weaken the assumption have been
proposed for use in reliability assessments [13], [14], [16], [56].
However, none of these proposals allow an assessor to remain
unsure about whether i.i.d. holds or not, nor allow the assessor
to see the impact of their uncertainty on their confidence in a pfd
bound. This, despite it often being the case that an assessor may
have good reason to believe in i.i.d., but not enough reason to be
certain that it holds. Furthermore, these proposals do not directly
support conservative reliability claims.

Using conservative Bayesian techniques – in particular, CBI
– we show how doubts about i.i.d. can be formally included in
software reliability assessments (see Sections 5 and 6). In this
way, we obviate the need imposed by the previous proposals – the
need for assessors to either assume/conclude that the software test
outcomes are i.i.d., or assume/conclude that they aren’t. Instead,
our method allows a skeptical assessor’s confidence in a target pfd,
and their confidence in (and doubts about) i.i.d., to grow or shrink
in response to seeing the software operate without failure.

Moreover, CBI’s conservative confidence bounds continuously
invite our assessor to be skeptical, and to question whether
seemingly favourable reliability evidence from testing does, in
fact, corroborate actual reliability. For example, while failure-free
operation is generally an indicator of a desirable pfd, our results
highlight why this might be (at best) a sanguine view in some
situations. There may be undesirable reasons for why failure-free
operation is occurring; reasons that ultimately undermine one’s
confidence in the pfd being sufficiently small (see section 6). CBI,
by weakening the i.i.d. assumption and producing conservative
confidence bounds, can call into question the representativeness
of failure-free operation (as indicating a reliable system). When
this happens, it’s incumbent on the assessor to rule out potential
problems during testing that “masquerade” as failure-free opera-
tion, and to incorporate these efforts into any further use of CBI.
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APPENDIX A
TRANSITION PROBABILITIES IN THE KLOTZ MODEL

1st-order stationarity requires that the probability of being in a
given state after n trials is the same for all n. In particular, the
probability of being in a successful state after two trials is the
same as the probability after one trial, i.e. 1− x. So, upon writing
the shorthand p = P (T2 = 0 | T1 = 0), we have 1 − x =
x(1−λ)+(1−x)p. Solving for p gives P (T2 = 0 | T1 = 0) =

p = 1− (1−λ)x
1−x and P (T2 = 1 | T1 = 0) = 1−p = (1−λ)x

1−x ,
for 0 ⩽ x < 1.

APPENDIX B
PROOF OF THE THEOREM

Proof. Choose any F ∈ D that satisfies the constraints of
the optimisation and denote the Klotz likelihood (4) as L. The
objective function (5) in the theorem, computed using F , is∫
{x⩽b}∩R L dF∫

R L dF
=

(
1 +

∫
{x>b}∩R L dF∫
{x⩽b}∩R L dF

)−1

. Consequently, we fo-

cus on the equivalent optimisation (subject to the same constraints)

sup
D

∫
{x>b}∩R LdF∫
{x⩽b}∩R LdF

(9)

From F , one can construct a sequence of priors {F ∗
k }

(for k = 1, 2, . . .) that: i) all give larger values than F for
the objective function in (9); and ii) give objective function
values that converge to the objective function value given by
some F ∗ ∈ D. The construction is as follows. Consider the
sequence {Pk} of partitions of the interval [0, 1], defined by
Pk = {[0, 1/2k), [1/2k, 2/2k), . . . , [1 − 1/2k, 1]}. Each partition
induces a partition of R into vertical strips, as illustrated in
Figure 5a. Within the ith strip, denote the region above the
diagonal as ria, the region below the diagonal as rib, and the
diagonal segment within the strip as rid. Let i∗ denote the unique
index for the strip containing the vertical line x = b. Then, for
each F , partition Pk allows the objective function in (9) to be
rewritten,∑

i∗<i⩽2k

∫
ria∪rib∪rid

LdF +
∫
{x∈(b,i∗/2k)}∩R LdF∑

1⩽i<i∗

∫
ria∪rib∪rid

LdF +
∫
{x∈[(i∗ − 1)/2k,b]}∩R LdF

(10)

L is continuous and bounded over R. So we may bound (10)
from above by reallocating the probability mass that F assigns
within each region/diagonal segment in each strip. All of the mass
is reassigned to a point in the relevant region/segment, within 1

2k

distance from where L is largest (when x > b) or smallest (when
x ⩽ b). These locations at which L takes its largest and smallest
values are limit points7 of the respective regions/diagonal segment
within each strip, as illustrated in Figure 5b. The reallocations
define a prior F ∗

k with a discrete marginal distribution of pfd. For

each k, F ∗
k satisfies

∫
{x>b}∩R L dF∗

k∫
{x⩽b}∩R L dF∗

k
>

∫
{x>b}∩R L dF∫
{x⩽b}∩R L dF

.

7. Definition: for the “open balls” topology associated with the 2D Euclidean
plane, a limit point of a subset of the plane is a point that is arbitrarily well-
approximated by sequences of points within the subset [61], [62].

By construction, the objective function values from the F ∗
k

converge to the objective function value for some prior F ∗ with
continuous marginal density f(x). So, for each F ,∫

{x>b}∩R LdF ∗∫
{x⩽b}∩R LdF ∗ ⩾ inf

k

∫
{x>b}∩R LdF ∗

k∫
{x⩽b}∩R LdF ∗

k

⩾

∫
{x>b}∩R LdF∫
{x⩽b}∩R LdF

(11)

Since this holds for any feasible prior F ∈ D, we have

sup
D∗

∫
{x>b}∩R

LdF ∗

∫
{x⩽b}∩R

LdF ∗ ⩾ sup
D

inf
k

∫
{x>b}∩R

LdF ∗
k∫

{x⩽b}∩R
LdF ∗

k

⩾ sup
D

∫
{x>b}∩R

LdF∫
{x⩽b}∩R

LdF

(12)

where D∗ contains all of the F ∗ priors. Because the objective
function values for priors in D∗ are the limits of objective function
values for feasible priors in D, we also have

sup
D∗

∫
{x>b}∩R LdF ∗∫
{x⩽b}∩R LdF ∗ ⩽ sup

D

∫
{x>b}∩R LdF∫
{x⩽b}∩R LdF

(13)

Thus (12) and (13) imply three equivalent forms of optimisation,

sup
D∗

∫
{x>b}∩R

LdF ∗

∫
{x⩽b}∩R

LdF ∗ = sup
D

inf
k

∫
{x>b}∩R

LdF ∗
k∫

{x⩽b}∩R
LdF ∗

k

= sup
D

∫
{x>b}∩R

LdF∫
{x⩽b}∩R

LdF

(14)

So, we can restrict the optimisation to sequences of priors {F ∗
k }.

(a) (b)

Fig. 5: (a) Pk partitions R into vertical strips; (b) example support of F ∗
k

For all sufficiently large k, the width of the strips can be made
as small as we please. Consequently, by considering sufficiently
large k, we may treat the location of masses within each strip
as lying on the same vertical line, with masses on the diagonal
segment or on the λ = 0, 1 borders of R. Consider then an
arbitrary prior F ∗

k (with discrete marginal) for sufficiently large k.
The probability masses in a pair of strips can be reallocated within
each strip to construct a new prior that gives a larger objective
function value. One does this as follows.

Let the functions gl(x) and gu(x) be as defined in (7). Denote
the unique x values at which gl(x) and gu(x) attain their maxima
as xl and xu, respectively. There are 4 possibilities for reallocating
probability masses, based on the relative sizes of xl, xu and b.
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(a)
(b)

Fig. 6: (a) An example density f(x); (b) example maxima for gl, gu

Case 1) xl < b and xu < b

Let F ∗
k be as depicted in Figure 5b. Consider two vertical strips, as

shown in Figure 8a. The strips lie to the left of the vertical line x =
xl. For ∆ = 0, let the probabilities M1−∆, M2+∆, M3+∆ and
M4−∆ be initially assigned to the 4 depicted locations (2 in each
strip). These “M”s are constant and consistent with the PKs, and
∆ is a sufficiently small probability mass. The derivative of the
objective function with respect to ∆ exists, because the objective
function is a rational function of ∆. The sign of this derivative
is determined by the function gl(x) in Figure 6b. That is, the
expression for the derivative is negative iff gl(x2) − gl(x1) > 0
(where, for x1 < x2 < xl < b, x1 is in the leftmost strip and x2

is in the other strip). But this is true because gl(x) is unimodal.

(a) (b)

Fig. 7: Plots of the pair of functions that define (a) gl, (b) gu

The unimodality of both gl(x) and gu(x) can be seen from
arguments illustrated by Figures 7a and 7b. These figures depict
the pair of functions that define each “g” function. Each pair
consists of two convex, monotonically decreasing functions that
are equal at x = 0. In Figure 7a, over 0 ⩽ x ⩽ 1

2 , the pair of
functions are initially relatively convex (with relative derivative
1 at x = 0) then relatively concave (with relative derivative
0 at x = 1

2 ). While in Figure 7b, the pair of functions are
relatively concave over 0 ⩽ x ⩽ 1

2 (with relative derivatives n
and n( 12 )

n−1, at x = 0 and x = 1
2 respectively). Because of

these, in each figure, the functions have the same tangent slope at
a nontrivial x value in their shared domain. This is the x value
at which the respective “g” function attains its maximum – the
values xl and xu. These values lie in the interval 0 ⩽ x < 1/2.

Since the objective function’s derivative with respect to ∆ is
negative, ∆ should be made as small as possible, which makes the
objective function as large as possible. Roughly speaking, mass

in the “x1” strip should be placed on the diagonal, while mass
in the “x2” strip should be placed along the λ = 0 line. Similar
arguments justify the mass re-allocations illustrated in Figures 8b
and 8c, using gl(x) and gu(x) respectively.

The general rule is, for a pair of strips containing x values
less than b, the strip that is closest to containing xl should have as
much mass as possible below the diagonal, while the other strip
should have as much mass as possible on or above the diagonal.
Similarly, for two strips with x values greater than b, the strip
closest to containing xu should have as much mass as possible
above the diagonal, while the other strip should have as much
mass as possible on or below the diagonal.

So, by construction, a discrete prior F ∗
k (e.g. Figure 5b)

is replaced by a more extreme F ∗∗
k (e.g. Figure 8d). Further

reallocation is impossible when c1∗, c2∗, c∗1 and c∗2 have been found
that solve

argmin
0⩽r<s⩽b

| gl(r)− gl(s) |, argmin
b⩽v<w⩽1

| gu(v)− gu(w) |

s.t. gl(0) ⩽ gl(r), gl(b) ⩽ gl(s) ,
gu(b) ⩽ gu(v), gu(1) ⩽ gu(w) ,∫

{x∈[r,s]}∩R dF ∗∗
k =

∫ s
r f(x) dx = ϕ1 ,∫

{x∈[b,w]}∩R dF ∗∗
k =

∫ w
b f(x) dx = ϕ2 ,

0 < r < xl < s ⩽ b , 0 < xu < b ⩽ v < w ⩽ 1

In particular, since xu < b implies c∗1 = b, we can restrict the
optimisation to these more extreme priors F ∗∗

k . For such priors,
the objective function (10) is comprised of sums that are integrals
(with respect to F ∗∗

k ) of simple functions. That is:∑
i∗<i⩽2k

∫
ria∪rib∪rid

LdF ∗∗
k +

∫
{x∈(b,2i

∗/2k)}∩R LdF ∗∗
k∑

1⩽i<i∗

∫
ria∪rib∪rid

LdF ∗∗
k +

∫
{x∈[2i

∗−1/2k,b]}∩R LdF ∗∗
k

=

∫
{x∈(b,c∗2)}∩R LdF ∗∗

k +
∫
{x∈(c∗2 ,1)}∩R LdF ∗∗

k∫
{x∈(c1∗,c

2
∗)}∩R LdF ∗∗

k +
∫
{x∈(0,c1∗)∪(c2∗,b)}∩R LdF ∗∗

k

=

∑
i∗<i⩽2k

(
L11xi∈(b,c∗2)

+ L31xi∈(c∗2 ,1)

) ∫
ith strip

dF ∗∗
k∑

1⩽i⩽i∗

(
L21xi∈(c1∗,c

2
∗)

+ L31xi∈(0,c1∗)∪(c2∗,b)

) ∫
ith strip

dF ∗∗
k

=

∑
i∗<i⩽2k

(
L11xi∈(b,c∗2)

+ L31xi∈(c∗2 ,1)

) i

2k∫
i−1

2k

f(x) dx

∑
1⩽i⩽i∗

(
L21xi∈(c1∗,c

2
∗)

+ L31xi∈(0,c1∗)∪(c2∗,b)

) i

2k∫
i−1

2k

f(x) dx

where xi ∈ [ i−1
2k

, i
2k
), L1 := (1 − xi), L2 := (1−2xi)

n−1

(1−xi)n−2 and
L3 := (1− xi)

n

By the dominated convergence theorem (see [46]), the conti-
nuity of L over R implies that the sums converge to integrals with
respect to the density f(x) as k → ∞, so∫ 1

b

(
(1− x)1x∈(b,c∗2)

+ (1− x)n1x∈(c∗2 ,1)

)
f(x) dx∫ b

0

(
(1−2x)n−1

(1−x)n−2 1x∈(c1∗,c
2
∗)

+ (1− x)n1x∈(0,c1∗)∪(c2∗,b)

)
f(x) dx

.

Case 2) xl < b and xu > b

An analogous argument to case 1 gives the solution

∫ 1
b

(
(1− x)1x∈(c∗1 ,c

∗
2)

+ (1− x)n1x∈(b,c∗1)∪(c∗2 ,1)

)
f(x) dx∫ b

0

(
(1−2x)n−1

(1−x)n−2 1x∈(c1∗,c
2
∗)

+ (1− x)n1x∈(0,c1∗)∪(c2∗,b)

)
f(x) dx



12

(a) (b)

(c) (d)

Fig. 8: F ∗∗
k is constructed from F ∗

k by reallocating probability mass

where c1∗, c2∗, c∗1 and c∗2 have been identified that solve

argmin
0⩽r<s⩽b

| gl(r)− gl(s) |, argmin
b⩽v<w⩽1

| gu(v)− gu(w) |

s.t. gl(0) ⩽ gl(r), gl(b) ⩽ gl(s) ,
gu(b) ⩽ gu(v), gu(1) ⩽ gu(w) ,∫

{x∈[r,s]}∩R dF ∗∗
k =

∫
[r,s] f(x) dx = ϕ1 ,∫

{x∈[v,w]}∩R dF ∗∗
k =

∫
[v,w] f(x) dx = ϕ2 ,

0 < r < xl < s ⩽ b , 0 < b ⩽ v < xu < w ⩽ 1

Case 3) xl > b and xu < b

An analogous argument to case 1 gives the solution

∫ 1
b

(
(1− x)1x∈(b,c∗2)

+ (1− x)n1x∈(c∗2 ,1)

)
f(x) dx∫ b

0

(
(1−2x)n−1

(1−x)n−2 1x∈(c1∗,b)
+ (1− x)n1x∈(0,c1∗)

)
f(x) dx

where c1∗, c2∗, c∗1 and c∗2 have been identified that solve

argmin
0⩽r<s⩽b

| gl(r)− gl(s) |, argmin
b⩽v<w⩽1

| gu(v)− gu(w) |

s.t. gl(0) ⩽ gl(r), gl(b) ⩽ gl(s) ,
gu(b) ⩽ gu(v), gu(1) ⩽ gu(w) ,∫

{x∈[r,b]}∩R dF ∗∗
k =

∫ b
r f(x) dx = ϕ1 ,∫

{x∈[b,w]}∩R dF ∗∗
k =

∫ w
b f(x) dx = ϕ2 ,

0 < r < s ⩽ b < xl , 0 < xu < b ⩽ v < w ⩽ 1

In particular, because xl > b, xu < b, we have c2∗ = b, c∗1 = b.

Case 4) xl > b and xu > b

An analogous argument to case 1 gives the solution

∫ 1
b

(
(1− x)1x∈(c∗1 ,c

∗
2)

+ (1− x)n1x∈(b,c∗1)∪(c∗2 ,1)

)
f(x) dx∫ b

0

(
(1−2xi)n−1

(1−xi)n−2 1x∈(c1∗,b)
+ (1− x)n1x∈(0,c1∗)

)
f(x) dx

where c1∗, c2∗, c∗1 and c∗2 have been identified that solve

argmin
0⩽r<s⩽b

| gl(r)− gl(s) |, argmin
b⩽v<w⩽1

| gu(v)− gu(w) |

s.t. gl(0) ⩽ gl(r), gl(b) ⩽ gl(s) ,
gu(b) ⩽ gu(v), gu(1) ⩽ gu(w) ,∫

{x∈[r,b]}∩R dF ∗∗
k =

∫ b
r f(x) dx = ϕ1 ,∫

{x∈[v,w]}∩R dF ∗∗
k =

∫ w
v f(x) dx = ϕ2 ,

0 < r < s ⩽ b < xl , 0 < b ⩽ v < xu < w ⩽ 1

In particular, because xl > b, we must have c2∗ = b.

APPENDIX C
ASYMPTOTICS OF POSTERIOR CONFIDENCE BASED
ON FAILURE-FREE OPERATION

Claim. In the theorem, lim
n→∞

Q =

{
0, if ϕ2 = 0
∞, if ϕ2 > 0

. Since

the assessor’s conservative posterior confidence in the bound b is
1

1+Q , the assessor either becomes certain that b has been satisfied,
or they become certain that it has not.

Proof. We will show that∫ 1
b

(
(1− x)n1x∈(b,c∗1)∪(c∗2 ,1)

+ (1− x)1x∈(c∗1 ,c
∗
2)

)
f(x) dx∫ b

0

(
(1− x)n1x∈(0,c1∗)∪(c2∗,b)

+ (1−2x)n−1

(1−x)n−2 1x∈(c1∗,c
2
∗)

)
f(x) dx

n→∞−−−−→
{

0, if ϕ2 = 0
∞, if ϕ2 > 0

(15)

Since ϕ2 = 0 implies c∗1 = c∗2, the lhs of (15), i.e. Q, becomes∫ 1
b (1− x)nf(x) dx∫ b

0

(
(1− x)n1x∈(0,c1∗)∪(c2∗,b)

+ (1−2x)n−1

(1−x)n−2 1x∈(c1∗,c
2
∗)

)
f(x) dx

(16)

Fig. 9: Geometric illustration of Jensen’s inequalities

The integrals of (1 − x)n in (16) can be bounded by a
suitable choice of straight lines. We construct these as follows.
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For constants x1 and x2 such that 0 ⩽ x1 < x2 ⩽ 1, define the
straight lines Lu(x;x1, x2) and Ll(x;x1) (see Figure 9):

Lu(x;x1, x2) = (1− x1)
n

(
x2 − x

x2 − x1

)
+ (1− x2)

n

(
x− x1

x2 − x1

)
Ll(x;x1) =

(
n(x1 − x) + 1− x1

)
(1− x1)

n−1

The curve (1 − x)n is convex, so Lu lies above the curve when
x1 < x < x2. While Ll is tangent at x = x1, so lies below the
curve. These are Jensen’s inequalities [63]. Therefore:

Ll(E1
∗X;E1

∗X) ⩽

∫ c1∗
0 (1− x)nf(x) dx∫ c1∗

0 f(x) dx
⩽ Lu(E1

∗X; 0, c1∗)

(17)

Ll(E2
∗X;E2

∗X) ⩽

∫ b
c2∗
(1− x)nf(x) dx∫ b

c2∗
f(x) dx

⩽ Lu(E2
∗X; c2∗, b)

(18)

Ll(EX;EX) ⩽

∫ 1
b (1− x)nf(x) dx∫ 1

b f(x) dx
⩽ Lu(EX; b, 1) (19)

where E1
∗X =

∫ c1∗
0 xf(x) dx∫ c1∗
0 f(x) dx

, E2
∗X =

∫ b
c2∗

xf(x) dx∫ b
c2∗

f(x) dx
, EX =∫ 1

b xf(x) dx∫ 1
b f(x) dx

.
Using the bounds in (17)–(19), we can bound Q (i.e. (16)):

0 ⩽ Q ⩽

Lu(EX; b, 1)
∫ 1
b f(x) dx

Ll(E1
∗X;E1

∗X)
c1∗∫
0

f(x) dx + Ll(E2
∗[X];E2

∗[X])
b∫

c2∗

f(x) dx

=

(
1−EX
1−b

) ∫ 1
b f(x) dx(

1−E1
∗X

1−b

)n ∫ c1∗
0 f(x) dx +

(
1−E2

∗X
1−b

)n∫ b
c2∗
f(x) dx

(20)

We used
∫ b
0

(1−2x)n−1

(1−x)n−2 1x∈(c1∗,c
2
∗)
f(x) dx > 0 to bound Q

from above – by removing this term from Q’s denominator. Since
0 < E2

∗X < b < 1, we have
(
1−E2

∗X
1−b

)
> 1. So, as n → ∞ in

(20), c2∗ tends to a non-zero value less than b,
∫ b
c2∗
f(x) dx tends to

a non-zero value less than 1, E2
∗X tends to a non-zero value less

than b,
(
1−E2

∗X
1−b

)n

tends to ∞, and lim
n→∞

Q = 0.

If instead, ϕ2 > 0, then8 c∗1 < c∗2 and Q is the quotient on the
lhs of (15). As n → ∞, integrals of (1−x)n in Q all tend to 0 by
the monotone convergence theorem (m.c.t.) [46]. The m.c.t. also
implies lim

n→∞

∫ b
0

(1−2x)n−1

(1−x)n−2 1x∈(c1∗,c
2
∗)
f(x) dx = 0. Therefore,

lim
n→∞

Q = ∞.

8. In particular,
∫ c∗2
c∗1

(1− x)f(x) dx > 0

APPENDIX D
ALGORITHM FOR NUMERICAL ESTIMATES OF c1∗, c2∗
For brevity, we omit the analogous algorithm for c∗1, c∗2.

Algorithm Bisection Method based Algorithm for c1∗, c2∗
Input: The pfd density f(x), an intermediate function gl(x), the

target pfd bound b, a tolerance ϵ and the doubts ϕ1, ϕ2.
Output: c1∗, c2∗

1: if
∫ b
0 f(u) du > ϕ1 then

2: xl = argmax gl(x)
3: if xl > b then
4: c1∗ = solve(

∫ b
x f(u) du = ϕ1, x ∈ [0, b))

5: c2∗ = b; return c1∗, c2∗
6: else
7: c = solve(gl(x) = gl(b), x ∈ [0, xl))

8: if
∫ b
c f(u) du < ϕ1 then

9: c1∗ = solve(
∫ b
x f(u) du = ϕ1, x ∈ [0, b))

10: c2∗ = b; return c1∗, c2∗
11: else ▷ Start of the bisection method
12: c2∗ = b
13: tmplb = xl

14: tmpub = b
15: tmpϕ1 =

∫ b
c f(u) du

16: while | tmpϕ1 − ϕ1 |> ϵ do
17: if tmpϕ1 > ϕ1 then
18: tmpub = c2∗
19: c2∗ =

c2∗+tmplb

2
20: else
21: tmplb = c2∗
22: c2∗ =

c2∗+tmpub

2
23: end if
24: c1∗ =solve(gl(x)=gl(c

2
∗), x ∈ [0, xl))

25: tmpϕ1 =
∫ c2∗
c1∗

f(u) du
26: end while
27: end if ▷ End of the bisection method
28: return c1∗, c2∗
29: end if
30: else ▷ This is the case when

∫ b
0 f(u) du < ϕ1

31: print(“PK4 violated!”)
32: end if
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