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ABSTRACT

Separation axioms for bifuzzy topological spaces namely : P-Ri, 

P-Tj,P-Tjw (i=l,2,j=0,l,2,2 l/2),P-regular and P-normal spaces are 

defined and many related results are proved such as a bfts (X,1X1/T2) Is 

P-normal iff for every xi-closed fuzzy set A and Tj-open fuzzy set p. 
such that ¡1C ^  there exists a continuous function

f : (X,xi,T2)—>([0,l]f,L,/?) such that A(x)<f(x)(l-)< f(x)(0+)<p(x), for 

all xg  X.Bifuzzy connected topological spaces are defined such as 
S-connected,Sw-connected ,P-connected and Pw-connected .We have 

shown that connectedness is preserved under P-continuity and we have 

shown that the connectedness of (X,xi,x2) is not governed by the 

connectedness of (X,xi) and (X,x2).Many types of compactness were 

defined such as S-compact,P-compact,S-oc-compact,S-weakly compact, 

S-a-weakly compact,P-weakly compact,P-a-weakly compact, S-C- 

compact,P-C-compact,S-C weakly compact,P-C-weakly compact,P-U- 

compact and P-S-compact .We have proved that P-S-compactness => 

P-C-compactness => P-U-compactness but P-U-compactness does not 

imply neither P-C-compactness nor P-S-compactness.Also we have 

shown that bifuzzy compactness is preserved under continuous 

surjection.Bifuzzy Lindelof spaces are also defined.We have shown 

that there are no analogous definitions of S-weakly compact and S-C- 

compact in Lindelof spaces.Finally we introduce induced and weakly 

induced bifuzzy topological spaces and prove that a P-Hausdorff 

compact bfts is P-weakly induced and a P-topological P-weakly 

induced bfts is P-induced.Lowen's goodness criterion is extended and 

then used to test the goodness of these definitions.We have proved that
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(X ,T i ,T2) is P-Ti,P-Tiw,P-regular and P-normal iff the bifuzzy 

topological space (X,oo(T i ),go(T2)) is P-Ti,P-Tiw (i=0,l,2,2 1/2), P- 

regular and P-normal respectively.We have shown that S- 

connectedness,P-connectedness are good extensions while Sw- 

connectedness and Pw-connectedness are not.Moreover we have also 

shown that S-a-compactness is a good extension of S-compactness if it 

is good for some a e  [0,l);while P-a-compactness is a good extension 

of P-compactness only for a=O.Finally we prove a bitopological space 

(X,Ti ,T2) has P-f.p.p iff (X,w (T i ),co(T2)) has P-f.p.p .
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NOMENCLATURE

X a non-empty set.

R the real line.

N the set of natural numbers {1,2,3,4,...}.

Q the set of rational numbers.

I the closed unit interval [0,1].

[0,l]f the fuzzy unit interval

4> the empty set.

< the relation "less than" on R.

< the relation "less than or equal to" on R.

> the relation "greater than" on R.

> the relation "greater than or equal to" on R.

min minimum.

max maximum.

inf infimum.

sup supremum.
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T

X

bts

bfts

Tdis

'tdis

Tind

^ind

Tu

a topology on X.

a fuzzy topology on X.

bitopological space.

bifuzzy topological space.

the discrete topology on X.

the discrete fuzzy topology on X.

the indiscrete topology on X.

the indiscrete fuzzy topology on X.

the usual topology on the corresponding 

subset of R.

Tr.r the right ray topology on the corresponding

subset of R.i.e. {cj)>(a, oo) ; ae R}.

Tl.r the left ray topology on the corresponding

subset of R.i.e. {(K-°°, a) : a<E R}.

Tr.r the right ray fuzzy topology on the corresponding
subset of R.i.e. {0,%^ ^  : aeR}

Ti.r the left ray fuzzy topology on the corresponding

subset of R.i.e. {0,%(_oo ay aeR}

Tcof the cofinite topology on X.
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<T i ,T2> the least upper bound topology generated 

by Tl and T2-

<T1,T2> the least upper bound fuzzy topology generated 

by Tl and T2.

cli the closure on the first topology.

T/K the subspace topology {KfiUiUeT} on K.

V-U the difference of V and U.

pc the complement of the set F.

A an index set.

Cl first countable.

ClI second countable.

P pairwise.

s semi.

xeX x is an element of X.

xeX x is not an element of X.

u the union.

n the intersection.

c the relation "is contained in".

the relation "is not contained in".
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f:X —>Y a function f  from  X into Y.

f(U),f-l(V) the image of U and inverse image of V under the 

function f respectively.

fog the composite function of f and g.

f.p.p fixed point property.

Xa the characteristic function of A.

X/T the collection {%u: ueT}.

X/Y the restriction function Xfl^y-

l.s.c. lower semi-continuous functions

u.s.c. upper semi-continuous functions

CO(T) (fl f:(X,T)-*I is l.s.c.)

 ̂ * Xc (A£X:xAe t |

L(T) the initial topology of t

lid the identity map
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CHAPTER 0

INTRODUCTION

In (1963) Kelly introduced the notion of bitopological spaces which is 
the triple (X,Ti ,T2) where X is a nonempty set ,Ti and T2 are 

topologies on X.He also defined pairwise Hausdorff,pairwise regular 

and pairwise normal,then he obtained some generalization of several 

standard results such as Urysohn's lemma and Tietze's extension 

theorem.Later on ,several authors have studied these notions and other 

related concepts.Kim (1968) and Fletcher et al.(1969) introduced the 

definition of compactness of such spaces .Pervin (1967) initiated the 

study of connectedness and Birsan (1969),Reilly (1970) and Swart 

(1971) discussed various aspects of connectedness properties.

In (1965) Zadeh introduced the notion of a fuzzy set in X and other 

basic related notions such as fuzzy union,intersection and complement, 

all of which have become standard.Chang (1968) used them to 

introduce the concept of fuzzy topology as a collection of fuzzy sets on 

X,stable for arbitrary suprema and finite infima and containing the 

constant fuzzy sets 0 and l.Then he studied a number of basic 

concepts,including fuzzy continuous maps and compactness.Lowen 

(1976) introduced a new fuzzy topology which moreover contains all 

constant fuzzy sets. The concept of induced fuzzy topological spaces 

was introduced by Weiss (1975).Later on,Lowen (1976,1977)

12



introduced the so called "goodness criterion" defined by using lower 

semi-continuous functions to establish a relationship between fuzzy 

topological spaces and topological spaces and proved some deeper 

results on induced fuzzy topological spaces.This idea has been used in 

one way or another by several authors (see e.g. Martin 

(1980),Srivastava et al. (1981,1984), Bulbul(1984), Fora 

(1987,1989,1990) and Mohannadi and Warner ( 1988,1989)) .Since 

then an extensive work on fuzzy topological spaces has been carried 

out by many researchers.In fact most concepts and notions of general 

topology ( which can be regarded as a special case of fuzzy topology 

where all membership functions in question take values 0 and 1 only ) 

have been extended to fuzzy topology.

The notion of bifuzzy topology has so far remained almost 

untouched.In (1989) Abd El-Monsef and Ramadan introduced and 

studied the notion of pairwise oc-almost compact in bifuzzy topological 

spaces.

The purpose of this study is to introduce the notion of bifuzzy 

topological spaces and concentrate on extending to bifuzzy those 

bitopological concepts that are most relevant to our purpose . 

However,most attention is paid to the extension of the separation 

axioms,compactness and connectedness.We hope that our study will be 

a further contribution to the development of fuzzy set theory into 

topological spaces and serve as a guide for the study of other bifuzzy 
extensions.

This thesis is divided into five main chapters.In the first chapter ,we 

present all relevant definitions and properties of all topics that will be 

used later in the thesis .Many of those properties have been proved as

13



separate items by different authors .However we present them as a 

quick reference to the reader.Bitopological spaces and fuzzy 

topological spaces were presented .However we stress that all our 

work was carried according to the given definitions and concepts,for 

example we shall follow Wong(1974) for the definitions of fuzzy 

points , fuzzy membership,the direct and inverse image of a fuzzy 

set.With the exception of the first and second sections,each of the 

remaining sections can be considered as an introduction to each of the 

remaining chapters discussed in the thesis.

In chapter two we shall define separation axioms in bifuzzy 
topological spaces,namely P-Ro,P-Rl,P-Ti,P-Tiw(i=0,l,2,2 1/2),P- 

regular and P-normal.Moreover we have shown that all definitions we 

have presented are good extensions in the sense of Lowen's 

criterion.Many other results were proved,especially a version of 

Uryson's lemma in bifuzzy topological spaces.

Chapter three is reserved for connectedness in bifuzzzy topological 

spaces.We have defined several types of connectedness for a fuzzy set 

and show that connectedness is preserved under P-continuous 

functions.

In chapter four we discuss bifuzzy extensions to most of the existing 

definitions of fuzzy compactness in the literature.Moreover we shall 

discuss the goodness criterion and obtain many interesting results 

reflecting to a large extent parallel properties in classical topology.

The last chapter deals with induced and weakly induced bifuzzy 

topological spaces.Many important results regarding Hausdorff and 

compactness properties are presented.

14



Chapter i

SOME KNOWN RESULTS

In this chapter we present all relevant definitions and properties of 

bitopological spaces and fuzzy topological spaces that are used 

elsewhere in the study.For the sake of clarity we divide this part into 

six sections.The first contains the standard definitions and concepts 

related to bitopological spaces,the second is devoted to introduce the 

basic notion of fuzzy sets and fuzzy topology and the third deals with 

the induced fuzzy topological spaces .In section four we discuss the 

separation axioms in fuzzy topological spaces and section five is 

devoted to introduce connectedness in fuzzy topological spaces while 

section six deals with compactness in fuzzy topological spaces.

§ 1.1 Bitopological spaces.

Kelly (1963) introduced the notion of a bitopological space (bts for 
short) which is the triple (X,Tl,T2) ,where X is a non-empty set and 

T i ,T 2 are two topologies on X .He also defined Pairwise 

Hausdorff,Pairwise regular and Pairwise normal spaces.

In this section we shall list the main bitopological definitions and 

results that will be used and investigated later in our work of the 
thesis.
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Definition 1.1.1

A bitopological space (X,Ti ,T2) is called a:

a) P-R()-space iff for all x,yeX,x^y, whenever there exists UeTi such 

that xe U and ye U,then there exists V eT j such that ye V and 

xeV(i,j=l,2 i*j).

b) P-Ri-space iff for all x,ye X,x^y ,whenever there exists UeTlUT2

such that xeU  and ye U,then there exists VeTi and W eTj such that 
xe V and yeW  and VnW=(]) (i,j=l,2 igj).

Definition 1.1.2 (Murdeshwar and Naimnallv. 19661

A bitopological space (X,Ti ,T2) is called a:

a) P-To-space iff for every pair of distinct points,there exists a Ti-or 

a T2-neighbourhood of one point not containing the other.

b) P-Ti-space iff for every pair of distinct points x,y,there exists a 

Ti-or a T2-neighbourhood of x not containing y.

Definition 1.1.3 (Kelly. 19631

A bitopological space (X,Tl,T2) is called a:

a) P-T2-space iff for every pair of distinct points x,y,there exists a Tj- 

neighbourhood of x and a Tj-neighbourhood of y (i^j) which are 

disjoint.

b) P-Regular space iff for every point xe X and a Ti-closed set A with 

xg A,there exists a Tj-neighbourhood U of A and a Ti-neighbourhood 
V of x such that U(TV=(|).

16



c) P-normal space iff for every Ti-closed set A and Tj-closed set B 
with AfiB=((),there exists a Tj-neighbourhood U of A and a T[- 

neighbourhood V of B such that UflV=(j).

Definition 1.1.4 (Bourbaki.1966)

Let (X,T) be a topological space and f:X—>I.Then:

a) f is called a lower semi-continuous (in short l.s.c.) function iff 

f 'l(a ,l]e T  for all ae [0,1).

b) f is called an upper semi-continuous (in short u.s.c.) function iff 

f 'l[0 ,b)eT  for all be (0,1].

One of the best known characterizations of normal bitopological 

spaces is a version of Urysohn's Lemma,which is given by the 
following theorem.

Theorem 1.1.5 ( Kellv.1963)

A bts (X,Tl,T2) is P-normal iff for i^j and for every pair of disjoint 

sets A,B which are respectively Tj-,Ti-closed,there exists a function 

f:X—>[0,1] such that f(A)=0,f(B)=l and f is Ti-upper semi-continuous 

and Tj-lower semi-continuous.

Definition 1.1.6 ( Kelly.19631

A bts (X,Ti ,T2) is said to satisfy the second axiom of countability iff 

(X,Tl) and (X,T2) are second countable spaces.

17



Definition 1.1.7 ( Weston.1957)

In a bts (X,Ti ,T2) we say Ti is coupled to T2 iff for all G e T i , 
c llG C cl2G.

Lemma 1.1.8 ( Weston.1957)

If a bts (X,Tl,T2) is P-Hausdorff and Ti is coupled to T2 ,then 

(X,Tl) is Hausdorff.

The following result was noted by Kelly (1963) so we put it as a 

theorem and prove it .

Theorem 1.1.9

Let (X,Tl,T2) be a P-regular space.

i) If T2 is coupled to T i, then T l^T 2.

ii) If Ti is coupled to Tj for each i,j=l,2,igj.Then Ti=T2-

Er.QQf ;

(i) Let (X,Ti ,T2) be a bts, Ug T i and xe U.Since (X,Ti ,T2) is P- 
regular ,so there exists Ge  T i such that x e  GCcl2GCU.Now X- 

cl2GET2and T2 is coupled to Ti,so cl2(cl2G)cC cll(cl2G)c .Since 

x e G and G eT l and GD(cl2G)c=c(),then xgcll(cl2G )c and hence

xg cl2(cl2G )c.Thus there exists Ve T 2 such that xe  V and 
Vfl(cl2G)c=<j),i.e. VCcl2G but cl2G£U.Hence V ^U  and x e Ve T2- 

Consequently T l^T2.

(ii) Immediate consequence of (i).

18



Definition 1.1.10 ( Fletcher et al. .1969)

Let (X,Tl,T2) be a bts. A collection C of subsets of X is called T1T2- 
open (S-open) if C<7TiUT2.If in addition ,C contains at least one non-

empty member of Ti and at least one non-empty member of T2,it is 

called P-open.

Pervin (1967) defined connectedness properties for bitopological 

spaces,Birsan (1969),Reilly (1970) and Swart (1971) discussed various 

aspects of connectedness properties.

Definition 1.1.11 tPervin.19671

A bts (X,Ti ,T2) is P-connected iff X can not be expressed as the union

of two non-empty disjoint sets A and B such that 
(AncliB)U(cl2AnB)=(t>.

The following theorem is a characterization of P-connected 

bitopological spaces.

Theorem 1.1.12

Let (X,Tl,T2) be a bts .Then the following are equivalent:

(i) (X,Ti ,T2) is P-connected.

(ii) X has no non-empty Ti-open,T2-closed proper subset.

Proof :

(i)=>(ii) Suppose there exists Ae T l such that A*(|),A*X and 
AceT2-Let Ac=B,then AUB=X.Moreover A is Ti-open and B is Tl- 

closed.That is AficllB=(|).Similarly A is T2-closed and B is T2-

19



open.That is cl2AfiB=(|).Hence (X,Ti ,T2) is P-disconnected which 

contradicts (i).

(ii)=>(i) Suppose there exist non-empty disjoint subsets A,B of X such 
that AUB=X,AflcllB=(]) and Bflcl2A=(j).Now AUB=X and AflcllB=(j) 

implies that cliB^B.That is B is Ti-closed.Similarly AUB=X and 

Bficl2A=(j) implies that cl2ACA.That is A is T2-closed.Since B=AC , 

then B is a Ti-closed and a T2-open subset of X,which contradicts (ii).

Definition 1.1.13 (Pervin.1967)

A subset K of (X,Ti ,T2) is P-connected if the bitopological space 

(K,Ti /K,T2/K) is P-connected.

Definition 1.1.14 (Fora and Al-Refa'eiJ987)

Let (X,Tl,T2) be a bts.If there exist non empty sets U,VeTlUT2 such 

that UfiV=(j) and UUV=X then (X,Tl,T2) is called S-disconnected.A 

bts (X,Tl,T2) is called S-connected if it is not S-disconnected.

It is clear that P-disconnectedness implies S-disconnectedness but the 

converse is not true in general.

Example 1.1.15

Let X={1,2,3},T i = {<J),X,{3},{1,2}} and T2= {<>,X,{2}} .Then 

(X,Ti ,T2) is S-disconnected but not P-disconnected.

The connectedness of a bts (X,Ti ,T2) is not governed by the 

connectedness of (X,Ti) and (X,T2) as shown in the following 

examples.

20



Example 1.1.16

Let X={ 1,2} and Tl = {()),X,{1},{2}} and T2={((),X}.Then (X,Ti,T2) 

is P-connected while (X,Ti) is not connected.

Example 1.1.17

Let (X,Ti,T2) be a bts ,Tl = {<j),X,U} and T2={(t),X,Uc } where U is a 

non-empty proper subset of X.Then (X,Tl,T2) is P-disconnected 

while (X,Tl) and (X,T2) are connected.

Example 1.1.18

Let X={ 1,2,3},Ti = {<)),X,{ 1,2},{3}} and {<>,X,{1,3},{2} }.Then the 

bts (X,T i ,T 2) is P-connected while (X ,Ti) and (X,T2) are 

disconnected.

Definition 1.1.19 (Fora and Al-Refa'eiJ987)

Let Tl and T2 be two topologies on X .Then T1UT2 forms a subbase

for some topology on X.This topology is called the least upper bound 

topology on X and is denoted by <Tl,T2>.

Definition 1.1.20 (Fora and Al-Refa'ei.19871

Consider a function f:(X,Ti,T2)—>(Y,T3,T4),then f is said to be

1) continuous if f :(X ,Ti)->(Y ,T3) and f :(X,T2)-»(Y,T4) are 

continuous.

2) P-continuous iff for any UeT3UT4 ,f'l(U)eTlUT2.

3) P-open iff for any UeTlUT2 ,f(U)eT3UT4 .

21



Definition 1.1.21

A function f:X—>X has a fixed point if there exists te X such that 

f(t)=t.The point t is called a fixed point of f.

Definition 1.1.22

A topological space (X,T) has the fixed point property (f.p.p. for 

short) if every continuous function from X into itself has a fixed 

point.

Definition 1,1.23

Consider a bts (X,Ti ,T2),

i) if every continuous function from (X,Tl,T2) into itself has a fixed 

point we say that (X,Ti ,T2) has the fixed point property.

ii) if every P-continuous function from (X,Tl,T2) into itself has a 

fixed point we say that (X,Tl,T2) has the pairwise fixed point 

property (P-f.p.p. for short).

Theorem 1.1.24 (Fora and Al-Refa'ei.1987)

If a bts (X,Ti ,T2) has the P-f.p.p. then (X,Tl,T2) is S-connected and 

P-T0

A set U in a topological space (X,T) is called weakly open if for any 

xe U there exists an open set V containing x such that V-U is a 

countable se t. A set F is called weakly closed if X-F is weakly open.
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If A ^ x  and xe X,then x is called a weak interior point of A if there 

exists a weakly open set V containing x such that xe V^A.The set of

all weak interior points of a set A is denoted by Wint A.

Definition 1.1.25

A set U in a bts (X,Ti ,T2) is called weakly open iff U is weakly open 

with respect to Ti and T2-A set F is called weakly closed if Fc is 

weakly open.

The concept of pairwise compactness was introduced independently by 

Kim (1968) and Fletcher et al. (1969) and they also obtained that a 

pairwise compact pairwise Hausdorff bitopological space is pairwise 

normal.

In this part we recall some known definitions and theorems that will 

be used in our study.

Definition 1.1.26 IFletcher et al. .19691

A bts (X,Ti ,T2) is called P-compact (P-Lindelof) if every P-open 

cover of the space X has a finite (countable) subcover.

Definition 1.1.27 (Datta.19721

A bts (X,Ti,T2) is called S-compact (S-Lindelof) if every S-open 

cover of the space has a finite (countable) subcover.

Theorem 1.1.28 (Fora and Hdeib.1983)

If a bts (X,Tl,T2) is P-Lindelof and C is a weakly closed proper 

subset of (X,Ti),then C is T2-Lindelof.

23



§ . 1,2__Fuzzy topological spaces.

In this section we present some basic concepts of fuzzy sets and 

different definitions of fuzzy topology .The following definitions are 

due to Zadeh (1965).

A fuzzy set X in X as defined by Zadeh (1965) is a function from X 

into I.The real number A,(x)(xe X) is called the grade of membership 

of x in A,.The fuzzy set X is said to be contained in the fuzzy set p ( in 
symbols ^ p )  iff A,(x)<p(x) for all xeX.Two fuzzy sets X and p are 

equal iff ^ ^ p  and p^Z.The complement of the fuzzy set X ( denoted 

by Xc) is defined by A,c(x)=l-^.(x),for all xe X.

It is useful to identify a fuzzy constant function with its range .That is 

if X is a constant function given by A,(x)=c,ce I,then we write c to 
stand for X.

A fuzzy set p is said to be proper if p^O and p^ l.

Definition 1.2.1

If {A,i:ieA] is a collection of fuzzy sets ,then the union and the 

intersection of fuzzy sets are defined as follows:

(nA,i)(x)=inf {)ii(x):ieA},xeX 

and

(UAi)(x)=sup {A,i(x):ieA},xeX .

If A is finite then inf and sup are replaced by min and max.
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If X and (i are two fuzzy sets on X then we define ,their sum to be 

(A,+|i)(x)=A,(x)+|a(x) while A,+|i=l means A,(x)+fi(x)=l for all xeX.

In particular if ^fi|i=0 then the following are equivalent:

(i) X=[ic (ii) XU[i=l. (iii) X+[i=l 

Definition 1.2.2 (Weiss.1975 )

The support of a fuzzy set X in X is denoted by supp X and is defined 

by supp ?i=?i_l(0,l]={x:^(x)>0}.

Definition 1.2.3

A fuzzy set X is called crisp iff A,(x)e {0,1} for all xe X,i.e,A. is the 

characteristic function on X, given by X=%a where A=A,"1({ 1 }).If 

supp X is a singleton subset of X,then X is called a fuzzy crisp point.

The definitions of fuzzy point and fuzzy membership were proposed 
by Wong (1974).

Definition 1.2.4

A fuzzy point p in a set X is a fuzzy set in X given by 

p(x)=t for x=xp ( 0< t <1 )

p(x)=0 for x* xp

The supp p is often written as xp and its value p(xp)e (0,1).

Two fuzzy points p and q are said to be distinct iff xp^xq-
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Definition 1.2.5

A fuzzy point p in X is said to belong to a fuzzy set X in X (written as 

pe>») iff p(xp)<A,(xp).

The following definition was introduced by Fora as a private 

communication.

Definition 1.2.6

A fuzzy point p with support xpeX and value p(xp)e(0,l) is called 

mature provided p(xp)>l/2 and is called immature provided 

p(xp)<l/2.

Definition 1.2.7 (Ghanim et al. .19841

A fuzzy set e is called a fuzzy singleton of X if it is zero everywhere 
except at one point of X (This point will be denoted by xe).A fuzzy 

singleton e in X is said to belong to a fuzzy set X in X (written as ee X) 

iff e(xe)<A,(xe).

We note that every fuzzy point is a fuzzy singleton ,however the 

converse is not true .In fact a fuzzy singleton is either a fuzzy point or 

a fuzzy crisp point.Therefore every fuzzy set can be expressed as the 

union of all of its fuzzy singletons.

Definition 1.2.8

Let f be a function from X into Y , where X ,Y are arbitrary sets .

Let A, be a fuzzy set in X and p be a fuzzy set in Y.The direct image 

of X under f is the fuzzy set f(A,) in Y given by

f(A,)(y) = sup {(U(x) : x e f -1 ((y))) J ^ Y .
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The inverse image of p under f is the fuzzy set f 'l(p ) in X given by 

f-l(|i ) (x) = |i ( f(x)) , x g  X .

Lemma 1.2.9 .

Let f : X-^Y be a function and (i a fuzzy set in Y.Then (f-l(p))_l(A)= 
f-% -l(A )) where AC [0,1] .

Proof :

Let x g  (f-l(ji))- 1(A),then (f-l(p))(x)=p(f(x))G A.This implies that 
f(x)Gp.-l(A).That is xGf_l(p~ 1(A)).Hence (f'l(p))-l(A)<CY-l(p-l(A)).

Conversely,let yG f- l(p _ 1(A)),then f(y)G|i"l(A) which implies that 

p(f(y))G A.That is (f_l(p))(y)G A which gives that yG (f-l(p))-l(A). 
Hence f-l(p-l(A))C(f-l(jI ))-l(A).

Different definitions of fuzzy topology have appeared since Chang 

(1968) introduced the concept .Lowen's definition which require that a 

fuzzy topology should have one more axiom,namely it includes the 

constant fuzzy sets was the most attractive one after Chang's 

definition.

In this thesis we shall adopt Chang's definition of fuzzy topology 

because Lowen's definition does not generalize topology.Any topology 

can be considered as a fuzzy topology which is called a crisp fuzzy 

topology and defined by X/T=(x u :Ug T} which is not a fuzzy 

topology in the sense of Lowen's definition.

Definition 1.2.10 IChang.19681

A fuzzy topology on a nonempty set X is a collection x of fuzzy
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sets in X such that;

i) 0, 1 E T.

ii) If A , p e  x , then A fi p e  x .

iii) If Ai e  t  , i e  A , then U Ai e  t .

where 0,1 denote the fuzzy sets given by 0(x)=0 and 1(x )=1,x e X. 

Members of x are called x-fuzzy open sets and the pair (X , x ) is 

called a fuzzy topological space (in short fts).Complements of open 

fuzzy sets are called fuzzy closed sets .

If A is a fuzzy set of a fts (X,x) ,then the interior and the closure of A 

are defined by:

Int A=U {p:p is an open fuzzy set and p^A} 

cl A=fi {jLi:pi is a closed fuzzy set and A^p}

A fuzzy set A in (X,x) is called a neighbourhood of a fuzzy point p 
(fuzzy singleton e) iff there exists pEx such that pE \iQX (eE pC A).

Definition 1.2.11 (Wong.1974)

A subfamily B of x is said to be a base for x iff for each Ae  x where 
A^O,there is a subfamily BA of B such that A=UBA-

Definition 1.2.12 (Wong. 19741

A subfamily D of x is said to be a subbase for x iff the family B of all 

finite intersections of members of D together with 1 forms a base for 
x ,i.e, B={ fiL:L is a finite subset of D} U {1} is a base for x.
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Definition 1.2.13

Let (X,x) be a fuzzy topological space and YCX.If X/Y=XC\Xy  ,then 

the family Xy = {^/Y:A,ex} is a fuzzy topology on Y.The fuzzy 

topological space (Y,Xy) is called a fuzzy subspace of (X,x) with the 

underlying set Y.The subspace (Y,Xy) is called closed,open and proper 

if Y is closed,open and proper respectively.

A fuzzy set X on Y may be considered as a fuzzy set on X in the sense 

that X takes the value 0 on X-Y and,conversely, a fuzzy set on X 

taking value 0 on X-Y can be considered as a fuzzy set on Y.

Definition 1.2.14

Let f: (X,xi) —» (Y,x2) be a function from a fts (X,xi) to a fts 

(Y,x2).The function f is called fuzzy continuous iff the inverse image 

of every x2-open fuzzy set in Y is XI- open fuzzy set in X.

Theorem 1.2.15 IChang. 19681

Let f:X—>Y.Then A,^f- l(f(A,)) for any fuzzy set X in X.

Definition 1.2.16 tFora.19901

A fuzzy topological space (X,x) is said to have the fixed point property 

(f.p.p for short) iff every fuzzy continuous function f:(X,x)—» (X,x) 

has a fixed point.

£__L2__The induced fuzzy topological spaces

It is a well known fact that the family of all lower semi-continuous 

functions from a topological space (X,T) to the closed unit interval
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[0,1 ](with the usual ordinary topology on [0,1]) forms a fuzzy 

topology on X.This fuzzy topology was given many names by 

different authors but the most famous one is given by Weiss (1975) . 

He called it the induced fuzzy topology.Lowen (1976) gave it the name 

"topologically generated" and denote it by co(T) which has become 

now familiar.

Definition 1.3.1

The collection co(T)={f| f:(X,T)—>1 is l.s.c.) is called the induced 

fuzzy topology of (X,T).The pair (X,co(T)) is called the induced 

fuzzy topological space.

It is clear that if (X,T) is a topological space,then the characteristic 
function x u :(X ,T)—>1 | s ps c iff Ug  T.Therefore the collection 
X/T={xu :Ug T}Cco(T).

Lowen (1977) used the induced fuzzy topology as a guide in 

fuzzification of classical concepts and in (1978) he used it to invent 

the so called "goodness criterion" which is considered to be a big step 

in the development of fuzzy topology.

Definition 1.3.2

Let (X,x) be a fts and p a fuzzy point .A subfamily Bp of x is called a 

local base at p iff pe B for every B in Bp,and for every member X of x 
such that pG X there exists a member B in Bp,such that pG BCL
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Proposition 1.3.3 (Mohannadi and Warner .1989)

If B={Boc:oce A} is a base for the topological space (X,T),then a basis 

for the induced fts (X,to(T)) is given by {Aqoc:Aqoc(x)=q for xeB «  
and Aqoc(x)=0 for xg Ba,for all aeA  and qeQfl(0,l]}.

Definition 1.3.4 iWong.1974!

A fts (X,x) is said to be fuzzy first countable (in short a Cl-space) iff 

every fuzzy point in X has a countable local base.

Definition 1.3.5 iWong.19741

A fts (X,t ) is said to be fuzzy second countable (in short a Cn-space) 

iff there exists a countable base B for x.

Proposition 1,3.6

A topological space (X,T) is second countable (first countable) iff the 

induced fts (X,co(T)) is second countable (first countable).

Theorem 1.3.7 iFora.1990!

Let (X,Ti) and (Y,T2) be two topological spaces.Then

i) f:(X ,T i)—>(Y,T2) is continuous if and only if f:(X,co(Tl))—> 
(Y,cg(T2)) is fuzzy continuous.

ii) f:(X ,T i)—>(Y,T2) is continuous if and only if f:(X ,X/Ti)—> 

(Y,Y/T2) is fuzzy continuous.
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Definition 1.3.8 (Löwen ,1976)

Let (X,x) be a fts.A topology on X having the subbase [A,_l(a,l],A,ex, 

ae [0,1)} is called the initial topology of x and denoted by L(x).

Definition 1.3.9 (Martin. 1980)

Let (X,x) be the fts ,then the topology xc on X is said to be the 

Martin topology of x provided Xc* is defined by

xc* = {ACX:%Aex}.

We note that if Xc is the set of all characteristic maps in x then 

Xc is a fuzzy topology on X .Moreover the fuzzy topological space 

(X,xc) is essentially the same as the topological space (X,Xc*).

Definition 1.3.10 (Martin.1980)

A fuzzy topological space (X,x) is said to be an induced fuzzy space 
provided x is the collection of all l.s.c. maps from (X,Xc*)—»I.That is 

(X,x) is induced iff x=co(xc*).

Definition 1.3.11 [Martin. 19801

A fuzzy topological space (X,x) is said to be a weakly induced fuzzy 

space provided whenever ?iex then X: (X,Xc*)-»I is l.s.c. .That is 
(X,x) is weakly induced iff x£co(xc*).

Observe that every induced space is weakly induced but the converse is 

not true as we see in the following example.
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Example 1.3.12

Let X =[0,l],and x = {0,l} .T hen xc * = T in d ={<J), X} and 

A :(X,Tind)—>(I,Tr.r) is continuous iff it is a constant.Therefore 
co(Tind)={c:0<c<l}.So t ={0,1 }C(o(xc*) but x^co(xc*).Hence x is

weakly induced but not induced.

Definition 1.3.13 (Lowen.1976)

A fts (X,x) is said to be topological (topologically generated) provided 

x is the collection of all l.s.c. maps from (X,L(x))—>I.That is (X,x) is 

topological iff x=co(L(x)).

We note that for any fts (X,x) we have xCco(L(x)) but the converse is 

not true in general as we see in the following example.

Example 1.3.14

Let X= [0,1],and x={0,l}.Then L(x)=Tind ={<)),X} because 

0,l:(X,Tind)—>(I,Tr.r) are continuous.Therefore co(L(x))=co(Tind)= 

{c:0<c<l }.Thus co(L(x)) is not a subset of x.Hence x is not topological.

Theorem 1.3.15 lLowen.1976)

A fts (X,x) is topologically generated iff for each continuous function 
f: (I,Tr.r)—>(I,Tr.r) and for each ve x we have f o v e x.

Definition 1.3.16 (Lowen.1978)

A property Rf of a fts is said to be a good extension of the property R 

in classical topology iff whenever the fts is topologically generated;
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say by (X,T);then (X,co(T)) has the property Rf iff (X,T) has the 

property R.

§ 1.4___Separation axioms in fuzzy topological spaces.

Several authors have introduced different definitions of separation 

properties for fuzzy topologies (see, e.g. Hutton (1975) and (1977), 

Pu and Liu (1980) and Srivastava, et al. (1981)). The Hausdorff axiom 

has had a hard life in fuzzy set theory since many authors have 

proposed different definitions (e.g. Pu and Liu (1980), Sarkar (1981) 
and Wong (1974)).

In this section we shall define some separation axioms which we need 

in our further study.

Definition 1.4.1 (Srivastava et al. ,1988)

A fts (X,x) is said to be fuzzy Ro iff for all x,ye X,x^y,whenever 

there is Uex such that U(x)=l and U(y)=0,there is also Vex such that 

V(y)=l and V(x)=0.

Definition 1.4.2 (Srivastava et al. .1987)

A fts (X,t ) is said to be fuzzy Ri iff for all x,ye X,x*y,whenever 

there is Ue x with either (U(x)=l and U(y)=0) or (U(y)=l and

U(x)=0) ,then for any pair of fuzzy points p and q with supports x and 
y there exist V,We x with pe V,qe W and VDW=0.

Definition 1.4.3 (Fora.19891

A fuzzy topological space (X,x) is said to be :
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1) To iff for any two distinct fuzzy points p,q in X , there exists an 
open fuzzy set p such that (pe p and pflq=0) or (qe p and pflp=0).

2) TOw iff for any two distinct fuzzy points p,q in X,there exists an 
open fuzzy set p such that pe pÇqc or qe pÇpc.

3) Tl iff for any two distinct fuzzy points p,q in X , there exist open 
fuzzy sets p i and p2 such that pe p i , p i fiq =0 and qe p2, p2flp=0.

4) Tlw iff for any two distinct fuzzy points p,q in X,there exist open 
fuzzy sets p i and p2 such that pe p i^ q c and qe p2^pc.

5) T2 iff for any two distinct fuzzy points p,q in X, there exist open 
fuzzy sets p i and p2 such that pe pi,qe p2 and pifip2=0.

6) T2w  iff for any two distinct fuzzy points p,q in X,there exist open 
fuzzy sets piand p2 such that pe pi,qe p2 and p i^ (p 2 )c.

7) T2 1/2 iff for any two distinct fuzzy points p,q in X,there exist open 
fuzzy sets p i and p2 such that pep i,qe  p2 and d p i  fl clp2=0.

8) T2 1/2w  iff for any two distinct fuzzy points p,q in X, there exist 
open fuzzy sets p i and p2 such that pe pi,qe p2 and d p i £(clp2)c.

Theorem 1.4.4 (Fora .1990)

Let f : (X,xi) —> (Y,T2) be an injective fuzzy continuous map. If 

(Y ,t 2) is a Ti-space then (X ,xi) is a T i-space,ie {0,1,2,2 1/2, 

0w,lw,2w,2 1/2 w}.

From the above definitions one can notice that the following chains of 

implications are true.
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(i) Ti —» Tiw. for i=0,l,2,2 1/2

(ii) T2 1/2 -> T2 T i —>To.

(iii) T2 1/2W- >T2w  ~>Ti w  —>T()w.

Definition 1.4.5 (Fora .19891

A fuzzy topological space (X,t ) is said to be:

(i) regular iff for every fuzzy point p in X and every closed fuzzy set 

X in X such that pe A,c,there exist open fuzzy sets p.1 and |I2 such that 
pepi,^C |j,2 and [ i i C ^ c .

(ii) normal iff for every pair of closed fuzzy sets X l X l  such that 
A ,lC (X ,2)c , there exist open fuzzy sets 1 ,jo.2 such that 
^ C m C (^ )c c (X 2 )c .

Definition 1,4.6 (Gantner et al. .19781

A fts (X,t ) is Hausdorff if for any two distinct points x,y of X,then 
there exist ^,|ie t  such that A,(x)=p.(y)=l and ^fip.=0.

We note that definition 1.4.6 implies definition 1.4.3(5) but the 

converse is not true as was pointed by Liu (1982).

Definition 1.4.7

A property P is called hereditary (weakly hereditary, hereditary with 

respect to open subspaces), iff each subspace (closed subspace, open 

subspace) of a fts with property P also has the property P.
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Definition 1.4,8 (Hutton .1975)

Let (L,<) be a completely distributive lattice with order reversing 

involution.The fuzzy unit interval [0,1](L) is the set of all 

monotonic decreasing maps X: R—>L satisfying:

X(t) = 1 for t<o, te R,

X(t) =0 for t>l, te R;

after identification of X : R->L and |i:R ->L  iff X(t-)=|i(t-) and 

X,(t+)=p(t+) for every te R (where A,(t-)=mf {X(s) :s<t} and 

X(t+)=sup{X(s):s>t}) where 0 and 1 are the top and bottom elements 
of L.

We define an L-fuzzy topology on [0,1](L) by taking as a subbasis 

{Lt,Rt:tGR} where we define Lt(X)=(X(t-))c and Rt(^)=X(t+)-This 

fuzzy topology is called the usual topology for [0,1](L).

Theorem 1.4.9 (Hutton .1975)

A fts (X,t ) is normal iff for every closed fuzzy set F and open fuzzy 
set X such that F£!X, there exists a fuzzy continuous function f : (X,x)

—> [0,1](L) such that for every x g X , F(x)<f(x)(l-)<f(x)(0+)<X(x).

§ 1.5 Connectedness in fuzzv topological spaces.

Regarding connectedness,Pu and Liu (1980) have paid some attention 

to connectedness.They used the concepts of fuzzy subspace and a fuzzy 

closed set to define connectedness of a fuzzy set . Lowen (1981) had 

also defined an extension of connectedness in a restricted family of 

fuzzy topologies i.e., for a fuzzy set which is everywhere strictly 

positive.Fatteh and Bassan(1985) defined fuzzy connected subsets of a
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fuzzy topological space and studied their properties,Ajmal and 

Kohli(1989) had defined connected fuzzy sets and showed that fuzzy 

connectedness is preserved under fuzzy continuity.

We start this section with the following definition.

Definition 1.5.1

A fts (X,t ) is said to be fuzzy connected if it has no proper fuzzy 

clopen (closed and open) set.

The first characterization of fuzzy connectedness is given in the 

following theorem.

Theorem 1.5.2 (Fatteh and Bassan.1985)

A fuzzy topological space (X,x) is fuzzy connected iff it has no non-

zero fuzzy open sets X and p such that A,(x)+p(x)=l for all xeX.

Theorem 1.5.3

A fuzzy continuous image of a fuzzy connected space is fuzzy 

connected.

Proof :

Let X be a fuzzy connected space and let f:X—>Y be a fuzzy continuous 

function from X onto a fuzzy space Y.

Suppose on the contrary that Y is not fuzzy connected,then it has a 

proper fuzzy clopen set LSince f is continuous,then f_l(A,) is a proper 

fuzzy clopen set in X.Hence X is not fuzzy connected,which is a 
contradiction.
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The following definitions and results are due to Fatteh and Bassan 

(1985).

Definition 1.5.4

Let (X,t ) be a fts and A^X.Then A is said to be a fuzzy connected 

subset of X if A is a fuzzy connected space as a fuzzy subspace of X.

Theorem 1.5.5

Let (X,t ) be a fts , A be a fuzzy connected subset of X and X, p are 

non-zero fuzzy open sets in X such that >»+p=l,then either A,/A=l or 

p/A=l.

Definition 1.5.6

Fuzzy sets X and p in a fts (X,x) are said to be separated from each 
other if cU,+p£l and A,+clpCl.

Theorem 1.5.7

Let {Act :aeA} be a family of fuzzy connected subsets of X such that 

for each a  and (3 in A and a^(3,Aa,Ap are not separated from each 
other ,then U {Act :oce A} is a fuzzy connected subset of X.

Theorem 1.5.8

If A and B are subsets of a fts (X,t ) such that %a ^Xb ^c1x a  and A is a 

fuzzy connected subset of X,then B is also a fuzzy connected subset of 
X.

As we have noticed in the preceding results Fatteh and Bassan (1985) 

defined connectedness only for a crisp set of a fuzzy topological
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space.However Ajmal and Kohle (1989) have extended the notion of 

connectedness to an arbitrary fuzzy set.They considered all the 

variations of these definitions which are particularities of fuzzy 

setting.In a special case,when the fuzzy set X is the whole fuzzy space 

(i.e., X,= l) all the conditions collapse to give us a condition more 

general than that of fuzzy connectedness studied by Fatteh and Bassan 

(1985).Moreover Ajmal and Kohle's definition is a good extension in 

the sense of Lowen's criterion while that of Fatteh and Bassan (1985) 

is not.

Definition 1.5.9 (Aimal and Kohle,1989)

A fuzzy set g  in (X,x) has a Ci-disconnection property if there exist 
open fuzzy sets X and p. in X such that o^^Up. and :

Cl: ^nji£l-a,on>^0 anp.7t0.

C2'. anA.np=0,anitaD ofiji/O.

C3: A.nfi£l-G,A,£l-a,|i<£l-a.

C4: arUn|i=(U£i-G,|i£i-G.

G is said to be Q-connected if there does not exist any 
Ci-disconnection of G in X (i=l,2,3,4).

§ 1.6 Compactness in fuzzv tonological spaces.

Compactness in fuzzy topological spaces was first introduced by Chang

(1968) .His definition was not good because a fuzzy space with one 

point fails to be compact. Kim (1968) and Fletcher et al.

(1969) ,Goguen (1973),Wong (1974) and Weiss (1975) worked on
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compactness but their works were limited.Lowen (1976) gave a new 

definition of compactness while Gantner et al. (1978) introduced a- 

shading and a-compactness.

We start this section with the following definition.

Definition 1.6.1

Let (X,t ) be a fts.A collection C={^cLOte A} of fuzzy sets in X is 
called an open cover of X if i  and U{Xoc:ote A} = 1.A subcollection

L of C that is also a cover of X is called a subcover.If moreover L is 

finite (countable),we say L is a finite (countable) subcover of C.

Definition 1.6.2 (Chang.1968)

A fts (X,x) is compact iff every open cover of X has a finite subcover. 

The above definition has a serious weak point ,that is a finite space 
needs not be compact.

Example 1.6.3

Let X={xo) and x={c:0<c<l}.Then the collection {c:0<c< 1 }is an open 

cover for X which has no finite subcover.

Due to this weakness other definitions of compactness were proposed 

Definition 1,6.4 (Gantner et al. .19781

Let (X,t ) be a fts and 0<a<l.A collection U={|ii:ieA} of fuzzy sets in 

X is called an a-shading of X if for each xg  X,there exists |iiG U with 

pi(x)>a.A subcollection V of U that is also an a-shading is called an 

a-subshading. If moreover V is finite (countable),we say V is a finite 
(countable) a-subshading of U.
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Definition 1.6.5 (Gantner et al. ,1978)

A fts (X,x) is called a-compact iff each a-shading of X has a finite 

a-subshading.

Definition 1.6.6 (Lowen.1978)

A fuzzy set f in a fts (X,x) is said to be compact if for every family 
G ^x  such that sup{g:geG} >f and for every e >0,there exists a finite

subfamily G g^G  such that sup{g:ge Ge ] >f-£,where (f-e)(x)= 

f(x)-e,xe X.

Definition 1.6.7 (Lowen.1978)

A fts (X,x) is said to be:

(i) fuzzy compact provided all constant fuzzy sets in X are compact.

(ii) strong fuzzy compact iff it is a-compact for each a e  [0,1).

(iii) ultra fuzzy compact iff (X,L(x)) is compact.

Definition 1.6.8 (Lowen.1976)

A fts (X,x) is weakly fuzzy compact iff for each family B^x such that

sup{p:p.G B }=1 and for each £>0 there exists a finite subfamily Bo of 
B such that sup{p:|iG Bo)>l-£.

Definition 1.6.9 (Lowen.1976^

A fts (X,x) is fuzzy compact iff for each B^x and each aG (0,1] such

that sup{ja:jiG B } > a  and for each £ g (0,1] there exists a finite 
subfamily Bo of B such that sup{|i:p.GBo}> a-£.
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The following results can be found in Martin (1980).

Theorem 1.6.10

Every fuzzy compact (in the sense of definition 1.6.7(i)) Hausdorff 

space is a weakly induced space.

Theorem 1.6.11

If (X,t ) is fuzzy compact(in the sense of definition 1.6.7(i)) then 
(X,Tc ) is compact.

Definition 1.6.12 tWong.19731

A fts (X,t ) is Lindelof iff every open cover of X has a countable 
subcover.

Definition 1.6.13 (Gantner et al. .19781

Let X be a non -empty set and a e  I.A collection p  of fuzzy sets in X 
is said to be a-centered if for all finite collections pie p  ,i=l,2,...,n 

there exists xeX with pk(x)>l-a for all ke {l,2,...,n}.
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Chapter II

BIFUZZY SEPARATION AXIOMS

In this chapter we shall define separation axioms in bifuzzy topological 
spaces (which are the triples (X,xi,x2) where X is a nonempty set,xi 

and T2 are fuzzy topologies on X ) and then investigate the relation 

between them.Moreover we use Lowen's goodness criterion to show 

that all our definitions are good extensions .For the sake of clarity we 

divide this chapter into five sections.

In the first section we discuss bifuzzy P-Ro and P-To topological 

spaces and in the second section we discuss P-Ri and P-Ti topological 

spaces while in section three we discuss P-T2 and P-T2 1/2-hi section 

four we discuss P-regular and P-normal bifuzzy topological spaces and 

in the last section we present different properties of separation axioms.

§ 2.1 Bifuzzv P- Rn and P-Tn-topological spaces.

We start this section with the following definition

Definition 2.1.1

A bfts (X,xi,T2) is said to be P-Ro iff for any distinct fuzzy points p 
and q in X,whenever there exists A,exi such that p e^  and qflX=0,then 

there exists pexj such that pfip=0 and qep(i j=l,2,i?tj).
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Definition 2.1.2

A bfts (X,Tl,T2) is said to be P-ROw iff for any x,yeX,x^y whenever 

there exists A,g x 1 such that A,(x)=l and A,(y)=0,then there exists |iexj 

such that ji(x)=0 and |i(y)=l(i,j=l,2,i^j).

The following theorem shows that P-Ro-space implies P-R()w-space. 

Theorem 2.1.3

If a bfts (X,ii,T2 ) is a P-Ro space,then (X,xi,x2) is a P-ROw space. 

Proof :

Let x,ye X,x;*y and such that A,(x)=l and A,(y)=0.Let p be a fuzzy 

point with support x and C={qa:oceA} be the collection of all fuzzy 

points with support y.Since p and qa are distinct fuzzy points for all a  

and (X,xi,x2) is P-R(),then for each a  there exists P a GXj such that 
pfip.a=0 and qoce|ia-Let ji=sup{jia:ae A}.Then pexj and ji(y)=l and

p(x)=0.Hence (X,t i ,X2) is P-ROw- 

Example 2.1.4

There exists a bfts (X,xi,x2) which is P-ROw but not P-Ro .

To present our example,let X={0,1},xl = {0,1 ,pt} and X2={0,1,A,} 

where p(0)=l/2 ,j i(1)=0, >.(0)=0 and X(l)=3/4. Consider the fuzzy 

points p and q such that p(0)=3/4 and q(l)=l/4.Then it is clear that 
qe ^ex2,pnX.=0 and for any o such that pG o e  xi ,qfia^0.H ence

(X,xi,x2) is not P-Rq  although it is (vacuously) P-RQw  •
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The following definition is an extension of Lowen's criterion for 

goodness in bifuzzy topological spaces.

Definition 2.1.5

A property Rf of a bits is said to be a good extension of the property 

R in classical topology iff whenever the bfts is induced,say by 

(X,Ti,T2),then (X,co(T i ),co(T2)) has the property Rf iff (X,Ti ,T2) 

has the property R.

In the following theorem.we show that our definitions of P-Ro and P- 

ROw are good extensions .

Theorem 2.1.6

Let (X,Ti ,T2) be a bts ,then the following statements are equivalent:

i) ( X, Tl,T2) is a P-Ro space.

ii) (X,co(T i ),co(T2)) is a P-Ro space.

iii) (X,co(T i ),co(T2)) is a P-ROw space.

Erg of ;

(i) =>(ii) Let p and q be any two distinct fuzzy points with supports xp 
and yq respectively and Xe co(Ti) such that pe X and qflA,=0.Since

^:(X ,Ti)—»1 is l.s.c. ,then ^ " l(0 ,l]e T i such that xpe X.- ^(0,1 ] and 

yq£ A,"1(0,1].Since (X,Tl,T2) is P-Ro,so there exists VeTj such that 
Xpg V and yqe V.Now it is clear that pfl%v=0 and qe%v where

%v^ w(Tj).Hence (X,to(Ti),co(T2)) is a P-Ro space.

(ii) =>(iii) see theorem 2.1.3.
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(iii)=>(i)Let x,y g  X,x=£y and Ue Ti such that xe U and yg U.Now if p

and q are two fuzzy points with supports x and y respectively,then it 
is clear that pG %u and qflxu=O.That is Xu00=l and Xu(y)=0.Since

(X ,co(Tl),cl)(T2)) is P-R0w,then there exists Xe (o(Tj) such that 

A,(y)=l and X(x)=0.Hence xg^"l(0 ,l] and yg ^"1(0,1] which shows 
that (X,Tl,T2) is P-Ro.

Definition 2.1.7

A bfts (X,xi,T2 ) is said to be P-To iff for any two distinct fuzzy 
points p,q in X,there exists a fuzzy set |Ig t i Ut 2 such that (pep. , 
q fl|i=0) or (qGp,pfip=0).

Definition 2.1.8

A bfts (X,xi,T2 ) is said to be P-T()w iff for any two distinct fuzzy 
points p,q in X,there exists a fuzzy set j i g t iUt 2 such that (pG p Q qc) 
or (qG p C pC)

The following theorem shows that P-To-space implies P-T()w-space. 

Theorem 2.1.9

If a bfts (X ,xij2  ) is a P-To space,then (X,xi,T2) is a P-T0w space. 

Proof :

The proof is obvious because if pfip=0,then p £ p c.

Example 2.1.1ft

There exists a bfts (X,n,T2) which is P-TQw  but not P-Tq  .
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The following example illustrates our purpose.

Let X=[0,1] and xi = {0,A,:A, is fuzzy set on X for which ^(x)>0 for 

every xeX ) and x2={0,l,%[o,r): 0<r<l/2}.Then (X,xi,x2) is a bifuzzy 
topological space.To prove X is a P-TOw space Jet p,q be any two 

distinct fuzzy points in X with supports xp,xq respectively. Define the 

fuzzy sets ^p,^q as follows:

1 if x^xq 1 if x^xp

kp(*H  , *q (xH

qc(xq) if x=xq pc(*p) if x=xp

then Xp,Xq are xi- open fuzzy sets and pe XpCqC?qG A.qCpC.Hence 

(X,xi,x2) is a P-TOw space. Moreover we notice that for any two 

distinct fuzzy points p,q such that xp>l/2 and xq>l/2,the only fuzzy 

set 'keT2 such that pe>, or qeX, must be A.=l.If A.exi,then X(x)>0 for 
all xe X.Consequently >*exiUx2 implies that A.np;*0 and ^nq:*O.Hence

(X,xi,x2,) is not a P-To space.

In the following theorem,we show that our definitions of P-To and 

P-TOw are good extensions.

Theorem 2.1,11

Let (X,Ti,T2) be a bitopological space ,then the following statements 

are equivalent:

(i) (X,Ti ,T2) is a P-To space.

(ii) (X,co(T i )ico(T2)) is a P-Tq  space.
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(iii) (X ,co(T i ) ,cl>(T2)) is a P-TQw  space .

Proof:

(i) =>(ii) : Let (X,Ti ,T2) be a P-To space and let p,q be two distinct 

fuzzy points in X. Since (X,Ti ,T2) is a P-To space and xp^xq there 

exists UeTi such that xpG U,xqg U or xqG U,xpg U.It is clear that the 
function Xu:(X,Ti)-^I is l.s.c. .Consequently oo(Ti)U(o(T2). 

Moreover peXu,XuHq=0 or qe%u, XuHp=0.Hence (X,co(Ti),co(T2)) 

is a P-To space.

(ii) =>(iii) The proof is obvious because if pfi>i=0 then pC^c.

(iii) =>(i) Let (X,co(T i ),co(T2)) be a P-TOw space and let x,y be two 

distinct elements in X .Take p,q to be the fuzzy points in X for which 
p(x)=q(y)=0.6 .Then there exists A,e oo(Ti)Uco(T2)such that pe>.CqC 

or qe A,dpc-

Consider the first case where pe^CqC in this c a s e , ((0.6,1])=Ug  

T1UT2 and contains x but not y.If xg U ,then ^(x)£ (0.6,1] which

gives A.(x)<0.6.Since pG ^,then p(x)<?i(x)<0.6 and this implies 

0.6<^(x)<0.6 which is absurd.Therefore xg  U.

To show that yg U, suppose yG U .This implies that A,(y)g (0.6,1]. 
Since A.Sqc ’then 0.6=^(y)<l-q(y)=0.4 which is absurd.Therefore

ygU.

The other case can be treated similarly.
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Theorem 2.1.12

If (X,xi) or (X,T2) is a fuzzy TO-space (TOw-space),then (X,xi,T2) is 

a P-To space (P-TOw space).

Proof :

Without loss of generality, we may assume that (X,xi) is a fuzzy To- 

space (TOw-space).Let p,q be two distinct fuzzy points in X.Since 
(X,xi) is a fuzzy To-space (T()w-space),there exists p ex ii^  xiUx2 

such that pe p, pfiq=0 (pe p£qC) or qe p, pflp=0 (qe p<2pc).This

completes the proof of our theorem.

Examnle 2.1.13

There exists a P-To (P-TOw) bits (X,xi,x2) such that neither (X,xi) 
nor (X,x2) is a fuzzy TO-space (TOw-space).

Consider X =[0,l],xi = {0,l,X[o,r) : 0<r<l/2} and X2={0,l,X(r,i] : 
l/2<r<l}.It is easy to show that neither (X,xi) nor (X,x2) is a fuzzy 

TOw-space because if p is any fuzzy point with support greater 

(smaller) than 1/2 ,then 1 is the only fuzzy open set in xi(x2) 

containing p.To show that (X,xi,x2) is a P-To space (P-TOw-space),let 

p,q be two distinct fuzzy points in X with supports xp and xq 

respectively .Without loss of generality we may assume that xp<xq.let 

£e(0 ,l) be such that £^1/2 and xp<£<xq 5 then we have the following 

cases.

i) if £<1/2, then X[0.£) contains p and X[0,^nq=0 (%[o£)Cqc).

ii) if £>1/2,then Xfoi] contains q and X(UlnP=° (X[^,i)^pc)
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T herefore (X ,xi,x2) is a P-Tq  space.

Definition 2.1.14

Let A. be a fuzzy set of a bfts (X,xi,X2).Then X is called xix2-open 
(xiX2-closed) iff >.exiUx2 (X,cexiUx2).

Definition 2,1,15

Let xi and X2 be two fuzzy topologies on X .Then xi*Jx2 forms a

subbase for some fuzzy topology on X.This fuzzy topology is called 
the least upper bound topology on X and is denoted by <xi,x2>.

Now we have the following characterization of P-T()w -spaces.

Theorem 2.1.16

Let (X,xi,x2) be a bifuzzy topological space,then the following are 

equivalent:

1) (X, xi,X2) is a P-T()w space.

2) (X,<xi,x2>) is a Tow space

3) For any 0<e<l; x o ,x i <e X ,xo^xi,there exists A.exiUx2 such that 

lA,(xO)-A.(xl)l>l-e

4) For any 0<£< 1; xO,xie X,x0^xi,there exists a fuzzy xiX2-closed 

set j i such that Ip(x0)-p.(xi)l>l-e

Proof.:

The equivalence of (3) and (4) is clear by letting |i=A,c,we have 
I l-?i(xo)-l +X(x l )l> 1 -e.
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(1) =>(2): The proof is clear because X1UX2 £ < t 1,t 2>-

(2) =>(3): Let 0<e<l and xO,xie X,x0^xi.Let pO,plbe the fuzzy points 

in X given by pi(xi)=l-(l/2)e (i=0, l),then pO,pi are distinct fuzzy 

points in the T()w-space (X,<xi,x2>).Thus there exists a fuzzy set 
A,e<xi,X2> such that p o e ^ C p lc or p le  A-Cpgc .Since A,e<xi,X2>, 

there exist basic open sets j if ia  such that poef-ifiaC ^C piC  or 

piepfio^X C pQ C  where jiex i and ctex2.Since p iejiflo , therefore 

pi(xi)<(pPia)(xi) which implies pi(xi)<|i(xi) and pi(xi)<o(xi).That is 

l-(l/2)e<p.(xi) and l-(l/2)e<a(xi).Moreover } inaC (p i-i)c,therefore 

|i(xi_i)<l-pi_i(xi_i)= (l/2)e or a(xi-i)<l-pi-i(xi-i)=(l/2)e.That is 

—jll(x l-i)>-(l/2)e or-o(xi-i)>-(l/2)e.Hence we have, lp(xo)-|i(xi)l= 

|i(xi)-|i(xi-i)>l-e or la(xo)-a(xi)l=a(xi)-a(xi-i)>l-e,which completes 

the proof.

(3) =>(1): Let pO,pi be any two distinct fuzzy points in X with supports 

xo,xl,respectively.Let t=min{0.2,l-po(xo),l-pi(xi)}. Applying (3) 
with e=(l/2)t,te (0, 1),there exists A.exiUx2 such that IA,(xO)-^(xl)l>

l-(l/2)t.We have two cases to consider:

Case 1: ^(xo)>^(xi). In this case A.(x0)-A.(xi)>l-(l/2)t implies that 

MxO)> l-(l/2)t+^(xi)>l-(l/2)t>l-t>po(xo).That is poeiLNotice that 
^(xi)+pi(xi)<A,(xo)-l+(l/2)t+l-t<l-(l/2)t.That is A-Cp^ch follows 
that AexiUx2 satisfies the condition that p()e A<^pic.

Case 2: A(xi)>A(xo).This case is similar to the above case and we 
conclude that there exists AexiUx2 satisfying the condition that
p ie ^ C p0c

Let us now present another characterization of P-TQw  spaces.
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Theorem 2.1,17

Let (X,xi,x2) be a bifuzzy topological space, then the following are 

equivalent:

1) (X,xi,T2) is a P-Tow space.

2) For any 0<e<l; xo,xie X,xo*xi,there exists >lGX1Ux 2 such that 

X(xi)=land 2c(xi_i)<e for some ie {1,0}.

3) For any 0<e<l; x0,xie X.xO^xl,there exists a fuzzy xix2-closed set 

such that )i(xi)=0 and p(xl-i)>e for some ie {1,0}.

Proof :

The equivalence of (2) and (3) is straightforward because if ^exi<Jx2 

for which A.(xi)=land X(xl-i)<e for some ie {0, l},then p=A,c is a 

fuzzy xix2-closed set for which |i(xi)=0 and p(x i-i)> l-e=ec.

(1)=>(2) Let ee (0, 1) and x0,x ie X  such that xO^xi.By theorem 
2.1.16, for each natural number ne N,there exists 'U Ux2 such that

l^n(xO)-^n(xl)l>l-(l/2n).Choose one such .̂n.Let 

A1={ne N: Xne x l and ?m(x0)-^n(x 1 )>0},

A2={ne N:A,ne X2 and ?m(x0)-^n(xi)>0},

A3={neN:^nex i and 2m(xl)-Xn(x0)>0} and 

A4={neN:Xne X2 and ^n(xi)-?tn(x0)>0}.

Since N=Ai UA2UA3UA4 is an infinite set, then there exist ie {0,1} 

and je {1,2} such that the set {neN:Xnexj and ^n(xi)-^n(xi-i)>0} is
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an infinite set;call it {ni,n2,...j where ni<n2<... .Choose n^eN such 
that (l/nk)<e and take xi.Moreover,for each m>k we havemiK ul J
Xnm (xi)-Xnm(x i_ i)> l-l/(2 n m).Hence Xnm(xi) > ^nm (xi-i) + 1-

oa
l/(2nm)^l-l/(2nm)- Consequently, we have X(xi)=UXnm(xi)>l,i.e, 

X(xi)=1.0n the other hand, since Xnrn(xi_i)<Xnm(xi)-l + l/(2nrn) 
holds for all m>k,therefore ^nm (xi-i)<  l/(2nm)<(l/2)e for m>k.

oo
Hence X(xi-i)= (UXnm)(xi-i)<(l/2)e<e, and the proof is completed.

.n»sK

(2)=s>(l) Let pO,pl be any two distinct fuzzy points in X with supports 

xO,xl respectively. Applying (2) with e=min{ l-pO(xO),l-pl(xl)}, 
there exists XexiUx2 in X such that X(xj)=l and X(xi_i)<e for some 

ie {0, l}.It is clear to observe that pieXC (p 1 -i)c and this completes 

the proof.

Now we have the following characterization of P-To spaces.

Theorem 2.1.18.

Let (X,xi,T2) be a bifuzzy topological space,then the following are 

equivalent;

1) (X, Tl,T2) is a P-To space.

2) (X,< Tl,T2>) is a To space

3) For any xo,xi e X ,x0^x  l ,there exists Xg t i U t 2 such that 

lX(xo)-X(xi)l=l.

4) For any xo^ieX ^o^xhthere exists a fuzzy TlT2-closed set (i such 
that I ji(xO)-p(x 1)1=1.
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Proof ;

The equivalence of (3) and (4) is straightforward by letting ji =A,c. 

(1)=>(2): The proof is straightforward because xiUx2^< xi,x2>.

(2)=>(3): Let xO,x i g X be such that xO^xi.For each natural number 

neN ,let pn,qn be the fuzzy points in X defined by pn(xO)=qn(xl)= 

l-(l/2n).Then pn,qn are distinct fuzzy points in the To-space 

(X,<xi,X2>).Thus there exists a fuzzy set A.ne<xi,X2> such that 
(pne A,n and ^nnqn=0) or (qne \ n and A.nnpn=0).

Consider the case pn^A-n and ^nnqn=0.Since Xne <xi,X2>,then there 

exists a basic open set (inflOn such that pne JinFlGn^^n,where 

fin^ xiand Gnex2.Now pne |in n a n gives pn(xO)<(PnFlGn)(xO) which

implies pn(xO)<Fn(xO) and pn(xo)<an(xo).That is l-(l/2n)<jin(x0) 
and l-(l/2n)< a n(xO).Since ?inF)qn=0,therefore (pnFian)nqn=0 which 

implies (p.nn a n)(xi )=0.That is |in(xl)=0 or on(xi)=0.Let

Ai = {neN: Pn(xl)=0} and A2={neN: a n(xl)=0}.

Since N=AiUA2 is an infinite set,so either Ai is infinite or A2 is

infinite. If Ai is infinite, call it {ni,n2,.... } where nl<n2<........Then
by letting |i = U jinj we shall have j ig  xi Q x \ Ux2,ji(x0)=l and 

ji(xi)=O.If A2 is infinite we shall get a similar result by takingaa
a=U anj by which g gx 2^ x iUx2,g (x i )=0 and g (x0)=1. 

J

In the case we are dealing with,we get the existence of ¿¡g x i Ux2 for 

which C(xl)=0 and £(xo)=l.

In the case qne^n and A,nnpn=0 ; we treat this case as above to find 
CexiUx2,for which £(x0)=0 and £(xl)=l.
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(3)=>( 1): The proof is straightforward by noticing that if 
IA.(xO)-A,(xi)l=l,then either (X(xO)=l,A.(xi)=0) or (A.(xO)=0,A,(xl)=l).

Bifuzzv P- R j and P-TMopological spaces.

Definition 2.2.1

A bfts (X,xi,T2) is P-Rl iff for any distinct fuzzy points p and q in 
X,whenever there exists A,exiUx2 such that pe X and qfi^=0,then 

there exist pex i and aex j such that pep. and qe a  and pfiG=0 for 

some i,j=l,2,i^j .

Definition 2.2.2

A bfts (X,xi,x2) is P-Rlw iff for any distinct fuzzy points p and q in 
X,whenever there exists A,exiUx2 such that pe X and qfiA,=0,then 

there exist p e  xi and a e x j  such that p e p  and qe a  and p £ a c  

(i,j=l,2,i*j).

Theorem 2.2.3

If a bfts (X ,x ij2  ) is P-Rl space,then (X,xpx2) is a P-Rlw space. 

Proof :

Clear because pfio=0 implies p £ o c.

Example 2.2.4

There exists a bfts (X,xi,X2 ) which is P-Rlw but not P-Rp

To present our example let X={ 0,1 },xi = {0,1 ,X \ , \ 2  } and 

X 2={0,l,pi,p2} where X i(l)=l/4, Xi(0)=0, ^2(1)= !,^2(0)=3/4,
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|il=A,2c and |J.2=^lc-Then (X,xi,T2) is P-Rlw but not P-Ri because 
X2fl^i^0 .

It is clear that if a bfts (X,xi,x2) is P-Rl ,then it is P-Ro but the 

converse is not true as we may observe in the following example.

Example 2.2.5

Let X=I,xi=x2=X/Tcof-Then (X,xi,x2) is a P-Ro-space but not P-Ri.

In the following theorem,we show that our definitions of P-Ri and 

P-Rlw are good extensions .

Theorem 2.2.6

Let (X,Ti ,T2) be a bts ,then the following statements are equivalent:

i) ( X, Tl,T2) is a P-Ri space.

ii) (X,co(T i ),co(T2)) is a P-Ri space.

iii) (X,io(Tl),co(T2)) is a P-Rlw space.

Proof ;

(i) =>(ii) Let p and q be any two distinct fuzzy points with supports x 
and y respectively and Xg  co(T i )U co(T2) be such that pcil and 

qfl^=0.Since X is l.s.c. then A,-l(0,l]eT1UT2 such that x e ^'1(0,1]

and y £ A." 1 (0,1 ].Since (X,Ti,T2) is P-Ri,then there exist UeTi and 
VeTj such that xe U , ye V and UnV=(j).Now it is clear that pe%u , 

qexv and XuHXv=0.Hence (X,co(T i ),co(T2)) is P-Rl.

(ii) =>(iii) see theorem 2.2.3 .
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(iii)=>(i) Let x,y e X,x*y and Ue Ti i j T2 such that xs U and y£ U.

Now if p and q are two fuzzy points with supports x and y respectively 
and values p(x)=q(y)=0.6,then it is clear that pe%u and qfiXu=0.Since

(X,co(T i ),co(T2)) is P-Riw,then there exist Xe «(TO and |ie  co(Tj) 
such that pe>.,qeji and XCpC.Now it is clear that xs A,-l(0.6,l],ye 

and (0.6,ljn^i-1 (0.6,1 ]=(}).Hence (X,Ti ,T2) is P-Rl.

Definition 2.2.7

A bfts (X,Tl,T2) is said to be P-Tl iff for any two distinct fuzzy points 
p,q there exist (iiexiUx2 and |i2eTlUi2 such that pe qi,|j.inq=0 and 

qep2 , ji2Hp=0.

Definition 2.2.8

A bfts (X,xi,T2) is said to be P-Tiw iff for any two distinct fuzzy 
points p,q in X , there exist |i ie x iU x 2  and p.2exiUx2 such that
pe jil CqC and qe jj^CpC.

Theorem 2.2.9

a) If a bfts (X ,xij2) is a P-Ti space,then (X,xi,x2) is a P-Tiw space.

b) There exists a bfts X which is P-Tiw but not P-Tl.

Proof:

a) The proof is obvious because if pfi|j=0 then pCpC.

b) Example 2.1.10 serves our purpose here.

In the following theorem,we show that our definitions of P-Tf and 

P-Tlw are good extensions.
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Theorem 2.2.10

Let (X,Tl,T2) be a bts.Then the following are equivalent:

i) (X,Ti ,T2) is a P-Ti space.

ii) (X,co(T i ),co(T2)) is a P-Ti space.

iii) (X,co(Ti),co(T2)) is a P-Tiw space.

Proof:

(i) =>(ii): Let p,q be two distinct fuzzy points in X.Since (X,Ti ,T2) is a 
P -T i space and xp^xq ,then there exist u v e  T i U T2 such that

(xpeu,xqgu) and (xqev,xpgv)

Consider the first case,that is xpe u,xqg u.Let %u : (X,Ti)—»1 be the 

characteristic function of u then co(Ti)(i=l,2).Now pe%u and 

qe%u because xpeu,xqgu.

To show qfl^u^O,suppose on the contrary,i.e. qfl%u ^0 .This implies 

Xu(*q)>0 which gives xqeu.a contradiction , therefore qflXu=0.

Similarly we treat the other case,that is xqe v^xpgv.

(ii) =s>(iii) The proof is obvious because if ^flq=0 then X^qC where 

Xe co(Ti).

(iii) =>(i) Let x,y be two distinct elements in X.Take p,q to be the 

fuzzy points in X for which p(x)=q(y)=0.6.Then there exist
co(T i )Uco(T2) such that pe A,£qC and qevSpC Let u=^_1(0.6,l] 

and v=t)- l(0.6,l].It is clear that u ,veT iuT 2 (^,u  are l.s.c. functions).

Now we shall show that xeu,yev.If xgu, then A,(x) g (0.6,1] implies
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X(x)<0.6. Since pe ^,then p(x)<A,(x)<0.6. That is 0.6<A,(x)<0.6 , 
which is absurd.Therefore x g u  .

To show that yeu suppose the contrary,that is yeu.Then A,(y)e (0.6,1]. 
Since p e ^ .£ q c,then ^(y)+q(y)<l.That is X(y)+0.6<1 which is not

possible because ^(y)>0.6.Therefore ygu. Similarly we show x£v and 
yev.Hence (X,Ti ,T2) is a P-To-space.

Theorem 2.2.11

A bfts (X,xi?T2) is P-Ti (P-Tiw) if either (X,xi) or (X,X2) is a fuzzy 
Ti -space (T iw-space).

Proof :

Without loss of generality we may assume that (X,xi) is a Tl-space 

(Tlw space).Let p,q be two distinct fuzzy points in X.Since (X,xi) is a 
T l space OTw space),there exist jJ-l,p2 ex]C xiU x2 such that pe 

ltl,M-l!Tq=0 and q ep 2 ,P 2 n p = 0  ( p e p i ^ q c and q e p 2 ^ P c )- 

Consequently (X,xi,x2) is a P-Ti space (P-Tiw space).This completes 

the proof of our theorem.

Example 2.2.12

There exists a P-Ti bfts (X ,xij2) in which neither (X,xi) nor (X,x2) 
is a Tlw-space.

To provide an example,let X=[0,l].Then the space (X,X/Ti.r,X/Tr.r) 

is P-Ti(P-Tlw) but neither (X,X/Tl.r) nor (X,X/Tr.r) is a Tlw-space.

Now we have the following result concerning the characterization of 
P-Tiw spaces.
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Theorem 2.2.13

Let (X,t i ,t 2) be a bifuzzy topological space.then the following are 

equivalent:

1) (X, Ti,T2) is a P-Tiw space.

2) (X,< xi,T2>) is a Tiw space

3) For any 0<£<1;x 0,x i e X^o^xi,there exists ^jEXiUx2 such that 

IA,j(xi)-X.j(xi-i)l>l-e i=0,l;j=l,2.

4) For any 0<e< 1; x (),x i e  X ^o^xi ,  there exists a fuzzy xix2-closed 

set pj such that I pj(xi)-pj(x l -i)l> 1 -e ; j= 1,2.

Proof :

The equivalence of (3) and (4) is clear by letting p=A.c.

(1) =>(2) The proof is clear because xi<Jx2^<xi,x2>.

(2) =>(3) Let 0<£<1 and x(),xieX such that xO^xpLet po,pi be the 

fuzzy points in X given by pi(xi)=l-(l/2)e,i=0,l.Then po,pi are 

distinct fuzzy points in the Tiw-space X.Thus there exists ^iE<xi,x2> 
such that piE ^ ^ (p p ^ c j^ o j.S in c e  A.iE<xpx2> there exist basic open 

sets p ifio i such that pis p in  a i ^  (p l- i)c ,where p is x i  and 

aiE  X2,i=0,l.Since piE p i and piE ci,then p i(x i)< p i(x i) and 

pi(xi)<ai(xi).That is p i(x i)> l-(l/2 )e  and a i(x i)> l-(l/2 )e .N o w  
pifloiC(pi_j)c .Therefore (pincri)(xl-i)-t-pl-i(xi_i)<l which implies

Pi(xi-i)<l-pi-i(xi_i)=(l/2)e or C7i(xi-i)< 1 -pl-i(xi_i)=(l/2)e.It follows 

that pi(xi)-pi(xi-i)>l-e or Gi(xi)-Gi(xi-i)>l-£ ,i=0,l.Therefore there 

exists CjexiUx2 for which lCj(xi)-Q(xpi)l>l-£,i=0,l,j=l,2.
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(3)=>(1) Similar to the proof of theorem 2.1.16.

Let us now present another characterization of P-Tiw- spaces. 

Theorem 2.2.14

Let (X,t i ,t 2) be a bifuzzy topological space, then the following are 

equivalent:

1) (X,xi,T2) is a P-Tiw space.

2) For any 0<£<1; xO,xleX.xO^xi,there exist Afl,A,iexiUx2 such that 

Xi(xi)=1 and Xi(x l-i)<e ,i= 0,1.

3) For any 0<£<1; x0 ,x ie  X ^ o ^ x i ,there exist two fuzzy xiX2-closed 

sets p-O.M-l such that [L[(x[)=0 and M-i(xi _i)> 1 -e,i=0,1.

Proof.:

The equivalence of (2) and (3) is straightforward.

(1)=>(2): Let 0<e< 1 and xo,xie X,xo^xi.For each natural number 

neN,let pn,qn be the fuzzy points in X given by qn(xl)= l-(e/4) and 

Pn(x0)= l-( l/2n).Then pn,qn are distinct fuzzy points in the T lw- 

space X.Therefore there exist xix2-open fuzzy sets |in,ctn such that 
Pn^ Pn^(qn)c and qne a n^(pn)c,ne N.It follows that |in(x0)>Pn(x0)=

oo
l-( l/2n) and fJ.n(xl)<l-qn(xl)=e/4.Let ^0=Uqn ,then Xo is axix2-

r\-\
open fuzzy set in X satisfying ^0(x0)= 1 and >,o(xl)<£/4<£. Similarly, 

we can get a fuzzy xix2-open set such that X i(x i)=  1 and

Xl(xo)<£.
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(2)=>(1) Let pO,pi be any two distinct fuzzy points in X with supports 

xO,xi respectively .Applying (2) with e= min{ l-pi(xi),l-pO(xO)}, 
then there exists Xo,A, 1 <e t  1 U T2 such that ?ii(x i)= l and 

^i(xi-l)<£.,i=0,l. Consequently we have pie ^i^(pi-l)0.

Now we introduce another characterization of P-Tl-spaces.

Theorem 2.2.15

Let (X,xi,T2) be a bifuzzy topological space,then the following are 

equivalent:

1) (X, xi,X2) is a P-Ti space.

2) (X,< xi,x2>) is a Ti space.

3) For any x(),xieX,x0^xl,there exist TiX2-open fuzzy sets A,(),A,l in 

X such that A,i(xi)=l and A.i(xi-i)=0,i=0,l.

4) For any x0,xleX,x0^xi,there exist TlT2-closed fuzzy sets p0,pi 

in X such that pi(xi)=0 and |ii(xl-i)=l,i=0,l.

Proof :

The equivalence of (3) and (4) is straightforward.

(1) =>(2) The proof is clear because xi Ux2^<xi,x2>.

(2) =>(3) Let x0,xi6X,x0^xi.For each natural number neN,let pn,qn 

be the fuzzy points in X defined by pn(xO)=qn(xi)=l-(l/2n).Then 

Pn»Qn are distinct fuzzy points in the Ti-space X.Thus there exist 
xiX2-open fuzzy sets jin and an  such that pn^ Fn>FnfTqn=0 and 

qn^ an,aniTpn=0 (ne N).This implies that for each ne N we have
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^n(xO)>Pn(xO)=l-(l/2n),| in(xi)=0 and o n(x i )> q n(x i )= l - ( l /2 n ) ,  

tfn(xo)=O.If ^0=Llpn and ^l=Uon,then A,oAl are xix2-open fuzzy
71--»

sets with the properties that A,o(xo)=l,A.i(xi)=0 and A,i(xi) = l, 
A,l(xo)=0.

(3)=>( 1) Let pO,pl be any two distinct fuzzy points in X with supports 

xO,xl respectively .Applying (3) there exist xix2-open fuzzy sets 

?iOAl in X such that Xi(xi)= 1 and ^i(xi _i)=0,i=0,1 .It is clear that 
pie Xi and 3dfipi-i=0 for i=0,l.

§ 2,3 Bjfuzzy P- T? and P-T? Mr topological spaces.

We start this section with the following definition.

Definition 2.3.1

A bfts (X,xi,x2) is said to be P-T2 iff for any two distinct fuzzy points 

p,q in X,there exist fuzzy sets p i e x i  and p 2 e x 2  such that 
PG P-l ,qe M-2,ft 10(12=0.

Definition 2.3.2

A bfts (X ,xi>x2) is said to be P-T2w iff for any two distinct fuzzy 

points p,q in X , there exist fuzzy sets p ie  xi and p2<= T2 such that 
pe p i ,q e P2 , p i £(p2)c.

Theorem 2.3.3

a) If a bfts (X,xi X2 ) is a P-T2 space,then (X,xi,x2) is a P-T2w space.

b) There exists a bfts (X,xi,x2) which is P-T2w but not P-T2.
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Proof :

a) The proof is obvious because if pfip=0,then p.Cpc.

b) Let X=I,t i =T2 ={0 ,A,:>l (x )>0 for all xeXJ.Let p and q be distinct 

fuzzy points in X and y=min{(l-p(xp))/2 ,(l-q(xq))/2 }.Then we define 

X and ji  as follows:

(p(xp)+l)/2 if x=xp (q(xq)+l)/2 if x=xq

^(x)=<! , q(x)='i

y/4 if x^xp 7/4 if x^xq

It is clear that peA.,qep and .Therefore (X,x\T2)  is a P-T2w 
space. Moreover it is not a P-T2 space because aiflG 2?t0 for all 

ai,o2exi-{0}=T2-{0}.

In the following theorem,we show that our definitions of P-T2 and 

P-T2w  are good extensions .

Theorem 2.3.4

Let (X,Ti ,T2) be a bitopological space .Then the following statements 

are equivalent:

i) (X,Ti ,T2) is a P-T2 space.

ii) (X,co(Ti),co(T2)) is a P-T2 space.

iii) (X,co(T i ),co(T2)) is a P-T2w space.
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PXflQf:

(i) =>(ii) Let p,q be two distinct fuzzy points in (X,co(Tl),co(T2)) with 

supports xp and xq respectively. Since (X,Tl,T2) is a P-T2 space,then 

there exist u i,v l g T i and u 2 ,v 2 eT 2  such that xpE ul,xqE u2 , 
ulPiu2=<i> and xqevi,xpE v2, viflv2=<t>- Consider the first case .That 

is xpGul,xqE u2,uifiu2=(!).It is clear that the function Xuf(X,Ti)-»I

and Xu2:(X,T2)—>1 are l.s.c. .Therefore Xuie co(Ti) and Xu2£(n(T2) 
which implies p EXui and qEXu2. We note that XuinXu2=Xuifiu2=

X0=O.

Similarly we can prove the other case.

(ii) =>(iii) The proof is obvious.

(iii) =i>(i) The proof is similar to the one proved in theorem 2.2.6 

Theorem 2.3.5

If a bfts (X,t i ,t 2) is a P-T2-space,then (X,L(x i ),L(x2)) is a P-T2- 

space,where L(xi)(i=l,2) is the coarsest topology on X making all 

fuzzy sets in xi lower semicontinuous.

Proof :

Let x^y be two points of X .Define p,q to be fuzzy points in X such 

that p(x)=q(y)=0.6.Then p and q are distinct fuzzy points .Since 
(X,xi,x2) is a P-T2-space,there exist a xi-open fuzzy set X and a 
xj-open fuzzy set p such that ps il,qe p and XP)p=0.Now let

U = X  - k o ^ l ]  and V=p-l(0.6,l].Then Ue L(xi ) and Ve L(x2) ( X  & p 
are lower semicontinuous ).To show that UflV=(() »suppose that 

UPlW<j),then there exists zeU flV .lt follows that ^(z)>0.6 and
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p.(z)>0.6. Consequently (A.fi|i)(z)^0 which contradicts the fact that

A,n[i=0.

The following example shows that the converse of the above theorem 

is not true in general.

Example 2.3.6

Let X=I and xi=x2={0,A,:A.(x)>0 for all x>0}.Then L(xi)=L(x2)=Tdis 

and so the bts (X,L(xi),L(x2)) is P-T2 while the bfts (X,xi,x2) is not 

P-T2.

Theorem 2.3.7

A bfts (X,t i ,t 2) is P-T2w  iff for each mature fuzzy point p in X we 
have xp=supp Pi {cll J i a ^ a  is a x2-neighbourhood of p}=supp 

Pl{cl2Xa:^a is a xi-neighbourhood of p).

Proof:

=> It is clear that {xp}CSupp n {clip.oc:pa is a X2-NHD of p}.

We have to show that co=supp co=supp n{clipa:p.ot is a X2-NHD of 

p } ^ { x p }. Suppose not ,so there exists yew  such that y£ {xp}.Let

^(y^^O -D ofi116 q as q(y)=l-^/2>0.Now p and q are distinct fuzzy 
points ,so there exists X in X2 and p. in xi such that pe A.,qe p.,and 
XC}j.c.Then £,<(cll A,)(y)<(p.c)(y). Since q(y)<p.(y),then we have

^+il(y)=^+ l _̂ /2=l+^/2<p(y)+(M.c)(y)=l which is a contradiction.

Let pi and ql be two distinct fuzzy points of X with supports xp 

and xq respectively.Define p and q as p(xp) = ( l+ p i(x p ) /2 , 

q(xq)=(l+qi(xq))/2 .Then p and q are mature fuzzy points. Therefore 
{xp}=supp{ Pi (clipa^Poc is a T2-NHD of p}}.Since xp^xq and 

pe p.oc,then qe [n(clipoc)]c which implies that qe U(clipcc)c which is a 

xi-open.Since qe U (clipa)c,then there exists p a  such that pep.« and
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q e (c li |ia )c-Moreover |icx̂ = [(c ll|ia)c]c= cliqa  which completes the 

proof.

Theorem 2.3.8

Let (X,xi,T2) be a bfts ,then X is P-T2w iff for any two distinct fuzzy 

points p,q in X,there exists Xe z[ such that pe X  and qG (cljA,)c(i^j).

Proof :

=>Let p and q be two distinct fuzzy points of a bft-P- T2w-space 

(X,xi,T2)*Then there exists X in x\ and }i in X2 such that pe A.,qe \i and 
X ^ p c.Now cl2^^cl2M-c=iic which implies that \iQ  (cl2^)c .i.e. 

qG (cl2>.)c.

£= Let p and q be two distinct fuzzy points and Xe xisuch that pGiVand 
qG (c l2^ )c .Since X Q  ((cl2^)c)c=cl2A.,then pG i ,̂qG (cl2^)c and 

A.£((cl2^)c)c=cl2A..Hence (X,xi,x2) is P-T2w-space.

Definition 2,3.9

A bfts (X,x]>x2) is said to be P-T2 1/2 iff for any two distinct fuzzy 
points p,q in X, there exist fuzzy sets piG X i, \12^^2 such that 
pG|il,qG jj.2 and cl2Hin clin2=0.

Definition 2.3.10

A bfts (X,xi>x2) is said to be P-T2 l/2w iff for any two distinct fuzzy 

points p,q in X , there exist fuzzy sets piG  x i,p 2 e  X2 such that 
pG M-l,qG jj.2 and (cl2qi)C(cli|i2)c.
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Theorem 2.3.11

(a) If a bfts (X,T1,T2) is a P-T2 1/2 space,then (X,xi,x2) is a P-T2 l/2w 

space.

(b) There exists a bfts (X,xi,x2) which is P-T2 l/2w but not P-T2 1/2-

Proof;

(a) The proof is obvious because if cl2ft 1 H e ll  p.2 = 0 ,th en

cl21t lS (c ll |i2)c-

(b) Let X=I,xi=x2={0,A,:i\,(x)>0 for every xeXJ.Let p,q be any two 

distinct fuzzy points in X with supports xp,xq respectively .Define the 

fuzzy sets Xp,/\.q in X by ,

(l-q(xq))/2 ifx*xp (l-p(xp))/2 if x*xq

^p(x)=<i and Xq(x)=-)

(l+p(xp)/2 if x=xp. (l+q(xq)/2 if x=xq.

Then ^p, .̂q are simultaneously fuzzy xiX2-open and xiX2-closed sets 
in X satisfying the conditions that pe X p,qei\.q and cli^p=?ipCA,qc=

(cljX<q)c (i,j=l,2,i^j). Hence (X,xi?x2) is a P-T2 l/2w space but not P- 

T2 1/2 because for every ^exi=x2 we have >*(x)>0 provided A,̂ 0.

In the following theorem,we show that our definitions of P-T2 1/2 and 

P-T2 21/2w are good extensions .

69



Theorem 2.3,12

Let (X ,T i7T2) be a bitopological space,then the following are 

equivalent.

(i) (X,Ti ,T2) is a P-T2 1/2 space .

(ii) (X,co(Ti ),co(T2)) is a P-T2 1/2 space.

(iii) (X,co(Tl),co(T2)) is a P-T2 1/2 w space.

Proof:

(i) =>(ii) Let p,q be two distinct fuzzy points in X.Applying (i) there 
exist u i,v ieT i and u 2,v 2g T2 such that xpeui,xqeu2 ,cl2uincliu2=<i> 

and xqE v i,x pe v2,cl2vi ficliv2=(|).Consider the first part xpEul, 

xqEu2, cl2u in c l1u2=()).We note that cl2xu lncli%u2=Xcl2uincliu2= 

%(j)=0. Moreover pec l2%ui ,qe cliXu2.The second part can be treated 

similarly.Therefore (X,go(Ti ),co(T2)) is a P-T2 1/2 space.

(ii) =>(iii) The proof is obvious.

(iii) =s>(i) Let x,y be two distinct elements in X.Take p,q to be the 

fuzzy points in X for which p(x)=q(y)=0.9.By (iii) there exist 
jil,V2,e co(Ti),vi,|i2e w (T2) such that p ep i,q e  p.2 ,cl2jii C /chp^)0 
and qe v i,pe  v2,cl2v i C ( d 1v2)c-It is clear that u = m _1(0.9,l]e T l, 

v = p 2 _ 1 (0 .9 ,l ] e  T 2 , x e  u ,y e  v and cl2ufl c 11 v = <t>. Indeed, if 

z e  cl2uflcliv,then cli|ai(z)>0.9 and cl2p2(z)^0.9 which contradicts the 

fact that cl2pi^(clijj.2)c-
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§ 2.4 Bifuzzv P-regular and P-normal topological spaces.

In this section we define P-regular and P-normal bifuzzy topological 

spaces and study some of their charaterizations.

Definition 2.4.1

A bfts (X,T1,T2) is said to be P-regular if for every fuzzy point p in X 

and each fuzzy xi-closed set X such that pG Xc there exist a Xi-open 
fuzzy set p and a xj-open fuzzy set t> such that pG and pC\)C;

i* j;ij= l,2 .

An important and useful characterization of fuzzy regularity is given 

in the following theorem.

Theorem 2.4.2

Let (X,xi,T2) be a bfts,then the following are equivalent:

(i) (X,xi,T2) is P-regular.

(ii) For every fuzzy point p in X and for each ii  .open fuzzy set X 
such that pG X,there exists xi-open fuzzy set p such that pG p^cljpCX,.

(iii) For every xi-closed fuzzy set X in X and for any fuzzy point 
pG A.c,there exists a xi-open fuzzy set p i and a xj-open fuzzy set p2 
such that pG \±\,XQ\±2 and cl2pi £  (clip2)c.

Proof:

(i) =>(ii) Let p be any fuzzy point in X and let X be a xi- open fuzzy 

set in X such that pG^.Since pG X,p g  (A,c )c and Xc is a xi-closed 

fuzzy set in X.By (i) there exist a xj - open fuzzy set v and a xi-open
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fuzzy set 11  such that pep,AcC|v and p Q vc. Since Ac Qv we have 
v °C ^ a n d  p C v c c ^ .  Moreover \ i Q  cljpC  cljvc=vcC X .  Hence 
pe liCcljjiCA,.

(ii) =>(iii) Let A be a xi-closed fuzzy set in X and let p be any fuzzy 

point in X such that pe Ac.Using (ii) there exists a xfopen fuzzy set 01 
such that p e a i^ c l jo i£ ^ c  Applying (ii) again,there exists a xi-open 

fuzzy set 02 such that pe G 2 £ c ljG 2 £ o i£ c ljG l^ A c.The proof is 

completed by taking pi=G2 and p2=(cljGl)c because peG2,ACp2 and 

clja2^[cli(cljoi)c]c.Indeed G i^ d ja i  implies intiaiCinti(cljai).Thus 

we get a Gi^[cli(cljGi)c]c.Since clj02^oi,then cljG2£[cli(cljGi)c]c . 

That is clj|ilC (cli|j.2)c.

(iii) =>(i) Let A, be a xi-closed fuzzy set in X and let p be any fuzzy 

point in X such that pe Ac.Using (iii) there exist a xi-open fuzzy set pi 
and a xj-open fuzzy set p2 such that pep i,A £p2  and cljpiC(dip2)c . 

Since p i^ c ljp i and p2<=clip2 ,then (clip2)c^(p2)c and so pii^(pi2)c-

The following theorem shows that our definition is a good extension. 

Theorem 2.4.3

Let (X,Ti ,T2) be a bts.Then the following are equivalent:

(i) (X,Tl,T2) is P-regular.

(ii) (X,co(T i ),co(T2)) is P-regular.

Proof:

(i)=>(ii) Let (X,Ti ,T2) be a P-regular bitopological space.Let p be a 

fuzzy point in X and Ae co(T i)(i= l,2) such that p e A .L e t
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r=(l/2)[p(xp) +A,(xp)].Then p(xp)<r<X(xp) i.e. xpG X‘l(r ,l].Using the 

P-regularity of (X ,T l,T 2 ) , there exists ue T i such that 
xpGuÇcljuÇX'l(r,l].Since [clj(r%u)= r%ciju], the following inclusions 

become clear pe r ^ u ^  c lj(r% u)^ r%x-1 (r,i] — The facts that 

r%ue co(Ti) completes the proof of the first implication.

(ii)=>(i) Let (X,to(Ti),to(T2)) be a P-regular bifuzzy topological 

space.Let Ugx i and x g  U.Take p to be the fuzzy point in X for which

p(x)=0.6 . Then pG%u and Xu^ co(Ti) therefore there exists j ig  co(Ti) 
such that pG pÇcljp.Çxu-Since clj(p.-1(a ,l])Ç (clj|i)-1[a,l] for all 

aG[0,1],we get cljCp-llO.ÔTDÇCcljpLUo.ôTlÇCx^-^O.ôTl^.Let 

V=|i-l(0.6,l] , then Vg Ti and x g  VÇcljVÇU.

Definition 2.4.4

A bfts (X,Tl,T2) is said to be P- normal iff for any xi -closed fuzzy 
set ct i and a xj-closed fuzzy set (52 with g i Ç (g 2)c’ there exist a xj- 

open fuzzy set p and a xi-open fuzzy set X such that G i^ p  , G2^A, 
and \iQXc-

An important and useful characterization of fuzzy normality is given 
in the following theorem.

Theorem 2.4.5

Let (X,xi,x2) be a bfts, then the following are equivalent:

(i) (X,xi,x2) is P-normal.

(ii) For every xi-closed fuzzy set g  and for every xj -open fuzzy set X 
such that g QX,  there exists a xj-open fuzzy set |i such that 
aCp.Cclijj.CX.
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(iii) For every xi-closed fuzzy set g  and for every Tj -closed fuzzy set 
X such that XQoc, there exists a xpopen fuzzy set p i and a xj-open 

fuzzy set p2 such that G <^p2,^pi and cljpi^(clip2)c.

(iv) For every xi-closed fuzzy set X and for every xj -open fuzzy set p 
such that >*£p,there exists a fuzzy set a  such that ÀCintjGCcliGCp.

P-TQQf,

(i) =i> (ii) Let a  be a xj-closed fuzzy set and X be a xj-open fuzzy set 
such that a  QX -By (i) there exist a xpopen fuzzy set v and a xj- open 

fuzzy set p such that aQ p,A,c^ v  and p £  vc-Since g  C C ye C ^ 

and p C d ip  Cclivc=vc then g  Q p Q clip ^  X.

(ii) =*(iii) Let X be a xi-closed fuzzy set in X and let p be a xj-closed 
fuzzy set in X such that p £ ^ c.Using (ii),there exists a xi-open fuzzy 

set Gl such that pC oiCdjG i^A .c.Applying (ii) again,there exists a xp 

open fuzzy set G2 such that p^G 2^cljG 2^G i^cljG i^^c.The proof is 

completed by taking pi=G2 and p2=(cljGi)c because p<^G2 , ^ P 2 and 

c ljG 2 £  [ c 1 i ( c 1 j g  1 )c ]c . Indeed G i^ c l jG i  implies inti g  l Q  
inti(cljG l)=[cli(cljG l)c]c .Thus we get g i  £ [c li(c ljG l)c]c .Since 

cljG2^Gi we have cljG2 S[cli(cljGi)c]c .That is cljpi^(clip2)c-

(iii) =>(i) Let X be a xi-closed fuzzy set in X and let p be a xj-closed 
fuzzy set in X such that p£X c.Using (iii),there exist a xi-open fuzzy 

set p i and a xj-open fuzzy set p2 such that A.Cp2,p£pi and 

cljpi£(clip2)c .Since p iC cljpi and p2^clip2 we have p i£ (p2 )c.

(ii)=>(iv) is immediate because intjG^G.
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(iv)=>(ii) Let p be a xi-closed fuzzy set and A. be a xj-open fuzzy set 
such that p^iLUsing (iv),there exists a fuzzy set a  such that 

ji£intjaCclia^?i.let v=intjc,then v is a xj-open fuzzy set .Indeed v 
= in tja^a implies clivCcljaCA..Consequently v is a xj-open fuzzy set 
satisfying pCvCcljvCiA,.

To show that our definition of fuzzy P-normality is a good extension 

we prove the following theorem.

Theorem 2.4.6

Let (X ,T i ,T 2) be a bts.If (X,co(Ti),co(T2)) is P-normal,then 

(X,T i ,T2) is P-normal.

Proof:

Let (X,io(Ti),co(T2)) be P-normal and A be a Ti-closed set and B a 
Tj-closed set in X such that APiB=(j).Then %a  is a co(Ti).closed fuzzy

set and XB is a (o(Tj)-closed fuzzy set in (X,co(Tl),co(T2)) such that 
XA^(%B)c.Thus there exist a co(Tj)-open fuzzy set X and a co(Ti)-open 

fuzzy set 11  such that XA^OCB^pand U ^ '1 (0.6,1] and

V =ji'1(0.6,1].Then U is a Tj-open set and V is a Tj-open set in X and
unv=<j).

Theorem 2.4.7

Let (X ,T i ,T2) be a bitopological space,then the following are 
equivalent:

(i) (X,Tl,T2) is P-regular (P-normal)..

(ii) (X,X/Tl,X/T2) is P-regular (P-normal).
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Proof:

Straightforward.

The following examples show that if a bits (X,xi,x2) is P-regular (P- 

normal) then (X,xi)and (X,x2) need not be fuzzy regular (fuzzy 

normal) and vice versa (i.e. ,our concepts of fuzzy P-regularity and P- 

normality are independent of the corresponding ones in single fuzzy 

topologies).

Example 2.4.8

Let X=[0,1] ,xi=X/Tu and X2=X/T where T={A^X:X-A is finite or 

l/2e Ac },then (X,xi,x2) is not P-regular because of the x2-closed set 

%f  where F={0.6,0.7} and the fuzzy point p with support xp=l/2 and 

value 3/4.The bfts (X,xi,x2) is also not P-normal because of the xi- 

closed fuzzy set X{V2} and the x2-closed set %f  (where F={0.6,0.7}). 

Notice that (X,xi) and (X,x2) are regular ( normal) fuzzy topological 

spaces.

Example 2.4.9

Let X =[0,l],xi=X /TCof and X2=X/T where T={(|),u: l/2eu} then 

(X ,x i ,x 2 )  is P-normal while (X ,x i) and (X,X2) are not 

normal.Moreover (X,X/Ti.r,X/Tr r) is P-regular while (X,X/Ti r) and 

(X,X/Tr.r) are not regular.

The following example shows if (X,xi,x2) is P-normal and P-Tl,then 

(X,xi,x2) need not be P-regular.
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Example 2.4.10

Let X=[0,1],Tl =T i.r and T2 = T u .Then the bfts (X ,xi,x2) = 

(X,X/Tl,X/T2) is P-normal and P-Ti but not P-regular because of the 

T2-closed fuzzy set %[o.6,o.8] and the fuzzy point p with support xp=0.3 

and value 1/2.

§ 2.5 Different properties of separation axioms.

In this section we show some relations among separation axioms. 

Theorem 2.5.1

Let (X,xi,T2) be a bfts.Then the following are equivalent.

(i) (X,T1,T2) is P-T2

(ii) (X,T1,T2) is P-To and P-Rl.

Proof :

(i) =>(ii) Clear since P-T2 implies P-To and P-T2 implies P-Ri.

(ii) =>(i) Let p and q be two distinct fuzzy points in X .Since X is 
P-To,so there exists A,exiUx2 such that (pe X ,qflA,=0 ) or (qe X 

,pfl^=0). Since X itself is a P-Ri space,so there exists a xi -open fuzzy 

set p and a xj-open fuzzy set c  such that pe p,qe a  and pfia=0 .Hence 

(X,xi,x2) is P-T2

The following example shows that P-Ri does not imply P-Tq .
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Example 2,5,2

Let X=I, t l ={0,1} and T2={0,A,:A,(x )>0 for all xeX},then (X,t i ,t 2) is 

(vacuously) P-Rl but not P-T().

The following theorem reduces the fuzzy P-Ti-space (P-Tiw-space) to 

a fuzzy Ti-space (Tiw-space) where i=0,l.

Theorem 2.5.3

Let (X,xi,T2) be a bfts.Then the following are equivalent.

(i) (X,t i ,T2) is P-Ti (P-Tiw)

(ii) (X,<xi,T2>) is Ti(Tiw- space) 

where i=0,l.

We shall prove the theorem for i=0.The other cases can be treated 
similarly.

Proof :

(i) =>(ii)Let p and q be any two distinct fuzzy points in X.Since 
(X,t i jT2) is P-To,then there exists | i e t i U t 2C < t i ,X2> such that

(pe ji,p,nq=0) or (qe (a,qfip=0) which completes the first part.

(ii) => (i) Let p and q be two distinct fuzzy points in X.Since 

(X,<xi,T2>) is a To-space,then there exists j i g < t i ,t 2> such that 
(pe jj.,p.nq=0) or (qep,pfip=0) .Since pe <xi,T2>,so there exists a 
basic open set GlfiG2 where G lex i and a2 g t 2 such that a ifio 2 C |i. 

Now pfiq=0 gives (oifiG2)riq=0 which implies (Glflq)n(o2nq)=0, 

i.e.Glflq=0 or G2nq=0.Hence (X,Tl,T2) is a P-TQ-space.
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Theorem 2.5.4

Let (X,xi/T2) be a bfts,then we have the following:

(i) If (X,t i ,t 2) is a P-T2 space,then (X,<xi,x2>) is a T2 space .

(ii) If (X,t i ,t 2) is a P-T2w  space,then (X,<xi,x2>) is a T2w space . 

Proof :

(i) Let p,q be two distinct fuzzy points in X .By (i) there exists a xi- 

open fuzzy set X and a X2 -open fuzzy set p such that pe ^,qe p and 
^np=0.Since A,,pexiUx2^<xi,x2>,therefore (X,<xi,x2>) is a T2-

space .

(ii) Similar to the part (i).

Example 2.5.5

The converses of the above parts are not true in general.The following 

example illustrates our purpose.

Let X={0,1 },xi = {0,l},x2={0,l,X,p} where X(0)=1 ,yL(l)=0, p(0)=0 

and p(l)=l.Now <xi,x2>={0,l,^,p}=x2.It is clear that (X,<xi,x2>) is 

a T2-space but (X,xi,x2) is not a P-T2w space because 1 is the only 
nonzero fuzzy open set in xp

We notice that (X,xi,x2) is a P-Ti space if and only if (X,<xi,x2>) is a 

Ti-space,where i=0,l,0w,lw but not for i=2 and 2w.This;of course; 

means that the new concept of pairwise separation axioms P-To,P-Tl, 

P-T0w,and P-T lw may be reduced into a separation axiom for one 

single fuzzy topology.

80



Theorem 2.5.6

If a bfts (X,t i ,t 2) is P-T2,then (X,xi)and (X,T2) are Ti.

Proof :

Let p,q be two distinct fuzzy points in X.Then there exist 
M-ie'CLM-2eT2 such that p e p i,q e p 2 ,p in p 2=0 .To show that (X /q) is 

T i,it is sufficient to show that p i fiq=0.Suppose piflq*0,this implies 

Pl(xq)>0.Since p i fl p2=0,we have p2(xq)=0.That is qg p2, a 

contradiction. Hence pifiq=0 .

Example 2.5.7

There exists a bfts (X,t i ,t 2) such that (X,xi)and (X,T2) are both T2 

fuzzy spaces but (X,t i ,t 2) is not P-T2.

To provide an example let X=[0,l],Ti=Tu and T2={ACX:X-A is 

finite or l /2 e A c }.Then (X ,T l,T2) is not a P-T2 space and so 

(X,X/Tl,X/T2) is not a P-T2 space,while (X,X/Ti) and (X,X/T2) are 
T2-spaces.

Theorem 2.5.8

Every P -regular P-T()w space is a P-T 2 1/2 w space .

Proof:

Let (X,t i ,t 2) be a P-regular bfts and let p,q be two distinct fuzzy 

points in X with supports xp^xq and values rp,rq respectively.Let 

Pi.qi be the fuzzy points in X with supports xp,xq respectively and 

values pi(xp)=(l/2)(l+rp),qi(xq)=(l/2)(l+rq).Then pi,qi are two
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distinct fuzzy points in X .Using the fact that X is a P-TOw space , 
there exists an open fuzzy set A,e xi such that p le A ,£ iq ic or 

qieXCpjC.Thus we have two cases to consider.

Case 1: p ie A ^q^.B y P-regularity of (X,Tl,T2),there exists a Ti-open 
fuzzy set \i such that p ie  p.Ccljp.CX.Cq^ s ince c ljp C q ^  we have 

q i ^  (cljp,)c.Noticing that q (x q )= rq < (l/2 )(l+ rq )= q i(x q ) and 

p(xp)<pi(xp),therefore we get qe(cljp)c and pe ^.Observe that Gi=|i 

is Ti-open and G2 = ( c l jp )c is a Tj-open fuzzy set in X and 
p.C[(cljp,)C]c>Hence there exist a Ti-open fuzzy set o i and a Tj-open 

fuzzy set 02 such that pe Gland qeG2and G i^ a 2 c-By P-regularity of

(X,t i ,T2) there exist a Ti-open fuzzy set G3 and a Tj-open fuzzy set G4 
such that peG3CcljG3^Gi and qe G4 ^cliG4 C a 2 .It is clear now that 
pe G3 ,qeG4 and cljG3CcqC02CC(cliG4)c.

Case 2: This case is similar to the above case .

Definition 2.5.9

Consider a function f:(X,Ti,T2 )-*(Y,Gi,G2),then f is said to be

1) continuous if f :(X,t i )-> (Y ,g i ) and f :(X,T2)-^ (Y ,g 2) are 

continuous.

2) P-continuous iff for any peGlUG2 ,f"^(ft)eTlUT2.

3) P-open iff for any peTlUT2 ,f(|i)eGlUG2

Clearly if f is continuous then it is P-continuous but the converse is not 
true in general.
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Example 2.5.10

Let X=I and f:(X,X/Ti.r.,X/Tr.r)-»(X,X/Tr.r.,X/Ti.r) be defined by 

f(x)=x,then f is P-continuous but not continuous.

To proceed to our next result, we need the following definition which 

is a special case of that in Hutton (1975).

Definition 2.5.11

The fuzzy unit interval [0,1 ]f is the set of all monotonic decreasing 

maps X: R ^ I  satisfying:

1) A,(t) = 1 for t<o, teR ,

2) A,(t) =0 for t>l, teR;

after identification of X : R—>1 and p :R —>1 iff A,(t-)=ji(t-) and 

A,(t+)=p.(t+) for every te R (where A,(t-)=inf {A,(s) :s<t} and 

A,(t+)=sup {A,(s):s>t}).

We define a fuzzy topology on [0,1 ]f by taking as a subbasis 

(Lt,Rt:te R};where we define Lt(^)=(^(t-))c and Rt(A,)=A,(t+).This 

fuzzy topology is called the usual topology for [0,l]f.

Note that our notation has not distinguished between the map A,:R—>1 

and the equivalence class in [0,l]f containing X.This causes no 

difficulty since we are only interested in the limit of the class at te R 

which is exactly the same for each member of the class.
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Since LanLb=LaAb>Rai~iRb=Ravb(a Ab=inf{a,b}, a v b =sup{a,b}), 

Ra=RaHL2 and Lb=LbnR-i,it follows that {Raf)Lb:a,beR} is a basis 

for the usual topology on [0,1 ]f.

Moreover Lo=0,L2=l,Rl=0,R-i=l,so the collections

L = {Lt:te R}= {Lt:0<t<2},R = {Rt:te R} = {R t:-l< t< l)

are bases for fuzzy topologies on [0,l]f.ln fact L,R are themselves 

fuzzy topologies on [0,l]f.These fuzzy topologies are called the left 

ray and the right ray fuzzy topologies on the fuzzy unit interval 

[0,l]f.

The following theorem is an extension of theorem 1.4.9 by Hutton 
(1975).

Theorem 2.5.12

A bfts (X,T1,T2) is P-normal iff for every Ti-closed fuzzy set A, and 
Tj-open fuzzy set j i such that there exists a continuous function

f : (X,T1,T2)—>([0,l]f,L7?) such that 

A,(x)<f(x)(l-)< f(x)(0+)<p(x), for ah x g  X.

Proof.

<= Since A.(x)<f(x)(l -)<f(x)(0+)<p(x) for all x g  X, then for any 

tG (0,1) we have A.(x)<f(x)(t+)<f(x)(t-)^ft(x) because

A,(x)<f(x)(l-)< f(x)(t+)<f(x)(t-)<f(x)(0+)<|i(x) ...................(1)

Since f - l(L tc)(x)= (Ltc0f)(x)= Ltc(f(x))= (f(x)(t-)),f-l(R t)(x)= 

(Rtof)(x)= Rt(f(x))=f(x)(t+) and f is continuous, we have f- l(Ltc) is
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Ti-closed and f-l(Rt) is Tj-open.From inequality (1) we have A(x)< 
f-1(Rt)(x)<f-l(Ltc)(x)<|i(x) for all te (0 ,l) and xeX i.e, ACf-l(Rt)C 

f 'i(L tc)^|a. Therefore (X,T1,T2) is P-normal.

=> Let A, be a Ti-closed fuzzy set and ji be a Tj-open fuzzy set such that 
ACq.Since (X,T1,T2 ) is P-normal, there exists a Tj-open fuzzy set V1/2 

such that ACv1/2^clivi/2^|i .Since A is Ti-closed , vi/2 is Tj-open , 

A ^vi /2 and clivi/2 is Ti-closed ,p is Tj-open , clivi/2^|J.,there exist Tj- 

open fuzzy sets v 1/4 and V3/4 such that A £  v 1/4C cliv 1/4C 

vi/2—clivi/2—v3/4—cliV3/4^p.Continuing this process, we construct a 

family {vr: re (0 ,l)}of Tj-open fuzzy sets such that ACvrCq and r<s 

implies clivr^intjvs.

Define f : (X,Ti,T2 )->([0 ,l]f,L,/? ) by

f(x)(t)=Uvs(x) if 0<t<l where s is dyadic rational.

=1 if t<0

=0 if t >1

Since ACVrCp. >We have A(x)<f(x)(l-)<f(x)(0+)<p(x),

To show that f is continuous we note that

f'l(L tc)(x)=(Ltcof)(x)=Ltc(f(x))=f(x)(t-)=inf{f(x)(s):s<t}=nvs(x)= 
HcliVs(x) is a Ti-closed,i.e. ,f is upper semicontinuous

and

f-1(Rt)(x)=(Rt0f)(x)=Rt(f(x))=f(x)(t-t-)=sup{f(x)(s):s>t}=Uvs(x)=
£>t

Uintjvs(x) is Tj-open, i.e. , f is lower semicontinuous.Hence f is 

continuous.
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Chapter h i

CONNECTEDNESS

IN

BIFUZZY TOPOLOGICAL SPACES

The concept of fuzzy connectedness was studied by several authors 

(e.g ,Lowen (1976),Pu and Liu (1980),Fatteh and Bassan (1985),Zhao 

(1986),Saha (1987) and Ajmal and Kohli (1989)).Fatteh and Bassan 

(1985) defined connectedness only for a crisp fuzzy set of a fuzzy 

topological space while Ajmal and Kohli (1989) extended the notion of 

connectedness to an arbitrary fuzzy set.In this chaper we are going to 

extend the concept of connectedness to include bifuzzy topological 

spaces.We divide this chapter into four sections.In the first section we 

shall discuss bifuzzy connected topological spaces.In the second section 

we shall discuss the goodness of connectedness.In the third we show 

that connectedness is preserved under P-continuous functions .In the 

last section we deal with more results on bifuzzy connectedness.

§ 3.1 Bifuzzv Connectedness

The following definition is an extension of definition 1.5.9 which is 

due to Ajmal and Kohli (1989).
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Definition 3.1.1

A fuzzy set o in a bfts (X,xi,x2) is S-Ci-disconnected (P-Ci- 

disconnected) iff o has S-Ci (P-Ci) disconnection(i=l,2,3,4).That 
is,there exist proper fuzzy sets X,\i GX1UX2 (^GTi,|tGT2) such that 
oC^Up and

Cl: GH>.np=0,A,3U-G,p£l-G. 

C2: XnpCi-a,>.£l-G ,p£l-G . 

C3: GiUnp=o,GntaK),Gnp*o. 

C4: ^ n p c  1 -a,an^o,CTnp^o.

A fuzzy set a  in a bfts (X,xi,T2) is said to be S-Ci (P-Ci) connected if 

there does not exist an S-Q(P-Ci) disconnection of o in X (i=l,2,3,4).

Theorem 3.1.2

Let a  be a fuzzy set in a bfts (X,xi,x2),then we have the following:

i) If g  is S-Ci (P-Ci) disconnected.Then g  is S-Ci (P-Ci) disconnected 

for i=2,3.

ii) If G is S-C2 (P-C2) disconnected or S-C3 (P-C3) disconnected then 

g  is S-C4 (P-C4) disconnected.

iii) The converses of (i) and (ii) are not true in general.

Proof :

i) Let g  be S-Cl (P -C i) disconnected.Then there exist 
proper fuzzy sets p,VGXlUx2 (pexi,VGX2) such that G ^ U p ,
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GflAnp=0 , A£1-g  and p£l-G.Since GflAnp=0 ,then AfipCil-G and so 

g  is S-C2 (P-C2) disconnected.Similarly A<£1-g  implies GflA^O ,and 

fi<2.1-G implies Gfip^O .Therefore g  is S-C3 (P-C3) disconnected.

ii) Let g  be S-C2 (P-C2) disconnected.Then there exist proper fuzzy 
sets p ,v g t i Ut 2 (jiexi,veT2) such that GCAUp,AnpC 1-g ,A£1-g  

and (1^.1-g .The fact that A<£_1-g  and |1<£.1-g  implies GflA^O and 

Gfip^O shows that g  is S-C4 (P-C4) disconnected. Similarly if g  is S- 

C3 (P-C3) disconnected then g  is S-C4 (P-C4) disconnected.

The implications of the above parts on disconnectedness can be 

described by the following diagrams:

S-Ci => S-C2 P-Ci =^P-C2

Jl I  li li

S-C3 => S-C4 P-C3 => P-C4

iii) To show that all implications are not reversible we present the 
following examples.

Example 3.1.3

Let X=[0,1] and define fuzzy sets A, and ¡1 as follows:

0 if 1/3<x <1 1/3 if 1/3<x <1

A(x)=<! , p (x H

1/3 if 0<x<l/3 0 if 0<x<l/3

Then Tl={0,l,A} and T2={0,l,p) are fuzzy topologies on X.
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Consider the fuzzy set g (x )=1/4 ,then a  is P-C3-disconnected because 
oC X U ji=l/3,anX ,n^=0,anX ^0 o fi|i^0  but a  is P-Ci-connected 

because G^pC and oC vc.That is,P-C3 does not imply P-Cl.Moreover 

o is P-C4-disconnected but P-C2-connected.That is,P-C4 does not 

imply P-C2.

The same example shows that S-C3 does not imply S-Cl and S-C4 does 

not imply S-C2.

Example 3.1.4

Let X=[0,1].Define fuzzy sets X and p as follows:

3/4 if 1/3<x <1 1 if 1/3<x <1

^(x)=<l , p (x H

l if 0<x<l/3 3/4 if 0<x<l/3

Then xi = {0,l,^} and T2={0,l,p} are fuzzy topologies on X.Consider 

the fuzzy set a(x)=l/6.Then a  is P-C2-disconnected.Hence P-C4- 
disconnected;because l/6=o^^Up=l,3/4=^DpCi-a=5 /6 ,^ o c p ^ o c.

It is clear that o is P-C3-connected and P-Cl-connected because 
anA,fip^O.Hence P-C4 does not imply P-C3 and P-C2 does not imply 

P-Cl.

The same example shows that S-C4 does not imply S-C3 and S-C2 does 
not imply S-Cl.
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Proposition 3.1.5

For a  = l,the above types of P-definitions (S-definitions) of 

disconnections are equivalent.

Proof :

Let o=l be S-C4(P-C4) disconnected.Then there exist proper fuzzy 
sets ^,p.exiUx2 (|iexi,vex2) such that lCXUp.,^npCO, m ^ O  and 

lfiq^O.So we have /^Up=l, in?in|j=0,^<£0 and qsLO. Hence o=l is S- 

Cl(P-Cl) disconnected.

Definition 3.1.6

If o is S-Q(P-Ci) disconnected for all i= l,2,3,4 ,then o will be called 

S-C (P-C) disconnected.In particular;proposition (3.1.5) shows that if 

1 is S-Ci(P-Q) disconnected for some ie {1,2,3,4}, then (X,xi,x2) will 

be called S-C (P-C) disconnected.

The following result clarifies the relation between P-Q and S-Ci 

disconnected fuzzy sets (i=l ,2,3,4).

Theorem 3.1.7

Let (X,t i ,x2) be a bfts and o be a fuzzy set in X.

(i) If o is P-Ci-disconnected,then it is S-Ci-disconnected for 

ie {1,2,3,4}.

(ii) The converse of (i) is not true in general.
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Proof :

(i) If a  is P-Q-disconnected then there exist proper fuzzy sets Xe  xi 

and |ie T2 satisfying the proper P-Q disconnection. This implies that 
A,,pe t i Ut 2 and so o is S-Ci disconnected.

(ii) To show that S-Q=> P-Q (i=2,4) does not hold in general we 

present the following example:

Let X=I ,Tl = {0,l,A.,p,l/2} and T2= {0,1} where

1/2 if 0<x<l/2 1 if 0<x<l/2

Consider the bfts (X,xi,T2) and the fuzzy set o=l/4.Then it is clear 

that o is S-C2-disconnected and so S-C4-disconnected because 
o£?tUp,l/2 =A.fipC<jC=3/4? X<£ac and p,<£oc but a  js P-Q-connected

for all (i=l,2,3,4) because T2 has no proper fuzzy set.

The following example shows that S-Q=>P-Q (i=l,3) does not hold in 

general.

Let X=I ,xi={0,l,A.,p,l/2} andx2={0,l} where

1 if 0<x<l/2 0 if 0<x<l/2

A.(x)=<! JX(x)=<!

1 if 1/2<x <1 1/2 if 1/2<x<1

X.(x)=<{ n (x H

0 if 1/2<x <1 l if 1/2<x <1
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Consider the bits (X,T1,T2) and the fuzzy set o=l/4.Then it is clear 

that o is S-Cl -disconnected and so S-C3-disconnected because 
oc^U)u,onA.ri(j,=0 A<£ac and psLac but o is P-Ci-connected for all

(i=l,2,3,4) because 12 has no proper fuzzy se t.

Definition 3.1.8

A degenerate ordinary set is a set which contains at most one 

element.A degenerate fuzzy set is a fuzzy set whose support is a 

degenerate set.

The following result shows that S-Q-connectedness for degenerate 

fuzzy sets agrees with the connectedness property for degenerate sets 

in ordinary bitopological spaces for i= 1,2,3 .However the same result 
shows that S-C4-connectedness diverges from ordinary connectedness 

for these sets.

Theorem 3.1.9

Let (X,Tl,T2) be a bfts .Then we have the following :

i) All fuzzy crisp points are S-C-connected.

ii) The zero fuzzy set is S-C-connected.

iii) All fuzzy points are S-Ci-connected,i=l,2,3-

vi) Let p,q be fuzzy points in X such that xp=xq and q(xq)>p(xp).If p 

is S-C4-connected ,then q is also S-C4-connected.

v) There exists a bfts (X,xi,T2) and a fuzzy point p in X which is S- 

C4-disconnected.
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Proof :

i) Let pc be a fuzzy crisp point with support xp.Suppose that pc is S-

C 4 -disconnected,then there exist proper fuzzy sets 
p.,veTiUT2 such that pc^liUv^fiv^pc^M-npc^O and vflpc^O.Now 
|iflvC Pcc => (jj.nv)(xp)<l-l=0 , (1)

jifipc^O => |a(xp)>0 (2)

and vfipc^O => v(xp)>0 (3)

From (2) and (3) we have (p.nv)(xp)>0 which contradicts (1).Hence 

pc is S-C4-connected and so S-C-connected.

ii) Obvious.

iii) Let p be a fuzzy point with support xp.Suppose that p is S-C2- 
disconnected,then there exist proper fuzzy sets |i,vexiUT2 such that 
p^liUv^fivCpC^^pC and v<£pc.Now

fiflvCpC => (pfiv)(xp)<l-p(xp), (1)

F^PC => |i(xp)>l-p(xp) (2)

and v<£pc => v(xp)>l-p(xp) (3)

From (2) and (3) we have (jiflv)(xp)>l-p(xp) which contradicts 

(l).Hence p is S-C2-connected and so S-Cl-connected.

Suppose that p is S-C3-disconnected,then there exist proper fuzzy sets 
ji,ve Tl Ux2 such that pCpUv,p.nvnp=0,p.np54) and vfip^O. Now

itnvnp=o => (jinv)(xp)=o, (i)
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ianp?M3 => p,(xp)>o (2)

and vfip^O => v(xp)>0 (3)

From (2) and (3) we have (p.flv)(xp)>0 which contradicts (1).Hence p 

is S-C3-connected.

vi) Suppose that q is S-C4-disconnected,then there exist proper fuzzy 
sets p .,veT lU x2  such that qQ pU v ,p fl v Q q c ,pfl q*0 and 

vflq^O.Since q(xq)>p(xp),then l-q(xq)<l-p(xp) and so we have 

p^pU v  and p f lv ^ p 0.Moreover,pflq^O => p(xq)>0 and vflq^O => 

v(xq)>0.Since p(xp)>0 and xp=xq ,then pfip?D and v Pi p^O. Hence p 

is S-C4-disconnected which is a contradiction.Therefore q is S-C4- 

connected.

v) Let X=I and p be a fuzzy point with support 1/2 and value 

l/4.Define fuzzy sets X and p as follows:

0 if 1/2<x<1 1/4 if 1/2<x <1

1/3 if 0<x<l/2 0 if 0<x<l/2

Then Tl = {0,1,2c} and T2={0,l,p} are fuzzy topologies on X.It is clear 
that p£|nUA, ,pfl XQ pc ,pfi p^O and pflA^O. Hence p is S-C4-

disconnected (P-C4-disconnected).

We observe from part (vi) of the above theorem that if we have a bits 
(X,Tl,T2),then with each xe X,there exists a unique real number rx>0 

such that all fuzzy points with support x and level greater than rx are 

S-C4-connected while all fuzzy points with support x and level less

A,(x)=*{
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than rx are S-C4-disconnected.Thus we have defined a function d:X—>1 

,d(x)=rx.This fuzzy set d could be an important tool measuring the S- 

C4-connectedness of a bits.

Definition 3.1.10

A bfts (X,Tl,T2) is S-disconnected iff there exist non zero fuzzy sets 
^,)Ie t i Ut 2 such that X-hjLi=l and ^fi|i=0.A bfts (X,t i ,t 2) is called S-

connected if it is not S-disconnected.

Definition 3.1.11

A bfts (X,Tl,T2) is Sw-disconnected iff there exist non zero fuzzy sets 
A,,|1e t i Ut 2 such that ?i+p=l.A bfts (X,t i ,t 2) is called Sw-connected if

it is not Sw-disconnected.

Definition 3.1.12

A bfts (X,t i ,t 2) is P-disconnected iff there exist non zero fuzzy sets 
^ex i and pex2 such that Vh(j=l and ^flji=0.A bfts (X,t i ,t 2) is called

P-connected if it is not P-disconnected.

Definition 3.1.13

A bfts (X,T1,T2) is Pw-disconnected iff there exist non zero fuzzy sets 

X e i l  and jieT2 such that X-t-jx=l .A bfts (X,xi,T2) is called Pw- 
connected if it is not Pw-disconnected.

The implications of the above types of bifuzzy disconnectedness can be 

described by the following diagram.
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P => P\V

li U

S => Sw

To show that all implications are not reversible we present the 
following examples.

Example 3.1.14

Let X=[0,1],t i ={0,1,A,} and T2={0,l,p};where X and p are defined as 

follows:

2/3 if 1/2<x <1 1/3 if 1/2<x <1

X(x)=-{ jx(x)=H

l if 0<x<l/2 0 if 0<x<l/2

It is clear that \+[i=l and ^Dp^O.Hence (X,xi,x2) is Pw-disconnected 

and Sw-disconnected but it is neither P-disconnected nor S- 

disconnected.

Example 3.1.15

Let X-[0,l],xi = {0,l,A,,p} and T2={0,1};where X and p are defined as 

follows: A,=%[o.5,i ] , P=X[0,o.5),i.e. ,

1 if 1/2<x <1 0 if 1/2<x <1

X(x)=i

0 if 0<x<l/2 l if 0<x<l/2
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It is clear that X+p=l and Xnp=0.Hence (X,xi,x2) is S-disconnected 

and Sw-disconnected but it is neither P-disconnected nor Pw- 

disconnected.

The following theorem shows that the category of S-C-disconnected 

bifuzzy topological spaces and the category of S-disconnected bifuzzy 

topological spaces are indeed identical.

Theorem 3.1.16

Let (X,t i ,t 2) be a bfts .Then the following are equivalent:

(i) (X,t i ,t 2) is S-disconnected.

(ii) (X,xi,T2) is S-C-disconnected.

Proof :

(i) =>(ii) Let (X,xi,T2) be an S-disconnected bfts.Then there exist 
proper fuzzy sets X,pexiUx2 such that Xnp=0 and X+p=l.We note 

that 1Q XU p, 1 fi Xn p=0,Xj£0 and pi_0.Therefore 1 is S-Ci- 

disconnected and so by proposition (3.1.5) 1 is S-Q-disconnected for 

all ie {1,2,3,4}.Hence (X,xi,x2) is S-C-disconnected.

(ii) =>(i) Let (X,xi,x2) be an S-C-disconnected bfts.Then 1 is S-Q- 
disconnected for all ie {1,2,3,4} and so there exist X,pexiUx2 such 

that 1C X U p ,lru n ji= (U £ 0  and pi_0.lt is clear that XHp=0 and 

X+p=l.Hence (X,xi,x2) is S-disconnected.

The following theorem shows that the category of P-C-disconnected 

bifuzzy topological spaces and the category of P-disconnected bifuzzy 

topological spaces are indeed identical.
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Theorem 3.1.17

Let (X,t i ,t 2) be a bfts .Then the following are equivalent:

(i) (X,t i ,t 2) is P-disconnected.

(ii) (X,t i ,t 2) is P-C-disconnected.

Proof :

Similar to the proof of theorem 3.1.16.

§ 3,2__Goodness of connectedness.

Our next results show that the concept of S-connectedness and 
P-connectedness are in fact good extensions while Sw-connectedness 

and Pw-connectedness are not.We remind the reader of definition 

1.1.15 that a bts (X,Ti ,T2) is called S-connected if there do not exist 
non empty disjoint sets U,VeTlUT2 such that UUV=X.

Theorem 3.2.1

Let (X,Ti ,T2) be a bts .Then the following are equivalent:

(i) (X,Ti ,T2) is S-connected.

(ii) (X,co(T i ),m(T2)) is S-connected.

Proof :

(i)=> (ii) Let (X,T i ,T2) be an S-connected bts .To prove that 

(X,co(Tl),co(T2)) is S-connected,suppose not;then there exist non zero 
fuzzy sets X,[ie co(T i )Uco(T2) such that ?inp=0 and ^+p=l.Let A= 

a.-1«),!], B=p_ 1(0,1].'Then A,Be T i UT2 are non empty subsets of X
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because X̂ O and ¡â O. Now AfiB=<}) (for if not,then there exists xeX

such that x e  X-1(0,1] and x e |1_ 1(0,1] which implies that X(x )e (0,1] 
and p(x)e(0 ,l]; i.e.,(Xnp)(x)?T) which contradicts Xfip=0).Also

AUB=X(for if not,then there exists x e  X such that xg A and xg B and

this implies that X(x)=0 and ji(x)=0;i.e.,(X+p.)(x)=0 which contradicts 

X+p = l). Therefore (X ,T l,T2) is S-disconnected which is a 

contradiction. Hence (X,co(Tl),co(T2)) is S-connected.

(ii)=>(i) Let (X,cq(T i ),cg(T2)) be an S-connected bfts.To prove that 

(X,Tl,T2) is S-connected,suppose not; then there exist non empty 
disjoint subsets A,Be T i UT2 such that AUB=X.Now Xa ,Xb £ 

co(T i )Uco(T2).Moreover %a ^0 and %b^ 0 because Â cj) and B;*(j). We 

also have XAHxB=XAnB=X(i>=0 and Xa +Xb=Xa u b=Xx =1 .Therefore 

(X,co(T i ),co(T2)) is S-disconnected which is a contradiction.Hence 

(X,Tl,T2) is S-connected.

Theorem 3.2.2

Let (X,Ti ,T2) be a bts .Then the following are equivalent;

(i) (X,Ti ,T2) is P-connected.

(ii) (X,co(T i ),co(T2)) is P-connected.

Proof :

(i)=>(ii) Similar to the proof of theorem 3.2.1.

The following theorem shows that definition (3.1.11) is not a good 

extension of S-connectedness for bitopological spaces.
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Theorem 3.2.3

(i) A bts (X,Ti ,T2) is S-connected if the bits (X,co(T i ),co(T2)) is Sw- 

connected

(ii) The converse of (i) is not true in general.

Proof :

(i) Since (X,co (T l ),co (T 2 )) is S w -connected  b fts ,then  

(X,(o(Tl),co(T2)) is S-connected and so by theorem 3.2.1 the bts 

(X,Tl,T2) is S-connected.

(ii) Let X=I,Ti=Ti.r and T2=Tr.r.Then (X,Ti ,T2) is S-connected 
because if U eT i and VeT2 such that UflV=(|),then UUV^X.Now

define A.:I—>1 as follows:

2x if 0<x<l/2

1 if 1/2<x<1

Then ile co(T2U c g  co(Ti),?i*0 and A,+A.c=l.Hence (X,co(Ti),to(T2)) 
is Sw-disconnected.

The following theorem shows that definition (3.1.13) is not a good 

extension of P-connectedness for bitopological spaces.

Theorem 3.2.4

(i) A bts (X,Ti ,T2) is P-connected if the bfts (X,co(T i ),co(T2)) is Pw- 

connected
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(ii) The converse of (i) is not true in general.

Proof :

(i) Since (X,co ( T 1 ),co (T 2)) is Pw -connected  b fts ,then  

(X,co(Ti ),co(T2)) is P-connected and so by theorem 3.2.2 the bts 

(X,Tl,T2) is P-connected.

(ii) The example which was presented in Theorem (3.2.3)(ii) serves 

our purpose here.

§ 3.3 Connectedness and P-continuitv.

In this section we show that images and inverse images of different 

types of connectedness are preserved under P-continuous functions.We 

start with the following definition which is an extension of definition 

1.1.20 to bifuzzy topological spaces.

Theorem 3.3.1

If f: (X,xi,T2)—>(Y ,y i,72) is a P-continuous and X is an S-Cl- 

connected fuzzy set in X,then f(X) is an S-Cl-connected fuzzy set in Y.

Proof :

Suppose that f(A.) is not S-Cl-connected ,then there exist proper fuzzy 
sets p,v eyiU y2 such that f(A,)Cp.Uv, (|inv)nf(A,)=0,f(A,)3Lp-c and 

f(?i)<£vC.Using theorem (1.2.15) ,since A.Cf-l(f(X,)) and f-l(f(A,)) Q 

f-l(liUv) = f-l(jT) U f-1(v), then ?iCf-l(p.)uf-l(v) e xi U T2-Also 

f_l(|i) 0  f- l(v) fl X = f-l(0)=0. Since f(^ .)i |ic and f(A,)<£vc,so 

there exist yl and y2 such that
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| i ( y l ) > l - f ( ? 0 ( y l ) (1)

and

v(y2)>l-f(^)(y2)............................... (2)

From (1) and (2) we conclude f(A,)(yl)>0 and f(X)(y2)>0 which gives 

that f"l({yl}) and f~l({y2}) are non-empty subsets of X.By inverse 

and direct image of f we have f"l(|i)(x)=|i(yl) for every x e f‘ l({ y i}) 

and f(^)(yi)=sup{X(x):xG f‘ l({yi })}.We claim that f'l(pKLA,c and 
f- l(v )^ c .S u p p o se  f-l(ji)CA.c,then f-l(p.)(x)<l-A,(x) for every

x e f“1 ({y 1}); i.e. ,f(x)e {yl} and so we have p.(f(x))<l-^(x) which 

implies X(x)<l-jLt(y l);i.e. sup{>.(x): x g  f~1 ({y 1 })}<l-p(yl) and so 
f(X ,)(y i)< l-|x (y i) which contradicts (1).Similarly f- l(v )C ? tc 

contradicts (2).Hence f~ 1 ()Li)^Xc and f - ! ( v ) ^ c and so X is S-Ci- 

disconnected which is a contradiction.Therefore f(A.) is S-Cl- 

connected.

Theorem 3.3.2

If f: (X,xi,T2)—K Y ,yi,y2) is a P-continuous and X is an S-C2- 

connected fuzzy set in X,then f(A,) is S-C2-connected.

Proof :

Similar to the proof of Theorem 3.3.1.

Theorem 3.3.3

If f: (X,t i ,t 2)—>(Y,Yi,y2) is a P-continuous function and X is an S-C3- 

connected fuzzy set in X,then f(A,) is S-C3-connected.
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Proof :

Suppose that f(A,) is S-C3-disconnected ,then there exist proper fuzzy 
sets p,v eyiUy2 such that f(X,)Cp.Uv,(M-nv)nf(^)=0,f(X,)np.^0 and 

f(X)Piv?d).Since XQf-1 (f(X)) and f-l(f(?i))Cf-l(jiUv)=f-l(p)Uf-l(v) 

then X,Cf-l(p.)Uf-l(v)GTiUT2-Also f-l(p )n f‘ l(v)nA,=f'l(0)=0.Since 

f(A,)fip,^0,so there exists yoe Y such that f(A,)(yo)np(yo)^0 which 

implies that f(A,)(yO)>0 where f(A.)(yO)=sup{^(x):xGf_l({y0 })} and 

gives that f"l({yo})^(j).So there exists x()eX such that x()ef"l({yo}) ; 

i.e.,f(xO)=yO-Since f(^)(yO)>0,then there exists x ie X  such that 

x le f 'l ( { y 0 }) and so 0<^(xl)<f(A.)(yO).Now f-l(p)(xl)=p(f(xl))=  
p(yO)*0 and A,(xi)^0.Hence f"l(ji)nta*O.Sirnilarly we can show that 

f ' l ( v ) f i ^ 0 .  This shows that X is S-C3-disconnected which is a 

contradiction.Hence f(^) is an S-C3-connected fuzzy set in Y.

Theorem 3.3.4

If f: (X,t i ,t 2)—>(Y,yi,y2) is a P-continuous function and X is an S-C4- 

connected fuzzy set in X,then f(A,) is S-C4-connected.

Proof :

Similar to the proof of Theorem 3.3.3.

Theorem 3.3.5

A P-continuous image of a bifuzzy S-connected space is S-connected.
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Proof:

Let f:(X,Tl,T2)—>(Y,01,02) be a P-continuous onto function and

suppose on the contrary that Y is not S-connected.Then there exist 
non-zero fuzzy sets X,p.eoiUo2 such that ^+p=l and ^fl|i=O.Since f

is P-continuous then f- l(A),f-l(|i)eTlUT2-We claim that f-l(A,)+f-

l(|i)= l. To prove our claim ,suppose not .Then there exists xeX such 

that f_l(A.)(x)+f_l(p,)(x)^l which implies that ^(f(x))+|a(f(x))^l 

which contradicts ^+p = l .Hence f-l(A,)+f-l(|i)=l.W e claim that 
f_1(A,)nf"l (|i)=O.To prove our claim,suppose not .Then there exists 

xe  X such that f- 1 (A,)(x)Pi f* 1 (ji)(x)>0 which implies that 

A,(f(x))nji(f(x))>0 which contradicts A,fip.=O.Hence (X,Tl,T2) is 

S-disconnected which is again a contradiction.Hence (Y ,oi,o2) is 

S-connected.

Theorem 3.3.6

A P-continuous image of a P-connected bifuzzy topological space is 
P-connected.

Proof :

Similar to the proof of Theorem 3.3.5.

Definition 3.3.7 

Consider a bfts (X,t i ,t 2)

i) If every continuous function from (X,xi,T2) into itself has a fixed 

point we say that X has f.p.p.

ii) If every P-continuous function from (X,T1,T2) into itself has a 

fixed point we say that X has P-f.p.p.
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Theorem 1.1.24 asserts that a bts (X,Ti,T2) which has the P-f.p.p 

must be S-connected and a P-To-space.The following example shows 

that Theorem 1.1.24 does not hold in bft spaces.

Example 3.3.8

There exists a bfts (X,xi,x2) which has P-f.p.p. and yet is neither Sw- 

connected nor a P-T()w-space.

Let X={0,1} and xi=x2={0,l,^,X,c } where X(0)= 1/2 and A,(l)=l/4. 

Then it is clear that (X,xi,T2) is not Sw-connected.To show that 

f:X—>X has the fixed point we note that if f is the identity or the 

constant map then it is P-continuous.It is left to show that f which is 

defined by f(0)=l and f(l)=0 is not P-continuous because if f is P- 

continuous then it has no fixed point.S ince ( f - 
l(A,))(0)=A,(f(0))=A,(l)=l/4 then f-l(A,)g X1UX2 and so f is not P-

continuous.Hence every P-continuous map from X into X has a fixed 
point.Moreover for the fuzzy points p,q in X given by p(xp)=0.8 and 
q(xq)=0.8 there does not exist p.EXlUx2 such that p e p ^ q C  0r 

qep.£pc .Hence (X,xi,T2) is neither Sw-connected nor a P-TOw-space.

§ 3.4 More results on connectedness.

We start this section by extending some of the results obtained by 

Fatteh and Bassan (1985) to bifuzzy topological spaces.

Definition 3.4.1

Two non-zero fuzzy sets A,,|x in a bfts (X,xi,x2) are called P-separated 

iff A,(x)+(clip)(x)<l and ja(x)+(cljX,)(x)<l for all xeX  and for some 

i*j. If in addition ^+p=l then { X,jll) is called a P-separation for X.
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Lemma 3.4.2

If {X,p} is a P-separation of a bfts (X,xi,x2),then ?isxi and ¡isxj (for 

some i^j;i,j=l,2).

Proof :

Since {X.,|LL} is a P-separation for (X,xi ,x2),then X + \ i = \ ,  

(cljX)(x)-i-jj,(x)< 1 and >»(x)+(cli|i)(x)<l for all x e X and for some i^j; 
i,j=l,2. Since pC  clip.,?iC cljX and >»+¡1=1,then clj>»+|i = l and

A,+cli|i=l.So ¡1=1 -cljA, and X= 1 -cliji.Hence \i is xj-open and X is xp 

open;i.e.,|iEXj and >»EXi.

Theorem 3.4.3

A bfts (X,xi,x2) is Pw-disconnected iff it has a P-separation.

Proof :

=> Let (X,xi,x2) be a Pw-disconnected bfts.Then there exist non zero 

fuzzy sets >,exi and |iexj (for some i*j;i,j=l,2) such that >.+¡1=1.Since 
>-£|ic and )iCX,c then clj^C^c and cli(i^X,c .Now ^Cclj^Cj^c and 

p.Ccli|iCX,c and so we have >»+jiCA,c+|jC=pHence cljXt-clijiCi which 

gives that cljXfjiCil and X-i-cliji^ 1 .That is {>»,p} forms a P-separation 

for X.

<= Let {A.,ji} be a P-separation for X .Then by Lemma 3.4.2 ,|iEXj 

and >»exi where >»+p=l.Hence (X,xi,x2) is Pw-disconnected.
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Definition 3.4.4

A subspace (K ,xi/k,x2/k) of a bits (X,xi,x2) is S-connected, 

Sw-connected,P-connected and Pw-connected if the crisp fuzzy set Xk 

is S-connected,Sw-connected,P-connected and Pw-connected 

respectively.

Theorem 3.4.5

Let {X,,jlx} be a P-separation of a bfts (X,xi,x2).lf K is a Pw.connected 

subset of X.Then either Vk=l or p./k=l.

Proof :

Suppose Vk^l and ji/k^l.Then ^+p.=l implies that X,/k+p/k=l which 

gives that Vk^O and ja/k^O.Now by Lemma 3.4.2, V ke xi/k and 

p /k e  xj/k (for some i^j;i,j= l,2) are non-zero fuzzy sets in 

(K,xi/k,x2/k) such that Vk+|a/k=LHence Xk  is Pw-disconnected which 

is a contradiction.Hence A./k=l or |i/k=L

Theorem 3.4.6

Let {AarcceA} be a family of Pw-connected subsets of a bfts (X,xi,x2) 

such that for each a  ,(3 in A , oc (̂3;A(x,Aj3 are not separated from each 
other .Then UA« is a Pw-connected subset of X.

Proof :

Let Y=U{A a:ae  A}.We shall prove that (Y,x i /y ,x2/Y) is fuzzy Pw- 

connected.To prove this suppose not ;i.e.,Y is Pw-disconnected. Then 

there exist non-zero fuzzy sets in Y say X/Ye  xi/Y ,p/Ye xj/Y(for some 

iAjriJ=l52) such that X/Y+p./Y=l.Since A,/Aqc is a xi/Aoc-open fuzzy set
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and |i/Aoc is a xj/Aa-open fuzzy set then (k/Aa=0 or A,/Aoc=l) and 

(ji/Aa=0 or |i/Aoc=l) because Aa  is Pw-connected.If VAa=0 for each 

a e  A then k/Y=0 which contradicts the assumption. If k/Aa=l  for each 

ocg A then Vy =1 which contradicts the assumption. Similarly (p./Aa=0 

for all aeA  and |i/A a= l for all aeA )are  not possible for each 

oce A.So there exist a i  and oc2 such that k/Aai=l  and Jj7Aoc2=1 which 

implies X,/Aal+!t/Aoc2=2>l which contradicts A,/Y+ji./Y=l because 
A,/Ao u£ y  and |i/Aa2^Y.Hence Y=U{Aoc:oceA} is a fuzzy Pw-connected

subset of X.

Theorem 3.4.7

Let A and B be two subsets of a bfts (X ,x i,x2) such that 
%A—%B—cli%A (i=l,2). Then if A is a Pw-connected subset of X then

B is also a Pw-connected subset of X.

Proof :

Suppose that B is Pw-disconnected.Therefore there exist non-zero 

fuzzy sets jiexi and vexj such that ja/B^0,v/B^0 and |i/B+v/B=l-W e 

claim that |i/A^0.To prove our claim,suppose not i.e.;p,/A=0 then 

(P/A)(x )+%a (x )<1 for all x g X which implies that (|d/A)(x)+cliXA(x)<l 

for all xg  X.Hence (ft/B)(x)+cliXA(x)<l because AQB  and if x g B- 

A,then cli%A(x)=cliO(x)=O.So we have Ji /B+Xb ^ I  because Xb ^ c Iixa - 

This implies that |i/B=0 which is a contradiction..Therefore ji /a ^O. 
Similarly we show that v /a  * 0. Since |i/B+v/B=l and ACB we

have |d/A + v/A =1-Hence A is not Pw-connected which is a 

contradiction.Therefore B is Pw-connected.
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Definition 3.4.8

Let (X,xi,T2) be a bfts and Al,A2 be two fuzzy sets in X.Then

1) Al and A2 are said to be disjoint iff AiflA2=0.

2) Al and A2 are said to be intersecting iff A if^ ^ O .

3) A,l and A2 are said to be overlapping if there exists xeX  such that 

Al(x)>l-A2(x).In this case Ai and A2 are said to be overlapping at x.

Theorem 3.4.9

If Al and A2 are intersecting S-C3-connected fuzzy sets in a bfts 
(X,xi,T2) then A1UA2 is S-C3-connected .

Proof :

Suppose that AlUA2 is  S-C3-disconnected , then there exist 

p , v e T l U x 2 such that A i U A 2 ^ p U v ,  (pfi v)fi (Al U A2) = 0, 

ftfl(Al^ 2 ) ^ 0  and vfi(AlUA2)^0.Since AlUA2^pUv,then it is clear 

that AlCjj,ijv and A2^pUv .Since (jifiv)Pi(Al UA2)=0,then we have 

[(jinv)nA i]U [(|inv)nA 2]=0 which implies that (pfiv)nA l=0 and 

(pnv)flA2=0 . Since Aland A2 are S-C3-connected,then (p.flAl=0 or 

vflAl=0) and (p.flA2=0 or vflA2=0).Suppose pPlAl=0 . Since Aland 

A2 are intersecting ,then there exists x g X such that (AiflA2)(x)^0 

which implies that Al(x)*0 and A2(x)*0 .We claim that vfiA2*0 . To 

prove our claim,suppose the contrary,i.e.,vflA2=0 .Then (vflA2)(x)=0 

gives that v(x)=0 and so (pUv)(x)=0 which contradicts the fact that 

(AlUA2)(x)<(p.Uv)(x) because (AlfiA2)(x)^0.Therefore vnA2^0 and 

so p fl A2 = 0.Hence p f l ( A i U A 2 )::::0 which contradicts that 

pn(AlUA2)^0. Similarly if vf)Ai=0 we can show that pfiA2:=0 is not
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possible.Hence vfl^2=0.Therefore vfl(^lU^2)=0 which contradicts 

vfi(A.lU^2)^0-Hence ^lU>»2 is S-C3-connected .

Theorem 3.4.10

If ^1 and X2 are intersecting S-C4-connected fuzzy sets in a bfts 
(X,t i ,t 2) then X,iU>*2 is S-C4-connected .

Proof :

The fact that ^lUA,2^pUv implies /il^ jiU v and A,2^JiUv.Moreover, 

since (|inv )C (^ iu^2 )c=?tlcn?i2c therefore we have p r iv C ^ c  and 

p.flvC?l2c.Now our proof will be completed by following the same 

steps as in Theorem 3.4.9.

The following example illustrates that the above theorems are not 

valid for disjoint (non-intersecting) fuzzy sets.

Example 3.4.11

Let X=[0,1] and define fuzzy sets p and v as follows:

0 if 2/3<x<l 2/3 if 2/3<x<l

It(x)=<! , v (x H

2/3 if 0<x<2/3 0 if 0<x<2/3

Then Tl = {0,l,p} and X2={0,l,v} are fuzzy topologies on X. 

Define fuzzy sets A-l and \2  as follows:
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1/3 if 2/3<x<l 0 if 2/3<x<l

M (x H ^2(x)=<!

0 if 0<x<2/3 1/3 if 0<x<2/3

It is clear that AifiA2=0,Al and A 2 are S-C3-connected (S-C4- 

connected) because Aifip=0 and A2Hv=0 but Ai <JA2=1/3 is S-C3- 

disconnected because (AlUA2)£pUv, (AiUA2)n(pnv)=(l/3)fi0=0, 

(AiUA2)fip*0 and (AlUA2)nwO.

Theorem 3.4.12

Let {2ci:ie A} be a family of S-C3-connected fuzzy sets in (X,xi,x2) 

such that for i,je A,b*j,the fuzzy sets Ai and Aj are intersecting .Then 
U {X,i : ieA} is S-C3-connected .

Proof ;

Let A=U{Ai:ieA},where Ai is as stated in the above theorem (ieA).To 

prove A is S-C3-connected,suppose not .Then there exist p,vexiUx2 

such that A ^pU v, (pDv)nA=0 pflA^O and vfiA^O.Now fix keA. 

Since Ak is S-C3-connected and we have clearly A k ^ p U v ,  

(pfiv)fiAk=0,therefore pnAk=0 or vflAk=0.We shall deal with the

first case only because the second case can be treated similarly.So we 
may assume that pnAk=0.We claim that vflAi^O for all ie A-{k}.To

prove our claim ,suppose not;i.e.,vflAi=0 for some ieA-{k}.Let 

Ai = {ie A-{k}:vflAi=0},then A i^ .N ow  let ieAl.Then AkHAi^O.So 

there exists xeX  such that (AkD Ai)(x)*0.This implies that Ak(x)*0 

and Ai(x)^0.Since pflAk^O ,therefore p(x)=0.Since vfiAi=0 and 

Ai(x)*0,therefore v(x)=0.Consequently (pU v)(x)=0.The fact that
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?iÇpUv implies that À,(x)=0 and this implies that A,i(x)=0 for all ie A

which is a contradiction .This completes the proof of our claim that 
vnX,h*0 for all ie A-{k}.For ie A-{k} we have >qÇ|iUv, (ji.nv)nA,i=0 

and X[ is S-C3-connected.This implies that |i f l  ^i=0 or 

vn^i=O.Combining this result with the above claim we conclude that 

p,PlXi=0 for all ie A-{k}.But we know that ¡if) A.k=0.This implies 

¡J.rUi=0 for all ie A.Consequently |ifi^=0 and this is absurd.Hence 

X=U{A,i :ieA} is S-C3-connected .

Theorem 3.4.13

Let {Xi:ie A} be a family of S-C4-connected fuzzy sets in (X,xi,x2) 

such that for i,je A,i?tj,the fuzzy sets and Xj are intersecting .Then 
U {Xi : ie A} is S-C4-connected .

Proof :

The proof follows the same steps as in Theorem 3.4.12.

Corollary 3.4.14

If {Xi:ie A} is a family of S-C3-connected (S-C4-connected) fuzzy sets 
in (X,xi,x2) and fi {^i : ieA) ^0 ,then U^i is S-C3-connected (S-C4-

connected).

Proof :

The proof follows easily by applying Theorem 3.4.12 and the fact that 
H {Xi : ie A}^0 implies XiflXj^O for all i^j, i.e. X[ and Xj are

intersecting for k*j.
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The following example shows that Theorem 3.4.9 fails for S-C2- 

connectedness .

Example 3.4.15

Let X=[0,1] and define fuzzy sets p and v as follows:

6/7 if 2/3<x<l 2/7 if 2/3<x<l

I*(xH v(x)=<{

2/7 if 0<x<2/3 6/7 if 0<x<2/3

Then Ti={0,l,p} and X2={0,l,v} are fuzzy topologies on X. 

Define fuzzy sets 7 l and 72 as follows:

1/7 if 2/3<x<l 2/7 if 2/3<x<l

M(xH , 72(xH

2/7 if 0<x<2/3 1/7 if 0<x<2/3

It is clear that 7 l 0  72^0,71 and 7,2 are S-C2-connected because 

p i = 7 l c and 2C but 7 i U 72 is S-C2-disconnected because

2/7=(7lU72)C(pUv)=6/7,2/7=(pfiv)C(7iU72)c)=5/7,p^(7lU72)c
and v^.(7i U72)c

The following example shows that Theorem 3.4.9 fails for S-Cl- 

connectedness.

Example 3.4.16

Let X=[0,1] and define fuzzy sets p and v as follows:
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6/7 if 2/3<x<l 0 if 2/3<x<l

M-(x)=<! v(x)=<!

0 if 0<x<2/3 6/7 if 0<x<2/3

Then Tl = {0,l,p} and T2={0,l,v} are fuzzy topologies on X.

Define fuzzy sets 7l and 72 as follows:

1/7 if 2/3<x<l 2/7 if 2/3<x<l

>T(xH  , 72(xH

2/7 if 0<x<2/3 1/7 if 0<x<2/3

It is clear that 71072^0,71 and 72 are S-Cl-connected because 

p . £ 7 l c and v ^ 7 2 c but 7 i U 72 is S-Cl-disconnected because 

(7 1 U 72)OpOv=0 , (pOv)C(?l i u 72)c)=5/7, p £ (7 iU 7 2 )c and 

v^(7lU72)c

Theorem 3.4.17

If 7 1 and 72 are overlapping S-Cl-connected fuzzy sets in a bfts 
(X,Tl,T2) then 7lU72 is S-Cl-connected .

Proof :

Suppose that 7 i U72 is S-Cl-disconnected,then there exist proper 

fuzzy sets p , v e x i U x 2  such that ( p O v ) O ( 7 i U 7 2 )  = 0,

(7iU72)^(|iU v),p i(7 iU 72)c and v ^ ( 7 i U72)c. (1)
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Since ^iU^2^|iUv,then it is clear that ^i^p,U v and ?i2^|aUv . Since 

(|inv)n(A.iUA.2)=0,then we have [|i.nvnA,i]U[ji.fivn^2]=0 which 

implies that |in v fi^ i= 0  and p,flvnA-2=0 . Since ^land X2 are S-Cl- 

connected then (Xi<^fic or Ad^ivC) and (^2^M-C or X 2 ^ v c).Since 

>4 and \ 2  are overlapping ,then there exists yeX such that

M ( y )> l- A .2 ( y ) .  (2)

Now consider the following cases:

Case I.Suppose AjCpC^hen by (2) we have

fi(y)<l-A.i(y)<A.2(y), (3)

We claim that A,2i£vc.To prove our claim,suppose not,i.e.,^2^=vc . 

This yields v(y)<l-A,2(y)<A,i(y) (4)

Now by (3) and (4),(pU v)(y)<(^i  U X,2)(y) which implies that 

( X 1 U X2)^_(ft U v),this contradicts (1).Hence our claim is 

valid,i.e.,?i2^.vc and so ?i2^M-c. Therefore p .^ ^ lcn ^ 2 c=(^lU ^2)c 

which contradicts (1)

Case Il.Suppose ^liS vc.Here we can show as in case I that fa<£(^2)c- 

Therefore v<= (X2)c.Hence vQ  ^ i c n ^2 C=(^1 U ^2)c .Therefore 

v^(?ilU ^2)c-This contradicts (1).

Hence ^1UA,2 is S-Cl-connected .

Theorem 3.4.18

If ^1 and X2 are overlapping S-C2-connected fuzzy sets in a bfts 
(X,Tl,T2) then X\UX2 is S-C2-connected .
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Proof ;

The fact that A,i U^2^|-l Uv  implies ^iC |iU v and X2<2\iUv.Moreover 

since (pPlv)C (7.1 U ^2 )c = ̂ l cn 7.2°, therefore | i f i v C ? i l c and 

pflvCX,2c . Then the proof follows by using similar steps as in

Theorem 3.4.17.

Theorem 3.4.19

Let (7.i:ie A} be a family of S-Cl-connected fuzzy sets in X such that 
for i,je A,i^j,the fuzzy sets 7d and 7,j are overlapping .Then U{7.i :

ieA} is S-Cl -connected .

Proof :

Let A,=U {Xi :iG A} and let 7,k be any fuzzy set of the given family

(ke A).Suppose that 7. is S-Cl-disconnected.Then there exist proper 
fuzzy sets |i,ve TlUx2 such that

(pnv)iU=0 and v£ \c  . (i)

Since A,CjxUv,(pfiv)n^=0,then 7,k£|iUv, (pfiv)nXk=0 .Since Xk is 

S-Cl-connected,then |iC!(7,k)c or vQ  (7.k)c .Since Ttk and X{ are 

overlapping, therefore there exists ye X such that

7.k(y)>l-7.i(y) for all i^k (2)

Now consider the following cases :

Case I.Suppose ?ik^M-c,then by (2) we have

jLi(y)<l—Xk(y)<^i(y), (3)
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We claim that ^if£vc.To prove our claim ,suppose on the contrary,that 

is .This yields v(y)<l-^i(y)<?ik(y) (4)

Now by (3) and (4),(p,U v)(y)<(A,kU A,i)(y) which implies that 
(^kUXi)j£()iUv),this contradicts (l).Hence A,ii£vc and so A ^p c  for all 

i. Therefore }i<=p)Aic=Ac which again contradicts (1).

Case ILSuppose Ak^vc.Here we can show as in case I that |a<£.(Ai)c. 

Therefore vS(A.i)c.Hence vcnA ic=Ac. This contradicts (1).

Hence X is S-Ci-connected .

Theorem 3.4.20

Let {Ai:ie A} be a family of S-C2-connected fuzzy sets in X such that 
for i,je A,i;*j,the fuzzy sets Ai and Aj are overlapping .Then U {X-i :

ieA} is S-C2-connected .

Proof :

The proof follows the same steps as in Theorem 3.4.19.

Corollary 3.4.21

If {Ai:ie A} is a family of S-Cl-connected (S-C2-connected) fuzzy sets 

in (X,xi,T2) and p is a fuzzy point with support x and value 1/2 such 
that pefl{Ai : ieA},then U{Ai : ieA} is an S-Cl-connected (S-C2-

connected) fuzzy set in X..

Proof :

Since pe fl {X[ : ie A} ,then X[ and Aj are overlapping for all i,j e A.
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it ts important to note that all the results from theorem 3.4.9 till 

corollary 3.4.21 are also valid if we replace S by P.

Theorem 3.4.22

(i) If a bfts (X,xi,x2) is Sw-connected then (X,xi) and (X,x2) are 

connected .

(ii) The converse of (i) is not true in general .

Proof :

(i) Suppose that (X,xi) is disconnected for some ie {1,2} .Then there 
exist proper fuzzy sets p,Àexi such that p+v=l and pnv=0 but this

gives p,vexiUx2 and so (X,xi,x2) is S-disconnected (Sw-disconnected)

which is a contradiction. Hence (X,xi) is connected ie {1,2}..

(ii) Let X=[0,1],t i  = {0,1,à,} and X2={0,1,À,C} where X is defined as 

follows:

1/2 if 0<x<l/2

A,(x)={

0 if l/2<x< 1

It is clear that (X,xi,x2) is Sw-disconnected but (X,xi) and (X,X2) are 

connected.

We also notice that Pw-connectedness of a bfts (X,xi,x2) are not 

governed by the connectedness of each fuzzy topological space (X,xi) 

and (X,x2) as shown in the following examples.

118



Example 3.4.23

Let (X,xi,x2) be a bfts where X=[0,l],xi=xdis and X2=xind-Then 
(X,xi,T2) is Pw-connected (and hence P-connected) while (X,xi) is not 

fuzzy connected.

Example 3.4.24

Let X=[0,l],A,(x)=x,ji(x)=l-x,xe X.Let (X,xi,x2) be a bfts ,where 

xi={0,l,A,} and T2={0,l,|i} .Since A,+p=l,the space (X,xi,x2) is Pw- 

disconnected while (X,t i ) and (X,X2) are fuzzy connected.

Example 3.4.25

Let X=[0,l],xi = {0,1,1/3,2/3} and X2={0,1,1/4,3/4}.Then the bfts 

(X,xi,x2) is Pw-connected while (X,xi) and (X,x2) are fuzzy 
disconnected.

119



Chapter IV

COVERING PROPERTIES  

IN

BIFUZZY TOPOLOGICAL SPACES

Compactness is one of the most important notions in topology and 

thoroughly investigated in general topology.In literature, different 

kinds of fuzzy compactness notions have been introduced and 

studied.Chang (1968) was the first to introduce compactness in fuzzy 

topological spaces .His definition was not so interesting because a 

fuzzy space with one point fails to be compact .Research about this 

notion was then carried out by many authors,but their works were not 

so effective.Gantner et al.( 1978) introduced the notion of a-  

compactness in fuzzy topological spaces .The concepts of almost 

compactness and near compactness in fuzzy topological spaces were 

introduced by Concilio and Gerla (1984) while the a-a lmos t  

compactness was introduced by Abd El-Monsef and Ramadan (1989).

In this thesis we shall discuss the bifuzzy extension to most of the 

existing definitions of fuzzy compactness in the literature.Moreover 

we shall discuss the goodness criterion and obtain many interesting 

results of bifuzzy compactness reflecting to a large extent,parallel 

properties in classical general topology.For the sake of clarity we 

divide this chapter into four sections .In the first section we shall
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discuss different types of compactness in bifuzzy topological spaces. 

The goodness of bifuzzy extensions will be discussed in the second 

section.In the third section we are going to discuss bifuzzy Lindelof 

spaces while in the fourth section we shall discuss countability 

properties in bifuzzy topological spaces.

S__4J__Different types of compactness

We start this section with the following definition.

Definition 4.1.1

A collection Ix is called S-open (P-open) if U ^ t i U t 2 

( U ^ x i Ut 2 and U contains a non-zero Tl open set and a non -zero x2-

open set ).A collection C is called S-closed (P-closed )iff U={^c:k C }  
is S-open ( P-open).

Definition 4.1.2

Let a e  [0,1),then a collection U £ x i Ut 2 is called an S-a-shading (P-a-

shading) for X iff for each xe X,there exists pe U such that j i(x )>oc 

where U is S-open (P-open).

Definition 4.1.3

A collection C={?ia:ae A}Cx i Ut 2 is called an S-open cover (P-open 

cover) for X iff U{Xa:ae A}=1 and C is S-open ( P-open).

In (1968) Chang gave a definition of compactness in fuzzy topological 

spaces which formally is the same one as in topological spaces.This 

definition has also been used in Goguen (1973) and Wong (1974).We
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use the idea of his definition to give a similar version in bifuzzy 

topological spaces.

P.£finitiQQ . 4,1,4

A bfts (X,T1,T2) is called S-compact (P-compact) if and only if every 

S-open (P-open )cover of X has a finite subcover.

The above definition has a serious weak point ,that is a finite space 

needs not be S-compact (P-compact) as the following example shows.

Example 4.1.5

(a) Let X={x()} and Tl=T2={c:0<c<l J.Then the collection {c:0<c<l} 

is a P-open cover for X which has no finite subcover.

(b) If X is a non-empty set and Ti and T2 are any two topologies on 

X,then (X,co(Tl),co(T2)) is never an S-compact (P-compact) space 

because the P-open cover C={c:0<c<l} for X has no finite subcover.

In (1978) Gantner et al. introduced the concept of a-compactness in 

fuzzy topological spaces (see definition 1.6.5).The following definition 

is an extension of a-compactness in bifuzzy topological spaces.

Definition 4.1.6

A bfts (X,xi,T2) is called S-a-compact (P-a-compact) if and only if 

every S-a-shading (P-a-shading) for X has a finite a-subshading.

Clearly S-a-compact implies P-a-compact but the converse is not true 

in general as we see in the following example.
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Example 4.1.7

There exists a P-oc-compact bfts which is not S-a-compact.

The bfts (X,X/Ti.r,X/Tr.r),with X=R is P-oc-compact but not S-a- 

compact for 0<a<l.Indeed the collection {x(-oojn):neN} is an S-a- 

shading of X which has no finite a-subshading for each 0< a<l.Hence 

(X,X/Tl.r,X/Tr.r) is not S-a-compact.

To show that (X,X/Ti.r,X/Tr.r) is P-a-compact ,let C={%Ua:oce A}U

{Xvp^P^y} be a P-a - shading for X;where uaeT pr and v(3eTr.r.-Let 
U = U {ua:aG A}and V=U {vp:(3e y} ,then Ug  T i.r and Vg  Tr.r- If 

UflV=(|),then there exists x g X such that x g  X\UU V,i.e,xg U and

x£ V.Hence %ua(x)=0 for all ac A  and %vp(x)=0 for all pGy which 
implies that C is not a P-a-shading.Consequently,we have UPlWcjxLet 

x g UDV ,then x g u «  for some a  and XGVp for some p.The collection 

{%ua ,Xvp } is a finite a-subshading of C for X.Hence (X,xi.r.,Tr.r.) is 

P-a-compact.

We remind the reader that a collection p  of fuzzy sets in a bfts (fts) X 
is said to be a-centered if for all finite collections qiG p  ,i=l,2,...,n 

there exists x g X with pk(x)>l-a for all kG {l,2,...,n}.

Theorem 4.1.8

Let (X,xi,x2) be a bfts ,then the following are equivalent:

(i) (X,xi,X2) is S-a-compact.

(ii) for every a-centered system p  of S-closed fuzzy sets in X there 

exists xg  X such that X(x)>l-a for all Xe p .
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Proof :

(i) =>(ii) Let p  be an a-centered collection of S-closed fuzzy sets in 
X.Assume that for each xe X there exists Ax e p  such that Ax(x)<l-a. 

Then U={(Ax)c :xeX} is an S-a-shading of X.Consequently there is a 

finite a-subshading {(Axi)c : i=l,2,...,n} for X.Now,{Axi :i=l,2,...,n} 

is finite.Hence there exists xo such that Axi(xO)^l-a for all i.This 

contradicts that {(Axi)c :i=l,2,...,n}is a-subshading.That is,for each 

xeX there is (Axi)c such that (Axi)c(x)>a and so Axi(xo)<l-a which is 

a contradiction.

(ii) => (i) Let U be an S-a-shading for X such that no finite 

subcollection of U is an a-subshading for X.Hence for every finite 

subcollection V of U there is a point xoe X such that A(xo)<a for all 

AeV.Then {Ac :AeU } is S-closed a  -centered.Therefore there exists 

a point xoe X such that Ac(xo)>l-a for all Ae U.Thus for all Ae U we 
have A(xO)<a and this contradicts that U is S-a-shading for X.

Whenever we say that a bfts (X,xi,T2) has a property Q we mean both 

spaces (X,Ti) and (X,T2) have Q.For example (X,t i ,t 2) is a T2-space 

provided both (X,xi) and (X,i2) are T2-spaces.

Theorem 4.1,9

Let (X,xi,x2) be a bfts ,then the following are equivalent:

(i) (X,xi,x2) is S-a-compact.

(ii) (X,xi,x2) is P-a-compact and a-compact.
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Proof ;

(i) =>(ii) If U be a P-a-shading or a-shading for X.Then U is an S-a- 

shading for (X,xi,x2) and so it has a finite a  -subshading.

(ii) =>(i) Let U be an S-a-shading for X.Then either or \JQt 2

or U is a P-a-shading for X.In either case U has a finite a -  

subshading.

Definition 4.1.10

A bfts (X,xi,x2) is called S-weakly compact iff for each S-open cover 

for X and for each £>0 there exists a finite subcover of 1-e .

Definition 4.1.11

A bfts (X,xi,x2) is called S-a-weakly compact iff for each e>0 and for 

all S-(a+£)-shading for X there exists a finite a-subshading (ae [0,1)).

Example 4.1.12

Example 4.1.5 (a) is not S-compact but it is S-weakly compact. 

Definition 4.1.13

A bfts (X,xi,x2) is called P-weakly compact iff for each P-open cover 

for X and for each £>0 there exists a finite subcover of 1 -£ .

Definition 4.1.14

A bfts (X,xi,x2) is called P-a-weakly compact iff for each £>0 and for 

all P-(a+£)-shading for X there exists a finite a-subshading (ae [0,1)).
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The following theorem shows the relation between P-oc-compact and 

P-oc-weakly compact.

Theorem 4.1.15

If a bfts (X,xi,T2) is P-a-compact then (X,xi,x2) is P-a-weakly 

compact.

Proof:

Clear .

Example 4.1.16

There exists a P-a-weakly compact bfts (X,xi,x2) which is not P-a- 

compact.

Let X=I,0<a<l and for each 0<p<l.

(l-a)(x-l)+ l if x=p

Define Ua p (x)=^

0 if x^p

The collection {uap:0<P<l} is a subbase for some fuzzy topology xi 
on X.

Define X2={0,l,3C{o.i}}.

Then the bfts (X,xi,x2) is not P-a-compact because the collection 

{U°VJC {0,1}} is a P-a-shading for X that has no finite a -  

subshading.Notice that (X,xi,x2) is P-a-weakly compact because any 

P-(a+e)-shading for X must contain l.To see that,let xeX be such that
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0<x <e/(1-oc). Then there is no fuzzy open set in Tl or in T2 other than 

1 covers x.That is,there exists no P-(a+e)-shading for X that does not 

contain 1 .If it contains l,then {1} is a finite a-subshading for X and 

therefore X is P-oc-weakly compact.

Now we have the following version of definition 1.6.6 in bifuzzy 

topological spaces.

Definition 4.1.17

A fuzzy set f in a bfts (X,xi,T2) is said to be S-compact (P-compact) 

iff for every family G of S-open (P-open) fuzzy sets such that

sup{g:geG} >f and for every e>0,there exists a finite subfamily 
Ge^G such that sup{g:geGe} >f-£.

Definition 4.1.18

A bfts (X,xi,T2) is S-C-compact (P-C-compact) provided that each 

constant map from X into I is S-compact (P-compact) .

Definition 4.1.19

A bfts (X,t i ,t 2) is S-C-weakly compact (P-C-weakly compact) iff the 

constant fuzzy set 1 is S-compact (P-compact),(in the sense of 

definition 4.1.17).

From the next definition and onwards the symble x*ci means
(Ti)*c,i=l,2.

Definition 4.1.2ft

A bfts (X,Ti,T2) is P-U-compact (S-U-compact) iff (X,T*clJ*c2) is 

P-compact (S-compact).
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Definition 4.1.21

A bits (X,xi,T2) is P-S-compact (S-S-compact) iff for each 0<a<l,the 

space (X,t i ,t 2) is P-a-compact.(S-oc-compact) *

Theorem 4.1.22

If a bfts (X,xi,T2) is P-C-weakly compact ,then (X,t *c 1,t *c 2) is P- 

compact.

Proof :

Let (X,xi,T2) be P-C-weakly compact.Let 9i={Ga:aeA} be a P-open 

cover for (X,x*cl,x*c2)-For each aeA,let ga denote XGa-Then it is 

clear that sup{ga:cce A}=l.Since 1 is P-compact,therefore there exists 
a finite set A l^A  such that sup{ga:oce A l }>l/2.It is obvious that the

collection {Ga:oce A i} is a finite subcover of 9L 

Example 4.1.23

There exists a bfts (X,xi,x2) which is not P-C-weakly compact but 

(X,x cl A c2) is P-compact.

Let X=I,t i =t 2={0,^:A,(x )>0 for all xeX}.Then x*cl=/t :t:c2={()),X}. 

Thus (X,T*ci,x*c2) is P-compact.

Define Up(p)=l, Up(x)=l/2 for x^p.

Then the collection {Up:pel} is a P-open cover for 1 which has no 

finite subcover for 0.9.Hence (X,t i ,t 2) is not P-C-weakly compact.

We may write Theorem 4.1.22 in a different way as the following 
version shows.
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Theorem 4.1.24

A bits (X,xi,x2) is P-U-compact if (X,xi,x2) is P-C-weakly compact. 

Theorem 4.1,25

Let (X,xi,T2) be a bfts.Then (i)=i>(ii)=^(iii),where

(i) (X,xi,x2) is P-S-compact.

(ii) (X,xi,T2) is P-C-compact.

(iii) (X,Tl,T2) is P-U-compact .

Proof :

(i) =>(ii) Let c be a constant fuzzy set in X.We have to show that c is 

compact.To do this,let G be a P-open cover for c.That is, sup{g : 

geG}>c .Let e>0.Now {g : geGJis a c-e-shading for X.So there exists 
{gi : i=l,2,...,n} finite c-e-subshading.This implies that supfgi : 

i=l,2,...,n}>c-e.Hence c is compact.That is,(X,xi,x2) is P-C-compact.

(ii) =>(iii) Since P-C-compact implies P-C-weakly compact.Then 

Theorem 4.1.24 completes the proof of our implication.

It is important to note that example 4.1.23 is P-U-compact (see 

definition 4.1.20) and not P-C-compact because it is not P-C-weakly 

compact.Also it is not P-S-compact because if a=3/4,then the 
collection {Upipel} is a P-a-shading for a  which does not have a 

finite a-subshading.Therefore (iii) does not imply (i) and does not 
imply (ii).
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Theorem 4.1.26

Let (X,xi,T2) be a bfts.Then (i)=>(ii)=>(iii),where

(i) (X,t i ,x2) is S-S-compact.

(ii) (X,Tl,T2) is S-C-compact.

(iii) (X,xi,T2) is S-U-compact.

Proof :

Similar to the proof of theorem 4.1.25.

In the following Theorem we show that all well behaved compactness 

concepts that we have introduced are preserved under continuous 
surjections.

Theorem 4.1.27

Let X,Y be two bft spaces and f:X—>Y be a continuous surjection .

(i) If X is S-oc-compact then Y is S-a-compact.

(ii) If X is P-oc-compact then Y is P-a-compact.

(iii) If X is S-compact then Y is S-compact.

(iv) If X is P-compact then Y is P-compact.

(v) If X is S-C-compact then Y is S-C-compact.

(vi) If X is P-C-compact then Y is P-C-compact.
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Proof ;

We shall prove (ii) and (v) only .The other cases can be treated 

similarly.

A

(ii) Let U be a P-oc-shading for Y.Since f is continuous then 

f- l (U )={f-l(?i):^e U}is a P-a-shading for X.Indeed if xg X then 

f(x)G Y,so there exists iVeU such that A,(f(x))>a.That is f_l(^)(x)>cc.

Hence (f’ l ( l ) i e U )  has a finite a-subshading {f - 1 (X i): 

i=l,2,...,n}.Now {X.i:i=l,2,...,n} is a finite a  -subshading of U.Indeed, 

if ye Y then y=f(x) for some xe X.Thus there exists j such that 
f"k^j)(x)>cc.This implies that A,j(f(x))=A,j(y)>cc.

(v) Let h be a constant fuzzy set in Y and G be a family of S-open

fuzzy sets in Y such that sup{g:geG}>h.We have to show that for any 
£>0 there exists a finite subfamily Ge^G such that sup{g:geGe}>h-e.

Since f is continuous then f_l(G)={f"l(g) :geG} is a family of S- 

open fuzzy sets in X.Therefore sup[f_ 1 (g):ge G } >h because 

f"l(g)(x)=g(f(x)). Since X is S-C-compact then there exists a finite 

subfamily {f'l(gi):i=l,2,...,n} of f'^G ) such that sup{f~ 1 (g i): 

i=l,2,...,n}>h-e. This implies sup{gi: i=l,2,...,n}>h-£.Consequently Y 

is S-C-compact.

§ 4.2 Goodness of bifuzzv extension

In this section we prove that our definitions of P-0-compactness,S-a- 

compactness (ae [0,1)) and S-C-compactness are good extensions while 

the definition of S-compact (P-compact) is not (see example 4.1.5 (b)).
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T h e o re m  4 .2J ,

Let (X,T i ,T2) be a bitopological space ,then the following are 

equivalent:

(i) (X,Ti ,T2) is S-compact.

(ii) (X,io(Tl),co(T2)) is S-a-compact for each 0<a<l.

(iii) (X,co(Ti),io(T2)) is S-a-compact for some 0<a<l.

Proof ;

(i) => (ii) Let U be an S-a-shading for (X,co(Ti ),co(T2)).Then 

U={A,"l(a,l]:^e 0} is an S-open cover for (X,Ti ,T2).Indeed,for each 

xeX there exists k U  such that >.(x)>a.This implies that x g  A,"l(a,l]. 
Since (X,Tl,T2) is S-compact,U has a finite subcover {X i'l(a,ll : 

i=l,2,...,n}.Now the set {>d : i=l,2,...,n} is an a-subshading for 

(X,co(Tl),co(T2)).Indeed if x g X then there exists ie {l,2,...,n} such 

that xg  A,i_l(a,ll.This implies Aq(x)>a .

(ii) =>(iii) Trivial.

( i i i)  => (i) Let V be an S-open cover of (X,T l ,T 2 ), w here 

(X ,co(Ti ),co(T2)) is S-a-compact for some a e  [0 ,1 ) .Then 

U={%v -v g  V} is an S-a-shading for (X,oo(Ti),co(T2)).Indeed if xeX 

then there exists v g  V such that %v(x)>a.So there exists a finite 

a-subshading, say (Xvi • viG V,i=l,2,...,n}.Now the collection 

{vi :i=l,2,...,n} is a finite subcover of V.Indeed if x g X then there 

exists iG {1,2,...,n} such that %vi00>a.This implies x g  v i .
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In the following theorem and example we show that P-a-compactness 

is a good extension of P-compactness only if oc=0.

Theorem 4.2.2

Let (X ,Tl,T2) be a bitopological space.Then the following are 

equivalent:

(i) (X,Ti ,T2) is P-compact.

(ii) (X,co(Ti),co(T2)) is P-O-compact .

Proof :

(i) =>(ii) Let U be a P-O-shading of (X,io(Ti),co(T2)).Then U= 

{Ar 1(0,1 ]:Xe  U} is a P-open cover for (X,Tl,T2) because for each 

xeX  there exists k U  such that A(x)>0.This implies that x e A'1(0,1J. 
Since (X,T i ,T2) is P-compact,U has a finite subcover {Xi-1(0,1] : 

i=l,2,...,n}. Now the set {Ai : i=l,2,...,n} is a 0-subshading for 

(X,co(Tl),co(T2)) because if x e X then there exists ie {l,2,...,n} such 

that xE^i-1(0,1] which implies Ai(x)>0 .

( i i )  => (i) Let V be a P-open cover for (X,T l ,T 2 ), w here  

(X,to(Tl),co(T2)) is P-O-compact.Then U={%v :v e  V] is a P-O-shading 

for (X,co(Ti ),co(T2)) because if x e X then there exists v e V such that 

X v(x)>0.So there exists a finite 0-subshading,say {%vi • 

viE V,i=l,2,...,n}.Now the collection {vi :i=l,2,...,n} is a finite 

subcover of V.Indeed,if x e X then there exists iE {l,2,...,n} such that 
%vi(x)>0 which implies xEvi .

The above result show s that S -a-com pactness is a good extension of

S-compactness.
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Examnle 4.2.3

There exists a bitopological space (X,Tl,T2) such that (X,Tl,T2) is P- 

compact but (X,co(T i ),co(T2)) is not P-a-compact for all 0<a<l.

Let X=R,Ti=Tl.r.and T2=Tr.r.-Then the bts (X,Ti ,T2) is P-compact 

but (X,co(T i ),co(T2)) is not P-a-compact for all 0<a<l.To prove our

assertion,suppose not.Then the P -a -sh a d in g  C= { %(-oo,n) 
,ne N } U {(a/2)%(o,oo) } for (X,co(Ti),a)(T2)) has a finite a-subshading,

say {%(-oo,ni) ,i=l,2,...,p}.Let m=max{nj: i=l,2,...,p} and x=m+l.Then

X(-°°,ni)(x)=0 for all i=l,2,...,p and (a/2)X(o,oo)(x)<(a/2)<a.This is a 
contradiction. Hence (X,co(Tl),co(T2)) is not P-a-compact.

Theorem 4.2.4

Let (X,T i ,T2) be a bitopological space ,then the following are 

equivalent:

(i) (X,Ti ,T2) is S-compact.

(ii) There exists c :0<c<l and c is S-compact in (X,co(Ti ),go(T2)).

(iii) (X,co(T i ),co(T2)) is S-C-compact .

Proof :

(i)=>(ii) Let f be a fixed constant fuzzy set in X and G be a family of 
S-open fuzzy sets for X in (X,co(T i ),gl>(T2)) such that sup{g:geG}>f 

and let £>0.Then the family U ={u=g"1(f-e,l]:ge G} is an S-open

T he follow ing exam ple shows that P -a-com pactness is not a good

extension of P-com pactness if a> 0 .
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cover for X.Indeed if xe X,then there exists ge G such that g(x)>f- 

e.That is g(x)e(f-e,l] or x e  g_l(f-£,l].Since X is S-compact,U has a 
finite subcover V= {gi~ 1 (f-e, 1 ] :i=l,2,...,n} Now sup{gi:i=l,2,...,n}> 

f-e,which shows that f is compact.

(ii) => (iii) Let f be a constant fuzzy set in X and G be a family of 
S-open fuzzy sets in (X,co(T i ),co(T2)) such that sup{g:gEG}>f.Let 

£>0 and c be an S-compact fuzzy set in X.If Since sup{g:gEG}>f,then 

sup{g-f+c:geG}>c. Now {g-f+c:gEG} is S-open and c is S-compact. 
Therefore there exists a finite subcover {gi-f+c:i=l,2,...,n} of c-e.That 

is, sup{gi-f+c: i=l,2,...,n}>c-e. This implies that sup{gi-f+c+f-c: 

i= l,2 ,...,n}>c-£+f-c=f-£ . Consequently f is S-compact.Hence 
(X,co(Tl),co(T2)) is S-C-compact.

( i i i )  => (i) Let U be an S-open cover for (X,T 1 ,T 2 ).T h e n  

G = { Xu - u e U} i s  a family of S-open fuzzy sets such that

sup{Xu û g  U}>0.5.Since 0.5 is compact ,then there exists a finite 
subfamily {Xuj;uiE U ,i= l,2 ,...,n }^G  such that sup{%Ui-‘uie U ,

i=l,2,...,n}>0.4.Now {ui:i=l,2,...,n} is a finite subcover of U for 
X.Indeed if x e X then there exists iG {l,2,...,n} such that %Ui(x)=1^0.5 

for some i.That is,xGX-lui(0.4,l]=ui.

The above result shows that S-C-compactness is a good extension of 

S-compactness.Now we present the following result concerning the 

goodness of P-compactness in bifuzzy topological spaces.

Theorem 4.2.5

If there exists c :0<c<l and c is P-compact in (X,co(Tl),co(T2)) then 

(X,Ti,T2) is P-compact.
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Proof ;

Let U be a P-open cover for (X,Tl,T2),then G={%u:ueU}is a family

of P-open fuzzy sets such that sup{%u:ueU}>c.Since c is compact 
,then there exists a finite subfamily (Xupuie U,i=l,2,...,n}<2G such

that sup(XupUiG U,i=l,2,...,n}>c/2.Now {ui:i=l,2,...,n} is a finite

subcover of U for X because if x g X then there exists iG {l,2,...,n} 
such that %uj00=l>c for some i.That is , x g % 1U;(c/2,l]=ui.

Example 4.2.6

There exists a P-compact bitopological space (X,Ti ,T2) such that for 

no c;0<c<l,c is P-compact in (X,co(Tl),co(T2)).

Let X=R,Tl=Tl.r.and T2=Tr.r..In example 4.2.3 we have noticed that 

(X,Ti ,T2) is P-compact.Now we claim that for any 0<c<l,c is not P- 

compact .To prove our claim ,we notice that {%(-°o,n) 
,nG N} U {(c/2)%(0,oo)} is a P-open cover for c (in fact P-open cover

for 1) and admits no finite subcover for c-s where e=c/4.

The following is an immediate corollary of Theorem 4.2.5.

Corollary 4.2.7

If a bits (X,co(T i ),go(T2)) is P-C-compact then (X ,Tl,T2) is P- 
compact..

§ 4.3 Bifuzzv Lindelof spaces.

In this section we extend the concept of bifuzzy compactness to a 

wider class of bifuzzy topological spaces »called bifuzzy Lindelof
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spaces and prove some results similar to those known bitopological 

ones.

Definition 4.3.1

A bfts (X,xi,T2) is said to be S-Lindelof (P-Lindelof) iff every S-open 

(P-open) cover for X has a countable subcover.

Definition 4.3.2

A bfts (X,xi,T2) is said to be S-oc-Lindelof (P-oc-Lindelof) iff every 

S-oc-shading (P-a-shading) for X has a countable a-subshading.

Theorem 4.3.3

Every countable (i.e.,X is a countable set) bfts (X,t i ,T2) is S-Lindelof.

Proof ;

Let X be a countable set,i.e.,X={xi:ie N}.

Let C={Va:aeA} be an open cover for X.For ieN ,neN  there exists 
V(ai,n)eC such that V(ai,n)(xi)>l-(l/n).Since the countable union of 

countable sets is countable,therefore {V(oci,n):i,ne N} is a countable 

subcover of C for X.

Theorem 4.3.4

A bfts (X,x 1 ,T2) is S-Lindelof iff (X,T1,T2) is P-Lindelof and 

Lindelof.

Proof :

Similar to the proof of Theorem 4.1.9.
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Definition 4.3.5

A fuzzy set f in a bfts (X,T1,X2) is said to be S-Lindelof (P-Lindelof) 

iff for every family G of S-open (P-open) fuzzy sets such that

sup{g:geG} >f and for every e>0,there exists a countable subfamily 
Ge^G such that sup{g:geGe) >f-£.

Now we have the following characterization of S-Lindelof fuzzy sets. 

Theorem 4.3.6

A fuzzy set A, in a bfts (X,t i ,t 2) is S-Lindelof in the sense of 

definition 4.3.5 iff every S-open cover of A has a countable subcover.

Proof :

=> Let Abe an S-Lindelof fuzzy set and let G={Va:oceA} be an S-

open cover for A . Since A is S-Lindelof ,then for each ne N there 
exists GnSG which is countable such that sup{g:geGn}^A-(l/n).It is

clear that U {Gn:n=l,2,...} is a countable subcover for A.

<= Let {Va:ocE A} be an open cover for A.Then;by assumption; there 

exists a countable subcover {Vaih=l,2,...} for A.Now for any 

£>0,sup{Vai:i=l,2,...}>A-e.Hence A is S-Lindelof.

The following example shows that the above theorem does not hold in 
case of compactness.

Example 4.3.7

Let X=I,xi=T2={c:0<c<l}.The fuzzy set c=0.5 is S-compact in the 

sense of definition 4.1.17.But we note that the collection {c:c<0.5} is
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an open cover for c which has no finite subcover. Therefore there are 

no analogous definitions of S-weakly compact and S-C-compact in 

Lindelof spaces.

Definition 4.3.8

A bfts (X,t i ,t 2) is S-C-Lindelof (P-C-Lindelof) iff each constant 

fuzzy set in X is S-Lindelof (P-Lindelof).

Theorem 4.3.9

A bts (X,t *c 1,t *c 2) is S-Lindelof if (X,xi,T2) is S-Lindelof.

Proof :

Let M={Aa :cxeA} be an S- open cover for (X,T*d,T*c2)-Then the 

family G={XAcdOceA} is a fuzzy S-open cover for (X,xi,x2).Since 

(X,xi,T2) is S-Lindelof.Then there exists a countable subfamily 

{)CAai-Oce A,i=l,2,...} of G that covers X.This implies that 
{Aai:i=l,2,..} is a countable subcover of M for (X,x*cl,T*c2)-Hence 

(X,x*cl,x*c2) is S-Lindelof.

The converse of the above theorem is not true in general as we see in 
the following example.

Example 4.3.10

There exists a non S-Lindelof bfts (X,xi,x2) such that (X,x*cl,x*c2) is 
S-Lindelof.

Let X=I,t i =t 2={0,A,:A,(x )>0 for all xeX}.Then x*c i=x*c2={<l>»X}. 

That is, (X,x*cl,x*c2) is S-Lindelof.
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Define the fuzzy set Up ;pe I ;as follows:

Up(p)=l, Up(x)=0.5 if x*p

Then the collection {Up:pel}is a P-open cover for (X,xi,T2) which 

has no countable subcover.Hence (X,xi,x2) is not S-Lindelof.

Definition 4.3.11

A bfts (X,Tl,T2) is hereditary Lindelof if each crisp fuzzy set is 

xi-Lindelof and a x2-Lindelof.

Example 4.3.12

Let X=I,Tl = {0,1} and x2={0,X:A,(x)>0 for all xEXJ.Then the bfts 

(X,xi,T2) is P-Lindelof but not hereditary Lindelof because if 

[0,0.5] .then the collection {Xt:tel}; where Xt(x)=l if x=t and 

Xt(x)=0.5 if x^t: is a x2-open cover for p which does not have a 

countable subcover.

Theorem 4.3.13

If a bfts (X,xi,x2) is hereditary Lindelof ,then it is S-Lindelof.

Eroof ;

Let C={Va:cceA} be an S-open cover of X.We have two cases to 

consider.The first case is whenever C is a xi or a X2-open cover for 

X.Then C is an open cover of the crisp constant fuzzy set 1.Since X is 
xi-Lindelof and x2-Lindelof,hence C has a countable subcover.The 
second case is if C is a P-open cover for X,then C={Xoc:o c eA}U 

{p.a :«E A},where Xa e x i and na €T2. let A={x e X:UXa (x)=l} and
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B={xeX:Upoc(x)=l} .Since Cl={Xa:oce A} isaxi-open cover for %a  

and C2={pp:|3e A} is a x2-open cover for Xb and X is hereditary 

Lindelof, then there exist countable subcovers C l' of Cl and C2' of 
C2 -It follows that C l 'U C 2 ' is a countable subcover for

Xa Ux b =Xa u b =Xx =1- 

Definition 4.3.14

A fuzzy set X in a fts (X,t ) is called weakly open if for each pe X,there 

exists pex  such that pep. and p(x)<X(x) for all xe X except for 

countably many xe X.A fuzzy set F is called weakly closed if Fc is 

weakly open.

Definition 4.3.15

A fuzzy set X in a bits (X,xi,x2) is called weakly open iff X is weakly 

open with respect to xi and with respect to X2 simultaneously.A fuzzy 

set F is called weakly closed if Fc is weakly open.

Theorem 4.3.16

Let (X,xi,T2) be a bft P-Lindelof space and F a weakly closed proper 

crisp fuzzy set in (X,xi).Then F is X2-Lindelof.

Proof :

Lot {Va:oce A} be a x2-open cover of F.Since F is xi-weakly closed, 

then Fc is xi-weakly open and therefore for each pe Fc there exists pp 

in xi such that pe pp and pp(x)<Fc(x) except for countably many 
xeX.Let C={ Vopoce A} U {ppipe Fc }.Then C is a P-open cover for

X.Since X is P-Lindelof,C has a countable subcover ,say 
Cl = { Vocn:ane A}U {pp^rpkeF0}.Since ppjc(x)=0 for all xeF  except
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countably many Jet {xi,x2,...} be a collection of points in F such that 
jipk(xi)>0 for all i=l,2,... .Now fix xi in F.Since {VociocgA} is a

family of open cover,the re exists a countable subfamily {Va^p} such 

that sup VockjiCxO^l-Then for every xi (i=l,2,...) there exists a 

countable subfamily {Va^pl such that sup Vakji(xi)=l Since (ip^ is

countable and the union of countable sets is countable,therefore the 
collection {Voc^} of Va together with {Van } is countable and so F

is x2-lindelof.

Corollary 4,3.17

A Ti-weakly closed proper crisp fuzzy set of a P-Lindelof space is xj - 

Lindelof (i^j,i,j=l,2.).

It is important to notice that the word "proper" in the above theorem 
can not be removed.

Example 4.3.18

Let X=I,T1={0,1} and x2={0,>»:A.(x)>0 for all xeXJ.Then (X,xi,x2) is 
P-Lindelof having 1 as a xi-closed fuzzy set that is not x2-Lindelof.

Definition 4.3.19

A bits (X,xi,x2) in which every countable intersection of xi-open (x2- 

open) fuzzy sets is in xi(x2) is called a P-space .

Example 4.3.20

Let X=I,xi={0,l} and x2={0,A,:A,(x)>0.5 for all xeXJ.Then (X,xi,x2) 

is a bfts which is a P-space.
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Theorem 4.3.21

If a bits (X,Tl,T2) is P-T2w  and P-space then every xi-Lindelof crisp 

fuzzy set is xj-closed (i*j;i,j=l,2).

Proof :

Let F be a xi-Lindelof crisp fuzzy set of X and pe Fc,where p is a 
mature fuzzy point.Then xp=supp fl {clipodl-toc is a xj-neighborhood of 

p} because X is P-T2w (see theorem 2.3.6) .Now FCpc?therefore

C={(clipa)c:«^ A] is a xi-open cover of F .Since F is xi-Lindelof then 
there exists A i^A  such that C'={(cli|icx)c:oce A i} is countable and 

FCuC'.Let U=fipa-Then U is a xj-open fuzzy set containing the fuzzy 

point p and U ^F c.That is, pe 1-F.Hence Fc is a xj-open fuzzy set 

which implies that F is xj-closed.

Definition 4.3.22

If A is a fuzzy set of a bfts (X,xi,x2) and p is a fuzzy point ,then p is

called a weak-interior point of A if there exists a weakly open fuzzy 
set Be xi Ux2 containing p such that BCA.The set of all weak -interior

points of a set A is denoted by w-int A.

Theorem 4.3.23

Let (X,xi,x2) be a P-Lindelof bfts and let F be a xi-weakly-closed 

fuzzy set such that w-int2(Fc)*({).Then F is xi-Lindelof.

Proof:

Let qe w-int2(Fc).Then there exists a X2- open fuzzy set G such that 
qeG  and G ^F C except for countably many xeX.Let C={ca:oceA} be
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a Tl-open cover for F.For each pe Fc,there exists a Tl-open fuzzy set 
Pp such that pe pp and p p ^ F c except for countably many x's in X 

because Fc is a Tl-weakly open..Since {ca:cxG A}U{G}U {pp:peFc}

is a P-open cover for the P-Lindelof space X,there exist two countable 
sets A 1 C a  and A2= {p 1 ,p2,---} such that {coc:ocg A l } U {G } U

{Pp:pG A2 } is a countable subcover for X.Let {x i,x2 ,...} ,{z i,z2 ,...}  

be a collection of points in F such that pp(xi)>0 and G(zi)>0 for all

i=l,2,... .Now fix xi and zi.Since {coc:o c gA} is a family of a Tl-open 
cover for F,there exist countable subfamilies {cocj} and{cpj} of

{coc:oceAi} such that sup cocj(xi)= 1 and sup cpj(zi)=l .Since A2 is

countable and the union of countable sets is countable,then 
{ca:aG A i} U {caj:jG N } U {cpjijG N} is a countable subcover of

C.Hence F is Tl-Lindelof.

Theorem 4.3.24

Let X,Y be two bft spaces and f:X—>Y be a P-continuous surjection.

(i) If X is S-Lindelof then Y is S-Lindelof.

(ii) If X is S-a- Lindelof then Y is S-a- Lindelof.

Proof :

Because (i) is similar to (ii),we shall prove only (ii).Let C be an 

S-a-shading for Y.Since if xeX  then f(x)e Y, there exists such 

that A,(f(x))>a,that is f‘ l(^)(x)>a,and hence f-l(C)={f-l(X,):>,G C} is 

an S-a-shading for X. Consequently {f-l(A,):A,G C) has a countable 
a-subshading (f-l(A,i): i=l,2,...}.Now {X.i:i= 1,2,...} is a countable 

a  -subshading of C because if ye Y then y=f(x) for some x g  X.Thus
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there exists j such that f- 1 (A,j)(x)> a  .This implies that 

\j(f(x))=Xj(y)>a.

Theorem 4.3.25

Let X,Y be two bft spaces and f:X—>Y be a continuous surjection. 

Then:

(i) If X is P-Lindelof then Y is P-Lindelof.

(ii) If X is P-oc- Lindelof then Y is P-a- Lindelof.

Proof :

We shall prove (i) only because (ii) is similar to (i).

Let C={Va:oceA) be a P-open cover for Y.Then f_l(C)={f"l(V(x): 

VaeC} is a P-open cover for X.Indeed, if xeX  then f(x)e Y,so there 

exists a subfamily V ai of C such that sup Voci(f(x))=l .Hence 

{f'kVa)-VoceC} has a countable open cover (f-l(Vi): i=l,2,...}.Now 

{Vi:i=l,2,...} is a countable subcover of C.Indeed if ye Y then y=f(x) 

for some xeX.Thus there exists a subfamily f-l(Vj) of f-l(C) such 

that sup f"l(Vj)(x)=l.

We note that if f is P-continuous then the above theorem does not 
hold.This is because f’ l(C)={f_l(Voc):Vae C) is not necessarily a 

P-open cover of X.It is in fact S-open cover but not necessarily a P- 

open cover.The following example clarifies our claim.

Example 4.3.26

Let Id:(R,xdis Jind) —KR/tdis^dis) denote the identity map.Then Id is 

P-continuous and not continuous surjection.In fact (R,xdis Jind) is P-
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Lindelof and P-oc-Lindelof while (R,XdisAdis) is neither P-Lindelof 

nor P-a-Lindelof.Moreover if C denotes the collection of all fuzzy 

points in Y ,then C is a P-open cover for Y but f-l(C) is an S-open 

cover for X which is not a P-open cover because l£ f-1 (C).

Theorem 4.3.27

(i) Every xiX2-closed subspace of an S-Lindelof bfts is S-Lindelof.

(ii) Every xix2-closed subspace of a P-Lindelof bifuzzy space is P- 

Lindelof.

Eropf ;

(i) Let A be a xix2-closed subspace of the S-Lindelof bfts 

(X,xi,T2).Let{^oc:ae A} be a TiAT2A-open cover of A.Then for each
ie I there exists a pi e xi Ux2 such that ^pdfi/CA-Since Xa  is a 

TlX2-closed fuzzy set of X,then £={pi:iGl}U{xAc} is an S-open cover

of X.Since X is S-Lindelof ,then ^ has a countable subcover say 
{(Xik:keN}U{xAc}-Consequently {Xik:kGN} is a countable subcover

for A.Therefore (A,x i a ,x2A) is S-Lindelof.

(ii) Proof : Similar to (i).

.§ 4»4__Countability in bifuzzv topological spaces.

Definition 4.4.1

Let (X,Ti ,T2) be a bts and x g X.A subfamily Bx of S-open (P-open) 

sets is called an S-local base (P-local base) at x iff

1) x g  U for every Ug  Bx.
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2) For every V e T1UT2 such that xeV there exists W eBx such that 
xeWCV.

Definition 4.4.2

Let (X,Tl,T2) be a bfts and p a fuzzy point in X.A subfamily Bp of S- 

open (P-open) fuzzy sets is called an S-local base (P-local base) at p iff

(1) pG p for every pe Bp .

(2) for every Ag x i Ux2 such that pG A there exists pcB p  such that
pGjjC x.

Definition 4.4.3

A bts (X,Ti ,T2) is called an S-Cpspace (P-Cpspace) iff every xg X 

has a countable S-Local base (P-local base).

Definition 4.4.4

A bfts (X,xi,T2) is called an S-Cpspace (P-Cpspace) iff every fuzzy 

point in X has a countable S-local base (P-local base).

Definition 4,4.5

Let (X,TU2) be a bfts. A subfamily B of S-open (P-open) fuzzy sets is 
called an S-base (P-base ) for xiUx2 iff for each fuzzy point p in X 

and for each A g  X1UX2 such that pG A there exists a member |l ig B 
such that pGpC^.

Remark 4.4.6

If Bi is a base for xi,then Bl UB2 is an S-base for xi Ux2.
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Theorem 4.4.7

If C ^ t i U t 2 and Bi (i= l,2) is a collection of fuzzy sets such that 

C flB l is a base for xi and CflB2 is a base for x2.Then C is an S- base 

for T1UT2-

Proof:

Let 0^A,g x i Ux 2 and p be a fuzzy point such that pe A,.Now ^ e x i or 

^€X2 .If A,exi then there exists O l e C f l B l  such that p e O l ^ X .  

Similarly if A, ex2 then there exists 0 2 e C f l B 2  such that 

pe02^^.H ence C is an S-base for xiUx2-

Remark 4.4.8

The converse of the above theorem is not true in general as we see in 

the following example,

let X=R,x 1={0,1 ,%(-oo,o)} =B 1 and x2={0,l,x[0>Oo)}=B2.

Now {X(-oo,o)>%[0,°°)} is an S-base for xi*Jx2 but neither {X(-°°,0)} 

nor{%[0,°°)} is a base for xi or X2 .

Definition 4.4.9

A bfts (X,xi,x2) is called an S-Cn-space (P-Cn-space) iff (X,xi,x2) 
has a countable S-base (P-base) for X1UX2.

Theorem 4.4.T0

A bfts (X,xi,x2) is an S-Cn-space if (X,xi) and (X,x2) are Cn-space.

148



Proof:

If Bl and B2 are countable bases for xi and X2 respectively, then 
B1UB2 is a countable S-base for xiUx2.

Remark 4.4.11

The converse of the above theorem is not true in general as we see in 

the following example.

let X=R\{0},Bi = {%a ,A C (- oo,0):(-°o ,0)-A is finite}U {%(a,b),a,b>0) 

and B2={X(a,b):a,b<0} U (x b ,B ^ (0,°®): (0,°°)-B is finite),then 

(X,t i (B i )) and (X,t 2(B2)) are not Cn-spaces,but (X,xi(Bi),x2(B2)) 

is an S-Cn-space because B={%(ajb):a,b rationals,ab>0} is an S-base for
Tl(Bl)UT2(B2).

Definition 4,4.12.

Let (X,xi,T2) be a bfts. A subfamily L of S-open (P-open) fuzzy sets is 
called an S- subbase (P-subbase ) for xiUx2 iff the family C={flB : B 

is a finite subfamily of L} u {1} is an S-base (P-base) for X1UX2.

Definition 4.4.13

Let D be a collection of fuzzy points in X.Then D is dense in (X,xi,x2) 
if for every xi Ux2 ,there exists pe D such that pe X.

Definition 4.4.14.

A bfts (X,xi,x2) is called bifuzzy separable if it contains a countable 

dense se t.
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Theorem 4.4.15

Let f:(X,Tl,T2)—>(Y,(51,02) be a P-continuous P-open surjection.Then:

1) If X is S-Ci then Y is S-Q.

2) If X is S-Cll then Y is S-Cn.

Proof:

1) Let (X,Tl,T2) be a bifuzzy S-Cl-space and qi be a fuzzy point in Y 

with support xq and value y ¡.Let q be a fuzzy point with support xq and 

value y=(yi+l)/2.Then f 'l(q ) is a fuzzy set in X;not necessarily a 

fuzzy point; such that

q(xq)=y for all xef-l(xq)

f-ifqX xH

0 otherwise.

Define a fuzzy point p in X as follows:

y if x=xO

P(x)=<!

0 otherwise

where xo is a fixed point in f-l(xq).Clearly pGf-l(q) and f(p)=q.By 

assumption^ has a countable S-Local base in (X,xi,T2),say Bp.Let 

Vq={f(A,):XeBp}.Then Vq forms a countable S-local base at q because 
f(X)e  o l  U 02 for all B p If p e  o iU o 2  such that qe p ,then  

f _l(p)G  x i U T2 and pG f - 1 (ji).Thus there exists À,GBp such
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that pe ^C f-1  (|i).Consequently qe f(A,)C p.But ql e  q,therefore 

qlGf(X,)^q .That is,Vq forms a countable S-local base at ql.Hence 

(Y,g i ,o 2) is a bifuzzy S-Q-space.

2) Let B be a countable S-base for xiUx2.Since f is P-open therefore 

f(!i)EGlUa2 whenever |ie  B.Consequently the family {f(|i):p.G B } 

forms a countable S-base for G1UG2 .To see this let ^ e g i Ug 2 and 

pEXThen f“l(^)EXlUx2 because f is P-continuous.If q is a fuzzy

point in X such that f(q)=p,then qEf‘l(X) and so there exists pcB  such 
that qE pCf-l(X,) which gives f(q)Ef(p)CA..That is pEf(p)CX,.Hence Y

is a bifuzzy S-Cn-space.

Theorem 4.4.16

Let f:(X,xi,T2)—>(Y,g i ,g 2) be a P-continuous surjection and X a 

bifuzzy separable space.Then Y is bifuzzy separable.

Proof :

Let D={pi:i=l,2,...} be a countable dense subset of (X,xi,x2).Now the 

set {f(pi):i=l,2,...} forms a countable set of fuzzy points in Y.Let 
O^j i e g i U G2-Hence there exists a fuzzy point pi such that piEf'l(ji). 

Notice that f"l(ji)Ex \ Ux2 because f is P-continuous.Consequently 

f(pi)E|a.Therefore (Y,g i ,g 2) is bifuzzy separable.

Theorem 4.4.17

Every bifuzzy S-Cn-space is bifuzzy S-Cp
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Proof;

Let (X,Tl,T2) be a bft S-Cn-space and let p be a fuzzy point in X.By 
assumption,T1UT2 has a countable S-base B.Let Bo be a subfamily of B 

defined by Bo={p:peB,pG p}.Then Bo is countable Let >,g x iUx2 such 

that pG A,.Then there exists an element p of B such that pG pC ^

because B is S-base.By definition of Bp we have p is an element of 
Bp.Hence Bp is a countable S-local base for x iU x2at p.Therefore

(X,xi,x2) is S-Ci-space.

Theorem 4.4.18

Every S-Cn-space is bifuzzy separable .

Proof:

Let (X,xi,x2) be a bft S-Cn-space.So it has a countable S-base ,say 

B = {pi:i=l,2,...}.For pi^O,there exists a point x[e X such that 

pi(xi)>O.Define a fuzzy point pi as follows:

(l/2)pi(xi) for x=xi

Pi(xH

0 otherwise

Clearly piGpi.The countable set {pi:i=l,2,...} is the required set for 
(X,xi,x2) to be bifuzzy separable because any member taD of X1UX2 

will contain a member of B,say pi£^.Consequently piG ^.Therefore 

(X,xi,x2) is bifuzzy separable.
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Definition 4.4.19

Let (X,T1,T2) be a bits and A be an arbitrary subset of X.We have 
defined the relative topologies for A by TiA={%AnA.:^£Ti} (i=l,2).A

subspace (A,xiAA2A) is called a xix2-open (xiX2-closed) subspace iff 

the fuzzy set Xa  is xix2-open (xix2-closed).

Theorem 4.4.20

(i) Every subspace of S-Cn space is an S-Ql space.

(ii) Every subspace of S-Cl space is an S-Ci space.

Proof :

(i) Let A be a subset of the bifuzzy S-Cn space (X,xi,X2).Let 
B = {pi:ieN} be a countable S-base for xiUx2-Then it is clear that 

B'={XAEipi:i£ N} is a countable S-base for the fuzzy subspace 

(A,x 1A A2A)-Hence (A,xiAA2A) is Cn-space.

(ii) Let A be a subset of the bifuzzy S-Cl space (X,xi ,X2) and let p be a 

fuzzy point such that pe%A-Let B={pi:ieN} be a countable S-local 
base at p.Then it is clear that B'={xAnpi:i£N} is a countable S-local

base for the bifuzzy subspace (A,xiAA2A)-Hence (A/C1AA2A) is 
Cl-space.

Theorem 4.4.21

Every open subspace of a bifuzzy separable space is bifuzzy separable.
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PrQQf ;

Let A be any T1T2 -open subspace of a bifuzzy separable space 

(X,Tl ,T2 ).Let {pi:ieN} be a set of fuzzy points such that for every 
non-zero fuzzy set ¡i e t i Ut 2 there exists some pi which is a proper

subset of |4.Since A is a TlT2-open subspace,every TlA^A-open fuzzy 
set X is TiT2-open.Consequently for every ^ g t i a Ut 2A there is some

ieN  such that piE A.Hence {pi:ieN} is a countable set of fuzzy points in 

A such that for every non-zero TlALZA-open bifuzzy set X there is an 
i for which piE X holds.

In the following theorems we show that our definitions of S-Cl and 

S-Cq  bifuzzy topological spaces are good extensions.

Theorem 4.4.22

A bts (X,Ti ,T2) is S-Cll iff the induced bfts (X,co(T i ),co(T2)) is 
S-CII.

Proof:

=> Let B={ui,u2,...} be a countable S-base for TiUT2-Then the 

collection A={Aqi: qjE Qfl(0,l],i=l,2,...};where

qi if x e  uiE B

Aqi(xH

0 ifxgu isB

is a countable S-base for (X,co(T i ),co(T2)) .To show this we note first 

that A is a collection of lower semi-continuous functions and so
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A Q (0 (T l )U co (T2).M oreover let p be a fuzzy point and 

A,e  co(Tl)Uco(T2) such that ps^.So there exists qe QO(0,1] such that 

p(xp)<q</^(xp).Now ?t_l(q,l] e T i UT2 and so there exists a basic open 

set uieB such that xpeuiC^-l(q,l].Hence there exists Aqie A such that 

pe A qi^^ for some i.

<= Let A = { ^ n :ne  N) be a countable fuzzy S-base for 

(X,co (T 1 ),co (T2)).Then the collection B = {(X,n ) '  1 (q , 1 ]: 
qe Q0(0,1 ],ns N} is a countable S-base for T1UT2 .Let u e T i UT2 

and x e u .So %u is a l.s.c function.Hence %ue co(Ti) U co(T2).Hence 

there exists a basic open set X such that ^C ^u.Thus x e  1 (q, 1 ] ̂ u.

Theorem 4.4.23

A bts (X ,Ti5T2) is S-Ci iff the induced bfts (X,co(Ti),io(T2)) is
s-Q.

Proof :

=* Let p be a fuzzy point in X with support xp.Let B={un:nE N}be a 
countable S-local base at xp.Since Xun^ co(T i )Uco(T2) for all n,then 

{e%Un :0 <8< 1 ,e e Q and uneB ) forms a countable S-local base at p 

because if G e  co(T i )Ucg(T2) such that pEG.Then p(xp)<e<G(xp)<l 

and hence xpE G _1 (8 ,1]e  T i UT2.Thus there exists Un such that 

xpEUnl^G-1(8,1].Hence peeXun^G.

<= Let x e X and p be a fuzzy point with support x. Let C={^rb nsN ) 
be a countable local base at p .Hence B={^n-1 (q,l]: qeQO(0,l]} is a

countable S-local base at x e X,where q<p(x).
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.Chapter V.

INDUCED AND WEAKLY INDUCED BIFUZZY  

TOPOLOGICAL SPACES

The concept of induced fuzzy topological spaces was introduced by 

Weiss (1975).Lowen (1976,1977) established the relation between 

fuzzy topological spaces and topological spaces by introducing the two 

functors oo:TOP—>FTOP and L: FTOP—»TOP,where TOP and FTOP 

denote the categories of topological spaces and fuzzy topological 

spaces respectively.Martin (1980) defined and studied the concept of 

weakly induced fuzzy topological spaces .Since then several authors 

continued the investigation of such spaces .

In this chapter we shall introduce the concept of induced and weakly 

induced bifuzzy topological spaces and study some important results 

regarding Hausdorff and compactness properties .For the sake of 

clarity we divide this chapter into two sections .In the first section we 

shall discuss induced and weakly induced bifuzzy topological spaces 

while in the second we prove some important results.
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§ 5.1 Induced and weakly induced bifuzzv topological spaces

To start this section with the first result in fixed point theory,we need 

the following proposition.

Proposition 5.1.1

If f is a P-continuous function from (X,xi,x2) into (Y,oi,o2),then f is 

continuous as a function from (X,<xi,x2>) into (Y,<oi,o2>).

Proof:

Let p be a subbasic open fuzzy set in (Y,«j i ,g 2>) then p.eaiU a2 and 

so f-l(p )e  x iUx2 bu tx iU x2^  <xi,X2>,therefore f is a continuous 

function from (X,<xi,x2>) into (Y,<g i ,g 2>).

Theorem 5.1.2

If (X,xi,x2) is a bfts such that (X,<xi,x2>) has the f.p.p ,then 

(X,xi,x2) has the P-f.p.p.

Proof:

Let f:(X,xi,x2)—>(X,xi,X2) be a P-continuous function ,then from 

proposition 5.1.1 f:(X,<xi,x2>)—>(X,<xi,x2>) is continuous and so f 

has a fixed point .Hence (X,xi,x2) has the P-f.p.p.

Proposition 5.1.3

Let f:X—>X be a function .Then the following are equivalent:

(i) f: (X,Ti ,T2)-»(X,Ti ,T2) is P-continuous.

(ii) f: (X,co(Tl),co(T2))—>(X,co(Tl),co(T2)) is P-continuous.
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(iii) f: (X,X/Tl,X/T2)—>(X,X/Tl,X/T2) is P-continuous.

Proof :

(i) =>(ii) Let |ie  co(T i )Uco(T2) .We are going to show that f 'l( |i )e  

co(Tl)Uco(T2).Now 11 : (X,Ti)-^(I,Tr.r) is continuous and so p -1(0,1] 

g  T 1UT2 and so we have by (i) f"1 (p - 1 (0,1 ])e  T l U T2 but 

f-l(|i-l(0,l])=[f-l(n)]-l(0,l])eTlU T2.H ence f-l(n):(X,Ti)-KI,Tr.r) 
is continuous and so f~l(tt)e co(Tl)Uco(T2) which completes the 

proof.

(ii) =>(iii) Let %ueX/TiUX/T2.Then %ue io(Ti)Uco(T2) and so by (ii) 

f-l(X u)eco(T i)U co(T 2).T hat is f -1 (Xu):(X,Ti)-> (I,Tr.r) is 
continuous. Therefore [f'l(Xu)]"kO,l]e T1UT2 but [f'l(Xu)]"kO,l]= 

[Xf-i(u)]_1(0,l] g  T 1UT2 which implies that Xf-i(u):(X,Ti)->(I,Tr.r) is 

continuous.Hence Xf-i(u)eX/TiUXAT2.That is f'l(Xu)e X/T1UX/T2.

(iii) =>(i) Let ueT lU T2.Then Xu ^ X /T i UX/T2 and so f'l(X u)e 

X/T1UX/T2 but f"l(Xu)=Xf'1(u)e X/Ti UX/T2 which implies that 
f'l(u)eTiUT2.Hence f is P-continuous.

Theorem 5.1.4

Let (X,Ti ,T2) be a bts .Then

(1) (X,Tl,T2) has P-f.p.p iff (X,co(Tl),co(T2)) has the P-f.p.p .

(2) (X,Ti ,T2) has P-f.p.p iff (X,X/Tl,X/T2) has the P-f.p.p .
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Proof ;

(1 )  Let f: (X,(o (T i ),co(T2))—>(X,(o(Ti),to(T2)) be P-continuous.We 

are going to prove that f has a fixed point .Using proposition 5.1.3, 

f: (X ,Tl,T2)—>(X,Tl,T2) is P-continuous and hence f has a fixed 

point. Similarly we treat the other implication.

(2) The proof is similar to (1).

Before we proceed to the next definition we refer the reader to the 
definitions 1.3.8 and 1.3.9 regarding L(t ) and Tc* which are due to 

Lowen (1976) and Martin (1980) respectively.

Definition 5.1.5

A bits (X,t i ,t 2) is said to be P-induced iff Ti=co(T*cj),i,j=l,2 (U*j). 

Definition 5.1.6

A bfts (X,xi,T2) is said to be P-weakly induced iff TiCco(x*cj),i,j=l,2 

Example 5.1.7

If X=I and T1 = {0,1},T2={0,1,0.5} then x*c l =x*c2 ={(J),X} and 

o>(T*cl )=co(t *c2 )={c :0 <c<1 } which gives that (X,t i ,t 2) is weakly 

induced and P-weakly induced but neither induced nor P-induced.

Theorem 5.1.8

If (X,Ti ,T2) is a bitopological space such that the bfts (X,X/Ti ,X/T2) 
is P-weakly induced,then Ti=T2.
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Proof :

Let u sT l,th en  %u g X /Tl.Since (X,X/Tl,X/T2) is P-weakly induced, 

then X/TlC(o((X/T2)*c)=to(T2) which implies (%u)"U0.5,l]eT2.That 

is ueT2.Consequently T l  CT2.Similarly we can show T 2 ^ T l.

Theorem 5.1.9

If a bfts (X,Tl,T2) is P-weakly induced then co(x*c i)=co(x*c2) but the 

converse is not true in general .

Proof :

Let Xeco(x*cl) and let 0<a<l.Then A=A,~l(a,l]e x*d  which implies 
%Ae X cl^ x iC (o(x*c2).That is (%A)'*(a,l]e x*c2 which shows 

A,-l(a,l]ex*c2 and therefore Xe co(x*c2)-That is co(x*cl)Sco(x*c2)- 
Similarly we can show that co(x*c2)<^co(x*cl).

To show that the converse of the theorem is not true in general,we 
present the following example.Let X=I,xi = {0,l} and X2={0,?i :A,(x )>0 

for all xe 1} .Then x*c l =x*c2 ={<!>,X} and co(x*c l)= «<A*c2) = 

{c:0<c<l} but X2 is not a subset of oo(x*c l ) which gives that 

(X,xi,x2) is not P-weakly induced.

Corollary 5.1.1ft

If a bfts (X,xi,x2) is P-weakly induced then it is weakly induced but 

the converse is not true in general.
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Proof :

Since (X,Tl,T2) is P-weakly induced then Theorem 5.1.9 implies that 
X2£co(x*cl)=co(x*c2) and x iC g)(t *c 2)=co(x*c i ).To discuss the other

implication,we provide the following example.

Let X=I,xl = {0,1} and X2 = { %a : AC XJ.Then it is clear that 

xi^(o(x*cl) and x2^co(x*c2);ke,(X,xi,x2) is weakly induced;but X2 is 

not a subset of co(x*cl) i.e. (X,xi,x2) is not P-weakly induced.

§ 5.2 Main results

Before we present the first main result of this section,we have the 

following definition.

Definition 5.2.1

A bits (X,xi,x2) is P-Hausdorff if for any two distinct points x,y of X 
there exist Aexi and |iex2 such that A (x)=p(y)=l and Anp=0.

Theorem 5.2.2

If a bfts (X,xi,x2) is P-C-compact and (X,xi) is Hausdorff,then 
x2Sco(x*cl).

Proo f ;

Let fex2 and 0<a<l.We are going to prove f_l(a,l]= Aex*cl.That is

XAexci.

Let x be any point of A ,choose £>0 such that ai=a+s<f(x).Let 

A i= f-l(a i,l]. For any ye A ic, x,y are distinct points.Since (X,xi) is 

Hausdorff, there exist xi-open fuzzy sets A,y,fty such that
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A,y(x)=|0.y(y)=l and ?iyPl|iy=O.Now the family Ç={|iy:ye A ic }U {f} is 

P-open satisfying the inequality sup{ {p.y:ye A lc }U {f } }>ai.Since 

(X,xi,T2) is fuzzy P-C-compact ,then each constant fuzzy set in X is 

fuzzy P-compact.Hence c(x)=ai is fuzzy P-compact .Therefore the 

family Ç has a finite subfamily {|iyi:i= l,2,...,n} such that 
sup{ {p.yi:i=l,2,...,n} U {f} }>ai-e/2.Let A,x=inf{Xyi :i=l,2,...,n}.Then

A,x(x)=l.If ye Ac,then f(y)<a so that ftyi(y)>a for some l<i<n.Since 
XyiOjLiyi=0 and |Xyi(y)>0,we have ^yi(y)=0 where Ax(y)=0 for every

ye Ac.We have shown that for each xe A there exists Axexi such that 

Xx(x)=l and Ax(y)=0 if ye Ac.Define X=sup{Xx:xe A}.Then Aexi and 

^=XA, i-e. A ex*d .Hence feco(x*cl )•

Corollary 5.2.3

If (X,xi,x2) is a Hausdorff P-C- compact space,then (X,xi,x2) is P- 

weakly induced .

Theorem 5.2.4

A bits (X,xi,x2) is a P-induced space iff (X,xi,x2) is a P-weakly- 

induced space in which every constant map from X into I belongs to 
each xi (i=l,2).

Proof :

=> Since every P-induced space is P-weakly induced and every 

constant map is continuous,so the first implication is clear.

<= To show that (X,xi,x2) is a P-induced space,let fe G)(x*ci)-\Ve are 

going to prove that fe xj. Let ze X such that f(z)=b>0.For any 

arbitrary e>0 ,there exists a>0 such that a<b and b-a<e.Let g be
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defined by g(x)=a for all xeX  and G=f- l(a,l],then GeT*ci which 
gives "tciC xiC co(x*cj).,i-e,Ge x*cj which implies that 

XGexcj^Tj. Now if hz=xGGg then hzexj, hzc f  and f=U{hz:zeX ) 

which implies fexj.

Corollary 5.2.5

If a bfts (X,xi,T2) is a P-C-compact Hausdorff space in which the 

constant fuzzy sets are fuzzy P-open then (X,xi,x2) is a P-induced 

space.

Theorem 5.2.6

If a bfts (X,xi,T2) is S-C-compact and P- Hausdorff then it is P- 

weakly induced.

Proof :

Similar to the proof of Theorem 5.2.2 

Theorem 5.2.7

If a bfts (X,xi,T2) is P-C compact and P- Hausdorff then X is 

weakly induced.

Proof :

Similar to the proof of Theorem 5.2.2 

Definition 5.2.8

A bfts (X,xi,T2) is said to be P-topological iff xi=co(L(xj)), i,j=l,2

G*j).
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The following theorem is a generalization of Theorem 1.3.15 by 

Lowen (1976).

Theorem 5.2.9

A bits (X,Tl,T2) is P-topological iff for each continuous function 

f:(I,Tr.r)—>(I,Tr.r) and for each VGXi ,we have foVGXj.

Proof;

=> L e t v e x i  and f:(I,T r.r)—> (I,T r.r) be continuous.Since 
vexi£!Go(L(xi)),then v is continuous and so fov is continuous because

v 1(f-l(a,l])=(fov)-1(a,l]GL(xi).That is fov e co(L(xi))=xj.

<=We have to show that xi=co(L(xj)).To do this,let pex i.T h en  
|IG xi£(o(L(xO) and so p.:(X,L(xi))—>(I,Tr.r) is continuous.Now 

|i=IidOjiexj£(o(L(xj)).Hence xiCco(L(xj)).

Now let j ig  co(L(xj)),we have to show that |IG xj.

Since a base for L(xj) is provided by the finite intersection nv i_l(ei,l]

where viG xj and 8iG I.This is equivalent to saying Ve g  I,V x g  
there exists a finite set Ie,x such that x g  nvi-l(ei,l]£ji-l(e,l].N ow  fjx

x and let |i(x)=Kx.Then for all e<Kx,there exists Ie finite such that 
x g  fl v i _1( e i , l ] C  p .-1 (e ,l] .F o r all e < K x and V iG Ie put 

Hi,e=EX(ei,l] ovjGXi.

8 iff Vi(y)>8i.

Then |Xi,e(yH

0 iff vi(y)<ei..
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e iff vi(y)>£i Vie I

Put v£x=inf pi,£e Ti. 

Then

Vex(y)=,i

0 iff 3 re I£ ,vr(y)<£i.

Thus v£x (y)=e implies p(y)>£ and V £<KX we have v£x <p.. Hence 
p=sup sup v£xexi .So co(L(xj))^xi. Hence the proof is completed.

To prove the next result we use the fact that if x is a fuzzy topology on 
X,then t C oo(L(x)).

Theorem 5.2.1ft

If a bfts (X,t i ,t 2) is P-topological,then co(L(xi))=co(L(x2)).

Proof :

Since (X,xi,x2) is P-topological then x i=co(L(x2)) and X2=co(L(xi)). 
Moreover x i^ c o (L (x i))  and X2^ (o(L(x2)) which gives that 

co(L(x2))=xiCco(L(xi)) and co(L(x i ))=x2 ^ co(L(x2)).Hence we have 

co(L(x i))=co(L(x2)).

Theorem 5.2.11

If a bfts (X,xi,x2) is P-topological,then co(x*cj)Sxi,i,j=l,2,i^j.

Proof :

Let |ie  co(x*cj)-Then p:(X,x*cj)—KLTr.r) is continuous which implies 

that Aa=p,'l(a,l]ex*cj for all ae I and so XAae Xj which is continuous. 

That is %Aa:(X,L(xj))-H>(I,Tr.r) is continuous and so Aae L(xj).Hence
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jx:(X,L(xj))—>(I,Tr.r) is continuous and so jxe co(L(xj)) . That is 
w(T%j)Cco(L(Tj))=Ti. i.e co(x*cj)^Ti.

Corollary 5.2.12

If a bits (X,t i ,t 2) is P-topological and P-weakly induced then 

(X,t i ,t 2) is P-induced.
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