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Abstract

We propose two types of equal predictive ability (EPA) tests with panels to compare the predictions
made by two forecasters. The first type, namely S-statistics, focuses on the overall EPA hypothesis
which states that the EPA holds on average over all panel units and over time. The second,
called C-statistics, focuses on the clustered EPA hypothesis where the EPA holds jointly for a fixed
number of clusters of panel units. The asymptotic properties of the proposed tests are evaluated
under weak and strong cross-sectional dependence. An extensive Monte Carlo simulation shows
that the proposed tests have very good finite sample properties even with little information about
the cross-sectional dependence in the data. The proposed framework is applied to compare the
economic growth forecasts of the OECD and the IMF, and to evaluate the performance of the
consumer price inflation forecasts of the IMF.

Keywords: Cross-Sectional Dependence, Forecast Evaluation, Hypothesis Testing

1. Introduction

Formal tests of the null hypothesis of no difference in forecast accuracy using two time series
of forecast errors have been widely considered in the literature: see Vuong (1989), Diebold &
Mariano (1995, hereafter DM), West (1996), Clark & McCracken (2001), Clark & McCracken
(2015), Giacomini & White (2006), Clark & West (2007), Mariano & Preve (2012), among others.
On the contrary, the literature on such tests using panel data is scarce with a few exceptions: Keane

& Runkle (1990), Davies & Lahiri (1995) and Qu, Timmermann & Zhu (2022, QTZ, hereafter).
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The main aim of this paper is to develop testing procedures for equal predictive ability (EPA)
hypotheses based on panel data, taking into account the cross-sectional dependence (CD) and the
temporal dependence in the data set. Let ¥ ;; be the forecast of agent I = 1,2 made for the target
value y;; of time t = 1,2,...,T for unit (e.g., country, firm) i = 1,2,...,n. We propose tests for
comparing the predictive ability of two forecasting agents, using n time series of loss differentials,
ALy = L(yit; Y1,it) — L(yit; Y13t ), of length T', where L (-) is a generic loss function (for different loss
functions in use, see Gneiting, 2011). Our setting differs from that of Keane & Runkle (1990) and
Davies & Lahiri (1995) in that we consider forecasts made by two forecasters on multiple economic
units over time, whereas they consider forecasts made by multiple forecasters on a single economic
unit over time. Our paper fills an important gap in the literature by allowing for multiple target
values for each point in time with respect to these two papers.

We develop two types of tests corresponding to two EPA hypotheses. The first type focuses
on the overall EPA hypothesis which states that the EPA holds on average over all units and over
time. The statistics of this type, which we call S-statistics, are useful when a researcher is not
interested in the differences of predictive ability for a specific unit or clusters of units but in the
overall differences. The statistics of the second type, namely C-statistics, focus on the clustered
EPA hypothesis which states that the EPA holds jointly for a fixed number of clusters of units
in the panel. QTZ consider the same set of null hypotheses. Our work differs from that of QTZ
in the way the test statistics are constructed, most notably the statistics for testing the clustered
EPA hypothesis. While both works set up a joint null hypothesis as “all cluster means are zero”
(see, (6) in our paper and (11) in QTZ), we formulate multivariate test statistics in line with the
joint hypotheses (the C-statistics in Section 3.2) with limiting null distribution being X%, where G
is the number of clusters. On the other hand, QTZ formulate a univariate test statistic (the J
given in (12) in QTZ) based on the “average of the cluster averages of the loss differentials.” If
cluster sizes are equal, the numerator of JP is equivalent to these of Jfé‘f of QTZ and S-statistics
in our paper, tests for the overall EPA. As a result, in general J2 fails to detect departure from the
clustered EPA hypothesis if the overall EPA hypothesis holds. See the detailed discussion given at
the end of Section 3.2.

The applied literature in comparing the accuracy of two or more forecasts suggests that the

forecast errors of units, such as countries, are affected by common shocks such as the global financial



crisis. For instance, Pain, Lewis, Dang, Jin & Richardson (2014) show that the economic growth
projections of the OECD for the period 2007-2012 are systematically upward biased. A similar
tendency exists for other forecasters, such as the IMF. Moreover, these effects are carried into the
loss differentials such that they follow a similar pattern, as we highlight later in this paper. The
results of Pain et al. (2014) indicate also that the effect of these common shocks is heterogeneous
across economies and some country clusters exists.

Following these insights, we build our testing framework around the loss differentials which
follow an approximate factor model where some common factors affect all units in the panel with
heterogeneous loadings. In addition, the error terms are allowed to be cross-sectionally weakly
correlated. We therefore simultaneously allow the loss differentials to contain weak cross-sectional
dependence (WCD) arising from, e.g., spatial error correlation, and strong cross-sectional depen-
dence (SCD) due to the existence of common factors, using the terminology of Chudik, Pesaran
& Tosetti (2011). To develop our tests under WCD, we use non-parametric methods of variance
estimation, based on geographic or economic distances between panel units (Kelejian & Prucha,
2007; Kim & Sun, 2013). In addition, we propose a novel partial sample variance estimator for
large panels which deals with the case of unknown distances while being robust to arbitrary WCD
and temporal dependence. To deal with SCD, we use the principal components estimator (PCE)
built for large dimensional approximate factor models (Bai & Ng, 2002; Bai, 2003). Following
the insights of Driscoll & Kraay (1998), we also propose tests for the case of unknown number
of common factors contrary to the ones based on the PCE. This last approach is flexible in the
sense that it is robust under different types of CD. Moreover, they do not rely on a linear factor
model contrary to the PCE based tests. They are also very easy to calculate as in the case of
overall EPA testing, the proposed test is identical to applying the Diebold & Mariano (1995) test
to cross-sectional averages of the loss differentials.

We analyze the asymptotic properties of the proposed test statistics using joint limits. Under
mild conditions, the overall EPA test statistics and the clustered EPA test statistics are shown to
converge in distribution to standard normal and chi-square with G degrees of freedom under the
null of interest, respectively. The finite sample properties of the tests are examined via Monte Carlo
simulations. The results show in general that our tests have very good finite sample performance.

Specifically, we find that Driscoll & Kraay (1998) based overall and clustered EPA tests are robust



to arbitrary CD in the loss differentials. However, they have lower power than the tests developed
specifically for the case of WCD if loss differentials are only weakly cross-sectionally correlated.
Moreover, if the linear approximate factor model assumption is satisfied by the loss differentials,
they have lower power compared to the tests based on PCE.

The proposed tests are used in two applications. In the first one, we compare the economic
growth forecast errors of the OECD and the IMF using data for 29 countries over the period between
1998 and 2016. In the second application, the quality of the IMF consumer price inflation (CPI)
forecasts is challenged by comparing them with random walk forecasts. This data set contains 127
countries over the period 1991-2019. In both applications, we find strong evidence of SCD in loss
differentials of forecast errors. The results of the first application show that neither overall EPA
hypothesis nor clustered EPA hypothesis can be rejected for the economic growth forecasts of the
OECD and the IMF. In contrast, in the second application, we find significant evidence against the
overall and clustered EPA hypotheses on the comparison of the IMF and random walk forecasts,
especially in the pre-crisis period.

The remainder of the paper is as follows: The testing framework and the hypotheses of interest
are presented in Section 2. The panel EPA test statistics and their asymptotic properties are
reported in Section 3. Section 4 is on the small sample properties of the proposed tests. Section 5
gives guidelines to practitioners willing to test the EPA hypotheses using panels. In Section 6 the
economic growth forecast errors of the OECD and the IMF are compared using the proposed tests.
Section 7 concludes. Three appendices contain additional justification of our testing framework,
proofs of results and the details of the second application comparing the IMF CPI forecasts with
random walk forecasts.

Notation. Let A = [a;;] be an n x n matrix. The column and row norms of A are ||A[|; =
maxi<j<n )i aij| and [[Allc = maxi<i<n Y i |as], respectively. The Euclidean norm of an
n x m matrix B is ||B|| = [Tr(B’B)]"/2. M is a finite positive constant. 4 and & denote
convergence in distribution and probability, respectively. Joint passage to infinity of T" and n is

denoted by (T',n) — cc.



2. Testing Framework and the Hypotheses

We are interested in comparing the errors of forecasts made by two forecasters on an economic
variable observed for units ¢ = 1,2,...,n at time ¢t = 1,2,...,7. The loss differentials, AL;; =
L(yit; Y1,it) — L(yit; U1,it), are potentially cross-sectionally correlated. The CD may be of strong or
weak types or may even be generated by two distinct components of these two different types. To

simplify the distinction, we assume the following structure on the loss differentials:

ALy = pi + Nify + €4,

z (1)
€it = Z Tij€jts

j=1
where f; = (fit, fats-- -5 fmt)' 18 an m x 1 vector of unobservable common factors and \; =
(A1is A2 - -+, Ami) is an m x 1 vector of fixed factor loadings. The coefficients r;; are fixed, unknown

elements of an n x n matrix R,,. We impose r;; = 1 for normalization of the variances. f; and €;

are assumed to be zero mean weakly stationary time series allowed to be autocorrelated through

time. In addition, €;; is cross-sectionally uncorrelated. The unit specific means satisfy |u;| < oo.
We assume that the error terms e;; carry WCD, meaning that the variance of their cross-

sectional average vanishes asymptotically:

n n
TLILH;O Var <n1 Zeit> = nlgrolo n2 Z r; Yoty | =0, (2)

where r; = (ri, 72, .., Tin) s Yo = diag(v11,05 - - -, Ynn,0) and yii0 = E(e?t). For this to be true,
it requires the row and column sum norms of R,, to be bounded; see Assumption 3 below. The
common component in (1) is assumed to induce SCD such that the variance of its cross-sectional

average is bounded away from zero:

n n

Var <n—1 > )\;ft> =n"2 ) ANToA; >0, for all n, (3)
i=1 i,j=1

where T'y = E(fif/). The conditions under which this holds true are given below, in Assumption

6. The WCD can be modelled by a spatial process, such as spatial autoregression, spatial moving

average as well as their higher order versions, or a factor model with a possibly infinite number of

5



weak common factors (see, for instance, Chudik et al., 2011).

In this paper, we follow closely the methodological implications of DM. Firstly, we adopt the
view that the forecast errors may be related to forecasts made using some econometric models
or simply by expert knowledge. As in DM, our approach is built on a model-free environment,
meaning that it is agnostic about the process generating the forecasts. This is contrary to the
extensions of DM in papers such as West (1996) and Giacomini & White (2006) which focus,
among other things, on problems associated with testing using forecast errors generated by nested
models. Secondly, following DM, our assumptions concern directly the loss differentials. Forecast
errors can be non-stationary and induce CD. What is important is the properties which are carried
into the loss differentials, not the properties of the forecast errors specifically. As an example, in
Appendix A we show how the specification in (1) can be obtained for two different loss functions,
namely absolute and quadratic loss, starting with a pure factor model for the forecast errors.
However, our approach is not necessarily limited to these loss functions. As in the DM approach,
any other (symmetric or asymmetric) function can be used. Eventually, our methodology relies
on the empirical analysis of time series and CD properties of the loss differentials, using CD tests
(Pesaran, 2015) and information criteria (Bai & Ng, 2002).

The null hypotheses of EPA and the alternatives. The first hypothesis of interest is
Hy:pn=0, (4)

where i = lim, o0 fin, With i, = n-1 Z?:l ti- This hypothesis, which was also considered by
QT7Z states that the forecasts generated by the two agents are equally accurate on average over
all ¢ and t. If a researcher is not interested in the difference in predictive power for a particular
unit but the average difference over units, this hypothesis should be considered. It is particularly
plausible to consider this in a micro forecasting study where the units are random draws from
a population. Throughout the paper, this hypothesis is called the overall EPA hypothesis. The
alternative hypothesis in this case is that overall EPA does not hold:

HY :p#0. (5)

Of course it is also possible to consider one-sided alternatives.



In a macro forecasting study, differences between clusters of units can have a specific economic
importance and may be of interest from a policy perspective. For instance, a question of interest
is whether the forecasts made by agents are more accurate for a particular cluster of countries in
the sample. In this case, the null hypothesis can be formulated such that the predictive equality

holds for G clusters of units:
HS" :fig =0, forall g=1,2,...,G, (6)

where fig = limp, 00 fign, With fg,, = ng_1 Zz‘eGg i and G4 is the set of indexes of ny cross-
sectional units which belong to cluster g. In this paper, this hypothesis is referred to as the

clustered EPA hypothesis. The alternative hypothesis associated is the following;:
H{": g # 0, for at least one g =1,2,...,G. (7)

QTZ consider the null hypothesis H§* without stating an alternative hypothesis. Their test against
H§* is inconsistent in particular cases, as for instance, their clustered EPA test fails to reject Hg*
it Hj and H{* hold simultaneously. This issue is discussed theoretically below in Section 3.2.
The difference between the two hypotheses is therefore important and the choice depends on the
specific interest. The overall EPA may hold even if the two forecasters have different predictive
ability for different clusters. This occurs if the average loss differentials of different country clusters
are different from zero (that is H{* holds) but they add up to zero when pooled (that is H§ holds).
If these clusters have an economic meaning, it is important to test the clustered EPA hypothesis.

In what follows, we propose test statistics for these two null hypotheses, under different as-
sumptions on the CD structure in the loss differentials. These are No CD, WCD or SCD. The
main difference between the proposed test statistics is the methods of calculation of the asymptotic
variance depending on this structure. A summary of these test statistics is given in Table 1. Most
of our test statistics do not require the approximate factor model given in (1) with the exceptions
being S 7(13% and C S:,), Nevertheless, we retain the factor model to simplify the discussion of different

types of CD.



Table 1: Test Statistics Proposed

Overall EPA Tests Clustered EPA Tests

S-statistics C-statistics

No cross-sectional dependence SST) CfllT)
Weak cross-sectional dependence

Distance based tests 5’7%) C’ﬁp)

Tests with unknown distance S ;2% Qg}
Strong cross-sectional dependence

No restriction on CD SS;F), 1@ C’ST)

Factor model based tests Q;’T QS%

3. The Test Statistics and Their Asymptotic Properties

3.1. Tests for overall equal predictive ability: S-statistics

Consider the sample mean loss differential over time and units:

_ 1 S
ALy = — Z; ; ALj.
We provide testing procedures for the overall EPA implied in (4) based on AL, under different
assumptions about the structure of CD in the loss differentials. Let k7(-) be a kernel function
and dp a sequence of positive, non-random bandwidth parameters. In all cases, the limiting null

distribution of the test statistics is obtained under Assumptions 1 and 2.

Assumption 1. ¢ follows the linear process €ix = > 5 CinWi—n for each i, with Yy ~ 4id(0, 1)

over i and t, E|ii|* < oo, maxi<;<p Yonsohlein] < M < oo and > ;7 cin, > 0.

Assumption 2. (a) kp(z) : R — [-1,1] is continuous at zero, kp(0) = 1, kr(x) = kp(—=x)
Vo € R, (b) limy_ye0 dft 22;11 \kr (h/dr)| < 00, (¢) dr — o such that d3/T — 0 as T — .

Assumption 1 is sufficient to obtain a CLT for the sample mean of ¢;; for each 7. Assumption
2(a) is standard in time series literature. Assumption 2(b) is a high level assumption that is used for
consistent estimation of long-run variance for each i. The conditions under which this assumption
holds are given by Jansson (2002). Consistency also requires Assumption 2(c) which controls the

expansion of dp relative to T.



Overall EPA tests under cross-sectional independence. We first consider the simplest
case where Aif; = 0 for all 4,7 and r;; = 0 for all i # j. In order to test the null hypothesis H§, we

propose to use the following statistic:
) _
S = s (8)

where &inT = (’I’LT)_l Z?:l ZZ:szl k‘T (dts/dT) Af/itAf/is, with Af/lt = Ath — Aii’T, where
ALz =T 'S ALy and dys = |t — 5.

Proposition 1. Suppose AL;; follows the model in (1) with Xif, = 0 for all i,t, r;; = 0 for all
i # j, and Assumptions 1-2 hold. Then, under H§ and as (T,n) — oo, Sflljz B N(0,1).

To prove this result, it is sufficient to show that vVnT(ALnr — fin)/ 1T AN (0,1) where

2 _ 1IN = a1 o= 1T _ 9 2 P
Olmr =1 >ic1 Vi with ¥ip =T Zt,s:l Vidiss Virdes = E(€it€is), and Oy = Oy — 0. It

is easy to prove that the test statistic is divergent, hence consistent, under H{. To see this, note
that in this case AL, = o # 0, &f nT 2 a% > 0 where o% = limy, 700 a% nr- 1t follows that

PHSST)\ > ¢]—1 for any constant ¢ € R as (T,n) — oo.

Overall EPA tests under WCD. Suppose A;f, = 0 for all 7, ¢ but r;; is not necessarily zero
for all i # j. In this case, the loss differentials AL;; are no longer independent across i. Define
d;j = dj; > 0 as the distance between units ¢ and j. We make Assumptions 3 and 4 on the

coefficients r;;.
Assumption 3. For alln € Z7, ||R,||1 < 0o and ||Ry]]se < 00.
Assumption 4. 377, |r}r;|d}; < oo for some p > 1.

Assumption 3 is standard in spatial econometrics literature and implies the WCD defined in
(2). The role of Assumption 4 is to restrict the spatial correlation among panel units in relation to
the distances between them. As noted by Kelejian & Prucha (2007), the corresponding condition
in the time series context is fading memory over time. Under this assumption, as the distance
between two panel units increase, the correlation between them decreases. This in turn sets a basis
for using the spatial kernel function kg(-) which gives smaller weights to the covariance between

units which are more distant from each other.



To deal with the WCD when T' = 1, Kelejian & Prucha (2007) proposed a spatial heteroskedas-
ticity and autocorrelation consistent estimator of the variance-covariance matrix. This estimator
can be seen as a spatial version of the kernel estimators for time series such that it uses a spatial
kernel based on the distance between units. The estimator is generalized by Kim & Sun (2013) to
panel data regression, by combining the spatial and time kernels. Define k; = lim,_,[1—kg(x)]/|z|?
and let p; = max{q : k; < oo} be the Parzen exponent of kg(-) (Andrews, 1991), and d,, a se-
quence of positive, non-random bandwidth parameters. Assumption 5 is placed on the spatial

kernel function.

Assumption 5. (a) ks(z) : R — [—1, 1] is continuous at zero with ps > 1, ks(0) =1, ks(x) = ks(—x)
Vo € R, (b) maxi<i<y limy, o0 d;; ! > =1 lks (dij/dn) | < 00, (¢) dn — o0 such that d/n — 0 as

n — o0.

The condition in 5(a) is satisfied by all kernel functions used in practice, such as Bartlett,
Parzen, Tukey—Hanning and quadratic spectral (see Andrews, 1991). Conditions similar to that in
5(b) are used by Kelejian & Prucha (2007), Moscone & Tosetti (2012) and Kim & Sun (2013). All
these studies allow solely for kernels which truncate, i.e. those which equal zero after a certain value
of the bandwidth parameter. The first two papers place assumptions on the relative expansion of
l, = maxi<i<p lin where l;, = Z?:l 1{d;; < d,}. Assumption 5(c) controls the expansion of d,
relative to n. This condition, as well as 5(b), is not necessary for the consistent estimation of the
variance-covariance matrices in our study. Nevertheless, these conditions are retained to compare
our results with the existing literature.

We propose the following test statistic in this case of WCD:

vVnTAL,
R (9)
02.nT
where
1 n T dos dt ~ ~
~2 1] s
= — ks| =% | kr | — | AL;AL;,. 1

02.nT nTz‘J§1t§s:1 S (dn> T (dT> tAL; (10)

The theoretical properties of the estimator 63, - are explored by Kim & Sun (2013). Moscone &
Tosetti (2012) use a similar estimator with the difference being that they set kr (1) = 1.
The disadvantage of this variance estimator is that for its implementation the distances between

all pairs of units, d;; have to be known to the researcher. Furthermore, the cut-off distance d,, has

10



to be chosen. In practice there may be many possible distance metrics and economic theory does
not always help to choose between them. When a distance metric is not available we can use a

partial sample estimator given by

n T
65t = an ”ZZ:I tg_:l kr <Zt;> ALyALjs, (11)
where n, an increasing function of n, is the number of observations used to calculate the variance.
It is strictly smaller than n. Similar variance estimators are used by Bai & Ng (2006) and Moscone
& Tosetti (2015). The first study focuses on the factor models whereas the second one deals with
panel regression models with small 7. Our variance estimator generalizes that of the Moscone &
Tosetti (2015) by allowing for a large T with the help of a time kernel. The corresponding test

statistic is given by
vV TLTAI_/”T
QZ,nT .

2
Sy =

Proposition 2. Suppose ALy follows the model in (1) with Nf; = 0 for all i,t and Assumptions 1-

5 hold. Then, under H§ and as (T,n) — oo, (i) S;LQT) 4 N(0,1) if d,, — o0, (ii) and§(2T) 4 N(0,1)

n
if n — 0o such that n/n — k € [0,1].

Under Assumptions 1-5, vVnT (AL, — fin)/02.nT LA N(0,1) as (T,n) — oo, where a%nT =
n1 >t =1 T Ynrty. With ¥, = T-! 225:1 Vrdye A Y, g, = dIAE(V1,dp> V2udssr - - - Vndis ) Hence,
the stated results follow by the consistency of the variance estimators. Similar arguments made in
the case of no CD lead to the consistency of the test statistics in the case which the alternative
HY holds.

The test statistic ﬁ(

n

QT) is an asymptotic one which, in practice, can be hard to implement.

Despite its advantage of not relying on a distance metric, it needs special care as there is not clear
indications on which cross-sectional units to use in the calculation. A solution in practice is to
fix n, calculate the test statistic for a large number of subsamples of cross-sectional units of size
n, and to take the smallest test statistic. This provides a conservative test statistic which would
be correctly sized but potentially with low power. Nevertheless, below, we consider another test

statistic, ST(L:;Z, which is robust to WCD and does not pose similar problems.

Overall EPA tests under SCD. This is the most general case with no specific restriction

imposed on the CD of the loss differentials. To obtain a CLT for the means, we make Assumption

11



6 on the common factors, their loadings and the error terms.

Assumption 6. (a) f; is independent of £ and follows the linear process £ = > 72 CpW;_p,
with Wy ~ 7id(0, L), E||W]|* < 00, 352 h||Chl| < M < 00 and Y32, Cy, is full rank. (b) Factor
loadings \; are fived parameters such that || A;]| < oo, n™1 Y7 | X=Xy > 0 for an m x m matriz
Y\. (¢) There exists at least one common factor fr, k € {1,...,m}, for which the loadings satisfy
In=tS°" Akl >0 for alln € ZT.

It is easy to see that, Aif; satisfying Assumption 6 lead to SCD as defined in (3). We require
Assumption 6(a) for the consistent estimation of the long-run variance of the common factors.
Assumption 6(b) is standard for factor models. Assumption 6(c) ensures that at least one of the
factors contribute to the asymptotic variance of the cross-sectional averages. Although nonstan-
dard, this assumption is not restrictive as it does not affect the validity of our testing procedures.

In this case of SCD, the variance estimator given in (10) can be modified by setting kg(-) = 1.
This variance estimator does not require any knowledge of a distance measure between the units.
Moreover, it assigns weights equal to one for all covariances from the same time period, hence it is

robust to SCD as well as WCD. The test statistic takes the form:

TAL,
5 _ YTALur. (12)
03,nT
where .
~ 1 = dts T T
i,j=1t,s=1

The variance estimator (13) is valid when 7' is large, regardless of n being finite or infinite (see
Driscoll & Kraay, 1998). The special case of this test statistic where k7 is the Bartlett kernel
corresponds to the test statistic JT?%/[ of QTZ. As the authors note, an important advantage of this
test statistic is that it does not rely on the linear approximate factor model in (1). It is robust
even under DGPs such as ALy = u; + g(N\;, £i) + ;¢ where g(-,-) is a non-parametric function.
Furthermore, the test statistic Sf}) is very easy to calculate as it is identical to the DM test
statistic for the cross-sectional averages of loss differentials. To see this, it suffices to write AL,r =
TN Ly and 63,0 = T30 ky (dys/dr) ALpgALp,s, where Ly = n~' Y7 | ALy and
ALpt = Lyt — ALy

An alternative way to estimate the covariance matrix is to exploit the factor structure of the

12



DGP. The PCE of large panels is investigated by Stock & Watson (2002), Bai & Ng (2002), Bai
(2003), among others. This is a flexible estimator which is robust to WCD and autocorrelation
in the error terms. It is obtained by minimizing the average squared residuals computed for m

common factors:
n T

V(m) = % > (ALy — Nfi)? (14)

i=1 t=1
subject to Var(f;) = I, and A/, A,, being diagonal where A,, = (A1, A2,...,An)". Then the solution
for the estimates of the common factors, E, are given by /T times the first m eigenvectors of
the matrix > 1", AIZZ-.AINJ;. with AL; = (AL, ALjs,...,AL;y)" and the factor loadings can be
estimated as 3\% = % Z;le EAIN}“. We make the following high level assumption on the asymptotic

properties of the PC estimates.
Assumption 7. 5nT(X;?t — Xify) = Op(1) where 6,7 = min(vVT, v/n).

This is a standard result in the literature on the approximate factor models. The conditions under
which it holds are given in Bai (2003) (see their Theorem 3). Then the overall EPA hypothesis can

be tested using

g3 _ VTAL,r

=nT — (15)

QS,nT

where

n T n T
1 d PPN 1 d
~2 o 2:2: ts 7y 2:2: ts \ ~ ~
Q37nT = T/QT k'T (dT> AiftfsA] =+ n2T kT <d > Eit€is, (16)

i,j=1t,s=1 i=1 t,s=1
Proposition 3. Suppose ALj follows the model in (1), Assumptions 1-3, 6 and 7 hold. Then,

under H§ and as (T, n) — oo, (i) SS:_F) LN N(0,1), (ii) and ﬁs% L\ N(0,1).

Under Assumptions 1-3 and 6, VT(AL,r — in) /031 L\ N(0,1), where

1 & _ _
O-g,nT = ﬁ Z ()‘;FT)‘J + r;.7nTrj.) ) (17)
ij=1
with T'p = T4 225:1 Tg,.. The rate of convergence in the CLT is T/2 instead of the usual rate of
(nT)'/? in the cases of no CD and WCD. This follows from the SCD characterized in (3). We can
show the consistency of the test statistics using similar arguments to the ones made earlier, after
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Propositions 1 and 2. It can be easily shown that the variance estimator &g,nT is consistent under
no CD as well as WCD. Hence the test statistic Sf}) is consistent in these cases as well. However,
the rate of divergence is smaller than those of Propositions 1 and 2. Thus, the test is expected to
have a lower power against the null Hg.

In (17), the first term in parentheses dominates the second one. This is because, under As-
sumptions 1, 3 and 6, n =2 doiim1 MTrA; = O(1) but n=?2 > i j=1 T Ynrts = O(1/n). Hence, the
latter is asymptotically negligible. This means that under SCD, one can use a simpler variance
estimator without the second term in (16).

When T is fixed but n is large, the test statistic SffT) is not valid as it relies on the T-asymptotics.
However, under additional assumptions on the DGP of the loss differentials, we can obtain a test
statistic for fixed T'. Specifically, assume that the loss differentials are based on optimal one-step

ahead forecasts in the sense that they are serially uncorrelated. Consider the following test statistic:

. TAL,
5 _ YTALur, (18)
03 nT
where .
_ 1 .
G = 71 > AL (19)
t=1

We have the following result:

Corollary 1. Suppose that the loss differentials ALy follows the model in (1), they are serially
uncorrelated and one of the following holds: (a) Ny = 0 for all i,t and Assumptions 1-5 hold;
(b) Assumptions 1-3, 6 and 7 hold and € ~ N(0,v?). Then, under H$ and as n — oo, S'SF) LA

HT —1).

Here ¢(T — 1) represents the Student’s ¢-distribution with 7" — 1 degrees of freedom. The
result shows that, under additional assumptions to those of Propositions 2 and 3, we can use the
Student’s t critical values after adjusting the degrees of freedom in the test statistic Sﬁp) If the
loss differentials carry SCD, we need normality of the error terms for the result to hold. If they
are weakly cross-sectionally correlated, the normality assumption is not required as under WCD
assumption cross-sectional averages of the loss differentials admit a CLT, i.e. they are normally

distributed for each t =1,2,...,T.
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3.2. Tests for clustered equal predictive ability: C-statistics

Define Gy, g = 1,...,G, as the set of indexes of n, cross-sectional units which belong to cluster
g such that GyNGy = 0, Vg # ¢'. In this subsection, we are interested in testing the null hypothesis
H§* which can be written as

HE : =0, (20)

where o = (fi1, fig, - .., fig). Our tests are based on the empirical counterpart of this quantity:
ALyp = (AL, 1, ALy 1+ ALGng, 1) where ALy 7 = (ngT) 'Y icq S/, ALy We
assume that the sets of indexes G4, g = 1,...,G are known. Assumption 8 is placed to control the

asymptotic number of units per cluster.
Assumption 8. For all G > 1, as n — 00, ng/n — 74 € (0,1) for each g=1,...,G.

With this assumption we do not rule out the possibility of having G = 1 in which case we have
n1 = n. This particular case corresponds to the overall EPA tests of the previous subsection. In
what follows, these test statistics are generalized for G > 1 for each case of CD.

Clustered EPA tests under cross-sectional independence. In this case Aif; = 0 for all
i,t and r;; = 0 for all i # j. We propose the following statistic to test the hypothesis in (20):

C) = nT AL, 9, 7 ALy, (21)

n

where

oy 1 - n T dt ~ ~

S
Ql,TLT = T Z nT Z kT (dT,> Lgl"",giALitALl'S7
i=1 9i t,s=1

with g; € {1,2,..., G} being a variable which states the cluster which ith unit belongs to and ¢,
being the g;th column of I. Notice that ﬁl,nT is a diagonal matrix which contains an estimate
of the average long-run variances of each cluster as diagonal elements up to a factor which is

asymptotically equal to 7,° L

Proposition 4. Suppose AL; follows the model in (1) with Xif; = 0 for all i,t, r;; = 0 for all
i # j, and Assumptions 1, 2 and 8 hold. Then, under H§* and as (T,n) — oo, C(lT) LA X2G-

n
. —1/2, AT _ .\ d
Under Assumptions 1, 2 and 8, we have vnTQ, 7 (AL,r — ,,) = N(0,1g) as (T,n) — oo,
where fi,, = (1,015 B2,n55 - - BGng) and Qunr = D00 5yt Yir- This is a generalization
9;
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of the CLT following Proposition 1 which is obtained when G = 1. It is easy to see that the
test is consistent under the alternative hypothesis H{®. This is because under the assumptions
of the proposition, the matrix ﬁl,nT tends to a positive definite matrix as (7,n) — oo whereas
at least one entry of the vector AL,7 tends to a non-zero constant provided that there exists a
g € {1,...,G} for which fi; # 0. Furthermore, the test is consistent against Hg as this hypothesis
fails if any cluster has a non-zero mean. However, we expect this test to have lower power against
H§ compared to ST(LlT)

Clustered EPA tests under WCD. Suppose \.f; = 0 for all 4,¢ but ri; is not necessarily

zero for all ¢ # j. We can use the following statistic in order to test H{":
C2) = nTAL 0y Ay, (22)

where

~ 1 < n i ~ -
QQ,nT = f Z o < J) Z k’ ( > LgZ'L;jALitALjs-
9i'°95

ij=1 t,s=1
As discussed in the previous section, the estimator has the disadvantage of relying on a known
distance between each unit in the panel. An alternative variance estimator for this case of cross-

sectional clusters can be constructed as in (11). Such an estimator is

*91 gJ
T 3) S 5 br (5 )ty ALy, (23)
=1 j=1 i gJ t,s=1

where ng is the number of observations taken into account in the calculation of variance in cluster

g hence we have n = ZG:

g=1"g- The corresponding test statistic is

C%) = nTAL 1, ALyr. (24)

Theorem 1. Suppose ALy follows the model in (1) with X-ft =0 for all i,t and Assumptions 1-5
and 8 hold. Then, under H§* and as (T, n) — oo, (i) C T 4 X% if dy — oo, (ii) and Cfﬂz = X%

if as n, — 00,Vg = 1,...,G such that n,/ng — x € [0, 1].

Under the assumptions of the theorem, we have v'n T92 T (ALnT ) KN N(0,1g) as (T,n) —

00, where Q9,7 = Z" i1 W iy Th ¥nrrj.. Then the stated results follow from the consistency
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of the variance estimators. This theorem nests Propositions 1, 2 and 4. The first is obtained
when R, = I, and G = 1, the second is obtained with only G = 1 and the last is when only
R, = I,. The consistency of the tests follow from similar arguments to the ones above, those

under Proposition 4.

Clustered EPA tests under SCD. We now consider the case of no specific restrictions on

the CD in the loss differentials. With SCD, the clustered EPA hypothesis H§* can be tested using:

oy ]. " 1 T dt ~ ~
QS,nT = T Z o Z kT <d8> LgiblngLitALjS.
ig—1 9" T

As discussed previously, this type of variance estimator is robust to arbitrary CD and it has the
advantage of not requiring known distances between units. Furthermore, like SS;F), it is very easy
to calculate as it is identical to a Wald test applied to within-cluster cross-sectional averages where
between cluster covariances as well as serial correlations are taken into account. However, its
performance may be poor in cases of n large relative to 1. Hence, once more the factor structure
of the loss differentials can be used to form variance estimators. A test statistic with such an
estimate is

QS)T)“ = TAI:%TQ;TAE”T’ (26)

n T n

T

~ 1 ]_ dt PPN ]_ ]_ dt "~

Q3 =7 > e > kr <d$> Lyitg, Aifef A + > ,nT > kr (ds> LyitgEinfis. (27)
ig=1 9190 t5=1 T i=1 "9i fe=1 T

Theorem 2. Suppose ALy follows the model in (1), Assumptions 1-3, 6-8 hold. Then, under H§*
and as (T,n) — oo, (i) CS;) LA X%, (ii) and QS’T), LA X%

Under the assumptions of the theorem, we have VT2, %ﬁ (AL, — f,) 4N (0,15), where

_ n 1 / T . !/ = . e . . .
Qapnr =01 Ty 91t (ML + 1} 4,7r;.). Proposition 3 is a special case of this theorem

with G = 1. It is easy to prove the consistency of the tests following arguments similar to the

ones under Proposition 4 and Theorem 1. Similar to the discussion following Proposition 3, Cfl?

(2)

is expected to be consistent under WCD but have lower power than C, in this case.

n
Furthermore, it is easy to see that the test is consistent against H{, following similar arguments

of the discussion of Proposition 4. However, it is important to note that none of the overall EPA
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test statistics is consistent under general alternatives of Hg*. To see this, suppose that G = 2
with fi1n, — pu® # 0, fign, — —p® as n — oco. Then i, — 0 as n — oo, hence, the overall
EPA hypothesis holds asymptotically while the clustered EPA hypothesis fails. Therefore, the
S-statistics follow their asymptotic null distributions under their respective assumptions, as stated
in Propositions 1-3 and in Corollary 1.

Comparison of C-statistics and J? of QTZ. QTZ propose a test statistic for the clustered
EPA hypothesis of the form

JD VGD

V(G =118 (D, — D)2

where D, = ﬁ Zz‘eGg Zle ALy and D = G7! 25:1 D, and they suggest to reject the null
H§® if |JP| > tG-1,1—aj2 Where tg_11_4 is the 1 — a quantile of the #(G — 1) distribution. To
see how J,]? is related to the test statistics that we propose, let us first suppose that ny = n/G

for all g = 1,...,G, that is, the cluster sizes are identical. Then, the numerator of .J? is equal to

VnTAL,r, the numerator of our S-statistics, and that of JT%\([ of QTZ:

G
VGh =G [y, — " S AL,

1 & 1 T
Ve D VT —= > > ALy
g=1 97 ieGy t=1
1 ¢ n
= — Z ~TALgn, 7
c=\a ’

Hence, the test statistic is closer to the S-statistics rather than the C-statistics.

To have a clear idea on the asymptotic properties of J2, let us suppose now that G = 2 and
the cluster sizes are asymptotically identical: 71 = m = 1/2. Suppose also that fi1,, — u® 0,
fio.ny — —p0 asm — oo, therefore ji, — 0. In this case H$ holds and the asymptotic distribution of
V/GD is identical to that of vV/nTAL,7 under WCD. Hence, even if the clustered EPA hypothesis

fails, the test cannot detect the deviations from it.
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3.8. Special cases and extensions

Tests for joint equal predictive ability. In macroeconomic applications, the differences in
the predictive ability for each cross-sectional unit can have a specific economic importance. When

this is the case, one may be interested in the following hypothesis:
Hg :E(ALy) =pi =0, foralli=1,2,... n.

This hypothesis, namely the joint EPA hypothesis, states that the EPA hypothesis holds for each
unit in the sample. This hypothesis can be seen as a special case of the clustered EPA hypothesis
H§* with the number of clusters being equal to the number of units in the panel, that is G = n.
However, in this case Assumption 8 is violated as for each g = 1,...,G, ny = 1 and therefore
ng/n — 0. Nevertheless, the hypothesis can still be tested using the above test statistics if n is
fixed, after suitable modification of the convergence rates. For instance, a test statistic which is
robust to arbitrary CD is
I = TAE;LTQ;;“AEnT = Xa

n T
_ 1 dys L
QTLT = T ' E E l{T <dT> LiL;*ALZ'tALjS,

with AL, = (AL17, ALsr, ..., AL,r)’, and ¢; being the ith column of I,,. Different cases of CD
can be covered by modifications on the variance estimator. These cases are discussed at length in
a previous version of this paper (Akgun, Pirotte, Urga & Yang, 2020), where we also consider the
case of large n.

Tests for individual cross-sections. The overall test statistics Sr(le)v ST(LQT) and ﬁgT), and
clustered test statistics Cr(}r)’ Cffzz and foj), are applicable to a single cross-section, i.e. when 7' =1

after minor modifications. As an example, let us take SST) The modified statistic will take the

following form: -
AL,
G1n/Vn’
where 67, = n~' 3" ALyALy, with ALy = ALy — ALpy, where AL, p = n~ '3 ALy.

S =

The modification is on the calculation of the variance, where we calculate the deviations from the
overall mean, instead of the individual means. For a single cross-section, a CLT can be easily

obtained as a basis for these statistics. For instance, we can apply the CLT for independent but
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heterogeneous sequence (see, e.g. White, 2001, Theorem 5.10) to show the normality of tests with
no CD, and the CLT for spatially correlated triangular arrays of Kelejian & Prucha (1998) to show
the normality of tests with WCD, respectively.

4. Monte Carlo Study

To investigate the finite sample properties of the test statistics given above, a set of Monte
Carlo experiments are conducted. 2000 samples are generated from each DGP described below for
the dimensions of T' € {10, 20, 30,50,100} and n € {10, 20, 30,50,100}. All tests are applied for

the nominal size of 5%.

4.1. Design

Two different DGPs are considered to explore the effect of WCD and SCD on the performance
of the tests. DGP1 contains only WCD which is controlled using a stationary spatial AR(1) process
which satisfies Assumption 3. In this case, for each unit i, two independent forecast error series

(e1,it, €2,it) are generated using spatial AR(1) processes. Define first

n
Cl,it = PzwijCl,jt + Uyt with, Uy it ~ iid.N(O, 1)> =12, (28)
j=1

where w;; is the element of the spatial matrix W, in row ¢ and column j with w; = 0 for all

i =1,2,...,n. Then the forecast error series e; ;, | = 1,2 are generated as the ith element of the
n-vector
1
€nt = Esnul,n,ta (29)
where Wyt = (Wae, Wty ..., Wnt), Sp = (I, — pW,,) 7! and 52 = n~'tr(S,S),). To explore the

size of various tests, we use these two forecast error series e; 4, | = 1,2. We set p = 0.5.1 In this
DGP a quadratic loss function is used.
DGP2 contains SCD and WCD. In this case, following Giacomini & White (2006), we generate

the loss differential directly, so the tests do not rely on a specific loss function. This is given by

ALy = &(pi + Mifie + Ao for + €it). (30)

We also tried p = 0 and p = 0.9. The findings are similar to those obtained with p = 0.5 and the results omitted
to save space.
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To investigate the size we set pu; = 0 for each ¢ = 1,2,...,n and generate factor loadings as
Aliy A2i ~ 19d.N(1,0.2). The common factors are formed by fi¢, for ~ iid.N(0, 1), The error series
eit are generated in the same spirit as in (29), precisely we set ;; = ej ;. We finally set £ = \/m
to control for the variance of the loss differential series.

We also undertake a robustness check to study the small sample properties of the tests S,(lg) and
S’T(Lg) by considering a heavy-tailed error distribution. We generate errors from a ¢(6) distribution
for half of the panel and from a standard normal for the other half. Specifically, in (28) we set, for
each [ = 1,2, w44 ~id.t(6) if i =1,...,N/2 and w4 ~ itd.N (0, 1) otherwise.

We explore the power of various tests under two different alternative hypotheses. For this
purpose, in the case of DGP1, we generate a third series e3;; as two different re-parametrizations
of the series e ;. The first one corresponds to the homogeneous alternative and the second one
to the heterogeneous alternative. We generate ez; ; = \/ﬁegﬂ-t and report the results from testing
the equality of forecast accuracy of e;;; and es; ;. In the heterogeneous scenario, we generate
esit = \/07‘627# where 6; = 0.8 for i = 1,...,n/2 and 6; = 1.2 for i = n/2 + 1,...,n. Similarly, in
the case of DGP2, we set u; = 1.2 for each ¢ in the case of homogeneous alternative and p; = —0.2
fori=1,...,n/2 and u; = 0.2 for i =n/2+1,...,n in the case of heterogeneous alternative.

As the error series and the common factors are serially uncorrelated for each unit, it is implicitly
assumed that we are dealing with one-step ahead forecasts. Hence, we set the time series kernel
kr(-) = 1if t = s and kr(-) = 0 otherwise. Spatial interactions between units are created with

2 The distance between two units is the given by the

a row-normalized rook-type weight matrix.
Euclidean distance. In the computation of the spatial kernel kg(-), we use these distances. In
addition, we use distances based on the wrong assumption that the units are located on a line.
We use Bartlett kernel for all experiments and following Kelejian & Prucha (2007), we set the
spatial kernel bandwidth to d,, = [n'/4] + 1 where [-] stands for the smallest integer bigger than
its argument. Similarly, the overall and clustered EPA test statistics using partial sample variance
estimators are calculated by setting n = [n'/?] 4+ 1 and n; = ny = [n'/2/2] + 1, respectively.

For the tests using common factors, we consider three possibilities for the selection of the

number of factors. First, we calculate them assuming m = 2, meaning that for DGP2 the number

2The units are assumed to lie on a p; x ps rectangular grid such that the first p; units are located in the first
column of the grid, the second p; units are located in the second column and so on. We therefore have n = pipa.
For each n € {10, 20, 30, 50, 100}, we choose p1 as 2, 4, 6, 10 and 50, respectively.
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of common factors is correctly specified. Second, we set m = 1 for the case of under-specification.
Third, we select the number of common factors by minimizing the IC); information criterion® of

Bai & Ng (2002) given by

ICp = V(m) +m <n7:FTT) In (J;TT) (31)

where V(m) is defined by (14). The case of over-specification of the number of common factors
is not separately considered because ICp; almost always over-estimates the number of common
factors in small samples (see Table 9 below).

Before the discussion of the size and power of the robust tests, as a benchmark we refer to the
results on the non-robust tests SfllT) and CST) The size and power of these tests are reported in

Table 2. As is expected, all tests are incorrectly sized.

4.2. Size properties

The results on the size of CD-robust overall EPA tests with DGP1 are given in Table 3. The
size of the kernel robust test Sr(fT) of the overall EPA hypothesis improves with either T or n. First,
we focus on the results when the distance metric is correctly specified. In the smallest samples
with 7" = 10 and n = 10, this particular setting provides an empirical size of 9.9%. For T' = 100
with n = 10 corresponding value equals 8.65% whereas for T' = 10 with n = 100 it is 8.4%. In the
largest sample its size is 6.3% which is close to the nominal value of 5%. When the distance between
the panel units is incorrectly specified, the size of the test still improves with either dimension.
However, as expected the size distortions are slightly larger in this case. In the largest smallest and
largest sample sizes its size equals 12.5% and 8.3%, respectively. The test which uses the partial
sample estimator of the variance has similar size values. However, its size improves only with 7.
When T' = n = 10 its size is slightly larger than that of the kernel robust test with a misspecified
distance. When (7T',n) = (10,100) the size distortion increases (13.4%). In the case of large T,
however, it performs better than the kernel robust test with incorrect distance. For instance, when
(T, n) = (100, 100) its size equals 7.7%.

The test Sf}) performs very well especially when T is large and n is small. In most of the

combinations of 7" and n it shows better properties than SST) When T is greater than 50, it is

3The authors consider several information criteria. In their simulations IC,1 appears to be the best performing
criterion under WCD.
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correctly sized and even when 7' = 30 and n = 100 its size is 6.9% which makes it the preferred
test over any version of Sr(fT)

The test S S’% shows good properties even though it wrongly assumes that the loss series contain
common factors. The test with m = 2 performs similarly to ST(L? when n is small but its performance
is less good as n gets large. In general, the size distortion of the test is bigger when m = 1.

The case where the number of common factors is chosen by IC requires some special attention.
The test performs well for small n and T but its performance drops as n or T gets large. To
understand this behavior of the test, we check the small sample properties of IC);. The average
number of common factors chosen by this criterion over simulations is reported in Table 9. It is
seen that, when either of the dimension of the panel grows, the performance of the IC increases.
However, when one of the dimensions is small, this improvement is very slow. In DGP1, only when
one of the dimensions is greater than 50, the performance is in acceptable levels. Once either T or
n is greater than 50, the average number of factors selected over replications is either zero or very
close to zero. This means, in fact in these cases the test converges to the non-robust test. Hence,
the empirical size and power of the test equals the size and power of the non-robust test given in
Table 2. Of course, in practice the number of common factors is rarely known to the researcher
and the most realistic application of this test is this case which is based on IC. However, it should
not be understood that our testing procedure is best described by the performance in this case.
In practice, if the no CD hypothesis is rejected by a suitable test, and the researcher decides with
the help of an IC that the loss differentials do not contain common factors, an EPA test which is
robust to WCD has to be used; for instance SST) or SS’T), As in the case of zero common factors
ﬁg}), is identical to 5’7(1172, these tests have to be used only if the no CD hypothesis cannot be rejected
before the application of EPA tests.

The results for the clustered EPA tests are reported in the right block of Table 3. The kernel
robust test C’T(fT) performs slightly worse than the overall test SffT) and its performance improves
rapidly with increases in the number of observations in either dimensions of the panel. In the case
of large samples the empirical sizes of the two tests are comparable. Similar to the findings on
the overall test, when the distance is misspecified, the size distortion in the test is only slightly
higher and its performance gets better with increases of number of observations. The performance

of the test based on the partial sample estimator, namely QST) is unsatisfactory in small samples,
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especially for small n. For T' = 10, even for the largest n we have, the empirical size of the test
equals 19.4%. However its performance improves with 7', and it reaches 5.5% in the largest sample
considered.

The test C’S;z is a very viable alternative to C’T(LQQZ For small T, its size distortion is superior
to that of CST) but even for n = 20 it has good size properties. However, contrary to CffT), its
performance improves only with 7. For instance, when n = 10 and T = 20, its size equals 9.9%
which is better than that of the kernel robust test (10.7%). When n = 100 and T = 20 the
performance of the latter improves dramatically and reaches 6.3% whereas that of C’S’T) is 8.6%.

Finally we focus on the size of the test using estimated common factors, QS?, Irrespective
of the choice of the number of common factors, when 7' is small, the test suffers from more size
distortions compared to C’ST) and C’S’T) However for large T and small n the test with m = 2 has a
similar performance to the others. In fact for the smallest n and largest T' that we consider it has
an empirical size of 6% which is better than that of CffT) (9.7%) and Cq(ng) (6.9%). When m = 2 the
improvement of the size of the test is much slower with the increase in 1" and when the number of
common factors is chosen by IC, it approaches the non-robust test, as expected.

The size results for DGP2 are reported in Table 4. As expected, for this DGP the overall tests
57(1272 and S 512% are grossly over-sized and their performance does not improve with increases in the
sample size in any dimension. The test Sﬁp) shows very good properties except when T is very

small, in particular when T" > 30. Conclusions are similar for the factor-robust tests 5513% In fact,

this test performs better than Sff;z for all samples sizes considered. A very important finding is
that, even when the number of common factors is underspecified, the test performs very well. We
also see that the three versions of the test are equivalent in large samples. For T' > 10 and n > 30
these three tests have equal empirical size.

The findings concerning the clustered EPA tests robust to SCD are similar to those in the

(3

case of DGP1 with a few points worth mentioning. The test C T) behaves in line with theoretical

n
expectations such that it has lower size distortions for large T" and small n and it performs slightly
worse than the overall test SST) The tests based on estimated common factors are found to be
oversized in small samples when the number of common factors are chosen by the researcher. The

IC based version shows less size distortions. For small T" it outperforms CT(LZST) overall. Finally, in

largest samples the IC based test and the test with m = 2 have identical size. This is expected
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because the information criterion /C); consistently chooses the number of common factors when
n and T are large, as seen in Table 9.

We conclude this section reporting the following two simulation exercises. In the first, we
evaluate the performance of the test statistics SS)T) and S’S)T) In the second exercise, we study the
properties of the JP test statistic of QTZ. We note that the modified test SS’T) is valid only for
one step ahead forecasts. Furthermore, it requires normality under SCD. Table 5 reports the finite

®3)

sample properties of S, and ST(LST) under the failure of normality assumption. As can be seen, the

n
test statistic S'T(l?’T) is perfectly sized irrespective of the sample size even when normality fails, under
both DGPs. Turning to the performance of J, we note that, the test is valid only under WCD
(DGP1). This is confirmed by the results reported in Table 6, where the test’s size is very close
to the nominal size irrespective of the sample size for DGP1, while it is grossly over-sized under
DGP2.

To summarize, in the case of both DGPs the overall EPA hypothesis can be tested with a
size close to the nominal value for almost all sample sizes. In particular, it is found that the test
5’7%) has very good properties in both DGPs. In addition, Sﬁp) can be used for one step ahead
forecasts with size practically equal to the nominal size, irrespective of the type of CD in the loss
differentials. For DGP1, for small T" and large n, the kernel robust test is preferred over the test
based on the partial sample estimator given that the distance metric is correctly specified. Finally,
the test CST), is preferred over others, however, QE?T) has also good properties when the number of

common factors is overspecified.

4.8. Power properties

The power results of the tests for DGP1 under the homogeneous alternative hypothesis are
given in Table 7. In the previous subsection, we have seen that the size of the overall EPA tests

ST(L?, S 512% and Sff;z approach to the nominal level for this DGP. Here, it is seen that the power of

the tests §§12T) and SLQT) converge to 100%, for the latter the distance metric being unimportant.
3)

Hence the test is consistent in all cases. For moderate to large T', the test S, is correctly sized.

We observe that its power is slightly lower compared to that of ST(LZIZ in these sample sizes. For

instance, when 7' = 100 and n = 10 the power of SST) equals 70.8% whereas those of 5’7%) and
ﬁg}), are 63.5% and 57.2%, respectively. Hence, even though they wrongly assume that there are

common factors in the DGP, the power of the factor-robust tests S S’% are close to that of 57(22 To
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conclude, we see that, the factor robust tests have lower power under WCD, as expected.

The previous results of the clustered EPA tests showed that in general they are correctly sized
only for large T. Here we see that their power is only slightly lower than the overall tests. For
instance, the power of the asymptotically correctly sized tests ST(LQT) and CT(L? are 19.1% and 17.3%,
respectively and their power reaches 100% in the largest sample.

Table 8 reports the power results of the tests for DGP2 under the homogeneous alternative
hypothesis. For this DGP, we have seen that the tests SfLQT) are over-sized even asymptotically.
Hence, we focus on the tests SS’T) and ﬁf% It is seen that the power of both tests are very similar
for all sample sizes. For instance, for most of the sample sizes that we consider, the power of Cr(ir)
equals the power of QS% when the number of common factors is chosen by the IC.

The power of the tests S(E}T) and S'fl?’T) under non-normality are reported in the second panel of

n
Table 5. As is stated in the previous subsection, 57(1‘? improves greatly over 57(137), in terms of size.

We now see S’S’T) has less power for any sample size compared to SS’T) It has to be noted however
that S’S’T) performs still very well and its power equals 100% as sample size increases.

To save space, we do not report the power results under the heterogeneous alternative hypoth-
esis. The main findings are summarized in Figure 1 where the power of SS’T), CS’T) and JP are
shown under DGP1 so that the assumptions of QTZ are satisfied. It can be seen that under the
homogeneous alternative, the power of our tests 57(137)’ and CS;F) rapidly approach 100%. Whereas
the power of JP is very low compared to our proposed tests, although it increases with sample
size. Under the heterogeneous alternative on the other hand, the power of the overall test 51(552 ap-
proaches the nominal size. This is because the overall EPA hypothesis holds under this alternative
hypothesis. On the other hand, the expected value of the loss differentials is different from zero for
clusters of panel units, hence the clustered EPA test C’S;z has power under this scenario. Under
this alternative hypothesis, we see that the power of Jé) approaches zero. Hence, it is inconsistent

contrary to our proposed test CS})

5. Guidelines for Empirical Applications

The application of the panel EPA tests require some preliminary information on the cross-
sectional and temporal dependence properties of the loss differentials. First, the researcher has to

determine whether the loss series contain CD, to choose between the non-robust tests SST) and C’T(LlT),
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and the other tests which deal with CD. If the data displays CD, one has to have some information
on the type of the CD in loss differentials as WCD and SCD may require the use of different tests.
Exceptions to this are SS)T)’ and CS)’T) which are shown to be performing very well under any type
of CD in our simulations. Second, to determine the time series kernel bandwidth parameter, one
has to determine whether the loss differentials are autocorrelated or not. This panel EPA testing
approach is based on the following three steps.

Step A— Analysis of CD: Test the no CD hypothesis using a test such as that of Breusch & Pagan
(1980, BP hereafter) or the modified and standardized version of it Pesaran, Ullah & Yamagata
(2008, Modified BP hereafter). If the no CD hypothesis is not rejected, proceed to Step B.1,
otherwise calculate ICy; and proceed to Step B.2.

Step B— Testing for no autocorrelation: Consider the following empirical model for loss differen-

tials:

ALy = mAL;jy—1 + mAL;t—o 4 -+ mpAL;—p + a; + Cits (32)

and the hypothesis H{¢ : m =m =+ = 7.
1. Run a fixed effects regression on (32) and test H§¢ using a Wald test with a variance robust

to panel level heteroskedasticity.

2. Run a fixed effects regression on (32) and test H§¢ using a Wald test with a variance calculated

by clustering on time index.

If the no autocorrelation hypothesis is not rejected, set dp = 1, otherwise set dp > 1. If the no
CD hypothesis is not rejected in Step A, proceed to Step C.1, otherwise proceed to Step C.2.
Step C- Testing for EPA:

1. To test the overall EPA hypothesis H§ use ST(LlT), and for the clustered EPA hypothesis HG*

1
use 07(172

2. If IC) indicates m = 0, use s? 5(2% or 5’7(5}) to test H, and CT(LQT), 07(1212 or Cr(ip) to test H§®.

nT’ =n

If 1C); indicates m > 0, use S(‘? or QS’T) to test H{, and C(gT) or QE?T) to test HG".

n n

In Step A, we suggest two tests of CD. The null hypothesis of BP test is the joint absence of
CD between all pairs in the panel. The statistic is distributed as x with ¢ = n(n —1)/2 under the

null. Hence, the test is more suitable for the cases of fixed and small n. The Modified BP statistic
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is a bias corrected and standardized version of the LM test. It is asymptotically normal under the
null of no CD as n — oo and is more suitable for large panels. These CD tests can be used to
test the hypothesis of no CD in a data set but they do not help to identify the type of the CD.
To see if the loss differentials contain common factors, we suggest the information criterion ICp
n (31). As seen in our simulations (Table 9), this IC performs quite well to choose between WCD
and SCD.

In Step B, we analyze the serial correlation in loss differentials. The test of the no autocor-
relation hypothesis follows the analysis of the CD properties of the loss differentials because the
variance computed for the Wald test of the no autocorrelation hypothesis depends on whether the
loss series contain CD or not. We suggest using a variance estimator calculated by clustering on
the time index if the no CD hypothesis is not rejected in Step A. This estimation corresponds to
the Driscoll & Kraay (1998) variance estimator with a time series kernel bandwidth chosen such
that the error terms in (32) are assumed to be serially uncorrelated. For simplicity, here we do
not distinguish between WCD and SCD, although this is possible by considering other variance
estimators such as that of Kim & Sun (2013). However, as noted by Driscoll & Kraay (1998), their
variance estimator is valid under WCD. One important point in Step B is the determination of the
lag length p. Han, Phillips & Sul (2017) found that the BIC is inconsistent in panel autoregres-
sions even in the absence of fixed effects. We suggest to use the general-to-specific methodology
that they propose. The method starts with p,q. chosen by the researcher, and it continues by
eliminating the biggest insignificant lag until a significant lag is found. If the significance level of
these tests is fixed by the researcher, the probability of overestimation of the lag length is nonzero.
To avoid this, we determine the significance level as a,p = exp{In(0.25)v/nT/10}, as suggested by
Han et al. (2017).

Finally, in Step C we test the EPA hypotheses H§ or H§* on the basis of the outcome of the two
previous steps. Of course, pre-testing as documented in this methodology may affect the properties
of our proposed tests. This is an interesting issue worth exploring but which goes beyond the scope

of this paper. In the next section, we follow this methodology.
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6. Empirical Applications

6.1. Comparing OECD and IMF economic growth forecasts

We compare the OECD and IMF GDP growth forecasts using the EPA methodology described
above. Our application can be seen as complementary to the application of QTZ comparing the
IMF forecasts to Consensus Economics forecasts. The data for the IMF forecasts come from
their Historical WEO Forecasts Database. The database includes historical h-years ahead forecast
values, h = 1,2,...,5, for the GDP growth rate and covers up to 192 countries and starts from early
1990’s. We collected similar data from the past vintages of the Economic Outlook of the OECD. The
Economic Outlook contains only 1-year ahead forecasts. Both organizations publish their forecasts
twice a year. In our application we focus on their summer forecasts made for the following year.
These forecasts are published in June every year by the OECD whereas IMF forecasts are published
in April. Publishing dates are close, hence the forecast errors are comparable. To compute the
forecast errors, we use the GDP growth outturns by the IMF. We also tried using the GDP growth
published by the OECD and the results are unchanged (the Pearson correlation coefficient between
the two outturn series equal 0.995 hence the difference is negligible). Eventually we constructed a
balanced panel data set of annual GDP growth forecast errors of 29 OECD countries from the two
organizations between 1998 and 2016.

We use the quadratic loss which is defined as
AL(q)—€2~ —€2~
it = Clit — €2,it

where, as is throughout this application, first organization is the OECD. This loss function is
arguably the most frequently used one and is robust to measurement errors contrary to other loss
functions such as absolute loss (Hoga & Dimitriadis, 2022).

We begin the analysis by the DM tests applied to each country. In the computations of the
DM test statistics, we use a bandwidth parameter dp = 1 because we have 1-step ahead forecasts.
Note that below an autocorrelation test is used to confirm that the loss differentials are serially

uncorrelated.* The results of the DM tests are given in Table 10 where we report average loss

Tt is worth noticing that we use the summer forecasts of the two organizations and they are expected to be auto-
correlated by construction. Nevertheless, as the autocorrelation test we use indicates the absence of autocorrelation,
its effect must be negligible. Below, for the panel tests we also use a different bandwidth for robustness and this
expectation is confirmed.
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differentials, DM test statistics and their p-values for each country over the period 1998-2016.

First, in terms of the sign of the average loss differentials, a considerable amount of heterogeneity
can be observed in the sample. We see that roughly half of the statistics are negative. Second, most
of these statistics are statistically insignificant with exceptions being Belgium, Spain, Hungary and
Luxembourg. For Belgium which is a country where the predictive ability of the IMF is superior,
the EPA hypothesis can be rejected at 10%. For Spain OECD predictions, for Hungary IMF
predictions outperform the other. For Luxembourg we can reject the EPA hypothesis at the 10%
level and the predictive ability of the IMF is found to be superior for this country as well.

Finally, at the bottom right of Table 10, we report average loss differentials over clusters
of countries and the period 1998-2016. The average quadratic loss differential over all 29 OECD
countries in the sample is 0.009. This shows that, when we average over all countries, the difference
between the predictive ability of the two institutions is positive but very small.

An interesting question is whether there are clusters of countries for which the forecast per-
formance of the two institutions differ dramatically. Dreher, Marchesi & Vreeland (2008) test the
hypothesis that the forecast performance of the IMF differs with respect to the direct influence
of a country on the institution. They use GDP of a country as a proxy of the political influence
and find evidence that the forecast bias of the institution declines with GDP. To see if we can find
similar evidence in terms of the differences between the bias and efficiency of the forecasts made by
the two institutions, we divide our country sample into the G7 and non-G7 countries. The GDP
of the G7 countries account for almost 70% of the total GDP of all 29 countries in our sample in
2016, the last year of our data set. Hence, if the OECD’s forecast performance does not vary with
a country’s GDP but the performance of the IMF does, as found by Dreher et al. (2008), we expect
to have heterogeneity in average losses of the G7 and non-G7 countries.

The table shows that the average quadratic loss for G7 countries is 0.079. For non-G7 countries
this average is -0.014. This shows that for G7 countries the IMF has a superior performance
whereas for non-G7 countries the OECD does better in terms of their growth forecasts. Hence, the
forecast ability of the two institutions indeed varies with country clusters. Below, we test if these
averages are statistically different from zero using our tests.

Cross-sectional and temporal dependence in loss differentials. As found in our Monte

Carlo simulations, the increase in the number of cross-sections increases the power of EPA tests.
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However, the gain from the usage of panels depends on the degree and the nature of CD. Further-
more, the application of the correct EPA tests require some information on the cross-sectional and
temporal dependence of the loss differentials, as we summarized in the previous subsection. Hence,
before proceeding to panel tests of EPA, we analyze the CD and autocorrelation properties of our
dataset.

The results of BP and Modified BP tests show that the null hypothesis of no CD is rejected
using any test in conventional significance levels. The results are omitted to save space but available
from the authors. This means that the tests which allow for CD are more reliable for our data
set. Next, IC) indicates existence of 6 common factors in both loss differential series. Hence, we
conclude that both series display SCD. To determine the time series kernel bandwidth parameter,
we estimate (32) with p = 1 which was chosen by the general-to-specific methodology and check
the significance of the common autoregressive parameter by clustering in the time index. This
autocorrelation test confirms that the loss differentials are serially uncorrelated, hence, first we set
dp = 1. To see the impact of the change in the time series bandwidth, we also try dp = T1/3.

To see the time series profile of the common factors in the loss differential series, we report the
plot of the first 6 PCs of the loss differential series in panels (a) and (c) of Figure 2. The PCs are
numbered in decreasing order with respect to their eigenvalues. For better interpretation of the
common factor estimates, we report a focus on the first three PCs of the quadratic loss differential.
Associated factor loadings estimates are reported in Table 11. To save space, estimated loadings
for other PCs are dropped but they are available from the authors upon request. The estimates
of the common factors in loss differentials show the effect of the financial crisis. The first three
common factors in quadratic loss fall in 2009. As can be seen in Table 11, for 20 countries in the
sample, the factor loading estimates are negative for the first common factor. Hence, the OECD,
had a superior predictive ability compared to the IMF in this year. The second PC shows a similar
pattern whereas the third PC has a movement in the opposite direction in the recovery period.
This PC therefore compensates the effect of the first two common factors for some countries.

Panel tests for the EPA hypotheses. Here we apply the panel EPA tests to compare the
performance of the two institutions. Following the insights of the Monte Carlo results and the CD
analysis, we apply the factor-robust tests Sr(;?’ C’T(LST), S ST) and QS% As a benchmark, we also report

the results from the tests assuming no CD, namely SST) and CST)
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The results are given in Table 12. The first part of the table reports the tests of the overall
EPA hypothesis. Hence, they are the significance tests of the overall difference reported in Table 10
which is 0.009. The test statistics for the non-robust test SST), are equal to 0.06 for both bandwidth
parameters considered. The conclusion does not change using the robust tests for which the test
statistics are slightly weaker. Our results are in line with those obtained by QTZ on the comparison
of IMF forecasts with Consensus Economic forecasts, in the sense that, they do not find a significant
difference between the predictive ability of the IMF and Consensus Economics using EPA tests
based on the summer forecasts of the two institutions.

In the second part of the table the results for the clustered EPA tests are reported. The clusters
we consider are G7 countries and the non-G7 countries for which the average loss differentials are
reported in Table 10. It is seen that for these clusters, the clustered EPA hypothesis cannot be
rejected using any test and any bandwidth parameter. Hence, the predictive ability differences of

the two institutions are insignificant.

6.2. An Fvaluation of the IMF Consumer Price Inflation Forecasts

In a second application, we challenge the quality of the IMF CPI forecasts by comparing them
with random walk (RW) forecasts. In a similar exercise, QTZ compare IMF CPI inflation forecasts
with those obtained from the AR(1) model. In this subsection, we summarize the application and
its results. The details can be found in Appendix C. The data on the IMF CPI forecasts used in
this application come from the Fund’s Historical WEO Forecasts Database. The sample contains
127 countries over the period 1991-2019. We restrict our attention to the period considered also
by QTZ but we use the data from all countries available, contrary to their sample which covers 86
countries. In this application, in addition to the quadratic loss function, we use the absolute loss
function defined as

ALY = leri] — lezil,

where ej;; is the forecast error made by the IMF for country i and year t, and ep;; is the RW
forecast errors calculated using the CPI data published by the IMF. We consider 2 different country
clustering schemes. The first one divides the sample of countries into OECD and non-OECD
countries, and the second one divides them into G7 countries, non-G7 OECD countries and non-
OECD countries. In addition to the full sample analysis, we split the sample into pre- and post-

global financial crises periods.
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The results show that there is a small but statistically significant difference between the average
absolute losses of the IMF and the RW forecasts in favor of the latter in the full sample. When
we divide the sample into pre- and post-crises periods, we see that these differences are driven by
the differences in the pre-crisis period. For the absolute loss, the clustered EPA hypothesis can be
rejected in both pre- and post-crises periods.

Using quadratic loss, QTZ find that the IMF CPI forecasts are significantly more accurate than
the AR(1) forecasts. Our results show that, overall, IMF CPI forecasts are less accurate than the
RW forecasts. However, for this loss function, neither overall EPA hypothesis nor clustered EPA

hypothesis can be rejected in conventional levels using CD-robust tests.

7. Conclusions

In this paper, we proposed novel predictive ability test for panels, corresponding to two different
equal predictive ability hypotheses. Several overall EPA tests were developed to evaluate the
hypothesis that the predictive ability of two forecasters is equal on average over all periods and
units. Consistent clustered EPA tests were also built which are able to test the hypothesis of
whether two forecasters have equal predictive power for all clusters of units. Our proposed tests
are robust to different forms of cross-sectional dependence in the loss differentials, arising from
weak and strong cross-sectional dependence. The proposed tests are found to have appropriate
size and power in a set of Monte Carlo simulations. In particular, the overall EPA tests robust to
arbitrary cross-sectional dependence are correctly sized. Finally, we provided some useful three-step
guideline on how to run the tests, which is then implemented in two applications. We compare the
prediction performance of two major organizations, the OECD and the IMF, on their historical
economic growth forecasts. In a second application, we evaluate the CPI forecasts of the IMF
by comparing them with random walk forecasts. We found evidence of strong cross-sectional
dependence in loss differentials of forecast errors in both applications. The results showed that
there are only minor differences between the predictive ability of the OECD and the IMF in terms
of their economic growth forecasts and they are statistically insignificant. We found some evidence
that the RW forecasts of the consumer price inflation are significantly more accurate than those

made by the IMF.
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Table 6: Size Properties of the Clustered Test J2 of QTZ

DGP1 DGP2
n\T 10 20 30 50 100 10 20 30 50 100
10 55 50 54 51 56 154 15.8 157 15.1 15.7
20 56 51 58 50 5.2 19.5 203 20.7 20.3 19.9
30 55 5.6 53 55 85 23.0 227 233 239 229
50 59 53 6.0 56 44 28.6 28.6 29.3 30.5 27.8
100 55 52 6.7 6.1 6.3 47.0 485 46.8 46.2 47.9
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Table 9: Small Sample Properties of the Information Criterion 1Cp;

DGP1 DGP2
n\T 10 20 30 50 100 10 20 30 50 100
10  5.00 5.00 4.95 4.57 2.57 5.00 5.00 5.00 5.00 5.00
20 5.00 3.88 1.09 0.20 0.01 5.00 5.52 4.48 3.73 3.28
30 499 1.12 0.25 0.06 0.00 5.00 4.07 280 245 2.28
50 494 0.15 0.05 0.01 0.00 5.00 2.25 2.08 204 2.01
100 3.62 0.01 0.00 0.00 0.00 498 194 199 2.00 2.00
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Table 10: Average Loss Differentials for the Economic Growth Forecasts, DM Test Statistics and Their p-values, 1998-2016
(OECD vs. IMF)

Country Statistics Country Statistics
Australia -0.052 Iceland -0.484
(-0.451) (-0.459)
[0.652] [0.646]
Austria -0.035 Ttalyt 0.492
(-0.293) (1.047)
[0.770] [0.295]
Belgium 0.555 Japanf 0.191
(1.701) (1.040)
[0.089] [0.298]
Canadat 0.273 South Korea 0.571
(1.504) (0.564)
[0.133] [0.573]
Switzerland 0.272 Luxembourg 1.951
(1.131) (1.757)
[0.258] [0.079]
Czech Republic -1.295 Mexico 0.009
(-1.014) (0.007)
[0.311] [0.994]
Germanyf -0.627 Netherlands 0.405
(-1.125) (1.549)
[0.260] [0.121]
Denmark -0.150 Norway -0.165
(-0.771) (-0.614)
[0.440] [0.539]
Spain -0.657 New Zealand -0.463
(-1.726) (-1.443)
[0.084] [0.149]
Finland 0.062 Poland -0.477
(0.079) (-0.903)
[0.937] [0.367]
Francet 0.216 Portugal 0.062
(1.505) (0.128)
[0.132] [0.898]
United Kingdomf -0.143 Sweden 0.269
(-0.740) (0.501)
[0.459] [0.616]
Greece -2.111 THirkiye -0.746
(-1.465) (-0.306)
[0.143] [0.760]
Hungary 1.303 United Statest 0.150
(1.873) (0.460)
[0.061] [0.645]
Ireland 0.875 Average 0.009
(0.761) Average (G7) 0.079
[0.447] Average (Non-G7)  -0.014

Note: T G7 countries. DM statistics in parentheses are calculated

— N d N ~
as S0 = VT(ALir/éi7) % N(0,1) where 6%, = L37 AL3.
Differences significant at 10% are shown in bold. p-values are in
brackets.
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Table 11: PC Estimates of the Factor Loadings in the Loss Differentials of the Economic Growth Forecasts (OECD wvs.

IMF)
Countries PC1 PC2 PC3
Australia -0.05 -0.20 0.26
Austria -0.14 0.27 -0.21
Belgium 0.37 026 -1.10
Canada 0.26 0.14 -0.20
Switzerland -0.08 -0.48 -0.42
Czech Republic 0.07 -297 -1.71
Germany -1.01 -1.66 0.65
Denmark 0.24 0.08 0.09
Spain 0.17 1.01 0.95
Finland -1.06 -2.69 0.61
France -0.08 -0.09 -0.28
United Kingdom -0.08 0.09 0.58
Greece -1.12 3.76  -3.58
Hungary -0.03 -0.17 -2.38
Ireland -1.55  -3.53 0.18
Iceland 0.79 -0.86 1.42
Italy -0.65 -1.29 -0.85
Japan 0.04 -0.34 0.06
South Korea -2.56  -2.31 1.10
Luxembourg -1.04 -1.67 -3.53
Mexico -2.13  -3.24 -1.47
Netherlands -0.08 -0.70 -0.50
Norway 0.43 0.28 0.80
New Zealand 0.18 0.08 0.66
Poland -0.78 0.66 -1.04
Portugal -0.36  -0.10 -0.42
Sweden -0.31  -0.56 -1.33
Thirkiye -10.32  2.03 0.93
United States -0.50 -0.92 0.09

Table 12: Panel Tests of EPA for the Economic Growth Forecasts (OECD vs. IMF)

Overall EPA Tests

Clustered EPA Tests

Test dr=0 dp=TY*  Test dpr=0 dr=T"Y*
S 0.06 0.06 041 0.50
(0.95)  (0.95) 082)  (0.78)
S 0.04 0.04 %) 042 0.59
0.97)  (0.97) 0.81)  (0.74)
S8 0.04 0.04 c® 042 0.41
0.97)  (0.97) 0.81)  (0.81)

Note: The values shown in parentheses are p-values.
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Figure 1: Power of Selected Tests Under Different Alternative Hypotheses for DGP1 (5% Nominal Size)
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Figure 2: PC Estimates of the Common Factors in the Loss Differentials of the Economic Growth Forecasts Errors (OECD
vs. IMF)
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Appendices

A. Loss Differentials Specification: A Justification

In this appendix, we present the derivation of the model for the loss differentials starting from a
pure common factor model for the forecast errors assuming two most commonly used loss functions,
namely absolute loss and quadratic loss. The forecast error e; ;; of the forecaster [ = 1,2, is assumed to
be given by

erit =cu+ 0,8 +ue, i=1,2,...,n, t=12...T,

where gi = (gi14,-- -, 9im,t) 18 an my x 1 vector of common factors, 0;; = (6i1,.-.,0m,) is their
respective factor loadings vector, and u; ;; is an error term which can in general be serially and cross-
sectionally weakly correlated. Since our objective in this section is to demonstrate the validity of the
common factor model for the loss differentials, we will not focus on the weak-dependence in the errors.
We assume that E(u; ;+|g:) = 0 and E(ul%it]gt) = o} for | = 1,2 where g; = (g/;,g5,)’. A similar factor
model for forecast errors has been used by QTZ but they impose ¢;; =0 foralli=1,...,nandl=1,2.

g) = w; + Aif

The absolute loss differential is given by dy i+ = |e1i| — |e2,it|. Then, we have E(dy ;

where \; = (0';,05;)', 11; = E[sign(ey,i1)]c1; — E[sign(ez,it)]c2; and

)
gl —8y), iferi >0and ey >0,

¢ g1s 85¢)'; if ey > 0 and eg; <0,
t

—81, —85), iferir <0and eg >0,

—~~ o~~~ o~

—g’lt, gét),, if e1,it < 0 and et < 0.

Hence, the model for the loss differentials is obtained with m = mq + my in the case of absolute loss
function. The quadratic loss differential is defined as da ;s = eiit — eg’it. To simplify the notation, let

us assume that ¢;; = 0 for each [ = 1,2. The squared forecast error then satisfies

2 / / / 2
€lit =0),81:81,01; + 20}, 811w + Uy 4
m;  my

/ 2
= > ik, Ori ks Gtk 4Gkt + 260wt in + Uiy
k=1 ka=1

2
my

/ 2
= Z Vi khak.t + 2081w it + uj
k=1
] 20" . 2
=Yttt + 2081w it + Up iy

with straightforward definitions of 7;; ;, and hyx; which are the kth elements of ml2 x 1 vectors =;; and
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Ly, respectively. Then, we obtain the model for the loss differentials as E(dait|g:) = pi + )\;-ft with
pi =0t =03, i = (Y, —vay)', £ = (4, 0h) and m = mi +m3.
B. Proofs

In this appendix, we present the proofs of Theorems 1 and 2. Propositions 1-4 are special cases of
these theorems. Let H, be an n x G matrix which has L;i, the g;th column of I, in its ¢th row with
gi € {1,2,...,G} being a variable which states the cluster which ith unit belongs to. Define also €,,; =
(€1t, €2ty .. €nt)s € = diag(er,ca, ..., ), ¢ = Yo Ciny Ap = (A1, A2,..., )", C = > Cy,
f,=f — %Zthl fi, €nt =€nt — %Zthl €nt, Dy = diag(ni, no, ..., ng) and vij.q,, = E(€it€js).

Define
n
1
!/ —
Vl,nT = E § LgibgiﬁYi,Tv
i=1

1 n
/ ! =
Vour = - E Lgily; Ti Yn1Ty.
ij=1

1 & 1 ¢
N AT . E A .
Vianr = n2 § : Lg;ly, ATy + n2 Loitg; Ui Y15
i,j=1 i,j=1

To prove Theorems 1 and 2, we need the following lemmas.
Lemma 1. Suppose Assumptions 1, 8 and 6 hold. Then, as T,n — oo,
(i) =S Hen, 4 N(0, V1), where Vi = lim(, 7y 00 Viar,
(ii) =S HRyen, 4 N(0, V), where Vo = lim, 7y 00 Vaur,
(iii) L= S Hy ALy 4 N(0,V3), where Vi = lim(, 1y 00 Vanr-
Lemma 2. Suppose Assumptions 1, 2 and 6 hold. Then, for any fized n, as T — oo
(i) T~ ngzl kr (dis/dr) ££; — Tr = 0,(1),
(it) T ngzl kr (des/dr) ftfé ~Ir= Op(1>:
(iii) T ngzl kr (dis/dr) fté;z,s = 0p(1),
(iv) T7ES2) ) kr (dis/dr) €n4€hyy — Fnr = 0p(1).
Lemma 3. Suppose Assumptions 1, 8, 6 and 7 hold. Then,
() b S0 S b (dio/dr) EuEis = 0, (1),
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(i1) b 05 [ St br (das/dr) (NEXE = XA ] =0, (1),

Proof of Lemma 1. (i) is a special case of (ii) with R,, = I, hence we focus on the two last
results. We start by applying the Beveridge-Nelson (BN) decomposition (see, for instance, Phillips &
Solo, 1992) to each component of €, ;. We have €;; = ¢;¢it + 1@-7,5_1 + iz, where by = Y oneo Cintit—n,

Cin = Z;‘;hﬂ ¢ij- Then, we can write

T
1 1 1 - 1 -
—— N H,Rpen =——— > H,Rpcatp,; + —H Ry, — —H,Rptp,
\/nth:; ! \/nTZ Yot T Yu1 = o7 Yn1

where ©,,; = (Y11, %21, - - - ¥nt) and {pm = (1,921 - - - ny)'. The variance of the first term is

Var (A1) =n~! szzl Lgir;‘CnC%I‘j_L;j. A typical element of this matrix, say lwth, satisfies

1 / /
PIDILLLAEED D D RILD Bpapre

1€G jJEGw ZEGZJEG k=1 h=0h/=
1
<> > Z\nkl\mkl Z Z ek
iGGl JEGy k=1 h=0h'=0
ZZ risl > \WZ\%\ Z x| =
k 1ieqG, JE€EGy

where we used the fact that absolute summability is implied by the summability condition we im-
pose on coefficients ¢;;, in Assumption 1. Hence we showed that A; is O,(1). The variances of
the second and the third terms are Var (Ag) = (nT)~' 3 7", Lgir;E(@ml{b;,l)riL;J_ and Var (As) =
(nT)~* doij=1 l’gir;.E('{bn,T'{b;‘L,T)rj‘ngj' respectively. For (ii) to hold, we need to show that these are
asymptotically negligible. This holds if elements of E({pnlfbgl) and E({pnT{p;T) are finite which holds
under Assumption 1 as shown by the BN Lemma in Phillips & Solo (1992). Then the lwth elements of
Var (As) and Var (A3) satisfy (nT)~! > icG, 2ojea, Fir;.O(1)| which is O(T~1) under Assumption 3.
It follows that the second and the third terms are dominated by the first one. Since the variance of the
first term is O(1), it satisfies a central limit theorem for triangular arrays (Kelejian & Prucha, 1998)
and (ii) follows.

To prove (iii), we apply the multivariate generalization of the BN decomposition (see, for instance,
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Phillips & Solo, 1992, p. 985) to f;. We have

T T
1 1 1 ~ 1 ~
—_— H A f=—— H A,CU,+ —HA, ¥, — ——HA,¥
m/TtZ1 i n\/TtZ1 e ‘ n\/T =l nvT e =T

=DBj + By + Bs,

where ¥, = 3°%°  C, ¥, 5, Cj, = > i=n1Cj. The variance of the first term is given by Var (B;) =

1 > ohic1 taNiCC'Ajuy . The lwth element of this matrix satisfies

;ZGjZG XCCN| < ;Zc;zgj NCOA| < nﬂz{;z&; IS I = 0),

where we used the fact that [|C||? < >0 ||Ch|[* < oo. It follows that By is Op(1). The vari-
ances of the second and the third terms are Var (Bg) = ﬁH'nAnE(\ill\il;)A;lHn and Var (B3) =
ﬁH;AnE(\iIT\i/T)A;LHn, respectively. Similar to the reasoning above, we have E(\illlilll) < oo and
E(\ilT\i!/T) < 0o, under the summability condition we impose on the coefficients of the process fr (see,
for instance Phillips & Magdalinos, 2009). Furthermore, the lwth element of the matrix n—IQH;lAnA'an
satisfies |n =2 D ieGy 2jeGy 2hw=1 AikAji| = O(1). Hence, By and Bs are op(1). Since the the first
term is Op(1), it dominates the second and the third terms and a central limit theorem for triangular
arrays (Kelejian & Prucha, 1998) applies to the first term. Now, since the second term in V3,7 is
O(n~1) from (ii), the asymptotic variance of V3,1 equals the asymptotic variance of B; which leads
to ().

Proof of Lemma 2. (i) follows from the proof of Theorem 2 of Jansson (2002) under Assumptions
1 and 2. (ii) follows immediately from their proof noting that 7! Zthl f; = 0p(1) under Assumption
6(a). (iii) holds again by their proof, as by Assumption 6(a) f; and €, s are independent for every ¢, s,

and noting that 7! Zthl €n,t = 0p(1). Similarly, (iv) is a result of their proof under Assumption 1.

Proof of Lemma 3. We have &;; = ALy — AL 7 — Xi/f\t = (wi — AL;7) + (Nif; — X;E) + 4. By
Assumptions 1 and 6, u; — AL; 7 = Op(Tfl/z), it = O,(1) and by Assumption 7 A/f; —X;E = Op(ér:Tl).
After trivial algebra, this gives €;;&;s = €i1€4s + Op(éng). Then (n?T)~1 30, Zfs:l kr (dis/dr) EinEis =
(T) 7 0y Sof ey b (dis/dr) Op(8,7) + (R2T) 71 300, S0y o (dis /) ivis = A1 + Ag, say. We
have A; = n =231, Oy(6.7) [T*1 ZZ:_ET+1 kr (h/dr)| where the term in brackets is O(dp/T) by
Assumption 2, which in turn gives Ay = O(n~1)0,(5,1)O(dr/T) = o,(1). For the second term, we
find E(A2) = 7 >y 225:1 kr (dis/dr) ¥ Vg, Fi = 177 2y 7o | T bt ke (B/dr) Y| -
By Assumption 1 the spectral density function of €;, fi(-), exists and is bounded. By Theorem 2 of
Jansson (2002), under Assumption 2, limp oo T} EZ;iTH kr (h/dr)~yip = T 127 fi(0) = O(T™1)
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for each i. Then we have E(A4s) = O(T~!)n=2 D k=1 r4 = O[(nT)~']. For the variance, we find

n T
1 dy dy
Vor(d) =B | 30 ke (ke (%2 ) cnsinesus

1,j=111,51,t2,52=1

e 2 (%)

i,j=111,51,t2,52=1

n T
1 dy, s
—om Y X k(%) (m) Lt i st )

dt252

51151 62815]7525382)

i,j=111,51,t2,52=1

1 n T dt
—m Y > k(%)

i,J=111,51,t2,520=1

n
dt282

Tl Tily €1y 1 €la,s1 E : TjlsTjla€ls ta€ly,s2
1, l2 1 I3,l4=1

1 o 1 di s, diyss
= Z Tity TilaTjlsTjla | 7a Z kr A kr ar E(€1, t1€12,51 €l3,t2€la,52)

4,4,01,l2,l3,l4=1 t1,51,t2,52=1
(33)

In general, the expectation in the last line can be written as

E(Eh,h612751613,&614752) =Vala,diy s, Visla,digsg + Virlz,deq sy Viola,dig oo

+ '71114,dt152 71213,dt152 + Klilalsly (tlv 81, ta, 32):

where £(-) is the cumulant of the fourth order between €, ¢, €1, s, €15, and €, s, (see Hannan, 1970, p.
23). In our case, by Assumption 1 €; are independent over ¢, hence, the cumulant is null. Furthermore,

the covariances in the expression are null unless l; = [;, 7,5 = 1,2, 3,4. Using these in (33), we find

T < > ’ylz,hz
1

T—1 b n T—
Var(Ay) = Z Z il Z kr < : ) Vi1 ,ha Z Tjly Z
-7

i,j=111=1 h1 —-T+1 lo=1 +

1 n n [ T—1 h 1 n _1 T—1 ]
2 1 2
+ ﬁ Z Z Tily Z kr < ) 1,k Z Tjis Z kr ( > Vi, ho
t,j=10=1 L =—T+1 | la=1 i —T+1 i
1 > _1 T—1 h 1 » _1 T—1 ]
2 1 2
DI LD SN ()RR D i NP DA€ KN
ij=11=1 | m=-T+1 T | u=1 I T4 |

=Ao1 + Aoy + Aas.

All terms in the brackets are O(T~1). Hence, Ay; = O(T~2)n~4 D=1 2ly=1 D rjzb = O[(nT)7?].
Similarly, Ags = Aoz = O[(nT)72]. As a result, A2 = O,[(nT) 7! = 0,(1).

For (i), we write NEEX; — NEEA,; = (Af — NE)EX; + NE(EX; — £,). By Assumption 6 Xf;,
and by Assumption 7 X;/fs are Op(1). This implies that X;?{f;’i] — NfifIX; = O,(6,,+) by Assumption

7. Then for the expression in the statement we obtain # doij—1 Op(-7) [% r‘,f:_iTH kr (h/dr)| =
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Op(8,7)0(dr/T) = 0y(1).

Proof of Proposition 1. This is a special case of Theorem 1 with R,, =1,, and G = 1.
Proof of Proposition 2. This is a special case of Theorem 1 with G = 1.

Proof of Proposition 3. This is a special case of Theorem 2 with G = 1.

Proof of Proposition 4. This is a special case of Theorem 1 with R,, = I,,.

Proof of Theorem 1. Define AL, ; = (AL, ALsy,...,ALy,:)". We have
) 1 T Lz 1 T
ALy =D;' Y H ALy =D, > T H (i Rueng) = fi, + D, ) H Rueny,
t=1 t=1 t=1

where g = (p1, pio, ..., pn)’. It follows that

D\ ' 1 <&
VnT (AL, — ) = | — —_— H R,€.
( T 122 ) < ) \/’I’ﬁ tzl ,t

n

Then v/ nTQ;ié?(A]TJnT —[,) T N(0,1¢), where Qo =30, ﬁngb 1) 4,7 . by Lemma 1(ii)
and noting that n~'D,, converges to a finite and nonsingular matrix under Assumption 8. The matrix
Qo 1 can be written as Q9,7 = (Dn/n)_lngT(Dn/n)_l. Since Dy, is known, estimation of €29 ,,7,

requires only the estimation of Vy 7. Similarly, we write ﬁng = (Dn/n)_l\A/‘gynT(Dn/n)_1 where

T
<7 d s dl ~ ~
Vour = E E kr < t ) <d:> LgiblngLitALjs-

t,j=1t,5s=1

The lwth element of the matrices Vg ,7 and \A/'ng are

2 nT - Z Z r’L Yn1Tj.s (34)

74€Gl ]EGw

and

o = Z > Z k5< > (fl“)AL +ALjs,

zGGl FEGy t,s=1

respectively. We will show that @é“;lT véf“nT = 0p(1) which leads to the first result in the proposition.
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We have ALj; = rj €, which gives ALjALjs = 1 €, 1€, ;. Then,

[T
. 1 dis\ . - 1 _
=l = 50 ks (G0 ) ot | 3 O b (52) @it 1 - 1 0 X iy
ZGG{ ]EGw t,s=1 iEGl jGGw
[T
1 dis\ . _
2 S ks () | X ke () @nsth | 1
’LEG[]EG’ L t,s=1
d; _
_ = Z Z [1 — kg <dj>] r; ¥, L.
ZEGLJEG

Since 4,,7 = O(1), and T~ ! Zt]:s:l kr(dis/dr)€n i€, s —¥nr = 0p(1) by Lemma 2(iv), it suffices to show
that 1 w2 icG) 2jeGy ks (dij/dn) rixj = O(1) and 1 DoicGy 2 jeGn L — ks (dij/dn)]r; rj = o(1) in order

to prove the consistency of v U2 T Starting with the latter, we have
A2 [ () [ = 520 3w ()
zGGl JEGy, 1€G jEGw

< 5 5 il =04 ) = ot

dy: i€Gy jEGw

|} i

where the last equality follows by the assumptions that d,, — oo and ps > 1. For the first term, write

DIDWHCIETETD 3D SEDEES o ol (BN C 3 [ETRE!

’LEG] ]EG iEGl jEGw ZEGl ]EG

which follows from the fact that the first term is O(1) and the second term is o(1) by the previous
equation. Hence, véw T — vé“f’nT = 0p(1) and the result follows. This completes the proof of (i).

To show the consistency of QZHT, we first write QZ,nT = (Dn/n)*lﬁznT(Dn/n)*l, where

ng,
Vour = ZZ S b ( ) i ALyAL,
- =1 j=1t,5=1
The lwth element of this matrix, corresponding to clusters [ and w is
1 1 & d
~l t ~ o~
,2wnT nT Z Z 1‘;. T Z ko <ds> en,te;,t Tj.,
= ieq, jeq,, ts—1 T

where G, g =1,...,G, is the set of indices in cluster k£ which are used in the calculation of the partial

variance estimate. This set has a cardinality of n,. Using this expression together with (34), we can
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write

N] l 1 ! ! 1
Vot = Vamr = (Do — Var) + (Vo — Vo) (35)

where ’Ul2wT = %Ziegl > jeq. TiYnrTj. Our objective is to show that both terms in parentheses

approach to zero. We have

T

1 d
N t ~ o~ _
UzwnT UznT— E E r TE ko <d;> 6n7t€;1,t_7nT

zGGl JjeG,, t,s=1

=]
.

The term in brackets is o,(1) by Lemma 2(iv). Then it is sufficient to show that < ZieGl > jec. TiTj.
is bounded. We have

1 1 - 1 - n

LS Y - Y S < L S 3 bl = oy,

~i€G, jEG,, ~i€G, jEG,, k=1 ~i€G) k=1 JEG,, =
which is O(1) because n;/n — 7 € (0,1). For the second term in (35) we note that, by definition,
lim, 7) 00 yg‘j’nT = lim(, 7)—o0 Ug”:”nT = o4 where v} is the [wth element of the matrix Vo defined in

Lemma 1(ii).

Proof of Theorem 2. We have
1 & 1
AL, = fa, + D#f ;H;Rnen,t +D;! ZH TALL,
from which, we obtain

VTAL g D\ 1 &, D\ 1 -y
T(AL,r — ft,) = <n> T ; H/ Ry€,; + <n> T ; H/ A,f;.
From Lemma 1(ii) it follows that —— Zt L H/ R€,; = Oy(n~1/2). Then, \Fﬂg T (ALnT @,) et
N(0,1¢), where Q3,7 = > ' o lng Lgily (}\ L7Aj + 1} 7,7r;.) by noting that n~'D,, converges to a
finite and nonsingular matrix under Assumption 8 and Lemma 1(iii). The matrix Q3,7 can be written
as Q3,7 = (Dy/n) " 'V3,,7(Dy/n) 1. As in the proof of Theorem 1, estimation of €9 ,,7, requires only

the estimation of Vy 7 because D,, is known. Write ﬁng = (Dn/n)_li\/’ng(Dn/n)_1 where

. s
Vinr = 2T Z Z kr <dtT> LgZL ALy ALjs.

i,j=1t,s=1
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The lwth element of the matrices V3,7 and \A/'&HT, corresponding to clusters [ and w are

3nT 2T Z Z Z Aj Ld Aj +rz Tn dtsr]) (36)

1€G; JEGy t,s=1

and

AéwnT n2T Z Z Z ko <dts> ALZtALjS7

1€G jEG t,5=1

~lw

respectively. We will show that 05 vézf’nT = 0p(1) which gives the first result in the proposition. We

have ALy = Nif, + r; €, which gives
AI:itAijs = )\;ftf;AJ + A;fté%,srj. + r;,én,tfé}\j + rg,én,téfyl75rj.-

Using the last three equations, we obtain

) 1 dis\ 22 -
W= 3 SN LS (d> B - Tr| A,
1€G JEG t,s=1 T
1 1 & dis\ =,
D IDIER D Gl TS
. . T
1€G JEGw L t,s=1

T
1 1 dis) - - _
T > 2 T > kr (d;> €nt€ns — Y1 | T

1€G JEGy L t,s=1

=Dy + Dy + D3 + Djy.

We will show that each of these four terms are o,(1). By Lemma 2, all expressions in square brackets

are op(1). The first term can be written as Dy = n2 D icGy 2ajeGay A ‘A;jop(1). By Holder’s inequality
we have |AJA;| < [|A;]|||A;]| where the right hand side is bounded by Assumption 6(b). This shows that
Dy = 0p(1). Other terms can be shown to be 0,(1) similarly which in turn gives \A/g,nT — V3,1 = 0p(1)
and hence ﬁng — Q3,7 = 0p(1). The consistency of ﬁng in turn implies the asymptotic null
distribution which completes the proof of (i).

For the second result, we write Q&nT = (Dn/n)*ling(Dn/n)*l, where

T
Qg’nT = —5= Z Z kr < ) Lgll, S\/EX/? —l— Z Z kr (dts> Lglb EitEis.

i,j=1t,s=1 zltsl
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The [wth element of this matrix is

T T
e DI W I C PR D) S S G EEN

zeGljerts 1 lEGljertS 1

Using this expression together with (36), we find

véwnT v3 nT = 2 Z Z Z k <dts) X;/f\ts‘;/f}s - A;f‘TAj

i€G JEGy t,s 1 T
~ 1 _
n2T > Z kr < ) Eit€is — 2 Z Z X} Yn1T;.
1€G t,s=1 1€G jEGw
T
dts
= ;@J;w T z:: " <dT) (NEXE - NE£N)
+ n% IR Z kr <dts> fif; — T | A
iEG’leG ts 1
Y S b <d“> Bt D O AT
zEG’lts 1 1€G jEGy

The desired result now follows from Lemma 3(i), Lemma 3(ii), Lemma 2(i) and by noting that the last

term is O(n~'). This completes the proof.

C. Details on the Evaluation of the IMF Consumer Price Inflation Forecasts

In this appendix, we present the details on the evaluation of the IMF CPI forecasts which was
summarized in Section 6.2. As in the application on the comparison of the economic growth forecasts
of the OECD and the IMF, the data for the IMF forecasts come from the Fund’s Historical WEO
Forecasts Database. Once again we focus on their summer forecasts made for the following year,
hence we are dealing with one year ahead forecasts. Our data set contains 127 countries for which the
forecasts are available from 1991 to 2019, i.e. the panel is balanced. We exclude 5 countries from the
original IMF data set as their loss differentials are very different from the rest of the sample. These
countries are Brazil, Democratic Republic of the Congo, Peru, Venezuela and Nicaragua. Notice that
all of these countries experienced hyperinflation, in late 2010’s in the case of Venezuela, and in early
to mid-90’s for the rest. For the first four countries there are very big drops or jumps in the CPI
inflation, hence their RW forecasts are very poor for at least one year. Whereas for the last country the
situation is the contrary, that is IMF forecasts are much worse than the RW forecasts. Our conclusions

should be understood to apply to the 127 countries in our sample which includes the G7 countries, 22
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OECD countries which are not part of G7 and 98 non-OECD countries. As stated in the paper, in this
application, in addition to the quadratic loss function, we use the absolute loss function.

Cross-sectional and temporal dependence in loss differentials: CPI forecasts. Before
looking into the EPA test results we apply the methodology described in Section 5 and check if we can
find evidence for CD in our sample and identify its type. To save space, we do not report the diagnostic
results in tables in this subsection. The two CD tests, namely BP and modified BP, provide p-values
which are practically zero for both loss functions. Hence, we conclude that the loss differentials contain
CD. Following the CD tests, we use the ICj; which indicate that there are 6 common factors in the
loss differential series. We therefore find out that both loss differential series display SCD and apply
our tests robust to SCD.

Panel tests for the EPA hypotheses: CPI forecasts. As before, we report the tests robust to
SCD as well as the results for the non-robust tests as a benchmark. We start the analysis with overall
EPA tests and continue with the clustered EPA tests. As stated in the main paper, we consider 2
different country clustering schemes: the first one divides the sample of countries into OECD and non-
OECD countries whereas the second consists of G7 countries, non-G7 OECD countries and non-OECD
countries. We further split the sample into pre- and post-global financial crises periods and compute
the average loss differentials. The results for the average loss differentials of are given in Table 13. In
the full sample with the absolute error loss, we see that the IMF does better than the RW for all clusters
except the non-OECD countries. The global average is found to be positive which shows that the IMF
does worse than the RW overall. The results are similar for the quadratic loss function except that the
average loss is practically zero for G7 countries. In the pre-crisis period, the overall differences are more
pronounced between the IMF and the RW model. In the post-crisis period however, the differences
are very close to zero, especially for the quadratic loss. In what follows we use our test to check the
significance of these averages.

First, in Panel (a) of Table 14, we see that all three overall EPA test statistics are statistically
significant in 10% level for the absolute loss function. We also see here the effect of taking CD into
account: with SS)T, we can reject the overall EPA hypothesis at 5% level but this is not the case for
the tests SS’)T and S S’)T We remind that the average absolute loss differential of IMF and RW forecasts
is 0.45 which is reported in the last row of Table 13. We conclude that, overall, there is a small but
statistically significant difference between the average absolute loss differential of the IMF and RW
forecasts in favor of the latter.

With the quadratic loss function, we cannot reject the overall EPA hypothesis in conventional levels
using any test. The question therefore is, if we can reject the clustered EPA hypothesis using the

clusters under consideration. In the second block of the table, we have the results for the clustered
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EPA tests using two clusters: OECD and non-OECD countries. For these clusters, we can strongly
reject the clustered EPA hypothesis with both loss functions using the 07(11% However, when we take
into account the CD in the loss differentials, the magnitude of the test statistics decline dramatically
and they are insignificant. In the last block of the table, we have the results for the case of the three
clusters, G7, non-G7 OECD, and non-OECD countries. Here, a similar picture arises such that we can
reject the clustered EPA hypothesis with Cr(bl%, but this is not the case for 01(13% and fo’zf

In Panel (b), the results for the pre-crisis period are reported. The results obtained from the overall
tests are similar to those of the full sample, that is, we can reject the overall EPA hypothesis with
the absolute loss function but this is not the case with the quadratic loss. Similarly, with two country
clusters (OECD and non-OECD countries), we can reject the clustered EPA hypothesis using only
CS) for both loss functions. When we consider the three country clusters however, we can reject the
clustered EPA hypothesis with the absolute loss function using any test, at least at 10% level. To
conclude, a significant difference between the IMF and RW forecast accuracy exists in the pre-crisis
period using the absolute loss function.

As can be seen in Panel (c), the results are slightly different for the post-crisis period. First, the
overall test statistics are negative for the absolute loss as IMF has less bias in this period. However,
these overall differences are not statistically significant. When we look at the clustered EPA tests
with two clusters, the differences are again statistically insignificant for both loss functions. If we
consider the case of three country clusters, similar to the pre-crisis period, we can reject the clustered
EPA hypothesis with the absolute loss function using any test. The statistics for the quadratic loss

differentials are insignificant as before. This is not surprising as we have found that the average loss

differentials are very close to zero using the quadratic loss, as is reported in Table 13.
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Table 13: Average Loss Differentials for the CPI Inflation Forecasts of Different Country Clusters (IMF vs. Random Walk)

Full Sample 1991-2006 (Pre-crisis) 2009-2019 (Post-crisis)

Cluster Absolute Loss Quadratic Loss Absolute Loss Quadratic Loss Absolute Loss Quadratic Loss
G7 -0.0004 0.0000 0.0006 0.0000 -0.0019 -0.0001
Non-G7 OECD -0.0033 -0.0397 -0.0063 -0.0719 0.0002 0.0000
OECD -0.0026 -0.0301 -0.0047 -0.0546 -0.0003 0.0000
Non-OECD 0.0065 0.0134 0.0121 0.0243 -0.0014 -0.0002

All 0.0045 0.0035 0.0083 0.0063 -0.0012 -0.0002
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