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Generalisability of fetal 
ultrasound deep learning models 
to low‑resource imaging settings 
in five African countries
Carla Sendra‑Balcells 1*, Víctor M. Campello 1*, Jordina Torrents‑Barrena 2, 
Yahya Ali Ahmed 3, Mustafa Elattar 4,5, Benard Ohene‑Botwe 6,7, Pempho Nyangulu 8, 
William Stones 8, Mohammed Ammar 9, Lamya Nawal Benamer 10, 
Harriet Nalubega Kisembo 11, Senai Goitom Sereke 12, Sikolia Z. Wanyonyi 13, 
Marleen Temmerman 14, Eduard Gratacós 15,16,17, Elisenda Bonet 15,18, Elisenda Eixarch 15,16,17, 
Kamil Mikolaj 19, Martin Grønnebæk Tolsgaard 19 & Karim Lekadir 1

Most artificial intelligence (AI) research and innovations have concentrated in high‑income countries, 
where imaging data, IT infrastructures and clinical expertise are plentiful. However, slower progress 
has been made in limited‑resource environments where medical imaging is needed. For example, 
in Sub‑Saharan Africa, the rate of perinatal mortality is very high due to limited access to antenatal 
screening. In these countries, AI models could be implemented to help clinicians acquire fetal 
ultrasound planes for the diagnosis of fetal abnormalities. So far, deep learning models have been 
proposed to identify standard fetal planes, but there is no evidence of their ability to generalise in 
centres with low resources, i.e. with limited access to high‑end ultrasound equipment and ultrasound 
data. This work investigates for the first time different strategies to reduce the domain‑shift effect 
arising from a fetal plane classification model trained on one clinical centre with high‑resource settings 
and transferred to a new centre with low‑resource settings. To that end, a classifier trained with 1792 
patients from Spain is first evaluated on a new centre in Denmark in optimal conditions with 1008 
patients and is later optimised to reach the same performance in five African centres (Egypt, Algeria, 
Uganda, Ghana and Malawi) with 25 patients each. The results show that a transfer learning approach 
for domain adaptation can be a solution to integrate small‑size African samples with existing large‑
scale databases in developed countries. In particular, the model can be re‑aligned and optimised 
to boost the performance on African populations by increasing the recall to 0.92± 0.04 and at the 
same time maintaining a high precision across centres. This framework shows promise for building 
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new AI models generalisable across clinical centres with limited data acquired in challenging and 
heterogeneous conditions and calls for further research to develop new solutions for the usability of AI 
in countries with fewer resources and, consequently, in higher need of clinical support.

Abbreviations
AI  Artificial Intelligence
CNN  Convolutional Neural Network
GE  General Electric

In the age of Big Data and digital health, great excitement has been generated around the extraordinary oppor-
tunities that artificial intelligence (AI) may offer in tomorrow’s healthcare. In particular, deep learning-based 
methods have shown great promise for the analysis of complex biomedical data. In medical imaging, deep 
learning has already made an impact in a wide range of applications such as  cardiology1,  cancer2 or brain 
 imaging3 among many  others4,5. However, existing developments have been mostly focused on applications in 
high-resource settings, where there is greater access to large clinical imaging datasets for training deep learning 
networks. Applications in environments with limited resources, such as countries across the African continent, 
have been scarce. Thus, there is a risk of increasing inequalities in global health due to the disparities in the 
application of AI in medical imaging.

Paradoxically, in places with important medical imaging needs the development of AI is at its lowest level. 
For example, in Sub-Saharan Africa, there is a very high level of neonatal mortality (i.e. 27 deaths per 1000 
births in 2019, compared to an average rate of 3.4 per 1000 in the European  Union6) and a very high burden of 
 stillbirths7, but the access to antenatal screening is limited, especially in rural Africa. A statistical study from 
the World Health Organisation highlights a critical shortage of trained obstetricians across African  countries8. 
However, the diagnosis of fetal abnormalities in clinical practice requires clinical expertise to acquire and inter-
pret ultrasound images of the fetus.

At the same time, the literature is abundant with AI developments and deep learning implementations to 
facilitate the tasks of fetal ultrasound scanning, quantification and  diagnosis9–14. For example, several techniques 
have been developed to help clinicians acquire fetal ultrasound planes that are adequate for further quantification, 
i.e. that cover specific structures such as the fetal head, fetal femur, fetal abdomen and fetal thorax. Baumgartner 
et al.15 were the first to identify and localise 13 fetal standard planes in real time during 2D ultrasound mid-preg-
nancy examinations using convolutional neural networks (CNNs). Later, similarly but in a retrospective manner, 
Maraci et al.16 automated the task of detecting the fetal presentation and heartbeat from a pre-defined free-hand 
ultrasound video with support vector machines and a conditional random field model instead of CNNs, due 
to the limited number of samples available for their study. Alternative approaches involved obtaining standard 
planes from 3D ultrasound (US) volumes to learn the mapping between the 2D plane and the transformation 
required to move towards the standard plane within the 3D  volume17. More recently, Burgos-Artizzu et al.18 
evaluated the maturity of state-of-the-art CNNs to automatically classify 2D maternal fetal US and released a 
large open-source dataset to promote further research on the matter. While some AI tools are being implemented 
to recognise multiple views in fetal  imaging19, others focus their work on specific anatomical  structures20–22.

Despite the big amount of research studies, the proposed techniques have been trained and/or tested with 
fetal ultrasound datasets from high-income countries, such as the  UK15–17,  China21, United  States19 or  Spain18,20. 
There is no evidence of the ability of these deep learning models to generalise in centres with low resources, i.e. 
with lower image quality and a limited number of data to calibrate the models. To our knowledge, only one study 
assessed the applicability of a fetal ultrasound plane classifier across countries, but exclusively in high-resource 
imaging settings: a classifier was trained in the UK and tested successfully in  Denmark23.

This paper presents the very first study investigating the transferability of AI models trained in high-income 
settings and their applicability to process images acquired in low-income settings. Specifically, we build fetal 
ultrasound classifiers using large-scale datasets from Spain and assess their performance when applied to fetal 
ultrasounds acquired in five different African countries with differences in scanners, populations and contexts. 
Furthermore, transfer learning, an effective strategy to adapt a pre-trained model to a new  domain24, is imple-
mented and assessed under real-world conditions, i.e. based on very small size samples of new images from the 
local sites, to assess the resources and efforts needed to re-calibrate the original model to obtain high-perfor-
mance in each local clinical centre. The main contributions of this work are summarised as follows:

• The collection and annotation of a new multi-centre fetal ultrasound dataset comprised of 120 patients from 
five African countries, namely Algeria, Egypt, Malawi, Uganda and Ghana. This dataset is the most diverse 
ultrasound dataset acquired to our knowledge and represents real clinical scenarios across low-resource 
imaging settings. As a result, the ultrasound appearance, both globally and locally, exhibits marked differ-
ences as clearly illustrated in Fig. 1.

• Application and evaluation of a fetal plane classification model trained in high-income settings within a 
diversity of clinical centres in low-resource imaging settings. To that end, a deep learning model is built 
using a large and diverse European dataset from Spain (12,400 images from two hospitals)18 and externally 
evaluated in two different settings: (1) with fetal ultrasounds from four centres located in another European 
country, namely  Denmark23, to assess generalisability under similar settings and resources; and (2) with the 
fetal ultrasound images acquired from five African countries to assess generalisability under different condi-
tions and contexts.
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• Implementation of adaptive learning approaches to optimise the scalability of the classifiers in settings with 
distinct imaging conditions and lower image quality. This includes the estimation of the minimal number 
of samples required for calibrating the models to reach maximal performance for standard fetal plane clas-
sification in each of the local African centres. As a result, realistic strategies are derived for the scalability and 
applicability of existing deep learning models across new centres and imaging settings with minimal effort.

Methods
Datasets. The data used in this study and described in Table 1, consist of seven datasets acquired in distinct 
clinical centres. The first is a publicly available dataset from two centres in  Spain18. The second has been acquired 
in four different centres in Denmark. Finally, the last five datasets contain US samples from five African coun-
tries (Malawi, Algeria, Uganda, Ghana and Egypt). All datasets were fully anonymised according to institutional 
guidelines. The Spanish dataset is publicly available, so no approval was necessary for this work. Subjects in Den-
mark, Ghana and Algeria signed informed consents and the studies were conducted under the approval of the 
ethics committee from each scan centre. The committee responsible in Denmark was the Danish Patient Safety 
Authority and the Danish Data Protection Agency. For Ghana, the Ethics and Protocol Review Committee of 
the School of Biomedical & Allied Sciences, University of Ghana. And for Algeria, the Ethics Committee of the 
Kouba Hospital, Algeria. For Malawi, Egypt and Uganda datasets, no individual consent was necessary accord-
ing to national guidelines since no identifiable data was collected. The subjects have been scanned using a range 
of scanner US vendors by GE Medical Systems, Siemens, Edan Instruments, Shenzhen Mindray Bio-Medical 
Electronics and Aloka. Moreover, the frequency range of the curved transducer used during the acquisition 
ranges from 3 to 7.5 MHz and the screening was performed during the 2nd and/or 3rd trimester of the preg-
nancy period. Finally, clinical experts or research technicians who received extensive training in US classifica-

Figure 1.  Image examples of the maternal-fetal US categories from our multi-centre dataset.

Table 1.  Details about the seven datasets considered in the study.

Country Vendors Type of transducer Freq range (MHz) Name of clinical centre Trimester pregnancy

Spain
Voluson E6, Voluson S8 and Voluson S10 (GE 
Medical Systems, Zipf, Austria), and Aloka 
(Aloka CO., LTD.)

Curvilinear transducer 3 to 7.5 Hospital Clínic and Hospital Sant Joan de 
Déu 2nd and 3rd

Denmark Voluson E6, Voluson S8 and Voluson S10 (GE 
Medical Systems, Zipf, Austria) Curvilinear transducer 3 to 7.5

Copenhagen University Hospital Rigshospi-
talet, Hvidovre Hospital, Herlev Hospital and 
Nordsjællands Hospital Hillerød.

2nd and 3rd

Malawi
Mindray DC-N2 (Shenzhen Mindray 
Bio-Medical Electronics Co., Ltd, China/
Germany)

Curvilinear transducer 3.5 Queen Elizabeth Central Hospital 2nd and 3rd

Egypt Voluson P8 (GE Medical Systems, Zipf, 
Austria) Curvilinear transducer 7 Sayedaty Center 2nd

Uganda ACUSON X600 (Siemens) Curvilinear transducer 3 to 7.5 Mulago National Referral Hospital 3rd

Ghana EDAN DUS 60 (Edan Instruments, Inc., 
Shenzhen, China) Curvilinear transducer 3.5 to 5 KBTH Polyclinic (Accra) 2nd and 3rd

Algeria Voluson S8 (GE Medical Systems, Zipf, 
Austria) Curvilinear transducer 3 to 7.5 EPH Kouba and Clinique Des Lilas 2nd and 3rd
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tion were asked to classify all images into femur, thorax, head and abdomen. The other less common planes were 
classified into the ‘other’ category. However, the five African datasets lack the ‘other’ category, and two of them 
do not contain samples of the thorax, representing a real clinical scenario in low-resource settings. Details about 
the number of samples used in each case are summarised in Table 2.

European datasets. The first large and open-source dataset with 1792 patients was collected at  BCNatal18, an 
institution with two associated hospitals (Hospital Clínic and Hospital Sant Joan de Déu, Barcelona, Spain). All 
pregnant women attending routine pregnancy screening during the 2nd and 3rd trimesters between October 
2018 and April 2019 were included in the study. Images were acquired using six different US machines by differ-
ent operators with similar experience. The US machines used were three Voluson E6, one Voluson S8, one Volu-
son S10 (GE Medical Systems) and one Aloka. Images were taken using a curved transducer with a frequency 
range between 3 and 7.5 MHz. Operators were instructed to avoid using any type of post-processing or artefacts 
such as smoothing, noise, pointers or callipers when possible.

The second big dataset of this study was composed of 2nd and 3rd trimester US scans obtained from four 
fetal medicine centres in Denmark (Copenhagen University Hospital Rigshospitalet, Hvidovre Hospital, Herlev 
Hospital and Nordsjællands Hospital Hillerød). The scans were completed in the period between 2009 and 2017 
and were obtained using three GE machines: Voluson E7, Voluson E8 and Voluson E10. Images were taken 
using a curved transducer with a frequency range between 3 and 7.5 MHz and no post-processing or artefacts 
were applied.

African datasets. Five African datasets were collected specifically for this study between November 2021 and 
February 2022. Each dataset included 25 patients and the images were not processed after the acquisition.

The first African dataset was acquired at Queen Elizabeth Central Hospital in Malawi using a Mindary DC-N2 
US machine. The 2nd and 3rd trimester US samples were obtained between December and February using a 
curved transducer with a 3.5 MHz frequency.

The second small-size dataset was obtained at Sayedaty centre in Egypt using a Voluson P8 (GE), a GE Voluson 
series ultrasound with less image quality. The 2nd-trimester ultrasound scans were acquired between November 
and December using a curved transducer with a 7 MHz frequency.

The third African dataset consists of images from pregnant women during the 3rd trimester from the Mulago 
National Referral Hospital in Uganda. The US images were obtained in December 2021 with a Siemens US 
machine and using a curved transducer with a frequency range between 3 and 7.5 MHz.

The fourth dataset was acquired with an EDAN DUS 60 US machine and comprises samples from women in 
their 2nd or 3rd trimester pregnancy period. The images were acquired at the KBTH Polyclinic Centre, Accra, 
Ghana, in December. Operators used a curved transducer with a frequency range between 3.5 and 5 MHz.

The last dataset was acquired between November 2021 and December 2021 at the EPH Kouba and Clinique 
Des Lilas centres in Algeria and using the same acquisition as in the European datasets, but with a lower-quality 
GE machine.

Data preparation and pre‑processing. All patient data was fully anonymised by removing the header in the 
original image and was later stored in Portable Network Graphic (PNG) format without compression to avoid 
quality degradation. Since US images do not contain colour information, images were stored as grayscale bit-
maps. Images with visual artefacts were flagged by the clinician or technician and excluded from the analysis. 
We cropped the region containing most of the field of view but excluded the vendor logo and ultrasound control 
indicators. Finally, a min–max normalization was used after resizing the image to 224× 224 to keep the same 
intensity range in images from the same dataset.

Model architecture and implementation details. Based on the model benchmark presented by Bur-
gos et al.18 for fetal plane classification, the best performing method, a Densenet-16925, was implemented in this 
study. The Spanish dataset described previously was used as the training set for the aforementioned benchmark, 
achieving a 0.94 average class precision. The Adam optimiser was used for training the model with a constant 
learning rate of 10−3 and first and second moments of 0.9 and 0.999, respectively. At each iteration, a batch of size 

Table 2.  Number of subjects for each of the four datasets used during the training, validation and testing 
phases.

Country Abdomen Brain Femur Thorax Other TOTAL Patients

Spain 711 1781 1040 1718 4213 9463 1792

Denmark 771 635 844 291 0 2541 1008

Malawi 25 25 25 25 0 100 25

Egypt 25 25 25 25 0 100 25

Uganda 25 25 25 0 0 75 25

Ghana 25 25 25 0 0 75 25

Algeria 25 25 25 25 0 100 25
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24 was used to calculate the loss function (cross-entropy loss) and optimise the network parameters. To improve 
the learning of the model, data augmentation was implemented during training. At each batch, images were 
randomly flipped, cropped between 0 and 20%, translated from 0 to 10 pixels and randomly rotated up to an 
angle of 15 degrees. The code was developed in  PyTorch26 and the hardware used during training and inference 
consisted of an 8 GB NVIDIA GeForce RTX 2080 Ti GPU. The different datasets were split into 50% for training 
and 50% for testing because of the small sample size of the African datasets. Different patients were included in 
each split to avoid data leakage. During training, 20% of the studies were kept for validation for those datasets 
with a large sample size case, while this amount was increased to 50% in the small sample size case. The same 
class distribution as in the Spanish dataset was enforced in the remaining datasets (40% ‘other’ and 15% for each 
of the other planes: femur, thorax, abdomen and head) and the missing categories of the African datasets (‘other’ 
or thorax) were filled with samples from the Spanish dataset.

Ablation study. Several strategies were considered to study the model transferability from high to low-
resource imaging settings. We classified them into single-centre and multi-centre. The first approach uses a 
single centre in high-resource settings and the second approach includes also samples from the target centre in 
low-resource settings. 

1. Single-centre: We train the neural network with the Spanish dataset using a different amount of samples 
( n = 125 , 250, 500, 1000, 2000, 4000). Then, we evaluate the classification performance on the new datasets 
to test the generalisability of the classification model either on the Danish dataset, acquired in high-resource 
settings or on the African datasets acquired in low-resource settings.

2. Multi-centre:

Combination: We train the neural network directly using two samples with varying sizes from two differ-
ent datasets, the Spanish dataset ( n = 0 , 125, 250, 500, 1000, 2000, 4000) and each of the African datasets 
separately ( n = 25 ). With this, we investigate the effect of the sample size of the first centre on the perfor-
mance of the model in the second centre.
Transfer learning: We fine-tune the last 4 layers of a pre-trained neural network with a few US images 
from the new clinical site in Africa. To that end, we pre-train the neural network with the Spanish dataset 
using again a different amount of samples ( n = 0 , 125, 250, 500, 1000, 2000, 4000), being n = 0 the case in 
which a model pre-trained on the public ImageNet database for object detection and image classification 
is used. Then, the model is fine-tuned with the available US samples from each of the African centres. 
Additionally, we estimate the minimum number of patients ( p = 2 , 4, 6, 8, 10, 12) needed from the African 
centre during the fine-tuning to obtain the desired level of performance, compared to the case in which 
no pre-trained model is used.

Performance evaluation. The average accuracy metric is used for monitoring the evolution of the model 
training. Thus, the model that reaches the maximum accuracy on the validation data and the minimum valida-
tion loss is saved as the final model and is later assessed against the testing set. For all experiments and results, 
confusion matrices are calculated and saved. The area under the curve (AUC) score, a metric that did not influ-
ence the training of the model, is used to assess all the experiments. Since the classification involved multi-label 
outputs, the AUC was computed as the average of the scores for one-versus-rest comparisons, i.e. AUC scores 
were computed taking each label as the positive class and all the rest as negatives.

Results
Generalisation of the fetal plane classifier to high or low‑resource settings using a single‑cen‑
tre approach. In the baseline experiment, we evaluated the generalisation of the model trained with the 
Spanish dataset for different amounts of samples. Figure 2 shows that a good performance is achieved on the 
Danish dataset (average AUC greater than 95%) when a sufficiently large amount of samples is used ( n > 500 ). 
Although the Spanish model has a good generalisation ability in another European dataset, the African clinical 
centres with low-resource settings manifest an inconsistent pattern and lower performance, especially when the 
number of training samples is scarce. In the case where the images are acquired using a similar protocol to that 
of the European datasets, such as Algeria (Table 1), the model shows a competitive performance (average AUC 
of 97.9± 1.9 %) when more than 1000 samples are used for training.

Transferability of the fetal plane classifier from high to low‑resource settings using a multi‑cen‑
tre approach: combination or transfer learning. The first approach tested to improve the generalis-
ability of the model from high to low-resource settings consisted of the combination of the Spanish dataset with 
the small-size datasets from each African centre. The AUC for these models separated by the African dataset 
used is shown in Fig. 3 (left plot) for a different number of training samples. The same procedure was followed 
for the second approach (right plot in Fig. 3), which is based on fine-tuning a model, pre-trained with data from 
Spain, using all patients in Malawi, Egypt, Uganda, Ghana and Algeria. When combining different datasets for 
training, the number of samples from Spain needed to reach the maximum performance in the African clinical 
centres is in most cases 500 or 1000. However, this number is not accurate and the good performance of the 
model is highly dependent on its choice, making it challenging to find a good balance between both datasets. On 
the other hand, in the transfer learning approach, the performance of the new clinical centres increases progres-
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sively with the number of cases from the Spanish dataset. The maximum AUC is obtained when using transfer 
learning (above 98% for all target datasets).

In terms of computational cost, Table 3 shows that training in the combination approach takes 8 times 
longer than when using transfer learning. Moreover, although the CPU and model storage is the same, the GPU 
resources needed are 3 times higher. In summary, the transfer learning approach is the most efficient considering 
the computational resources required and the final performance.

Figure 2.  Generalisation performance of a model trained with different number of samples from the Spanish 
dataset evaluated in the same clinical centre, in a new centre in Europe (Denmark) and five datasets from Africa 
(Malawi, Egypt, Uganda, Ghana, Algeria).

Figure 3.  The AUC score as a result of combining the dataset acquired in Spain with the US samples acquired 
in each African centre independently or after fine-tuning the Spanish model, trained with varying sample size, 
with US images from each African centre independently.

Table 3.  Summary of the computational resources needed for the combination ( n = 500 ) and transfer 
learning approaches ( n = 4000).

Combination Transfer learning

Inference time (s/epoch) 8 1

GPU memory (MB) 5683 1803

RAM memory (MB) 6000 6000

Model size (MB) 48.6 48.6

Batch size 24 24
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Given the potential of the transfer learning approach to result in a generalisable model we now study the 
optimal number of patients required to get a good performance. Using the model pre-trained with 4000 images 
from the Spanish dataset, we obtain in Fig. 4 the AUC for the different African datasets when using a different 
number of patients from the target domain. We compared this strategy with the case in which a big dataset is not 
available and so the model has to be trained using only the samples from the African centre. The results indicate 
that fine-tuning models trained on a large dataset with a small amount of target data is sufficient to reach a high 
classification performance. The generalisation performance increases progressively with the number of patients 
used from the target centre and reaches a maximum AUC when using around 4 or 6 patients. On the contrary, 
when fine-tuning is not used a lower performance is obtained. For example, in the case of Malawi, Egypt and 
Algeria, the maximum average AUC when training from scratch is 93.3%, 90.8% and 90.3%, respectively, while 
transfer learning increases the average performance to 99.2%, 98.8% and 99.8%. In Uganda and Ghana, the 
improvement given by transfer learning is smaller since the maximum baseline performance is already high: 
99.5% and 97.6% versus 100% and 98.6% with fine-tuning, respectively. The higher baseline performance in 
Ghana and Uganda could be explained by the fact that in these two centres the classes used for testing are only 3 
(abdomen, brain and femur). As observed in Fig. 5, the thorax plane is more frequently misclassified when fine-
tuning is not used. In particular, most of the thorax examples are wrongly classified as brain or ‘other’. Figure 5 

Figure 4.  The evaluation of the model after being trained in Spain with all available samples and fine-tuned 
using a different number of patients from each African centre, as compared to the performance of the model 
directly trained with the African US images.

Figure 5.  Results on common plane classification with and without transfer learning using 12 patients of each 
African centre in Malawi and Algeria.
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also shows that when a model pre-trained in a large dataset is used and fine-tuned, the model can adapt to the 
new configuration of the new centre.

Finally, Fig. 6 quantitatively summarizes the capacity of transfer learning to adjust existing models to new 
centres with minimal effort and reduced sample size as compared to models trained from scratch with African 
datasets. Transfer learning achieves an improved average recall, by reducing the number of false negatives, while 
the average precision is stabilised and reaches a comparable value when compared to models trained with the 
Spanish dataset.

Discussion
An important goal for the adoption of deep learning models in the medical domain is to develop inclusive solu-
tions that consider contexts with limited resources. However, to build robust predictive models, neural networks 
usually require a large number of parameters and large datasets, which are especially difficult to obtain in low-
resource settings. For this reason, our work investigated the transferability of deep learning models, developed 
in centres with greater access to large clinical imaging datasets, to new centres with limited resources, where the 
generalisation ability is proved to be even more problematic.

Here, we used an existing large-scale data repository from Spain to build a model for US fetal plane clas-
sification that can be transferred to a new centre in the African continent. Our results showed that a model 
trained using a single-centre approach did not reach the desired performance when applied to a new centre in 
low-resource settings acquired in Malawi, Egypt, Algeria, Uganda or Ghana. In contrast, a multi-centre approach 
was able to bridge the gap between centres in Africa with less advanced equipment, and centres in Europe with 
high-quality images and similar acquisition. Specifically, we observed that by directly combining samples from 
both centres the performance was not as good and stable as with transfer learning, which was capable of effec-
tively adapting the model to the new centre by only fine-tuning the last 4 layers of the model. Through shared 
representation learning, the neural network has favoured deep phenotypes that are common and consistent across 
populations/centres, while removing site-specific imaging patterns. With the optimisation of the final weights of 
the neural network, the objective is to maximise the predictive performance for the African ultrasound datasets, 
despite their small sample size.

Fine-tuning a model pre-trained with a large imaging dataset in Spain proved to be a potential solution to 
optimise the performance of a deep learning model in African settings by using small-size datasets and requir-
ing minimal effort. This framework shows promise for generalisability across multi-centre African datasets with 
challenging and heterogeneous conditions. Moreover, it also encourages the community to conduct further 
research to develop highly generalisable solutions for the usability of AI in countries with fewer resources and 
consequently in higher need of clinical support.

One of the main limitations of the present study is that the datasets obtained in Africa are not complete, 
since they are less abundant and more difficult to compile. Future works should consider the evaluation of the 
model on the missing categories.

Figure 6.  A summary of the performance achieved when only 8 patients from Egypt, Uganda, Ghana, Algeria 
and Malawi are used in terms of recall and accuracy. First, the model is directly trained with the African samples 
(yellow). Second, the model is trained using only the large Spanish dataset (red). Finally, the pre-trained Spanish 
model is fine-tuned with the new African samples (green).
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Conclusions
This work was motivated by the need for building new AI models generalisable across clinical centres with limited 
data acquired in challenging and heterogeneous conditions. This framework has shown to be an opportunity 
for its widespread application to real maternal-fetal clinical settings, especially as a supporting tool in US plane 
recognition in low-income countries. We believe our work is an important first step in this direction and one 
that will encourage the development of more generalisable models based on transfer learning in centres with 
low-resource settings.

Data availability
The Spanish dataset is publicly available at zenodo. org/ record/ 39042 80. Access to the Danish dataset must be 
requested to the SONAI project members by contacting Martin G. Tolsgaard at martintolsgaard@gmail.com. The 
African datasets will be made available at Zenodo (https:// doi. org/ 10. 5281/ zenodo. 75404 48) upon publication.
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