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Abstract

This thesis consists of empirical and theoretical studies on the liquidity
of bond markets.

In the first study, we present an extended model for the estimation
of the effective bid-ask spread that improves the existing models and
offers a new direction of generalisation. The quoted bid-ask spread
represents the prices available at a given time for transactions only up
to some relatively small trade size. Trades can be executed inside or
outside the quoted bid-ask spread. Thus, we extend Roll’s model to
include multiple spreads of different sizes and their associated prob-
abilities. The extended model is estimated via a Bayesian approach,
and the fit of the model to a time series of a year of corporate bond
transaction data is assessed by a Bayesian model selection method.
Results show that our extended model fits the data better.

Our second study examines the relationships between different liq-
uidity proxies and the non-default corporate yield spread as well as
the effective bid-ask spread. We first separate the non-default com-
ponent of bond spreads from the default one by using the information
contained in credit default swaps. We then apply our state-space ex-
tension of the Roll model to disentangle the unobservable non-default
yield spread from the effective bid-ask spread. The empirical results
show that the non-default yield spread has a nonlinear relationship
with time to maturity and a positive correlation with the bid-ask
spread as well as with the default risk, and therefore may reflect the
future expected liquidity. We find that the effective bid-ask spread is
related to bond characteristics associated with illiquidity (e.g. time-
to-maturity and issue amount) and trading activity measures (e.g.
daily turnover, and daily average trade size), indicating that trans-
actions costs are more likely to be associated with the current level
of liquidity rather than the future expected liquidity. We also find
that the non-default component accounted for a bigger proportion of
the yield spread before the financial crisis 2007 - 2009, whereas dur-
ing the crisis credit risk played a more influential role in determining



the yield spread. Common factors such as the underlying volatility
and CDS spread explain more of the variation in the non-default yield
spread and the bid-ask spread than idiosyncratic factors such as time-
to-maturity, issue size, and trading activity proxies do.

The third study presents an equilibrium model in which the hetero-
geneity of liquidity among bonds is determined endogenously. In par-
ticular we show that bonds differ in their liquidity despite having
identical cash flow, riskiness and issue amount. Under certain condi-
tions, we show that investors have strong preference for concentrating
trading on a small number of bonds. We conjecture that the identity
of the ones which are traded may result from a ‘Sunspot’ equilibrium
where it is optimal for traders to randomly label a subset of the bonds
as the ‘liquid’ ones and concentrating trading on them. We also show
that changing the model assumptions leads to different equilibrium
configurations where trading is spread over the bonds. In addition,
by utilising the concepts of stochastic dominance, utility indifference
pricing, and some specific assumptions on asset value and order arrival
rate, the equilibrium prices and bid-ask spreads can be quantified.



Chapter 1

Introduction

The financial crisis of 2007-2009 has been the most serious financial crisis since

the Great Depression. The immediate cause of the crisis was the bursting of the

American housing bubble which peaked in 2005-2006 approximately. As part of

the housing and credit booms, financial innovation facilitated the development of

complex financial products designed to achieve particular client objectives, such

as offsetting a particular risk exposure or to assist with obtaining financing.

Banks and non-bank financial institutions use off-balance-sheet entities to

fund investment strategies. The strategy of investing in long-term structured as-

set backed securities (ABS), such as Mortgage Backed Securities (MBS), Collat-

eralised Debt Obligations (CDOs) and Collateralised Loan Obligations (CLOs),

and issuing short-maturity papers in the form of asset-backed commercial papers

(ABCPs) exposes them to funding liquidity risk.1 This means that difficulties

with refinancing in credit markets could force them to liquidate their long-term

assets. Furthermore, since market liquidity may decrease when you need to sell,

investors also face market liquidity risk.2 For instance, during the crisis a number

1An investor has good funding liquidity if it has enough available funding from its own
capital or from (collateralised) loans. Funding liquidity risk is the risk that a trader cannot
fund his position and is forced to unwind.

2A security has good market liquidity if it is easy to trade, that is, has a low bid-ask spread,
small price impact, and high resilience. Market liquidity risk is the risk that the market liquidity
worsens when you need to trade.

1



of markets were virtually shut down (no bids), such as those for certain asset-

backed securities and convertible bonds. The shortage of market liquidity during

the crisis is widely regarded as one of the causes of the dramatic drop in asset

prices.1

Nevertheless, it was still not clear which factor (credit risk or market liquidity

risk) was the main force driving up the yield spreads for defaultable securities,

especially when both credit and market liquidity risks increased at the same time.

In particular, corporate bond yield spreads above Treasury bond yields widened

dramatically during the crisis. The yield spreads became much larger than can be

explained by expected losses arising from default. This leads to more fundamental

questions: can the non-default yield spreads be explained by market liquidity (or

illiquidity), and how does market liquidity affect asset prices? This thesis will try

to answer the above questions and address related issues on the liquidity of bond

markets.2

The reasons why we choose to focus on the U.S. corporate bond market are the

following: the first reason is the importance of the U.S. corporate bond market.

Corporate bonds form one of the largest asset classes in the financial markets.

According to the Securities Industry and Financial Markets Association (SIFMA),

as of Q2 2011, the U.S. corporate bond market size was $7.7 trillion with 24% of

the total U.S. bond market size; 3 secondly, corporate bonds are clearly subject

to credit risk, as corporations sometimes default and the extra yield spread is

normally regarded as the compensation for credit risk. Recently, some papers

find that yield spreads for corporate bonds are too high to be explained by credit

risk alone and suggest that the unexplained portion of corporate yield spreads

could be due to liquidity risk.4 However, more studies are needed to explore

this topic. Finally, the most interesting markets for us to study liquidity in are

1The two forms of liquidity are linked and can reinforce each other in liquidity spirals. See
Brunnermeier (2009) and Brunnermeier & Pedersen (2008) on the liquidity spiral.

2Since market liquidity and market liquidity risk are the focuses of our studies, for con-
venience, hereafter we will refer to market liquidity as liquidity, and market liquidity risk as
liquidity risk. Otherwise, funding liquidity and funding liquidity risk will be explicitly expressed.

3The total outstanding issuance of the US corporate bond market was around $5 trillion,
according to the Global Financial Stability Report of the international Monetary Fund (IMF),
October 2008.

4See, for example, Huang & Stoll (1997), Collin-Dufresne et al. (2001), Longstaff et al.
(2005), Bao et al. (2011) and Dick-Nielsen et al. (2012).

2



those where liquidity is a real problem. In fact, the majority of corporate bonds

issued by private and public corporations are traded over-the-counter (OTC).

This feature makes corporate bonds more likely to be subject to liquidity risk

compared with exchange traded securities such as equity.

Having chosen the type of market and asset that we want to study, a natural

question arises as to what portion of corporate yield spreads is attributable to

liquidity risk, on top of credit risk. To answer the question, we review previous

literature which evaluate the implication of illiquidity on corporate yield spreads.

We find that the literature is divided into two main strands. One strand focuses

on using the theoretical models to obtain the component that is purely due to

credit risk and attribute the portion that is left over to illiquidity. Other studies

regress yield spreads on either direct or indirect measures of illiquidity to assess

how much of the yield spreads can be explained by liquidity risk after controlling

for other factors such as credit risk or tax etc.

However, both methods have pros and cons. We decide to adopt a kind of

hybrid approach which combines the above two methods. Hence, we need data

from three different and independent sources in order to decompose the yield

spreads. First, as we are interested in decomposing the corporate yield spreads,

the corporate bond prices are needed. Second, we need some independent data

which is, ideally, only associated with pure risk of default. The best example

would be credit default swaps which are essentially insurance contracts insuring

against loses due to credit events on the corporation issuing the bonds. The

final ingredient is the term structure of the risk free rate. One option would be

the yields of Treasury bonds which can be downloaded from the Federal Reserve

website.

Having analysed the corporate bond and credit default swaps data obtained,

we can make the following observations. First, some of the credit risk models

failed to either predict credit spreads or generate flexible default intensity term

structures. Second, some empirical market microstructure models that have been

used previously by other papers to estimate the effective bid-ask spread suffered

from misspecification problems when applied to our data set. Third, we find

that empirically there exist heterogeneous levels of liquidity and liquidity premia

among bonds issued by a single company. This brings us to the forth observation

3



1.1 Summary of the Dissertation

that very few existing theoretical studies have success in explaining why otherwise

identical bonds differ significantly in their liquidity.

1.1 Summary of the Dissertation

How do we measure illiquidity? What portion of yield spreads is attributable

to liquidity risk? How does liquidity affect bond prices? Our understanding

of these fundamental questions still remains limited. This thesis tries to tackle

these questions by addressing three closely related issues on the liquidity of bond

markets: the estimation of the effective bid-ask spread, the impact of illiquidity

on the corporate yield spreads, and the equilibrium bond prices in the presence

of illiquidity.

In our first study we present an extended model for the estimation of the effec-

tive bid-ask spread. The bid-ask spread is normally regarded as the transaction

costs which consist of, firstly, the order processing costs which are associated with

the costs incurred when handling a transaction, secondly, the inventory holding

costs which are charged by the market maker as compensation for the risk that his

inventory value may change adversely when supplying immediacy, and finally, the

adverse selection costs which are associated with asymmetric information. De-

spite of its different components and different interpretations, the bid-ask spread

is widely used as a measure of the level of market illiquidity and plays a very im-

portant role in asset pricing and market microstructure theories. The motivation

for the first study is that a parsimonious spread estimation model with as few

assumptions as possible is needed to fit our data set as better as possible. The

quoted bid-ask spread represents the prices available at a given time for trans-

actions of some relatively small amounts. Furthermore, as we know, trades can

be executed either inside or outside the quoted spread, depending on the type of

the trader and the size of the trade. In the original Roll model, it is not possible

to distinguish multiple spreads.

Therefore, in our first study we extend the original Roll model to allow trades

to be executed at different spreads, by adding an extra parameter λ, the so-called

4



1.1 Summary of the Dissertation

‘spread multiplier’, which is constructed to separate spreads of different mag-

nitudes. In other words, we generalise Roll’s spread estimator (a scalar) to a

vector of spreads with associated probabilities. The parameters in the extended

model are estimated by using a Bayesian estimation method proposed by Has-

brouck (2004), and the value of λ is determined via a Bayesian model selection

method, suggested by Chib (1995). In the empirical application, we show that

the extended model fits the transaction data better.

In our second study we try to understand empirically how liquidity and credit

risk affects corporate bond prices, and, in particular, why bonds issued by a single

company exhibit heterogenous levels of liquidity and liquidity premia. Firstly, we

intend to understand how much of yield spreads is due to default risk and what

proportion is associated with the risk of illiquidity. Secondly, we try to find out

which factors and how these factors determine the level of illiquidity as well as

the liquidity premium. Answering these questions requires first separating credit

risk from liquidity risk, and then distinguishing the permanent component of the

non-default price residuals, namely the liquidity premium, from the transitory

component of the non-default price residuals, e.g. the component arises from

illiquidity.

Therefore, we first calculate the non-default price residuals by applying a

non-parametric reduced-form credit risk model to price credit default swaps and

corporate bonds simultaneously. We then apply a generalised version of the Roll

model to the non-default price residuals to separate the liquidity premium from

the ‘illiquidity component’.

We find that for the bonds in our sample credit risk played a more impor-

tant role in determining the yield spreads during the crisis than it did before the

crisis. By using the panel data during 2006 - 2010, we examine the relations of

both the permanent and transitory components of the non-default price resid-

uals with a group of bond characteristics, some of which are considered to be

associated with illiquidity. We find that the transitory component of the non-

default price residual is related to both direct and indirect liquidity measures,

indicating that the ‘illiquidity component’ may reflect the current level of market

illiquidity. The empirical results also show that the permanent component or the

non-default yield spread is positively correlated with time-to-maturity and the
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bid-ask spread. This implies that the liquidity premium may reflect the future

expected illiquidity. Both the liquidity premium and the ‘illiquidity component’

show increasing and concave term structures, and both are positively correlated

with default risk. Common factors, such as volatility and CDS spread, account

for more of the variation in the liquidity premium and the ‘illiquidity component’

than idiosyncracy factors, e.g. issue size, time-to-maturity and trading activity

measures.

The third study tries to understand the liquidity of bond markets in a theoret-

ical framework. Such a model may help us understand how liquidity affects bond

prices through the behaviors and interactions of market participants. Existing

theoretical studies usually impose ex ante assumptions on bond liquidity. We pro-

pose an equilibrium model in which the identity of which bonds are liquid, and the

size of their spreads and liquidity discounts, are determined endogenously. The

equilibrium is essentially determined by traders optimally choosing their trading

strategies and taking into account actions by themselves and others. We show

that heterogeneous levels of liquidity can arise even when bonds have identical

cash flows, riskiness, and issue amounts. Long-term investors have strong prefer-

ence for trading concentration, whereas liquidity constrained traders are forced

to spread trading across bonds. We show that the identity of which bonds are

tradable may result from a ‘Sunspot’ equilibrium. The equilibrium bond prices

and bid-ask spreads can be quantified under some specific assumptions on asset

value and order arrival rate, by using the concepts of stochastic dominance and

utility indifference pricing.

1.2 Plan of the Dissertation

Chapter 2 reviews the most recent empirical and theoretical literature about

the liquidity of bond markets. For the purpose of this thesis, we classify the

literature into three broad categories: the first strand includes the literature

about the methods and techniques used to decompose corporate yield spreads;

the second strand reviews the literature about the models and useful tools to

extract the effective bid-ask spreads from real transaction data; the third strand
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particularly focuses on the theoretical models which study liquidity in context of

asset pricing. Before discussing these literature, the concept of liquidity is briefly

introduced, followed by a description of the microstructure of the U.S. corporate

bond market. Chapter 3 sets out an extended model used for estimating the

effective bid-ask spread as well as the underlying return volatility. Our extended

model accounts for multiple spreads with their associated probabilities. Empirical

results based on real transaction data show that the extended model fits better

than Roll’s model. Chapter 4 begins the empirical investigation of how liquidity

and credit risk affects corporate yield spreads, and especially why bonds issued

by a single company exhibit heterogenous levels of liquidity and liquidity premia.

This chapter confirms that credit and liquidity risks played important roles in

determining the yield spreads both before and during the financial crisis, and

the differentials and variations in the level of liquidity and liquidity premium are

associated with both common and idiosyncratic factors which are considered to be

linked to bond illiquidity. Chapter 5 introduces an equilibrium model to explain

why bonds differ in liquidity, and especially why some bonds are more liquid

and more expensive than other (otherwise identical) bonds. Chapter 6 outlines

possible future extensions of our current research. Chapter 7 draws together the

conclusions for the theory, findings and their implications.
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Chapter 2

Literature Review

This chapter reviews the empirical and theoretical studies on asset liquidity, and

in particular the liquidity in bond markets. Accordingly, the chapter touches only

briefly on recently developed theories of asset pricing, financial econometrics and

market microstructure, and concentrates on the studies on bond markets.

Section 2.1 begins with a brief introduction of the concept of liquidity as a

basis for reviewing the literature on liquidity and its developments.

Section 2.3 considers mainly the methodologies and results of empirical studies

on decomposing the corporate yield spread. In this section we discuss three

methods to decompose the corporate yield spread, namely using structural credit

risk models, using reduced-form credit risk models, and running regressions with

control variables. The last method normally involves panel data analysis which

recently has become a widely used tool to analyze cross-sectional time series data

(e.g. time series of yield spreads of several bonds).

Section 2.4 covers on to the literature on empirical market microstructure

models used to estimate the effective bid-ask spread. The literature includes two

main types of models, namely serial covariance spread estimation models and

order flow spread estimation models. This section also introduces some tech-

niques that are applied to estimate these models, concentrating on the methods

developed recently, particularly those from Bayesian econometrics.

Section 2.5 reviews the recent theoretical literature which addresses address
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the issues related to illiquidity. In this section we first introduce the models that

focus on the inventory costs component of the bid-ask spread followed by the

models dealing with asymmetric information. Then we move on to review the

models describe liquidity differentials among multiple assets. Finally models in

which the market functions as a limit order book are also reviewed.

9



2.1 The Concept of Liquidity

2.1 The Concept of Liquidity

In this section we will describe the potential sources of illiquidity in terms of mar-

ket liquidity, which is related to our topics (ignoring funding liquidity), followed

by the concept of market liquidity.

Generally speaking, liquidity is the ease of trading a security. One source of

illiquidity is exogenous transaction costs such as brokerage fees, order-processing

costs, or transaction taxes. Every time a security is traded, the buyer and/or seller

incurs a transaction cost; in addition, the buyer anticipates further costs upon a

future sale, and so on, throughout the life of the security. Amihud & Mendelson

(1986) argue that transaction costs result in liquidity premia in equilibrium, re-

flecting the differing expected returns for investors with different trading horizons

who have to defray their transaction costs. There is an implicit clientele effect

due to which securities which are more illiquid, and which are cheaper as a result,

are held in equilibrium by investors with longer holding periods.

Another source of illiquidity is inventory holding risk. Agents are not present

in the market at all times, which means that if an agent needs to sell a security

quickly, then the neutral buyers may not be immediately available. As a result,

the seller may sell to a market maker who buys in anticipation of being able to

lay off the position later. The market maker, being exposed to the risk of price

changes while he holds the asset in inventory, must be compensated for this risk.

Illiquidity can also arise from asymmetric information. The seller and/or

buyer may worry that his counterparty has private information about the funda-

mentals or order flow of the security. These costs of illiquidity should reflect the

risk of trading against traders who possess private information. In addition, be-

cause liquidity varies over time, risk-averse investors may require a compensation

for being exposed to liquidity risk.

According to Kyle (1985), market liquidity can be summarized in three di-

mensions, namely, tightness, depth, and resilience. Tightness shows the differ-

ence between trade price and actual price, and is usually measured as the bid-ask

spread. Depth shows the volume which can be traded at the current price level,

and resilience is defined as the speed of convergence from the price level which

has been brought by random price changes.

10



2.2 The U.S. Corporate Bond Market

The bid-ask spread is the measure which has been most widely used in recent

studies on market liquidity. The bid-ask spread corresponds to tightness and

provides information about how much the cost will be in the case of an immediate

transaction. However, the bid-ask spread only expresses the transaction cost for

those who wish to execute a marginal trade in the market, and does not provide

information about how many units will be absorbed or about the extent to which

a price will move after limit orders at the best quoted price have been digested.

Market depth is a dynamic indicator of market liquidity, providing informa-

tion about the ability of the market to absorb trades as changes in price, which

take place upon trade execution. Another dynamic indicator measuring market

liquidity is market resilience. This indicator provides information about how the

market automatically returns its original state after a certain shock has been

added to the market.

Data about the microstructure, such as order flow or volume is required to

measure market depth and resilience. However, these types of data are not nor-

mally available for securities trading over-the-counter, such as corporate bonds.

Empirical models have been developed to estimate the effective bid-ask spreads if

the information about order flows or volume is not available. We will review the

literature on the estimation of the effective bid-ask spread later in this chapter.

2.2 The U.S. Corporate Bond Market

Corporate bonds are a principal source of external financing for U.S. firms. For

decades, most U.S. corporate bonds primarily traded in an OTC dealer market.1

Broker-dealers execute the majority of customer transactions in a principal ca-

pacity, and trade among themselves in the inter-dealer market to obtain securities

desired by customers or to manage their inventories.

Biais & Green (2007) give a good description of the OTC market. The OTC

market is made by dealers within and between their offices at prices established

by individual negotiation, that is, through bid and ask prices. A dealer creates

1The majority of trades of Municipal bonds, State bonds, Treasury bonds, and Utility bonds
are also conducted over the counter.
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and maintains a market for any issue of bonds by announcing openly to the other

dealer and broker houses that he stands ready both to buy and sell that security

at the bid price and the ask price that he quotes to those who inquire. The OTC

market dealers include investment banking houses, OTC houses, stock exchange

firms which operate OTC trading departments, and dealer banks. A house that

makes a market in an issue usually maintains a position in the security by trading

(buying and selling) against its position in the issue. It buys and sells for its own

account and risk as principal. The price charged by the OTC dealer will be a

net price. The equivalent of a commission is already included in the price. The

U.S. corporate bond market is such an OTC dealer market, where non-binding

indications of interest are distributed to preferred clients, with trading conducted

primarily through telephone and e-mail negotiations.

During the early decades of the twentieth century, corporate bonds were pre-

dominantly traded on the New York Stock Exchange’s transparent limit order

market. However, corporate bond trading largely migrated away from the New

York Stock Exchange to an OTC dealer market during the 1940s. Biais & Green

(2007) find that this migration was coincident with the growth in bond trading

on the part of institutional investors (like pension funds, insurance companies,

mutual funds, and endowments), who fare better than individuals in the OTC

market. The dealer market for corporate bonds is dominated by large institu-

tional investors. OTC corporate bond trades tend to be large and infrequent.

Bessembinder & Maxwell (2008) document an average trade size of $ 2.7 million

for institutional trades in the OTC dealer market. Edwards & Piwowar (2007)

report that individual bond issues did not trade 48% of days in their sample.

Corporate bonds are a preferred investment for insurance companies and pen-

sion funds, whose long-horizon obligations can be matched reasonably well to the

relatively predictable, long-term stream of coupon interest payments from bonds.

As a result, most or all of a bond issue is often absorbed into stable ‘buy-and-hold’

portfolios soon after issue.

Dealer quotations in corporate bonds are not disseminated broadly or contin-

uously. Quotations are generally available only to institutional traders, mainly

in response to phone requests. In addition to telephone quotations, some insti-

tutional investors have access to ‘indicative’ quotations through electronic mes-
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saging systems provided by vendors such as Bloomberg. However, these price

quotations mainly serve as an indication of the desire to trade, not a firm obli-

gation on price and quantity. Prior to the introduction of Transaction Reporting

and Compliance Engine (TRACE), transaction prices were not reported except

to the parties involved in a trade.

On January 31, 2001, the Securities and Exchange Commission initiated post-

trade transparency in the corporate bond market when it approved rules requiring

the National Association of Security Dealers to compile data on all OTC transac-

tions in publicly issued corporate bonds. For each trade, the dealer is required to

identify the bond and to report the date and time of execution, trade size, trade

price, yield, and whether the dealer bought or sold in the transaction.1 Not all

of the reported information is disseminated to the public: investors receive bond

identification, the date and time of execution, and the price and yield for bonds

specified as TRACE-eligible. Trade size is provided for investment-grade bonds

if the face value transacted is $ 5 million or less, and for non-investment-grade

bonds if the face value transacted is $ 1 million or less (otherwise, an indica-

tor variable denotes a trade exceeding the maximum reported size). As argued

by Bessembinder & Maxwell (2008), investors have benefited from the increased

transparency through the introduction of the TRACE system. The availability

of this transaction-level data also enables us to study the implications of liquidity

on the U.S. corporate bonds.

1Trade direction is available since 3 November 2008.
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2.3 Decomposition of Corporate Yield Spreads

Having briefly covered market liquidity, we proceed to review the literature on

the liquidity of corporate bonds. One of the motivations for studying the liquidity

component in corporate bond yield spreads has been the ‘credit risk puzzle’. That

is, there is a significant non-default component of corporate bond spreads which

cannot be explained by empirical default risk measures or traditional credit risk

models. The first strand of literature focuses on decomposing yield spreads by

taking advantage of the advent of credit sensitive securities and credit risk models.

The second strand relies on measures of illiquidity and modern econometrics

models.

2.3.1 Decomposition by Structural Models

In this section we will review the literature on the mainstream of structural models

before looking at how structural models are used to decompose yield spreads or,

perhaps more precisely, how structural models fail to predict credit spreads.

The central distinguishing point of structural models from reduced-formed

models is the view of debt, equity, and other claims issued by a firm as contingent

claims on the firm’s asset value. Black & Scholes (1973) first used the idea that the

bondholders own the company’s assets, but they give options to the stockholders

to buy the assets back. Merton (1974) expands this idea to model credit risk.

Under absolute priority rules, equity shareholders are residual claimants on the

assets of the firm, since bondholders are paid first in event of default. Equity

shareholders, in effect, hold a call option on the assets of the firm, with a strike

price equal to the debt owed to the bondholders. Similarly, the value of the debt

owed by the firm is equivalent to a default-free bond plus a short position on a

put option on the assets of the firm.

We will now briefly review the literature on structural models.

Default-at-maturity Model

Given a filtered probability space {(Ω,G, P ), (Gt : t ∈ [0, T̄ ])}, a firm borrows

funds in the form of a zero-coupon bond promising to pay a dollar (the face
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value) at its maturity T ∈ [0, T̄ ]. Its price at time t ≤ T is denoted by v(t, T ).

Assume this is the only liability of the firm. Default free zero-coupon bonds of

all maturities are also traded, with the default free spot rate of interest denoted

by rt. Markets for the firm’s bond and the default free bonds are assumed to be

arbitrage free, hence, there exists an equivalent probability measure Q such that

all discounted bond prices are martingales with respect to the information set

{Gt : t ∈ [0, T̄ ]}. The discount factor is e−
∫ t
0 rsds. Markets need not be complete,

so that the probability Q may not be unique.

Let the firm’s asset value be denoted by At. Then, Ft = σ(As : s ≤ t) ⊂ Gt.

Let the firm’s asset value follow a diffusion process that remains non-negative:

dAt = Atα(t, At)dt+ Atσ(t, At)dWt (2.1)

where αt, σt are well defined, and Wt is a standard Brownian motion. Given a

simple debt structure of the firm, a single zero-coupon bond with maturity T and

face value K, default can only happen at time T . Assume there is no liquidation

costs and renegotiation. Absolute priority holds in the event of default. Further-

more, default happens only if AT ≤ K. Thus, the probability of default for this

firm at time T is given by P (AT ≤ K). The time 0 value of the firm’s debt is

v(0, T ) = EQ
(

[min(AT , K)]e−
∫ t
0 rsds

)
(2.2)

Assuming that interest rates rt are constant, and that the diffusion coefficient

σ(t, At) is constant, this expression can be evaluated in closed form. The formula

is

v(0, T ) = e−rTKN(d2) + A0N(−d1) (2.3)

whereN(·) is the cumulative standard normal distribution function, d1 = [ln(A0/K)+

(r + σ2/2)T ]/σ
√
T , and d2 = d1 − σ

√
T . The credit spread s(0, T ) is given by

s(0, T ) = − 1

T
ln
v(0, T )

e−rTK
(2.4)

This is the original risky debt model presented in Merton (1974), where the
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firm’s equity is viewed as a European call option on the firm’s assets with maturity

T and a strike price equal to the face value of the debt. The time T value of the

firm’s equity is: AT −min(AT , K) = max(AT −K, 0).

Early empirical tests were not encouraging. Jones et al. (1984) find that pre-

dicted prices are, on average, 4.5% higher than prices observed in the market. The

largest differentials are observed for speculative-grade bonds. Ogden (1987) also

finds that the Merton model underpredicts by 104 basis points on average. The

combination of restrictive theoretical assumptions and empirical shortcomings

gave rise to an enormous theoretical literature generalizing the original model.

First Passage Models

Black & Cox (1976) generalize the model to allow default prior to time T if the

asset’s value hits some prespecified default barrier, Lt. The economic interpreta-

tion is that the default barrier represents some debt covenant violation. In this

formulation, the barrier itself could be a stochastic process. Then, the informa-

tion set becomes Ft = σ(As, Ls : s ≤ t). Assume that in the event of default, the

debt holders receive the value of the barrier at time T . In this generalization, the

default time becomes a random variable and it corresponds to the first hitting

time of the barrier:

τ = inf{t > 0 : At ≤ Lt}. (2.5)

Here, the default time is a predictable stopping time. Intuitively, a predictable

stopping time is “known” to occur “just before” it happens, since it is “an-

nounced” by an increasing sequence of stopping times. It is not a “true surprise”

to the modeler, since it can be anticipated with almost certainty by watching the

path of the asset’s value process.

Given the default time in expression (2.5), the value of the firm’s debt is given

by

v(0, T ) = EQ
(

[1{τ≤T}Lτ + 1{τ>T}K]e−
∫ t
0 rsds

)
(2.6)

If the interest rate rt is constant, the barrier is a constant L, and the asset’s
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volatility σt is constant; then, expression (2.6) has closed form solution as

v(0, T ) = Le−rTQ(τ ≤ T ) +Ke−rT [1−Q(τ ≤ T )], (2.7)

where

Q(τ ≤ T ) = N(h1(T ))+
A0

K
e(1−2r/σ2)N(h2(T )), h1(T ) = [lnL−lnA0−(r−σ2)T ]/σ

√
T ,

(2.8)

and

h2(T ) = [2lnK − lnL− lnA0 + (r − σ2)T ]/σ
√
T . (2.9)

Moody’s KMV Model

KMV revived the practical applicability of structural models by implementing a

modified structural model called the Vasicek-Kealhofer (VK) model (Crosbie &

Bohn (2003), Kealhofer (2003a) and Kealhofer (2003b)). MKMV uses the option-

pricing equations derived in the VK framework to derive the market value of a

firm’s assets and the associated asset volatility. The default barrier at different

points in time in the future is determined empirically. MKMV combines market

asset value, asset volatility, and the default point term-structure to calculate a

Distance-to-default (DD) term structure

DDT =
log[ A

XT
] + (µ− 1

2
σ2)T

σ
√
T

(2.10)

where A is the firm’s asset value, µ is the drift of the asset return, σ is the

volatility of the asset returns, and XT is the default barrier. This term structure

is translated to a default probability using an empirical mapping between DD

and historical default data.

Remarks

Direct tests of Merton-style models find that the models seriously underpredict

the level of long-term corporate bond spreads.
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Huang & Stoll (1997) calibrate several structural risky bond pricing models

to historical data on default rates and loss given default. They find that for

high-grade debt, only a small fraction of the total spread can be explained by

credit risk. For lower quality debt a large part of the spread can be attributed to

default risk.

By implementing a structural model, Elton et al. (2001) show that expected

default accounts for a small fraction of the premium in credit spreads. Tax effects

explain a substantial portion of the difference. The remaining spreads are related

to risk premium.

Eom et al. (2004) find that some extensions of the Merton model (such as Le-

land & Toft (1996) and Collin-Dufresne & Goldstein (2001)) overpredict spreads

for poorly capitalized firms, but continue to underpredict spreads for large, well-

capitalized firms.

Using a set of structural models, Ericsson et al. (2005) evaluate the price of

default protection for a sample of US corporations. In the residuals for bonds,

they find strong evidence for non-default components, in particular an illiquidity

premium. CDS residuals reveal no such dependence. This finding supports that

CDS spreads do not contain liquidity premium as argued by Longstaff et al.

(2005).

Ericsson & Renault (2006) develop a structural bond valuation model to si-

multaneously capture liquidity and credit risk. They assume that the probability

of liquidity shocks has a time-varying intensity which follows a square-root pro-

cess. Simultaneously, given a liquidity shock the price offered by any particular

trader is assumed to be a random fraction, which is uniformly distributed, of

the perfectly liquid price. The bondholder obtains a Poisson quantity of offers

and retains the best one. As for other structural models, due to the complex

structure, they are unable to fully calibrate their model. Nevertheless, empiri-

cally they regress bond yield spreads on two sets of variables, one that controls

for credit risk, and one that proxies for liquidity risk. They find decreasing and

convex term structures of liquidity spreads and a positive correlation between the

illiquidity and default components of yield spreads.

One potential explanation for why Merton-style models tend to underpredict

yield spreads is that these models omit a liquidity component. These models are
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not suitable for our purposes, as they fail to predict credit spreads. Furthermore,

the model developed by Ericsson & Renault (2006) is too complicated too be

fully calibrated. Therefore, now we will turn our attention to the reduced form

models.

2.3.2 Decomposition by Reduced Form Models

The other major thread of credit risk modelling research focuses on reduced form

models of default. This section reviews the literature on reduced form models

and how some of these models are employed to decompose the yield spreads.

The reduced form approach assumes a firm’s default time is inaccessible or

unpredictable, and driven by a default intensity that is a function of latent state

variables. Jarrow & Turnbull (1995), Duffie & Singleton (1999), Hull & White

(2000), Jarrow et al. (1997) and Duffie & Lando (2001) present detailed explana-

tions of several well-known reduced form modelling approaches.

Jarrow & Turnbull (1995) Model

The key feature for reduced form models is that the modeler observes the filtration

generated by the default time τ and a vector of state variables Xt, where the

default time is a stopping time generated by a Cox process Nt = 1τ≤t with an

intensity process λt depending on the vector of state variablesXt. A Cox process is

a point process which is conditional on the information set generated by the state

variables over the entire time interval. The conditional process is Poisson with

intensity λt(Xt). In reduced form models, the processes are normally specified

under the martingale measure Q. In this formulation, the stopping time is totally

inaccessible. Intuitively, a totally inaccessible stopping time is not predictable so

that it is a “true surprise” to the modeler. The payoff to the firm’s debt in the

event of default is called the recovery rate. This is usually given by a stochastic

process δτ , also assumed to be part of the information set available to the modeler.

For convenience, we assume the recovery rate δτ is paid at time T . The probability
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of default prior to time T is given by

Q(τ ≤ T ) = EQ(N(T ) = 1|σ(Xs : s ≤ T ))

= EQ(1− e−
∫ T
0 λsds).

(2.11)

The value of the firm’s debt is given by

v(0, T ) = EQ([1τ≤T δτ + 1τ>T1]e−
∫ T
0 rsds). (2.12)

Note the recovery rate process is prespecified by a knowledge of the liability struc-

ture in the structural approach, while in reduced form models it is exogenously

supplied.

If the recovery rate and intensity processes are constants (δ, λ) and the recov-

ery is paid at time T in terms of a fraction of the principal (this assumption is

named as Recovery of the Face Value(RFV)), then this expression can be eval-

uated explicitly, generating the model in Jarrow & Turnbull (1995) where the

debt’s value is given by

v(0, T ) = p(0, T )(δ + (1− δ)e−λT ) (2.13)

where p(0, T ) = e−
∫ T
0 rsds.

Duffie & Singleton (1999) Model

In the Jarrow & Turnbull (1995) model, the following assumptions are strong

and counterfactual: the recovery rate δ is constant, and default is independent of

market condition. Duffie & Singleton (1999) relax these assumption at the cost

of analytical tractability.

If the asset has not defaulted by time t, its market value Vt would be the

present value of receiving ϕt+1 in the event of default between t and t + 1 plus

the present value of receiving Vt+1 in the event of no default, meaning that

Vt = hte
−rtEQ(ϕt+1) + (1− ht)e−rtEQ(Vt+1), (2.14)
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where ϕs is the recovery in the event of default at s, hs is the conditional prob-

ability at time s under a risk-neutral probability measure Q of default between

s and s + 1 given the information available at time s in the event of no default

by s, and rs is the default-free short rate. Assume that the recovery is paid in

terms of the market value (this assumption is named as Recovery of Market Value

(RMV)) prior to default,

EQ
s (ϕs+1) = (1− Ls)EQ

s (Vs+1), (2.15)

where Ls is the expected fractional loss in market value if default were to occur at

time t, conditional on the information available up to time t. Then the defaultable

bond price is given by

v(t, T ) = e−rt((ht4[1− Lt] + (1− ht4))EQ(v(t+4, T )))

= e−rt(1− ht4Lt)EQ(v(t+4, T )).
(2.16)

where hs4 is the conditional probability at time s of default within (s, s +4)

under Q given no default by time s. For small 4,

v(t, T ) = e−rt+htLtEQ(Vt+1). (2.17)

Therefore, in continuous time,

v(t, T ) = EQ
t (e−

∫ T
t rs+hsLsds). (2.18)

In this formulation, one can model R = r + hL directly, and, therefore, easily

apply risk-free term structure models. It is possible to allow correlation among

r, h and L and identify each contribution separately. Importantly, one can also

add liquidity effect to R, i.e. R = r + hL + l, where l can be viewed as the

fractional carrying cost of the default instrument.
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Hull & White (2000) Model

Instead of using a hazard rate for the default probability, the Hull & White

(2000) model incorporates a default density concept, which is the unconditional

cumulative default probability within one period no matter what happens in other

periods. By assuming an expected recovery rate, the model generates default

densities recursively based on a set of zero-coupon corporate bond prices and a

set of zero-coupon treasury bond prices. Then the default density term structure

is used to calculate the premium of a credit default swap contract. The two sets

of zero-coupon bond prices can be bootstrapped from corporate coupon bond

prices and treasury coupon bond prices.

Ratings Transition Model

Jarrow et al. (1997) extends Jarrow & Turnbull (1995) and employs a discrete

time, time-homogeneous finite state space per period Markov Chain Q to model

Prt(τ
∗ > T ) as

Q(t, t+ 1) =


q1,1(t, t+ 1) q1,2(t, t+ 1) · · · q1,k(t, t+ 1)
q2,1(t, t+ 1) q2,2(t, t+ 1) · · · q2,k(t, t+ 1)
· · · · · · · · · · · ·

qk−1,1(t, t+ 1) qk−1,2(t, t+ 1) · · · qk−1,k(t, t+ 1)
0 0 · · · 1

 (2.19)

and

Q(t, T ) = Q(t, t+ 1)Q(t+ 1, t+ 2) · · ·Q(T − 1, T ). (2.20)

If qik is ikth element of Q(t, T ), then Prt(τ
∗ > T ) = 1 − qik; Q(·, ·) is the risk-

neutral probability.

Incomplete Information Model

Duffie & Lando (2001) consider a model in which the default time is fixed by

the firm’s managers so as to maximize the value of equity. Investors cannot

observe the assets directly, and receive only periodic and imperfect accounting

reports. Assuming a given Markov process, A = (At)t≥0, where At represents the
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firms value at time t, Duffie & Lando (2001) “obscure” the process A so that it

can be observed at only discrete time intervals, and add independent noise, and

which is observed at times ti for i = 1, ...,∞. The authors derive the distribution

of the firm’s asset value conditional on investors’ information, and, from this

distribution, the intensity of default in terms of the conditional asset distribution

and the default threshold.

Remarks

Many practitioners in the credit trading industry have tended to gravitate to-

ward the reduced form modelling approach given its mathematical tractability.

Jarrow & Protter (2004) argue further that, if one is using the model for risk

management purposes - pricing and hedging - then the reduced form perspective

is the correct one to take. Prices are determined by the market, and the market

reaches equilibrium based on the information that it has available to make its

decisions. In marking-to-market, or judging market risk, reduced form models

are the preferred modelling methodology.

Driessen (2005) provides evidence for a liquidity component in corporate bond

spreads using the Duffie & Singleton (1999) reduced-form pricing approach. They

model the default intensity as a function of several common factors and one firm-

specific factor as well as two terms that allow for correlation with default-free

rates. The liquidity component is modelled by a standard square-root diffusion

process. The model is calibrated using only corporate bonds.

Liu et al. (2006) use a five-factor affine term structure model to jointly model

the Treasury, Repo, and swap term structures and show that the swap spread

is driven by a persistent liquidity process and a rapidly mean-reverting default

intensity process. The state variables follow Gaussian processes with a general

correlation structure.

Another very important and related paper in this strand of the literature is

by Longstaff et al. (2005), who fit a simple reduced-form model to both credit

default swaps and corporate bonds, and find evidence of a significant non-default

component in the yield spread which can be related to the liquidity of a bond.
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The ability of reduced form models to price a variety of fixed income and

credit risk products makes them very appealing for our purposes. Moreover, with

the rapid growth of the credit derivatives market, credit default swaps provide a

ideal way to directly measure default risk.

A Credit Default Swap (CDS) is a bilateral financial contract in which one

counterparty (the Protection Buyer) pays a periodic fee, typically expressed in

basis points per annum, paid on the notional amount, in return for a Contingent

Payment by the Protection Seller following a Credit Event with respect to a

Reference Entity. A standard definition of Credit Event1 includes one or more of

the following: bankruptcy, filing for protection, failure to pay, obligation default,

obligation acceleration and repudiation/moratorium.

It is possible, and increasingly easier, to terminate or unwind a credit default

swap before its maturity. In order to exit a credit position in corporate bonds

all the investors have to do is to sell the asset at the market. By contrast, a

CDS position involves negotiating the terms of the unwinding with the original

counterparty (termination), or getting their consent to have a third party step in

the trade in their place (novation or assignment). On a termination, the original

counterparties on the CDS agree to tear up the contact at a MTM price, playable

from Party A to Party B or vice versa depending on which side is in-the-money

at the time. The novation/assignment is more complex in the sense that the

original counterparty (eg. Party B) is required to consent that Party C steps into

the trade to replace Party A. There will be a cash flow between Parties A and C

as in the CDS termination case, and party A will then be out of the picture. The

trade will remain existing, only between Parties B and C from that point on.

There are important differences between corporate bond and CDS worth men-

tioning. A bond investor’s ability to take a certain amount of a specific credit risk

is limited by the possibility of finding such corporate bonds in the marketplace

and the availability of funding for the purchase. Illiquidity can arise from lim-

ited arbitrage in the corporate bond market, as sometimes it can be difficult and

costly to short sell corporate bonds. A CDS investor buying or selling protection,

only needs a fraction of the principal (initial collateral margins or upfront fees),

and the mark-to-market effect of interest rate fluctuations to a position is usually

1Restructuring has been excluded from the CDS contract by ISDA since April 8th, 2009.
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negligible. In addition, the availability of CDS is not necessarily linked to the

aggregate amount of reference bonds outstanding, nor their maturities. With the

introduction of the new standard CDS contract and conventions, because of the

generic nature of the cash flows, credit default swaps cannot be demanded partic-

ularly in the way Treasury securities or popular equities may. Furthermore, it is

important to notice that credit default swaps are essentially insurance contracts.

Many investors who buy default protection may intend to hold the position for a

fixed time period.

Therefore, credit default swaps are much less sensitive to market liquidity,

compared to bonds. Ericsson et al. (2005) evaluate the price of default protec-

tion for a sample of US corporations. In bond residuals, they find strong evidence

for non-default components, in particular an illiquidity premium. CDS residuals

reveal no such dependence. This finding supports the assumption in Longstaff

et al. (2005) that CDS spreads do not contain liquidity premium. Blanco et al.

(2005) provide evidence that changes in the credit quality of the underlying name

are likely to be reflected more quickly in the default swap spread than in the

bond yield spread. This may be due to a strongly mean-reverting, non-default

component in bond spreads that obscure the impact of changes in credit qual-

ity. Ericsson et al. (2009) investigate the linear relationship between theoretical

determinants of default risk and default swap spreads. They find that there is

limited evidence for a common factor in residuals, indicating that the liquidity

premium in credit default swap spread is negligible.

As shown in Duffie (1999), under the no-arbitrage condition the credit default

swap premium equals the spread between the par defaultable floating rate note

and the par default-free floating rate note, the credit default swap premium is

a biased measure of the default component in the yield spread of fixed-coupon

corporate bonds. The adjustment from floating-rate spread to fixed-rate spread

can be made explicitly by applying a reduced-form model.

Now, our proposed approach to separate liquidity risk from credit risk is clear.

That is, we extract default intensities by fitting a reduced-form model to CDS

spreads, then use the estimated default intensities to calculate the fair value of

a corporate bond, and finally obtain the non-default price residual by taking the
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difference between the fair value and market price. We will discuss in details how

to obtain the non-default price residual or non-default yield spread in Chapter 3.

2.3.3 Decomposition by regressions

A common feature of empirical research in liquidity is that it generally uses

transaction data such as trading volume, number of trades or the bid-ask spread

to construct measures of illiquidity. Empirical papers which examine liquidity in

bond or equity markets use both direct measures (based on transaction data), and

indirect measures (based on bond characteristics and/or last prices). However,

transaction data for illiquid securities are often rather sparse. Researchers have

to resort to indirect proxies. The most popular approach is to regress the yield

spreads on a range of proxies for credit risk, liquidity risk and other effects.

Meanwhile, panel regression analysis is often applied to take advantage of huge

data sets which contains cross-sectional time series data (e.g. time series of prices

of different bonds), as some measures are homogenous across individual bonds

but vary over time and others are invariant through time but different cross-

sectionally.

Measures of Illiquidity

We will now review some illiquidity measures frequently used in the empirical

liquidity literature. Our focus will be mainly on the recent literature.

Direct illiquidity measures include price impact, transaction cost, trading fre-

quencies and trading volume. Microstructure theory suggests that the transaction

cost combined with the price impact of trade is a good measure of an asset’s liq-

uidity.

Amihud (2002) examines the effect of illiquidity on the cross-section of stock

returns using an illiquidity measure that is related to Kyle (1985) price impact

coefficient λ. The measure is called ILLIQ = |R|/(P ∗ V OL), where R is daily

return, P is the closing daily price and V OL is the number of shares traded

during the day. ILLIQ reflects the relative price change that is induced by a

given dollar volume. The Amihud illiquidity measure has been used extensively
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in the literature on equity. When applied to bond markets, this measure can be

defined as

ILLIQ =
|pt − pt−1|/pt−1

Qt

(2.21)

where pt is the bond price and Qt is the dollar volume of a trade. Larger values

of the Amihud measure suggest more illiquid bonds, as a given trade size moves

prices more.

Transaction costs cause negative serial dependence in successive observed mar-

ket price changes. The bond price bounces back and forth within the bid-ask

bounce, and higher bid-ask bounces lead to higher negative covariance between

adjacent price changes. Assuming market efficiency, the effective bid-ask spread

can be measured by St = 2
√
−cov(4Pi,4Pi−1) where“cov” is the first-order

serial covariance of price changes, t is the time period for which the measure is

calculated and 4 represents the adjacent price difference. This is the famous

Roll measure Roll (1984). Two assumptions are needed: The asset is traded in

an informationally efficient market, and the probability distribution of observed

price changes is stationary. Roll’s model generates undefined spread estimates

almost half of the time when applied to daily transaction data on equities [Harris

(1990)]. It may also suffer from misspecification problem when applied to markets

with richer structures. However, despite of its simplicity, it is still very useful as

it provides a method to estimate the bid-ask spread based on only transaction

prices. Later in section ?? we will discuss Roll’s model and its extensions in

detail.

Mahanti et al. (2009) investigate the interaction between market liquidity

and the price of credit risk by relating the liquidity of corporate bonds to the

basis between the credit default swap price of the issuer and the par-equivalent

CDS spread of the bond. The liquidity of a bond is measured by the so-called

latent liquidity which is defined in Mahanti et al. (2007) as the weighted average

turnover of the investors holding the bond, where the weights are their fractional

holdings of the bond. They find that their measure has explanatory power for

the liquidity component of the CDS-bond basis.

Chen et al. (2007) investigate bond-specific liquidity effects on the yield spread

using three separate liquidity measures, namely bid-ask spread, the liquidity
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proxy of zero returns and a model-based transaction cost estimator developed

by Lesmond et al. (1999). In the presence of transaction costs, investors will

trade less frequently. Bekaert et al. (2007) suggest that the magnitude of the

percentage of zero returns is a reasonable measure of illiquidity. Lesmond et al.

(1999) show that their estimator measures the underlying liquidity costs better

than the percentage of zero returns. They find that liquidity is priced in both

the levels and the changes of the yield spread. In our study we are also interested

in the cross-sectional differentials of both the level of liquidity and the liquidity

premium across individual bonds. However, unlike their study, we will be able

to make use of the information from the credit default swap market to control

credit risk, and examine the interaction between credit and liquidity risk.

Bao et al. (2011) examine the connection between their Roll measure and

bond trading activity measures (e.g. trade size, number of trades and turnover).

They find that bonds which have smaller trade sizes are more illiquid. Bond

trading activity measures may be able to capture the liquidity variations at the

individual bond level.

Indirect illiquidity measures include bond characteristics such as issue size or

outstanding amount, time-to-issue or time-to-maturity, and price volatility.

The earliest example of this kind of research on corporate bonds, that we

know of, is by Fisher (1959), who uses the amount outstanding of a bond as a

measure of liquidity and the earnings variability as a measure of the credit risk of

the firm, and finds that yield spreads on bonds with low issue sizes are higher. As

we discussed earlier, one of the sources of illiquidity is related to searching costs.

This searching friction is particularly relevant in over-the-counter markets such

as the corporate bond market. The amount outstanding measures the overall

availability of a bond, and therefore, reflects the liquidity of a bond.

Time-Since-Issue and Time-To-Maturity are popular proxies for bond liquid-

ity. Examining the corporate bond market, Schultz (2001) finds that newly issued

bonds trade more than old bonds. More recently, Edwards & Piwowar (2007)

study secondary transaction costs in the corporate bond markets. They find that

transaction costs decrease significantly with trade size, and highly rated bonds,

recently issued bonds, and bonds close to maturity have lower transaction costs

than do other bonds.
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Alexander et al. (2000) find that bond issues with higher volume tend to be

larger and more recently issued. Bao et al. (2011) establish a robust connec-

tion between their illiquidity measure and liquidity-related bond characteristics.

Similarly, they find that the illiquidity measure is higher for older and smaller

bonds, and bonds with smaller average trade sizes and higher idiosyncratic return

volatility. These papers not only find strong evidence of a seasoning effect, but

also they both suggest that issue amount could be an indicator of bond liquid-

ity. Intuitively, bonds with smaller issue amount tend to be held by long-term

investors more easily, reducing the tradable amount and thus their liquidity.

Moreover, in the microstructure literature, market makers’ inventory holding

costs are often related to price volatility. Alexander et al. (2000) use the average

of absolute price returns to approximate the underlying volatility. However, they

find a negative relation between volatility and yields. Gwilym et al. (2002) con-

duct an examination of the determinants of the bid-ask spread and confirm that

credit rating, issue size, and price volatility affect liquidity.

Houweling & Vorst (2005) use liquidity-sorted portfolios in the European mar-

ket to test whether liquidity risk is priced by using nine proxies for liquidity in-

cluding issued amount, listing, currency, on-the-run or not, age, whether there

are missing prices, yield volatility, the number of quote contributors, and yield

dispersion.

Dick-Nielsen et al. (2012) analyze liquidity components of corporate bond

spreads by using TRACE data. They find that illiquidity premia increased dra-

matically during the crisis. As no liquidity measure is perfect and any measure

is able to capture some information about liquidity, they combine four liquid-

ity proxies, namely the price impact of trades(the Amihud measure), transaction

costs(Unique roundtrip cost) and the variability of these two variables, to capture

most of the liquidity-related variation of spreads.

In addition to the above research on the corporate bond market, by Covitz &

Downing (2007) find that liquidity plays a role in the determination of spreads

of commercial papers (CP), but credit quality is a more important determinant

of spreads. Their regression analysis is based on three liquidity measures (that

is trade volume, dollar volume and maturity) and three credit risk proxies (that

is Expected Default Frequency (EDF), credit rating and equity volatility). Li
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et al. (2009) estimate a market-wide liquidity factor based on transaction data

and document a strong positive relation between expected Treasury returns and

liquidity. Their findings suggest that term structure modelling should consider

liquidity effects in order to capture yield curve dynamics.

Some researchers are interested in cross-market determinants of liquidity.

Chordia et al. (2005) explores cross-market liquidity dynamics by estimating a

vector autoregressive model for liquidity. They find that shocks to stock and

bond market liquidity and volatility are significantly correlated, implying that

common factors drive liquidity and volatility in these markets. Using time-series

regressions, controlling for market risk by using the stock market index return

and the change in implied equity index volatility, De Jong & Driessen (2007)

provide evidence that corporate bond returns are positively related to changes in

the equity and bond market liquidity measures.

The recent liquidity crisis in the interbank lending market warns us that great

attention has to be paid to the healthy functioning of this market, which is directly

related to the monetary policy of governments. Eisenschmidt & Tapking (2009)

propose a theoretical model for the funding liquidity risk of lenders in unsecured

term money markets and presents evidence that the unsecured interbank money

market rates reached levels that cannot be explained alone by higher credit risk.

Michaud & Upper (2008) and Taylor and Williams (2008)Taylor & Williams

(2009) try to decompose money market rates into credit risk, liquidity and other

components by applying regression techniques. Treated as independent variables,

the credit component is measured by CDS spreads and liquidity is measured by

dummy variables or treated as a residual. They demonstrate a significant impact

of liquidity on money market rates.

Remarks

As we can see, each liquidity measure has its strengths and weaknesses. More-

over, some measures are able to explain cross-sectional differences whereas other

measures capture common time series variations. We will use both direct and in-

direct measures in our panel regression analysis, as one of problems is how much

of the variations in the level of liquidity and liquidity premium are common and
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how much are idiosyncratic. Panel regression techniques will be reviewed in the

next section.

2.3.4 Panel Data Analysis

Our data consist of a battery of corporate bonds and credit default spreads. These

data enable us to observe not only time series but also cross-sectional variations

in the level of liquidity as well as the liquidity premium. Recent developments in

econometric technique and statistical software offer us some great tools to analyze

panel data. In this section we will review some important issues in panel data

analysis. In particular, we will discuss two special cases, namely fixed-effects and

random-effects models1, followed by diagnostic tests.

Fixed-Effects and Random-Effects

Consider fitting models of the form

yit = α + xitβ + νi + εit. (2.22)

In this model, νi + εit is the residual, which we have little interest in; we

want estimates of β or perhaps α. νi is the unit-specific residual; it differs be-

tween units, but for any particular unit, its value is constant. εit is the “usual”

residual with the usual properties (mean 0, uncorrelated with itself, uncorrelated

with independent variables, uncorrelated with unit-specific residual νi, and ho-

moscedastic).

If equation 2.22 holds, we must have that

ŷi = α + x̂iβ + νi + ε̂i, (2.23)

where ŷi =
∑

t yit/Ti, x̂i =
∑

t xit/Ti, and ε̂i =
∑

t εit/Ti. Subtracting equation

1Both Baltagi (2008) and Wooldridge (2009) provide good overviews of fixed-effects and
random-effects models. Allison (2009) provides perspective on using fixed-effects and random-
effects models.
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2.23 from equation 2.22, we obtain

(yit − ŷi) = (xit − x̂i)β + (εit − ε̂i). (2.24)

Equation 2.24 provides the fixed-effects (FE) estimator.

Fixed-effects (FE) should be applied if one is only interested in analyzing

the impact of variables that vary over time. FE explore the relationship between

predictor and outcome variables within an entity (country, person, company, etc.).

Each entity has its own individual characteristics which may or may not influence

the predictor variables. When using FE it is assumed that something within the

entity may impact or bias the predictor or outcome variables and we need to

control for this. This is the rationale behind the assumption of the correlation

between the entity’s error term and predictor variables. FE remove the effect of

those time-invariant characteristics from the predictor variables so we can assess

the predictors’ net effect.

Another important assumption of the FE model is that those time-invariant

characteristics are unique to the individual and should not be correlated with

other individual characteristics. Each entity is different, therefore, the entity’s

error term and the constant (which captures individual characteristics) should

not be correlated with other entities’ error terms and the constants. If the error

terms are correlated, then FE is not suitable any more, since inferences may

not be correct and you need to model that relationship (probably using random-

effects). In other words, the FE model controls for all time-invariant differences

between the individuals, so the estimated coefficients of the FE models cannot

be biased because of omitted time-invariant characteristics.

One side effect of the features of FE models is that they cannot be used to

investigate time-invariant causes of the dependent variables. Technically, time-

invariant characteristics of the individuals are perfectly collinear with the entity

dummies. FE models are designed to study the causes of changes within an

entity. A time-invariant characteristics cannot cause such a change, because it

is constant for each entity. In this case, one may resort to the random-effects

models.
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The random-effects (RE) estimator turns out to be equivalent to estimation

of

(yit − θŷi) = (1− θ)α + (xit − θx̂i)β + {(1− θ)νi + (εit − θε̂i)}, (2.25)

where θ is a function of σ2
ν and σ2

ε . If σ2
ν = 0, meaning that νi is always 0, then

θ = 0 and equation 2.22 can be estimated by OLS directly. Otherwise, if σ2
ε = 0,

meaning that εit is 0, then θ = 1 and the FE estimator returns all the information

available.

The rationale behind random effects (RE) model is that, unlike the FE model,

the variation across entities is assumed to be random and uncorrelated with the

predictor and with independent variables included in the model. An advantage of

RE is that it is possible to include time invariant variables. In the FE model these

variables are absorbed by the intercept. RE assume that the entity’s error term

is not correlated with the predictors which allows for time-invariant variables to

play a role as explanatory variables. In RE one needs to specify those individual

characteristics which may or may not influence the predictor variables. The

problem with this model is that some variables may not be available, therefore,

leading to omitted variable bias in the model.

Diagnostic Tests

According to Baltagi (2008), cross-sectional dependence is a problem in macro

panels with long time series. This is not much of a problem in micro panels. The

null hypothesis in the Breusch-Pagan LM test of independence is that residuals

across entities are not correlated. Alternatively, Pasaran’s CD test can be used

to test whether or not the residuals are correlated entities. The null hypothesis is

that residuals are not correlated. If cross-sectional dependence is present, it can

be corrected by using Driscoll and Kraaay standard errors (See Driscoll & Kraay

(1998)).

A modified Wald test and a likelihood ratio test for groupwise heteroscedas-

ticity are developed (See Baum (2006)). The null hypothesis is homoscedasticity

or constant variance . If the tests show that there is heteroscedasticity, then it

33



2.3 Decomposition of Corporate Yield Spreads

can be corrected by using robust standard errors or Huber-White standard errors

(See Green (2008) and White (1980)).

The disturbances may be serially correlated within the panel. Serial correla-

tion causes the standard errors of the coefficients to be smaller than they actually

are and higher R-squared values. A Lagram-Multiplier test for serial correlation

is derived by Wooldridge (2002). The null hypothesis is no serial correlation.

When first-order autocorrelation is present, then it can be corrected by using

Prais-Winsten estimation (See Wooldridge (2009)).

Additionally, to decide between fixed or random-effects one can run a Haus-

man test where the null hypothesis is that the preferred model is random-effects

against fixed-effects (See Green (2008)).
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2.4 Estimation of the Effective Bid-ask Spread

In the market microstructure literature on estimating and decomposing the bid-

ask spread, there are two classes of models: the serial covariance spread estimation

model, and the order flow spread estimation model. We found existing models

suffered from misspecification problems when applied to our data. Therefore, we

also review some techniques which may help when we develop our models.

2.4.1 Serial Covariance Spread Estimation Model

In the serial covariance spread estimation model, the spread measures are derived

from the serial covariance properties of transaction price changes.

Roll (1984) Model

The first such model was developed by Roll (1984). Transaction costs are inferred

from serial covariance of daily equity returns. In an efficient market the price

dynamics may be stated as

mt = mt−1 + εt, (2.26)

pt = mt + sqt, (2.27)

where mt is the unobservable efficient price, pt is the transaction price observed

at time t, s is one-half the bid-ask spread, and the qt are trade direction indi-

cators, which take the values +1 for buy orders or −1 for sell orders with equal

probability.

The changes in transaction prices between two successive trades is

pt − pt−1 = mt + sqt − (mt−1 + sqt−1), (2.28)

∆pt = s∆qt + εt. (2.29)
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Thus,

Cov(∆pt,∆pt−1) = E[∆qt∆qt−1s
2] + E[∆qtεt−1s]

+ E[∆qt−1εts] + E[εtεt−1],
(2.30)

where Cov(∆pt,∆pt−1) is the first-order autocovariance of the price changes.

In deriving the Method of Moments estimator Roll (1984) makes several as-

sumptions:

1. Successive transaction types are independent. Thus,

E[qtqt−1] = 0.

2. The half-spread s is constant.

3. Order flows do not contain information about future fundamental price

changes. Thus,

E[∆qt−1εt] = 0.

4. Changes in fundamental value cannot predict order flows:

E[∆qtεt−1] = 0.

5. The innovations in the fundamental price process reflect public information

and are assumed to be independent. Therefore,

E[εtεt−1] = 0.

Then,

Cov(∆pt,∆pt−1) = −s2. (2.31)

This gives Roll’s Method of Moments spread estimator

ŝ =
√
−Cov(∆pt,∆pt−1). (2.32)
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If the innovations in the efficient price process are assumed to follow a normal

distribution with mean 0 and constant variance σ2
ε , the Method of Moments

variance estimator is

σ̂2
ε = V ar(∆pt)− s2V ar(∆qt) = V ar(∆pt)− 2s2. (2.33)

An advantage of Roll’s model is that it relies exclusively on transaction price

data.

Choi et al. (1988)) Model

Choi et al. (1988) modify Roll’s estimator and introduce a serial correlation as-

sumption regarding transaction type. An implicit hypothesis in Roll’s model is

that orders are not serially correlated, meaning that the probability of a buy order

is equal to that of a sell order, and is independent of the previous orders. However,

when large orders are broken up, there could be serial dependence transaction

type.

The probability of continuation is equal to

Pr(∆qt+1 = ∆qt) = (1− γ), (2.34)

and the covariance between the transaction price variations results in

Cov(∆pt,∆pt−1) = −s2γ2. (2.35)

whereas the spread estimator becomes

ŝ =
1

γ

√
−Cov(∆pt,∆pt−1). (2.36)

Stoll (1989) Model

The probability of an order flow reversal or continuation may be different from
1
2

when market makers adjust bid-ask spreads to equilibrate inventory. Stoll
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(1989) models the relation between the bid-ask spread and the serial covariance

of transaction price changes as a function of the probability of a price reversal

and the magnitude of a price reversal in order to decompose the bid-ask spread

into three components: adverse information costs, order processing costs, and

inventory holding costs. The model consists of two equations:

Cov(∆pt,∆pt−1) = s2[δ2(1− 2π)− π2(1− 2δ)], (2.37)

Cov(∆Mt,∆Mt−1) = δ2s2(1− 2π), (2.38)

where Mt is mid-quote which is calculated as the midpoint of the bid-ask quotes

that prevail just before a transaction, δ = ∆pt|pt−1=At−1,pt=At
s

= −∆pt|pt−1=Bt−1,pt=Bt
s

is the magnitude of a price continuation as a percentage of the bid-ask spread.

He shows that the compensation earned by a market maker for order processing

and inventory costs is 2(π − δ)s. The remainder of the spread [1 − 2(π − δ)]s

reflects the adverse selection costs.

George et al. (1991) Model

George et al. (1991) use daily data and consider changing expectations in their

model. As in Roll’s model, they also assume thet the spread is independent of

trade size and the probabilities of trades at the bid and ask are equal. Their

model for transaction prices can be written as

pt = mt + πsqt, (2.39)

mt = Et +mt−1 + (1− π)sqt + νt, (2.40)

where the “true” expected return of a security, Et, is varying over time.
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Remarks

Harris (1990) shows that Roll’s spread estimator generates undefined spread es-

timates almost half of the time when applied to daily transaction data on equity.

In particular, if there exist multiple spreads in the market as our data seems to

suggest, the model suffers misspecification problem. Moreover, serial correlation

spread estimation models rely on a few moments such as variance and covariance.

In a richer or more realistic model, it is often difficult to find enough moments

without even mentioning how to compute them.

Recently, Hasbrouck (2004) suggests a Bayesian Gibbs approach to estimate

Roll’s model and applies it to commodity futures transaction data. In Roll’s

model there are several latent variables such as fundamental prices of a secu-

rity and trade direction indicators which are not artificial quantities, but are

economically meaningful components of a structural model. The Bayesian ap-

proach facilitated by the Gibbs sampler (See Casella & George (1992)) provides

a very flexible framework to estimate these latent variables and gives possibility

to extend Roll’s model. Later we will review the literature on Bayesian model

estimation and comparison.

2.4.2 Order Flow Spread Estimation Model

In another class of models, the bid-ask spread is estimated via order flow regres-

sion models.

Glosten & Harris (1988) Model

Glosten & Harris (1988) applied this idea to extract the adverse selection spread

component by developing an order flow transaction costs estimation model.

With asymmetric information effects, the order flow has an impact on the

equilibrium price, as follows:

mt = mt−1 + s(1− π)qt + εt, (2.41)
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where π is the parameter indicating order processing costs as a fraction of total

costs, and (1 − π) the fraction of adverse selection costs. This implies that the

equilibrium price includes the public information as well as the private informa-

tion revealed by the order flow qt.

If the ‘true’ price reflects adverse selection costs, then the transaction price pt

reflects order processing costs:

pt = mt + sqt. (2.42)

They allow the order processing cost and adverse selection cost to be function

of trade size. Assume the spread consists of an order processing cost component,

ct, and a price impact component, zt:

st = ct + zt. (2.43)

Both spread components are linear in trade size vt:

ct = c0 + c1vt, (2.44)

zt = z0 + z1vt. (2.45)

The model is estimated by Maximum Likelihood and intraday data on prices

and trading volume (or net order flow) are needed.

Madhavan et al. (1997) Model

Madhavan et al. (1997) develop an order flow regression model based on Glosten

& Harris (1988) to study intra-day patterns in bid-ask spreads, price volatility,

the serial correlations of transaction returns and quote revisions. Their model

can be written as

∆pt = (φ+ θ)qt − (φ+ ρθ)qt−1 + et (2.46)
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where θ is the adverse selection component, φ is the order processing and inven-

tory component. θ measures the degree of information asymmetry. Higher values

of θ indicate larger revisions for a given innovation in order flow. φ represents

market makers’ cost per share for supplying liquidity. Thus, φ captures the tran-

sitory effect of order flow on prices. ρ is the first-order autocorrelation of order

flow. When order flow is serially uncorrelated, ρ is equal to 0. Their model also

assumes a fixed order size.

Huang & Stoll (1997) Model

Huang & Stoll (1997) develop a model to decompose the components of the bid-

ask spread. In particular, the spread components differ according to trade size.

Let us look at their model in details.

The unobservable fundamental value mt follows:

mt = mt−1 + αsqt−1 + εt, (2.47)

where α is the percentage of the half-spread contributable to asymmetric informa-

tion. Assuming that past trades are of a normal size of one, the quote midpoint

is related to the fundamental value according to

Mt = mt + βs
t−1∑
i=1

qi, (2.48)

where β is the proportion of the half-spread attributable to inventory holding

costs, and
∑t−1

i=1 qi is the cumulated inventory from the market open until time

t− 1 with q1 as the initial inventory for the day. The transaction price follows

pt = Mt + sqt + ηt, (2.49)

where ηt captures the deviation of the observed half-spread from the constant

half-spread as well as rounding errors associated with price discreteness.
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Combining the above equations, the model can be written as the form of

observed price changes:

∆pt = s(qt − qt−1) + λsqt−1 + et, (2.50)

where λ = α+ β and et = εt + ∆ηt. The model provides estimates of the traded

spread, s, and the total adjustment of quotes to trades, λs.

In particular, they also generalize the model to allow coefficient estimates

depending on three trader size categories. Then, the model becomes

∆pt = ssqst+(λs−1)ssqst−1+smqmt +(λm−1)smqmt−1+slqlt+(λl−1)slqlt−1+et, (2.51)

where the half-spread s and λ differ for small, medium, and large trade sizes.

Ball & Chordia (2001) Model

Ball & Chordia (2001) generalize the Huang & Stoll (1997) model by explicitly

allowing for rounding onto the tick grid. More importantly, they allow the bid-

ask spread to vary from transaction to transaction and to continuously depend

on prior trade size and market depth. Similar to our approach in the first study,

the chosen model is determined by the marginal likelihood computed from the

Gibbs sampling output as suggested by Chib (1995).

The transaction price is modeled as follows:

pt = [mt + (1− λ)stqt]Round, (2.52)

where λ is the adverse selection component of the spread and the notation [.]Round

represents rounding onto the tick grid. The unobservable fundamental value is

assumed to evolve as follows:

mt = mt−1 + λstqt + ut. (2.53)

Here they allow the adverse selection to affect the fundamental value.
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They argue that the bid-ask spread may vary according to a micro information

flows and responding to large information-related trades. Therefore, they model

the bid-ask spread as follows:

ln(st) = α + βln(st−1) + δln(Vt−1/Dt−1) + τTIMEt−1 + d1BEG+ d2END + et.

(2.54)

where Vt−1 is the volume at the previous trade, Dt−1 is the corresponding depth

of trade for which the then prevailing bid-ask quote held, TIMEt−1 is the time

between the last trade and the one before it, and BEG(END) are dummy vari-

ables to represent the first (last) hour of the trading day. The model allows the

spread to depend on the volume and depth of previous transaction. The dummy

variables capture the intra-day seasonality.

They have observations on the transaction price, the trade direction, the size

and depth of the previous trade, and the time between trades as well as whether

the trade occurred at the beginning or end of the trading day. However, the latent

variables the fundamental value and the effective bid-ask spread are unknown.

The model is estimated by using Bayesian estimation method which provides a

relaxable framework to estimate the model parameters and the latent variables

given the observed data. The development in Bayesian econometric provides

an opportunity and reflexibility to estimate such complicated models as Ball

& Chordia (2001) model and our model in Chapter 3. With such a powerful

technique in hand, we will be able to develop a model whose structure is rich

enough to fit the market observations better.

Within a Bayesian framework we can also choose the best model from various

alternative specifications. For instance, Ball & Chordia (2001) consider four

alternative model specifications:

• M1: d1 = d2 = τ = 0,

• M2: d1 = d2 = 0,

• M3: τ = 0,

• M4: No restriction on the parameters.
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The first model assumes the spread is a first order autoregressive process and also

depends on the transaction size V and the depth D. The intuition is that the

greater the prior volume per unit depth, the wider the spread will become. The

second and third models capture the time-between-trades and intro-day effects

on the spread. The best model is chosen by comparing the marginal likelihood

computed using the Gibbs outputs from the estimation stage. Standard Markov

Chain Monte Carlo methods such as Gibbs sampling and Metropolis-Hastings

sampling will be reviewed later on.

Remarks

As explained by Hasbrouck (2004), in the serial correlation spread estimation

models, important latent variables such as bids, asks, efficient prices and trade

directions, which are economically meaningful information, are ignored. Modern

Bayesian econometric techniques boost the development of the order flow spread

estimation model. Equipping Bayesian econometrics, order flow spread estima-

tion models are able to capture a variety of market structures, e.g. the underlying

value process may depend on volume or depth, the bid-ask spread may take mul-

tiple values or vary continuously over time. Under Bayesian framework, one may

also infer the trade directions from the transaction data, although there exist

some simple rules to help us classify trades. However, Bayesian approach often

does not have close-form solution, and is not very attractive analytically. With

large data set or more parameters, the numerical estimation procedure may take

several hours or more to finally converge. Nevertheless, given many advantages

that the Bayesian approach has given, our extended models follow this approach.

In the following we will first review the literature on trade classification and

discuss their advantages and problems before introducing some Bayesian econo-

metric techniques recently developed, including Markov Chain Monte Carlo meth-

ods, Bayesian model selection, State space model and Kalman filer.
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2.4.3 Trade Classification

The data series of some products do not contain information about buy/sell

identifier for trades. However, trade classification is useful in the estimation of

the net order flow, the probability of informed trading, and the effective bid-ask

spread.

When bid-ask quotes are available, a natural method is to compare the trade

price with the quotes prevailing at the time of the trade. A trade is classified

as a buy trade if the transaction price is above the midpoint of the bid-ask

quotes. Trades below the midpoint will be classified as sells. The limitation of

this algorithm is that transactions executed at the midpoint cannot be classified

by the quote rule.

When bid-ask quotes are not available, a technique known as a ‘tick test’

is commonly used. Each trade is classified by the test into four categories: an

uptick, a downtick, a zero uptick, and finally a zero downtick. A trade will be

classified as an uptick (downtick) if the price is higher (lower) than the price prior

to the trade. When the price is the same as the previous price, if the last price

change was an uptick (downtick), then the trade is a zero-uptick (zero downtick).

A trade will be classified as a buy if it is an uptick or a zero uptick; otherwise it

will be classified as a sell. Similarly, a reverse ‘tick test’ uses the next trade price

to classify the current trade. If the next trade occurs on an uptick or zero uptick

(a downtick or zero downtick), the current trade will be classified as a sell (buy).

The third rule is a hybrid method, suggested by Lee & Ready (1991). Lee &

Ready (1991) method combines the quote rule and the tick rule by first classify all

trades that do not occur at the midpoint using the quote rule, and then classify

midpoint trades by the ‘tick test’. Using intra-day quote and trade prices on

equity, Finucane (2000) finds that using either Lee & Ready (1991) algorithm or

the ‘tick test’ results in significantly biased estimates of effective bid-ask spreads

and signed volume, however, the ‘tick test’ performs better than Lee & Ready

(1991) algorithm.

Using a Nasdaq proprietary data set, Ellis et al. (2000) find that the quote

rule, the tick rule, and the Lee & Ready (1991) rule correctly classify 76.4%,

77.66%, and 81.06% of the trades, respectively. But all rules do not enjoy much
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success in classifying trades executed inside the quotes. Therefore, Ellis et al.

(2000) propose a new classification rule: all trades executed at the ask (bid)

quote are classified as buys (sells). All other trades are classified by the ‘tick

test’. They show the new algorithm outperforms other classification rules.

2.4.4 Markov Chain Monte Carlo Method

Markov chain Monte Carlo (MCMC) methods are a class of algorithms for sam-

pling from probability distributions based on constructing a Markov chain that

has the desired distribution as its equilibrium distribution. The state of the chain

after a large number of steps is then used as a sample of the desired distribution.

The quality of the sample improves as a function of the number of steps. The

first such method is known as the Metropolis-Hastings (MH) algorithm (See Chib

& Greenberg (1995)). Another MCMC method is the Gibbs Sampling algorithm

(See Casella & George (1992)). Now we will briefly review these two algorithms.

Metropolis-Hastings

The general idea of the Metropolis-Hastings algorithm (Hastings (1970)) is to

generate a series of samples that are linked in a Markov chain. The MH algorithm

is an extension of the original Metropolis algorithm (Metropolis et al. (1953)).

The candidate-generating density is denoted q(x, y), where
∫
q(x, y)dy = 1.

This density can be interpreted as that when a process is at the point x, the den-

sity generates a value of y from q(x, y). If q(x, y) does not satisfy the reversibility

condition, for some x, y,

π(x)q(x, y) > π(y)q(y, x), (2.55)

where π(.) is the density from which we would like like to generate sample but

the transition kernel is unknown. A possible way is to introduce a probability

α(x, y) < 1 such that the reversibility condition is satisfied. Then,

π(x)q(x, y)α(x, y) = π(y)q(y, x). (2.56)
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Thus,

α(x, y) = π(y)q(y, x)/π(x)q(x, y). (2.57)

Therefore the transitions from x to y (y 6= x) are made according to pMH(x, y) =

q(x, y)α(x, y). In order for pMH(x, y) to be reversible, the probability of move

must be set to

α(x, y) = min[π(y)q(y, x)/π(x)q(x, y), 1], (2.58)

α(x, y) = min[π(y)q(y, x)/π(x)q(x, y), 1], if π(x)q(x, y) > 0, (2.59)

= 1, otherwise. (2.60)

In summary, the MH algorithm starts with an arbitrary value x(0):

1. Repeat for j = 1, 2, ..., N .

2. Generate y from q(x(j), ·) and u from u(0, 1).

3. If u ≤ α(x(j), , y), set x(j+1) = y.

4. Else set x(j+1) = x(j).

5. Return {x(1), x(2), ..., x(N)}.

Gibbs Sampling

The Gibbs sampling is a technique for generating random variables from a marginal

distribution indirectly, without having to calculate the joint density. As a Markov

chain Monte Carlo method (Chib & Greenberg (1996)), the Gibbs sampler gen-

erates sample values from the distribution of each variable in turn, conditioned

on the current values of the other variables.

Suppose we are given a joint density f(x, y1, ..., yp), and are interested in

obtaining characteristics of the marginal density

f(x) =

∫
...

∫
f(x, y1, ..., yp)dy1...dyp, (2.61)
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such as the mean or variance. The most natural and straightforward way would

be to calculate f(x) and use it to obtain the desired characteristic. However, there

are many situations where such a integration in equation (2.61) are not available

in closed form or difficult to compute numerically. In such cases the Gibbs sampler

provides an alternative method for obtaining the marginal density.

Instead of computing f(x) directly, the Gibbs sampler allows us effectively to

generate a sample X1, ..., Xm ∼ f(x) without requiring f(x). By simulating a

large enough sample, the mean, variance, or any other characteristic of f(x) can

be calculated to the desired degree of accuracy.

Let us consider a bivariate random variable (x, y), and suppose we would like

to compute marginal densities, p(x) and p(y). The idea of Gibbs sampler is that

it would be easier to consider in terms of a sequence of conditional distributions,

p(x|y) and p(y|x), than it is to consider in terms of the marginal densities by

integrating the joint density p(x, y) over x or y.

The sampler starts with some initial values x(0) for x . Then we can obtain y(0)

by generating a random variable from the conditional distribution p(y|x = x(0)).

The sample uses y(0) to generate a new value x(1), drawing from the conditional

distribution p(x|y = y(0)). The Gibbs sampler continues as follows:

y(i) ∼ p(y|x = x(i−1)), (2.62)

x(i) ∼ p(x|y = y(i)). (2.63)

This process is repeated for k times, generating a sequence of length k, where a

subset of pairs (x(j), y(j)) for 1 ≤ m ≤ j < k are taken as the draws from the

full joint distribution. The Gibbs sequence converges to a stationary distribution

which is the target distribution.

2.4.5 Bayesian Model Comparison

Bayes factors have been considered as alternatives to classical P -values for testing

hypotheses and for quantifying the degree to which observable data support or
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conflict with a hypotheses. Bayesian model comparison can be based on Bayes

factors (Kass & Raftery (1995)). An alternative option is the Deviance Informa-

tion Criterion (DIC) developed by Spiegelhalter et al. (2002).

Bayes Factors

We begin with data D, assumed to be have arisen under one of the two hypothe-

ses H1 and H2 according to a probability density Pr(D|H1) or Pr(D|H2). Given

a prior probabilities Pr(H1) and Pr(H2) = 1− Pr(H1), the data produce a pos-

terior probabilities Pr(H1|D) and Pr(H2|D) = 1−Pr(H1|D). Because any prior

opinion gets transformed to a posterior opinion through consideration of the data,

the transformation itself represents the evidence provided by the data. In fact,

the same transformation is used to obtain the posterior probability, regardless of

the prior probability. Once we convert to the odds scale (odds = probability/(1-

probability)), the transformation takes a simple form, From Bayes’s theorem, we

obtain

Pr(Hk|D) =
Pr(D|Hk)Pr(Hk)

Pr(D|H1)Pr(H1) + Pr(D|H2)Pr(H2)
(k = 1, 2), (2.64)

so that
Pr(H1|D)

Pr(H2|D)
=
Pr(D|H1)

Pr(D|H2)

Pr(H1)

Pr(H2)
, (2.65)

and the transformation is simply multiplication by

B12 =
Pr(D|H1)

Pr(D|H2)
, (2.66)

which is the Bayes factor. Alternatively stated, posterior odds = Bayes factor ×
prior odds, and the bayes factor is the ratio of the posterior odds of H1 to its

prior odds, regardless of the value of the prior odds.

Bayes factor allows multiple model comparison. It is consistent and easy to

interpret. However, the use of improper priors may lead to indeterminate answers.

Chib (1995) develops a method to evaluate Bayes factors numerically.
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Deviance Information Criteria (DIC)

Spiegelhalter et al. (2002) develop the DIC as a model choice criterion. Based on

the posterior distribution of D(θ), which is defined as

D(θ) = −2logf(y|θ) + 2logf(y), (2.67)

it consists of two components: a term that measures goodness-of-fit and a penalty

term for increasing model complexity.

The measure of fit consists of the posterior expectation of the deviance

Eθ|y[D] = D̂. (2.68)

The second part measures the complexity of the model by the effective number of

parameters, pD, defined as the difference between posterior mean of the deviance

and the deviance evaluated at the posterior mean of the parameters:

pD = Eθ|y[D]−D(Eθ|y[D]) = D̂ −D(θ̂). (2.69)

The DIC is defined as the sum of both components

DIC = D̂ + pD = D(θ̂) + 2pD. (2.70)

DIC is easily compatible with MCMC method and works with improper priors.

However, DIC lacks a formal derivation and it is intrinsically a large sample

measure based on point estimation and not a Bayesian measure.

2.4.6 State Space Model and Kalman Filter

State space models (See Chapter 50 written by James D. Hamilton in Engle &

Mcfadden (1986) and Kim (1999)), which typically deal with dynamic time series

models that involve latent variables, have had a wide range of applications in

economics and finance. A common tool used to deal with the standard state space
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model is the Kalman filter, a recursive procedure for computing the estimator

of the unobservable variable or the state vector at time t, based on available

information at time t. When the shocks to the model and the initial unobservable

variables are normally distributed, the Kalman filter also enables the likelihood

function to be calculated via the prediction error decomposition.

The state space model can be written as

yt = xtβt + εt, t = 1, 2, . . . , T, (2.71)

βt = µ+ Fβt−1 + νt, (2.72)

εt ∼ i.i.d.N(0, R), (2.73)

νt ∼ i.i.d.N(0, Q), (2.74)

where yt is 1 × 1; xt is 1 × k; βt is k × 1; F is k × k;R is k × k; Q is k × k and

εt and νt are independent. If µ = 0 and F = Ik, each regression coefficient in βt

follows a random walk.

The Kalman filter is a recursive procedure for computing the optimal estimate

of the unobserved state vector βt, t = 1, 2, 3, . . . , T based on the appropriate

information set, assuming that µ, F,R and Q are known. It provides a minimum

mean squared error estimate of βt given the appropriate information set.

The Kalman filter consists of the following two steps:

1. Prediction: At the beginning of time t, we may want to form an optimal

predictor of yt, based on all the available information up to time t−1: yt|t−1.

To do this, we need to calculate βt|t−1.

2. Updating: Once yt is realized at the end of time t, the prediction error

can be calculated: ηt|t−1 = yt − yt|t−1. This prediction error contains new

information about βt beyond that contained in βt|t−1.
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Thus, after observing yt, a more accurate information can be made of βt. βt|t, an

inference of βt based on information up to time t, may be of the following from:

βt|t = βt|t−1 +Ktηt|t−1, where Kt is the weight assigned to new information about

βt contained in the prediction error.

The basic filter is described by the following six equations:

1. Prediction:

βt|t−1 = µ+ Fβt−1|t−1, (2.75)

Pt|t−1 = FPt−1|t−1F
′ +Q, (2.76)

ηt|t−1 = yt − yt|t−1 = yt − xtβt|t−1, (2.77)

ft|t−1 = xtPt|t−1x
′
t +R, (2.78)

2. Updating:

βt|t = βt|t−1 +Ktηt|t−1, (2.79)

Pt|t = Pt|t−1 −KtxtPt|t−1, (2.80)

where Kt = Pt|t−1x
′
tf
−1
t|t−1 is the Kalman gain, which determines the weight as-

signed to new information about βt contained in the prediction error.

The discussion above assumes that the model’s parameters are known. How-

ever, some of these parameters are usually unknown. In this case, one needs to

estimate the parameters first; then the estimate of βt, t = 1, 2, . . . , T is condi-

tioned on these estimated parameters.

For given parameters of the model, the Kalman filter provides us with predic-

tion error (ηt|t−1) and its variance (ft|t−1). In addition, if β0 and {εt, νt}Tt=1 are

Gaussian, the distribution of yt conditioned on ψt−1 the information available up

to time t− 1 is also Gaussian:

yt|ψt−1 ∼ N(yt|t−1, ft|t−1), (2.81)
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and the sample log likelihood function is represented by

lnL = −1

2

T∑
t=1

ln(2πft|t−1)− 1

2

T∑
t=1

η′t|t−1f
−1
t|t−1ηt|t−1, (2.82)

which can be maximized with respect to unknown parameters of the model. For

non-stationary βt, the log likelihood function is evaluated from observation τ + 1

(τ � 1), where τ is large enough.
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2.5 Microstructure Models

2.5.1 Market Making

In this section we will discuss the role of the market maker in determining the

bid-ask prices or perhaps the bid-ask spreads.

In an efficient market, the price of a security should reflect its fundamental

value. The asynchronous arrival of buyers and sellers, who demand quick trans-

actions, limits liquidity in capital markets. The demand for immediacy creates

a role for financial intermediary. A market maker is a simple type of financial

intermediary. He stands ready to trade on either side the market for his own ac-

count when an order arrives. He may buy primary issues and issue a liability to

finance an inventory 1. A market maker may buy and sell the identical securities.

Therefore, transactions essentially can be summarized as a combination of

a primary transaction for the underlying security and a secondary transaction

for immediacy. The gap between the fundamental value and transaction prices

represents a cost of transacting. The price of immediacy is determined by two

factors: the costs of market making and the extent of competition among market

makers.

By assuming perfect competition in market making explicitly or implicitly, the

price of immediacy is determined as the marginal cost of supplying immediacy.

Garman (1976) presents a stochastic model of the dealership market which

is dominated by a centralized market maker, who possesses a monopoly on all

trading. The possible temporal discrepancy between market buy and sell orders,

and the obligation to maintain continuous trading, induce the market maker to

carry stock inventories. He suggests that the specialists must pursue a policy of

relating their prices to their inventories in order to avoid failure.

Stoll (1978b) considers an expected utility maximizing dealer whose quoted

prices are a function of the cost of taking a position which deviates from his desired

position and derives the implication of his inventory policy on the bid-ask spread

and on the structure of the dealership market. The holding cost depends on the

dollar size of the transaction, the variance of return of the stock being traded,

1The latter issue is normally omitted by theoretical papers.
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the size of the initial holdings of all stocks in the dealer’s trading account, the

covariance between the return on the stock being traded and the return on the

trading account, the wealth of the dealer, and his attitude toward risk.

Amihud & Mendelson (1980) extend Garman’s model to allow the prices set

by the market maker to depend on his stock inventory position. They show that

the prices are monotone decreasing functions of the market maker’s stock, and

that there exists a desired inventory position.

Market makers bear the uncertainty about the return on their inventories as

well as the uncertainty about when future transactions will occur. Their attitude

toward risk should not be ignored. O’Hara & Oldfiled (1986) examine the pricing

policy of a risk-averse market maker. They show that as a result of order flow and

inventory value uncertainty, a risk-averse market maker may set a smaller spread

than a risk-neutral specialist, and that the market maker’s inventory affects both

the placement and the size of the spread.

Recently, Shen & Starr (2002) show that the cost of immediacy increases with

increasing absolute value of market makers’ inventories, volatility of security price

and order flow. Comerton-Forde et al. (2010) show that market makers’ financing

constraints affect liquidity.

It is also suggested that the market maker in supplying immediacy is facing

two kinds of traders, namely liquidity traders, who do not possess any superior

information, and information-motivated traders, who are better informed with

information that is not yet reflected in the price. In practice, market makers

may not only have to be faced with informed traders but also have to manage

their inventories. Copelan & Galai (1983) model the dealer’s bid-ask spread as

a tradeoff between expected losses to informed traders and expected gains from

uninformed traders. They characterize the cost of supplying quotes, as writing a

put and a call options to an informed trader.

In the information-based models, market makers are assumed to be risk neu-

tral. Glosten & Milgrom (1985) model a risk-neutral competitive specialist who

faces on transactions costs, that is, a specialist whose expected profit from each

transaction is zero. It is assumed that traders are asymmetrically informed. The

spread is the premium that the specialist demands for trading with traders with

superior information. Kyle (1985) models the strategic interaction between an
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informed trader and a group of market makers who take the informed trader’s

strategy into account. He shows how information is incorporated into the equi-

librium prices. Easley & O’Hara (1987) show that there is a relationship between

price and trade size. This relationship arises because the larger the trade size,

the more likely it is that the market maker is trading with an informed trader.

Therefore, the market maker’s optimal pricing strategy depends on quantity.

Trading costs will be determined by competition among market makers, and

lower trading costs may induce more trading activity. Ho & Stoll (1981) and

Copelan & Galai (1983) analyze that the behavior of competing dealers and the

problem of determining the equilibrium market bid-ask spread. They show that

the market spread is determined by the second best dealers, while others solve the

pricing problem of a monopolistic dealer. Goldstein & Nelling (1999) study the

relations between the number of markets, trading activity, and price improvement

in Nasdaq stocks, and show that trading frequency may be more important than

trade size in determining the number of market makers.

2.5.2 Inventory-based Models

A fundamental source of illiquidity is the fragmentation of investors and markets

due to the fact that not all investors are present in the same market all of the

time. The gap between sellers and buyers is bridged by market makers who

provide immediacy through their continuous presence in the market and thus

enable continuous trading by any trader who wishes so. In particular, the market

maker can buy from the seller and later sell to the buyer. However, the market

maker faces a risk that the fundamental price may change adversely against him,

and must compensated for this risk.

Garman (1976) Model

Garman (1976), which is perhaps the earliest study of market microstructure,

modeled the relation between dealer quotes and inventory levels based on the

intuition above.
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A single monopolistic market maker who receives the orders, sets the prices,

and clears the trades. His objective is to maximize the expected profit per unit

of time, subject to the avoidance of bankruptcy which happens whenever he runs

out of either inventory or cash. The market maker with an infinite horizon can

only decide at which price he fills the orders wishing to buy the asset (the ask

price pa) and at which price he fills the orders wishing to sell the asset (the bid

price pb), at the beginning of time.

The uncertainty or the risk arises from the arrival of the buy and sell orders,

which are assumed to follow independent Poisson processes, with stationary ar-

rival rate functions λa and λb. At time 0 the market maker holds Ic(0) units of

cash and Is(0) units of the asset. Let Na(t) (Nb(t)) be the cumulative number

of shares that have been sold to (bought from) traders. His inventories at time t

are therefore computed as

Ic(t) = Ic(0) + paNa(t)− pbNb(t), (2.83)

Is(t) = Is(0) +Nb(t)−Na(t). (2.84)

In Garman’s model, we can get the probability of failure:

lim
t→∞

=

(
λbpb
λapa

)Ic(0)/p̂

if λapa > λbpb, (2.85)

= 1 otherwise, (2.86)

where p̂ is defined to be the average of the bid and ask prices.

To avoid his failure with probability one, the market maker has to set:

λapa > λbpb, (2.87)

λb > λa, (2.88)

which requires that:

pa >> pb. (2.89)
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It follows that market makers must actively adjust not only the prices but the

spreads in relation to inventory.

Stoll (1978b) Model

Stoll (1978b) considers a two-period model in which a dealer quotes bid and ask

prices. The dealer is risk averse and demands compensation whenever he acts as

liquidity supplier. When he moves away from his efficient portfolio frontier, he

sets prices such that the expected utility of his terminal wealth when the portfolio

is on the efficient frontier, WEF , is equal to the expected utility of his terminal

wealth, W dealer, when he takes the other side of a order xi. This allows the dealer

to be compensated for the liquidity he supplies to the market. CARA utility

function is assumed with a coefficient of risk aversion equal to A.

The other relevant assumptions are the following: the dealer chooses an initial

portfolio of risky assets equal to:

N∑
h=1

phq
∗
h = W0 (2.90)

where ph is the price of the asset h and q∗h is the optimal choice of the asset h’s

holding at time t = 0; the terminal wealth of the initial portfolio when no trade

occurs between t = 0 and t = 1 is thus equal to:

W̃EF =
N∑
h=1

(Ṽh − ph)q∗h = R∗W0, (2.91)

where Ṽh sinN(V̄ , σ2
h) is the price of the asset h at t = 1, and R∗ is the return on

the risky asset portfolio that lies on the dealer’s efficient frontier. The terminal

wealth of the new portfolio when a trade equal to qi − q∗i = −xi occurs at time

t = 0 is:

W̃ dealer =
N∑
h=1

(Ṽh − ph)q∗h + (Ṽi − pi)(−xi), (2.92)

where pi is equal to the ask price pAi , when the incoming trader submits a buy
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order of size xi > 0 and the dealer sells −xi = qi−q∗i < 0; conversely, pi is equal to

the bid price pBi , when the trader sell xi < 0 and the dealer buys −xi = qi−q∗i > 0

from this trader.

The dealer quotes competitive prices and he sets the price so that the expected

utility from the terminal wealth of the initial portfolio is equal to the expected

utility from the terminal wealth from the new portfolio, which includes xi:

E[U(W̃EF )] = E[U(W̃ dealer)]. (2.93)

Then, the bid (pBi ) and ask (pAi ) prices for the asset i can be derived as:

pAi = V̄i − AW0σ∗,i +
A

2
σ2
i |xi|, with xi > 0, (2.94)

and

pBi = V̄i − AW0σ∗,i −
A

2
σ2
i |xi|, with xi < 0 (2.95)

where σ∗,i is the covariance of the asset i with the portfolio of risky asset lying on

the efficient frontier and σ2
i is the variance if the ith asset. Therefore, the bid-ask

spread is Si = pAi − pBi = Aσ2
i |xi|. Since inventory costs increase with the size of

the transaction, the equilibrium spread is increasing in the trade size.

Amihud & Mendelson (1986) Model

Amihud & Mendelson (1986) study the effect of having different types of investors

with different expected holding periods. Suppose that an agent of type i, i =

1, ...,M receives a liquidity shock with probability µi that forces him to sell and

leave the market. Assume that type 1 agent has the highest risk of a liquidity

shock, type 2 has the second highest, and so on, µ1 > µ2 > · · · > µM , and there

are j securities within which security 1 is most liquid, security 2 is second most

liquid, and so on, c1
d1
< c2

d2
< · · · < cN

dN
, where Sj is transaction cost per share and

dj is dividend.

They define the expected spread-adjusted return of asset j to investor of type

i as the difference between the gross market return on asset j and its expected
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liquidation cost per unit time:

rij = dj/Vj − µiSj, (2.96)

where Vj is the ask price, and thus the bid price is Vj(1− Sj).
With borrowing constraints and limited wealth, the optimal trading strategy

of agent i is to invest all his wealth in securities with the highest spread-adjusted

return,

r∗i = max
j
rij, (2.97)

with r∗1 ≤ r∗2 ≤ ... ≤ r∗M .

They show that in equilibrium the agents with the shortest holding period

hold the riskless security and the illiquid securities with the lowest trading cost.

Agents with the next shortest holding period hold a portfolio of securities with

the next lowest trading costs and so on.

The gross return required by investor i on asset j is given by r∗i + µiSj,

which is effectively the sum of the required spread-adjusted return r∗i and the

expected liquidation cost µiSj. The equilibrium market observed return on asset

j is determined by

max
i
{dj/(r∗i + µiSj)} . (2.98)

This implies that the equilibrium value of asset j, is equal to the present value of

its perpetual cash flow, discounted at the market observed return r∗i +µiSj. They

show that in equilibrium the gross return is an increasing and concave function

of the spread.

Remarks

Garman (1976) explains the market makers’ control problem as to avoid bankruptcy

which is caused by the non-synchronous arrivals of buyers and sellers. However,

he assumes that the market maker can only set the quotes at the beginning

of the trading period. Stoll (1978b) generalizes Garman’s model to allow the

market maker to act as a liquidity provider who absorbs temporary order imbal-

ances. The market maker often holds a suboptimal portfolio position, and thus
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requires compensation in the form of a bid-ask spread. Using this idea, Amihud

& Mendelson (1986) analyze a model in which investors with different expected

holding periods trade assets with different relative spreads. The size of the spread

is exogenously determined.

2.5.3 Information-based Models

Investors with private information choose to trade in order to maximize his profits,

and market makers strategically protect themselves against informed traders.

The information-based model studies the strategic interaction among risk-neutral

market makers, informed traders and liquidity providers.

Glosten & Milgrom (1985) Model

Glosten & Milgrom (1985) assume an economy where market makers quote bid-

ask prices and trade one single security with two types of agents, informed traders

and uninformed traders. The informed traders receive a perfectly informative

signal about the security’s value prior to trading. All traders are risk neutral

and arrive at the market sequentially and choose to buy or sell. The size of

the order is equal to one unit, and agents may only trade once. Nature chooses

the future value of the security, Ṽ , which can be high at V̂ with probability

θ and low at V with probability 1 − θ. The market makers face an informed

trader with probability α and an uninformed trader with probability 1− α. The

informed trader is supposed to choose the trade that maximizes his profit, while

uninformed traders will buy and sell with probability 1
2
. Trading occurs as a

sequence of bilateral trading opportunities.

At time t, market makers compete on the price of the security, realizing an

expected profit, Πt, equal to zero. There is a competition among dealers, driving

expected profits to zero. Market makers will end up setting a price that is equal

to their conditional estimate of the future of the asset, E(Ṽ |Φt), where Φt denotes

the information on the direction of trade. If the incoming order is an buy order

(Bt), then dealers will offer an ask price, at; conversely, if the incoming trade is

a sell order (St), then they will offer a bid price, bt. This conditional expectation
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given an incoming buy order can be interpreted as the opportunity costs that

dealers face when selling the asst:

E(Πt|Bt) = E[(at − Ṽ )|Bt] = 0. (2.99)

Thus,

at = E(Ṽ |Bt), (2.100)

and

bt = E(Ṽ |St). (2.101)

The dealers will use the information to update their estimate of the future

value of the asset, the process being completed when all the private information

is incorporated into prices. This learning process affects only dealers’ beliefs,

whereas the uninformed traders do not learn anything from the market prices.

The price quoted equals the expected value of the asset conditional on the

information on the possible direction of the next trade. Therefore, the bid and

ask prices are:

at = E[Ṽ |Bt] = V Pr{Ṽ = V |Bt}+ V Pr{Ṽ = V |Bt}, (2.102)

and

bt = E[Ṽ |St] = V Pr{Ṽ = V |St}+ V Pr{Ṽ = V |St}. (2.103)

By setting θ = 1/2, we can get:

at = E[Ṽ |Bt] =
1

2
V (1− α) +

1

2
V (1 + α), (2.104)

and

bt = E[Ṽ |St] =
1

2
V (1 + α) +

1

2
V (1− α). (2.105)

Therefore, the spread is equal to:

St = at − bt = α(V − V ). (2.106)
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Notice the spread arises from the probability of informed trading, α, and it is due

to adverse selection costs. Furthermore, the variance of the risky asset is equal

to:

V arṼ = θ(V − E(Ṽ ))2 + (1− θ)(V − E(Ṽ ))2 = θ(1− θ)(V − V )2. (2.107)

It follows that the spread is an increasing function of the variance. This is because

that the greater the variance is, the greater the informed traders’ information

advantage is, and thus the greater the market makers’ potential losses will be.

Kyle (1985) Model

In a one-period, one asset economy a battery of risk-neutral market-makers faces

one monopolistic risk-neutral informed trader and a group of liquidity traders.

At time t = 0 the informed trader receives a perfect signal δ on the future value

of the risky asset which is equal to:

Ṽ = V̂ + δ̃, with δ̃ ∼ N(0, σ0
V ), (2.108)

and submits the net demand x(V ). Thus the informed trader knows the future

value of the asset in advance. Noise traders are uninformed and submit a random

net demand equal to z̃ ∼ N(0, σ2
z) at time t = 1. Their reasons for trading may

be a sudden need for consumption or idiosyncratic shocks to wealth, or needs

related to the cycle. It follows that at time t = 1, market makers receive a net

order flow equal to w̃ = x(Ṽ ) + z̃, which they an only observe in the aggregate.

Holding this information, they compete on prices, offering a price function:

p(w̃) = E(Ṽ |w̃). (2.109)

Competition drives market makers’ expected profits to zero:

E(π̃M |w) = E((p(w̃)− Ṽ )w̃|w̃) = 0. (2.110)
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Notice that the market makers’ pricing function depends on the informed agent’s

demand function, x(V ). If there were no informed traders, the aggregate order

flow observed by market makers would be equal to the noise traders’ net demand,

w̃ = z̃. The pricing function that results would reduce to p(w̃) = E(Ṽ |z) = V̂

and the market would be infinitely deep.

The informed traders’ strategy depends on the market makers’ pricing func-

tion. Actually, the informed trader’s problem is choosing the demand function,

x(V ), that maximizes his expected end-of-period profits:

π̃ = E[x(Ṽ − p(w̃))|Ṽ ]. (2.111)

An equilibrium can be obtained by considering that market makers maximize

their expected profits given their rational Bayesian interpretation of the informa-

tion content of the aggregate order flow, and that the informed trader set his own

demand function to maximize expected profits given his rational expectations of

the impact of his order, x(V ), on the market price.

He proves that there is a linear equilibrium for this strategic game, such that

the market makers’ pricing rule is:

p∗w̃ = E(Ṽ |w = x∗(V ) + z̃) = V̂ + λ∗w̃, (2.112)

and the informed trader’s trading strategy is:

x∗(V ) = β∗(δ) = β∗(V − V̂ ), (2.113)

where

λ∗ =
1

2

σV
σz
, (2.114)

and

β∗ =
σz
σV
. (2.115)

The market liquidity, 1/λ, is equal to the inverse of the price impact of an

uninformed order and is a proxy for market depth. In equilibrium, the illiquidity
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parameter λ increases in σV and decreases in σz. Intuitively, σV measures the

informed trader’s information advantage, which is positively related to the adverse

selection costs. Therefore, the greater σV is, the less deep the market becomes.

An increase in the volume of uninformed trading, σz, increases liquidity. Thus,

the greater σz, the more liquid the market becomes.

Remarks

Kyle (1985) shows that all available information will be eventually incorporated

in market prices. In his model the market maker does not act strategically,

but merely processes market orders, and sets market clearing prices. Glosten

& Milgrom (1985) also capture the costs of asymmetric information. In their

model, the trade size is assumed to be for one round lot and only the direction of

trades reveals information to the market makers. For our application, asymmetric

information may not be very relevant as traders in bond markets could manage

to evaluate the fair value of bonds based on other publicly traded assets, such as

credit default swaps and government bonds. Thus, we decide to directly address

illiquidity issues by only considering the inventory holding risk in our model.

In addition, some papers consider the strategic behaviors of traders in limit

order book models which will be reviewed in the next section.

2.5.4 Models of the Limit Order Book

The limit order book models describe price formation in an order-driven market,

where agents trade via a limit order book. In an order-driven market there are no

designated market makers who provide liquidity by setting bid and ask prices as

in a quote-driven market. Liquidity is supplied by anonymous traders who place

orders in the limit order book, and wait until the orders get executed.

Foucault et al. (2005) Model

Foucault et al. (2005) develop a model for a limit order market where there are

only strategic liquidity traders and the choice between limit and market orders
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depends only on their degree of impatience. Traders value execution speed differ-

ently as some of them want to trade as soon as possible. In other words, traders

who demand immediacy submit market orders, and traders who supply liquidity

submit limit orders.

They assume that a risky security is traded in a continuous double auction

market organized as a limit order book. The market participants are strategic and

risk-neutral liquidity traders, arrive sequentially and differ in impatience defined

as the cost of a delay in order execution. Each trader minimizes his total execution

costs by choosing a market or a limit order, conditional on the state of the book.

There are two types of traders, type P traders who are relatively patient and

incur a waiting cost of σP per unit of time, and type I traders who are relatively

impatient, as they incur a bigger waiting cost of σI . The proportion of patient

traders is θP (1 > θP > 0). The proportions remain constant over time, and

the arrival rate is independent of the type distribution. Prices and spreads are

expressed as multiples of the tick size ∆. Traders arrives at the market according

to a Poisson process with parameter λ > 0.

The optimal order placement strategy of trader i when the spread is s is to

maximize the price improvement function:

max
j∈{0,...,s−1}

πi(j) ≡ j∆− σiT (j), (2.116)

where T (j) is the expected waiting time associated with each j-order’s execution.

They show that in equilibrium patient traders tend to submit limit orders

and impatient traders prefer market orders. Traders tend to submit more market

orders when either the proportion of patient traders, θP , or their waiting cost

costs, σP , increases. They will submit less market orders if the order arrival rate,

λ, decreases. They also define a measure of market resilience, which is equal to

θq−1
P . This can be interpreted as the probability that the spread reverts back

to the competitive level from the current spread after q − 1 consecutive patient

traders submitting their orders.
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Rosu (2009) Model

Rosu (2009) develops a dynamic limit order book model where traders are allowed

to modify and cancel their limit orders. He considers a market for an asset which

pays no dividends. Prices can take any value in a constant range between A and

B (A > B). There are only two types of trades, namely market orders and limit

orders. Limit orders can be canceled for no cost at any time.

Traders arrive randomly in the market, following a exogenously determined

arrival process. Similar to Foucault et al. (2005), once traders arrive, they will

choose strategically between market and limit orders. The risk neutral traders

are either buyers and sellers. Given the random execution time, τ , and the price

obtained at τ , Pτ , the expected utility of a seller (buyer) with patience coefficient

r̃ is ft = Et{Pτ− r̃(τ− t)} (gt = Et{Pτ + r̃(τ− t)}). The patience coefficient takes

two values r for patient trader, and r′ for impatient trader (r < r′). The types

of equilibrium used in his model are subgame perfect equilibrium and Markov

perfect equilibrium. The model implies that higher trading activity and higher

competition among liquidity providers lead to smaller spreads and lower price

impact.

2.5.5 Transaction Costs and Liquidity Differentials

Vayanos & Vila (1999) Model

Vayanos & Vila (1999) study an over-lapping-generation model with a risky asset

with proportional trading costs and a liquid riskless asset in fixed supply, thus

endogenizing the riskless interest rate. They assume agents can invest in two

financial assets. Both assets pay dividends at a constant rate D. The first asset

is liquid and does not carry transaction costs, while the second asset is illiquid.

The supply of the liquid asset is 1 − k(0 < k < 1), its price is p, and its rate

of return is r = D/p. Similarly, the price of the illiquid asset is P and its

rate of return is R = D/P . The illiquid asset carries transaction costs that are

proportional to the value of traded, i.e. the costs of buying or selling x shares of

the illiquid asset are εxP , with ε ≥ 0. An agent of age t holds xt and Xt shares

of the liquid and illiquid assets, respectively. His “liquid wealth” is at = pxt, his
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“illiquid wealth” is At = PXt, and his total wealth is wt = at + At. His dollar

investment in the liquid asset is it = p(dxt/dt) , and his dollar investment in the

illiquid asset is It = P (dXt/dt).

In equilibrium, they show that the prices p and P can be written as

p− P =
∞∑
l=0

Pε(1 + e−r∆)e−rl∆, (2.117)

where r is the risk-free rate and ∆ is the minimum holding period of the illiquid

asset. This implies that the price has to fall by the present value of the transaction

costs that a sequence of marginal investors incur.

The liquidity premium can be expressed as follow:

µ = r
1 + E−R∆

1− E−R∆
ε. (2.118)

Thus, the equilibrium liquidity premium which is the difference between the rates

of return on the two assets is a function of ε and the equilibrium ∆. For the liquid

asset, they show that the rate of return on the liquid asset r decreases in ε. For

the illiquid asset, they also show that transaction costs decrease the price of the

illiquid asset relative to the price of the liquid asset. but increase the price of

the liquid asset. If the risky asset has a higher trading cost then the risk-free

asset becomes a more attractive alternative. Therefore, the equilibrium price of

a risk-free asset is increasing in the trading cost of the risky asset.

Huang (2003) Model

Huang (2003) assumes that two consol bonds that are identical except that one

is liquid and the other is illiquid, i.e., it incurs proportional transaction costs. In-

vestors are risk averse and have a constant income stream. Each investor is hit by

a negative liquidity shock with a Poisson arrival rate and when this happens, the

investor must liquidate his securities and exit. He shows that in equilibrium the

illiquid asset security whose net return becomes stochastic will have a premium
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over the liquid security which exceeds the magnitude of expected transaction

costs, reflecting the liquidity-induced risk premium.

At any time, each agent faces a constant probability per unit of time, λ, of

experiencing a liquidity shock which, upon arrival, will force him to liquidate

his securities and exit the economy. The arrivals of the liquidity shocks for all

existing agents are independent Poisson times. There are two financial securities.

Both are riskless consol bonds, that are perpetuities that pay a constant flow of

consumption dividends at a rate of d per unit of time. One consol is liquid, with

a price of p per share, and no transactions costs are required for trading it. The

other is illiquid, with a price of P per share, and agents who buy or sell x shares

of it pay a proportional transactions cost totalling εxP . The fractional supply of

the liquid consol is k ∈ (0, 1). The dividend flow rate for the liquid and illiquid

consols are r = d/p and R = d/P .

β is the constant time preference rate and γ is the relative risk-aversion of

CRRA utility.

They show that in equilibrium the agents holds the liquid consol exclusively

if the liquidity premium is lower than R∗ − r, where

R∗ = r + 2ε(β + λ+ γr − r/2), (2.119)

and holds the illiquid consol exclusively if the liquidity premium is higher than

R∗∗ − r, where

R∗∗ = r +
2ε(β + λ+ γr

1+ε
− r/2)

1− 2ε
1+ε

γ
. (2.120)

If the liquidity premium falls between (R∗ − r, R∗∗ − r), the agent holds constat

non-zero proportions of each consols. The illiquid consol proportion, 1 − θ(R),

increases with the return of the illiquid consol.

Remarks

For investors with relatively short holding period, transaction costs are important,

and a liquid asset is preferred regardless of its lower yield. For investors making

long-term investment, illiquidity is not a concern, and the cheap and illiquid
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asset is the better investment. When buying assets, short-term traders will take

into account future transaction costs and therefore, require big price discount.

Investors do care about the illiquidity of the assets and indeed there is a well-

defined clientele for each asset.

However, we believe the liquidity differentials among assets, the heterogeneity

of transaction costs of liquidity premia, and ultimately the transaction prices

should be a result of an equilibrium where market participants optimally choose

their trading strategies. Therefore, assuming exogenous transaction costs or a

priori the liquidity condition of assets as in previous literature (e.g. Vayanos &

Vila (1999) and Huang (2003)) will not be appropriate.

Therefore, it is necessary to develop an equilibrium model where the het-

erogenous levels of liquidity in bonds are generated endogenously. This will be

the main research question in Chapter 5.

2.5.6 General Equilibrium Model

Consider an economy with I agents i ∈ I = {1, ..., I} and L commodities l ∈ L =

{1, ..., L}. A bundle of commodities is a vector x ∈ RL
+. Each agent i has an

endowment ei ∈ RL
+ and a utility function ui : RL

+ → R. These endowments and

utilities are the primitives of the exchange economy, so let ε = ((ui, ei)i∈I).

Agents are assumed to take as given the market prices for the goods. The

vector of market prices is p ∈ RL
+; all prices are nonnegative. Each agent chooses

consumption to maximize her utility given her budget constraint. Therefore,

agent i solves:

max
x∈RL

+

ui(x) s.t. p · x ≤ p · ei. (2.121)

The budget set is written as

Bi(p) = {x : p · x ≤ p · ei}. (2.122)

A Walrasian equilibrium is a vector of prices, and a consumption bundle of

each agent, such that

1. every agent’s consumption maximizes her utility given prices, and
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2. markets clear: the total demand for each commodity just equals the aggre-

gate endowment.

Definition 1. A Walrasian equilibrium for the economy ε is a vector (p, (xi)i∈I)

such that:

1. Agents are maximizing their utilities: for all i ∈ I,

xi ∈ arg max
x∈Bi(p)

ui(x)

2. Markets clear: for all l ∈ L,

∑
i∈I

xil =
∑
i∈I

eil.

Pareto optimality considers the set of feasible allocations and identifies those

allocations at which no consumer could be made better off without another being

worse off.

Definition 2. An allocation (xi)i∈I ∈ RI·L
+ is feasible if for all l ∈ L :

∑
i∈I x

i
l ≤∑

i∈I e
i
l.

Definition 3. Given an economy ε, a feasible allocation x is Pareto optimal (or

Pareto efficient) if there is no other feasible allocation x̂ such that ui(x̂i) ≥ ui(xi)

for all i ∈ I with strict inequality for some i ∈ I.

We need the following assumptions about consumers’ preferences and endow-

ments:

1. For all agents i ∈ I, ui is continuous.

2. For all agents i ∈ I, ui is increasing.

3. For all agents i ∈ I, ui is concave.
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4. For all agents i ∈ I, ei � 0.

Given the prices and endowments, consider the optimization problem facing

consumer i:

max
x̃i

ui(x̃i) s.t. p · x̃i ≤ p · ei. (2.123)

One can use the Kuhn-Tucker conditions to characterize the optimum. Letting

ν1, ..., νI denote the Lagrange multipliers on the budget constraints of agents

1, ..., I, the Kuhn-Tucker conditions state that a necessary and sufficient condition

for (x1, ..., xI , ν1, ..., νI) to solve the I utility maximization problems given prices

p is that for all i, l:
∂ui

∂xil
− νi · pl ≤ 0,

xil ≥ 0,(
∂ui

∂xil
− νi · pl

)
· xil = 0,

and each of the resource constraints bind.

Remarks

There are three papers which are closely rated to our third study. Economides

& Siow (1988) using search-based model show that agents prefer to trade in

a spot market with high rather than low liquidity. Liquidity in a market can

only be increased by increasing the number of traders at that market. Vayanos &

Wang (2007) develop a search-based model in which investors of different horizons

can invest in two assets with identical payoffs. They show that there exists

such an equilibrium where all short-term investors search for the same asset.

This equilibrium dominates the one where all investor types split equally across

assets. Weill (2008) shows that although the search technology is the same for

all assets, heterogeneous trading costs arise endogenously. In equilibrium, an

asset return is negatively related to its number of tradable shares, its turnover,

its trading volume, and it is positively related to its bid-ask spread. Vayanos

& Weill (2008) use search-based model to explain the on-the-run phenomenon.

They show that short-sellers can endogenously concentrate in one asset because
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2.5 Microstructure Models

of search externalities and the constraint that they must deliver the borrowed

asset. These models are all based on the notion that asset trading involves search.

However, bonds are normally traded at the over-the-counter markets where trades

are executed through the market makers. Moreover, in their models the investors

are assumed to be risk averse.
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Chapter 3

An Extended Model of

Estimating Effective Bid-ask

Spread

3.1 Introduction

In a simple security market, potential traders purchase or sell securities at the

ask or the bid prices posted by the specialists. The difference between the bid

and the ask is often referred to as the bid-ask spread, which is one of the most

widely used measures of illiquidity. The quoted bid-ask spread represents the

prices available at a given time for transactions only up to some relatively small

amount.

Trades sometimes may execute either inside or outside the quoted spread. A

block trade negotiated (typically by institutional investors) with a credible guar-

antee that it is not information-motivated could receive a better price. Schultz

(2001) finds that trading costs are lower for larger trades and small institutions

pay more to trade than large institutions (all else being equal) in the over-the-

counter corporate bond market. Feldhutter (2012) develops a search-based model
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where an asset can simultaneously trade at different prices as large traders nego-

tiate tighter bid-ask spreads due to their stronger outside options. In contrast,

given that they wish to trade, informed traders prefer to trade larger amounts

at any given price. In information-based models, large traders buy or sell at

worse prices than small traders, because large traders are likely to have private

information. Easley & O’Hara (1987) argue that uncertainty about whether any

individual trader is informed causes prices to worsen for a block trade. Conse-

quently, statistical spread estimation models which do not take multiple spreads

into account will produce biased estimates of not only the spreads but also the

underlying variance. Figure 3.1 seems to support the assertion of multiple spreads

(i.e. most of trades executed at a smaller spread whereas a few trades were being

made at a larger spread.). Therefore, in this paper we extend an existing model

(Roll (1984)) to incorporate multiple spreads as well as their associated prob-

abilities, and propose a Bayesian approach, which requires no data other than

transaction prices, to estimate the extended model.

Figure 3.1: Time series plot of the intra-day transaction prices of a corporate
bond (CUSIP:172967AZ4) during 02/01/2007 - 28/12/2007

In the market microstructure literature, there are two classes of statistical
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models of estimating the effective bid-ask spread: the covariance model, and the

trade indicator model.

In the covariance models the spread measures are derived from the serial

covariance properties of transaction price changes. The first such model was de-

veloped by Roll (1984). By assuming an informationally efficient market and a

stationary probability distribution of observed price changes, the effective bid-ask

spread is inferred from the serial covariance of daily and weekly equity returns.

Choi et al. (1988) modify Roll’s estimator and introduce a serial correlation as-

sumption regarding transaction type. Stoll (1989) models the relation between

the quoted spread and the covariance estimate of the spread as a function of the

probability of a price reversal and the magnitude of a price reversal. The empir-

ical results imply that the average realized spread is less than the quoted spread.

George et al. (1991) show that positively autocorrelated time-varying expected

returns lead to downward biases in estimators of both the spread and its compo-

nents. They introduce an alternative approach based on the serial covariance of

the difference between transaction returns and returns calculated using bid prices

to adjust transaction returns for time-varying expected returns.

In the trade indicator models, the bid-ask spread is estimated as the coeffi-

cient of signed order flow in a price change regression. Glosten & Harris (1988)

applied this idea to separate the adverse selection spread component from the

one due to inventory costs, clearing fees, and/or monopoly profits. Their model

is estimated by integrating unobservable variables (underlying values and trade

directions) out of the conditional likelihood function and maximizing the uncon-

ditional likelihood function. Madhavan & Smidt (1991) develop a similar model

by explicitly modelling the learning process of the market maker. A reduced

form model and a measure of information asymmetry are estimated using Box-

Jenkins methods. Madhavan et al. (1997) develop and estimate a structural

model of price formation that decomposes intraday volatility into components

attributable to public information shocks and trading frictions. Both Madhavan

& Smidt (1991) and Madhavan et al. (1997) adopt trade classification procedure

to determine the trade directions. Huang & Stoll (1997) also construct a basic

trade indicator model which is estimated by GMM. They are able to observe in-

dicator variables and classify them for each size category. Ball & Chordia (2001)
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model the observed price as a discrete version of the sum of a permanent in-

formational component and the transient components arising out of the trading

mechanism. Since explicitly allowing for rounding onto the tick grid destroys the

Gaussian structure, they adopt Monte Carlo Markov Chain (MCMC) method to

estimate the models and to decide the best model specification. Recently, Has-

brouck (2004) suggested a Bayesian Gibbs approach by treating trade direction

as a latent variable and deriving a probability density for the sign of the trade,

and applied the approach to commodity futures transaction data.1

Our model belongs to the second category. Our purpose is to develop a par-

simonious but realistic model which does not have too many assumptions and

requires as few data to estimate as possible. Compared to Choi et al. (1988),

Stoll (1989), and George et al. (1991), our reduced-form model does not associate

price changes to transaction types, and thereby does not require data about quotes

and trade directions. Unlike Glosten & Harris (1988), Madhavan & Smidt (1991),

Madhavan et al. (1997), Huang & Stoll (1997), and Ball & Chordia (2001), we do

not intend to decompose the bid-ask spread into inventory cost and adverse selec-

tion components. Our model focuses on estimating the effective bid-ask spreads

as well as the underlying variance. In the original Roll model, it is not possible

to distinguish spreads of different magnitudes. The Roll measure is essentially a

weighted average of those spreads. We extend Roll’s model by adding an extra

parameter λ, the so-called ‘spread multiplier’, to separate different spreads. In

other words, we generalize Roll’s spread estimator (a scalar) to a vector of spreads

with associated probabilities. Different from Huang & Stoll (1997) where they

allow the components of the spread to explicitly depend on the trade size, our

extended model does not emphasize this link between the spread and the trade

size.

Our estimation procedure is based on a Bayesian Gibbs estimation method

proposed by Hasbrouck (2004). The trader direction is treated as a latent vari-

able which can be inferred from the transaction prices using a Bayesian trade

1Both Glosten & Harris (1988) and Madhavan & Smidt (1991) find strong evidence of
information asymmetry, whereas Huang & Stoll (1997) find a large order processing component
and smaller adverse selection and inventory components. Ball & Chordia (2001) focus on
discreteness and find that for large stocks, most of the quoted spread is attributable to the
rounding of prices and the adverse selection component is small.
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classification method. Therefore, different from Madhavan & Smidt (1991) and

Madhavan et al. (1997), our model does not depend on a tick test to identify

trade directions. This estimation approach is very intuitive, and to some extent

similar to Huang & Stoll (1997) as we essentially integrate out the latent variables

numerically. We treat models with different values of λ as competitive models.

The value of λ is determined via a Bayesian model selection method, proposed

by Chib (1995).1

The simulation analysis shows that the model performs well when the un-

derlying volatility is low, and the difference between the inner and outer (half)

spreads is big compared to the underlying volatility. The empirical estimation

shows that our extended model fits the transaction data better than Roll’s model

(estimated using Method of Moments and Bayesian approaches).

We organize this chapter as follows. Section 2 presents the model specification

of the original Roll model, followed by the extended model. In Section 3, we

introduce the Bayesian model estimation and selection methodology, and the

details of the computational procedures. Simulation analysis is carried out in

Section 4 to assess the performance of the Bayesian estimators. An example of

an application to the actual transaction data is given in Section 5. Section 6

contains our conclusions.

1Bayes factors and various model selection criteria have been applied to compare financial
models e.g. Osiewalski & Pipien (2004) and Deschamps (2011). In Ball & Chordia (2001), the
chosen model is also determined by the Bayesian model selection method proposed by Chib
(1995).
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3.2 The Model

This section first gives a brief introduction to the basic Roll model. Based on

which, we present our extended model and discuss the key parameters.

3.2.1 The Roll Model

It has long been recognized that if trades fluctuate between bid and ask prices,

then observed price changes will be negatively autocorrelated. Roll (1984) uses

this property of transaction prices to derive an estimator of the bid-ask spread.

One advantage of his model is that it is based only on published transaction

prices.

In an efficient market the price dynamics may be stated as

mt = mt−1 + εt, (3.1)

pt = mt + sqt, (3.2)

where mt is the unobservable efficient price, pt is the transaction price observed

at time t, s is one-half the bid-ask spread, and the qt are trade direction indi-

cators, which take the values +1 for buy orders or −1 for sell orders with equal

probability.

The changes in transaction prices between two successive trades is

pt − pt−1 = mt + sqt − (mt−1 + sqt−1), (3.3)

∆pt = s∆qt + εt. (3.4)

Thus,

Cov(∆pt,∆pt−1) = E[∆qt∆qt−1s
2] + E[∆qtεt−1s]

+ E[∆qt−1εts] + E[εtεt−1],
(3.5)

where Cov(∆pt,∆pt−1) is the first-order autocovariance of the price changes.
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In deriving the Method of Moments estimator Roll (1984) makes several as-

sumptions:

1. Successive transaction types are independent. Thus,

E[qtqt−1] = 0.

2. The half-spread s is constant.

3. Order flows do not contain information about future fundamental price

changes. Thus,

E[∆qt−1εt] = 0.

4. Changes in fundamental value cannot predict order flows:

E[∆qtεt−1] = 0.

5. The innovations in the fundamental price process reflect public information

and are assumed to be independent. Therefore,

E[εtεt−1] = 0.

Table 3.1: Joint probabilities of consecutive price changes

4qt−1

-2 0 +2

-2 0 1
8

1
8

4qt 0 1
8

1
4

1
8

+2 1
8

1
8

0

Then, from the joint probabilities in Table 3.1, Equation 3.5, and the assump-

tions, we obtain

Cov(∆pt,∆pt−1) = −s2. (3.6)
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This gives Roll’s Method of Moments spread estimator

ŝ =
√
−Cov(∆pt,∆pt−1). (3.7)

If the innovations in the efficient price process are assumed to follow a normal

distribution with mean 0 and constant variance σ2
ε , the Method of Moments

variance estimator is

σ̂2
ε = V ar(∆pt)− s2V ar(∆qt) = V ar(∆pt)− 2s2. (3.8)

However, Roll’s method of moments spread estimator has performed poorly,

generating undefined spread estimates almost half of the time when applied to

daily transaction data on equities [Harris (1990)]. In particular, Roll’s model is

not able to identify the multiple spreads with different magnitudes. The estimator

is only a scalar which is, essentially, a weighted average of those spreads. However,

several refinements of the Roll’s model are possible. Our extended model, which

will be introduced in the next section, provides a richer structure, and does not

produce undefined spread estimates.

3.2.2 The Extended Model

The fact that trades are sometimes executed either inside or outside the posted

bid and ask indicates that sometimes the posted spread may not represent the

transaction cost that investors can expect. This motivates our extended Roll

model aiming at separating spreads with two different magnitudes.

In our model the trade direction indicators qt are generalised as follow:

qt ∈ {−λ,−1,+1,+λ}, (3.9)

where λ is the so-called ‘spread multiplier’ which is used to distinguish different

spreads. Thus, for expositional ease, we define λ ∈ [1,+∞)1. λ 6= 1 implies

1Equivalently, we can define λ ∈ (0, 1]. For computational ease, we choose to use λ ∈ (0, 1]
later in the estimation.

81



3.2 The Model

that there exist two different sizes of spreads. −λ and +λ are indicators of the

‘abnormal’ spreads that are outside ‘normal’ bid-ask spreads. Roll’s model is

a special case of our extended model corresponding to λ = 1. For estimation

purposes we also assume here that ε ∼ i.i.d.N(0, σ2
ε ). We shall not hesitate to

drop the subscript of σ2
ε , writing σ2 wherever convenient.

In summary, the half-spread, s, and the variance of the efficient price changes,

σ2
ε , are unknown parameters from the regression specification

∆pt = s∆qt + εt (3.10)

qt ∈ [−λ,−1,+1,+λ] (3.11)

ε ∼ i.i.d.N(0, σ2
ε ), (3.12)

where qt and λ are latent variables.

A slightly simplified graphical illustration of the extended model is shown in

Figure 3.2. At any point in time, there exist four possible values for the security

price. They are: inner bid, inner ask, outer bid and outer ask, to which the

trade direction indicator qt assign corresponding values, e.g. −1,+1,−λ and

+λ, respectively. For instance, in Figure 3.2, the security price at time t −
1 is at the quote setter’s outer bid. Assume that no new information arrives

in the market about the security, there are 16 possible paths of observed price

between successive time periods. For convenient demonstration and comparison,

let α control the probability of a trade occurring at the outer bid or ask, and θ

determine whether the model has a symmetric structure. Then, the probabilities

of qt+1 being −1,+1,−λ and +λ are (1 − α)/2, (1 − α)/2, (1 − θ)α, and θα,

respectively. When θ = 0.5, the model has a symmetric structure (i.e. the outer

bid and the outer ask are equally likely to happen.). When θ > 0.5, that implies

that trades are more likely to execute at the outer ask than at the outer bid.

It is interesting to look at the only two non-zero second moments, namely

autocovariance and variance, under our extended model specification. For com-

putational ease, in the rest of this paper, we let λ ∈ (0, 1].
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Figure 3.2: Price paths.

This figure shows the possible paths of observable market price between succes-
sive time periods, given that the price at time t − 1 is at outer bid, and given
that no new information arrives in the market. λ is the ‘spread multiplier’ which
is used to distinguish different spreads. λ 6= 1 implies that there exist two dif-
ferent sizes of spreads. At any point in time, there exist four positions for the
security price to be located. They are: inner bid, inner ask, outer bid and outer
ask, for which the trade direction indicator qt assign corresponding values, e.g.
−1,+1,−λ and +λ, respectively. α controls the possibility of the occurrence of
outer bid and ask. θ determines whether the model has a symmetric structure
for outer bid and ask. Given the position of the price at time t − 1, there are
sixteen possible price paths in total between t− 1 and t+ 1.
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Using the probabilities of different prices as just described, we have,

Cov(∆pt,∆pt−1) = − s2(1− α)3 − s2α2(1− α)[λ2(1 + 4θ − 4θ2) + 1]

− s2(1− α)2α(λ2 + 2)− 4s2α3λ2θ(1− θ), (3.13)

and

V ar(∆pt) = σ2
ε+s

2[8λ2(θ−θ2)α2+2(λ2+1)α2(1−α)+2(λ2+2)(1−α)2α+2(1−α)3].

(3.14)

Assuming that s = 1, θ = 0.5, and λ 6= 1, Roll’s spread estimator will be biased

as shown in Figure 3.3. The bias increases while α increases. That is, the bias

increases as the probability of existence of the outer spread increases. The bias

also increases while λ decreases, as Roll’s spread estimator is a weighted average

of the inner and outer spreads. Roll’s variance estimator is also biased as shown in

Figure 3.4. The bias increases as α increases. This is because that the estimator

mistakenly treats some of the transitory effect due to big spreads as the permanent

effect. The bias again increases while λ decreases. This is due to the fact that

the outer spread increases while λ decreases. That is, if our extended model is

the true data generating process, Roll’s measure will be biased.
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Figure 3.3: Plot of autocovariance I

This figure provides the autocovariances calculated under the extended model.
s is the half-spread. λ is the ‘spread multiplier’ which is used to distinguish
different spreads. λ 6= 1 means that there exist two different sizes of spreads.
α controls the possibility of the occurrence of outer bid and ask. θ determines
whether the model has a symmetric structure for outer bid and ask. Assume
s = 1 and θ = 0.5. Different lines in this figure represent autocovariances as a
function of λ for a few values of α. Autocovariance under the extended model
is computed as
Cov(∆pt,∆pt−1) = −s2(1 − α)3 − s2α2(1 − α)[λ2(1 + 4θ − 4θ2) + 1] − s2(1 −
α)2α(λ2 + 2)− 4s2α3λ2θ(1− θ).
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Figure 3.4: Plot of variance I

This figure provides the variances calculated under the extended model. s is the
half-spread. σε is the variance of the effecient price changes. λ is the ‘spread
multiplier’ which is used to distinguish different spreads. λ 6= 1 means that there
exist two different sizes of spreads. α controls the possibility of the occurrence
of outer bid and ask. θ determines whether the model has a symmetric structure
for outer bid and ask. Assume s = 1, σε = 0 and θ = 0.5. Different lines in
this figure represent variances as a function of λ for a few values of α. Variance
under the extended model is computed as
V ar(∆pt) = σ2

ε + s2[8λ2(θ− θ2)α2 + 2(λ2 + 1)α2(1− α) + 2(λ2 + 2)(1− α)2α+
2(1− α)3].
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3.3 The Model Estimation and Selection

The latent variables in the extended model are the trade direction indicators qt

and the spread multiplier λ. Since integrating out the latent variables is cum-

bersome, there is no attractive closed-form solution for the likelihood function.

Moreover, it is difficult to compute the higher moments, using GMM estima-

tion, which are needed in order to estimate the extended model. Therefore, our

extended model is estimated via a Bayesian approach proposed by Hasbrouck

(2004). More precisely, the model parameters, the half-spread s and the under-

lying variance σ2
ε , are estimated using a Markov chain Monte Carlo (MCMC)

method, the Gibbs sampler. Then, we treat models with different specifications

of λ as competitive models. The best model is determined via a Bayesian model

selection method which is introduced by Chib (1995). The advantage of this

method is that it is also based on the Gibbs outputs.1 The most appealing mo-

tivation for the use of the Bayesian approach lies in the fact that the role of the

latent variables in the estimation can be intuitively understood. In the following,

we describe the parameter estimation procedure in detail, followed by the model

selection method.

3.3.1 The Bayesian Estimation Procedure

The extended model has two parameters s, σε, and T latent variables q =

(q1, q2, . . . , qT ) given the value of λ. We estimate the model parameters via a

Bayesian approach, using the Gibbs sampler. That is, given a known sequence of

observations p = (p1, p2, . . . , pT ), we estimate s and σε under mean squared error

risk rule by taking the mean of the posterior distributions of s and σε for fixed

λ.2

Gibbs sampling is a technique for generating random variables from a marginal

distribution indirectly, without having to calculate the joint density. As a Markov

1This approach shares some similarities with the Expectation-Maximization (EM) algorithm
which is also an iterative method for finding maximum likelihood estimates in statistical models,
which the model has some latent variables.

2Using the MSE as risk, the Bayes estimate of the unknown parameter is simply the mean
of the posterior distribution.
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chain Monte Carlo method, the Gibbs sampler generates sample values from the

distribution of each variable in turn, conditional on the current values of the other

variables.

Gibbs sampling is, essentially, an iterative procedure. An iteration is generally

termed a “sweep”. Initially, i.e., j = 0, for fixed λ the parameters and the latent

variables are set to any values, where tick test results can be used as initial values

for q, and the Method of Moments estimates for s and σε. Denote these initial

values (s(0), σ
(0)
ε , q(0)), where q(0) = (q

(0)
1 , q

(0)
2 , . . . , q

(0)
T ).

The steps in the first sweep (j = 1) given λ and p are:

1. Draw s(1) from fs(s|σ(0)
ε , q(0), p, λ),

2. Draw σ
(1)
ε from fσε(σε|s(1), q(0), p, λ),

3. Draw q(1) from fq(q|s(1), σ
(1)
ε , p, λ),

where f(·|·) is the complete conditional density.

Similarly, draws for q
(1)
t for t = 1, . . . , T are made sequentially using the Gibbs

sampler. The steps in the first sweep (j = 1) are then:

1. Draw q
(1)
1 from fq(q1|s(1), σ

(1)
ε , p, λ, q

(0)
2 , q

(0)
3 , · · · , q(0)

T ),

2. Draw q
(1)
2 from fq(q2|s(1), σ

(1)
ε , p, λ, q

(1)
1 , q

(0)
3 , · · · , q(0)

T ),

... · · ·

T. Draw q
(1)
T from fq(qT |s(1), σ

(1)
ε , p, λ, q

(1)
1 , q

(1)
2 , · · · , q(1)

T−1).

Note that, all parameters and latent variables except for the component being

drawn are taken as given.

The next iteration starts with a draw of s(2) conditional on σ
(1)
ε , q(1), p and

λ. Repeating this n times, we generate a sequence of draws (s(j), σ
(j)
ε , q(j)) for

j = 1, . . . , n, where q(j) = (q
(j)
1 , q

(j)
2 , . . . , q

(j)
T ). The Gibbs principle ensures that

the limiting distribution of the nth draw (as n→∞) is F (s, σε, q|p, λ). The lim-

iting draw for any parameter is distributed in accordance with the corresponding

marginal posterior, i.e., the limiting density of s(n) is fs(s|p, λ). Given some

continuous function of the model parameters, h(s, σε, q) and a set of parameter
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draws, (s(j), σ
(j)
ε , q(j) : j = 1, . . . , n), the corresponding sequence (h(s(j), σ

(j)
ε , q(j) :

j = 1, . . . , n)) generally has a limiting distribution for h(s, σε, q).

The consistent estimates of population parameters θ = (s, σε) are given by the

posterior mean Eθ|p,λ(θ). If one is interested in some statistic g(θ), then Eθ|p,λg(θ)

is a consistent estimate of g(θ).

3.3.2 The Bayesian Model Selection

Suppose we have K models Mk (k = 1, 2, . . . , K), given the model-specific pa-

rameter vector θk. Our prior information on these models can be used to assign

each of them a prior probability π(θk|Mk). A data set y = (y1, y2, . . . , yn) is used

to update these prior probabilities. The marginal likelihood m(y|Mk) of y under

model Mk is defined by

m(y|Mk) =

∫
f(y|θk,Mk)π(θk|Mk)dθk, (3.15)

where f(y|θk,Mk) is the probability density of y given the value of θk, or the

likelihood function of θk.

The Bayes factor is defined as the log of the ratio of the marginal likelihoods

for any two competing models k and l:

Bkl = ln

(
m(y|Mk)

m(y|Ml)

)
. (3.16)

The preferred model is the one with the highest marginal likelihood. Therefore,

evaluating the marginal likelihood is the key to Bayesian model selection.

Using the Basic Marginal Likelihood Identity (BMI), the marginal likelihood

can be written as

m(y) =
f(y|θ)π(θ)

π(θ|y)
, (3.17)

where the numerator is the product of the likelihood and the prior, and the

denominator is the posterior density. Conveniently, it can be expressed in a
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logarithmic scale as

lnm(y) = ln f(y|θ)− ln
π(θ|y)

π(θ)
, (3.18)

where the first term measures how well the model fits the data given the most

probable parameter values, and the second term penalizes the model according

to its complexity. Hence, the marginal likelihood automatically incorporates a

tradeoff between model fit and its complexity.

The marginal likelihood can be evaluated from the Gibbs output, generated

during the simulation stage, as suggested by Chib (1995).

Let z denote latent data, and suppose that for a given set of vector blocks

θ = (θ1, θ2, . . . , θB), the Gibbs sampling algorithm is applied to the set of (B +

1) complete conditional densities, {π(θr|y, θs(s 6= r), z)}Br=1 and π(z|y, θ). The

goal is to compute the marginal likelihood m(y) from the output {θ(j), z(j)}nj=1

obtained from these full conditional densities. In some situations, the density

f(y|θ) =
∫
f(y, z|θ)dz is not available in closed form, however, the likelihood

f(y|θ, z) is. The marginal likelihood m(y) in this situation has the form

m(y) =
f(y|θ, z)π(θ, z)

π(θ, z|y)
, (3.19)

where the likelihood f(y|θ, z), the prior π(θ, z), and the multivariate posterior

density π(θ, z|y) can be evaluated at the selected high density point (θ∗, z∗) (e.g.

the mode of the posterior density derived from the Gibbs sampler). When esti-

mating π(θ, z|y), z can be treated as an additional block, e.g. z ≡ θB+1. Evalu-

ating at a particular point θ∗, we have

lnm(y) = ln f(y|θ∗) + ln π(θ∗)− lnπ(θ∗|y). (3.20)

The posterior density at the selected high density point is given by

π(θ∗|y) = π(θ∗1|y)× π(θ∗2|y, θ∗1)× . . .× π(θ∗B+1|y, θ∗1, . . . , θ∗B), (3.21)
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3.3 The Model Estimation and Selection

where the first term on the right hand side is the marginal ordinate, which

can be estimated from the draws of the initial Gibbs sampling, e.g. π̂(θ∗1|y) =

n−1
∑n

j=1 π(θ∗1|y, θ
(j)
s (1 < s ≤ B + 1)), and the rest of the terms are the reduced

conditional ordinates with the typical form of π(θ∗r |y, θ∗1, θ∗2, . . . , θ∗r−1), which are

given by

∫
π(θ∗r |y, θ∗1, θ∗2, . . . , θ∗r−1, θr+1, . . . , θB)dπ(θr+1, . . . , θB|y, θ∗1, θ∗2, . . . , θ∗r−1). (3.22)

To estimate the above integral, continue the sampling with the complete con-

ditional densities of {θr, θr+1, . . . , θB+1}, where in each of these full conditional

densities, θs is set equal to θ∗s , (s ≤ r − 1). If the draws from the reduced com-

plete conditional Gibbs sampling are denoted by {θ(g)
r , θ

(g)
r+1, . . . , θ

(g)
B+1}, then an

estimate of (3.22) is

π̂(θ∗r |y, θ∗s(s < r)) = n−1

n∑
g=1

π(θ∗r |y, θ∗1, θ∗2, . . . , θ∗r−1, θ
(g)
l (l > r)). (3.23)

Therefore, an estimate of the posterior density is

π̂(θ∗1|y)ΠB
r=2π̂(θ∗r |y, θ∗s(s < r))π(z∗|y, θ∗s(s < B + 1)). (3.24)

The log of the marginal likelihood is

ln m̂(y) = ln f(y|θ∗, z∗) + ln π(θ∗, z∗)− ln π̂(θ∗1|y)

−
B∑
r=2

ln π̂(θ∗r |y, θ∗s(s < r))− lnπ(z∗|y, θ∗s(s < B + 1)).

(3.25)

In our situation for θ = (s, σε, q), where we suppress λ for convenience, Gibbs

sampling is applied to the complete conditional densities

π(θ1|y, θ2, z) = fs(s|p, σε, q), (3.26)
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π(θ2|y, θ1, z) = fσε(σε|p, s, q), (3.27)

π(z|y, θ) = fq(q|p, s, σε). (3.28)

The goal is to estimate the posterior ordinate f(s∗, σ∗ε , q
∗|p), which is now

expressed as fs(s
∗|p)fσ∗

ε
(σ∗ε |p, s∗)fq(q∗|p, s∗, σ∗ε ). The first term, fs(s

∗|p), can be

estimated by taking the average of the full conditional density with the posterior

draws of (σε, q), leading to the estimate

f̂s(s
∗|p) = n−1

n∑
j=1

fs(s
∗|p, σ(j)

ε , q(j)). (3.29)

Continue sampling for an additional n iterations with the complete conditional

densities fσε(σε|p, s, q) and fq(q|p, s, σε), where in each of these densities, s is set

equal to s∗. It can be shown that the draws {q(g)} from this round of iterations

follow the density fq(q|p, s∗), as required. Therefore,

ˆfσ∗
ε
(σ∗ε |p, s∗) = n−1

n∑
g=1

fσ∗
ε
(σ∗ε |p, s∗, q(g)). (3.30)

Substituting the density estimates into (3.25) yields the following estimate of the

marginal likelihood:

ln m̂(p) = ln f(p|s∗, σ∗ε , q∗)+ln f(s∗, σ∗ε , q
∗)−ln f̂s(s

∗|p)−ln ˆfσ∗
ε
(σ∗ε |p, s∗)−ln fq(q

∗|p, s∗, σ∗ε ),
(3.31)

where f(s∗, σ∗ε , q
∗) = fs(s

∗)fσε(σ
∗
ε )fq(q

∗) which is the product of the prior densities

of s, σε and q evaluated at s∗, σ∗ε and q∗.

The performance of the Gibbs sampler and an example of the application of

the Bayesian model estimation and selection techniques are illustrated in the next

two sections.
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3.4 Simulation Analysis

The performance of the Bayesian estimators may be illustrated by considering

simulated samples under three different specifications. The specifications corre-

spond to typical situations in the marketplace. Assume trades can execute at two

bid-ask spreads, e.g. the inner spread and outer spread.

First scenario, trades execute at inner spread and outer spread with equal

probabilities. That means p(q = ±λ) = p(q = ±1), that is, p(q = λ) = p(q =

−λ) = p(q = 1) = p(q = −1) = 0.25 in Figure 3.5, where p(·) is the probability

of the trade direction indicator q.

Figure 3.5: Joint posteriors of half spread s and variance σ2 I

This figure provides the joint posteriors of half spread s and variance σ2, given
λ for four simulated series of length 300 with probabilities p(q = +λ) = 0.25,
p(q = +1) = 0.25, p(q = −1) = 0.25, p(q = −λ) = 0.25: Top-left panel: s = 8,
σ2 = 1, λ = 0.25; Top-right panel: s = 8, σ2 = 16, λ = 0.25; Bottom-left panel:
s = 4, σ2 = 1, λ = 0.5; Bottom-right panel: s = 4, σ2 = 16, λ = 0.5.

Second scenario, most of trades are executed at the outer spread, while a few

orders execute at the inner spread. In other words, p(q = ±λ) > p(q = ±1), say,

p(q = λ) = p(q = −λ) = 0.40 and p(q = 1) = p(q = −1) = 0.10 in Figure 3.6.
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Figure 3.6: Joint posteriors of half spread s and variance σ2 II

This figure provides the joint posteriors of half spread s and variance σ2, given
λ for four simulated series of length 300 with probabilities p(q = +λ) = 0.40,
p(q = +1) = 0.10, p(q = −1) = 0.10, p(q = −λ) = 0.40: Top-left panel: s = 8,
σ2 = 1, λ = 0.25; Top-right panel: s = 8, σ2 = 16, λ = 0.25; Bottom-left panel:
s = 4, σ2 = 1, λ = 0.5; Bottom-right panel: s = 4, σ2 = 16, λ = 0.5.
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Third scenario, most orders are traded at the normal spread. The market

maker charges a few orders at a larger spread. Therefore, in this case we have

p(q = ±λ) < p(q = ±1), say, p(q = λ) = p(q = −λ) = 0.10 and p(q = 1) = p(q =

−1) = 0.40 in Figure 3.7.

Figure 3.7: Joint posteriors of half spread s and variance σ2 III

This figure provides the joint posteriors of half spread s and variance σ2, given
λ for four simulated series of length 300 with probabilities p(q = +λ) = 0.10,
p(q = +1) = 0.40, p(q = −1) = 0.40, p(q = −λ) = 0.10: Top-left panel: s = 8,
σ2 = 1, λ = 0.25; Top-right panel: s = 8, σ2 = 16, λ = 0.25; Bottom-left panel:
s = 4, σ2 = 1, λ = 0.5; Bottom-right panel: s = 4, σ2 = 16, λ = 0.5.

Four sample paths with different values of s, σ2 and λ are simulated for each

case. All simulated samples are of length 300. For each path the Gibbs sampler is

run for 50,000 iterations, with first 20% discarded. The joint posteriors of s and σ2

given the value of λ for each sample path are characterised by the remaining 80%

draws, and displayed in four sub-panels in Figure 3.5, 3.6 and 3.7, respectively.

There are a few similarities amongst these three cases. Firstly, in the left-hand

side panels, the joint posteriors are neatly packed together, whereas in the right-

hand side panels, the joint posteriors are more scattered. Secondly, the joint

posteriors are more negatively sloped in the right-hand side panels than they
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are in the left-hand side panels. Finally, the joint posteriors in the bottom-left

panels are slightly more dispersed than they are in the top-left panels, whereas

the opposite is true for the right-hand side panels.

In Figure 3.5, the joint posteriors are generally centered around the true val-

ues. However, in Figure 3.6 the posterior for s is biased downwards, whereas in

Figure 3.7 it is biased upwards, except in the top-left panels.

The Bayesian estimation approach needs to balance the composition of the

price changes between the transient component and the permanent component in

the security value as well as balance the composition of the transient component

itself, which is the combination of small and large spread changes. Hence, the

concentration of the joint posterior generally indicates the certainty that the

Bayesian trade classification procedure can assign a direction to a particular trade

with. Intuitively, when the outer spread s is relatively larger than the volatility of

the efficient price changes σ and the inner spread λs, the bayesian procedure will

be more accurate about whether a spike is caused by a large spread accompanied

by a small efficient price increment or a small spread accompanied by a large

efficient price increment. The misclassification in the scenario where the inner

and outer spreads are similar results in the spreading out and the negative sloping

of the joint posterior. Furthermore, when λ is close to 1, it is more difficult to

distinguish the outer bids and asks from inner bids and asks due to the existence

of non-zero variance.

When the data is not sufficient to determine a direction for a trade, the prior

information will play a more important role. In the asymmetric cases (Figure 3.6

and 3.7), when the volatility is sizable compared to the inner and outer spreads,

the procedure may rely slightly more on the prior. As a uniform prior is applied,

the procedure underestimates the spreads in Figure 3.6 and overestimates the

spreads in Figure 3.7.
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3.5 Empirical Application

The extended model is applied to a time series of intra-day bond prices, as the

data in Figure 3.1 suggests that the extended model might be an appropriate

underlying model. Table 3.2 summarizes the basic information about the bond

and the descriptive statistics of the sample.

The Gibbs sampler is run for 10,000 iterations, with first 20% discarded.

Our results for the data are presented in Table 3.3. The Method of Moments

estimate for the spread s is about three standard deviations bigger than the

Bayesian estimate under Roll’s model. The Bayesian estimate of the spread s

under Roll’s model and the Method of Moments estimate are in between the

estimated inner and outer spreads (the grand average of the estimated inner and

outer spreads is 0.4762), suggesting that Roll’s spread measures estimated using

both the classic and Bayesian approaches are essentially some weighted averages

of the two spreads. For the variance σ2, the Method of Moments estimate is five

standard deviations smaller than the Bayesian estimate under Roll’s model, but

sixteen standard deviations bigger than the Bayesian estimate under the extended

model. The estimated log marginal likelihood is equal to -1182.8434 for Roll’s

model. By contrast with the extended model, the maximum of the estimated log

marginal likelihood is equal to -326.5221 at λ = 0.13. Therefore, the extended

model fits the data better than the original Roll’s model.

Additionally, the posterior median m̂t as the estimate of the efficient price mt

together with the estimated inner and outer bid-ask bounces, defined as m̂t ± s
and m̂t± sλ respectively, are also shown in Figure 3.8. It is clear from the figure

that trades executed with different transaction costs are distributed between the

corresponding estimated bid-ask spreads. Furthermore, the estimates of α and

θ are 34% and 53%, respectively. The estimate of α indicates that 66% of the

trades happened at the inner spread and the estimate of θ supports a symmetric

structure (i.e. the outer bid and the outer ask are equally likely to happen.).

The estimated efficient price changes 4m̂ under the extended model exhibits less

serial correlation than they do under Roll’s model, as shown in Table 3.4. This

implies that the permanent component of the transaction prices, which reflect
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the degree of illiquidity and lead to negatively serially correlated price changes,

is better estimated under the extended model.

Table 3.2: Description and Summary Statistics

CUSIP ID 172967AZ4

Company name Citigroup Inc.
Data source TRACE

Data beginning 02/01/2007
Data ending 28/12/2007

# trading days in samples 197
Total # of trades 1339

Price units US Dollars
Average price 105.72

Standard deviation 1.00
Maximum price 108.106
Minimum price 102.85

Average daily trades 6.80
Average time between trades 06:27:35

Table 3.3: Summary of estimates for bond 172967AZ4.

Parameter MM, Roll Post.mean, Roll Post.mean, Extended

s 0.4062 0.3302(0.0225) 0.8428(0.0227)
σ2 0.1982 0.3231(0.0235) 0.0898(0.0066)
λ 1 0.13
λs 0.3302 0.1096

Log marginal likelihood -1182.8434(0.0286) -326.5221(0.0333)
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Figure 3.8: Time series plot of transaction prices with estimated bid-ask
bounces

Table 3.4: Serial correlation of 4m̂.

Lag Roll Extended

1 -0.1646 -0.0623
2 -0.1186 -0.0331
3 -0.1323 -0.0893
4 -0.0786 -0.0814
5 0.0132 -0.0689
6 0.0295 0.0059
7 -0.0153 -0.013
8 0.0074 -0.0424
9 0.0046 -0.0311

10 -0.0056 0.0269
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3.6 Conclusions

In this paper we extend the Roll model to allow trades to be executed at two

different spreads with associated probabilities. The parameters of the extended

model are determined via a Bayesian approach, based on only transaction data. A

numerical example based on a set of corporate bond transaction data shows that

the extended model fits the data better. The estimated efficient price changes

under the extended model exhibits less serial correlation than those under Roll’s

model. The new model together with the model estimation and selection proce-

dures offers an alternative way to estimate the effective bid-ask spread and the

underlying variance.
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Chapter 4

Non-default Yield Spread and

Illiquidity of Corporate Bonds

4.1 Introduction

During the recent financial crisis, corporate yield spreads widened dramatically.

Spreads were much larger than can be explained by expected losses arising from

default.1 The objective of this study is to understand that whether time se-

ries and cross-sectional variations of non-default yield spreads can be explained

by liquidity, and in particular, why bonds issued by a single company exhibit

heterogeneous levels of liquidity and liquidity premia.

Recognizing that a reasonable method to accurately extract the non-default

component of yield spreads is essential to our task, we follow Longstaff et al.

(2005) to compute the fundamental value of a corporate bond, as if it is perfectly

liquid, by using the information from credit default swaps. To this point, the

difference between our method and the one by Longstaff et al. (2005) is that the

latter uses a reduced-form approach which includes both default and liquidity

yield processes to price corporate bonds and credit default swaps simultaneously,

while we adopt a non-parametric approach to extract default intensities from

1See, for example, Bao et al. (2011) and Dick-Nielsen et al. (2012).
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credit default swap spreads of the same name as the bond, and then utilize the

default intensities to obtain the fundamental value of the bond which is the price

when the market is perfectly liquid. Our approach is capable to generate flexible

default term structures and thus avoids the misspecification problem of reduced-

form models.

Bid-ask spreads have been widely used as a measure of illiquidity in the litera-

ture.1 We are interested in both the level of illiquidity (the transitory component)

of the bonds and the liquidity premium (the permanent component) embedded

in bond yields.2 Order flow spread models are capable of estimating both the two

components. However, Roll’s model is clearly misspecified when applied to our

transaction data which have a non-constant transitory component, and the other

models with a richer structure require more detailed data (e.g. quotes or trade

directions) which are difficult to obtain for corporate bonds as they are traded in

OTC markets.

Therefore, our next task is to develop a parsimonious model which has a

reasonably rich structure and does not require extra data to estimate. We de-

veloped two competing models based on the original Roll model. The first one

is the model developed in the previous chapter which allows two different mag-

nitudes of bid-ask spreads with associated probabilities. The model is estimated

via a Bayesian approach. The second one is a Kalman Filter model which allows

the transitory component to vary over time and take continuous values. Com-

putationally, the second model is preferred since it works more efficiently when

applied to a relatively large data set.

A second difference between this study and previous studies on bond illiquid-

ity is that the latter examine raw transactions data, while we apply our extended

Roll model to the non-default price residuals which are calculated by subtracting

the corporate bond market prices from the theoretical fundamental values implied

from the credit default swap spreads. Therefore, our approach essentially decom-

poses the non-default price residuals into a transitory component which arises

from the illiquidity of the market and a permanent component which reflects

1See, for example, Bessembinder & Maxwell (2008), Edwards & Piwowar (2007) and Gold-
stein et al. (2007).

2The liquidity premium in bond yields does not violate market efficiency, but simply reflects
the rational response by the investors when taking into account the illiquidity of the asset.
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public information including information about future bond liquidity. Our mea-

sure of illiquidity is derived from the transitory component, which is supposed

to be orthogonal to the fundamental value. The permanent component of the

non-default price residuals can be expressed in terms of yield as non-default yield

spreads. Longstaff et al. (2005) find that non-default yield spreads are strongly

related to bond-specific illiquidity. Ericsson & Renault (2006) find evidence of a

positive correlation between illiquidity and default components of yield spreads.

However, they did not distinguish non-default yield spreads from transitory ef-

fects. Chen et al. (2007) find that more illiquid bonds earn higher yield spreads.

As they use over 4000 corporate bonds to cover the universe of corporate bond

market, they could not make use of the information in credit default swap market.

This leads to the third and final difference between our study and other pa-

pers related to the liquidity of corporate bond markets. The latter concentrate

on either developing illiquidity measures and associating them to bond charac-

teristics which are known to be related to bond illiquidity or trying to explain

the unexplained yield spread or return as liquidity premia. In contrast, our study

focuses on understanding time series and cross-sectional variations in both illiq-

uidity and liquidity premia of bonds issued by a single corporation. De Jong

& Driessen (2007) show that liquidity risk is a pricing factor for the expected

returns on corporate bonds, and the credit spread puzzle can be explained by

the associated liquidity premia. Bao et al. (2011) uses their bond-level illiquidity

measure to explain individual bond yield spreads. Their results suggest that for

high-rated corporate bonds, the sudden increase in illiquidity during the crisis

was the dominating factor in driving up yield spreads. By developing a new illiq-

uidity measure, Dick-Nielsen et al. (2012) analyze the liquidity components of

corporate bond spreads during 2005-2009. They find that the spread contribu-

tion from illiquidity increased dramatically with the onset of the subprime crisis.

The increase was slow and persistent for high-rated bonds. Our analysis shows

that before the crisis (before July 2007) and during the crisis (from July 2007 to

June 2009), the non-default spread accounted for about 80% and 48% of the yield

spreads on average, respectively. The proportion dropped to around 23% after

the crisis (after June 2009) as a result of the emergency liquidity supply from the

U.S. Treasury.
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Our study also sheds light on how the common and idiosyncratic factors af-

fect bond illiquidity and non-default yield spreads. By analyzing the variations

in both our illiquidity measure and the estimated non-default yield spread dur-

ing 2006 - 2010, our results show that the illiquidity measure has a nonlinear

positive relationship with time-to-maturities, and is negatively correlated with

issue sizes and the trading activity measures. Both fundamental volatilities and

CDS spreads are positively correlated with the illiquidity measure. The common

factors such as fundamental volatilities and CDS spreads can explain 17.57% of

the variations in the illiquidity measure. Adding the idiosyncratic factors such

as time-to-maturities, issue sizes, and the trading activity measures improves the

R2 by roughly about 3%.

The regression results of non-default yield spreads show that non-default yield

spreads are positively correlated with our illiquidity measure. Adding the illiq-

uidity measure in the regression increases the R2 by 5.85%. Thus, non-default

yield spreads are indeed related to bond illiquidity. Our results support a positive

correlation between the credit risk and liquidity spreads, and an increasing and

concave term structure of liquidity spreads. Finally, 26.85% of the variations in

liquidity spreads can be explained by the common factors, such as CDS spreads

and fundamental volatilities. The idiosyncratic factors apart from the illiquidity

measure contribute to the R2 by only 0.29%.

The remainder of this chapter is organized as follows. Section II summarizes

the data, and Section III describes the methods to estimate the illiquidity measure

and the non-default yield spreads. Section IV conducts the regression analysis for

the illiquidity measure and the non-default yield spreads. Section V concludes.
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4.2 Data

In this section, we describe our main data sources that are used to decompose

corporate yield spreads, and construct various credit and illiquidity proxies.

Given that we are interested in understanding that how bonds issued by a

single company exhibit heterogeneous levels of liquidity and liquidity premia, we

will focus on a single but representative corporation (i.e. Citigroup Inc.) which

has a relatively large amount of corporate debts outstanding during the sample

period.

The two main types of Citigroup data used in this study are mid-quotes

of CDS spreads and transaction data of corporate bonds. Since January 2001

FINRA members have been required to report their secondary OTC corporate

bond transactions through TRACE.123 TRACE contains all reported OTC trades

in corporate bonds since 2002. By the end of 2004 about 99% of all trades

representing about 95% of the dollar value traded were disseminated within 15

minutes. In practice 80% of all transactions are reported within 5 minutes. For

each trade the NASD member is required to report: the bond identification, the

date and the time of execution, the trade price and the yield, the trade size and

the buy or sell side indication. Trade side indications since 3 November 2008

were made available. Our selective corporate bond transaction data set consists

of 17 fixed-rate senior unsecured (A rated) dollar-denominated debt obligations

of Citigroup during the period from February 7, 2006 to September 30, 2010.

Table 4.1 gives the information of the bonds in our sample.

The daily CDS spreads are obtained from Credit Market Analysis (CMA)

which sources its CDS data from a robust consortium which consists of around

40 members from the buy-side community (hedge funds, asset managers, and

major investment banks) who are active participants in the CDS market.4 Each

of these members contributes their CDS prices to a CMA database which they

receive in Bloomberg formatted messages (as well as forms) from their sell-side

1The Financial Industry Regulatory Authority formerly named National Association of
Security Dealers (NASD)

2Trade Reporting and Compliance Engine
3For a detailed description of the TRACE system, see Zhou (2005).
4CMA has been found to be one of the more reliable CDS data sources by Mayordomo &

Schwartz (2010)
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dealers. Because CMA receives prices from the buy-side community, who are

constantly receiving quotes from their dealers, these prices are very likely to be

tradable or even executable prices.1 These CDS spreads are mid-market price

quotes for contracts covering from 6-month to 10-year maturities. This enables

us to bootstrap hazard rates at any maturity within the range to match the

maturities of all the bonds issued by the company. Considering both the CDS

and corporate bond data we have, our analysis is conducted at a daily frequency.
2

Finally, we choose Treasury rates as the risk-free rate, as it is widely used

by empirical studies in finance. The entire term structure of Treasury rates is

available from Federal Reserve H.15 Release3.

There are a few essential differences between market characterizations of cor-

porate bonds and CDSs, which are important for our applications.

Firstly, and most importantly, credit default swaps are contracts, not securi-

ties. Securities are in fixed supply, whereas the notional amount of credit default

swaps can be arbitrarily large. It may take time and effort to find a particular

corporate bond, whereas new credit default swaps of a underlying entity can be

created whenever they are needed. Moreover, the availability of CDS contracts

is not necessarily linked to the aggregate amount of reference bonds outstanding,

nor their maturities. In other words, CDS contracts are much less susceptible to

the market friction than the underlying corporate bonds.

Secondly, it is important to notice that credit default swaps are essentially

insurance contracts. Many investors who buy default protection may intend to

hold the position for a fixed time period, and may not generally plan to unwind

their position early. Even if an investor wants to unwind his current position,

it may be less costly to simply enter into a new swap in the opposite direction

1Mayordomo & Rodriguez-Moreno (2011) argue that the nature of the CMA data suppose
an advantage for the use of the bid-ask spread as a measure of liquidity because of the use of
information from the buy-sell sides.

2Bao et al. (2011) suggest that at daily frequency illiquidity effect is stronger.
3Yields are interpolated by the Treasury from the daily yield curve. This curve, which

relates the yield on a security to its time to maturity is based on the closing market bid yields
on actively traded Treasury securities in the over-the-counter market. These market yields are
calculated from composites of quotations obtained by the Federal Reserve Bank of New York.
The yield values are read from the yield curve at fixed maturities, currently 1, 3 and 6 months
and 1, 2, 3, 5, 7, 10, 20, and 30 years.
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than to try to short his current position. Therefore, the liquidity of his current

position is less relevant since he is able to effectively replicate the short position

through other contracts.

Thirdly, a CDS investor buying or selling protection, only needs a fraction of

the principal (initial collateral margins or upfront fees), and the mark-to-market

effect of interest rate fluctuations to a position is usually negligible. It is generally

as easy to sell default protection as it is to buy default protection in CDS markets.

In contrast, sometimes it can be difficult and costly to short sell corporate bonds

due to limited arbitrage in the corporate bond market.

Finally, with the introduction of the new standard CDS contract and conven-

tions, and because of the generic nature of the cash flows, credit default swaps

cannot be demanded particularly in the way as Treasury securities or popular

equities may.

In the previous literature, empirical evidence is mixed. Ericsson et al. (2005)

use a set of credit risk models to evaluate the price of credit default swaps as

well as corporate bonds. They find that their models tend to systematically

underestimate bond spreads and, more importantly, that this is not the case for

CDS premia. They also find that bond spread residuals are largely unrelated

to default proxies but correlated with non-default proxies (such as illiquidity

proxies) and CDS premium residuals are uncorrelated with both. In other words,

the evidence supports the presence of illiquidity in bond residuals but not in

CDS residuals. Blanco et al. (2005) also provide evidence that changes in the

credit quality of the underlying name are likely to be reflected more quickly in

the default swap spreads than in the bond yield spreads. This may be due to

a non-default component in bond spreads that obscure the impact of changes in

credit quality. Ericsson et al. (2009) investigate the linear relationship between

theoretical determinants of default risk and default swap spreads. The principle

component analysis shows that there is limited evidence for a common factor in

the regression residuals. That implies that a liquidity-related component in credit

default swap spread may be negligible.

By contrast, Bongaerts et al. (2008) study the effect of liquidity on prices of

CDS from 2000 to 2006. They provide evidence of an economically and statisti-

cally significant expected liquidity premium attributable to the protection seller.
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Using data from 2002 to 2005, Lin et al. (2009) find both CDS and corporate

bond spreads contain significant liquidity components. Since there is no consen-

sus in the literature on whether CDS spreads contain a liquidity premium and

it is hard for us to check if CDS spreads contain a liquidity premium as that

requires a long history of default data, this study follows Longstaff et al. (2005)

in assuming that CDS spreads do not contain a liquidity premium.
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4.3 The Methodology

4.3 The Methodology

In this section, first, we discuss the valuation of bonds and credit default swaps

in our non-parametric framework. Second, we elaborate on the assumption of

a constant recovery rate as well as the tenor effects in term structures post the

crisis. Third, descriptive statistics of the estimated non-default price residuals are

provided. Fourth, a detailed instruction of computing non-default price residuals

of a corporate bond is given. Fifthly, we introduce the extended Roll model to

estimate our liquidity measure as well as the non-default yield spread. Finally,

summary statistics of the non-default yield spread and the liquidity measure are

reported.

4.3.1 Valuing Bonds and Credit Default Swaps

Following Longstaff et al. (2005), we treat CDSs as a benchmark, that is, we

explain credit default swap spreads by only default risk (in terms of default prob-

ability) and apply the default probabilities backed out from the credit default

swap spreads of the same underlying entity to obtain the ‘fundamental value’ of

a corresponding corporate bond.1

We value credit default swaps and corporate bonds within the reduced-form

framework of Duffie & Singleton (1999). But, different from Longstaff et al.

(2005), we apply a non-parametric valuation approach in order to generate more

flexible shapes of default intensity term structures.

Let D(t, T ) denote the riskless discount factors at time t for maturity T and

assume them to be independent of the default time τ . The probability of the

name survives up to time T , observed at time 0, can be expressed as

Surv(T ) := Prob(τ > T ) (4.1)

The conditions for a valid survival probability function are Surv(0) = 1, Surv(t) >

0 and Surv(·) needs to be decreasing. By following the market, Surv(t) is defined

1The ‘fundamental value’ equals the value of a hypothetical liquid defaultable bond with
the same maturity date and coupon rate.
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as

exp(−H(t)) = exp(−
∫ t

0

h(s)ds), (4.2)

where the hazard rate h is assumed to be piecewise constant1 in time, eg. h(t) = hi

for t in [Ti−1, Ti]. Let 4i denote the accrual period from Ti−1 to Ti. The value of

the premium of a CDS at time 0 can be decomposed into the value of an annuity

paying one basis point and its accrual fee paid upon default, scaled by the spot

running spread:

PremLegN(SN ;D(0, ·), Surv(·))

= SN · (AnnuN(D(0, ·), Surv(·)) + AccrN(D(0, ·), Surv(·))),
(4.3)

where

AnnuN(D(0, ·), Surv(·)) =
N∑
i=1

D(0, Ti)4i exp(−H(Ti)) (4.4)

and

AccrN(D(0, ·), Surv(·)) =
N∑
i=1

D(0, Ti)
4i

2
(exp(−H(Ti−1))− exp(−H(Ti))).

(4.5)

Note 4i
2

is the average accrual period from Ti−1 to Ti and exp(−H(Ti−1)) −
exp(−H(Ti)) is the probability of a credit event occurring during period Ti−1 to

Ti.

By assuming recovery of the face value in the event of default, the valuation

of the protection leg can be expressed similarly as

ProtLegN(R;D(0, ·), Surv(·))

= −(1−R)

∫ TN

0

D(0, s)dSurv(s)

≈ (1−R)
M∑
j=1

D(0, tj)(exp(−H(tj−1))− exp(−H(tj))),

(4.6)

1We also tried piecewise linear hazard rate term structure. The results generally remain
the same as we have data of CDS spreads at all maturities (1,2,3, up to 10 years).
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4.3 The Methodology

where the Stieltjes integral is replaced by Riemann sums taken on a low enough

discretization time steps tj, j = 1, ...,M , given t0 = 0 and tM = TN .

Equating the values of the two legs and solving for the running spread gives

SN =
(1−R)

∑M
j=1 D(0, tj)(exp(−H(tj−1))− exp(−H(tj)))∑N

i=1 D(0, Ti)4i[exp(−H(Ti)) + 1
2
(exp(−H(Ti−1))− exp(−H(Ti)))]

.

(4.7)

Under the same framework, the ’fair value’ of a defaultable bond with coupon

c, face value F and maturity N can be expressed as

CPN = c ·
N∑
i=1

D(0, Ti)4i exp(−H(Ti))

+ F ·D(0, TN) exp(−H(TN))

+R
M∑
j=1

D(0, tj)(exp(−H(tj−1))− exp(−H(tj))),

(4.8)

where R is the recovery rate which is kept consistent to the recovery assumption

in the CDS pricing formulas with corresponding seniority and maturity.

4.3.2 Recovery Rate Assumption

The assumption of a constant recovery rate is often adopted for modelling and

estimation purposes in many credit literature. However, very few of them check

whether the assumption of recovery rates has any impact on the valuation. Re-

covery rates generally can be treated in two ways. The first method is to consider

it as another parameter, and to estimate it from the data along with other pa-

rameters. The second one is to a priori fix a value.

Now let us have a look at the relationship between recovery rates and default

probabilities in a simply case: the valuation of a risky zero-coupon bond in one-

period. Assuming the riskless rate is zero, consider the price of a defaultable

zero-coupon bond
ZCP = Prob ·R + (1− Prob)

= 1− Prob · (1−R)
(4.9)
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Then the valuation equation for CDS spreads is given by

S · (1− Prob) = (1−R) · Prob. (4.10)

We find that the credit spread or CDS spread S is given by

S = −(1−R)(1− 1

1− Prob
)

≈ (1−R) · Prob.
(4.11)

Note that both bond prices and CDS spreads are actually expressed by the prod-

uct of the expected loss (1 − R) and the default probability Prob. It turns out

that it is hard to identify both the recovery rate and the default probability from

only one data source, either bond prices or CDS spreads. This may pose a prob-

lem for some applications. For example, if market participants think the recovery

rate was 50%, but 40% was put in the formulas for calculating the upfront fee

for CDSs, then the hazard rate or the default probability must move down to

balance the larger loss incurred in the event of default. The difference between

the expected recovery rate and the assumed constant recovery rate will result in

a cheaper upfront fee, and therefore affect the conversion.

Fortunately, for our purpose of obtaining the fundamental value of a corporate

bond using CDS spreads, this does not cause any problem. Figure 4.1 shows the

price of a generic bond with 5-year maturity for varying recovery rates (and thus

varying default probabilities). The bond price increases very slowly when the

recovery rate is below 70%. As long as the recovery rate is kept between 10%

and 70%, the differences between estimated bond yields are essentially within 10

bps. Therefore, the defaultable bond price is relatively insensitive to the assumed

recovery rate. Therefore, following the market convention, the recovery rate for

senior unsecured corporate bonds is assumed to be 40%, as well as for senior CDS

contracts.
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Figure 4.1: Sensitivity of Bond Prices to the Recovery Rate

A reduced form model with piecewise constant hazard rate term structure is
used to price corporate bonds under the assumption of constant recovery rate.
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4.3.3 Tenor Effects in the Term Structure

Since the beginning of the financial crisis in August 2007, the money markets

have exhibited an unprecedented behaviour. Interest rates, like for instance swap

rates with the same tenor but based on different floating-leg frequencies, that

previously had been following each other closely for a long time, have started to

keep a significant distance apart. This divergence in values does not create arbi-

trage opportunities when credit or liquidity issues are taken into account, which

means that the market is not pricing with a unique term structure any more.

The assumption of a unique discounting curve has been forsaken by practition-

ers, who seem to agree on an empirical approach based on the construction of

as many curves as possible rate tenors. For each given contract, they select a

specific discount curve, which they use to calculate the net present value (NPV)

of the contract’s future payments, consistently with the contract’s features such

as tenors or counterparties in question.1

All corporate bonds in our sample pay semi-annual coupons. Therefore, tenor

effects will not be a concern for our applications, as long as we keep the same

practice of building discounting curves for all bonds. To construct a riskless

discount curve, we download the Constant Maturity Treasury rates of maturities

0.5-year, 1-year, 2-year, 3-year, 5-year, 7-year and 10-year from Federal Reserve

website. We first interpolate these par rates at semiannual intervals by using

cubic spline. Then spot rates are obtained by bootstrapping these par rates at

semiannual intervals. A whole discount curve is provided by linearly interpolating

the corresponding forward curve.

1The valuation of interest rate derivatives under different curves, for generating future rates
and for discounting has received a lot of attention in the financial literature recently. Previous
works that started to deal with these issues, mainly concerning the valuation of cross currency
swaps, are Boenkost & Schmidt (2005), Kijima et al. (2008) and Henrard (2007). Bianchetti
(2010), was the first to apply the methodology to the single currency case, while Chibane &
Sheldon (2009) propose methods to extend yield curve bootstrapping to a multi-curve setting.
In terms of new pricing models, Kijima et al. (2008), Mercurio (2010a) and Mercurio (2010b)
apply the method using a stochastic volatility LMM, in order to price calets and swaptions,
while Moreni & Pallavicini (2010), apply the new framework under the HJM model.
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4.3.4 Computing Non-default Price Residuals of a Corpo-

rate Bond

To compute the non-default price residuals of a corporate bond, we use the fol-

lowing procedure. Firstly, a riskless discount function D(0, ·) is needed for each

trading date. The constant maturity 6-month, 1-year, up to 10-year Treasury

rates are downloaded from the Federal Reserve website. Then these par rates are

interpolated at semiannual intervals by using a cubic spline algorithm. A discount

curve at semiannual intervals can be obtained by bootstrapping the interpolated

par rates. A linear interpolation of the corresponding forward rates is applied to

provide the value of D(0, ·) at other maturities.

Secondly, given the discount curve and the mid-quotes of the CDS contracts

covering from 6-month to 10-year maturities, on each trading day a term structure

of hazard rates can be bootstrapped by using Equation 4.7 under the assumption

of a piecewise constant hazard rate term structure. Then, a survival probability

function Surv(·) is obtained by using Equation 4.2.

Thirdly, given the discount curve D(0, ·) and the survival probability func-

tion Surv(·), a ‘fundamental price’ of the corresponding corporate bond can be

computed by using Equation 4.8. In other words, the ‘fundamental price’ of a

corporate bond is equal to the value of a hypothetical liquid defaultable bond

with the same maturity date and coupon rate.

Finally, subtracting the market-based transaction prices from the model-based

‘fundamental prices’ gives the non-default price residuals of a corporate bond.

This procedure is similar to the one implemented in Longstaff et al. (2005). How-

ever, our approach does not depend on a parametric credit risk model, and is able

to generate very flexible shapes of hazard rate term structures. It is important

to notice that there is no regression involved in the procedure of computing the

non-default price residuals.
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4.3.5 Descriptive Statistics for Non-default Price Residu-

als

Figure 4.2 plots the time series of the cross-sectional average of the non-default

price residuals. Historically, the average non-default price residual has been

around $2 (for the period from 02/2006 to 08/2007). However, in just over a

month, it rose to $3.549 on 14/09/2007, when the Bank of England announced

emergency funding to rescue the troubled Northern Rock, one of the UK’s largest

mortgage lenders. The non-default price residual reached its all time high at

$5.691 on 04/12/2007. Around the same time, large investment banks such as

UBS and Lehman Brothers announced huge write downs. On 18/03/2008 the

collapse of Bear Sterns led to a price drop of $6.760. In the latest illiquidity

wave following the failure of Lehman Brothers, the non-default price residual was

$13.793 (as of 10/10/2008).

Figure 4.2: Time-series Plot of the Average non-default Price Residuals

The plot shows the time series of the non-default price residuals averaged over
bonds.

On 23/02/2009, Citigroup announced that the United States government
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would take a 36% equity stake in the company by converting $25 billion in emer-

gency aid into common shares with a US Treasury credit line of $45 billion to

prevent the bankruptcy of the largest bank in the world at the time. The govern-

ment would also guarantee losses on more than $300 billion troubled assets and

inject $20 billion immediately into the company. The announcement pushed the

price non-default residual to the highest point at $14.663. The price drops may

be triggered by events which may affect the liquidity of the market.

Table 4.2 furnishes descriptive statistics of the non-default price residuals of

the individual bonds in our sample. We observe clear variations in cross sectional

as well as time series dimensions. For the whole sample period, the time series

averages of the non-default price residuals are in the range of $1.198 to $8.168.

Historically, the difference between the smallest and the biggest averages of the

non-default price residuals in Period I was $2.536. This figure increased to $5.412

in Period II reaching a historical record high of $10.241 in Period III before

decreasing to $7.332 post the crisis. This may imply that, not only there exist

heterogenous levels of illiquidity among those bond, but also the extant of the

divergence is varying over time. It would be interesting to look at what cause

these variations across the bonds as well as over time.

4.3.6 A Generalized Roll Model

As non-default price residuals are calculated by subtracting transaction prices

from model-based fundamental values, two properties can be derived from non-

default price residuals. First, illiquidity gives rise to transitory components in

transaction prices, which are orthogonal to fundamental values. That means that

the transitory components can be estimated from the non-default price residuals

instead. Second, there might be non-fundamental risk premia embedded in bond

yield spreads, such as liquidity premia which are the return compensation for

illiquidity.

Therefore, let us assume that the non-default price residual pt consists of two

components:

pt = mt + θt, (4.12)
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4.3 The Methodology

The first component mt represents the permanent price effect, reflecting the unan-

ticipated information received by market participants, including the information

about the future illiquidity of the bonds. The permanent component is assumed

to follow a random walk process:

mt = mt−1 + εt, (4.13)

where εt describes changes in prices due to new information.

The second component θt comes from costs of illiquidity, which is transitory

and uncorrelated with the fundamental value. The absolute value of the transitory

component θt is essentially our illiquidity measure, which characterizes the degree

of current illiquidity in the market.

Now, let us assume that the transitory component θt is equal to a serially

uncorrelated disturbance, νt, with mean zero and variance Ht, and the innovation

term of the permanent component εt has mean zero and variance Qt. However,

in our application both νt and εt are i.i.d. normally distributed, and both H and

Q are independent of time.

The estimation of the state space model is carried out via a Kalman filter

approach by numerically maximizing the relevant log-likelihood function. Fur-

thermore, we assume νt ∼ N(0, H) with H = exp(c1) and εt ∼ N(0, Q) with

Q = exp(c2). The underlying volatility is computed as
√
Q. The model is esti-

mated respectively for each bond and each sub-period.

The estimates of the model parameters c1 and c2 are reported in Table 4.3.

The results show that the cross-sectional average of the underlying volatility was

0.047 prior to the crisis.1 It jumped to 0.266 in Period II and then reached the

highest level at 0.768 in Period III, before coming back to 0.247 post the crisis

period. The obvious structural breaks in the data force us to estimate the model

period by period.

We can also observe some degree of contemporaneous heteroscedasticity across

different bonds. Figure 4.3 plots the underlying volatilities of the 5-year and

10-year bonds, respectively, against their corresponding maturity dates in four

1It is important to notice that these volatilities are those of the unobservable non-default
price discounts, as the analysis is focusing on non-default bond residuals.
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4.3 The Methodology

sub-periods, separately. As we can see, the volatility curves are generally linear

and positively sloped, indicating that uncertainty about future liquidity increases

in the time-to-maturity. In Period III and IV, there are a few outliers, which are

the bonds with small or medium issue sizes, indicating that issue sizes might be

the possible omitted variable.

In addition, we check whether the estimated unobservable non-default price

residuals mt are integrated of order one as the model assumes. In order to de-

termine the order of integration of mt for each bond in each sub-period, we use

Augmented Dickey-Fuller (ADF) tests with Mackinnon’s critical values. Table

4.4 reports the results (t-statistics) of the tests of the null hypothesis of a unit

root in mt. If the t-statistics differ significantly from zero, the null hypothesis of

existence of a unit root is reject and stationarity is concluded. We test for unit

roots in mt of each bond in each sub-period in terms of levels and first differences.

The ADF tests indicate that for almost all the series of mt the null hypothesis of

existence of a unit root cannot be rejected.

4.3.7 Preliminary Analysis on Unobservable Non-default

Yield Spread and Illiquidity Measure

Now, it is time to turn to the elements which we are really interested in, namely,

the unobservable non-default price discount mt (or in terms of yield) and the

illiquidity measure st. Table 4.5 reports the means and the standard deviations

of the estimated unobservable non-default price discounts mt for each bond in

the indicated sub-periods. The cross-sectional averages of the means of mt rose

from a level of about $2 in Period I to about $4 in Period II. In Period III, the

cross-sectional average increased dramatically to more than $7. Similar to the

volatility, post the crisis the unobservable non-default price discounts came back

to about the same level prior to the crisis. The results suggest that there exist

common processes that are driving the non-default components across the bonds.

Cross-sectionally, the time series averages of mt in Period I ranged from $3.605 to

$1.077, whereas in Period II, III, and IV they ranged from $7.018 to $1.761, from

$11.7657 to $1.505, and $7.605 to $0.276. In particular, the difference between
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Figure 4.3: Cross-sectional Plots of Underlying Volatility against Maturity
Date

This figure plots the average underlying volatilities of the 5-year and 10-year
bonds against their maturity dates, respectively. > 10-year denotes 10-year
bond; ◦ 5-year denotes 5-year bond. Issue size might be the possible omitted
variable.
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4.3 The Methodology

Table 4.4: Augmented Dickey-Fuller Tests for Unit Roots in Filtered Unob-
servable Non-default Price Discount mt.

This table reports the results (t-statistics) of tests of the null hypothesis of
a unit root in the filtered unobservable non-default price discount mt. The
results are presented separately for each bond and the indicated sub-period.
D(·) represents the first difference operation. 1% Level represents the critical
value at 1% significance level. The whole sample period (February 7, 2006 to
September 30, 2010) is divided into four sub-periods. Period I is spanning from
February 7, 2006 to July 31, 2007; Period II is from August 1, 2007 to July
31, 2008; Period III is from August 1, 2008 to July 31, 2009; Period IV is from
August 3, 2009 to September 30, 2010.
pt = mt + νt, νt ∼ N(0, H), H = exp(c1),
mt = mt−1 + εt, εt ∼ N(0, Q), Q = exp(c2).

Bond Period I Period II Period III Period IV
mt D(mt) mt D(mt) mt D(mt) mt D(mt)

bond01 -2.403 -18.700 -2.465 -15.485 -3.084 -15.349 -4.313 -19.823
bond02 -3.448 -18.573 -2.588 -15.420 -1.788 -16.225 -4.178 -17.540
bond03 -1.510 -19.727 -2.220 -15.510 -1.803 -9.922 -3.104 -17.189
bond04 -2.184 -20.751 -2.601 -15.155 -2.053 -14.932 -3.117 -15.601
bond05 -1.651 -18.630 -3.583 -14.984 -2.395 -15.538
bond06 -2.632 -20.037 -2.334 -16.016 -2.772 -16.776
bond07 -3.304 -21.415 -2.288 -15.334 -2.578 -14.190 -4.191 -21.246
bond08 -2.807 -15.048 -1.926 -9.460 -2.546 -17.722
bond09 -2.510 -14.484 -2.545 -14.476 -2.911 -17.483
bond10 -2.850 -15.011 -2.184 -16.081 -2.363 -16.123
bond11 -2.332 -14.710 -2.554 -18.530
bond12 -2.141 -14.964 -3.063 -17.668
bond13 -2.289 -14.784 -3.625 -15.827
bond14 -2.548 -15.570 -2.257 -16.185
bond15 -2.497 -15.146 -3.095 -16.643
bond16 -2.169 -15.585 -2.440 -17.191
bond17 -2.650 -16.112
1% Level -3.448 -3.456 -3.457 -3.453

124



4.3 The Methodology

the lowest and the highest averages was $10.26 in Period III, compared to $2.528

in Period I. The results clearly indicate a significant level of heterogeneity in mt.

Figure 4.4 plots the time series averages of the unobservable non-default price

discounts of the 5-year and 10-year bonds respectively against their corresponding

maturity dates in four sub-periods. As expected, the averages increase in time-

to-maturities. Therefore, it is necessary to convert price discounts (in terms of

price) into yield spreads and check whether maturity effects still remain in yield

spreads. Figure 4.5 plots the time series averages of the non-default yield spreads

of the 5-year and 10-year bonds respectively against their corresponding maturity

dates in four sub-periods. The term structures of non-default yield spreads show

a variety of shapes. In Period I, II, and IV, the term structures, which may

measure future cumulative liquidity costs, were slightly upward sloping.

The most interesting finding, by far, is that in Period III the non-default yield

spreads for both the short-term and long-term bonds clearly had humped-shape

term structures. The term structures peaked half way around two and half years

and five years for the short-term and long-term bonds respectively. This result is

seemingly opposite to the findings in previous studies. For instance, Ericsson &

Renault (2006) find a decreasing and convex term structure of liquidity spreads,

and Dick-Nielsen et al. (2012) find that the liquidity premium increases as the

maturity increases. The seasoning effect that we find here is very likely to be

related to illiquidity. It may be explained by the argument that, it would be very

unlikely that traders can buy their desired bonds just on the day of issuance, as

it takes time and human capital for an investor to find a suitable investment and

then act on it. Similarly, when it is close to maturity, investors may choose to

cash out prior to maturity, as planned, due to imperfect matching of maturities.

This effect might be amplified during the crisis period (e.g. Period III) due to

fight-to-liquidity, as Beber et al. (2009) find that in the times of market distress

investors chase liquidity, although they examine government bond markets.

Table 4.6 reports the means and standard deviations of the illiquidity measure

st for each bond in the indicated sub-period. The cross-sectional averages of the

means of st increased from $0.321 in Period I to $0.5 in Period II, and then

jumped to $1.052 in Period III before falling back to $0.448 in Period IV. This

implies that the liquidity of the bonds got worse and worse as the crisis unfolded,
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Figure 4.4: Cross-sectional Plots of Time Series Averaged Unobservable Non-
default Price Discount against Maturity Date

This figure plots time series averaged filtered unobservable non-default price
discounts of 5-year and 10-year bonds against their maturity dates. > 10-year
denotes 10-year bond; ◦ 5-year denotes 5-year bond.
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Figure 4.5: Cross-sectional Plots of Time Series Averaged Unobservable Non-
default Yield Spread against Maturity Date

This figure plots time series averaged unobservable non-default yield spreads of
5-year and 10-year bonds respectively against their maturity dates. > 10-year
denotes 10-year bond; ◦ 5-year denotes 5-year bond. Issue size might be the
possible omitted variable.
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4.3 The Methodology

and recovered post the crisis. The liquidity conditions of the individual bonds

were quite different, as the standard deviations of the means of st in Period III

was 0.444, compared to 0.178 in Period IV.

Figure 4.6 plots the time series averages of st of the 5-year and 10-year bonds

respectively against their corresponding maturity dates for each bond and the

indicated sub-period. The illiquidity measure exhibited obvious seasoning effects

in all sub-periods except Period I where there were fewer observations. In par-

ticular, in Period III st was around four times as big for the most illiquid bond

compared to the most liquid bond. Our finding that seasoned bonds are more

illiquid than newly issued bonds and bonds close to maturity is consistent with

Schultz (2001) and Edwards & Piwowar (2007). Due to a flight-to-liquidity effect,

the plots in Period III had more curvature than those in other sub-periods, as

investors rebalance their portfolios towards more liquid securities. The volume

data in Figure 4.7 support that trading is more active just after the issuance as

well as before maturity.

Finally, as we want to explain non-default yield spreads as liquidity premia,

it is important to check their relation with the illiquidity measure. Figure 4.8

plots the time series averages of the unobservable non-default yield spreads of

the 5-year and 10-year bonds respectively against the time series averages of the

illiquidity measures for each bond and the indicated sub-period. The plots show

weak signs of a positive relationship between the non-default yield spread and the

illiquidity measure. However, this may result from omitting relevant variables,

such as issue sizes or time-to-maturities. We will further examine this relationship

in the next section.

We are also interested in the time series behaviour of both the default and

non-default components. Figure 4.9 gives a time series plot of both the daily

default component and the cross-sectionally averaged unobservable non-default

component in yield spreads. Before 26 July 2007, the non-default spread was

always above the default spread, and accounted for about 80% of the overall

spread. During the crisis (July 2007 - June 2009), the non-default component

accounted for about 48% of the overall spread on average. Its proportion dropped

to around 23% after the crisis (after June 2009). Between July 2007 and August

2008, there were four big jumps in both the default and non-default components,
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Figure 4.6: Cross-sectional Plots of Time Series Averaged Half Bid-ask Spread
against Maturity Date

This figure plots time series averaged half bid-ask spreads of 5-year and 10-
year bonds respectively against their maturity dates. > 10-year denotes 10-year
bond; ◦ 5-year denotes 5-year bond. Issue size might be the possible omitted
variables.
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Figure 4.7: Cross-sectional Plots of Time Series Averaged Trading Volume
against Maturity Date

This figure plots time series averaged trading volume of 5-year and 10-year bonds
respectively against their maturity dates. > 10-year denotes 10-year bond; ◦
5-year denotes 5-year bond.
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Figure 4.8: Cross-sectional Plots of Time Series Averaged Unobservable Non-
default Yield Spread against Time Series Averaged Half Bid-ask Spread

This figure plots time series averaged unobservable non-default yield spreads of
5-year and 10-year bonds respectively against time series averaged half bid-ask
spreads. > 10-year denotes 10-year bond; ◦ 5-year denotes 5-year bond.
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Figure 4.9: Time Series Plot of Default Component and Cross-sectional Av-
eraged Unobservable Non-default Component in Yield Spreads

This figure gives a time series plot of both the daily default component and the
cross-sectional averaged unobservable non-default component in yield spreads.
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and each jump in the default component occurred ahead of each jump in the

non-default component. Between September 2008 and February 2009, both the

default and non-default components had sharp increases four times. By contrast,

they jumped almost at the same time. What is most surprising to us is that in

March 2009 the non-default component dropped sharply well before the default

component reached its historical highest point.1 After 2 March 2009 the default

component stayed well above the non-default component until the end of our

sample period. The non-default component fell below zero for a while during

June and July 2009.

1On February 23 2009, Citigroup announced that the United States government would take
a 36% equity stake in the company by converting $25 billion in emergency aid into common
shares with a US treasury credit line of $45 billion.
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4.4 Regression Results

Our sample consists of a cross-section of bonds, which allows us to examine

the connections amongst non-default yield spreads, our illiquidity measure and

various liquidity proxies. In particular, this enables us to answer the questions

that why bonds issued by a single company exhibit heterogenous levels of liquidity

and liquidity premia, how much of the time series variations are in common, and

how much are idiosyncratic. Therefore, we combine estimates over the whole

sample period to construct daily non-default yield spreads and the illiquidity

measure for each bond, and perform panel regressions on various liquidity proxies.

In doing this, it would be better to give some intuitive interpretation of the

liquidity proxies, their expected relationships with non-default yield spreads and

the illiquidity measure, and theoretical or empirical evidence.

4.4.1 Liquidity Proxies

Empirical papers, that examine liquidity in bond or equity markets, use both

direct measures (based on transaction data), and indirect measures (based on

bond characteristics and/or last prices). In our applications we will use both

direct and indirect measures, as they may provide different information about

bond liquidity.

The first proxy is the time-since-issue or time-to-maturity of a bond. The

intuition for these proxies is that traders buy bonds after the offering and sell

them shortly thereafter, as they expect that the bonds will get illiquid; while

bonds are close to maturity, some traders will start liquidating their holdings as

a result of imperfect match of maturities. Therefore, newly issued bonds and

bonds close to maturity may be more liquid than seasoned bonds. The difference

in the time-since-issue or time-to-maturity across bonds may explain the cross-

sectional difference in illiquidity and liquidity premia. Examining the corporate

bond market, Schultz (2001) find that newly issued bonds trade more than old

bonds. More recently, Edwards & Piwowar (2007) find, using transaction cost

estimates, that highly rated bonds, recently issued bonds, and bonds close to

maturity have lower transaction costs than do other bonds.
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The second proxy is the issue amount of a bond. Intuitively, bonds with

smaller issue amount tend to get locked away by long-term investors more easily,

reducing the tradable amounts and thus their liquidity. Thus, the larger an issue,

the more liquid an bond is. Alexander et al. (2000) find that bond issues with

higher volume tend to be larger and more recently issued. Bao et al. (2011)

establish a robust connection between their illiquidity measure and liquidity-

related bond characteristics. Similarly, they find that the illiquidity measure is

higher for older and smaller bonds, and bonds with smaller average trade sizes

and higher idiosyncratic return volatilities. Not only these papers found strong

evidences of a seasoning effect, but also they both suggested that issue amounts

could be an indicator of bond liquidity.

Our third proxy is related to inventory holding costs. In microstructure litera-

ture, market makers’ inventory holding costs are often related to price volatilities.

Following Alexander et al. (2000), we use the average of absolute price returns to

approximate the volatility of fundamental prices.

The final three proxies are based on transaction level data and try to measure

trading frequencies. They are the daily turnover, the daily average trade size, and

the number of trades in a day of a bond. Obviously, all else equal, bonds which

trade more frequently will be more liquid. However, as they are constructed from

transaction-level data such as trading volumes, they do not tend to be forward-

looking, but rather reflect the current condition of market liquidity.

In addition to those measures of illiquidity, it would be interesting to look at

whether CDS spreads or the default risk will affect bond liquidity. There are good

reasons why they should be correlated. For example, when default probabilities

are high, it is plausible to believe that liquidity will be low, as there are fewer

buyers in the market willing to hold bonds with high default risk. Empirically,

Ericsson & Renault (2006) find evidence of a positive correlation between the

illiquidity and default components of bond yield spreads. Bao et al. (2011) also

find that bonds with higher CDS spreads are less liquid. However, it is important

to notice that CDS spreads are merely capturing the fundamental default risk,

rather than a measure of bond illiquidity.

Table 4.7 gives details on the definition of each liquidity proxy. It also shows

the expected relationship between each measure and the dependent variables,
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respectively. We also expect some of these relationships to possess some form of

nonlinearity.

Table 4.7: Illiquidity Proxies and Their Expected Relationships with Non-
default Yield Spreads and the Illiquidity Measure.

This figure shows the illiquidity proxies and control variables we will use in
the regression analysis and their expected relationships with the dependent
variables.

Liquidity measure Definition Relationship
Non-default Yield
Spread

Illiquidity Measure

Time-Since-Issue Time between issue
date and transaction
date in years

positive positive

Time-To-Maturity Time between matu-
rity date and trans-
action date in years

positive positive

Issue Amount Total notional in mil-
lions of dollars

negative negative

Turnover The bond’s daily
trading volume as
a percentage of its
issue amount

negative negative

Trade Size Daily average trade
size of the bond in
thousands of dollars
of face value

negative negative

Number of Trades Total number of
trades of the bond in
a day

negative negative

Volatility Absolute value of
daily log returns

positive positive

CDS Spread The spread on the
five-year on-the-run
CDS in percentage

positive positive

Table 4.8 shows the correlations among the dependent and independent vari-

ables. As shown, the fundamental volatility and the CDS spread are highly

and positively correlated with the illiquidity measure and the non-default yield

spread. In particular, there is a high correlation of 41% between the illiquidity

measure and the non-default yield spread, indicating that the non-default yield

spread could be related to liquidity risk. As expected, the negative exponential

of the time-to-maturity is negatively correlated with the illiquidity measure and
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the non-default yield spread. The illiquidity measure is generally negatively cor-

related with the issue size and the trading activity measures except the number

of trades.

4.4.2 Illiquidity Measure

Table 5.2 reports the panel regression results with the daily illiquidity measure

st as the dependent variable. t-statistics are reported in squared brackets, using

the standard errors computed using White robust method. To avoid collinearity,

we keep the time-to-maturity and exclude the time-since-issue from the panel

regressions.

The regression results show that the estimated coefficients of all proxies have

the signs expected. We find a positive relationship between our illiquidity mea-

sure and the time-to-maturity. This implies that there may be maturity cliente-

les for corporate bonds. That is, bonds with longer time-to-maturities are less

liquid. The positive relationship between the illiquidity measure and the time-to-

maturity is consistent with Bao et al. (2011) where they find that their illiquidity

measure is higher for bonds with longer time-to-maturities. Moreover, we find

that the illiquidity measure is a concave function of the time-to-maturity, indi-

cating that illiquidity increases nonlinearly in time-to-maturities. The results are

generally robust regardless of which control variables are used in these regressions,

with t-statistics around -4.19 on average.

Issue size loosely speaking measure the availability of a bond in the market,

and thus indirectly measures the illiquidity of a bond, as smaller issues may be

more likely subject to buy-and-hold investors, and thus may be less liquid. We

find that our illiquidity measure is higher for bonds with smaller issue amounts.

Therefore, the liquidity of bonds issued by the same borrower does increase in

their issue sizes.

The availability of the transaction-level data enables us to examine the con-

nection between our illiquidity measure and bond trading frequencies. All three

trading activity measures are statistically significant at the 95 percent confidence

level. We find that our illiquidity measure is higher bonds with smaller trade

sizes and lower turnovers. Unlike Bao et al. (2011), we find that bonds with a
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Table 4.9: Regression of the Illiquidity Measure on Illiquidity and Credit
Proxies.

This table reports the panel regressions with the daily illiquidity measure st as
the dependent variable. t-statistics are reported in square brackets using White
robust method. The daily illiquidity measure is in dollars. Mat is the time-to-
maturity in years. Issue is the issue amount in millions of dollars. Turnover
is the daily trading volume as a percentage of the issue amount. Size is the
daily average trade size in thousands of dollars of the face value. #Trds is the
total number of trades in a day. Nondef is the daily estimated unobservable
non-default yield spread in percentage. V olatility is the absolute value of daily
log returns on the fundamental price in percentage. CDS is the spread on the 5-
year on-the-run CDS in percentage. The whole sample period is from February
7, 2006 to September 30, 2010.

Coefficients on equations
(1) (2) (3) (4) (5) (6) (7)

Cons 0.18** 1.94** 2.03** 1.96** 1.92** 1.92** 1.68**
[3.20] [2.46] [3.27] [3.19] [3.25] [2.98] [2.65]

Exp(−Mat) -1.33** -1.01** -0.97** -0.99** -0.98** -0.32**
[-4.43] [-4.09] [-4.08] [-3.87] [-4.46] [-2.14]

Log(Issue) -0.23** -0.25** -0.23** -0.21** -0.22** -0.22**
[-2.15] [-2.97] [-2.87] [-2.72] [-2.53] [-2.57]

Turnover -7.24**
[-6.24]

Log(Size) -0.03**
[-4.90]

Log(#Trds) -0.04**
[-2.29]

Nondef 0.23**
[6.12]

V olatility 0.36** 0.34** 0.34** 0.34** 0.33** 0.28**
[6.53] [6.56] [6.70] [6.74] [6.66] [6.13]

CDS 0.17** 0.24** 0.19** 0.19** 0.19** 0.20** 0.12**
[5.56] [7.49] [6.53] [6.62] [6.56] [6.57] [6.23]

Obs 10206 13186 10196 10183 10184 10195 10196
R2 17.57% 15.12% 20.50% 21.02% 21.24% 20.52% 26.43%
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larger number of trades have smaller bid-ask spreads and are more liquid. Alter-

natively stated, more trades do lead to more liquidity. However, despite they are

statistically significant, their contributions to R2 appear to be modest. Adding

the turnover, the trade size and the number of trades only increases R2 by 0.52%,

0.74% and 0.02%, respectively.

In addition, we find that, after controlling for the time-to-maturity, the issue

size, the fundamental volatility and the other variables, our illiquidity measure

is positively correlated with the CDS spread. That is, the more likely the com-

pany will default, the less liquid its bonds become. The connection in terms of

magnitude and statistical significance is very strong as the t-statistics are about

6.57 on average. If the CDS spread increases by 1 percent, our illiquidity measure

would increase roughly about 19 percent which is sizeable given that the average

illiquidity measure before the crisis was only at 32.1 percent. However, the result

does not mean that CDS spreads contain any information on bond liquidity. This

is merely because that during distressed time there are fewer investors willing to

hold bonds with high default risk. Our result also confirms the finding in Ericsson

& Renault (2006) and Bao et al. (2011) that there is a close relationship between

credit and liquidity risks.

Interestingly, the absolute returns of the fundamental price as a proxy for price

uncertainty is found to be positively correlated with the illiquidity measure. It

is well-known that market makers’ inventory costs are higher if price uncertainty

is higher. An important source of uncertainty is related to the predictability of

future price movements. Thus, a higher price uncertainty leads to larger bid-ask

spreads, and thus lower liquidity. In addition, the non-default yield spread also

has some predictability for the illiquidity measure. Including the non-default

yield spread in the regression increases the R2 by 5.93%.

Finally, among the independent variables, some of them are common across

the bonds, such as the fundamental volatility and the CDS spread. Others are

viewed as the idiosyncratic factors, for instance, the time-to-maturity, the issue

size and the trading activity measures. The fundamental volatility and the CDS

spread all together can explain 17.57% of the variations in the illiquidity mea-

sure, in which 5.38% is attributable to the fundamental volatility. Adding the
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idiosyncratic factors such as the time-to-maturity, the issue size and the non-

default yield spread increase the R2 by 8.86%. The contribution of the trading

activity measures to the R2 appears to be modest (less than 1%). It is important

to caution that the variations which are unexplained by our selected factors may

include the errors which are introduced in the process of separating the default

and non-default price components as well as estimating the illiquidity measure

and the non-default yield spread.

4.4.3 Non-default Yield Spread

Now we focus on the variations in the non-default component of the yield spreads.

Once again we regress the non-default yield spreads of the individual bonds on a

number of liquidity proxies and control variables. Table 4.10 reports the regres-

sion results.

As many studies explain non-default yield spreads as a liquidity premium

which is the compensation required by investors for the transaction costs in-

curred when trading the assets, it is important to check whether there is a strong

relationship between the non-default yield spread and the illiquidity measure.

Table 4.10 shows that the non-default yield spread is significantly and positively

related to the illiquidity measure. Thus, the size of the non-default yield spread

increases, while the liquidity of a bond decreases. This is consistent with the hy-

pothesis that illiquid bonds have larger liquidity premia embedded within their

yield spreads than liquid bonds. In particular, the regression coefficient on the

illiquidity measure is 0.06 with a t-statistic of 17.62. This means that for two

bonds issued by the company a difference of $1.0 in the illiquidity measure leads to

a difference of 6 bps in the yield spread. This is obviously much smaller than the

differences found in Longstaff et al. (2005) (a difference of 36.9% for AAA/AA-

rated firms) and Chen et al. (2007) (42% for Investment Grade bonds). This is

possibly because our analysis is limited to a set of single A-rated bonds, issued

by a specific company, and our sample (from February 2006 to September 2010)

is more recent than the one used in Longstaff et al. (2005) (from March 2001 to

October 2002) and Chen et al. (2007) (from 1995 to 2003).
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Table 4.10: Regression of Non-default Yield Spread on Illiquidity and Credit
Measures.

This table reports the panel regressions with the daily estimated non-default
yield spread mt as the dependent variable. t-statistics are reported in square
brackets using White robust method. Non-default yield spreads are in percent-
age. Mat is the time-to-maturity in years. Issue is the issue amount in millions
of dollars. Turnover is the daily trading volume as a percentage of the issue
amount. Size is the daily average trade size of in thousands of dollars of the
face value. #Trds is the total number of trades in a day. Illiq is the daily
illiquidity measure st in dollars. V olatility is the absolute value of daily log
returns on the fundamental prices in percentage. CDS is the spread on the 5-
year on-the-run CDS in percentage. The whole sample period is from February
7, 2006 to September 30, 2010.

Coefficients on equations
(8) (9) (10) (11) (12) (13) (14) (15)

Cons 0.73** 0.29 0.53** 0.66** 0.70** 0.69** 0.68** 0.66**
[37.72] [1.53] [2.07] [3.18] [3.41] [3.30] [3.26] [3.74]

Exp(−Mat) -1.81** -2.04** -2.26** -2.28** -2.27** -2.27** -2.31**
[-14.61] [-11.21] [-15.95] [-16.49] [-16.20] [-16.05] [-20.00]

Log(Issue) 0.12** 0.07** 0.03 0.03 0.03 0.03 0.02
[4.85] [2.14] [1.12] [0.92] [1.03] [1.00] [0.67]

Turnover 0.39
[0.68]

Log(Size) -0.00
[-0.65]

Log(#Trds) 0.00
[1.10]

Illiq 0.06**
[17.62]

V olatility 0.01* 0.03** -0.00 -0.00 -0.00 -0.00 -0.00
[1.79] [7.40] [-0.94] [-0.82] [-0.85] [-0.90] [-1.56]

CDS 0.19** 0.09** 0.18** 0.19** 0.18** 0.18** 0.23**
[23.25] [11.10] [21.46] [22.56] [21.96] [21.58] [29.47]

Obs 10224 10214 13232 10214 10199 10200 10211 10196
R2 26.85% 24.79% 18.22% 27.14% 27.90% 27.54% 27.29% 32.99%
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Turning to term structures of liquidity premia, we find that an increasing and

concave term structure of liquidity premia. It is consistent with the interpretation

that long-term bonds have higher yields than short-term bonds. The upward-

sloping term structure is also consistent with the result by Dick-Nielsen et al.

(2012) who find that the liquidity component increases as the maturity increases

and contrasts the work of Ericsson & Renault (2006) who show that the liquidity

premium due to selling pressure decreases with time-to-maturities.

Adding the CDS spread as a control variable for the fundamental risk of

a bond, we find that the CDS spread is significantly positively related to the

liquidity premium. In other words, the liquidity premium is large when the

default probability is high. The coefficients of the CDS spread in the regressions

are on average 0.18 with t-statistics of about 20. However, controlling for the

CDS spread dramatically reduces the economic and statistical significance of the

issue size and the fundamental volatility in the regressions. This is because that

CDS spreads might measure some similar fundamental risk that the issue size

and the fundamental volatility have contained. In particular, the insignificance

of the issue size is consistent with Crabbe & Truner (1995) who also find that for

bonds issued by the same corporation there is no relation between issue sizes and

bond yields, indicating that large and small debts issued by the same borrower

are close substitutes.

Unlike Longstaff et al. (2005), we are able to obtain transaction-level data for

trading activities. However, all our three trading frequency proxies, the turnover,

the trade size and the number of trades, turn out to be insignificant for the

liquidity premium. This may be because liquidity premia capture future expected

liquidity, and these trading activity measures based on transaction-level data may

just reflect the current liquidity condition in the market.

In addition, the common factors, namely the fundamental volatility and the

CDS spread, explain 26.85% of the variations in the non-default yield spreads.

Adding the illiquidity in the regression improves the R2 by 5.85%. The time-to-

maturity and the issue size together contribute to the R2 by only 0.29%.

Finally, Figure 4.10 plots the predicted non-default yield spread against the

predicted illiquidity measure by the regression models. The predicted values

are generated based on regression (3) and (11), using two common factors (the

145



4.4 Regression Results

fundamental volatility and the CDS spread) and two idiosyncratic factors (the

time-to-maturity and the issue size). As we can see from Figure 4.10, it is obvious

that there is a positive relationship between the non-default yield spread and the

illiquidity measure. However, there are also a few observations biased towards

the right, suggesting that an increase in the illiquidity measure leads to a smaller

increase in the yield spread than the increase suggested by most of the data. Con-

sequently, we want to know which factors contribute to the positive relationship

and which factors cause a few observations skew to the right. Figure 4.11 shows

the contribution of four major factors, namely the time-to-maturity, the issue

size, the fundamental volatility and the CDS spread, to the relationship between

the non-default yield spread and the illiquidity measure. The positive relation-

ship is generally determined by the time-to-maturity and the CDS spread. As

can be seen from Figure 4.11, the reason of a few observation biased to the right

in Figure 4.10 is because that the fundamental volatility has a big impact on the

illiquidity measure but has insignificant impact on the non-default yield spread.

Nevertheless, high volatilities and illiquidity measures are still rarely observed.

The issue size is insignificant for the non-default yield spread but has relatively

small impact on the illiquidity measure. Both the fundamental volatility and the

issue size may contribute to the horizontal spread of the plots in Figure 4.10.

4.4.4 Coefficient Stability

Finally, we check the stability of the coefficients across the sub-periods. Our

approach is that, by using dummy variables for each sub-period, each independent

variable is broken into four variables. Each coefficient of those variables represents

the relationship between the independent and dependent variables within each

sub-period. We examine one variable at a time and keep all other variables the

same as they were in the regressions using the overall sample.

Table A.1 shows the regression results using sub-sample dummy variables for

the variations in the illiquidity measure. The coefficients are generally stable and

have the expected signs. However, the coefficients of the time-to-maturity slightly

decreases throughout the sub-sample periods. The coefficients of the fundamental

volatility and the CDS spread in the pre-crisis period have a negative sign. The
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Figure 4.10: Scatter Plots of Predicted Non-default Yield Spread against
Predicted Illiquidity Measure

This figure plots the predicted non-default yield spread against the predicted
illiquidity measure. The predicted values are generated based on the two
regressions:

Nondef = α+ β1Exp(−Mat) + β2Log(Issue) + β3V olatility + β4CDS + ε

and

Illiq = α′ + β′1Exp(−Mat) + β′2Log(Issue) + β′3V olatility + β′4CDS + ε′

where Mat is the time-to-maturity in years, Issue is the issue amount
in millions of dollars, V olatility is the absolute value of daily log returns on the
fundamental prices in percentage, CDS is the spread on the 5-year on-the-run
CDS in percentage, Illiq is the daily illiquidity measure st in dollars and
Nondef is the daily estimated unobservable non-default yield spread mt in
percentage. The figure suggests a positive relation between the non-default
yield spread and the illiquidity measure.
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Figure 4.11: Contribution of Major Factors to the Relation between the Non-
default Yield Spread and the Illiquidity Measure

This figure shows the contribution of the four major factors, namely the time-
to-maturity, the issue size, the fundamental volatility and the CDS spread,
to the relationship between the non-default yield spread and the illiquidity
measure. The figure is constructed based on the coefficients estimated from
the two regressions:

Nondef = α+ β1Exp(−Mat) + β2Log(Issue) + β3V olatility + β4CDS + ε

and

Illiq = α′ + β′1Exp(−Mat) + β′2Log(Issue) + β′3V olatility + β′4CDS + ε′,

where Mat is the time-to-maturity in years, Issue is the issue amount
in millions of dollars, V olatility is the absolute value of daily log returns
on the fundamental prices in percentage, CDS is the spread on the 5-year
on-the-run CDS in percentage, Illiq is the daily illiquidity measure st in dollars
and Nondef is the daily estimated unobservable non-default yield spread
mt in percentage. The figure suggests that the positive relationship between
the non-default yield spread and the illiquidity measure is mainly due to the
time-to-maturity and the CDS spread.
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coefficient of the turnover in Period III has the largest magnitude. Both the trade

size and the number of trades are insignificant in Period III.

In Table A.2 the coefficients in the non-default yield spread regression show a

sign of slight instability. The coefficient of time-to-maturity in Period I is dramat-

ically smaller than those in other periods. The issue size becomes insignificant in

Period II and IV and has a negative coefficient in Period I. Coefficients of both

the fundamental volatility and the CDS spread have positive signs only in Period

III. Coefficients of the illiquidity measure in Period I and IV have negative signs.

We expect some variations in the coefficients across different sub-periods.

However, the overall sample is more suitable for our purpose as we generally try

to associate the variations in the illiquidity measure and the non-default yield

spread with various liquidity proxies.
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4.5 Summary and Conclusion

In this chapter, we use both credit default swap and corporate bond data of a

single firm during 2006 - 2010 to study the relationships between bond liquidity

and the non-default component of corporate bond yield spreads as well as our

illiquidity measure.

We first separate the non-default component of bond spreads from the default

one by using the information in credit default swaps. We then apply our extended

Roll model to non-default bond price residuals. The Kalman filter model provides

an alternative way to estimate the unobservable non-default yield spread as well

as our illiquidity measure.

Our results show that for the bonds in the sample, the non-default component

accounted for about 80% of the yield spreads before the financial crisis whereas

during and after the crisis default risk played a more important role, and ac-

counted for around 52% and 77% of the yield spreads, respectively. These results

indicate that there is a significant non-default component in corporate bond yield

spreads. Moreover, this non-default component varies over time as well as across

bonds.

We find that our measure of illiquidity is related to several bond character-

istics. In particular, the illiquidity measure has a nonlinear and positive rela-

tionship with the time-to-maturity. The level of illiquidity decreases while the

issue size and the trading frequency increase. In addition, we find that both

the fundamental volatility and the CDS spread are positively correlated with the

illiquidity measure. The common factors such as the fundamental volatility and

the CDS spread can explain 17.57% of the variations in the illiquidity measure

whereas the idiosyncratic factors such as the time-to-maturity, the issue size and

the non-default yield spread account for 8.86% of the variations.

Empirical results also show that the non-default yield spread is significantly

positively correlated with our illiquidity measure. That is, the non-default yield

spread is indeed associated with bond illiquidity and increases with the level of

illiquidity. Our results support a strong and positive correlation between default

risk and liquidity premia. We find an increasing and concave term structure of

the liquidity premium. In addition, the trading activity measures are insignificant
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for the liquidity premium, suggesting that the liquidity premium may reflect

future expected illiquidity of a bond. Finally, 26.85% of the variations in the

liquidity premium is explained by the common factors, such as the CDS spread

and the fundamental volatility. The illiquidity measure is the most influential

idiosyncratic factor of the liquidity premium. Including the illiquidity measure

increases the R2 by 5.85%.

Our main analysis is based on the assumption that CDS spreads do not contain

a liquidity premium. However, if they do then it will create a common factor

(across bonds of similar maturity) in the residuals. Reduced but still significant

liquidity effects would then be estimated. It is also important to caution that

our results may not generalize to other bonds or other firms. There may be some

doubt about our results for the broader market of corporate bonds. In our future

research, we may extend our data set to include a larger number of corporate

bonds. Still, for the bonds that we analyzed, these results do suggest that there

is a significant non-default component in the corporate bond yield spread which is

associated with the illiquidity of a bond, and the illiquidity and liquidity premia

vary over time and across bonds deriving by both common and idiosyncratic

factors.
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Chapter 5

An Equilibrium Model of

Liquidity in Bond Markets

5.1 Introduction

The recent financial crisis has revealed a strong need to gain a better understand-

ing of the influence of illiquidity on asset pricing. In particular, the illiquidity of

bond markets has captured the interest of researchers, practitioners, and policy

makers. Many empirical studies have found that very similar assets can exhibit

significantly different levels of liquidity.1 Therefore, fundamental asset pricing

questions have to be asked: why similar assets differ significantly in liquidity, and

in particular, why some bonds are more liquid and more expensive (in terms of

price) than other (otherwise identical) bonds.

1Amihud & Mendelson (1991) compare the yields on short-term U.S. Treasury notes and
bills with the same maturities, and find that their liquidity is different. Krishnamurthy (2002)
documents that on-the-run Treasury bonds are significantly more liquid than off-the-run bonds
maturing on nearby dates. In fact, one of long term capital management’s (LTCM) main
strategies was to exploit the price differences between on-the-run and off-the-run Treasury
bonds. Krishnamurthy & Vissing-Jorgensen (2012) examine the yield differences between 6-
month Federal Deposit Insurance Corporation (FDIC) insured certificates of deposit (CDs) and
6-month Treasury bills. They suggest that, given FDIC insurance, the yield differences can
only be due to liquidity.
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To answer the questions, a “partial equilibrium” analysis that imposes ex

ante assumptions on the liquidity of assets will be inappropriate. Some models

previously developed assume exogenously given transaction costs, the liquidity

differentials are explained by exogenously pre-specified differences in transac-

tion costs.1 In contrast, in this paper we characterize an equilibrium model

in which the heterogeneity of liquidity among bonds is determined endogenously,

and thereby, we focus on understanding how liquidity externalities arise in an

equilibrium framework.

Different from search-based models, our model assumes that a number of

(otherwise identical) bonds are exchanged amongst the market participants: a

set of risk neutral investors, with exogenously determined cash flow constraints

and having in mind their desire and ability to liquidate a proportion of their

bonds in a future date prior to maturity as they may experience liquidity shocks

or face surprise investment opportunities, purchase the bonds by maximizing

their post-investment residual surplus; another set of risk neutral traders, who

are willing to buy the bonds unwound by the former investors, come to the

marketplace randomly; a single risk averse competitive market maker acts as the

whole financial intermediaries by bridging the gaps between buyers and sellers

and requires a premium to cover expected inventory-holding costs when supplying

immediacy.23

1See, for example, Amihud & Mendelson (1986), Huang (2003), Vayanos & Vila (1999) and
Vayanos (1998).

2Economides & Siow (1988) using search-based model show that agents prefer to trade in a
spot market with high rather than low liquidity. Vayanos & Wang (2007) develop a search-based
model in which investors of different horizons can invest in two assets with identical payoffs.
They show that there exist such an equilibrium where all short-term investors search for the
same asset. Weill (2008) show that although the search technology is the same for all assets,
heterogeneous trading costs arise endogenously. Vayanos & Weill (2008) use search-based model
to explain the on-the-run phenomenon.

3Another strand of market microstructure literature (e.g. Grossman (1980), Kyle (1985),
Brennan & Subrahmanyam (1996), and Easley et al. (1996).) suggests that asymmetric infor-
mation creates significant illiquidity costs. Our study focuses on inventory-holding risk faced
by dealers in bond markets for the following reason. Main investors in corporate bond mar-
kets are institutional investors such as pension funds and insurance companies whose long term
obligations can be matched reasonably well to the relatively predictable, long term stream of
coupon interest payments generated by bonds. As a result, most or all of a bond issue is often
absorbed into stable ‘buy-and-hold’ portfolios soon after issue. When pension funds or insur-
ance companies liquidate, they liquidate for cash, rather than short term trades motivated by
asymmetric information.
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By utilizing the concept of stochastic dominance, we associate the inter-arrival

time between offsetting orders with the market maker’s inventory holding costs.

Furthermore, by capitalizing the argument of utility indifference pricing in addi-

tion to some specific assumptions on the asset value, the arrival of orders, and

the market maker’s utility function, we show that the spread charged by the

market maker can be quantified. In particular, the spread is positively correlated

with the fundamental volatility, and negatively correlated with the order arrival

rate. To our knowledge, this is the first time that stochastic dominance appears

in the microstructure literature. Under the risk-neutral pricing framework, the

initial bond price depends the expected value of future liquidity, as the marginal

investors are willing to pay a premium on bonds that help them in the event of

early liquidation.

In our equilibrium model the identity of which bonds are liquid, and the size

of their spreads and liquidity discounts, are determined endogenously. The equi-

librium mostly depends on the initial choices of the liquidity constrained investors

on the offering date, who optimally choose their trading strategies by taking into

account the actions by themselves and others.1 In particular, under the liquidity

constraints, we show that bonds can differ in liquidity despite having identical

cash flows, riskiness, issue amounts and maturities. The trading concentration

is consistent with Economides & Siow (1988), where investors have strong pref-

erence for concentrating trading on a limited number of bonds. The liquidity

externality is also similar to Krishnamurthy (2002), where asset prices are driven

by investors’ preference for liquid assets, and Vayanos & Wang (2007), where the

clientele equilibrium dominates the one where all investors split trading across

assets.2

1It is different from Eisfeldt (2004) where the level of liquidity is endogenously determined
as a function of productivity.

2Our result is also similar to some of the results in the microstructure literature regarding
equity markets. Admati & Pfleiderer (1988) developed a model to explain that trading tends
to be concentrated at particular times of the day. Intuitively, if traders have discretion over the
timing of their trades, they all will tend to trade at times when they expect the others to be
trading as well, since that is the time at which liquidity is highest. Pagano (1989) showed that
since each trader assesses the absorptive capacity of the market on the basis of his conjectures
about the behavior of the others, there may exist an equilibrium where trade concentrates on
one of the markets.
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When the quantity of bonds which do trade implies that there are some trad-

able and non-tradable bonds, the identity of the ones which are traded may result

from a ‘Sunspot’ equilibrium where it is optimal for traders to randomly label a

subset of the bonds as the liquid ones and concentrate trading on them.1 This

self-fulfilling prophecy is analogous to the on-the-run phenomenon where expect-

ing lower liquidity will themselves reduce liquidity.

The difference between our paper and the previous studies is that we relate

liquidity demands to liquidity conditions. Our model predicts that liquidity con-

ditions of investors may affect their liquidity demand, and thereby, prices and

spreads. The increase of liquid asset holdings can be the result of forwarding

looking investors shifting their preferences towards liquid assets, ahead of periods

when liquidity is in shortage. Alternatively, the investors with loose liquidity

constraints holding more illiquid bonds can be interpreted as long-term investors,

whereas the agents with tough liquidity constraints holding more liquid bonds

can be interpreted as short-term investors. This clientele effect is consistent with

Vayanos & Vila (1999) where they show that agents with short investment hori-

zon buy the liquid asset and agents with long investment horizon hold the illiquid

asset.

Our study contributes the existing literature in several ways. First, in pre-

vious theoretical studies of asset pricing, ex ante assumptions on asset liquidity

are normally made.2 Our study bridges the gap by characterizing an equilib-

1Market uncertainty can also be driven by extrinsic uncertainty, which includes such vari-
ables as market psychology, self-fulfilling prophecies and ‘animal spirits’ (Keynes (1936)), col-
lectively known as ‘sunspots’. The concept of ‘sunspot’ equilibrium was introduced by Cass
& Shell (1983). Duffy (2005) interpret Sunspot equilibrium as a means of coordinating the
expectations and plans of market participants. For applications of ‘Sunspots’ equilibrium in
finance, see Diamond (1983) and Peck & Shell (2003).

2Acharya & Pedersen (2005) derive an equilibrium model under exogenous stochastic trans-
action costs. Amihud & Mendelson (1986) analyze a model in which investors with different
expected holding periods trade assets with different relative spreads, which are pre-determined.
To jointly explain the equity premium and the low risk-free rate, Aiyagari & Gertler (1991)
introduce two kinds of securities in their model. One type of security is freely exchanged, while
the other type is costly to trade. By assuming that one asset is liquid while the other asset
carries proportional transaction costs, Vayanos & Vila (1999) show that agents buy the liquid
asset for short-term investment and the illiquid asset for long-term investment. In other words,
there is a well-defined clientele for each asset. More recently, Huang (2003) shows that in equi-
librium, by comparing the illiquid bond with the (otherwise identical) liquid bond, the illiquid
bond should generate a higher expected return to compensate its holders.
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rium model in which the heterogeneity of liquidity among bonds is determined

endogenously. Second, our model, which is not search-based, offers an alternative

theory that explains why similar assets exhibits heterogenous levels of liquidity.

Third, by utilizing the concepts of stochastic dominance, utility indifference pric-

ing plus some specific assumptions on the asset value, the arrival of orders, the

market maker’s utility function and agents’ risk neutrality, the equilibrium bond

prices and spreads can be quantified.1 Forth, we show that the identity of which

bonds do trade can be a result of a ‘Sunspot’ equilibrium. Fifth, our model shows

that forward looking investors’ liquidity preference is affected by their liquidity

conditions.

Among microstructure studies on liquidity, Foucault et al. (2005) develop a

dynamic model of a limit order market in which agents are strategic and take

liquidity into account when trading. Their model predicts a negative relationship

between the order arrival rate and the market resiliency. Rosu (2009) models an

order-driven market where strategic traders tradeoff execution prices and waiting

costs. The model predicts that higher trading activity and higher trading com-

petition cause smaller spreads and lower price impact. Our model shares some

features of these models, moreover, complements this strand of microstructure

literature.

The rest of the chapter is structured as follows. Section 2 gives the intro-

duction and discussion of the general model, followed by a specific example. In

Section 3, we characterize the equilibrium. Then, we analyze the quantitative

implications of the equilibrium in Section 4. Section 5 concludes.

1Hodges & Neuberger (1989) were the first to introduce the concept of utility indifference
pricing in the context of option pricing under transaction costs in Black-Scholes model.
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5.2 The General Model

In this section, we introduce the general model, and provide the motivation,

the discussion of the model, and especially the behaviors of different market

participants.

5.2.1 Financial Market

The economy has three dates, 0, 1 and 2. The financial market consists of a

single consumption good, which is used as the numeraire, and N bonds, indexed

by j ∈ N = {1, 2, . . . , N}.1 We assume:

(A) All the bonds issued on date 0 and maturing on date 2 has a face value of

1 dollar.2

(B) The total supply of the bonds is K, with the supply of bond j in terms of

dollar value, denoted kj (that is,
∑N

j=1 kj = K, 0 < kj).

(C) All the bonds share the same level of default risk (i.e. perfectly correlated

defaults).3

One unique feature of our setup is that in contrast to previous literature we

do not impose ex ante assumptions on bond liquidity.4 The heterogenous levels

of liquidity can be determined endogenously by interactions among traders.

5.2.2 Agents

We consider a dealership market where there are three types of market partici-

pants trading the bonds, namely Type 1 trader, Type 2 trader and the market

maker. The following assumptions are made:

1Equivalently, one dollar one consumption good.
2The analysis ignores coupons. It applies with coupons if all bonds pay the same coupon

rate.
3Imperfectly correlated defaults are likely to change our results. However, perfectly corre-

lated defaults are suitable for our purpose, as we try to explain that why otherwise identical
bonds (e.g. bonds issued by a single company) differ in their liquidity.

4See, for example, Amihud & Mendelson (1986), Huang (2003), Vayanos & Vila (1999) and
Vayanos (1998).
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(D) A continuum of risk-neutral traders exist in the economy.1 Depending on

when they trade, the traders fall into two groups, namely Type 1 and Type

2.

(E) There are M Type 1 traders subject to exogenous cash flow constraints,

indexed by i ∈M = {1, 2, . . . ,M}, purchasing bonds on the offering date 0.

In addition, they are facing the risk of reselling a proportion of their asset

holdings on the interim date 1.

(F) Since date 1 Type 2 traders arrive at the market randomly to buy the bonds.

(G) All trades are made through a single centralized risk-averse market maker,

who is characterized as a monopolistic competitor, subject to a zero-profit

condition. No direct exchanges between the traders are permitted.

One interpretation of Assumption (E) is that Type 1 traders are institutional

investors such as pension funds and insurance companies who buy bonds to gen-

erate cash flows, which match their long-term liabilities. Meanwhile, subject

to a limited budget, they must anticipate possibilities and costs of reselling a

proportion of their holdings back to the market at a later point in time. Each

Type 1 trader must make her investment decision on date 0 subject to the risk

of liquidating some of her holdings (only) on date 1.2

Vayanos & Vila (1999) show that agents purchase the liquid asset for short-

term investment and the illiquid asset for long-term investment. Amihud &

Mendelson (1986) also show that there is a clientele effect whereby investors

with longer holding periods select illiquid assets. That is, for a short holding

period, transaction costs are important, and a liquid asset is preferred regardless

of its lower yield; for a long holding period, illiquidity is not a concern, and thus

a cheap and illiquid asset is a better choice. In other words, illiquid long-term

investments are more productive but less flexible than liquid short term ones.

Although in some theoretical studies agents with pre-specified investment hori-

zons hold uniform assets (either short-term liquid or long-term illiquid assets),

1In search-based models, agents are assumed to be risk-averse. We believe that traders are
likely to be less risk averse than the market maker, as they are relatively tolerant to risk.

2When Type 1 traders liquidate, they liquidate for cash. Therefore, we do not consider the
case where Type 1 traders are allowed to buy bonds on date 1.
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in practice investors optimize their asset mix across the spectrum of high-yield

illiquid bonds to low-yield liquid ones. In our model investment horizons are de-

termined implicitly and endogenously in terms of the ratio of liquid holdings to

illiquid holdings, rather than are ex ante assumed.

Type 2 traders in Assumption (F) can be regarded as buyers in the secondary

market who potentially can buy any bond in the market. Their random arrivals

are due to the fact that they are liquidity traders who trade on noise. Included in

this category are large traders, such as some financial institutions, whose trades

reflect the liquidity needs of their clients or who trade for portfolio-balancing

reasons.

The centralized market maker in Assumption (G) represents all the market

makers in the over-the-counter (OTC) markets such as trading desks in major

investment banks and hedge funds.1 In the OTC markets, investors normally

negotiate trades with the market makers, rather than directly search for counter-

parties themselves. In the absence of information asymmetry, the market maker

is willing to take orders from traders, therefore acting as a liquidity provider who

accommodates temporary order imbalances.2 Obviously, the market maker needs

to manage the inventory-holding risk of his position, as at the time of trade he

does not know when an offsetting transaction will occur, and during the course of

waiting for the offsetting order the value of his inventory fluctuates. If the market

does not provide a viable hedging vehicle or the hedging cost exceeds the revenue

of market making, the risk-averse market maker must be compensated for bearing

the inventory-holding risk. This compensation is usually generated in the form of

a bid-ask spread, which is charged by the market maker for each trade. In other

words, the existence of the market maker merely reduces the market illiquidity

(or the search cost in Vayanos & Wang (2007) and Weill (2008)) and express it

in the form of a bid-ask spread.

1These market makers may not be present in the market all the time, like the traditional
specialists in equity markets who constantly maintain a list of quotations for bid and ask orders.
They might be simply the kind of investors who provide liquidity whenever other investors want
to buy or sell.

2We believe that the information in bond markets is relatively symmetric as interest rates
and credit default swap spreads are publicly observable.
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The zero profit condition in Assumption (G) implies that the bid-ask spread

required by the market maker compensates exactly the expected marginal cost

of supplying liquidity, which in our case is the inventory-holding costs.1 The

prefect competition drives down the spread until it is equal to the marginal cost,

as market makers who quote a spread which is higher than the marginal cost

will not receive any order at all. In the perfectly competitive market, market

makers need to rebalance their inventories as quickly as possible so as to provide

the competitive spreads. Therefore, the market makers’ business depends on how

quickly they can rebalance their inventories.

5.2.3 The Market Makers’ Behavior

In this section we characterize the behavior of the market maker, and then show

how the spread charged the market maker is quantified.

We take as given an arbitrage-free setting where each bond has an efficient

price P , which contains all relevant information including publicly available in-

formation as well as the information about the future liquidity of the asset.2 We

assume that

(H) The discounted price process P (s) (over a short time interval) is a martingale

under the ‘risk neutral’ measure Q with respect to some suitable numeraire

(e.g. bank account), where s is the calender time. In particular, denote the

bond price on the offering date (on date 0) P 0.

(I) A non-negative stochastic process t̃(s), which is assumed to be independent

of P (s), represents the random waiting time that the market maker at time

s must wait to see the arrival of the offsetting order.

Under the above two assumptions, over the random waiting time t̃ which is

considered to be much shorter than the life of the bond, the discounted price

process P (s) is a martingale. Apparently, the shorter the waiting time is, the

1Another source of the costs of providing market making services is the order processing
costs: order taking, execution, computer, informational service and labor costs. For simplicity
the fixed costs are ignored here.

2Others also refer to P as the true price or fair price.
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more quickly the market makers can rebalance their inventories, and thus the

smaller risks she is facing.

Suppose at time s the market maker acquires one unit of the asset from a

customer. The change of her inventory value or her wealth w̃(s) until she unloads

the inventory to a new customer is given by

w̃(s) = P (s+ t̃(s))− P (s), (5.1)

where s+ t̃(s) is the random time at which the position gets unwound.

In Equation (5.1) the change of the inventory value can be positive or negative

as the price fluctuates over time. Moreover, it is affected by the random waiting

time, because the longer she waits, the more likely the inventory value will go

adversely against her. Therefore, apart from the underlying price volatility, the

inventory-holding risk borne by the market maker arises from the random waiting

time of rebalancing her inventory.

Now we will show that the market maker prefers to make the market for bonds

with shorter expected waiting time. Stochastic dominance provides a rather gen-

eral framework in which to model the market maker’s decisions. It will also be

sufficient for our purposes.

Given alternative distributions of the random waiting times t̃A and t̃B where

t̃A is first-order stochastically dominated by t̃B (i.e., t̃A provides shorter ex-

pected waiting time than t̃B does), t̃A will be preferred by a risk-averse mar-

ket maker as generating smaller inventory-holding risks through fewer mean-

preserving spreads.

This is formalized in Lemma 1:

Lemma 1. t̃B first-order stochastically dominates t̃A⇒ w̃A is second-order stochas-

tically dominant over w̃B.

Proof. t̃A has the distribution function GA and t̃B the distribution function GB,

as shown in Figure 5.1 graphically. Denote f(w) and F (w) the density and distri-

bution functions of the market maker’s inventory value changes. The value dis-
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tribution is generally determined by the random variable t̃. More precisely, there

exists a non-negative real-valued function h(w|t) such that the density function

of wi, fi(w), is defined with respect to Gi(t) as

fi(w) =

∫
h(w|t)dGi(t), i = A,B. (5.2)

For all t in (5.2), there exists a mean-preserving spreads ε corresponding to the

shifting time from v to u = G−1
B (GA(v)) (as shown by the dashed arrow sign in

Figure 5.1) such that w̃B
d
= w̃A + ε.

Therefore, by the Rothschild and Stiglitz Theorem, w̃A is second-order stochas-

tically dominant over w̃B.

As shown by Figure 5.1, changing the distribution from GA to GB means that

w̃B will have more weight in its tails than w̃A. Alternatively stated, shortening the

expected waiting time by shifting some probability mass of the distribution G(t)

to the left implies increasing the expected utility of the risk-averse market maker.

All risk-averse agents prefer w̃A to w̃B, and thus would like to make the markets

for bonds with shorter expected waiting time. The market maker’s inventory

holding cost, in turn, decreases in the expected waiting time, holding the price

volatility constant. This is consistent with the observations in the corporate bond

market that when taking up a long position from a trader who wants to sell an

issue at a certain price, a market maker would be more than happy to offer a

better price to the seller if she were sure that she could find a potential buyer to

whom she could quickly unload the position.

Under Second Order Stochastic Dominance in Lemma 1, the market maker

who is risk-averse can be characterized by a monotonically increasing and concave

utility function U . Let S denote the market maker’s reservation price (spread) of

buying or selling one unit of the asset. Now we assume that

(J) The spread S is determined in such a way that the market maker’s expected

utility remains unchanged after each transaction.
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Figure 5.1: Distributions of arrival time t̃.

The distribution of the random arrival time t̃ is characterized by the distribution
function G(t). t̃A has the distribution function GA and t̃B the distribution
function GB
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That is, the expected utility of the market maker is kept constant throughout

transactions. Hereafter, we give the precise definition of S under the utility

indifference argument. Let w0 be the initial wealth of the market maker before a

purchase or a sell, and w̃ be the change of his wealth during the course of waiting

to unwind the position (i.e. over the random waiting time t̃ ).

Definition 4. The reservation price (spread) S, for the purchase or the sale of

one unit of the bond by the market maker, is defined as the solution of the equation

E[U(w0)] = E[U(w0 ± w̃ + S)], (5.3)

where ± depends on whether the transaction is a purchase or a sell.

The reservation price S is essentially the spread at which the market maker is

indifferent (in the sense that his expected utility under competition is unchanged)

between doing nothing and receiving S now to have the position in his inventory.

Alternatively stated, S can be interpreted as the minimum amount that the mar-

ket maker wishes to receive to buy or sell one unit of the bond. Under Assumption

(G), the zero profit condition forces the market maker to post the spread S which

is exactly equal to the inventory holding cost in absence of information issues.

5.2.4 Brownian Motion and Poisson Arrivals

Now we will give an example of our general model, specified by a Brownian

Motion for asset prices and a homogeneous Poisson process for order arrivals.

Moreover, with some specific assumptions including the assumption about the

market maker’s utility function, the spread S can be quantified. We assume that

(K) The efficient price P of a bond under the ‘risk neutral’ measure moves as

an arithmetic Brownian Motion. That is, dP (s) = σ(s)dB(s), where B(s)

is a standard Brownian Motion. For expositional ease, σ(s) is assumed to

be time-invariant.
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(L) Except on the offering date 0, traders come to the market to buy or sell

one unit of the assets at a time. The arrivals of orders on a bond are

characterized by an independent homogeneous Poisson process, with the

arrival rate µ. Then, the random waiting time t̃ follows an exponential

distribution with the expected waiting time 1/µ. The trading intensity

of each Type 1 trader is exogenously given and characterized by another

Poisson hazard rate, denoted by λ.

(M) The mean arrival rates from both sides (i.e. buying and selling) are approx-

imately equal so that the market is clear on average.1

Trading is performed via a monopolistic competitive market maker who stands

ready to trade. The market maker bridges the time gaps between the arrivals of

buyers and sellers to the market, and is compensated by charging the spread,

which is competitively set. Assumption (M) implies that the market maker is

seeking out the market spread that equilibrates buying and selling pressures.

Furthermore, we assume

(N) The risk-averse market maker has a negative exponential utility function,

i.e. U(w) = −e−γw, where γ is the absolute risk aversion of the market

maker and w is her wealth.

The negative exponential utility function combined with the above assump-

tions on asset prices and order arrivals enable us to calculate the spread analyti-

cally (as a function of the fundamental volatility and the order arrival rate).2

Proposition 1. The reservation price (spread) S for buying and selling one unit

of a bond is equal to γσ2

2µ
, where γ is the absolute risk aversion of the market

maker, σ is the fundamental volatility, and µ is the arrival rate of orders on the

bond.

1From the perspective of the market maker, trading commences from the interim date 1.
2Roger (1999) also derives the bid-ask spread in the utility indifference manner. However,

his derivation does not involve the order arrival rate or waiting time.
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Proof. By the definition of the reservation price S, Equation (5.3) can be written

as:

−e−γw0 = E[−e−γ(w0±w̃+S)|t], (5.4)

where w0 is the market maker’s initial wealth, t is the waiting time until the

offsetting order, and w̃ is the change of the market maker’s wealth over the

waiting time t. Rearranging the terms in Equation (5.4) yield:

eγS = E[e±γw̃|t], (5.5)

Since under Assumption (K) and (N), w̃|t ∼ N(0, σ2t) and U(w) = −e−γw, we

have:

E[U(w̃)|t] = −eγ2σ2t/2, (5.6)

where ·|t means being conditional on t and E[·|t] is the conditional expectation.

Subsequently,

eγS = eγ
2σ2t/2. (5.7)

Under Assumption (L) the expected waiting time is 1
µ
, thus the spread S is

obtained as:

S =
γσ2

2µ
. (5.8)

Hence, the spread increases while the price risk σ2 increases, and decreases

while the order arrival rate µ increases. As the market becomes more volatile,

the spread widens; as the orders arrive more frequently, the spread narrows. This

result is consistent with Stoll (1978a) and Bollen et al. (2004). Stoll (1978a) shows

that the relative bid-ask spread includes an inventory-holding-costs term which

equals the product of the return volatility and the expected time the market maker
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expects the position to be open. Bollen et al. (2004) show that the inventory

holding costs are positively related to the expected value of the square root of the

time between offsetting trades. If the market is perfectly liquid, that is µ→∞,

the spread vanishes (i.e. there is no transaction costs).

The expected waiting time is supposed to be far shorter than the maturity

of a bond. Intuitively, the market maker will not make a market for a bond, if

the waiting time of the offsetting order on this bond is too long. Alternatively

speaking, there is a probability that the market maker gets left with an inventory

of bonds on date 2. However, this probability is bound to be very small as the

expected waiting time of an offsetting order is much shorter than the maturity of

the bond. Moreover, the risk of getting left with an inventory is compensated by

charging bid-ask spreads. Therefore, we have

(O) A bond with the expected waiting time of orders 1/µ > C is considered to

be illiquid, where C is the cutoff value which is a constant. That is, if a

bond with the expected waiting time that is greater than C, the market

maker will choose not to make a market for this bond. The spread for an

illiquid bond is assumed to be 1 (that is S(µ) = 1, 1/µ > C, as in Figure

5.2.) .

In the next section we consider the decisions made by Type 1 traders. As we

will see later, the equilibrium is mostly determined by their actions.

5.2.5 The Investors’ Decisions

Recall that, on date 0 there are M Type 1 traders who make investment choices

out of a pool of N bonds. The total supply of the N bonds is K, with the supply

of Bond j ∈ N = {1, 2, . . . , N} in terms of dollar value, denoted kj (that is,∑N
j=1 kj = K, 0 < kj).

Under Assumption (E) and (L), each Type 1 trader with an exogenously given

trading intensity is subject to the risk of liquidating some of her assets on date

1. More precisely, we assume that
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Figure 5.2: Spread

This figure shows that the spread is a function of the arrival rate:

S(µ) =

{
γσ2

2µ ,
1
µ < C,

1, 1
µ ≥ C,

,

where µ is the order arrival rate, γ is the market maker’s absolute risk aversion
coefficient, σ is the volatility of the price dynamics of the bond, and C is the
cutoff value which is a constant.
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(P) Each trader i ∈ M = {1, 2, . . . ,M} with a trading intensity λi on date 0

purchases bonds with a total face value of Xi + Yi, where Xi is the total

tradable shares that she prepares for possible early liquidation on date 1

and Yi represents the total non-tradable shares that she will hold until

maturity (date 2). Let Xi = (Xi1, Xi2, ..., XiM) and Yi = (Yi1, Yi2, ..., YiM),

with Xi =
∑

j∈NXij and Yi =
∑

j∈N Yij, where Xij is the tradable shares of

bond j held by trader i, and Yij is the non-tradable shares of bond j held

by trader i.

Assumption (P) also implies that each trader i is essentially allocating her trading

intensity λi across the bonds.

Definition 5. An allocation of the trading intensity of trader i is defined as

hi = (hi1, hi2, ..., hiN), where hij the the normalized trading intensity of trader i

for bond j, with
∑N

j=1 hij = 1 and hij ∈ [0, 1].

Therefore, the arrival rate of orders on bond j ∈ N can be expressed as

µj =
∑
i∈M

µij =
∑
i∈M

λihij, (5.9)

where µij is the arrival rate of orders on bond j from trader i. Moreover, we

assume that

(Q) The tradable shares Xij of bond j held by trader i is proportional to her

trading allocation. That is, Xij = hijXi.

Assumption (Q) basically means that, the more likely the trader will trade a

bond, the more tradable shares of the bond she holds.

Now we proceed to derive the initial bond price in the presence of illiquidity.

The introduction of transaction costs could change equilibrium prices. However,

it should be possible to identify equilibrium prices in a frictional cost economy as

being a function of the prices that prevail in a corresponding frictionless economy

plus some extra factor, and obviously the factor should depend upon the future

illiquidity of assets. Thus, price discounts or the extra yields are very likely to
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be associated with the future illiquidity of assets. In addition, equilibrium prices

may not be uniquely identifiable, but must preclude arbitrage opportunities.

In the presence of illiquidity or transaction costs, as previous stated, upon

purchasing a security a rational investor needs to take into account both the

likelihood and the potential costs of reselling the security back to the market at

a later point in time.

Let L ⊆ N and I ⊆ N represent the sets of liquid and illiquid bonds, respec-

tively. L
⋃

I = N and L
⋂

I = Φ, where Φ is the empty set. That is, a bond

must be either a liquid bond or an illiquid one, but not both at the same time.

On date 0, the price of a liquid bond P 0
j , j ∈ L is determined as

P 0(µj) = 1− [1− e−µj ] · S(µj),
1

µj
< C, (5.10)

where µj = 1
M
µj is the average arrival rate, and S(µj) is the spread, competitively

set by the market maker, which depends exclusively on µj.
1

The price of a liquid bond in Equation 5.10 expressed as a discount of the

face value is derived using a risk-neutral pricing framework similar to the one

by Duffie & Singleton (1999) where the price of a defaultable bond is associated

with the default intensity as well as a factor which is related to liquidity effects

or carrying cost. Amihud & Mendelson (1986) and Vayanos & Vila (1999) show

that in order to induce the marginal investor to buy the asset, the price has to

fall by the present value of the transaction costs that he will incur.2 Therefore,

the discounted value which is the second term in Equation 5.10 is equal to the

probability of early liquidation (the term in the squared brackets) times the spread

charged by the market maker. The probability of early liquidation is a function of

the average arrival rate which could be interpreted as the trading intensity of the

marginal investors. The bond price P 0
j is then equal to the marginal investors’

willingness to pay. In other words, risk-neutral investors are willing to pay a

1For expositional ease, we ignore the time value of interest or the risk-free interest rate as
it is essentially the same across the bonds.

2In contrast, Vayanos (1998) shows that the PV term overstates the effect of transaction
costs on the risky stock price.
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premium on assets that help them when liquidity is needed.1

Since illiquid bonds are generally inferior to liquid ones, they should have

lower prices than those of liquid ones. Thus, we assume that:

(R) The price of the illiquid bond P 0
j , j ∈ I is determined as

P 0(µj) = 1− γσ2

2M
,

1

µj
≥ C. (5.11)

The price of an illiquid bond in Equation 5.11 can be obtained by taking the

limit as µ approaches to zero in Equation 5.10. Therefore, bond prices across the

whole spectrum of liquid and illiquid bonds are expressed in terms of arrival rates

as shown in Figure 5.3.

With a subset of information, a reduced-form approach of modelling decision

making by pension funds or insurance companies is adopted. For Type 1 traders’

decisions on date 0, we assume that

(S) Each trader i ∈ M, with an endowment ei and a trading intensity λi solves

the following problem:

max
Xi,Yi,hi

ei −
∑
j∈N

P 0
j (hijXi + Yij), (5.12)

subject to:

1. total investment constraint:

Xi + Yi ≥ Fi, (5.13)

where Fi is the total face value required at maturity T .

2. pre-mature liquidation constraint:

∑
j∈N

[1− S(µj)]hijXi ≥ Vi, (5.14)

1If we assume that traders are homogenous, in equilibrium every trader is essentially the
marginal investor.
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Figure 5.3: Bond price

This figure shows that the price is a function of the arrival rate:

P (µ) =

{
1− [1− e−

µ
M ]S(µ), 1

µ < C,

1− γσ2

2M , 1
µ ≥ C,

,

where µ is the order arrival rate, γ is the market maker’s absolute risk aversion
coefficient, σ is the volatility of the dynamics of the bond, and M is the number
of Type 1 traders.
.
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where Vi is the value required in the event of early liquidation,

3. market clearing constraints:

∑
i∈M

hijXi + Yij = kj, j ∈ N, (5.15)

4. and nonnegativity constraints:

Xi ≥ 0, (5.16)

Yij ≥ 0, (5.17)

∑
j∈N

hij = 1, 0 ≤ hij ≤ 1. (5.18)

The second term
∑

j∈L P
0
j (hijXi + Yij) in the objective function (Equation

5.12) is the total investment, and thus, the objective function represents the post-

investment residual surplus, that is, the cash left over for trader i after making

her investment. In other words, the goal of each trader is to choose her portfolio

holding as well as her trading intensity allocation such that her residual surplus

is maximized.

The interpretation of the total investment constraint could be that pension

funds or insurance companies have long term liabilities which are hedged by

buying bonds. As being subject to the risk of pre-mature selling, a minimum

value in the event of early liquidation is required by each investor. It is the

minimum value that sellers expect to receive upon liquidation. This is similar

to the concept of the recovery value in the event of default in the credit risk

literature (e.g. Duffie & Singleton (1999)).

There are links between and restrictions on the values of the endowment ei,

the total face value Fi and the minimum value required upon liquidation Vi. ei

is greater than or equal to the (date 0) present value of Fi such that the investor

gets left with a non-negative surplus on the offering date. The sum of Fi is equal
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to the total supply (i.e. all the bonds are sold out.). Vi obviously can not be

greater than the (date 1) present value of Fi as the investor can only liquidate

what he holds.

Writing

f(Xi,Yi,hi) = ei −
N∑
j=1

P 0
j (hijXi + Yij), (5.19)

g1(Xi, Yi) = Xi + Yi, (5.20)

g2(Xi,hi) =
N∑
j=1

[1− S(µj)]hijXi, (5.21)

g3(Xi, Yij, hij) =
M∑
i=1

(hijXi + Yij), j = 1, . . . , N (5.22)

g4(hi) =
N∑
j=1

hij, (5.23)

g5(hij) = 1− hij, j = 1, . . . , N, (5.24)

where

P 0(µj) =

{
1− [1− e−

µj
M ]S(µj),

1
µj
< C,

1− γσ2

2M
, 1

µj
≥ C,

(5.25)

S(µj) =

{
γσ2

2µj
, 1

µj
< C,

1, 1
µj
≥ C,

(5.26)

and µj =
∑M

i=1 λihij, one can reformulate the same problem to make it more

suitable for exposition and calculation:

maximize f(Xi,Yi,hi), ∀ i ∈M, (5.27)
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subject to g1(Xi, Yi) ≥ Fi,
g2(Xi,hi) ≥ Vi,
g3(Xi, Yij, hij) = kj, j = 1, . . . , N,
g4(hi) = 1,
g5(hij) ≥ 0, j = 1, . . . , N,
Xi ≥ 0,
Yij ≥ 0, j = 1, . . . , N,
hij ≥ 0, j = 1, . . . , N.

(5.28)

5.2.6 Time Line

For the economy defined above, we now summarize the sequence of events, agents’

actions, and the corresponding equilibria.

On date 0, each Type 1 trader given her endowment ei and trading intensity

λi maximizes her post-investment residual surplus by strategically choosing her

portfolio holding {Xi,Yi} and her trading intensity allocation {hi}, subject to

some external constraints (i.e. the total investment constraint Fi, pre-mature

liquidation constraint Vi, and market clearing constraints kj). The initial equilib-

rium is reached at the optimal portfolio holdings {X∗i ,Y∗i }, the optimal trading

intensity allocations {h∗i }, and the equilibrium bond prices P 0(µ∗j).

On date 1, Type 1 traders subject to early liquidation sell some of their

assets back to the marketplace. Since date 1 (but before date 2), Type 2 traders

randomly come to the market to buy bonds. The market maker stands ready to

bridge the gap between the sellers and the buyers by seeking the spreads which

equilibrate the market. Under Assumption (M), the subsequent equilibria are

reached at the market spreads S(µ∗j).
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Figure 5.4: Time Line

This figure illustrates the time line of the economy. Above the time line are the
exogenous variables and below the time line are the appearance of the agents
and endogenous variables.
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5.3 Characterization of Equilibrium

In this section, we describe how to obtain a characterization of the initial equilib-

rium. The objective of each investor i is to maximize the residual surplus given

in (5.27) by choosing her portfolio holding {Xi,Yi}, and her trading pattern {hi}
and subject to some external constraints.

Now we can define the initial equilibrium:

Definition 6. An equilibrium (on date 0) consists of a collection of investors’

portfolio holdings {{X∗i ,Yi
∗}i∈M}, trading patterns {{hi

∗}i∈M}, and a collection

of bond prices {{P 0(µ∗j)}j∈N}, such that the maximum in (5.27) is reached for all

i and the constraints in (5.28) are also satisfied.

The Lagrangian for the objective function in (5.27) that is to be maximized

is:

L(Xi,Yi,hi) = f(Xi,Yi,hi) + ν(g1(Xi, Yi)− Fi) + ω(g2(Xi,hi)− Vi) +
N∑
j=1

φjg5(hij)

−
N∑
j=1

ηj(g3(Xi, Yij, hij)− kj)− ξ(g4(hi)− 1)

+ εXi +
N∑
j=1

θjYij +
N∑
j=1

ϕjhij. (5.29)

Based on the above Lagrangian, the first order conditions implies that:

the equalities are

∂L

∂Xi

= 0 (5.30)

∂L

∂Yij
= 0, j = 1, . . . , N, (5.31)

∂L

∂hij
= 0, j = 1, . . . , N, (5.32)
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together with the 3N + 3 complementary slackness conditions

ν(g1(Xi, Yi)− Fi) = 0 (5.33)

ω(g2(Xi,hi)− Vi) = 0 (5.34)

φjg5(hij) = 0, j = 1, . . . , N, (5.35)

εXi = 0 (5.36)

θjYij = 0, j = 1, . . . , N, (5.37)

ϕjhij = 0, j = 1, . . . , N, (5.38)

and the equality constraints

ηj(g3(Xi, Yij, hij)− kj) = 0, j = 1, . . . , N, (5.39)

ξ(g4(hi)− 1) = 0. (5.40)

This gives 6N + 5 equations for 2N + 1 variables Xi, Yij, j = 1, . . . , N , hij,

j = 1, . . . , N , and 4N+4 Lagrange multiplier ν, ω, φj, ε, θj, ϕj, ηj, ξ, j = 1, . . . , N .

These equality conditions go along with 6N + 6 inequalities

ν ≥ 0 ; g1(Xi, Yi) ≥ Fi (5.41)

ω ≥ 0 ; g2(Xi,hi) ≥ Vi (5.42)

φj ≥ 0 ; g5(hij) ≥ 0, j = 1, . . . , N, (5.43)

ε ≥ 0 ; Xi ≥ 0 (5.44)

θj ≥ 0 ; Yij ≥ 0, j = 1, . . . , N, (5.45)

ϕj ≥ 0 ; hij ≥ 0, j = 1, . . . , N. (5.46)

One can use these first-order conditions to characterize the equilibrium. In other

words, one can identify the equilibrium by solving simultaneously the set of non-

linear first-order conditions, equality and inequality constraints for all agents.
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5.4 Quantitative Implications

To study the quantitative implications of our model, we consider the case where

the asset menu available to two homogeneous agents (e.g. with respect to the

constraints), who seek to maximize their residual surplus after the initial invest-

ments on date 0, consists of three bonds (e.g. bond 1, 2, and 3). In addition

to Assumption (A), (B) and (C), we assume that each of the three bonds are in

supply 100 dollars (i.e. k1 = k2 = k3 = $100).

Moreover, we use the following parameter values. We assume that on the

offering date 0 the investors, each with an endowment of 150 dollars (i.e. ei = 150,

i = 1, 2) and a trading intensity of 10 (i.e. λi = 10, i = 1, 2), seek to buy the

bonds to form their investment portfolios. For the total investment constraint,

we assume that each investor is required to realize a total face value of 150 dollars

at the maturity (i.e. Fi = 150, i = 1, 2). For the early liquidation constraint, we

vary the ratio of the minimum value required in the event of early liquidation to

the required total face value from 0 up to near 100 percent (i.e. Vi
Fi
∈ [0, 100%),

i = 1, 2). We will refer to it as the early liquidation ratio and for short the ratio

hereon.

We consider the setup where the competitive market maker has an exponential

utility with the absolute risk aversion coefficient γ = 1. The cutoff value C is

assumed to be equal to 1.1 This implies that the market maker is only willing to

make a market for a bond which they expect to be able to unwind before the bond

matures (i.e. the expected waiting time is less than 1 which is the time interval

between the interim date 1 and the maturity date 2.). For the price dynamics of

the bonds, we assume that the volatility σ is equal to 0.5.

5.4.1 Trading Behavior

We first consider the trading behaviors of the two agents in the equilibrium; one

can imagine this to be the case where each trader needs to allocate her trading

intensity among the three bonds.

1Altering the cutoff value will not change the results qualitatively.
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In Figure 5.5, we present the equilibrium allocations of the normalized trading

intensity of one of the agents. As we can see in Figure 5.5, when the early

liquidation ratio is below 33.10%, trading is concentrated almost on a single

bond whose trading intensity is 18. The trading intensities of both the other two

bonds are equal to 1 which is defined as the cutoff value of a bond being illiquid.

Correspondingly, Figure 5.6 shows that there exists only one tradable bond when

the ratio is below 33.10%.

When the quantity of bonds traded implies that there will be some tradable

and non-tradable bonds (e.g. the case described above), the identity of the ones

which are tradable could be the result of a ‘Sunspot’ equilibrium, where it is

optimal for traders to randomly label a subset of the bonds as the ‘liquid’ ones

and concentrate trading on them. A ‘Sunspot’ equilibrium is characterized as

a randomization over multiple certainty equilibria. In other words, the bonds

become liquid only because traders believe they will be liquid. It need not be

anything fundamental about the condition of those bonds. Anything that causes

them to anticipate a bond to be liquid will lead to concentration of trading in that

bond. A concentration of trading in liquid bonds results in liquidity externalities.

Bringing traders together creates liquidity externalities because the additional

traders arriving in the marketplace reduce trading costs for all traders.

There is extensive evidence that investors benefit from a liquidity externality

when they concentrate their trades in liquid assets. Amihud & Mendelson (1991)

compare the yields on short-term U.S. Treasury notes and bills both of which are

short-term single-payment instruments with the same maturities of 6 months or

less, generating the same cash flows and having identical risk. However, their

liquidity is different. Duffie (1996) mentions that it is common for traders to roll

a proportion of their positions into the successive current issues. Similar to our

argument, the tendency for reduced liquidity over time is to some extent a self-

fulfilling prophecy, since expecting lower liquidity will themselves lower liquidity.

Krishnamurthy (2002) find that variations in the off-the-run/on-the-run bond

spread are driven by aggregate factors related to investors’ preference for liquid

assets, although Goldreich et al. (2005) point out that the spread can also be

related to the expected future liquidity. Recently, Krishnamurthy & Vissing-

Jorgensen (2012) examine the spread between the interest rates customers receive
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on 6-month Federal Deposit Insurance Corporation (FDIC) insured certificates

of deposit (CDs) and 6-month Treasury bills, and find that the spread can only

be affected by liquidity.

Without loss of generality, when there is only one bond that is traded, bond

1 is labeled as the liquid one. Subsequently, when only two bonds are tradable,

bond 1 and 2 are labeled as the liquid ones. While the ratio increases from 33.10%

up to 65.79%, the normalized trading intensity of bond 1 decreases from 0.9 to

0.475, and the normalized trading intensity of bond 2 increases from 0.05 to 0.475.

At the same time the normalized trading intensity of bond 3 remains unchanged

at 0.05. Figure 5.6 shows that the number of tradable bonds becomes two when

the ratio is in between 33.10% and 65.79%.

As the ratio goes beyond 65.79%, the normalized trading intensities for both

bond 1 and 2 decrease from 0.475 to 1/3, whereas the normalized trading intensity

of bond 3 increases from 0.05 to 1/3. That means that, with µ1 = µ2 = µ3 = 20/3,

investors can achieve the highest early liquidation ratio. As shown in Figure 5.6,

all the three bonds are tradable or liquid when the ratio is above 65.79%.

In summary, for low early liquidation ratios, investors have strong preference

for concentrating trading on a small number of bonds. While the ratio increases,

investors start to spread trading over more bonds. Figure 5.6 shows that as the

ratio increases, the number of tradable bonds increases stepwise. Furthermore,

Figure 5.7 indicates that by concentrating trading on a limited number of bonds

investors could gain more surplus, whereas spreading trading over more issues

reduces their residual surplus and achieves higher liquidation ratio. The distance

between the blue solid line and the black dashed line is essentially the extra

surplus that investors gain by concentrating liquidity. The result is partially

consistent with Economides & Siow (1988) who show that liquidity consideration

will limit the number of markets in a competitive economy. Investors may prefer

fewer markets so that liquidity is enhanced in those markets, even though they

will have fewer assets to choose from.
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Figure 5.5: Trading Pattern

This figure provides selected results from solving the equilibrium on date 0.
The economy has two homogeneous agents maximizing their post-investment
residual surplus subject to some external constraints. The blue solid line refers
to the normalized trading intensity of agent i, i = 1, 2, for bond 1, the red
dash-dot line refers to the normalized trading intensity of agent i, i = 1, 2, for
bond 2, and the dotted line refers to the normalized trading intensity of agent
i, i = 1, 2, for bond 3. On the x-axis is the early liquidation ratio.
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Figure 5.6: Number of Bond Trades

This figure provides selected results from solving the equilibrium on date 0.
The economy has two homogeneous agents maximizing their post-investment
residual surplus subject to some external constraints. The blue solid line refers
to the number of tradable bonds. On the x-axis is the early liquidation ratio.
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Figure 5.7: Liquidity Externality

This figure provides selected results from solving the equilibrium on date 0.
The economy has two homogeneous agents maximizing their post-investment
residual surplus subject to some external constraints. The blue solid line refers
to the post-investment residual surplus (i.e. cash saving from investing partly
in cheaper illiquid bonds); the black dashed line refers to the post-investment
residual surplus if agents choose to spread trading equally across bonds. On the
x-axis is the early liquidation ratio.
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5.4.2 Portfolio Holdings

In Figure 5.8, we present the tradable shares held by one of the agents. As the

early liquidation ratio starts to increase, the tradable shares of bond 1 increase

sharply, whereas a very large proportion of the other two bonds remains illiquid.1

When the ratio passes 33.10%, the non-tradable shares of bond 1 decrease to

zero. Meanwhile more tradable shares are being supplied by bond 2. In the end,

investors need to keep all their portfolio holdings tradable in order to fulfill the

early liquidation constraint. For instance, in the top panel of Figure 5.9, when the

ratio is equal to 33.10%, investors are better off by keeping only bond 1 tradable

and locking away the other two bonds. Then, in the middle panel where the ratio

is increased to 65.79%, in order to fulfill a higher early liquidation constraint, all

the shares of bond 1 and 2 need to be tradable. Finally, in the bottom panel

investors need to have all their holdings of bond 1, 2 and 3 tradable so that

they can achieve an even tougher constraint, which means that they anticipate

to unwind all their holdings prior to maturity.

In summary, the aggravate tradable (non-tradable) shares increase (decrease)

as the early liquidation ratio increases. Intuitively, for low early liquidation ratios,

investors have a certain degree of freedom to fill a large part of their investment

portfolios with cheap and illiquid bonds. For high early liquidation ratios, in

order to avoid high transaction costs investors need to prepare themselves with

more liquid bonds. Therefore, our model predicts that economic conditions, or

funding conditions of investors or firms may affect liquidity demands. The equi-

librium results from the behaviors of the forward looking investors who increase

demand for liquid assets ahead of economic downturns. This is partially con-

sistent with Holmstrom & Tirole (2001) show that leverage ratios and capital

adequacy requirements affect the corporate demand for liquid assets.

5.4.3 Bond Prices

In Figure 5.10, we present the equilibrium bond prices on date 0. As we know from

the model, the bond prices are exclusively determined by the trading intensities

1The resulting tradable shares correspond to the equilibrium with equality pre-mature liq-
uidation constraint.
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Figure 5.8: Tradable Shares

This figure provides selected results from solving the equilibrium on date 0.
The economy has two homogeneous agents maximizing their post-investment
residual surplus subject to some external constraints. The blue solid line refers
to the tradable shares of bond 1 held by agent i, i = 1, 2, the red dash-dot line
refers to the tradable shares of bond 2 held by agent i, i = 1, 2, and the dotted
line refers to the tradable shares of bond 2 held by agent i, i = 1, 2. On the
x-axis is pre-mature liquidation requirement which is expressed in terms of the
ratio of the required early liquidation amount to the required total face value.
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Figure 5.9: Examples

This figure provides selected results from solving the equilibrium on date 0.
The economy has two homogeneous agents maximizing their post-investment
residual surplus subject to some external constraints. Colorful bars represent
the portfolio holdings of agent i, i = 1, 2. The top panel shows the portfolio
holdings in the case where the early liquidation ratio is equal to 33.10%, the
middle panel shows the portfolio holdings in the case where the ratio is 65.79%,
and finally the bottom panel shows the portfolio holdings in the case where the
ratio is 98.125%. Bright yellow area represents the tradable shares held by the
agent, and the dark gray area represents the non-tradable shares.
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or the arrival rates of the bonds. When the early liquidation ratio is below

33.10%, the equilibrium price of bond 1 is much higher that those of the other

two bonds. As the ratio increases from 33.10% to 65.79%, the price of bond 2

increases steeply, while the price of bond 1 decreases very slowly. When the ratio

goes beyond 65.79%, the prices of the three bonds finally converge.

The feature, that bond prices increase faster than that they decrease, is the

ultimate reason that investors have strong preference for concentrating trading.

As investors spread trading over more bonds, the surplus they lose from making

more bonds tradable is much higher than the surplus gained by reducing the

prices of the perviously liquid bonds. Therefore, investors have an incentive to

concentrate trading, subject to economic or funding conditions.

In addition, one could imagine that agents with high early liquidation ratios

are short-term investors, and agents with low early liquidation ratios are long-

term investors. Long-term investors prefer high-yield illiquid bonds to low-yield

liquid ones, whereas short-term investors having in mind future transaction costs

would like to have more liquid bonds in their portfolios. This clientele effect is

well-documented in the literature (See Amihud & Mendelson (1986), Vayanos &

Vila (1999), and Vayanos & Wang (2007)).
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Figure 5.10: Equilibrium Bond Price

This figure provides selected results from solving the equilibrium on date 0.
The economy has two homogeneous agents maximizing their post-investment
residual surplus subject to some external constraints. The blue solid line refers
to the equilibrium price of bond 1, the red dash-dot line refers to the equilibrium
price of bond 2, and the dotted line refers to the equilibrium price of bond 3.
On the x-axis is pre-mature liquidation requirement which is expressed in terms
of the ratio of the required early liquidation amount to the required total face
value.
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5.5 Summary and Conclusion

5.5 Summary and Conclusion

Theoretical studies normally impose ex ante assumptions on asset liquidity. Our

study takes a step forward in bridging such a gap by developing an equilibrium

model in which trading concentration is created endogenously.

We show that (otherwise identical) bonds may differ in liquidity. Investors

have strong preference for trading concentration, subject to liquidity constraints.

We also show that the identity of which bonds do trade could be a result of

a ‘Sunspot’ equilibrium. Changing liquidity constraints can lead to different

equilibrium configurations where trading is spread over bonds. By capitalizing

the concepts of stochastic dominance and utility indifference price, and some

specific assumptions including the assumptions on the asset value and the order

arrival rate, the equilibrium prices and bid-ask spreads can be quantified.
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Chapter 6

Further Research

There are potentially a few directions towards which we can further our current

studies. We will briefly discuss them in this section.

6.1 Higher Frequency and More Bonds

In our current study we analyze the corporate bond liquidity at a daily frequency,

it would be interesting to look at how liquidity and liquidity premium behave at

a higher frequency level, for instance, at a trade-by-trade frequency.

Moreover, one of the main limits of our extended Roll model is that the

variance of the nonpreservable efficient price is time-invariant. In the literature of

estimating realized variance, Bandi & Russell (2006) use sample moments of high

frequency returns to identify both the time-varying variance of the unobservable

efficient returns and the variance of the microstructure noise which in our model is

referred as the half spread. Hansen & Lunde (2006) study the implications of the

market microstructure noise in high-frequency data for the realized variance under

a general specification for the noise. Bandi & Russell (2008) derive a MSE optimal

high-frequency sampling theory to reduce the microstructure noise-induced bias.

Although the focus of these papers is on the realized variance, combining the time-

varying component and high frequency data with a more realistic microstructure

component (e.g. discreteness, different type of trades, and correlation between
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6.2 Heterogenous agents

the underlying price process and the microstructure noise) will be producing a

cleaner estimation of the bid-ask spread.

Our empirical study only focuses on bonds issued by a specific company.

Blanco et al. (2005) use daily mid-market quotes of CDS and daily interpolated

bond yields on 33 reference entities to study the empirical relation between CDSs

and credit spreads. The sample used by Longstaff et al. (2005) consists of CDS

premia for 5-year contracts and corporate bond prices for 68 firms (Aaa through

BB). Bao et al. (2011) estimate their illiquidity measure by using either trade-by-

trade prices or end of the day prices of 1032 bonds (Aaa through C). Although

the availability and accuracy of high frequency transaction data of both CDSs

and corporate bonds significantly reduce the potential dataset, it is still possible

to apply our methodology to a larger sample set by including bonds with different

ratings or bonds issued by firms in different countries or industries. With a larger

set of data, we will be able to examine liquidity both at the market level and

at the individual bond level. We can analyse liquidity variations across rating

categories and sectors.

6.2 Heterogenous agents

In our third study, we analyze bond liquidity in an equilibrium economy with

multiple agents who are homogeneous (i.e. with respect to liquidity constraints).

Other studies also consider agents who are heterogeneous with respect to en-

dowments or preference. These include Bhamra & Uppal (2010) and Buss et al.

(2011) where agents have time-additive preferences or a recursive utility. In our

risk neutral approach, to allow agents with heterogeneous liquidity constraints,

which could lead to the case where agents with different trading allocations, might

be more challenging than the homogeneous case which is already complicated

enough.
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Chapter 7

Conclusions

In this thesis we study liquidity in bond markets from both the empirical and

theoretical point of view. In the following, we recapitulate the key findings and

conclusions of our research.

7.1 Summary of Major Findings

7.1.1 An Extended Model of Estimating Effective Bid-ask

Spread

In this study we present an extended model for the estimation of the effective

bid-ask spread that allows trades to execute either inside or outside the quoted

bid-ask spread. We extend the Roll model by adding an extra parameter λ, the

so-called ‘spread multiplier’, which is constructed to separate spreads of different

magnitudes. In other words, we generalize Roll’s spread estimator (a scalar) to

include a vector of spreads with associated probabilities.

The extended model is estimated by a Bayesian Gibbs approach based on

only transaction data. Since we treat the models with different values of λ as

competitive models, the value of λ is determined via a Bayesian model selection

method by comparing marginal likelihoods evaluated from the Gibbs outputs.

The new model together with the model estimation and selection procedures

offers an alternative way to more accurately estimate the effective bid-ask spread
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7.1 Summary of Major Findings

and the underlying return variance.

7.1.2 Non-default Yields Spreads and Illiquidity of Cor-

porate Bonds

In this study, we use the data from both credit default swap and corporate bond

markets to study the relationships between different liquidity proxies and the non-

default component of corporate bond spreads as well as our illiquidity measure.

Firstly, we separate the non-default component of bond spreads from the

default one by applying a non-parametric reduced-form credit risk model to si-

multaneously price credit default swaps and corporate bonds.

We then apply a Kalman filter extension of the original Roll model to estimate

the unobservable non-default bond residuals as well as our illiquidity measure.

By using the panel data during 2006 - 2010, we examine the relationships

between different liquidity proxies and the non-default component of corporate

bond yield spreads as well as the illiquidity measure via panel regressions. The

empirical results that the illiquidity measure is related to both the bond charac-

teristics and the liquidity proxies based on the transaction-level data, therefore

reflecting the current level of market liquidity. We also find that the non-default

component of the yield spreads has a nonlinear and positive relationship with the

time-to-maturity and a positive relationship with the illiquidity measure as well

as the default risk, therefore reflecting the future expected liquidity.

7.1.3 An Equilibrium Model of Liquidity in Bond Markets

This study provides an alternative theory of liquidity, exclusively based on inven-

tory holding risk, to understand why there exist heterogenous levels of liquidity

among otherwise identical bonds.

We develop an equilibrium model in which the identity of which bonds are

liquid, and how large their spreads and liquidity discounts (or liquidity premium)

are, are determined endogenously. We assume that in the economy a number

of (otherwise identical) bonds are exchanged among the market participants: a

194



7.1 Summary of Major Findings

set of risk neutral investors with exogenously determined cash flow and liquidity

constraints form their investment portfolios by maximizing their post-investment

residual surplus on the offering date; another set of risk neutral traders come

later on to buy these bonds; a risk averse competitive market maker acts as the

whole financial intermediaries by bridging the gaps between buyers and sellers

and charges spreads for bearing the inventory-holding risk.

By utilizing the concepts of stochastic dominance, utility indifference pricing

and the assumptions on the dynamics of bond prices and the order arrival rate,

the equilibrium bond prices and bid-ask spreads can be quantified.

Investors have strong preference for trading concentration, subject to liquidity

constraints. In particular, when the quantity of bonds which do trade implies

that there will be some tradable and non-tradable bonds, the identity of the

ones which do trade could be the result of a ‘Sunspot’ equilibrium. Traders with

tougher liquidity constraints need to spread trading over more bonds and have

more tradable shares in their portfolios. Therefore, asset holdings and trading

patterns are sensitive to liquidity constraints.
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Appendix A

Figures and Tables

Table A.1: Regression of the Illiquidity on Liquidity and Credit Proxies with
Sub-periods.

Coefficients on equations

(1) (2) (3) (4) (5) (6) (7)

Cons 2.22** 2.26** 2.01** 2.01** 1.94** 2.02** 1.92**

[3.40] [3.23] [3.02] [3.05] [3.17] [3.16] [2.76]

Exp(-Maturity) -1.05** -1.02** -0.89** -0.96** -0.94** -0.97**

[-3.48] [-4.35] [-3.41] [-4.33] [-3.40] [-3.85]

Log(Issuance) -0.27** -0.23** -0.23** -0.23** -0.21** -0.21**

[-3.12] [-2.60] [-2.64] [-2.87] [-2.55] [-2.27]

Turnover

Log(Trade Size)

Log(# Trades)

Volatility 0.33** 0.32** 0.33** 0.34** 0.33** 0.33**

Continued on next page
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Coefficients on equations

(1) (2) (3) (4) (5) (6) (7)

[6.52] [6.83] [6.81] [6.99] [6.96] [6.86]

CDS Spread 0.21** 0.12** 0.17** 0.20** 0.15** 0.16**

[6.21] [5.04] [5.97] [6.71] [4.92] [6.30]

Exp(-Maturity) I -3.77**

[-2.93]

Exp(-Maturity) II -1.97**

[-2.05]

Exp(-Maturity) III -1.85**

[-3.75]

Exp(-Maturity) IV -0.99**

[-5.24]

Log(Issuance) I -0.28**

[-3.00]

Log(Issuance) II -0.27**

[-2.91]

Log(Issuance) III -0.24**

[-2.59]

Log(Issuance) IV -0.26**

[-2.93]

Volatility I -0.26**

[-2.78]

Volatility II 0.17**

[3.85]

Volatility III 0.36**

[6.11]

Volatility IV 0.09

[0.82]

Continued on next page
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Coefficients on equations

(1) (2) (3) (4) (5) (6) (7)

CDS Spread I -0.68**

[-2.34]

CDS Spread II 0.10**

[3.31]

CDS Spread III 0.17**

[6.06]

CDS Spread IV 0.11**

[4.05]

Turnover I -2.55

[-0.99]

Turnover II -6.05**

[-3.72]

Turnover III -12.08**

[-2.74]

Turnover IV -6.58*

[-1.83]

Log(Trade Size) I -0.05**

[-5.09]

Log(Trade Size) II -0.04**

[-5.55]

Log(Trade Size) III -0.01

[-0.77]

Log(Trade Size) IV -0.04**

[-3.65]

Log(# Trades) I -0.08**

[-3.79]

Log(# Trades) II -0.05**

Continued on next page
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Coefficients on equations

(1) (2) (3) (4) (5) (6) (7)

[-4.16]

Log(# Trades) III -0.01

[-0.58]

Log(# Trades) IV -0.05**

[-2.04]

Obs 10196 10196 10196 10196 10183 10184 10195

R2 20.36% 21.01% 20.87% 20.85% 21.07% 21.52% 20.68%

199



Table A.2: Regression of the Non-default Yield Spread on Liquidity and Credit
Proxies with Sub-periods.

Coefficients on equations

(1) (2) (3) (4) (5)

Cons 0.52** 1.06** 0.43** 0.84** 0.67**

[2.94] [4.39] [2.46] [4.87] [4.07]

Exp(-Maturity) -2.09** -1.92** -1.94** -2.31**

[-12.17] [-16.93] [-16.66] [-21.84]

Log(Issuance) 0.05** 0.10** 0.08** 0.02

[2.16] [4.51] [3.67] [0.75]

Turnover

Log(Trade Size)

Log(# Trades)

Bid-ask Spread 0.06** 0.06**

[17.83] [18.18]

Coupon

Volatility -0.00 0.00 -0.01* -0.00

[-0.63] [0.91] [-1.69] [-0.91]

CDS Spread 0.17** 0.22**

[20.89] [29.72]

Exp(-Maturity) I -16.74**

[-9.66]

Exp(-Maturity) II -0.84

[-1.34]

Continued on next page
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Coefficients on equations

(1) (2) (3) (4) (5)

Exp(-Maturity) III -0.74**

-3.04

Exp(-Maturity) IV -2.90**

[-24.15]

Log(Issuance) I -0.07**

[-2.01]

Log(Issuance) II 0.01

[0.42]

Log(Issuance) III 0.13**

[4.12]

Log(Issuance) IV -0.03

[-0.82]

Volatility I -0.60**

[-10.84]

Volatility II -0.05**

[-1.98]

Volatility III 0.08**

[14.99]

Volatility IV -0.14**

[-8.28]

CDS Spread I -6.64**

[-24.57]

CDS Spread II -0.29**

[-8.89]

CDS Spread III 0.11**

[13.51]

CDS Spread IV -0.33**

Continued on next page
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Coefficients on equations

(1) (2) (3) (4) (5)

[-20.36]

Illiq I -0.07**

[-3.54]

Illiq II 0.03*

[1.90]

Illiq III 0.13**

[25.23]

Illiq IV -0.07**

[-6.93]

Obs 10196 10214 10214 10196 10196

R2 34.62% 31.60% 24.28% 41.29% 34.44%
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Appendix B

Useful Information

B.1 Stochastic Dominance

Stochastic dominance provides a rather general framework in which to model

the market maker’s decisions. It will also be sufficient for our purposes. Before

applying it we will briefly summarize the key results that we will need.

In comparing two prospects, stochastic dominance measures to what extent ei-

ther has higher probabilities associated with higher payoffs and lower probabilities

associated with lower payoffs. Any rational investor (who is an expected utility

maximizer) would prefer prospect A over prospect B if both have the same possi-

ble payoffs, but A has higher probabilities associated with higher-valued payoffs

and lower probabilities associated with lower-valued payoffs.

First-order stochastic dominance (FSD), originally developed by Quirk &

Saposnik (1962), attempts to order uncertain prospects assuming only that in-

vestors’ utility functions are monotonically increasing with respect to wealth.

Specifically, prospect A first-order stochastically dominates Prospect B, if and

only if there exist some ξ such that XB
d
=XA + ξ where ξ is a non-positive ran-

dom variable1. In other words, investors prefer A to B, regardless of their risk

1 d
= means “is equivalent in distribution to”.
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B.2 Mean-Preserving Spreads

preferences, as long as their utility function is monotonically increasing, i.e., more

wealth is preferred to less.

Second-order stochastic dominance (SSD) assumes, in addition to monotonic

utility functions, weak global risk aversion (i.e., diminishing marginal utility for

wealth). SSD was developed by Hadar & Russell (1969). In terms of distribution

functions FA and FB, prospect A is second-order stochastically dominant over

prospect B if and only if
∫ x
−∞[FB(t)−FA(t)]dt ≥ 0 for all x, with strict inequality

for some x. In other words, risk-averse investors (who are expected utility maxi-

mizers with monotonically increasing and concave utility function) prefer A to B

if and only if the above integral condition holds on their distribution functions.

B.2 Mean-Preserving Spreads

A mean-preserving spread (MPS) is a change from one probability distribution

FA to another probability distribution FB, where FB is formed by spreading out

one or more portions of FA’s probability density function while leaving the mean

unchanged. As such, the concept of mean-preserving spreads provides a stochastic

ordering of equal-mean probability distributions. SSD is closely related to mean-

preserving spread through Rothschild and Stiglitz Theorem.

Prospect A second-order stochastically dominates prospect B, if and only if

there exist some ξ and ε such that XB
d
=XA + ξ + ε, with ξ ≤ 0, and with

E(ε|XA + ξ) = 0 for all values of XA + ξ (ε is a fair game with respect to XA + ξ).

Therefore, by the Rothschild and Stiglitz Theorem (Rothschild (1970)), if A

and B have the same mean (so that the random variable ξ degenerates to the

fixed number 0), then B is second-order stochastically dominated by A if XB

differs from XA by the addition of mean-preserving spreads ε.

B.3 Sum of Poisson Random Variables

Let t̃1 and t̃2 be independent Poisson random variables where t̃i has a Poisson(λi)

distribution for i = 1, 2. Then, t̃1 + t̃2 has a Poisson distribution with λ1 + λ2.
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B.4 Derivatives in the first order conditions

Proof. According to the convolution formula for discrete random variables, t̃ =

t̃1 + t̃2 has probability distribution

P (t̃1 + t̃2 = t) = ft̃(t) =
t∑

x=0

ft̃1(x)ft̃2(t− x). (B.1)

so,

ft̃(t) =
t∑

x=0

λx1
x!
e−λ1

λt−x2

(t− x)!
e−λ2 (B.2)

= e−(λ1+λ2)

t∑
x=0

λx1
x!

λt−x2

(t− x)!
(B.3)

= e−(λ1+λ2) (λ1 + λ2)t

t!
. (B.4)

Let t̃1, t̃2, ..., t̃M be independent Poisson random variables where t̃i has a

Poisson(λi) distribution for i = 1, 2, ...,M . Therefore, t̃1 + t̃2 + ... + t̃M has a

Poisson(λ1 + λ2 + ...+ λM) distribution.

B.4 Derivatives in the first order conditions

S ′j =

(
γσ2

2
∑M

i=1 λihij

)′
= −γσ

2λi
2µ2

j

,
1

µj
< 1, (B.5)

S ′j = 0,
1

µj
≥ 1, (B.6)
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B.4 Derivatives in the first order conditions

P ′j =
(

1− [1− e−
µj
N ]S(µj)

)′
= −

(
1− e−

µj
N

)( γσ2

2
∑M

i=1 λihij

)′
−
(

1− e−
µj
N

)′( γσ2

2
∑M

i=1 λihij

)

=
(

1− e−
µj
N

) γσ2λi
2µ2

j

− λi
N
e−

µj
N
γσ2

2µj

= Sj
λi
µj
− Sj

λi
µj
e−

µj
N − Sj

λi
N
e−

µj
N

= Sjλi

[
1

µj
−
(

1

µj
+

1

N

)
e−

µj
N

]
,

1

µj
< 1, (B.7)

P ′j = 0,
1

µj
≥ 1, (B.8)

∂f(Xi,Yi,hi)

∂Xi

= −
N∑
j=1

hijP
0
j (B.9)

∂f(Xi,Yi,hi)

∂Yij
= −P 0

j , j = 1, . . . , N (B.10)

∂f(Xi,Yi,hi)

∂hij
= −P 0

j Xi − P ′j(hijXi + Yij), j = 1, . . . , N (B.11)

∂g1(Xi,Yi)

∂Xi

= 1 (B.12)

∂g1(Xi,Yi)

∂Yij
= 1, j = 1, . . . , N (B.13)

∂g2(Xi,hi)

∂Xi

=
N∑
j=1

[1− Sj]hij (B.14)
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B.4 Derivatives in the first order conditions

∂g2(Xi,hi)

∂hij
= [1− Sj]Xi − S ′jhijXi, j = 1, . . . , N (B.15)

∂g3(Xi, Yij, hij)

∂Xi

= hij, j = 1, . . . , N (B.16)

∂g3(Xi, Yij, hij)

∂Yij
= 1, j = 1, . . . , N (B.17)

∂g3(Xi, Yij, hij)

∂hij
= Xi, j = 1, . . . , N (B.18)

∂g4(hi)

∂hij
= 1, j = 1, . . . , N (B.19)

∂g5(hij)

∂hij
= −1, j = 1, . . . , N (B.20)

∂L

∂Xi

=
∂f(Xi,Yi,hi)

∂Xi

+ν
∂g1(Xi,Yi)

∂Xi

+ω
∂g2(Xi,hi)

∂Xi

−
N∑
j=1

ηj
∂g3(Xi, Yij, hij)

∂Xi

+ε = 0

(B.21)

∂L

∂Yij
=
∂f(Xi,Yi,hi)

∂Yij
+ν

∂g1(Xi,Yi)

∂Yij
−ηj

∂g3(Xi, Yij, hij)

∂Yij
+θj = 0, j = 1, . . . , N

(B.22)

∂L

∂hij
=
∂f(Xi,Yi,hi)

∂hij
+ω

∂g2(Xi,hi)

∂hij
+φj

∂g5(hij)

∂hij
−ηj

∂g3(Xi, Yij, hij)

∂hij
−ξ ∂g4(hi)

∂hij
+ϕj = 0, j = 1, . . . , N

(B.23)
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