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Neurons and Symbols: A Manifesto

Artur S. d’Avila Garcez

Abstract

We discuss the purpose of neural-symbolic integration including its
principles, mechanisms and applications. We outline a cognitive com-
putational model for neural-symbolic integration, position the model
in the broader context of multi-agent systems, machine learning and
automated reasoning, and list some of the challenges for the area of
neural-symbolic computation to achieve the promise of effective inte-
gration of robust learning and expressive reasoning under uncertainty.

1 Overview

The study of human behaviour is an important part of computer science,
artificial intelligence (AI), neural computation, cognitive science, philoso-
phy, psychology and other areas. Among the most prominent tools in the
modelling of behaviour are computational-logic systems (classical logic, non-
monotonic logic, modal and temporal logic) and connectionist models of cog-
nition (feedforward and recurrent networks, symmetric and deep networks,
self-organising networks).

Recent studies in cognitive science, artificial intelligence and evolution-
ary psychology have produced a number of cognitive models of reasoning,
learning and language that are underpinned by computation [PNL08, Sha07,
Sun09]. In addition, recent efforts in computer science have led to the de-
velopment of cognitive computational systems integrating machine learning
and automated reasoning [dBG02, dLG09, Val00]. Such systems have shown
promise in a range of applications, including computational biology, fault
diagnosis, training and assessment in simulators and software verification
[dBG02]. In neural computing, it is assumed that the mind is an emergent
property of the brain, and that computational cognitive modelling can lead
to valid theories of cognition and offer an understanding of certain cognitive
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processes [Sun09]. It follows that connectionism should be able to offer an
appropriate representational language for AI as well.

In particular, a connectionist computational theory of the mind should
be able to replicate the parallelism and kinds of adaptive learning processes
seen in neural networks, which are generally accepted as responsible for the
necessary robustness and ultimate effectiveness of the system in dealing with
commonsense knowledge. As a result, a purely symbolic approach would not
be sufficient, as argued by Valiant in [Val08].

On the other hand, it is undeniable that logic is a fundamental tool in
the modelling of behaviour. Logic has been viewed generally as the calculus
of computer science. The importance of nonclassical logic cannot be ignored.
Temporal logic, for instance, has had an impact in both academia and indus-
try [Pnu77]. Modal logics have become a lingua franca for the specification
and analysis of knowledge and communication in multi-agent and distributed
systems [FHMV95]. Epistemic logics have found a large number of applica-
tions, notably in game theory and in models of knowledge and interaction in
multi-agent systems. Nonmonotonic reasoning has dominated the research
on practical reasoning in artificial intelligence, and intuitionistic logic is con-
sidered by many as providing an adequate logical foundation for several core
areas of theoretical computer science, including type theory and functional
programming [vD02]. Both artificial intelligence and computer science have
made extensive use of decidable modal logics, including the analysis and
model checking of distributed systems, program verification and specifica-
tion, and hardware model checking. More recently, description logics, which
are similar to Kripke models, have been instrumental in the study of the
semantic web [BCM+03].

From the above, it becomes clear that, if neural networks are to repre-
sent rich models of human reasoning, nonclassical logic should be at the core
of this enterprise. Hence, we seek to provide a coherent, unifying view for
nonclassical logic and connectionism, contributing to the modelling and un-
derstanding of behaviour, and producing better computational tools. To this
end, we study logic and network models together as part of an integrated
model of computation [dLG09].

Our methodology is to transfer principles and mechanisms between non-
classical computation and neural computation. In particular, we consider
how principles of symbolic computation can be implemented by connection-
ist mechanisms. Connectionism provides the hardware upon which different
levels of abstraction can be built according to the needs of the application.
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This methodology, looking at principles, mechanisms and applications, has
proven a fruitful way of progressing the research in the area of neural-symbolic
integration [dLG09, HH07].

In [dLG09], this methodology has led to a connectionist system for non-
classical reasoning that seems to strikes an adequate balance between com-
plexity and expressiveness. In this system — known as a neural-symbolic sys-
tem — neural networks provide the machinery for parallel computation and
robust learning, while logic provides the necessary explanation to the net-
work models, facilitating the necessary interaction with the world and other
systems. In this integrated model, no conflict arises between a continuous
and a discrete component of the system. Instead, a tightly-coupled hybrid
system exists that is continuous by nature (the neural network), but that has
a clear discrete interpretation (its logic) at different levels of abstraction.

In more practical terms, a rational agent is said to perform concept ac-
quisition (generally unsupervised and statistical) and concept manipulation
(generally supervised and symbolic) as part of a permanent cycle of percep-
tion and action. This process has to be permeated by a strong attention
focus [Tay09]. The question of how to reconcile the statistical nature of
learning with the logical nature of reasoning, in an attempt to build such
robust computational models integrating concept acquisition and manipula-
tion, has been identified as a key research challenge and fundamental problem
in computer science [Val03]. We see neural-symbolic integration as a way of
addressing this challenge through the mechanisms of knowledge translation
and knowledge extraction between symbolic logic and networks.

There are also important applications of neural-symbolic systems. The
merging of theory (known as background knowledge in machine learning)
and data learning (i.e. learning from examples) in neural networks has been
shown more effective than purely symbolic or purely connectionist systems,
especially in the case of real-world, noisy, unstructured datasets [TS94]. Spe-
cific application areas include: business process modelling, service-oriented
computing (trust management and fraud prevention in e-commerce), syn-
chronisation and coordination in large multi-agent systems, for instance,
the web or an economic market, multimodal processing and integration, e.g.
video classification based on annotated videos and sensor data.

In multimodal processing, for example, there are several forms of rea-
soning: a scene classification can be achieved by the well-trained network;
the network gives an immediate answer following a number of assumptions.
A change in the scene, however, may require more specific temporal, non-
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monotonic reasoning and learning from data (based, for example, on the
amount of change in the scene). Some assumptions may need to be revised,
information from an image annotation may provide a different context, ab-
duction and similarity reasoning by intersecting network ensembles may be
needed, probability distributions may have to be reasoned about, and so on.
The integrated system will need to respond quickly, revise its answers in the
presence of new information, and control the inevitable accumulation of er-
rors derived from real-world data (robustness). This provides an excellent
opportunity for the application of neural-symbolic systems.

2 Neural-Symbolic Systems

The goals of neural-symbolic computation are to provide a coherent, unify-
ing view for logic and connectionism, contribute to the modelling and under-
standing of behaviour, and produce better computational tools for integrated
machine learning and reasoning. To this end, logic and network models are
studied together as integrated models of computation. Typically, translation
algorithms from a symbolic to a connectionist representation and vice-versa
are employed to provide either (i) a neural implementation of a logic, (ii)
a logical characterisation of a neural system, or (iii) a hybrid learning sys-
tem that brings together features from connectionism and symbolic artificial
intelligence.

A general framework for neural-symbolic systems uses modular deep net-
works1 organised in multiple layers of abstraction [dLG09]. Each layer rep-
resents the knowledge evolution of multiple agents over time. Each agent is
represented by a network encoding commonsense (nonmonotonic) knowledge
and preferences. The networks in different layers can be connected upwards
to represent relational knowledge and downwards to represent specialisations,
following a network-fibring methodology [dGG04].

The fibring methodology offers a principled way of combining networks.
The main idea of network fibring is simple. Fibred networks may be com-

1Growing attention has been given recently to symmetric deep networks where it is
hoped that high level abstract representations will emerge from low level unprocessed
datasets [HOT06]. Most modern neural-symbolic systems use feedforward and recur-
rent networks, but seminal work in the area used symmetric networks [Pin91] and recent
work [dPdGLM10] is starting to address real applications of symmetric neural-symbolic
networks.
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posed of interconnected neurons, as usual, but also of other networks, forming
a recursive structure. A fibring function defines how this network architecture
behaves; it defines how the networks should relate to each other. Typically,
the fibring function will allow the activation of neurons in one network (A)
to influence the change of weights in another network (B). Intuitively, this
may be seen as training network B at the same time that network A is run-
ning. Albeit being a combination of simple and standard neural networks,
fibred networks can approximate any polynomial function in an unbounded
domain, thus being more expressive than standard feedforward networks. As
an example, network A could have been trained with a robot’s visual sys-
tem, while network B could, for example, have been trained with its planning
system; fibring can perform the composition of the two systems.

Fibring is a good example of how principles from symbolic computation,
in this case, recursion, can be used by connectionism to advance the research
in this area. Below, we discuss in more detail the principles, mechanisms and
applications that drive the research in neural-symbolic integration.

Principles. From the beginning of connectionism [MP43]: arguably the
first neural-symbolic system for Boolean logic, most neural-symbolic sys-
tems have focused on representing, computing and learning languages other
than classical propositional logic [BS01, CZ00, dBG02, dLG09, HK94, Sha07].
Much effort has been devoted to representing fragments of classical first-order
logic. In [dLG09], a new approach to knowledge representation and reason-
ing has been proposed, establishing connectionist nonclassical logic, including
connectionist modal, intuitionistic, temporal, nonmonotonic, epistemic and
relational logic. More recently, it has been shown that argumentation frame-
works, abductive reasoning and normative multi-agent systems can also be
represented by the same network framework. This is encouraging to the ex-
tent that a variety of reasoning can be realised by the same, simple network
structure that is specialised in different ways.

A key characteristic of neural-symbolic systems is modularity. Neural-
symbolic networks can be built through the careful engineering of network
ensembles. Modularity is of course important for comprehensibility and
maintenance. Each network in the ensemble can be responsible for a spe-
cific task or logic, with the overall model being potentially very expressive
despite its relatively simple components.

Like deep networks, fibred networks are generally organised in a modular
hierarchy [dGG04]. The lowest-level network takes raw data as input and
produces a model of the dataset. The next-level network would take the first
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network’s output as its input and produce some higher-level representation
of the information in the data. Other levels would increase the level of
abstraction of the model until some high-level representation can be learned.

The idea is that such networks might be trained independently. They
can also combine unsupervised and supervised learning at different levels of
the hierarchy. This parallel model of computation can be very powerful.
It offers the extra expressiveness required by complex applications at low
computational cost, i.e. the cost of computing the fibring functions.

It is worth noting that the nonclassical approach to neuro-symbolism finds
in propositional modal logic the most adequate language for the purposes of
integration. Propositional modal logic seems capable of striking the right
balance between expressiveness and complexity; it is decidable, strictly more
expressive than propositional logic and, in fact, equivalent to the two-variable
fragment of first-order logic. In contrast, the first-order approach to neuro-
symbolism has to deal with the persisting problem of variable manipulation
and binding. Nevertheless, this is an important problem, and new insight
from the area of lifted message passing may be useful in tackling it [KMHA].

Mechanisms. We subscribe to the view that representation precedes
learning. Neural-symbolic networks can represent a range of expressive log-
ics and implement certain important principles of symbolic computation.
However, neural-symbolic computation is not just about representation. The
mechanisms of propagation of activation and other message passing methods,
gradient-descent and other learning algorithms, reasoning about uncertainty,
massive parallelism, fault tolerance, etc. are a crucial part of neural-symbolic
integration. Put simply, neural-symbolic networks are efficient computa-
tional models, not representational tools. It is the mechanisms in place, in
the form of efficient algorithms, that enable the computational feasibility of
neural-symbolic systems.

In the same way, fibred networks are computational models, not just
graphical models or mathematical abstractions like graphs or networks gen-
erally. The neural-symbolic networks can be mapped directly onto hardware.
An implementation in a VLSI chip should be straightforward and cost ef-
fective. The main architectural constraint, which here is brain-inspired, is
that neural-symbolic systems should replicate and specialise simple neuronal
structures to which a single algorithm can be applied efficiently at different
levels of abstraction, with the resulting system being capable of exhibiting
emergent behaviour.

Emergence prompts the need for mechanisms of knowledge extraction.
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The cycle of neural-symbolic integration includes (i) translation of symbolic
(background) knowledge into the network, (ii) learning of additional knowl-
edge from examples (and generalisation), (iii) executing the network, and
(iv) symbolic knowledge extraction. Extraction provides explanation, and
facilitates maintenance and incremental learning.

We refer to the overall connectionist computational model as fibred net-
work ensembles. In this model, a network ensemble A (representing, for ex-
ample, a temporal theory) can be combined with another network ensemble B
(representing, for example, an agent’s epistemic state). Using the same mech-
anisms of fibring, metalevel knowledge in one network can be integrated with
object-level knowledge in another network. For example, one may reason (in
the metalevel) about the actions that are needed to be taken (in the object-
level) to solve inconsistencies in a database. Relational knowledge can also be
represented in the same way. Relations between concepts encoded in distinct
(object-level) networks can be represented and learned through a metalevel
network. For example, if two networks denote concepts P (X, Y ) and Q(Z)
containing variables X, Y and Z, respectively, a metalevel network can be
used to map a representation of P and Q onto a new concept, say R(X, Y, Z),
such that, for example, the relation P (X, Y ) ∧ Q(Z) → R(X, Y, Z) is valid
[dLG09].

Figure 1 illustrates the fibred-network ensembles. The model, in its most
general form, allows a number of network ensembles to be combined at dif-
ferent levels of abstraction through fibring. In the figure, each level is rep-
resented by a network ensemble in a horizontal plane, while network fibring
takes place vertically among networks at different ensembles. Specialisa-
tion occurs downwards when a neuron is fibred onto a network. Relational
knowledge is represented upwards when multiple networks are combined onto
a metalevel network. Knowledge evolution through time occurs at each level.
Alternative outcomes, nonmonotonic and epistemic reasoning for multiple,
interacting agents also occur at each level. Modular learning takes place
inside each network, but is also applicable across multiple networks in the
ensemble. The same brain-inspired structure is replicated throughout the
model so that a single algorithm is applied at each level and across levels.

Applications. Ultimately, it will be through useful or important ap-
plications that the promise of neural-symbolic integration will be realised.
Real applications are a crucial ingredient and have been a permanent fea-
ture of the research on neural-symbolic computation. Theoretically, we are
interested in finding the limits of representation and better machine learning
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Figure 1: Fibred network ensembles

methods which may open up new applications for consideration. In prac-
tice, already at the current state of the research, real applications are pos-
sible in areas like bioinformatics, semantic web, fault diagnosis, robotics,
software systems verification, business process modelling, fraud prevention,
multimodal processing, noisy text analytics, training and assessment in sim-
ulators. In some of these areas, computing can offer real benefits to society
and have a real impact in the economy.

All these different application areas have something in common: a com-
putational system is required that is capable of learning from experience
and reason about what has been learned [BS01, Val03]. For this learning-
reasoning process to be successful, the system must be robust (in the way
advocated by Valiant so that the accumulation of errors resulting from the
intrinsic uncertainty associated with the problem domain can be controlled
[Val03]). One neural-symbolic system that is already providing a contribu-
tion to problems in bioinformatics and fault diagnosis is the Connectionist
Inductive Learning and Logic Programming (CILP) System [dBG02].

Let us consider, as an example, the problem of payment card fraud. Card
fraud is on the increase as a result of the expansion in computing services
and globalisation. The proceeds of fraud are being used increasingly to fund
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organised crime and terrorism. Unchecked, the problem will continue to
grow to a point where it may challenge the competitiveness of the digital
economy model. While fraud is dynamic, fraud management systems have
been mainly static and are failing to identify new trends in fraud patterns.
Neural computing is a major technology being used to detect fraud from
transaction data. However, fraud management systems will need to identify
sudden changes in the patterns of behaviour of card users. The temporal
dynamics of the data can offer valuable information about such new trends.
Current systems are showing around 70% accuracy, while dynamic neuro-
symbolic systems can achieve 75% on average, representing savings of more
than £1.5 million per week in the UK alone.

The method used by the research on neural-symbolic integration to enable
some of the above applications has been (i) to apply translation algorithms
between logic and networks (making use of the associated equivalence proofs),
(ii) to study the systems empirically through case studies (following the prac-
tical motivation from statistical machine learning and neural computation),
and (iii) to focus on the needs of the application (noting that some potentially
interesting applications require just even rudimentary logical representations,
e.g. [BMD09]).

3 Challenges

In multi-agent systems, an agent explores the environment, learns from it,
reasons about its internal state given the input, acts and, in doing so, changes
the environment, explores further, and so on as part of a permanent cycle
[CHT11]. To realise this vision, there are at least four options:

1. symbolic approach: here, reasoning and explanation are reasonably
straightforward (albeit the complexity issues), learning is inadequate (lack
of robustness, brittle representation); notable systems include: expert sys-
tems, inductive logic programming (ILP), classical and certain nonclassical
logical systems such as logic programming with negation-by-failure, analytic
tableaux, satisfiability solvers, etc.

2. connectionist approach: effective learning (parallelism, robustness,
adaptive, continuous domains), but limited reasoning (no recursion, vari-
able unification, weak on explanation); effective on a range of applications,
mainly classification and pattern recognition (despite the explanation draw-
back, difficult system maintenance and poor at incremental learning); no-
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table systems include: feedforward networks and recurrent networks trained
by gradient-descent, symmetric networks and deep belief networks, support
vector machines, self-organising networks, etc.

3. embracing uncertainty: efficient learning with approximate inference
(albeit complexity issues still); limited reasoning in some cases; notable sys-
tems include: Bayesian networks, independent choice logic, probabilistic ILP
and other stochastic versions of the symbolic approach, Markov logic net-
works, probabilistic relational models, dynamic Bayesian networks, proposi-
tional modal logic, fuzzy logic, multi-valued logic, etc.

4. hybrid systems: combines discrete and continuous systems; seeks the
integration of effective learning (in the sense of the connectionist approach)
and reasoning under uncertainty; loosely-coupled systems include: hybrid
symbolic and statistical systems, neuro-fuzzy systems, connectionist expert
systems, etc. (problem: difficult interface); tightly-coupled systems include:
neural-symbolic systems, connectionist modal logic, translations between the
logical, connectionist and embracing-uncertainty options above (takes new
ideas across areas).

As claimed in [BS01], if connectionism is an alternative paradigm to artifi-
cial intelligence, neural networks must be able to compute symbolic reasoning
efficiently and effectively. Moreover, in hybrid learning systems usually the
connectionist component is fault-tolerant, whilst the symbolic component
may be “brittle and rigid”. By integrating connectionist and symbolic sys-
tems, hybrid systems seek to tackle this problem and offer a principled way
of computing and learning various knowledge.

Given the above landscape, it is possible to identify already some conver-
gence: deep belief networks are based on an early symmetric neural-network
model (Boltzmann machines) and related to Bayesian networks. Certain
neuro-symbolic recurrent networks are very similar to dynamic Bayesian net-
works. Connectionist modal logic uses modal logic as a language for reasoning
about uncertainty in a connectionist framework. Markov logic networks com-
bine logical symbols and probability. The objectives seem to be converging;
the mechanisms are varied though. The distinctive feature of neural-symbolic
systems is that a connectionist machine provides the baseline upon which the
system is built, in line with a computational theory of mind, differently from
the Bayesian approach and the Markov-logic-networks approach, and simi-
larly to the connectionist-modal-logic approach and the deep-belief-networks
approach.

There are challenges and limits to integration though. There are, possibly,
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applications that will admit a loosely-coupled solution, but not a tightly-
coupled one. We now turn to some of the challenges. We have seen that
neural-symbolic system are composed of (i) translations from logic to net-
work, (ii) machine learning and reasoning, (iii) translation from network to
logic. A main challenge in (i) is finding the limits of representation, in (ii)
finding representations that are amenable to integrated learning and reason-
ing, and in (iii) producing effective knowledge extraction from very large
networks. Below is a list of research issues related to challenges (i) to (iii).

1. Reconciling first-order logic learning and first-order logic reasoning
2. Embracing semi-supervised and incremental learning
3. Evaluating large-scale gains of massive parallelism
4. Cognitive agent: implementing learn-reason-action cycle
5. Representations for learning: learning the ensemble structure
6. Rule extraction for networks with thousands of neurons
7. Applying fibring in practice: learning the fibring function
8. Proof theory and type theory for neural networks
9. Abductive neuro-symbolism: automating the scientific method
10. Attention focus: modelling emotions vs. utility functions

Finally, in terms of applications, we now discuss a so-called killer app:
neural networks have been very effective at image processing and feature
extraction [JXYY10]. Yet, large-scale symbolic systems have been the norm
for text processing (as they rely on large ontologies, are inefficient to train
from scratch and heavily dependent on data preprocessing). Even if networks
could be trained from scratch to perform as well as, for example, wordnet
[WBFF09], the networks would be very difficult to maintain and validate.
Neural-symbolic systems capable of combining network models for image
processing and legacy symbolic systems for text processing are needed for
multimodal processing. Here the concept of fibring is brought to bear so
that symbolic systems and network models can be integrated loosely at the
functional level. In this process, inconsistencies may arise, and a key issue
is how to resolve inconsistencies. Our approach is to see inconsistency as
a trigger for learning, with new information in either part of the combined
system serving to adjudicate the conflict. The immediate impact of this
application can be considerable in areas like security, defense and the web.
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4 Concluding Remarks

We have discussed the main characteristics and some challenges for neural-
symbolic integration. In a nutshell:

neural-symbolic systems = connectionist machine + logical abstractions.

The need for rich, logic-based knowledge representation formalisms to be
incorporated into learning systems has been argued since Valiant’s seminal
paper [Val84]. Connectionist modal logic (CML) is a case in point. It shows
how the area of neural computation can contribute to the area of logic. CML
offers parallel models of computation to modal logic that, at the same time,
can be integrated with an efficient learning algorithm. Fibring, on the other
hand, is an example of how logic can bring insight into neural computation.
Fibring allows concepts from symbolic computation to help the development
of neural models. Despite its origin in symbol processing, fibring does not
necessarily conflicts with neural network’s ambition of biological motivation,
e.g. fibring functions can be understood as a model of presynaptic weights,
which play an important role in biological neural networks.

Both the symbolic and connectionist paradigms have virtues and defi-
ciencies. Research into the integration of the two has important implications
that can benefit computing and cognitive science. The limits of effective in-
tegration can be pursued through the neural-symbolic method, following the
needs of different applications. The results of principled integration must
be shown advantageous in practice in comparison with purely symbolic or
purely connectionist systems.

The question of how the human mind integrates reasoning and learning is
only starting to be addressed [GW05, SvL08]. We argue that the prospects
are better if we investigate the connectionist processes of the brain together
with the logical processes of symbolic computation, and not as two isolated
paradigms. The framework of fibred network ensembles seems expressive and
tractable to address most current applications. Further development of the
framework includes testing in controlled cognitive tasks.

The challenges for neural-symbolic integration today emerge from the
goal of effective integration, expressive reasoning and robust learning. One
cannot afford to lose learning performance while adding reasoning capabil-
ity to neural models. This is because it is important to maintain the key
idea that neural networks are composed of simple processing units (allowing
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some “clever” neuron to perform complex symbol processing would amount
to cheating). Computationally, there are challenges associated with the more
practical aspects of the application of neural-symbolic systems in areas such
as engineering, robotics, semantic web, etc. These challenges include the
effective computation of logical models, the efficient extraction of compre-
hensible knowledge and, ultimately, striking of the right balance between
tractability and expressiveness.

In summary, by paying attention to the developments on either side of the
division between the symbolic and the sub-symbolic paradigms, we are get-
ting closer to a unifying theory, or at least promoting a faster and principled
development of cognitive and computing sciences and artificial intelligence.
This is the ultimate goal of neural-symbolic integration together with the as-
sociated provision of neural-symbolic systems with expressive reasoning and
robust learning capabilities.
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