
ar
X

iv
:2

20
1.

05
07

3v
1

 [
cs

.C
R

]
 1

3
Ja

n
20

22

Low-latency, Scalable, DeFi with Zef

Mathieu Baudet1, Alberto Sonnino1, Micha l Król2

1Novi, Facebook
2City, Univeristy of London

1 Introduction

Zef [3] was recently proposed to extend the low-latency, Byzantine-Fault Tolerant (BFT) payment
protocol FastPay [1] with anonymous coins. This report explores further extensions of FastPay and
Zef beyond payments. We start by off-chain assets (e.g. NFTs) in Section 2. We introduce the idea
of on-demand BFT consensus instances throught the example of atomic swaps between account
owners in Section 3.

2 Off-chain Assets

In Zef, a coin is defined as a quorum of validator signatures (known as a certificate) that binds a
user account identifier id with a monetary value v. For instance, the transparent coins of Zef are
defined as C = cert[(id, s, v)] for some seed s. To provide unlinkability and privacy, Zef also defines
another type of coin called opaque coins along the same lines but using the Coconut scheme [9].
For privacy reasons, all Zef coins (transparent and opaque) are stored off-chain1 by their owners.

The coins linked to an account id can be spent altogether by the owner of id by issuing an
operation Spend that deactivates id permanently. Compared to FastPay, Zef accounts are addressed
by a unique identifier id that can never be replayed in future accounts. This makes it possible to
effectively remove deactivated accounts and avoid a permanent storage cost every time that coins
are spent. Zef coins can be generalized into assets, where a certificate binds arbitrary data to an
account id:

• Assuming that a distinct data value x needs to be linked to an account id, the asset may
simply defined as A = cert[(id, x)].

• The procedure to consume and create coins in Zef can be generalized to consume input assets
and create new assets according to specific rules of the form

(xout1 , . . . , xoutd) = fexec(P, x
in
1 , . . . , xinℓ)

where fexec is a fixed, deterministic, partial execution function and P is a set of parameters.

1We use the expressions “off-chain” and “on-chain” for the data outside and inside the Zef authorities, although

Zef is not blockchain, strictly speaking.

1

http://arxiv.org/abs/2201.05073v1

• Importantly, the Spend operations used to deactivate the inputs accounts xin1 , . . . , xinℓ must
contain a commitment on P so that any replay of the asset creation request on the same input
assets produces exactly the same output assets. (See the coin creation request in Zef [3])

Off-chain assets based on Zef provide storage-free certified execution at scale for single-owner
data. This new general framework applies in particular to Non-Fungible Tokens (NFTs) with the
following benefits:

• Off-chain storage provides some level of privacy w.r.t other users.

• Any owner-initiated operations such as transferring, combining NFTs, and applying legitimate
modifications are supported at scale.

3 Atomic Swaps

We now describe an extension of Zef [3] meant to support the swap of ownership of two accounts
in an atomic way.

To prevent race-conditions between operations (say, spending and swapping assets), a correct
solution must start by requiring each owner to independently lock their asset into a new instance
of the swap protocol. This creates a difficulty as one owner may lock their asset while the other
fails to do so, or simply changes their mind. Hence, contrary to the operations described in Zef, an
acceptable solution for atomic swap must support two possible outcomes: confirm and abort.

Because authorities must agree on this binary outcome, this raises the interesting question
whether a correct solution for atomic swap in the FastPay model must implement a fully-featured,
one-shot binary consensus protocol. From the FLP theorem [5], we know that a deterministic,
asynchronous solution for a fault-tolerant consensus cannot guarantee both safety and eventual
termination.

In this section we start by describing an implementation of atomic swap where termination
assumes eventual cooperation between the owners of the two accounts. Importantly, this assumption
is only made after both owners have locked their assets. We will discuss an optional refinement
of the protocol at the end in order to enforce eventual termination in the partially-synchronous
model.

Atomic-swap instances. We augment the state of each authority α (Zef [3], Section 3 and 4)
with a new field atomic swaps(α) that maps certain UIDs to the states of ongoing atomic-swap
instances. Although atomic-swap instances are addressed by a UID, they have a distinct type (see
below) and are not subject to account operations of Section 4 of Zef [3]. For clarity, below, we use
swid (rather than id) to denote identifiers in the domain of atomic swaps(α).

New account operations. To create atomic-swap instances and lock assets into an ongoing
instances, we extend the protocol of Section 4 of Zef [3] with two new account operations:

• To lock the content of an account id into an atomic-swap instance swid, we introduce oper-
ations of the form O = LockInto(swid, i, pk) where i ∈ {1, 2} is the role index in the atomic
swap, and pk is a key provided for authentication purposes and to be set on the other account
in case of success. Such operation is sent in a (locking) request R = Lock(id, n,O).

2

• To create a new instance of an atomic swap identified by a fresh identifier swid = id :: n, a
(regular) request R = Execute(id, n,O) may be used with

O = StartConsensusInstance(swid, id1, n1, id2, n2)

meaning that the owners of id1 and id2 (id1 6= id2) wish to atomically exchange their ownership
of id1 and id2. The numbers n1 and n2 are the expected sequence numbers of the lock
certificates of the respective owners for the operation LockInto above.

This new operations are summarized in Algorithm 1. We recall the framework for account
requests in Zef in Algorithm 4.

Overview of the protocol. The successive steps of an atomic swap of ownership between two
accounts id1 and id2 can now be summarized as follows (see also Figure 1):

• The two owners of id1 and id2 coordinate off-chain and decide to swap the ownership between
id1 and id2. After sharing the next sequence numbers n1 and n2 of their respective accounts
(1), they decide to ask a broker to create a new UID for an atomic swap instance (2). (This
role may also be assumed by one of the owners.)

• The broker broadcasts an authenticated request containing an operation

StartConsensusInstance(swid, id1, n1, id2, n2)

for a suitable fresh UID swid (3). After receiving a quorum of answers (4), this results in
a certificate Γ certifying the creation of the instance swid to each client (5).

• After verifying Γ, each owner broadcasts an authenticated request containing a LockInto

operation in order to lock their account into swid (6). This results in locking certificates L1

and L2 to be shared between clients (8).

• Based on L1 and L2, one of the clients (or both as long as they agree on the desired outcome)
acting as a round leader interact(s) with the consensus instance swid and attempts to drive
the completion of the one-shot binary agreement protocol swid in order to confirm or abort
the swap (9).

• Eventually, at least one of the clients receives enough commit votes from authorities running
the consensus instance swid that it may create a commit certificate C∗ (defined in the next
paragraph). When a commit certificate C∗ is broadcast to authorities (10), each authority
issues internal cross-shard requests to the shards of id1 and id2, with the following effects:

1. the sequence number next sequenceidi(α) is incremented and pendingidi(α) is reset to ⊥
(effectively unlocking the account idi),

2. confirmedidi(α) is updated to include C∗, and finally

3. if the decision value is Confirm and C∗ is seen for the first time, the authentication key
of the account pkidi(α) is set to the appropriate key pk3−i initially chosen by the other
owner as part of L3−i (11).

3

Broker

Client 1 Client 2

Zef Committee

3 request swid

4 votes for swid

5 cert for swid

8 locking certs L1, L2

5 cert for swid

1 id1, n1, id2, n2

5 cert for swid

2 id1, n1, id2, n2

6 locking
request

7 locking
votes

6 locking
request

7 locking
votes

9 lead one
consensus
round

10 commit cert C∗

11 Swap owners and unlock id1, id2

Figure 1: An atomic swap

Data types and notations. We introduce the following definitions:

• A decision value V is either Confirm or Abort.

• A proposal is a message P = Proposal(swid, k, V) for some round number k ≥ 0 and decision
value V . We write id(P) = swid, round(P) = k and decision(P) = V .

• A pre-commit certificate is a certificate on a proposal of the form C = cert[PreCommit(P)].

• A commit certificate is a certificate on a proposal of the form C∗ = cert[Commit(P)].

We extend the notations id(·), decision(·), and round(·) to decision certificates and commit certifi-
cates.

By definition, agreement holds iff two valid commit certificates for swid always contain the same
decision value.

Atomic-swap states. The state of an atomic-swap instance swid as seen by an authority α can
be described as follows:

• The two accounts to swap idswidi (α) (i ∈ {1, 2});

• The two expected sequence numbers of lock certificates nswid
i (α);

• The two optional authentication keys pkswidi (α) (initially ⊥ until the asset i is locked);

• A last pending proposal proposedswid(α): initially ⊥ then a proposal P .

• A last pending pre-commit : lockedswid(α): initially ⊥ then a pre-commit certificate C.

4

Atomic-swap protocol. An atomic-swap instance swid at α may receive the following requests
R from a client:

• A proposal request R = HandleProposal(authpk[P], L1, L2) for some P = Proposal(swid, k, V)
and optional certificates L1 and L2.

• A pre-commit request R = HandlePreCommit(C) for some pre-commit certificate C.

• A commit request R = HandleCommit(C∗, L1, L2) where C∗ is a commit certificate and each
Li is an optional lock certificate.

The handling of such requests to a consensus instance is presented in Algorithm 2 and can be
summarized as follows: (Invalid requests are ignored; additional safety rules are provided below.)

• Proposal request R = HandleProposal(authpk[P], L1, L2): The receiving authority α must
verify that each Li is either ⊥ or a valid lock certificate for the role i ∈ {1, 2} in the instance
swid = id(P), that is:

– L = cert[R] is a valid certificate for some R = Lock(id, n, LockInto(swid, i, pk));

– id = idswidi (α) and n = nswid
i (α);

After setting pkswidi (α) = pk for each such non-null Li, the authority α verifies the following
conditions:

– P = Proposal(swid, k, V) is a proposal for swid and the authentication of P by pk is
correct;

– the proposal P is valid in the sense that V = Confirm implies that both input accounts
are locked (∀i, pkswidi (α) 6= ⊥);

– the round k is available (see discussion below);

– the proposal P is safe (see definition below)

If the conditions are fulfilled then α sets proposedswid(α) to P and returns a signature on
PreCommit(P).

• Pre-commit request R = HandlePreCommit(C): If C = cert[PreCommit(P)] is a valid pre-
commit certificate, id(C) = swid, and C is safe (see below), then the authority sets lockedswid(α) =
C and returns a signature on Commit(P).

• Commit request R = HandleCommit(C∗, L1, L2): If C∗ = cert[Commit(P)] is a valid commit
certificate and id(C∗) = swid, then several cross-shard requests are prepared and sent to
selected accounts as follows:

– The account id is selected iff either (i) it was locked previously in the instance (id =
idswidi (α) and pkswidi (α) 6= ⊥) or (ii) it holds that decision(P) = Abort and a valid certifi-
cate Li = cert[Ri] such that Ri = Lock(id, n, LockInto(swid, i, pk)) is part of the request;

– Cross-shard requests are sent to the selected accounts id to unlock them by resetting
pendingid(α) and incrementing next sequenceid(α). If the decision value decision(P) is
Confirm and the instance swid still exists, a new authentication key is also set for pkid(α)
thus fulfilling the desired swap of ownership.

5

– Finally, the instance swid is destroyed (if it was still present)

Due to the validity condition above on P , the decision value is necessarily Abort if some account
was never locked (i.e. pkswidi (α) = ⊥). The lock certificates Li in the commit requests ensure that
early termination of the consensus instance do not prevent users from unlocking their account in
every authority afterwards. To allow immediate deletion of an instance swid, in the case of Abort,
we do not enforce consistency between the additional lock certificates Li and the original data in
swid. This bears no consequence since we only allow this behavior after verifying an Abort commit
certificate for swid.

Safety rules. To guarantee agreement, an authority α only accepts proposal and proposed cer-
tificates that are safe at the time of the request (Algorithm 3):

1. A proposal P is safe for α iff the following conditions hold:

• (a) if ⊥ 6= proposedswid(α) = P0 and P 6= P0, then round(P) > round(P0);

• (b) if⊥ 6= lockedswid(α) = C0, then round(P) > round(C0) and decision(P) = decision(C0).

2. A proposed certificate C is safe for α iff the following conditions hold:

• (c) if ⊥ 6= proposedswid(α) = P0, then round(C) ≥ round(P0);

• (d) if ⊥ 6= lockedswid(α) = C0, then round(C) ≥ round(C0).

Note that by definition of the protocol, proposedswid(α) and lockedswid(α) never go back to ⊥
once there are set. Rather, these two fields respectively tracks the latest (safe) proposal P and the
latest (safe) proposed certificate C that were voted on by α.

Available rounds. In practice, we may wish to prevent requests from using arbitrary round num-
bers k ∈ N, because preventing exhaustion of such numbers would then require using unbounded-
size infinite-precision integers. To address this issue while avoiding active coordination between
authorities, we propose that authorities makes new round numbers available in sequential order at
a fixed, given rate.

Client Protocol. Assuming that an instance swid is still running and that no one else is propos-
ing, a client with an asset locked in swid may drive completion as follows:

• Query all the authorities in parallel to retrieve the highest round k of a proposal P =
proposedswid(α) for some α and/or the highest pre-commit certificate C = lockedswid(α), if
any.

• After a suitable delay δ, if C 6= ⊥, then broadcast C to obtain a commit certificate. Otherwise,
when k + 1 is available, make a new proposal, then broadcast the pre-commit certificate.

• Broadcast the final commit certificate C∗.

6

Proof of safety. The agreement property on commit certificates is derived from the following
lemma:

Lemma 3.1. Assume C∗ = cert[Commit(P1)] and C2 = cert[PreCommit(P2)] such that round(P2) ≥
round(P1) then decision(P1) = decision(P2).

Proof. By induction on round(P2) ≥ round(P1).
If round(P2) = round(P1), since the certificates cert[PreCommit(P1)] and cert[PreCommit(P2)]

exist, by quorum intersection, there exists an honest node α that voted for both P1 and P2. However,
by safety rule (a), honest nodes only vote for new proposals with strictly increasing rounds, therefore
P1 = P2.

Otherwise, assume round(P2) > round(P1). Let C1 = cert[PreCommit(P1)]. By quorum in-
tersection of C∗ and C2, there exist be a honest node α that voted for both Commit(P1) and
PreCommit(P2).

By rule (d), the round of lockedswid(α) never decreases. Thus, by rule (c), round(P2) >

round(P1) = round(C1) implies that α voted for Commit(P1) first, then PreCommit(P2).
At the time of voting for PreCommit(P2), by (b) and (d), we have that lockedswid(α) = C for

some pre-commit certificate C such that round(P2) > round(C) ≥ round(P1) and decision(P2) =
decision(C). By induction, we conclude decision(P1) = decision(C).

Discussion on termination. As noted earlier, after the two assets are locked, in theory, one
of the owners can prevent the protocol from terminating by indefinitely submitting proposals that
conflict with the other client. In addition to forfeiting half of the assets, this requires active
communication with at least one honest authority at every new round in the future, when a round
becomes available. Specifically, the malicious leader must indefinitely guess or quickly observe
whether the other client is proposing Confirm or Abort, and propose the opposite decision value.

A classical approach to enforce strict termination in the partially-synchronous model consists in
(1) restricting proposals to be signed by a particular client based on the parity of k and (2) making
new rounds available at an exponentially slow rate. In practice, this approach may be activated
after a certain delay, when it is clear that the two owners are not collaborating.

Comparison with existing consensus protocols. Our proposal is based on the observation
that traditional leader-based consensus protocols do not technically require leaders to be drawn
from the entire set of validators or even to have non-zero voting rights—as long as enough leaders
can be trusted to make progress. In our case, this means that we can use the owner(s) of locked
account(s) as leaders of the consensus protocol instead of Zef validators. Once both accounts are
locked, our proposal lets the two leaders coordinate directly outside of the protocol — at least for
some time, until a slow, leader selection is (optionally) activated to enforce termination.

Compared to fully-featured implementation of a consensus protocol such as LibraBFT [2], our
approach is a one-shot consensus protocol, in particular chains of blocks are not needed. We also do
not attempt to provide responsiveness or tight latency guarantees when leaders are not cooperative.
However, our proposal is arguably significantly simpler, only uses constant storage, and does not
require active coordination between authorities (e.g. broadcasting timeout messages).

Future work. We have presented an atomic swap functionality that changes the owner’s keys of
the two accounts simultaneously. Arguably, this constitutes the first step towards a more general

7

framework where multiple users may lock their accounts (and corresponding assets) into a consensus
instance in order to execute arbitrary queries/updates on the locked accounts in an atomic way.

4 Auctions

We now describe an extension of Zef [3] meant to support running decentralised auctions. We
target support both 1st price and 2nd price auctions:

• In the 1st price auctions, a bidder with the highest bid gets the item and pays a price
equivalent to its bid.

• In the 2nd price auctions, a bidder with the highest bid gets the item but pays a price
equivalent of the 2nd highest bid in the auction.

The 2nd price auctions provide a truthfulness property[?], where all the bidders are incentivised to
provide their true valuation of items (the winner never overpays for an item). However, it comes
at a price of requiring additional security mechanisms. A malicious seller may participate in the
auction (potentially with Sybil identities) uniquely to become the 2nd highest bid in the auction
and thus increase the selling price of the item. Such a behavior can be disincentivised, if every
submitted but unrevealed bid is penalized [4].

In a classical setup, auctions require multiple phases that need to be ordered:

• the seller creates an auction

• the bidders need to submit their sealed bids

• the seller stops the bid submission

• the bidders need to reveal their bids

• the seller announces the result of the auction

A correct solution must order those operations to prevent race-conditions between the bidders and
the seller (was a bid submitted/revealed before the deadline?).

4.1 Bid submission

We define a Threshold Public Key Encryption (TPKE) system consists of five algorithms [8]:

• Setup(n, k,Λ): Takes as input the number of decryption servers n, a threshold k where 1 ≤
k ≤ n, and a security parameter Λ ∈ Z. It outputs a triple (PK,VK,SK) where PK is a public
key, VK is a verification key, and SK = (SK1, ...,SKn) is a vector of n private key shares.
Decryption server i is given the private key share (i,SKi) and uses it to derive a decryption
share for a given ciphertext. The verification key VK is used to check validity of responses
from decryption servers.

• Encrypt(PK,m): Takes as input a public key PK and a message m . It outputs a ciphertext c.

8

• ShareDecrypt(PK, i,SKi, c): Takes as input the public key PK, a ciphertext c, and one of the n
private key shares in SK. It outputs a decryption share µ = (i, µ̂) of the enciphered message,
or a special symbol (i,⊥).

• ShareVerify(PK,VK, c, µ): Takes as input PK, the verification key VK, a ciphertext c, and a
decryption share µ. It outputs valid or invalid. When the output is valid we say that µ is a
valid decryption share of C.

• Combine(PK,VK, C, µ1, ..., µk): Takes as input PK, VK, a ciphertext c, and k decryption shares
µ1, ..., µk. It outputs a cleartext M or ⊥.

We assume that the FastPay authorities jointly execute Setup(n, f + 1,Λ) as a part of the
bootstrap process. Each authority ai is given its private key share SKi, the public key PK and the
verification key VK. We assume that no other authority aj , j 6= i has access to SKi.

A user ui willing to participate in the auction chooses an amount it is willing to pay for the item
vi. It also chooses vmax, vmax ≤ vi to back its bid. The user transfers vmax to the auction object.
The money acts as a deposit that will be returned if the user does not win the auction or used to
pay for the object if the user wins the auction.

The user then encrypts its bid by executing ci = Encrypt(PK,mi), where mi contains vi and the
auction identifier. The user generates zi, a proof of correctness of encryption ci.

The user submit ci and zi to the authorities and obtains a submission certificate Ci. Note that
receiving a certificate (confirmation from 2f + 1 authorities), means that at least f + 1 honest
authorities have received the encryption and can jointly recover message Mi.

The bidders send their bid submission certificates offline to the seller. The seller then submits
those certificates to the system. Effectively, the seller can choose which bids will be allowed to
participate in the auction. However, the seller is incentivized to maximize the number of bids in
the auction as each additional bid can only increase the selling price of the object (and thus the
revenue of the seller).

Once the seller decides that they gathered enough bids, they submits end of biddingmessage and
obtains a certificate on the submission. The end of bidding message contains all the bids already
submitted by the seller. After accepting an end of bidding message the authorities stop accepting
new bids.

The seller individually contacts each authority presenting a certificate on the end of bidding

message. If the certificate is valid, the contacted authority invokes ShareDecrypt on all the bids
present in the message and releases its decryption shares µi. The seller collects all the decryption
shares and locally invokes Combine to recover the values of the bids. The seller includes all the
decrypted bids in an end of auction message and submits the message to the authorities (trying to
get a certificate).

Once a certificate on end of auction is submitted to an authority, the authority:

• Calculates the highest and the 2nd highest bid

• Assigns the object being sold to the highest bidder

• Deducts the winner’s deposit by the value of the 2nd highest bid and transfers this value to
the seller

• Returns the deposits to the bidders

9

• Deletes the item objects

References

[1] Mathieu Baudet, George Danezis, and Alberto Sonnino. “FastPay: High-Performance Byzan-
tine Fault Tolerant Settlement”. In: 2nd ACM Conference on Advances in Financial Technolo-

gies. AFT ’20. 2020, 163–177.

[2] Mathieu Baudet et al. State machine replication in the Libra Blockchain. 2019.

[3] Mathieu Baudet et al. “Zef: Low-latency, Scalable, Private Payments (draft report)”. In:
(2021).

[4] Matheus VX Ferreira and S Matthew Weinberg. “Credible, truthful, and two-round (optimal)
auctions via cryptographic commitments”. In: Proceedings of the 21st ACM Conference on

Economics and Computation. 2020, pp. 683–712.

[5] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. “Impossibility of Distributed
Consensus with One Faulty Process”. In: Journal of the ACM 32.2 (1985), 374–382.

[6] Marc Shapiro et al. “A comprehensive study of Convergent and Commutative Replicated Data
Types”. In: ().

[7] Marc Shapiro et al. “Conflict-Free Replicated Data Types”. In: Stabilization, Safety, and Se-

curity of Distributed Systems. Ed. by Xavier Défago, Franck Petit, and Vincent Villain. 2011,
pp. 386–400.

[8] Victor Shoup and Rosario Gennaro. “Securing threshold cryptosystems against chosen cipher-
text attack”. In: Journal of Cryptology 15.2 (2002), pp. 75–96.

[9] Alberto Sonnino et al. “Coconut: Threshold issuance selective disclosure credentials with ap-
plications to distributed ledgers”. In: arXiv preprint arXiv:1802.07344 (2018).

A Generalized Account Operations

In FastPay and Zef, each account state contains a balance, noted balanceid(α) ∈ Z. The execution
of a payment operation can be seen as applying a pair of updates (−x,+x) to the sender and the
recipient states, respectively. Namely, −x < 0 is the local update removing funds and +x > 0
is the remote update adding funds. An authority accepts to validate an (authenticated) payment
operation (−x,+x) created by the owner of id iff the resulting local state balanceid(α) − x ≥ 0 is
valid. We note that remote updates +x are always safe in the sense that they never make a valid
state invalid.

This leads us to propose the following general axioms for account states and updates:

Generalized states and updates. Let S be a set of state values and U be a set of updates. We
assume a validity predicate is valid on S, a safety predicate is safe on U and an operator (·) from
S × U to S such that the following holds:

1. ∀s ∈ S, ∀u1, u2 ∈ U , s · u1 · u2 = s · u2 · u1;

2. ∀s ∈ S, ∀u ∈ U , is valid(s) and is safe(u) =⇒ is valid(s · u).

10

The commutative updates (1) as well as the notion of eventually consistency described in the
proof of Zef ([3], Section 4) draws similarities to the notion of Commutative Replicated Data Types
(CmRDTs) in the field of distributed databases [6, 7].

Generalized account operations. We may generalize the protocol for direct payments of Fast-
Pay and Zef as follows:

• The balance is replaced by a field stateid(α) ∈ S such that the initial value of a new account
is always valid.

• A new account operation O = Apply(id′, u−, u+) is safe to be issued by the owner of the
account id as seen by an authority α iff is safe(u+) and is valid(stateid(α) · u−). (Note that in
practice, additional constraints may apply on u− and u+ for O to be validated by α.)

• The execution of an update Apply(id′, u−, u+) sent by account id consists in setting stateid(α) :=
stateid(α) · u− and stateid

′

(α) := stateid
′

(α) · u+.

The same argument as in Section 4 of [3] shows that whenever two honest authorities have
executed the same certified updates then the two authorities agree on the states of active accounts.
Besides, after every certified update has been executed by an authority α, is valid(stateid(α)) holds
for every id.

This formalism lets us address the following applications:

• A single NFT may be represented on-chain using S = Z and U = {−1,+1}. (Here, S =
Z ensures proper definitions of the operator (·). In practice, state values would range in
{−1, 0, 1}, the invalid value −1 being a temporary state.)

• To support severals NFTs and several currencies at the same time, we note that independent
updates on S1 × U1 and S2 × U2 may composed by defining a product operator (·) on S × U
with S = S1 × S2 and U = U1

⊎

U2.

• A (multi)-set of objects or coins with monotonic requirements (e.g. to own X, one must be
own parent(X) and 3 coins). (This approach is seen in CRDTs for data-structures such as
trees, directed graphs, etc.)

Further generalization. In the case of multi-currency states, we note that the formalism does
not force u− and u+ to be in the same unit of currency. Each validator may accept conversion
requests up to a certain most favorable rate that may differ from other validators and may fluctuate
over time.

This approach paves the way for automated marker makers (AMM) in the Zef system: every
shard of each Zef authority may maintain the current conversion rate(s) in a local cache and accept
rate updates (“push”) from a dedicated blockchain tracking the past transactions (using real-time
aggregated counters in each authority) and continuously re-computing the rate(s).

Storage Cost A well-known issue of CmRDTs is the storage cost given that each update is
individually synchronized and logged across replicas2. In Zef, this issue is mitigated by the fact

2https://github.com/protocol/research-grants/blob/master/RFPs/rfp-005-optimized-CmRDT.md

11

https://github.com/protocol/research-grants/blob/master/RFPs/rfp-005-optimized-CmRDT.md

that accounts can be deleted after transferring their state to a new account, thereby effectively
compressing the history of the account.

12

Algorithm 1 Account operations (core Zef + atomic swap)

1: function ValidateOperation(id, n, O) ⊲ Internal validation of account operation
2: switch O do

3: case OpenAccount(id′, pk′):
4: ensure id′ = id :: next sequenceid

5: case Transfer(id′, value):
6: ensure 0 < value ≤ balanceid

7: case ChangeKey(pk′):
8: pass

9: case StartConsensusInstance(swid, id1, pk1, id2, pk2):
10: ensure swid = id :: next sequenceid

11: ensure id1 6= id2

12: case LockInto(swid, i, pk): ⊲ Temporarily transfer the management of id to swid

13: return Lock(id, n, O) ⊲ O is valid and locking.

14: return Execute(id, n, O) ⊲ If we reach this, O is valid and regular.

15: function ExecuteOperation(id, O, C) ⊲ Execution of account operation (unchanged from Zef)
16: switch O do

17: case OpenAccount(id′, pk′):
18: do asynchronously ⊲ Cross-shard request to id′

19: run InitAccount(id’, pk’) ⊲ Create new account

20: receivedid
′

← receivedid
′

:: C ⊲ Log certified request in recipient’s account

21: case Transfer(id′, value):
22: balanceid ← balanceid − value ⊲ Update sender’s balance
23: do asynchronously ⊲ Cross-shard request to id′

24: if id′ 6∈ accounts then

25: run InitAccount(id′, ⊥) ⊲ Create receiver’s account if needed

26: balanceid
′

← balanceid
′

+ value ⊲ Update receiver’s balance

27: receivedid
′

← receivedid
′

:: C
28: case ChangeKey(pk′):
29: pkid ← pk′ ⊲ Update authentication key

30: case StartConsensusInstance(swid, id1, n1, id2, n2):
31: do asynchronously ⊲ Cross-shard request to swid

32: run InitInstance(swid, id1, n1, id2, n2, C) ⊲ Create a new consensus instance

13

Algorithm 2 Consensus service

1: function InitInstance(swid, id1, n1, id2, n2, C) ⊲ Create a consensus instance for an atomic swap
2: for i← 1..2 do (idswid

i
, nswid

i
, pkswid

i
)← (idi, ni,⊥)

3: (proposedswid, lockedswid, receivedswid)← (⊥, ⊥, C)

4: function HandleProposal(authpk[P], L1, L2) ⊲ Handle a proposal with optional lock certificates
5: verify authpk[P]
6: match Proposal(swid, k, V) = P

7: for i← 1..2 do

8: if Li 6= ⊥ then

9: verify cert[Ri] = Li

10: match Lock(=idswid
i

, =nswid
i

, LockInto(=swid, =i, pk
i
)) = Ri

11: pkswid
i
← pk

i
⊲ Record the public key of role i

12: ensure pk ∈ {pkswid
1

, pkswid
2
} ⊲ Only users with a locked account can propose

13: ensure V = Abort or ∀i, pkswid
i
6= ⊥ ⊲ Enforce validity of the swap

14: ensure IsRoundAvailable(swid, k) ⊲ Available round values are restricted at a given time
15: ensure IsSafeProposal(P) ⊲ Enforce safety rule
16: proposedswid ← P ⊲ Record the proposal for future safety checks
17: return Vote(PreCommit(P)) ⊲ Success: return a signature meant to pre-commit P

18: function HandlePreCommit(C) ⊲ Handle a pre-commit request
19: verify cert[PreCommit(P)] = C

20: ensure IsSafePreCommit(C) ⊲ Enforce safety rule
21: lockedswid ← C ⊲ Record the pre-commit for future safety checks
22: return Vote(Commit(P)) ⊲ Success: return a signature meant to commit P

23: function HandleCommit(C∗, L1, L2) ⊲ Handle a commit request
24: verify cert[Commit(P)] = C

25: match Proposal(swid, k, V) = P

26: for i← 1..2 do

27: (idi, ni, pki)← (idswid
i

, nswid
i

, pkswid
i

) ⊲ Set locals with information from swid or ⊥
28: if V = Abort and Li 6= ⊥ then ⊲ Accept to unlock any account locked into swid, once aborted
29: verify cert[Ri] = Li

30: match Lock(id, n, LockInto(=swid, =i, pk)) = Ri

31: (idi, ni, pki)← (id, n, pk)

32: if V = Confirm and swid ∈ atomic swaps then

33: for i← 1..2 do

34: do asynchronously ⊲ Cross-shard request to idi
35: ensure next sequenceidi = ni

36: (next sequenceidi , pendingidi)← (ni + 1,⊥) ⊲ Unlock account idi
37: pkidi ← pk

3−i
⊲ Set the public key to the new value

38: confirmedidi ← confirmedidi :: C∗

39: else

40: for i← 1..2 do

41: if pk
i
6= ⊥ then

42: do asynchronously ⊲ Cross-shard request to idi
43: ensure next sequenceidi = ni

44: (next sequenceidi , pendingidi)← (ni + 1,⊥) ⊲ Unlock account idi
45: confirmedidi ← confirmedidi :: C∗

46: delete instance swid from atomic swaps

14

Algorithm 3 Safety rules

1: function IsSafeProposal(P) ⊲ Determine if it is safe to vote for pre-committing P

2: let Proposal(swid, k, V) = P

3: if proposedswid 6= ⊥ and k ≤ round(proposedswid) then
4: return false

5: if lockedswid 6= ⊥ and
(

k ≤ round(lockedswid) or V 6= decision(lockedswid)
)

then

6: return false

7: return true

8: function IsSafePreCommit(C) ⊲ Determine if it is safe to vote for committing C

9: let cert[PreCommit(P)] = C

10: let Proposal(swid, k, V) = P

11: if proposedswid 6= ⊥ and k < round(proposedswid) then
12: return false

13: if lockedswid 6= ⊥ and k < round(lockedswid) then
14: return false

15: return true

Algorithm 4 Account service (unchanged from Zef)

1: function InitAccount(id, pk) ⊲ Initialize a new account
2: pkid ← pk

3: next sequenceid ← 0
4: balanceid ← balanceid(init) ⊲ Initial balance is 0 except for special accounts
5: confirmedid ← []
6: receivedid ← []

7: function HandleRequest(authpk[R]) ⊲ Handle an authenticated request from a client
8: let Execute(id, n, O) | Lock(id, n, O) = R ⊲ Allow regular and locking operations
9: ensure pkid 6= ⊥ ⊲ Make sure the account is active

10: verify that authpk[R] is valid for pk = pkid ⊲ Check request authentication

11: if pendingid 6= R then

12: ensure pendingid = ⊥ and next sequenceid = n ⊲ Verify sequencing
13: ensure ValidateOperation(id, n, O) = R ⊲ Validate the operation
14: pendingid ← R ⊲ Lock the account on R

15: return Vote(R) ⊲ Success: return a signature of the request

16: function HandleConfirmation(C) ⊲ Handle a certified request
17: verify cert[R] = C

18: match Execute(id, n, O) = R ⊲ Allow regular operations only
19: ensure pkid 6= ⊥ ⊲ Make sure the account is active
20: if next sequenceid = n then

21: run ExecuteOperation(id, O, C)
22: next sequenceid ← n+ 1 ⊲ Update sequence number
23: pendingid ← ⊥ ⊲ Make the account available again
24: confirmedid ← confirmedid :: C ⊲ Append certificate to the log

15

	1 Introduction
	2 Off-chain Assets
	3 Atomic Swaps
	4 Auctions
	4.1 Bid submission

	A Generalized Account Operations

