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ABSTRACT

This thesis presents a model for conical entrance
orifice plate flow sensor and the results of the applica-
tion of the model.

The model for the conical entrance orifice plate
flow sensor was developed using a low Reynolds number k-e
model of turbulence - the Lam and Bremhorst k-e model,
and the '"PHOENICS' computer code. The flow fields
modelled were axisymmetric and the geometry of the
conical entrance orifice plate is in accordance with that
given in BS 1042 : Section 1.2.

A pipe 100 mm in diameter and with water as the
working fluid was wused in the simulation. Numerical
results were obtained with diameter ratios 3 equal to
0.1, 0.2 and 0.3, and for pipe Reynolds numbers between
80 and 60,000. The model predicted the discharge coeffi-
cient to within * 3 % of the value stated in the British
Standard for the range of 3 ratios and Reynolds numbers
investigated, which suggest that the conical entrance
orifice plate can be used at Reynolds numbers higher than
that specified in BS 1042 : Section 1.2 : 1989 for the
smaller /3 ratios.

The model also suggested that the discharge
coefficient is a function of ;3; that pressure tappings
other than corner tappings can be used and the conical
entrance orifice was relatively insensitive to turbulence
level upstream at the pipe inlet. The effects of geomet-
ric tolerances were explored and the results indicated
that some latitude on the geometric tolerances as
specified in the Standard may be allowed.



u, Vv

xi'

Greek symbols

P

NOMENCLATURE

Area of a control volume face
Discretization coefficient
Turbulence model constants
Discharge coefficient

Turbulence model constants

Diameter of orifice

Diameter of pipe

Turbulence model functions

Kinetic energy of turbulence
Pressure

Reynolds number in pipe flow based
on bulk velocity and pipe diameter
Turbulence Reynolds number

Source term for variable o

Tensor notation for velocities in
the i, j and k directions respec-
tively

Velocity component in x and y direc-
tion

Radial velocity

Axial velocity

Tensor notation for space coordi-

nates

Orifice to pipe diameter ratio



Subscripts

Exchange coefficient for variable o
Rate of dissipation of turbulence
energy

Viscosity

Kinematic viscosity

Density of fluid

A generalised dependent variable
Diffusion Prandtl number for turbu-
lence energy k

Diffusion Prandtl number for dis-

sipation rate e

Turbulent

Laminar

Grid points

Control volume faces

Neighbouring grid point

(other notations are dealt with as they arise)

10



CHAPTER 1

INTRODUCTION

1.1 The use of orifice in flowmetering

For many years, differential pressure meters were
available for measuring flowrate of fluids in a pipe with
reasonable accuracy at a reasonable cost. In spite of
technological progress and innovation over the last few
decades, many requirements for flow metering are still
adequately met by differential pressure meters. It has
been estimated that differential pressure devices still
hold 50% of the market (1) , and will continue to contrib-
ute to the major share of flowmeter sales. Of the
pressure differential devices, the orifice plate is the
most popular. The wide popularity of the orifice plate is
due to the ease of construction, absence of need for
calibration unless high precision is required, installa-
tion simplicity and its ability to handle some of the

difficult applications.

1.2 Basic principle of operation

The basic principle of operation of the meter
depends upon the fact that when a fluid flows through a
contraction, it must accelerate; this causes its kinetic
energy to increase, and consequently, its pressure must
fall by a corresponding amount in accordance with the
principle of the conservation of energy. The ideal

flowrate may be related to the pressure drop by applying
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the Continuity and Bernoulli equations (2). Then empiri-
cal correction factors may be applied to obtain the

actual flowrate.

For an incompressible fluid, the mass rate of flow

Om is given by

(1.1)

where Appe is the cross sectional area of the pipe, AQ).
is the orifice hole area, y is the density of fluid,
is the pressure difference across the orifice and CD is

called the discharge coefficient.

1.3 Square edge orifice

Although the orifice has achieved widespread
popularity only in the last 100 years or so, records
indicate that it was used by the Romans for regulating
the flow of water to householders. Just when and where a
thin plate orifice was first used in the measurement of
fluids, particularly for sales purposes, has not been
definitely determined, but it was probably before 1890
(3). It was after this period that the importance of
orifice as a means of measuring volumes of gas and
liquids for sale, and for the control of flow rates in

continuous industrial processes, has become better known
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and exploited.

1.3.1 Experimental studies

In 1903, Weymouth (4) started experimenting with a
thin-plate sharp-edged concentric orifice, using Flange
Taps for measuring the differential pressure. In 1915,
Hickstein (5) published data similar to Weymouth's but
based on the use of pressure connections at 2.5 pipe
diameters upstream and 8 pipe diameters downstream of the
orifice. In 1916, Judd (6) proposed the use of vena
contracta taps, and also referred, for the first time, to
the design of eccentric and segmental orifices. Mean-
while, Hodgson (7,8) developed many types of orifices
over the period 1909-1924 and established a whole range
of coefficient curves for various values of diameter

ratio and for a wide range of Reynolds numbers.

First attempt at collecting and organizing the
available data into a commercially usable form was begun
in 1915 by the then newly formed American Society of
Mechanical Engineers (ASME) Flow Meters Committee. Until
1931, the ASME and the American Gas Association (AGa)
accumulated and assimilated data for orifice meters
independently. In December of that year, the Joint AGA-
ASME Orifice Coefficient Committee was formed. The
eventual outcome of this effort was a 1928-1932 Joint
ASME-AGA Program at Ohio State University to determine

the absolute values of orifice discharge coefficients.
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Following these tests, a long series of similar projects
was undertaken, and the results appeared in a series of
releases and revisions that continues to the present

time.

1.3.2 Theoretical studies

With the advent of computers, efforts to model
orifice flow begun. Mills (9) obtained numerical solu-
tions of the Navier-Stokes equations for axi-symmetric,
viscous, incompressible flow through a square edged
orifice in a circular pipe for Reynolds numbers ( based
on orifice diameter) up to 50, and fixed diameter ratio
3 = 0.5. The discharge coefficients calculated showed
good agreement with the values obtained experimentally by
Johansen (10) even though there was not a complete
similarity in regard to orifice geometry and location of
pressure tappings. Keith (11,12) extended the work of
Mills to other (3 ratio (0.3, 0.5 and 0.7). Mattingly and
Davis (13) obtained numerical results for laminar flow
through square edged orifice for Reynolds numbers (based
on pipe radius) of 10 and 25, and / ratio from 0.3 to
0.7. The effects of orifice plate thickness on the
discharge coefficient was also investigated. The dis-
charge coefficients calculated were compared with the
experimental values presented by Johansen (10) and Tuve
and Sprenkle (14), and Mills' result, and close agreement
was noted. Nigro et al. (15) considered three geometries

of orifice plate, namely that of the square edge orifice
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plate, the "thin" orifice plate and the bevelled edge
orifice plate. Solutions were presented for Reynolds
numbers (based on orifice diameter) up to 1,000 for a
range of orifice to pipe diameter ratios from 0.2 to 0.8.
They concluded that orifice geometry played a significant
role in the flow structure in the vicinity of the orifice
and as such would affect the calculated discharge
coefficient. The numerical results were also compared
with the experimental results compiled by Tuve and

Sprenkle for a half-bevelled orifice plate.

With the development of the k-e two-equation model
of turbulence at Imperial College, London, various
workers (16,17,18) used the model to study turbulent flow
through orifice, as the model is in wide use and has been
successfully tested against recirculating flows similar

to those encountered downstream of an orifice plate.

Davis and Mattingly (16) modeled the flow through
infinitely thin orifice plates with 3 ratios from 0.4 to
0.7. Reynolds numbers ( based on pipe radius) studied
were in the approximate range 104 - 106. The numerical
results were obtained using 13 grids in the radial
direction and up to 68 grids in the axial direction. The
results were compared with available experimental data,
and the agreement between computed and experimental

discharge coefficient was within 4%.

15



Hafiz (17) used the same model to investigate flow
through square-edged orifice plates with /3 ratios from
0.3 to 0.7 and for Reynolds numbers ( based on orifice
diameter ) of 105, 2.5x10s and 106. The numerical results
were obtained using a 32x22 ( axial and radial ) grid.
The results for the lower Reynolds numbers showed that
the discharge coefficients were predicted to within *3%
of experiment; while for a Reynolds number of 106, the
difference was about +5% for the discharge coefficient
corresponding to the flange tapping. The variation of
discharge coefficient with orifice plate thickness was
also investigated, and the results showed an increase of
discharge coefficient with plate thickness. When the
plate became thinner, the discharge coefficient became

asymtotically constant.

Patel and Sheikholeslami (18) simulated an orifice
plate with a /B ratio of 0.4 at an orifice-diameter
Reynolds number of 106. The grids used were 80x60 ( axial
and radial ). The numerical results enabled the computa-
tion of the discharge coefficient to within 1.5% of
standard values. Computations of the discharge coeffi-
cient at different Reynolds numbers showed that the

coefficient decreases with increasing Reynolds numbers.

The k-e two-equation model of turbulence had also

been wused by various workers 1in investigating the

influence of geometric effects (upstream step, plate

16



buckling, pipe roughness) , and the effect of rough

pipework on the discharge coefficients of orifice plates.

Langsholt and Thomassen (19) modelled the flow
through a square edged orifice meter with artificially
introduced geometric effects (upstream step, plate
buckling, pipe roughness). Depending on the geometric
effects introduced, the A ratios of the orifice plates
used in the modelling were 0.3, 0.5 and 0.6, and the
Reynolds numbers used were 1.7x105 and 2.0x106. The grids
used were 48x19 (axial and radial) for the majority of
the results presented. The results were compared with
available experimental data, and the conclusion was that
relative changes in the flow coefficient due to a
geometrical alteration was simulated in an apparently
correct manner, although there was a lack in absolute

accuracy in the simulated flow coefficient.

Reader-Harris (20) examined the effect of rough
pipework on the discharge coefficients of orifice plates.
An orifice plate of zero thickness was specified, and the
i3 ratios ranged from 0.5 to 0.8. The computational test
section contained 40 grid points in the axial direction
and 25 in the radial direction. In all cases the Reynolds
number based on pipe diameter and mean velocity was
4x105. The change in discharge coefficient due to rough-

ness was shown to be approximately proportional to /3.
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1.4 Conical entrance orifice plates

The square edged or standard orifice plate has been
extensively studies. At high Reynolds numbers, the
coefficient of discharge is well-established to be nearly
constant. However, at low Reynolds numbers, appreciable
variation in the value of this coefficient has been
observed (10,14). Therefore, the use of the standard
forms of orifice plates for the metering of high viscosi-
ty fluids such as oil are unsatisfactory. In view of the
industrial importance of metering such liquids, there is
a considerable interest among differential pressure
flowmeter users in any device which has a constant
discharge coefficient in the low Reynolds number region.
Special forms of orifices have been developed. The
conical entrance orifice plates and quarter circle
orifice plates are given in BS 1042 as having a constant
discharge coefficient down to a low Reynolds number, thus
making it suitable for the measurement of flowrate of
viscous fluids such as o0il. Conical entrance orifice
plates have the further property that their discharge
coefficient is the same at any diameter ratio (within the
limits specified by the standard). The conical entrance

orifice plate is illustrated in Figure (1.1).

1.4.1 Review of literature
The conical entrance orifice plate was first
developed in 1930 by H.E. Dali of George Kent Ltd. as the

Kent P.L. orifice. Some data on the P.L. orifice is
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Fig. 1.1 Conical Entrance Orifice Plate
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available from its U.S. patent specifications (21), and
Linford (22) based on Dali's work, gave characteristic
curves showing the variations of discharge coefficient
with change of Reynolds number. The data on the conical
entrance orifice plate given in BS 1042: Part 1: 1964 is

based on information from George Kent Ltd.

Since the publication of BS 1042: Part 1: 1964, the
characteristics of conical entrance orifice plates have
been explored by a number of investigators. Kastner and
McVeigh (23) investigated orifice plate profiles for low
Reynolds numbers. They conducted tests on a number of
orifice plates and eight of these are of the conical
entrance type. The eight plates were tested using a 50 mm
(2 inches) internal diameter brass pipe with p wvalue
ranges from 0.063 to 0.3. Stoll and Zientara (24)
reported work by three fluid metering companies using a
50 mm (2 inches) diameter pipe and 5 conical entrance
orifice plates having p values of 0.1 to 0.5. They
described the testing program and listed all of the data

accumulated.

The effect of installation conditions on the
discharge coefficient of the conical entrance orifice
plates was investigated by McVeigh (25). He conducted
tests using a 38.1mm (1.5 inches) diameter copper pipe
and orifice plates having a diameter ratio of 0.267, 0.4

and 0.5. The upstream straight pipe length was varied,

20



and 90° bends were placed before the orifice.

Turton (26) also published results on tests carried
out on conical entrance orifice plates having diameter

ratios of 0.1 to 0.5, using a 50 mm diameter copper pipe.

Additional information on the performance charac-
teristics of conical entrance orifice plates are provided
by Ho and Leung (27) . They tested plates with diameter
ratios of 0.247, 0.360 and 0.448 using a 25 mm diameter
pipe. The orifices were tested both in the concentric and

eccentric position.

The British Standard (28) for conical entrance
orifice plates specifies a constant conic entrance angle
of 45' and a constant value of 0.084 for the ratio J/d
(Eig. 1.1). It is limited to 0.1 < 3 < 0.316. For the
Kent P.L. plates, both the conic entrance angle and depth
of bevel J vary with (3. At low values of {3, the Kent P.L.
plate is similar to that specified by BS 1042. The
differences between the two plates increase with /3. At 3
= 0.3, the difference in conical entrance angle is about

6% and the difference in J/d is about 12%.

The work reported by Stoll and Zientara (24) and
McVeigh (25) was on plates similar to the Kent P.L.
plates. Only the work by Kastner and McVeigh (23), Turton

(26) and Ho and Leung (27) was based on plates as
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specified in BS 1042. Kastner and McVeigh conducted tests
for pipe Reynolds numbers below 1,200 for six of the
plates and below 4,000 for the remaining two plates.
Turton performed tests over a range of pipe Reynolds
numbers of 800 to 23,000 while Ho and Leung tested the
orifices for the pipe Reynolds numbers in the region of

100 to about 1,000.

In the above investigations, the differential
pressure across the orifices was measured by means of
corner tappings or are not reported. The investigators
were of the opinion that observance of the dimensional
tolerance associated with the conical entrance orifice
plate was time consuming and difficult especially for the
smaller diameter plates (23,24,26,27) . Many of the
results reported were on plates that do not meet the

dimensional tolerances specified in the Standard.

15 Objectives of the study

As can be seen from the literature review, rela-
tively few experimental results were available in the
performance characteristics of conical entrance orifice
plates. No information is available on the use of
pressure tappings other than corner tappings. BS 1042
specifies dimensional tolerances which were found
difficult to satisfy especially for the smaller diameter
plates. Thus, there is a need to further explore the

characteristics of conical entrance orifice plates.
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The performance of flowmeters are affected by a
number of parameters, and for each of the parameters,
there is a wide range of values encountered in practice.
Therefore, laboratory experiments for all situations are
practically impossible. However, widely ranging parame-
ters can be introduced and evaluated wusing computer
methods, and, for selected cases, validation experiments
would demonstrate credibility. Thus, the number of

experimental investigations can be reduced.

In the last two decades, significant progress has
been made in the development of computational fluid
dynamics ( CFD ) techniques. These developments, and
continually increasing ease and economy of digital
computers, are now making numerical flow simulation a
valuable tool in the development of various engineering
equipment. The progess of CFD has also aided the develop-
ments of models of turbulence. Various turbulence models
have been developed and tested in details, and some have
been found satisfactory for engineering analysis purpos-
es. As a result, computer simulation using a suitable
turbulence model can be extremely useful in conjunction
with experiments in the investigations of the performance

of various types of flowmeters.

Hence, the performance characteristics of conical

entrance orifice plates are investigated using existing

turbulence models. The effects of the Reynolds number and
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the variation in dimensional tolerance on the discharge
coefficient are studied. Computations were performed with
the aid of a general - purpose, flow - analysis computer
code, "PHOENICS". It is hoped that this investigation
will provide more information on the performance charac-
teristics of conical entrance orifice plates and to
identify areas where further experimental investigations
might be needed. This will ultimately lead to the better
utilization of the conical entrance orifice plates as a

low Reynolds number flow measuring device.
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CHAPTER 2

OUTLINE OF THEORY

2.1 The basic equations

In order to model fluid flow processes, it is
necessary to consider the general physical 1laws that
describe the fluid dynamics of the flow. These physical
laws include the conservation of mass and momentum.

The equations of motion, in the absence of external
forces, can be written in the following tensorial form

for Newtonian fluids.

Continuity
>K M VU
- b\ = - c
2.1)
Momentum
A \ w X ¢ I°
X' ) 2
2 .2)
where the Kronecker delta &. = 0 for i*j and <S. = 1 for
i= j-
E<*uoXiov\ Cax'i') is usually called the
Navier-Stokes equation of motion. The derivation of

equations (2.1) and (2.2) can be found in a variety of

books on fluid dynamics (29,30).
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2.1.1 Time - averaged Navier-Stokes equation

The Navier-Stokes equations apply equally to
turbulent or laminar flows if actual velocities, etc.,
are used. Because of the complexity and apparently random
nature of the velocity fluctuations in turbulent f£flow,
overwhelming difficulties are involved in undertaking a
complete analysis involving the instantaneous turbulent
fluctuations. As it 1is futile to deal with actual
velocities and other fluctuating quantities in turbulent
flow, the development of equations to describe turbulent
flows for applied problems is accomplished by time
averaging the turbulent fluctuations about a mean flow

field (31).

Thus, assuming that all the flow variables can be
expanded in the form £f =2+ £ where T is a mean
value of £ and f' is a fluctuation about the mean, the

instantaneous velocity Ui and pressure ">c can be written

as

vkl - Kv. v WJ (2.3)

. ptc
vu - T, i - A (2.4)
- u g W- cvt - = o (2.5)
2.6
= % + 21 ( )

\ oto Vtv
(2.7)
+ E Z&;
"0
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r*o-vtv I
te 0 (2.8)

The mean values are taken over a sufficiently 1long
interval of time, t,, for them to be completely indepen-

dent of time.

By introducing these mean and fluctuating compo-
nents into equations (2.1) and (2.2), the following
equations are obtained for steady incompressible flow

with body forces neglected.

Continuity
c (2.9)
a X}
Momentum
1 , —
\
(2.10)

Equation (2.10) is the time-averaged Navier-Stokes
equation or the Reynolds equation. The quantity -pUi'Ujl
is commonly called the Reynolds stresses of turbulent

flow, and represents the transfer momentum by the

turbulent motion.
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The Reynolds equations cannot be solved in the form
given because the new apparent turbulent stresses or
Reynolds stresses must be regarded as new unknowns. To
proceed further, it 1is necessary to find additional
equations involving the new unknowns or make assumptions
regarding the relationship between the new apparent
turbulent quantities and the time-mean flow variables.
This is known as the closure problem and is most commonly

tackled through turbulence modelling.

2.2 Turbulence models

The turbulence models can be classified in several
ways. The one most often used is that in accordance with
the number of differential equations solved in addition
to the mean flow equations. The turbulence model which
appears to be most widely used for engineering calcula-

tions are the two equations k-e model.

2.2.1 The standard k-e turbulence model

The k-e model of turbulence was first put forward
by Harlow and Nakayama (32) in 1968, and has appeared in
the papers of Jones and Launder (33,34) and Launder et
al. (35). A full account of the model is given by Launder

and Spalding (36).

In this model, the Reynolds stresses are calculated
using the Boussinesq eddy viscosity hypothesis and may be

written as
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M 1 ,~3\ - irj e .U
a\\ " TxT ) 3 5 K

where nt is a turbulent viscosity, k is the turbulent

kinetic energy *U-'U,', and <. is the Kronecker delta.

The turbulent viscosity /it is specified by

Mt = CMp k \
- V kZe (2.12)
where is a constant, k is the turbulent kinetic

energy, and Le is the length scale related to e, the rate
of energy dissipation by viscosity. Lf is typical of the

size of the eddies in the energy transfer range.

Thus, two unknowns, k and e are introduced which
require two equations for closure. Exact equations
expressing transport of k and e can be derived from the
Navier-Stokes equations and modelled forms of these may
be expressed as follows (36):

a) Kinetic energy equation

3 5 ~ GV HX k axv. ~XW\

(2.13)

b) Kinetic energy dissipation rate equation

29



'bt _ a-* rr AU ~» 1
vt " S at 'ax® A
v £ bV but lawy. (g f (2.14)

B KT>VCw™ + “STj

In equation (2.12), (2.13) and (2.14), it is assumed that
C, C2, CM, at, ak are constants, and have the following
values as given by Launder et al. (35) and Launder and

Spalding (36)

= 0.09 Cl=1.44 <C2=1.92 ak=1.0 af£=1.3

The closed set of equations with this set of
parameters has come to be known as the standard k-e model

for high Reynolds number flows.

The standard k-e model has been applied in the
studies of such diverse flow situations as flow over a
backward facing step (37), flow in a sudden pipe expan-
sion (38) , flow in diffusers (39) , and flow over a square
obstacle (40) . In general, the comparisons between
calculations and experiments is considered to be satis-
factory. Thus, the standard k-e model is widely used in

engineering calculations.

2.3 Low Reynolds number k-e model
The standard k-e model is derived by assuming high
Reynolds number condition (41) . During the past few

years, many attempts were made for extending the turbu-
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lence closure models to enable them to be used at low

Reynolds numbers condition.

Most of the low Reynolds number models proposed
make use of either a wall damping effect and/or a direct
effect of molecular viscosity on the constants and
functions of the turbulence-transport equations original-
ly used for high Reynolds number condition. As there is
a lack of reliable turbulence data at 1low Reynolds
numbers, these modifications were largely based on
numerical experiments and comparisons between calcula-

tions and experiments in terms of global parameters.

Patel et al. (42) evaluated in detail eight 1low
Reynolds number turbulence models, namely those of Chien
(43) , Dutoya and Michard (44) , Hassid and Poreh (45) ,
Hoffmann (46), Lam and Bremhorst (47), Launder and Sharma
(48), Reynolds (49), and Wilcox and Rubesin (50). The
first seven models are based on the standard k-e model.
The different models were evaluated in the 1light of
available physical and experimental evidence. Patel et al.
showed that most modifications to the basic high Reynolds
number model do not have a sound physical basis. The
models of Hassid-Poreh, Hoffmann, Dutoya-Michard, and
Reynolds failed to reproduce results of even the simplest

test case, that of the flat-plate boundary layer.

After an overall evaluation of the results obtained
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for all the test cases, Patel et al concluded that the
models of Launder and Sharma, Chien, and Lam and Brem-
horst, which are based on the modification of the
standard k-e model, and that of Wilcox and Rubesin
produce comparable results and their performance are

considerably better than other models.

Of these models, only the one by Lam and Bremhorst
is of a form similar to the standard k-e model of Launder
and Spalding. The other models require the introduction
of extra terms in the transport equations for k and e,
and are thus more complicated than the Lam and Bremhorst

model.

2.3.1 The Lam and Bremhorst*s k-e model

Lam and Bremhorst (47) proposed that the turbulence

kinetic energy k and the dissipation rate of turbulence

energy e can be determined from the following transport

equations:

(2.15)

(2.16)
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and the turbulent viscosity given by

v (2.17)

where ak = 1.0, a 1.3, c 1.44, c2 = 1.92 and o0"=

0.09, same as that given by Launder and Spalding.

In the above equations, the functions £ , f1 and f£f2
are introduced to account for the low Reynolds number and
wall-proximity effects. When the f's are all assumed to
be equal to one, the above equations are similar in form

to the standard k-e model of Launder and Spalding.

i) the function £

Function £ in equation (2.17) is introduced to
account for the effect of molecular viscosity on the
shear stress (42) . In regions near a wall where viscous
effects become important, f* will differ considerably
from unity. Jones and Launder (33, 34) proposed a formula
for f* that made it a unique function of the turbulence
Reynolds number Rt (Rt = £ ). In this formulation, £*
is affected only indirectly by the presence of a wall

through Rt.

Lam and Bremhorst argued that the presence of a

wall should have a direct influence, and they postulated

that
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"/RAIT'V, i\
Tu - U -e r t \ (2 .18)

where TK=K * is a turbulence Reynolds number, and
and At are constants; the y in Rk is the normal distance
from the nearest wall. This renders f a function of both
Rk and Rt. Also, ik is proportional to y4 near the wall,
in agreement with the mixing length formula of Van
Driest. The presence of a wall now has a direct and
indirect influence on f . The values of the constants A"
and At, determined by trial and error, have the following
values :

A* = 0.0165 At = 20.5

ii) the function f£f1

The function £f1 is introduced to increase the e-
production near the wall. Remote from a wall, fl1 is
approximately unity. In the near wall region, it is found
that f1l has to assume larger values. This has the effect
of increasing the dissipation rate, and results in a
lower peak of k to match available experimental data. Lam

and Bremhorst proposed that

(2.19)

The constant Ad is given a small value so that remote
from a wall and when the turbulence level is high, f* and
hence fl will be approximately unity. Close to a wall, f£

will be small and f1 will become large. The value of the
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constant Ad is taken to be 0.05, and is determined by

trial and error.

iii) the function £2

Function f£f2 is introduced to simulate the change in
the decay rate of homogeneous turbulence as the Reynolds
number Rt becomes small. It was chosen so that the model,
when applied to the calculation of the decay of isotropic
grid turbulence, accorded with experiment for both high
and low turbulence intensities. Lam and Bremhorst assumed

that

* (2.20)

2.4 Selection of the model used in the investigation
Lam and Bremhorst (47) tested their model by
application to fully developed turbulent pipe flow.
Satisfactory predictions have been obtained with the
model and agreement with available experimental data is
found to be good. Patel et al. (42) evaluated eight low
Reynolds number turbulence models, and concluded that the
Lam and Bremhorst model, along with the models of Launder
and Sharma, Chien, and Wilcox and Rubesin produce
comparable results in the test cases chosen and their

performance are considerably better than other models.

The Lam and Bremhorst model is also simpler than
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other models. It is similar in form to the standard k-e
model of Launder and Spalding. Thus, existing computer
codes that use the standard k-e model can be easily
modified to implement the Lam and Bremhorst model.
Therefore, this model is selected in the investigation of
the performance of conical entrance orifice plate, which

is essentially used at low Reynolds number condition.

34(b)



CHAPTER 3

SOLUTION PROCEDURE

3.1 Introduction
3.1.1 The general conservation equation

The differential equations which describe turbulent
flows were presented in chapter 2. For steady axisymmet-
ric flow through a pipe, the general form of these
conservation equations governing the transport of mass,
momentum, turbulence kinetic energy and its dissipation

rate can be written in cylindrical coordinates (z,r) as

In the above equation, ¢ stands for a general
variable, namely, Vr the radial velocity, V2 the axial
velocity, k the turbulent kinetic energy, and e, its
dissipation rate. The equation for ¢ = 1 is the conserva-
tion of mass equation. The corresponding values of and

are given in table 3.1.

The differential equations represented by equation
(3.1) and table (3.1) were solved by means of the
"PHOENICS" computer code. The version of " PHOENICS" used
is version 1.3. This computer code embodies a finite-
domain formulation of the differential equations and a

procedure for solving them.
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Conservation of o r, >
mass \ 0 0
axial momentum v,
+¢4 AV KD
-31
hz
radial momentum VY AXefC
— 2-XetgcVv 'bf>
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kinetic energy K BX., . F**
0K
dissipation rate t -AX vV
- kc*t)
!
V*
v ~>Z

-*e«x = M- « XLt

Table 3.1 Exchange coefficients rf and sowv-ce -tevwns Sx
for any general property < *
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The calculation procedure was derived from the work
of Patankar and Spalding (51), and has also been reported
by Caretto et 211. (52) and Patankar (53,54,55). The
"PHOENICS1 computer code has been described by Spalding
(56). Information were also given in technical reports
published by CHAM Limited of London (57,58). Thus, the
"PHOENICS" computer code will only be briefly described

here.

3.1.2 The "PHOENICSI computer code

"PHOENICS" is a general purpose computer code for
the simulation of fluid flow, heat transfer, chemical
reaction and related phenomena, and was developed by CHAM

Limited of London.

It comprises of two distinct computer programs. The
smaller one is called the 'SATELLITEl, and the larger one
'"EARTH'. The 'SATELLITE' is a data-preparation program.
In order to simulate a physical phenomenon, the problem-
specific information is expressed in 'PHOENICS Input
Language' and turned into commands which are contained in
a 'quick-input' file, Ql. The 'SATELLITE' reads the Q1
file and converts the problem-specific information into
a data file for transmission to 'EARTH'. All information
as to what is to be simulated is supplied to 'EARTH'

through the use of the Q1 file.

The '"EARTH' program is the code that actually
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performs the simulation. It can be regarded as a general
purpose partial-differential-equation solver. It contains
sequences for computer memory storage allocation,
formulation and solution of the finite domain equations,
output of results etc. '"EARTH' contains a subroutine
'GREX1' which has been created to provide fluid property,
boundary condition and other commonly required features

for 'EARTH' to carry out its flow simulating function.

As the variety of actual fluid flow, heat transfer
and chemical reaction phenomena that 'EARTH' may be
called upon to simulate is virtually unlimited, there is
a need to be able to extend the capabilities of 'EARTH'
as the case may be. 'EARTH' contains a Fortran subroutine
called 'GROUND'. '"GROUND' is a mere empty shell which
user may access to insert his own special coding sequenc-
es as necessary to suit his own particular need. 'GROUND'
is called by 'EARTH' at pre-set points of the solution
cycle, and if the wuser inserts appropriate Fortran
statements in the appropriate location of the 'GROUND'
subroutine, 'EARTH' absorbs these into the solution

process. Thus, the subroutine 'GROUND' may be problem-

specific. 'GREX1' can be regarded as an examplary
'GROUND '.

Besides 'SATELLITE' and 'EARTH', an interactive
graphics program, 'PHOTON', is supplied as part of the
"PHOENICS" package. 'PHOTON' serves as a post-processor
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to display the results of 'EARTH' calculations and can be
used to display the grid, the velocity vectors, and

contour levels of scalar wvariables.

3.2 The finite-domain equations

"PHOENICS" employs a finite-domain formulation of
the differential equations represented by equation (3.1)
and table (3.1). The formulation and the associated
solution procedure has been reported by Patankar and
Spalding (51), Caretto et al. (52) and Patankar (53,54,

55), and will only be briefly described here.

3.2.1 The finite-domain arid

The whole domain under study is divided into small,
discrete regions (called cells) by a set of orthogonally
intersecting grid lines. The grid spacing may be non-

uniform. Figure (3.1) shows a typical control cell.

Within each cell is a typical point P (called a
grid node) formed by the intersection of the grid lines.
The other grid points E, W, N, S are the east, west,
north and south neighbours of P. The corresponding faces
of the control cell are denoted by e, w, n and s, and are

located midway between the nodes.

With the exception of the velocities, all the

variables are calculated at the grid nodes. The velocity

components are calculated at the faces of the control
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Fig. 3.1 A typical two dimensional cell
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cell. This is known as the staggered-grid system. Figure
(3.2) shows a staggered grid arrangement. The advantages
of the staggered grid arrangement are that the normal
velocity components are directly available for the
calculation of mass flow rate at the control volume
faces, and that the pressure gradients driving the

velocities can be calculated conveniently.

3.2.2 Derivation of the finite-domain equation

The finite-domain equations are obtained by
integrating the differential equations over the control
cells. The treatment for the convection terms, diffusion

terms and the source terms will be briefly described.

i) the radial direction convection term
Integration of the convection term in the radial
direction over a control volume (with unit angular

distance, i.e. one radian) gives

~ N, N vvw ) v<kveéa

(oW

In the above expression, all fluid properties are
assumed to be uniform over cell faces. (pVA)n and (pVRA)s
denotes the mass fluxes through the north and south cell
faces respectively. On and ¢ are the values of the

variable at the north and south cell faces. A is the area
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of the cell face. With the exception of V£, the values
prevailing at the cell face are those at the nearest grid

node on the 'upwind' side of the face.

ii) the axial direction convection term
Similarly, integration of the convection term in

the axial direction gives

where the subscript e and w stands for the east and west

cell faces.

iii) the diffusion terms
The diffusion terms are integrated, similar to the
convection terms, over a given control volume. The

&

property gradients and exchange coeffi-
cients I\ are taken to be uniform over cell faces. The
properties ¢ are assumed to vary linearly, and that the
value of the exchange coefficient on the cell face is

taken to be the arithmetic mean of those on either side

of the cell faces in the present study.

Thus the diffusion flux of ¢ across the east face

of the control cell is given by
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where &¥Eis the distance from grid node P to grid node E.

iv) the source term
The source term is integrated over the control

volume and is expressed as a linear function of Op. Thus,

S v = S* &

where S2 is the coefficient of Op, and S1 is the part of

Is that does not explicitly depend on Op.

3.2.3 General form of the finite-domain equation
The combination of the convection, diffusion and
source terms leads to the finite-domain equation, which

can be written as

aplp ~ aN™N + as™S + aE"E + aw™J + S (3.2)

where aN, as, aE, and au are coefficients expressing

convecton and diffusion, and

ap= aN + as + aE + au - S2

Equation (3.2) can be written in a generalized form

apdp - E 340~ + S (3.3)

where the subscript nb denotes the neighbouring grid
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nodes of P, and the summation is to be taken over all the
neighbouring grid points. For two dimensional cases,
there are four neighbouring points, and for three
dimensional cases, there are six neighbouring points. A
typical three-dimensional control cell is shown in figure

(3.3)

3.2.4 Momentum equations

The treatment of the momentum equations is the same
as above, with the control volume staggered in relation
to the normal control volume around the main grid point
P. The momentum control volumes is shown in figure (3.4).
Thus, the resulting discretization equation for the

velocity component ue can be written as

aeUe = 2 anbUnmb + S1 + (PP " PE>Ae

2 arilitb + S (3.4)

The term S1 includes the source terms other than
the pressure gradient. The term (pp - PE)Ae is the
pressure force acting on the control wvolume, Ae being the
area on which the pressure differences acts. The coeffi-
cients ae and a® are similar to those given in
equation (3.3). Expressions similar to equation (3.4) can

be written for each of the velocity components.

3.2.5 Pressure and velocity correction equations

The momentum equations can only be solved when the
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Fig. 3.3 A typical 3 dimensional control cell
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pressure field is given. Let u* denotes the velocity
field based on an estimated pressure field p*. u* will,
in general, not satisfy the continuity equation and must
be corrected by an amount of u' as a consequence of a
pressure correction p' applied to the estimated pressure

p*. Thus,

p* + p' (3.5)

el
I

and

u=u* + u' (3.6)

A discretization equation for the pressure correc-

tion p’ can be obtained (54,55,57), and for two dimen-

sional cases, is of the form

aPP p ~ "n asP's 3eP 'e awP Iu ” (3*7)

where b = (pu*A)u - (pu*A)e + (pv*A)s - (pv*A)n

and is the continuity error of the cell. The a's are

influence coefficients of the form .

Velocity - correction formula can be obtained by
manipulating equations like equation (3.4) and (3.6), and

is of the form

aeu'e = (P'p - P'E)Ae (3.8)
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A velocity - correction equation can be obtained

for each velocity component.

3.3 Solution procedure

The finite-domain equations like equations (3.3)
and (3.4) are only nominally linear. The coefficients in
these equations are themselves dependent on the wvalue of
the physical quantity <5 Also, the coefficients for one
physical quantity may be influenced by the values of
other physical quantities. Because of these interlinkages
and nonlinearities, the final solution has to be obtained

by iteration.

A solution procedure called 'SIMPLE' has been
developed for the calculation of the flow field. The
procedure has been described by Patankar and Spalding
(51), Caretto et el (52) and Patankar (53, 54, 55). The

important operations of the 'SIMPLE' algorithm are 1

1. Guess the pressure field p*.

2. Solve the momentum equations such as equation
(3.4) to obtain the velocity components.

3. Solve the pressure-correction equations such as
equation (3.7) to obtain p'.

4. Calculate the pressure p from equation (3.5),
and the corrected velocity components from equa-
tion (3.6).

5. Solve the finite-domain equations for all other
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variables.

6. Use the newly obtained values of the variables as
improved estimates, return to step 2, and repeat

the whole procedure until convergence.

"PHOENICS" wuse the 'SIMPLEST' solution algorithm
(59), which is a variant of the 'SIMPLE' algorithm. In
'SIMPLEST', the coefficients arb of the momentum equa-
tions (equation (3.4)) contain only the diffusion

contributions; the convection terms are added in to S.
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CHAPTER 4
DEVELOPMENT OF A MODEL FOR CONICAL ENTRANCE

ORIFICE PLATE FLOW SENSOR

4.1 Introduction

The conical entrance orifice plate is essentially
used as a low Reynolds number flow measuring device, and,
as discussed in chapter 2, the Lam and Bremhorst k-e
model is selected in the investigation of its performance
characteristics. However, the "PHOENICS" computer code,
which is used in the present study, is only equipped with
the standard k-e model. Therefore, to develope a model
for the conical entrance orifice flow sensor, it is
necessary, first of all, +to incorporate the Lam and
Bremhorst k-e model into the "PHOENICS" computer code,

making use of the facilities provided by "PHOENICS".

An instruction file called Q1 must also be created
to transmit to the 'EARTH' program of "PHOENICS" all the
necessary information for the simulation. These include
the orifice plate geometry, upstream and downstream
lengths, the number and distribution of the grid points
and relevant properties of medium such as viscosity and
density of fluid used in the simulation. The number of
grid points must also be determined for the final

solution to be 'grid-independent'.
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4.2 Incorporating the Lam-Bremhorst k-e model into the
computer program
The Lam and Bremhorst k-e model differs from the
standard k-e model embodied in "PHOENICS' in the expres-
sion for the source terms and viscosity. Therefore, these
have to be incorporated into the computer program through

the use of the subroutine 'GROUND'.

4.2.1 Modification to subroutine 'GROUND'

'"GROUND' is merely an empty shell provided by
"PHOENICS" for the user to insert his own coding sequenc-
es for his own special purposes. The 1listings of the
coding sequences required to be inserted in subroutine
'"GROUND' for the implementation of the Lam and Bremhorst

k-e model are given in Appendix A and is described here.

i) Calculation of the length scale of turbulence

The length scale 1 = CDk3/2/e (36) is first calcu-
lated from existing values of k and e and stored in the
'EARTH' array AUX(LENl) for later use. It is required in
the evaluation of the source terms for the k and e
equations. The required coding is inserted in section 12

of group 9 of subroutine 'GROUND'.

ii) Calculation of the turbulent kinematic viscosity
The turbulent kinematic viscosity in the Lam and
Bremhorst model is given by vt = C*f*/e (equation 2.17).

The function f* (equation 2.18) depends on the turbulence
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Reynolds number Rk = k% y/Vt and Rt = k2/i/te; the y in Rk

is the normal distance from the nearest wall.

Hence the distance y of all the cell centres from
the nearest wall are first determined and stored in the
array GWDIST. These, together with the existing values of
k, are used to calculate the value of Rk for each cell in
the domain under study. The values of Rt are also ob-
tained using existing values of k and e. The wvalues of Rk
and Rt so calculated are temporarily stored in the
'EARTH' arrays EASP3 and EASP5 and used in evaluating f£f*.
The values of f are then used to evaluate the turbulent
kinematic viscosity vt. The values of ik are then stored

in the 'EARTH' array AUX(VIST).

The coding sequences required for the determination
of the turbulent kinematic viscosity are inserted in

section 5 of group 9 of 'GROUND'.

iii) Calculation of the functions f1l and £f2

The functions fl1 (equation 2.19) and £f2 (equation
2.20) are required in the determination of the source
term of the e equation (table 3.1). The values of the
functions £, and f2 obtained are stored temporarily in the

'EARTH' arrays EASP4 and EASP6 for use in later sections.

The coding sequences required are also inserted in

section 5 of group 9, immediately after the coding
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sequences for the calculation of the turbulent kinematic

viscosity.

iv) Calculation of the source term for the k equation
In 1PHOENICS", the source term for a general

variable ¢ is expressed in a linearized form as:

S = C(Va.- 0) (4.1)

where C is called the coefficient part of the linearized
source term and is called the value part of the

linearized source term.

Thus, for the k equation, the source term (table

3.1) is given by:

(4.2)

Equation (4.2) dictates that the coefficient is

h 1 i £ Q1
and the value is -C—A.Tu%;g

The coding sequences for the evaluation of the
coefficient of the source term is included in section 10
of group 13 of 'GROUND', and that for the calculation of
the value of the source term is included in section 21 of

group 13.



v) Calculation of the source term for the e equation

For the e equation, the source term (table 3.1) is

given by:
s — FiriIMIG - £2C2P£)
=1f $1 {2 Ut[i £ , r - Li (4.3)
c" £., L~ ft K«- 1
Thus, the coefficient is Si * _p and the

value is E1 %L_J G

The corresponding coding sequences for the coeffi-
cient is inserted in section 10 of group 13 while that

for the value is in section 21 of the same group.

vi) Wall boundary conditions

Close to solid walls, viscous effects predominate
over the turbulent ones, and there are two methods of
accounting for the near-wall regions in numerical methods
for computing turbulent flow. One method is the modelling
of the low-Reynolds-number phenomena, and the other is

the use of wall functions.

a) Low-Reynolds-number modelling

The Lam and Bremhorst k-e model is a low-Reynolds-
number turbulence model and is thus wvalid for the whole
domain under investigation, including the near-wall
regions. In this model, the velocity components and the

value of k are specified to be zero at the wall. However,
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e is finite at the wall, and is given by (47):

e (4.4)

The variation of k and e near the wall may be
expanded in a Taylor series. By retaining only the first
term in the expressions, equation (4.4) is equivalent to:

X0MK
(4.5)

Thus, Parry (60) recommended that, as the boundary
conditions for the k equation and e equation, a zero
value is assigned at the wall for the k equation, and
e = — i for the e equation for the grid cell close

to the wall.

Boundary conditions are introduced in "PHOENICS" by
way of sources S = C(Va_- <) (equation 4.1). When the
boundary condition dictates that the value of @ at a grid
point should be fixed, Va.is set to the desired wvalue and
C is set to a very large number. For then, equation (3.3)

reduces to

P (2 aniAb + vacCV ( ap + ©O)

= Va.

because Vax C is much larger than all other terms in the

numerator and C is much larger than all other terms in
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the denominator.

Thus, to implement the boundary condition for e in
accordance with Parry's recommendation, the 'value' of
the source term is set equal to 2vk/y2, and the 'coeffic-
ient' is set to be 1010, a very large number. The corre-
sponding coding sequences for the 'value' of the source
term used in the boundary condition is inserted in

section 22 of group 13.

b) The wall-function method

The wall function formulae (36, 6i) are used in
this method, and when used with the Low-Reynolds-number
model, the distance between the wall and the first grid

node can be very small.

For the near wall grid nodes, the following
algebraic relations are employed when the wall function

method is used:

ut+ = y+ for y+ < 11.5

" = 1n (Ey+) for y+ > 11.5 (4.6)

k = uT2/ yct (4.7)

e =ul¥ X vy (4.8)
where y+ = uly/v, u+ = u/uT, uT = 7(rw/p), y is the

normal distance from the wall, u is the resultant velocity

parallel to the wall, and (x is the wall shear stress.
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X is the von Harman's constant (X = 0.435) and E is a

roughness parameter (E = 9 for smooth walls).

The above relationships are embodied in "PHOENICS"

as one of the standard features.

4.3 Modelling of flow through a conical entrance
orifice plate
The Lam-Bremhorst k-e model was applied to the flow
through a conical entrance orifice plate. The flow was
assumed to be steady and axi-symmetric; and cylindrical

polar-coordinates were used in the numerical modelling.

4.3.1 Geometry

The computational test section containing the
orifice plate is shown in figure 4.1. The domain is
divided into regular cylindrical-polar grids. Variable
grid spacing was used. The grids were concentrated in
regions of large velocity gradients; i.e. in the area of
the orifice plate in the axial direction, and close to
the pipe wall and to the orifice 1lip in the radial

direction.

The conical entrance orifice plate was created by
declaring the appropriate regions of the computational
test section to be inaccessible to the fluid. In
"PHOENICS", the area A in the diffusion and convection

terms, and the volume VQ in the source terms of the
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Fig. 4.1 The computational test section
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finite-domain equation may differ from the products of
the cell-side lengths which represent the nominal cell-

face areas and volumes. Thus,

Vo= Vrman x fv

where A+ and stand for the nominal values, and fA and
fy are the so-called 'porosity factors' to which the user
of the computer code can ascribe values which may differ
from unity. fA can differ from cell to cell and from face
to face. The volume porosity can also vary from cell to
cell. A porosity factor of 0.0 has the effect of com-
pletely blocking off the appropriate part of the cylin-
drical integration domain, which a porosity factor of 1.0
indicates that no blockage is present, and the corre-

sponding cell is freely accessible by the fluid.

Thus, the inaccessibility to the fluid of specified
regions in the computational test section may be repre-
sented by way of porosity factors, which allow the extent
of blockage of each cell face and all volume to be

numerically expressed.

Figure 4.2 shows the use of porosity factors in
creating the conical entrance orifice plate in the
computational test section. The plate, with the exception

of the conical part, is created by assigning a porosity
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.F = 0.5 for cells corresponding to the
conical surface

Representation of the orifice plate
by the use of porosity factor (P.F.)
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factor of 0.0 to the cells in the region of interest. The
conical part is simulated by employing equal number of
grid points in the axial and radial directions, and a
porosity factor of 0.5 for cells in the region of
interest. For a bevel angle of 45 degree, the lengths of
the cells in the axial and radial directions are set to
be equal (W= Wtin figure 4.2). All other cells in the
integration domain are assigned a porosity factor of 1.0,

indicating that no blockage is present.

4.3.2 Grid distribution

For the solution of the finite-domain equation, the
computational test section has to be divided into regular
cylindrical-polar grids. The distribution of grid lines
were such that they concentrated in regions of large

velocity gradient.

Thus, variable spacings were used in the axial
direction in regions Al and A4 (figure 4.3a), and for
grids in the radial direction in regions R1 and R3 (figure
4.3b). The grids were concentrated axially in the area of
the orifice plate and radially near the plate 1lip and
pipe wall. The axial grid spacing in region A3 also
varied, with grids concentrated near the conical part of

the orifice.

To simulate the conical part of the orifice, the

number of cells in region A2 in the axial direction is
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a) Division of the computational test section into
regions to describe the axial grid line distribution

b) Division of the computational test section into
regions to describe the radial grid line distribution

Fig. 4.3 Grid line distribution
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the same as the number of cells in region R2 in the
radial direction. The axial grid spacing in region A2 is
uniform; so is the radial grid spacing in region Rj.
These two spacings are set to be equal for a bevel angle

of 45 degree.

4.3.3 Boundary conditions

The boundaries of the computational test section
are shown in figure 4.4. There are a total of eight
boundaries - the inlet plane (region 6) and outlet plane
(region 7) , the pipe wall (regions 1 and 2) , the two
faces of the orifice plate (regions 3 and 4), the 1lip of
the orifice plate (region 5) and the axis of symmetry.
The conditions of the variables at the boundaries have to
be specified for the solution of the finite-domain

equations.

i) Inlet plane (region 6)
At inlet, the axial velocity profile was assumed to

be uniform with a magnitude \jz given by

where v 1is the kinematic viscosity of the fluid, D is the
pipe diameter and R” is the pipe Reynolds number.

The inlet profiles of turbulent kinetic energy k
and its rate of dissipation e were also assumed to be

uniform and their magnitudes kjn and ein given by the
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Pipe Wall

Inlet Outlet
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Axis of Symmetry

Fig. 4. Boundary regions of the computational
test section
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following relationship.

(4.9)

n (4.10)

where i intensity of turbulence

A = length scale factor

o
I

pipe radius

ii) Outlet plane (region 7)
At the outlet plane, only the pressure needs to be

specified. The pressure is taken to be constant with a

numerical value of zero.

iii) At walls (regions 1, 2, 3, 4 and 5)

At the pipe wall, and at the orifice plate walls
(except the bevelled part of the orifice) , the wall-
function method (or the low-Reynolds-number modelling
method) (section 4.2.1) is used to specify the magnitudes
of the velocity, turbulent kinetic energy and its rate of

dissipation at the near wall grid nodes.

4.3.4 Auxiliary information
i) Under-relaxation

The system of finite-domain equations 1like equa-
tions (3.3) and (3.4) are only nominally linear. Because

of the interlinkages and nonlinearities present in these
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equations, the final solution has to be obtained by
iteration. However, successive iteration does not always
lead to a converged solution. The wvalues of variables
might drift away from what can be considered a reasonable
solution and such divergence of the iterative process

must be avoided.

To suppress the tendency to diverge, it is often
necessary to slow down the changes in the values of the
variables by using 'under-relaxation'. Two under-relax-
ation devices are incorporated as a standard feature of
"PHOENICS" - the 'false-time-step under-relaxation' and

the 'linear under-relaxation'.

a) 'false-time-step under-relaxation'
This under-relaxation practice adds
S1 and to aP in equation (3.3). Thus , the finite-

domain equation becomes

~ v S,
. (4.11)
a.
where V0 is the cell volume, is the 'false-time-
step', and Op* is the value of <qp from the previous
iteration.
The smaller the value of , the greater will

be the tendency for the finite-domain equation to imply
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<P = 0P
Thus, the solution is being slowed down and the
divergence of the iterative solution procedure may be

prevented.

b) 'linear under-relaxation'

Equation (3.3) can be rewritten as

= OP* + [(2 anb™nb + S1)/ aP “ ~P¥*]

where Op* is the value of qp from the previous iteration.
The terms in the square bracket represent the change in
Op during two consecutive iterations. To slow down the
change, an under-relaxation factor a can be used such

that

Op= OP* + a[(Z arlrb + S1)/ ap - 0p*] (4.12)

when a is unity, no under-relaxation is effected. If a is
close to zero, the value of Op changes only slowly, and
thus the divergence of the iterative procedure may be

prevented.

ii) Convergence

An iterative process is said to have converged when
further iterations will not produce any change in the
values of the dependent wvariables. Practically, the

iterative process is terminated when some arbitrary
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convergence criterion is satisfied. In "PHOENICS", the
convergence is monitored through the use of residuals,
which is a measure of how well the finite-domain equa-
tions are satisfied by the current values of the depen-
dent variables. The residual R* of a variable 0 at a node

P can be calculated from

= 2 - aptp (4*13)

The residuals represent the error that need to be

reduced and eliminated during the successive iterations.

"PHOENICS" calculates the sum of the absolute
values of for all cells in the integration domain. To
facilitate monitoring, the residuals are suitably
normalised by a reference value. When the sum of the
absolute values of the residual for a variable falls
below the associated reference value, the solution for
that variable is terminated. The values for that variable
will still be updated and the residual calculated as the
solution for other wvariables continues. When the residual
goes above the associated reference value, the solution

process for that variable will be activated again.

4.4 Tests on the conical entrance orifice plates
The Lam-Bremhorst k-e model was chosen in the study
of the characteristics of the conical entrance orifice

plates. Other things that need to be looked into in the
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simulation of flow through the orifice plates are the
lengths of the solution domain on the upstream and
downstream side of the orifice plate, and the distribu-
tion of the grid points in the domain under investiga-
tion. Also, the value of the residuals (equation 4.13)
when the solution can be considered as converged has to

be considered.

In the use of the conical entrance orifice plates
as a flow measuring device, discharge coefficient is the
quantity of primary interest. Therefore, a correct model
can basically be said to have been obtained when the
chosen lengths of the solution domain on the upstream and
downstream side of the orifice plate are sufficiently
large, so that any further increase in these lengths will
not result in a change in the discharge coefficient; the
grid distribution is sufficiently fine so that the
discharge coefficient remains unchanged as the grid is
further refined; the 1level of the residuals being
sufficiently small so that the discharge coefficient
remains constant with respect to changes in the residu-

als.

4.4.1 General information on the test cases

In the modelling of flow through orifice plates,
most of the previous workers (16,17) tested the grid
distribution of their models at only one /3 ratio. Then

the grid distribution so obtained was used in models for
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other p ratio orifice plates.

For the same grid distribution, the density of the
grid in different regions of the solution domain would
not be the same as the p ratio is altered. Therefore,

error might occur in the numerical results obtained.

The limits of use for conical entrance orifice
plates as specified in BS 1042 (section 1.2 : 1984) is
for a p ratio of 0.1 < p < 0.316, and for a pipe
Reynolds number (R*) of 80 < R* < 60,000. Thus, tests
were performed at p ratios of 0.1, 0.2 and 0.3 and at a
Reynolds number (R*) of 60,000, so as to determine the
number of grids, and the upstream and downstream lengths

of the orifice plates required for the model.

i) Physical case used in the tests

In all these tests, numerical results were obtained
using a pipe 100 mm in diameter and with water as the
working fluid. The density of water is taken to be
1000 kg/m2 and its kinematic viscosity taken to be

10'6 m2/s.

ii) Inlet and outlet conditions

At the inlet, the profiles for the axial velocity
\JZ' the turbulent kinetic energy k and its dissipation
rate e need to be specified for the solution procedure.
Thus, a uniform profile was specified at the inlet for

the distribution of velocity \lz ( turbulent kinetic energy
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k and its rate of dissipation e.

- the inlet velocity Vzwas set to be equal to
600 mm/s so as to attain a pipe Reynolds number
of 60,000.

- the kinetic energy of turbulence k is given by
equation (4.9), with the level of turbulence
intensity i set arbitrarily to a small value
of 0.003.

- the corresponding value of dissipation rate e
was determined from the equation e = ggﬁ. °
where R is the pipe radius (62). Thus, the length

scale factor A in equation (4.10) is equal to

0.333.

At the outlet, a constant pressure was prescribed

and was given a numerical value of =zero.

iii) Monitoring of convergence of the solution procedure

The convergence of the solution procedure is
monitored through the use of residuals (equation 4.13).
To facilitate monitoring, the residuals were normalised

by a reference value.

For the pressure p, the residual is the sum of the
absolute values of the cell-wise volumetric continuity
errors. In the test runs, the residual for p was normali-
sed by dividing it with a reference value given by

1.25 x 10'3 x Qv, where Qy is the volume rate of flow in
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the pipe. The reference value for the axial velocity \lz is
2.5 x 10'3 x\L x Q , where QOm is the mass rate of flow in
the pipe. The reference value for the radial velocity Vv
is 1.25 x 10'2 x V1 x Q . The reference value for the
turbulence kinetic energy k is 2.5 x 102 x kin x Qn/ where
k., is the value of k at the inlet. The reference value
for the dissipation rate e is 2.5 x 105 x ein x Qm, where
e;, is the value of e at the inlet.

The reference values were chosen arbitrarily, but
were such that the magnitudes of the normalised residuals
for the variables would not be too far away from each
other. Otherwise, the solution of some wvariables would

stop while the values of other variables were still far

from being converged. This might lead to divergence.

For the test cases considered, the fluid flow was
predominantly in the axial direction. It was observed
that the normalised residual for the axial velocity Vz
gave a good indication about the convergence of the
pressure field. Also, in the use of conical entrance
orifice plates as a flow measuring device, the discharge
coefficient will be the parameter of primary interest.
Thus, the normalised residual for Vx was plotted against
the discharge coefficient in figures 4.5 to 4.7 in order

to show the convergence of the solution procedure.
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4.4.2 Tests on the B = 0.1 conical entrance orifice
plates
i) Grid distribution
To determine the number of grids required for the
model, simulation was performed with three different
grids. The computational test section was divided into
regions as depicted in figure 4.3, and the number of
grids in each region is given in table 4.1. The grids in
regions Ax and R2, which correspond to the conical part
of the orifice plate, were uniformly spaced. The grid
distribution in other regions were non-uniform, being

more concentrated near the walls.

No. of grid nodes Total no. of grid nodes
A1 A2 A3 A4 R1 R2 R3 (axial x radial)
Testno. 1 38f'12 24 38 vs 9 12 30 112x51
Testno.2 38 f°15 30 38 e« 9 15 30 121 x 54
Test no. 3 62 \£J20 40 62712 20 40 184 x 72

Table 4.1 Grid distribution for the computational test section
((3 ratio = 0.1 )

ii) Upstream and downstream lengths

The lengths of the solution domain upstream and
downstream of the orifice plate were specified to be
30 D and 16 D respectively in tests number 1 and 2, where
D is the pipe diameter. The corresponding values were 40
D and 20 D for test number 3, with the density of grid

more than 40 % greater than that in test number 2.
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iii) Under-relaxation

To suppress the tendency of the solution to
diverge, under-relaxation factors had to be used. 'Linear
under-relaxation' was applied to the pressure while
'false-time-step under-relaxation' was applied to other
variables. The values of the under-relaxation factors
used were varied during the course of solution to prevent
divergence or to accelerate convergence. The range of
values of under-relaxation factors used were 0.1 to 0.5
for the pressure p, 0.01 to 0.001 for the axial velocity
V.70.01 for the radial velocity Vv; 0.1 to 0.001 for the
turbulence kinetic energy k and 0.1 for the rate of

dissipation e.

iv) Results

Figure 4.5 shows the wvariation of the discharge
coefficient (corner tappings) with the normalised
residual for the axial velocity Vr for the three grid
distributions shown in table 4.1. It can be seen that the
discharge coefficient becomes asymptotically constant as
the residual is reduced and the solution can be consid-
ered to be well converged when the magnitude of the
residual has reduced to below 10. The number of itera-
tions required for the solution varied from about 60,000
to over 100,000 sweeps, depending on the grid distribu-
tion used. The variation of the discharge coefficients
with the normalised residuals of all the variables are

given in tables 4.2 to 4.4.
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Fig. 4.5 Variation of the Discharge Coefficient with the Normalised Residual
for the axial velocity component



P
3.009E+1
2.987E+1
2.996E+1
4.742E+1
3.532E+1
1.748E+1
1.433E+1
1.314E+1

Normalised Residuals

Vv
1.481 E+2

1.280E+2
4.378E+1
2.084E+1
1.121E+1
7.734E+0
4.444E+0
3.886E+0

3.150E+0 1.310E+0

V.
4.487E+3
1.765E+3
1.349E+3
1.172E+3
7.640E+2
2.474E+2
1.976E+1
3.739E+0
1.165E+0

K
6.358E+3
5.725E+3
4.278E+2
3.506E+2
1.428E+2
1.027E+2
1.826E+1
4.849E+1
2.949E+0

E
2.489E+5

1.545E+5
8.753E+3
1.005E+4
4.438E+3
3.599E+3
5.412E+2
1.505E+3
8.407E+1

testno. 1)

Discharge Coefficient

corner
tappings
0.6808
0.7295
0.7235
0.7190
0.7161
0.7147
0.7147
0.7147
0.7147

flange
tappings
0.6806
0.7294
0.7234
0.7190
0.7161
0.7146
0.7146
0.7146
0.7146

Table 4.2 Variation of normalised residuals with discharge coefficients
( Bratio = 0.1

D&12D

tappings
0.6803
0.7291
0.7233
0.7189
0.7159
0.7145
0.7145
0.7145
0.7145



P
4.933E+1

2.273E+1
3.532E+1
2.493E+1
2.182E+1
3.595E+1
3.696E+1
3.480E+1
2.226E+1
2.630E+1
9.972E-1
8.652E-1

Normalised Residuals

W
5.537E+2

3.364E+2
1.718E+2
5.376E+1

7.699E+0
6.840E+0
5.477E+0
3.779E+0
3.086E+0
2.686E+0
7.446E-1

3.413E-1

VX
2.854E+3
1.173E+3
6.246E+2
4.225E+2
2.946E+2
1.419E+2
8.646E+1
4.920E+1
3.102E+1
2.233E+1
9.673E+0
4.150E+0

K
9.033E+3
1.729E+4
1.234E+4
9.270E+2
3.733E+2
1.393E+2
8.888E+1
2.060E+1
2.025E+1
2.089E+1
1.103E+2
7.154E+0

2
3.408E+5

6.827E+5
3.477E+5
2.355E+4
1.049E+4
4.376E+3
2.947E+3
1.520E+2
5.718E+2
5.154E+2
3.886E+3
1.237E+2

test no. 2)

Discharge Coefficient

corner
tappings
0.6932

0.7368
0.7358
0.7268
0.7226
0.7207
0.7202
0.7200
0.7199
0.7199
0.7199
0.7199

flange
tappings
0.6932

0.7367
0.7357
0.7268
0.7226
0.7207
0.7201

0.7199
0.7198
0.7198
0.7198
0.7198

Table 4.3 Variation of normalised residuals with discharge coefficients
( 8 ratio = 0.1

D&12D
tappings
0.6930

0.7365
0.7356
0.7266
0.7225
0.7206
0.7201

0.7198
0.7198
0.7197
0.7197
0.7197



P
2.083E+0
7.393E-1
9.695E-1
7.404E-1
8.544E-1
3.827E+0
4.863E+0
4.951 E+0
3.506E+0
3.991 E+0
3.831 E+0
7.014E+0
7.161 E+0
3.548E+0

Table 4.4 Variation of normalised residuals with discharge coefficients
( Bratio = 0.1

Normalised Residuals

\%
5.249E+2
3.723E+2
2.351 E+2
2.003E+2
1.036E+2
3.851 E+0
4.021 E+0
3.427E+0
3.013E+0
2.643E+0
2.425E+0
2.265E+0
1.764E+0
7.696E-1

VX
4.589E+3
2.974E+3
1.355E+3
8.564E+2
6.582E+2
3.989E+2
2.558E+2
1.057E+2
6.595E+1
3.664E+1
2.773E+1
1.717E+1
9.576E+0
3.986E+0

K
7.332E+3

9.271 E+3
6.965E+3
2.586E+3
5.135E+2
2.791 E+2
1.715E+2
3.277E+1
4.682E+1
5.577E+1
2.983E+1
5.520E+1
2.513E+1
6.177E+0

£
5.890E+5

6.985E+5
3.254E+5
9.509E+4
8.228E+3
1.252E+4
8.082E+3
1.371 E+3
1.826E+3
2.469E+3
1.248E+3
2.999E+3
1.183E+3
1.689E+2

test no. 3)

Discharge Coefficient

corner
tappings
0.7152

0.7566
0.7583
0.7540
0.7465
0.7228
0.7223
0.7223
0.7223
0.7222
0.7221
0.7221
0.7221
0.7221

flange
tappings
0.7150

0.7564
0.7581

0.7538
0.7464
0.7228
0.7223
0.7223
0.7223
0.7221

0.7220
0.7220
0.7220
0.7220

D&12D
tappings
0.7147

0.7561

0.7580
0.7536
0.7462
0.7227
0.7222
0.7222
0.7222
0.7221

0.7221

0.7220
0.7220
0.7220



From tables 4.2 to 4.4, it can be seen that the
discharge coefficients obtained in run number 2 (121 x 54
grids) differ from that obtained in run number 3 (184 x
72 grids) by only about 0.3 %. Thus the results obtained
using the grid distribution in run number 2 (121 x 54
grids) can be regarded to be grid-independent. The value
of the discharge coefficient (corner tappings) obtained
with this grid distribution is 0.7199, which differs from
the BS value of 0.734 (BS 1042: section 1.2 : 1984) by

1.92 %.

In order to confirm that sufficient lengths were
specified for the upstream and downstream distances in
the model, another test run was conducted wusing an
upstream length of 150 D and a downstream length of
106 D. In this test, the axial grid distribution in the
region of the orifice plate and the radial grid distribu-
tion was identical to that of run number 2. The results

obtained are compared with run number 2 in table 4.5.

Upstream  Downstream No. of grid nodes Discharge Coefficient
length length Al A2 A3 A4 Rl R2 R3 Corner Flange D& 12D
tappings tappings tappings
30D 16D 33 15 30 38 9 15 30 0.7199 0.7198  0.7197
150 D 106 D 83 15 30 133 9 15 30 0.7196 0.7196  0.7195

Table 4.5 Effect of upstream and downstream lengths
( 3ratio=0.1)

Thus, an upstream length of 30 D and a downstream

length of 16 D as used in run number 2 would be suffi-
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cient distances to be used in the model.

In all the above tests, the results were obtained
using the 'wall-function method' in specifying the wall

boundary conditions.

4.4.3 Tests on the B = 0.2 conical entrance orifice
plates
i) Grid distribution
To determine the number of grids required for the
model, simulation was performed with three different
grids. The computational test section was divided into
regions as depicted in figure 4.3, and the number of
grids in each region was given in table 4.6. The grids in
region A2 and R2, which correspond to the conical part of
the orifice plate, were wuniformly spaced. The grid
distribution in other region were non-uniform, being more

concentrated near the walls.

No. of grid nodes Total no. of grid nodes
Al A2 A3 A4 R1 R2 R3 (axial x radial)
Testno.1 38 15 30 38 8 15 19 121 x 42
Testno.2 38 21 42 38 8 2 19 139 x48
Test no.3 62 32 64 62 10 32 28 220 x 70

Table 4.6 Grid distribution for the computational test section
(6 ratio = 0.2 )

ii) Upstream and downstream lengths

The lengths of the solution domain upstream and
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downstream of the orifice plate were specified to be

30 D and 16 D respectively in test number 1 and 2, where
D is the pipe diameter. The corresponding values were
40 D and 20 D for test number 3, with the grid density

more than 40% greater than that in test number 2.

iii) Under-relaxation

Under-relaxation factors had to be used to suppress
the tendency to diverge. 'Linear under-relaxation' was
applied to the pressure, while 'false-time-step under-
relaxation' was applied to other variables. The values of
the under-relaxation factors were varied during the
course of solution to combat divergence or to accelerate
convergence. The range of values used were 0.1 to 0.5 for
the pressure p, 0.001 to 0.0001 for the axial velocity Vx,
0.01 to 0.001 for the radial velocity Vr)0.1 to 0.001 for
the turbulence kinetic energy k and 0.1 for the rate of

dissipation e.

iv) Results

Figure 4.6 shows the variation of the discharge
coefficient (corner tappings) with the normalised
residual for V* for the three grid distributions given in
table 4.6. It can be seen that the discharge coefficient
becomes asymptotically constant as the residual is
reduced and the solution can be considered to be con-
verged when the magnitude of the residual has reduced to

below 10. The number of iterations required for the
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Fig.
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Normalised Residual

Variation of the Discharge Coefficient with the Normalised Residual

for the axial velocity component



P
2.857E+1
2.619E+1
1.389E+1
1.025E+1
5.448E+0
5.475E+0
4.638E+0
7.634E+0
7.533E+0
3.353E+0
7.377E+0

Table 4.7 Variation of normalised residuals with discharge coefficients
(Bratio =0.2 testno. 1)

Normalised Residuals

Vv
1.096E+2
8.744E+1
5.341 E+1
1.161E+1
6.183E+0
3.491 E+0
2.168E+0
1.254E+0
1.037E+0
8.969E-1
7.930E-1

1.490E+3
9.642E+2
4.361 E+2
1.204E+2
7.638E+1
4.865E+1
3.176E+1
1.300E+1
8.192E+0
5.105E+0
2.065E+0

K
3.525E+3
3.318E+3
3.728E+3
8.818E+1
4.749E+1
1.506E+1
5.982E+0
5.656E-1
2.645E+0
1.276E+0
1.432E+0

£
1.959E+4

1.551 E+4
1.337E+4
3.716E+2
2.025E+2
6.363E+1
2.493E+1
1.513E+0
1.101 E+1
5.230E+0
5.748E+0

Discharge Coefficient

corner
tappings
0.6543
0.6990
0.7359
0.7323
0.7310
0.7305
0.7302
0.7302
0.7302
0.7302
0.7302

flange
tappings
0.6541
0.6987
0.7357
0.7324
0.7309
0.7304
0.7302
0.7301
0.7301
0.7301
0.7301

D& 12D

tappings
0.6538
0.6984
0.7355
0.7320
0.7307
0.7301
0.7299
0.7299
0.7299
0.7299
0.7299



P
5.615E+0
9.739E+0
5.697E+0
5.713E+0
6.810E+0
5.453E+0
4.485E+0
5.257E+0
6.493E+0
4.446E+0
5.009E+0
4.520E+0
6.662E+0

Table 4.8 Variation of normalised residuals with discharge coefficients
(3ratio=0.2 testno. 2)

Normalised Residuals

Vv
3.659E+1

4.573E+1
2.892E+1
2.641 E+1
1.975E+1
1.567E+1
1.155E+1
7.741 E+0
5.671 E+0
2.281 E+0
1.254E+0
4.178E-1
3.184E-1

v,
1.337E+3
1.048E+3
6.892E+2
5.694E+2
3.165E+2
2.169E+2
1.437E+2
9.166E+1
6.545E+1
4.664E+1
3.072E+1
2.541 E+0
1.118E+0

K
2.622E+2

1.630E+5
1.357E+2
1.075E+2
6.830E+1
4.525E+1
2.646E+1
1.244E+1
1.171 E+1
5.675E+0
5.621 E+0
2.734E+0
9.232E-1

£
1.462E+3

7.487E+5
6.411E+2
4.859E+2
2.862E+2
1.830E+2
9.733E+1
3.999E+1
3.840E+1
1.729E+1
2.049E+1
8.834E+0
3.883E+0

Discharge Coefficient

corner
tappings
0.6660

0.6920
0.7105
0.7175
0.7296
0.7342
0.7370
0.7381

0.7383
0.7378
0.7370
0.7359
0.7359

flange
tappings
0.6659

0.6918
0.7103
0.7172
0.7294
0.7340
0.7368
0.7379
0.7382
0.7379
0.7369
0.7358
0.7358

D&1/2D
tappings
0.6654

0.6913
0.7097
0.7168
0.7291

0.7337
0.7364
0.7377
0.7378
0.7375
0.7368
0.7357
0.7355



P
3.485E+2
5.115E+2
4.675E+2
8.178E+1
8.627E+0
8.647E+0
9.556E+0
1.231E+1
1.167E+1
1.088E+1
6.980E-1
1.069E+1
1.457E+1
1.258E+1
2.812E+0

Table 4.9 Variation of normalised residuals with discharge coefficients
{ 3ratio =0.2 testno. 3)

Normalised Residuals

W
8.766E+2

5.285E+2
2.528E+2
4.446E+1
1.413E+0
1.018E+0
8.165E-1
6.528E-1
6.408E-1
5.962E-1
4.054E-1
6.231 E-1
8.112E-1
6.475E-1
6.957E-1

K
3.051 E+3
1.381E+3
7.140E+2
3.653E+2
1.785E+2
1.413E+2
1.165E+2
8.682E+1
5.306E+1
4.289E+1
3.618E+1
3.098E+1
1.620E+1
1.093E+1
8.827E+0

K
2.537E+2
1.719E+2
1.180E+2
2.447E+2
8.790E+1
6.905E+0
5.358E+0
5721 E+0
1.771E+0
1.313E+0
6.520E-1
7.320E+1
3.864E+1
3.751 E+1
4.258E+1

£
9.603E+2

9.750E+2
7.240E+2
1.689E+3
5.890E+1
3.240E+1
2.438E+1
2.478E+1
1.082E+1
7.462E+0
2.550E+0
2.519E+2
1.908E+2
1.553E+2
2.318E+2

Discharge Coefficient

corner
tappings
0.7520

0.7472
0.7418
0.7415
0.7377
0.7377
0.7377
0.7377
0.7377
0.7378
0.7378
0.7376
0.7382
0.7380
0.7380

flange
tappings
0.7524

0.7473
0.7419
0.7417
0.7378
0.7378
0.7376
0.7376
0.7376
0.7377
0.7377
0.7375
0.7381

0.7379
0.7379

D& 12D
tappings
0.7521

0.7473
0.7419
0.7416
0.7377
0.7375
0.7376
0.7376
0.7376
0.7375
0.7375
0.7375
0.7379
0.7377
0.7377



solution varied from about 10,000 sweeps for the coarser
grids to over 70,000 sweeps for the finer grids. The
variation of the discharge coefficients with the normali-

sed residuals are given in tables 4.7 to 4.9.

From tables 4.7 to 4.9, it can be seen that the
discharge coefficient obtained in run number 2 (139 x 48
grids) differs from that obtained in run number 3 (220 x
70 grids) by less than 0.3 %. Thus, the results obtained
using the grid distribution in run number 2 (139 x 48
grids) can be regarded to be grid-independent. The wvalue
of the discharge coefficient (corner tappings) obtained
with this grid distribution is 0.7359, which differs from
the BS value of 0.734 (BS 1042 : section 1.2 : 1984) by
only 0.26 %.

To confirm that sufficient upstream and downstream
lengths were used in the model, a test run as conducted
using an upstream length of 150 D and a downstream length
of 106 D. In this test, the axial grid distribution in
the region of the orifice plate and the radial grid
distribution was identical to that of run number 2. The

results obtained are compared with run number 2 in table

4.10.
Upstream  Downstream No. of grid nodes Discharge Coefficient
length length Al A2 A3 A4 Rl R2 R3 Corner Flange D& 12D
tappings tappings tappings
30D 16 D 38 21 42 38 8 21 19 0.7359 0.7358  0.7355
150 D 106 D 83 21 42 133 8 21 19 0.7353 0.7353  0.7350

Table 4.10 Effect of upstream and downstream lengths
(3 ratio=0.2)
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Thus, an upstream lengths of 30 D and a downstream
length of 16 D as used in run number 2 would be suffi-

cient distances to be used in the model.

In all the above tests, the 'wall-function methodl
was used in specifying the wall boundary condition. An
additional test run was conducted with the wall boundary
condition specified by the 'low Reynolds-number modelling
method' and using the same grid distribution as in run
number 3. The value of the discharge coefficient (corner

tappings) thus obtained was 0.4670.

4.4.4 Tests on the 3= 0.3 conical entrance orifice
plates
i) Grid distribution
To determine the number of grids required for the
model, simulation was again performed with three differ-
ent grids. The computational test section was divided
into regions as depicted in figure 4.3, and the number of
grids in each region was given in table 4.11. The grids
in regions A2 and R2, which correspond to the conical
part of the orifice plate, were uniformly spaced. The
grid distribution in other region were non-uniform, being

more concentrated near the walls.
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No. of grid nodes Total no. of grid nodes

A1l A2 A3 A4 R1 R2 R3 (axial x radial)
Testno. 1 38 20 40 38 8 20 13 136 x41
Testno. 2 38 25 50 38 8 25 13 151 x 46
Test no. 3 62 35 70 62 10 35 17 229 x 62
Table 4.11 Grid distribution for the computational test section
( 6 ratio = 0.3)

ii) Upstream and downstream lengths

The lengths of the solution domain upstream and
downstream of the orifice plate were specified to be
30 D and 16 D respectively in tests number 1 and 2, where
D is the pipe diameter. The corresponding values were
40 D and 20 D for test number 3, with the grid density

more than 40 % greater than that in test number 2.

iii) Under-relaxation

Under-relaxation factors were wused to suppress
divergence. 'Linear under-relaxation' was applied to the
pressure while 'false-time-step under-relaxation' was
applied to other variables. The values of the factors
used were varied during the course of solution in order
to combat divergence or to accelerate convergence. The
range of values used were 0.5 for the pressure p, 0.01 to
0.05 for the axial velocity” and the radial velocity VYt
0.1 for the turbulence kinetic energy k and the rate of

dissipation e.
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iv) Results

Figure 4.7 shows the variation of the discharge
coefficient (corner tappings) with the normalised
residual for the axial velocity for the three grid
distributions shown in table 4.11. It can be seen that
the discharge coefficient becomes asymptotically constant
as the residual is reduced and the solution can be
considered to be converged when the magnitude of the
residual has reduced to below 5. The number of iterations
required for the solution varied from about 15,000 sweeps
for the coarser grids to over 100,000 sweeps for the
finer grids. The variation of the discharge coefficients
with the normalised residuals of all the variables are

given in tables 4.12 to 4.14.

From table 4.12 to 4.14, it can be seen that the
discharge coefficients obtained in run number 2 (151 x 46
grids) differs from that obtained in run number 3 (229 x
62 grids) by less than 0.18 %. Thus, the results obtained
using the grid distribution in run number 2 (151 x 46
grids) can be regarded to be grid-independent. The wvalue
of the discharge coefficient (corner tappings) obtained
with this grid distribution is 0.7451, which differs from
the BS value of 0.734 (BS 1042: section 1.2: 1984) by

1.51%.

To confirm that sufficient upstream and downstream

lengths were used in the model, a test run was conducted
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P
3.692E+1
2.791 E+1
3.142E+1
2.643E+1
2.239E+1
4.510E+0
3.359E+0
3.066E+0
3.402E+0
2.945E+0
2.296E+0

Table 4.12 Variation of normalised residuals with discharge coefficients
(6ratio=0.3 testno. 1)

Normalised Residuals

W
3.963E+1

3.603E+1
2.540E+1
2.601 E+1
1.203E+1
3.567E+0
3.154E+0
2.263E+0
1.708E+0
1.041 E+O
3.891 EA1

Vz
8.108E+2
5.896E+2
4 138E+2
3.035E+2
1.318E+2
2.409E+1
1.668E+1
1.086E+1
7.758E+0
4.447E+0
1.399E+0

K
6.945E+4
1.359E+5
6.279E+4
1.321E+5
1.061E+4
1.897E+2
3.872E+1
9.811 E+0
2.200E+0
2.552E+0
4.979E-1

£
1.115E+5

2.179E+5
8.982E+4
1.781 E+5
1.009E+4
2.872E+2
5.286E+1

1.460E+1
2.478E+0
3.019E+0
5.720E-1

Discharge Coefficient

corner
tappings
0.6588
0.6840
0.7110
0.7592
0.7404
0.7423
0.7419
0.7416
0.7415
0.7415
0.7416

flange
tappings
0.6587
0.6838
0.7109
0.7592
0.7404
0.7422
0.7417
0.7415
0.7415
0.7415
0.7415

D&12D

tappings
0.6584
0.6837
0.7106
0.7590
0.7402
0.7420
0.7416
0.7413
0.7413
0.7413
0.7414



P
1.147E+1
3.200E+0
2.836E+0
2.997E+0
2401 E+O
2.900E+0
2.236E+0
3.158E+0
3.270E+0
3.305E+0
2.862E+0
2.666E+0
2.442E+0
2.367E+0

Table 4.13 Variation of normalised residuals with discharge coefficients
(Bratio =0.3 testno. 2)

Normalised Residuals

W
5.787E+1

3.169E+1
1.725E+1
8.415E+0
3.439E+0
5.660E-1
2.489E-1
1.597E-1
1.517E-1
1.705E-1
1.539E-1
1.471E-1
1.353E-1
1.310E-1

1.179E+3
5.149E+2
2.367E+2
1.364E+2
9.948E+1
5.791 E+1
3.978E+1
3.083E+1
1.947E+1
1.261 E+1
7.648E+0
5.716E+0
3.496E+0
2.550E+0

K
1.086E+3
2.182E+2
6.115E+1
2.528E+1
1.250E+1
8.977E+0
9.877E+0
6.899E+0
5.699E+0
2.408E+0
2.053E+0
9.071 E-1
2.787E+0
4.169E-1

£
1.608E+3

3.313E+2
8.923E+1

3.463E+1

1.686E+1
1.311 E+1
1.605E+1
1.107E+1
8.650E+0
3.542E+0
2.962E+0
1.254E+0
3.847E+0
4.317E-1

Discharge Coefficient

corner
tappings
0.7686

0.7570
0.7547
0.7521
0.7501
0.7482
0.7478
0.7473
0.7466
0.7461
0.7456
0.7454
0.7452
0.7451

flange
tappings
0.7703

0.7579
0.7554
0.7525
0.7503
0.7483
0.7477
0.7473
0.7466
0.7460
0.7456
0.7453
0.7452
0.7451

D&12D
tappings
0.7698

0.7581

0.7554
0.7526
0.7505
0.7484
0.7478
0.7473
0.7466
0.7459
0.7454
0.7452
0.7449
0.7449



P
1.207E+1
5.365E+0
4.978E+0
5.298E+0
5.492E+0
5.438E+0
5.082E+0
4.719E+0
4.441 E+O
5.150E+0
4.955E+0
4.322E+0
4.843E+0
4.763E+0
4.922E+0
5.175E+0

Table 4.14 Variation of normalised residuals with discharge coefficients
( Bratio =0.3 testno. 3)

Normalised Residuals

Vv,
3.600E+1
2.157E+1
1.550E+2
9.342E+0
6.330E+0
4.121 E+O
3.436E+0
3.460E+0
4.060E+0
3.108E+0
1.046E+0
4.616E-1
3.371 E-1
3.600E-1
3.580E-1
3.601 E-1

V.
1.104E+3
7.305E+2
5.535E+2
4 118E+2
3.463E+2
2.234E+2
1.676E+2
9.577E+1
5.163E+1
2.580E+1
1.443E+1
9.688E+0
5.590E+0
4.119E+0
2.532E+0
1.770E+0

K
2.361 E+2
5.490E+1
1.177E+2
1.036E+2
2.066E+1
1.805E+1
1.715E+1
1.225E+1
9.159E+0
3.519E+0
2.027E+0
2.207E+0
9.273E+0
9.306E+0
3.112E+0
7.318E+0

£
5.665E+2

1.330E+2
9.794E+1
5.606E+1
3.627E+1
3.044E+1
2.721 E+1
1.724E+1
1.092E+1
1.368E+0
1.182E+0
1.617E+0
1.344E+1
1.575E+1
5.485E+0
1.278E+1

Discharge Coefficient

corner
tappings
0.6924
0.7050
0.7122
0.7210
0.7261
0.7339
0.7374
0.7424
0.7459
0.7486
0.7470
0.7457
0.7448
0.7445
0.7442
0.7441

flange
tappings
0.6914
0.7040
0.7111
0.7201
0.7251
0.7330
0.7365
0.7416
0.7454
0.7483
0.7469
0.7456
0.7447
0.7444
0.7441
0.7440

D& 12D

tappings
0.6907
0.7033
0.7103
0.7193
0.7243
0.7320
0.7356
0.7407
0.7445
0.7476
0.7465
0.7452
0.7443
0.7440
0.7437
0.7436



using an upstream length of 150 D and a downstream length
of 106 D. In this test, the axial grid distribution in
the region of the orifice plate and the radial grid
distribution was identical to that of run number 2. The

results obtained are compared with run number 2 in table

4.15.
Upstream Downstream No. of grid nodes Discharge Coefficient
length length Al A2 A3 A4 R R2 R3 Corner Flange D & 1/2 D
tappings tappings tappings
30D 16 D 33 25 50 38 8 25 13 0.7451 0.7451 0.7449
150 D 106 D 83 25 50 133 8 25 13 0.7445 0.7444  0.7443

Table 4.15 Effect of upstream and downstream lengths
( Bratio =0.3)

Thus, an upstream length of 30 D and a downstream
length of 16 D as used in run number 2 would be suffi-

cient distances to be used in the model.

The 'wall-function method' was used in specifying
the wall boundary condition in all the above tests. An
additional test run was carried out with the wall
boundary conditions specified by the 'low-Reynolds number
modelling method', using the same grid distribution as in
run number 2. The value of the discharge coefficient

(corner tappings) thus obtained was 0.5148.

4.4.5 Concluding remarks on the tests

Tests were conducted on conical entrance orifice

plates with 3 ratios of 0.1, 0.2 and 0.3. The grid
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distributions for the solution to be grid-independent
were determined, and these was 121 x 54 grids for

V&S

0.1, 139 x 48 grids for 3 = 0.2 and 151 x 46 grids
for B = 0.3. These grid distributions and the ones with
higher grid density (i.e. 184 x 72 grids for B = 0.1,
220 x 70 grids for 3 = 0.2 and 229 x 62 grids for

B = 0.3) would be used in the study of the characteris-

tics of the conical entrance orifice plates.

The tests also showed that, with the wall boundary
conditions specified by the 1llow-Reynolds-number model-
ling' method, the discharge coefficients obtained deviate
significantly from the BS value of 0.734. Chen (63) had
similar observation on the use of 'low-Reynolds-number
modelling' method in specifying wall boundary conditions
in his investigation on the natural convection in a
large-scale air-filled cavity. He used both the 'low-
Reynolds-number modelling' method and the 'wall-function'
method, and found that the results obtained with the

first method deviated from the experimental data.

The 'low-Reynolds-number modelling' method probably
need a much finer grid distribution near the walls than
the 'wall-function' method to give the correct result.
Thus, only the 'wall-function' method would be used in
specifying the wall boundary conditions in the investiga-
tion of the characteristics of the conical entrance

orifice plates.
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A typical Q1 file, which supplied all information
as to what is to be simulated to 'EARTH", is given in

Appendix B.
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CHAPTER 5

APPLICATIONS OF THE MODEL

5.1 Introduction

The development of the model for the conical
entrance orifice plate flow sensor was discussed in the
last chapter. Tests were performed at a Reynolds number
(ReD) of 60,000, and the grid distributions required for
the solution to be regarded as grid-independent were
determined. These grid distributions (i.e. 121 x 54 grids
for 3 = 0.1, 139 x 48 grids for B3 = 0.2 and 151 x 46
grids for B = 0.3) and the ones with larger number of
grids (i.e. 184 x 72 grids for 3 = 0.1, 220 x 70 grids
for B3 = 0.2 and 229 x 62 grids for 3 = 0.3) are used in
the present chapter to investigate the characteristics of

the conical entrance orifice plate flow sensors.

5.2 Effect of Reynolds number on the discharge coeffi-
cient
5.2.1 Computed discharge coefficients
Table 5.1 shows the computed discharge coefficients
against the Reynolds number (ReD) for various {3 ratio. It
can be seen from the table that the discharge coeffi-
cients wvary with the Reynolds number and with the

ratio. This is also evident from figures 5.1 to 5.3.

In order to measure the pressure difference across

the orifice plate, BS 1042 : Section 1.2 specified that
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8

0.1

0.2

0.3

Reynolds
Number

80
1,000
2,000
4,000
6,000
10,000

30,000
60,000
80
1,000
2,000
4,000
6,000
10,000
30,000
60,000
80
1,000
2,000
4,000
6,000
10,000
30,000
60,000

Discharge Coefficient

Corner

tappings

0.7139
0.7211

0.7215
0.7214
0.7203
0.7186
0.7190
0.7199
0.7200
0.7379
0.7410
0.7428
0.7390
0.7438
0.7356
0.7359
0.7239
0.7476
0.7520
0.7545
0.7556
0.7492
0.7457
0.7451

(-2.74%)
(-1.76 %)
(-1.70 %)
(-1.72 %)
(-1.87%)
(-2.10%)
(-2.04%)
(-1.92%)
(-1.91 %)
(0.53%)
(0.95%)
(1.20%)
(0.68%)
(1.34 %)
(0.22 %)
(0.26 %)
(-1.38 %)
(1.85%)
(2.45%)
(2.79 %)
(2.94 %)
(2.07%)
( 1.59 %)
(151 %)

Flange
tappings
0.7139
0.7211
0.7215
0.7214
0.7203
0.7186
0.7190
0.7198
0.7201
0.7379
0.7410
0.7428
0.7390
0.7438
0.7355
0.7358
0.7242
0.7476
0.7521
0.7547
0.7557
0.7493
0.7456
0.7451

D&1/2D
tappings

0.7139
0.7211

0.7215
0.7214
0.7203
0.7186
0.7189
0.7197
0.7199
0.7379
0.7410
0.7428
0.7390
0.7436
0.7352
0.7355
0.7239
0.7476
0.7522
0.7547
0.7557
0.7497
0.7454
0.7449

* value In bracket is the percentage variation of the discharge
coefficient from that given in BS 1042 : Section 1.2 : 1984

Table 5.1

Variation of discharge coefficient with Reynolds number
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corner tappings shall be used with conical entrance
orifice plates, and the discharge coefficient given 1is
based on the use of corner tappings. However, it can be
seen from table 5.1 that the discharge coefficients
obtained from the computed pressure at locations corre-
sponding to the use of corner tappings, flange tappings
and D & *~ D tappings are almost identical, with differ-
ence occuring only at the fourth digit after the decimal

point.

Thus, the computed results suggest that, in
addition to corner tappings as specified in BS 1042
Section 1.2, flange tappings and D & h D tappings can
also be used as pressure tappings with the conical
entrance orifice plate flow sensors in flow measurement,
and that there 1is practically no difference in the

discharge coefficients for each type of tappings.

The variation of the computed discharge coeffi-
cients with Reynolds number (Re0) is also shown in
figures 5.1 to 5.3. Since the discharge coefficients are
almost identical for the three types of tappings, only
the results obtained using corner tappings are presented

in the figures.

Besides the Lam-Bremhorst k-e model (LRN model),

results were also obtained using the standard k-e model

(HRN model) and by assuming laminar flow in the computa-
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tional test section (LAM model). The discharge coeffi-
cients (corner tappings) obtained by using the different

models are also presented in figures 5.1 to 5.3.

From these figures, it can be seen that for the HRN
model, the discharge coefficients obtained vary signifi-
cantly with the Reynolds number as the Reynolds number
gets larger, and that the discharge coefficients differ
significantly from the BS wvalue of 0.734 at these larger
Reynolds numbers. Apparently, the flow is 1locally
behaving more viscously than that indicated by the

Reynolds number.

For the LRN model and LAM model, the discharge
coefficients obtained wvary with the Reynolds number in
approximately the same manner. As would be expected, the
difference between the discharge coefficients obtained by
the two models is very small at the 1lower Reynolds
numbers, with the difference gets larger as the Reynolds
number is increased. This is particularly evident in
figure 5.2 and 5.3, which show the computed results for

3@ = 0.2 and 0.3.

5.2.2 Comparison with experimental results

In order to test and verify the wvalidity of the
model, the computed discharge coefficients have to be
compared with available experimental results. Only

limited experimental results had been published on the
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performance of conical entrance orifice plates (23-27).
Of the available information, those reported by Stoll and
Zientara (24) and Turton (26) covered a wide range of
Reynolds numbers and f3 ratio. The others were concerned
only with a limited range. Thus, the results reported by

Stoll and Zientara and Turton are used to test the model.

Figures 5.4 to 5.6 show the comparison of the
computed discharge coefficient with the experimental
results reported by Stoll and Zientara and Turton. The
results are all based on the use of corner tappings. It
can be seen from these figures that the discharge
coefficients predicted by the LRN model are 1lower than
most of the experimental results for = 0.1. For B3 = 0.2
and 0.3, the predicted discharge coefficients are lower
than most of the experimental values for the lower
Reynolds numbers, and higher than most of the experimen-
tal values for the larger Reynolds numbers. In general,
the predicted discharge coefficients can be said to fall
within the range of values obtained experimentally. The
comparison of the computed discharge coefficient with the
experimental results can be considered to be reasonable
and trends of the discharge coefficient predicted by the

LRN model parallel the published results.

The difference between the predicted discharge

coefficients and the experimental results might partly be

due to the geometry of the conical entrance orifice
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plates used. In the numerical model, the geometry and
dimensions as specified in BS 1042 : Section 1.2 were
used. However, the work reported by Stoll and Zientara
was on conical entrance orifice plates similar to the
KENT P.L. type orifice. The geometry of the KENT plate is
a function of £, although at 1low values of >3, the
dimensions of the KENT plate are within the limits
specified in BS 1042 : Section 1.2. Stoll and Zientara
gave information on the dimensions of one set of plates
tested, and some of these dimensions were outside the
limits specified in BS 1042. The results presented by
Turton were on plates manufactured in accordance with

BS 1042 : Section 1.2. However, as reported by Turton, it
was difficult to observe the dimensional tolerances
specified and most of the plates used in the experiment
had dimensions outside the limits given in BS 1042. Since
the actual dimensions of the orifice plates used in the
experiments are not exactly the same as that used in the
numerical model, difference between the computed dis-
charge coefficients and the experimental results might be

expected.

5.2.3 Comparison with values given in British Standard
BS 1042 : Section 1.2 : 1984 1limits the use of
conical entrance orifice plates to values of /3 between
0.1 and 0.316, and for Reynolds numbers between 80 and
60,000. The revision of BS 1042 : Section 1.2 in 1989

further limits the use of conical entrance orifice plates
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to Reynolds numbers between 80 and 2 x 105/3. A constant
discharge coefficient of 0.734 * 2 % is given in both

editions of BS 1042 : Section 1.2.

The variation of the computed discharge coeffi-
cients from the value given in the British Standard is
shown in table 5.1. The same information is also plotted
in figure 5.7. From the figure, it can be seen that the
difference between the computed discharge coefficients
and the value given in the British Standard is a function
of Reynolds number and the p ratio, and the LRN model
predicted the discharge coefficient to within * 3 % of

the value stated in BS 1042 : Section 1.2.

Figure 5.7 and table 5.1 also show that the
greatest difference between the predicted and given value
of discharge coefficient occurs at a Reynolds number
below 10,000. For Reynolds numbers between 10,000 and
60,000, the discharge coefficients as predicted by the
LRN model are within * 2.1 % of the value given in the
Standard for all the three p ratios investigated. This
results suggest that the conical entrance orifice plates
can be wused for Reynolds numbers up to 60,000, as
asserted in the earlier edition (1984) of BS 1042
Section 1.2, and if the discharge coefficient is taken as
a function of p, the tolerance on the discharge coeffi-

cient can be reduced.
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5.3 Pressure profile and flow pattern through the
conical entrance orifice plate
5.3.1 Variation of vail pressure along pipe
Figure 5.8 to 5.13 show the variation of wall
pressure along the pipe as predicted by the LRN model for
values of 3 from 0.1 to 0.3, and for Reynolds numbers
between 80 and 60,000. From such pressure profiles, it is
possible to compute the discharge coefficients with any

particular choice of pressure tappings.

The streamwise distribution of static pressure
along the pipe wall is shown in figures 5.8 and 5.9 for
a Reynolds number of 60,000 and 30,000 respectively.
Evident from the figures are the pressure drop caused by
the presence of the orifice plate, and the location of

the point of minimum pressure downstream of the orifice.

Figures 5.10(a) to 5.10(c) present the variation of
wall pressure along the pipe for a Reynolds number of
10,000 for the three 3 ratios under investigation. It can
be seen from these figures that the pressure minima
evident in figures 5.8 and 5.9 can no longer be observed
for 3 = 0.1 and 0.3. Downstream of the orifice, the
computed wall pressure remains almost constant up to the

outlet plane for these two (3 ratios.

Figures 5.11(a) to 5.11(g) show the streamwise wall

pressure distribution for a Reynolds number of 6,000 as
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computed by the LRN model. The effect of increasing the
downstream pipe length on the pressure profile can also
be seen from these figures. As the downstream pipe length
increased, the presence of a minimum wall pressure at the
intersection of the orifice plate and the pipe wall
becomes obvious. The same can be observed in figures 5.12
and 5.13 which show the streamwise wall pressure distri-
bution for a Reynolds number of 1,000 and 80 respective-
ly. For flows at higher Reynolds number, the pressure
minima is located at some distance downstream of the
orifice plate as is evident in figures 5.8 and 5.9. The
move in the location of the pressure minima upstream to
the orifice plate at low Reynolds numbers was also noted
by Mattingly and Davis (13) in their study of 1laminar
flow through square edged orifice. Mattingly and Davis
interpreted this as viscous effects at 1low Reynolds

numbers.

Although the downstream pressure profile changes as
the downstream pipe 1length increases from 16 D, the
computed discharge <coefficient remains ©practically
constant for a given Reynolds number and £ ratio, and is
not affected by the downstream pressure profile changes

as can be seen from figures 5.11 to 5.13.

From the wall pressure profiles, it can be seen

that there is very 1little difference in the pressure

differentials at locations corresponding to the use of
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corner, flange and D & kD pressure tappings. Thus, the
computed discharge coefficients for these three pressure

tappings are almost identical, as is shown in table 5.1.

For comparison with the LRN model, the variation of
wall pressure along the pipe as computed by the LAM model
is presented in figures 5.14(a) to 5.14(c) for = 0.3
and Reynolds numbers of 80, 30,000 and 60,000. For a
Reynolds number of 80, there is the expected good
agreement between the LRN model and the LAM model, as is
evident by comparing figure 5.13(e) with figure 5.14(a).
However, at the Reynolds numbers of 30,000 and 60,000,
the LAM model cannot predict the presence of the pressure
minima as can be seen by comparing figure 5.9(c) with
figure 5.14(b), and figure 5.8(c) with figure 5.14(c).
The pressure remains almost constant downstream of the
orifice plate. The LAM model is not used in the present

investigation.

5.3.2 Flow pattern through the orifice

Figure 5.15(a) shows the flow pattern as predicted
by the LRN model through a conical entrance orifice plate
for 3 = 0.2 and for a Reynolds number of 30,000. For
clarity of the velocity vector plot, a grid-scaling
factor of 20 was applied in the radial direction. The
grid-scaling factor for the axial direction was unity.
Shown in the figure is the general pattern of flow

convergence through the orifice plate and the jet flow
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downstream of the plate. Also evident from the figure is
the presence of a recirculating eddy downstream of the
orifice plate. Figure 5.15(b) shows the magnified view of
the corners immediately upstream and downstream of the
orifice plate, and the presence of a recirculating eddy

at the upstream corner can be clearly seen.

As can be seen from the axial pressure profile
plots presented in section 5.3.1, relatively significant
pressure changes might occur streamwise in the region
immediately downstream of the orifice plate. Thus, the

flow pattern there may be of interest.

The changes in the flow pattern downstream of the
orifice plate with Reynolds number are shown in figures
5.16 to 5.18 for different values of 3. For clarity of
the velocity vector plots, grid-scaling factors between
15 to 25 were employed to scale the dimension of the
grids in the radial direction in these figures. The grid-

scaling factor for the axial direction was unity.

Figures 5.16(a) to 5.16(f) present the velocity
vector plots for B = 0.3. A recirculating eddy can be
seen in the corner produced by the pipe wall and the
downstream surface of the orifice plate in figures
5.16(a) and 5.16(b), corresponding to a Reynolds number
of 60,000 and 30,000 respectively. As the Reynolds number

is reduced, the extent of the recirculating zone exceed
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the downstream length of the pipe used in the simulation.
This can be seen from figures 5.16(c), 5.16(d) and
5.16(e), corresponding to a Reynolds number of 10,000,
6,000 and 1,000 respectively. At a Reynolds number of 80,
however, an entire recirculating eddy can again be seen
in the downstream corner, as is evident from figure

5.16(f) .

The flow pattern downstream of the orifice plate at
different Reynolds numbers are shown in figures 5.17 and
5.18 for B = 0.2 and 0.1 respectively. The flow pattern
varies with the Reynolds number in about the same manner

as that observed for 3 = 0.3.

5.3.3 Recirculation zone downstream of the conical

entrance orifice plate

The results presented in figures 5.16 to 5.18 used
a downstream length of 16 D, and as shown in section
5.3.2, the extent of the recirculation zone may be larger
than the downstream pipe length of 16 D used depending on
the /2 ratio and Reynolds numbers. Thus, for some of these
cases, results were also obtained using a longer down-
stream pipe length. The length of the downstream recircu-
lation zone, which is the distance of the reattachment
point from the orifice plate, is shown in table 5.2 for

various Reynolds numbers and 3 ratio.

From table 5.2, it can be seen that, for a constant
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B
ratio
0.1

0.2

0.3

Table 5.2

Reynolds
Number
80
1,000
6,000
10,000
30,000
60,000
80
1,000
6,000
10,000
30,000
60,000
80
1,000
6,000
10,000
30,000
60,000

Length of the downstream recirculation zone

upstream
length
30D
30D
30D
30D
30D
30D
30D
30D
30D
30D
30D
30 D
30D
30D
30 D
30D
30D
30D

167

downstream

length
206 D
606 D
1506 D
16 D
16 D
16 D
56 D
406 D
1506 D
16 D
16 D
16 D
16 D
406 D
1506 D
16 D
16 D
16 D

length of downstream

recirculation zone

38.0D
416.0 D

> 1506.0 D

>16.0 D
41D
41D
16.0 D
202.0D
1188.0 D
32D
32D
32D
80D
108.0 D
638.0 D
>16.0 D
28D
28D



3 ratio and for the Reynolds numbers investigated, the
recirculating eddy lengthens with Reynolds number at low
Reynolds numbers. At high Reynolds numbers, however, the
size of the eddy remains approximately constant and
becomes smaller than that observed at the lower Reynolds

numbers.

Little information is available on how the size of
the recirculating eddy will vary with Reynolds number for
flows through orifice for the range of Reynolds number
given in table 5.2. Therefore, no direct comparison with
other results can be made. However, the trend observed in
table 5.2 agree qualitatively with that observed by
Ghoniem (64) who studied the flow over a rearward-facing
step. The structure of the recirculation zone forming
behind a rearward-facing step in a channel was computed
for Reynolds number in the 50-5000 range. It was observed
that the recirculation zone 1length increases with
Reynolds number, reaching a maximum at transition, and

then decay to a shorter length at the turbulent range.

For constant Reynolds number, the recirculating
eddy lengthens with decreasing {3 as 1is observed from
table 5.2. The same trend was reported by other workers
(13, 16) although for different ranges of 3 ratio and

Reynolds number.

168



5.4 Effect of turbulence intensity and length scale
factor
The simulation of the conical entrance orifice
plate flow sensor was performed using a uniform profile
for all quantities at the pipe inlet. 1In particular,
empirical relationships (equations 4.9 and 4.10) were
used to assign values to k and e at the inlet (kin= ivz2

and ein= kJ*/U)

The intensity of turbulence i and length scale
factor X used in the simulation was 0.003 and 0.333
respectively. These are typical values used in specifying
inlet conditions for internal flows without swirl (65)
However, the actual values for these quantities will vary
depending on the particular situation when the conical
entrance orifice plate is employed in flow measurement.
Thus, the inlet value of i and X are varied to investi-

gate their effect on the discharge coefficient.

Table 5.3 shows the effect of changing the turbu-
lence intensity i and length scale factor X for B = 0.2
and ReD = 10,000. A uniform inlet profile of k and e was
used in test no. 1 to test no. 8. However, for test nos.
9 and 10, a 2-step profile was used for k. For the upper
half of the inlet plane, the value of i was specified to
be 0.1 in both cases; the values of i for the lower half
of the inlet plane were 0.01 and 0.001 respectively for

test nos. 9 and 10.
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OLT

3=02
test Reynolds

no. Number

_

10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000

O 00 N o0 U AN W N

-
o

10,000

0.001
0.001
0.003
0.003
0.003
0.03
0.1
0.1

0.01 -0.1
(2 - step profile)

0.001 -0.1
(2 - step profile)

0.03
0.333
0.03
0.333
1.0
0.333
0.333
1.0
0.333

0.333

Corner
tappings
0.7438 ( 0.00%)
0.7439 ( 0.01 %)
0.7438 ( 0.00%)
0.7438 ( 0.00%)
0.7438 ( 0.00%)
0.7438 ( 0.00%)
0.7438 ( 0.00%)
0.7438 ( 0.00%)
0.7438 ( 0.00%)

0.7439 ( 0.01 %)

Discharge Coefficient
Flange
tappings
0.7438 ( 0.00%)
0.7438 ( 0.00 %)
0.7437 (-0.01 %)
0.7438 ( 0.00%)
0.7438 ( 0.00%)
0.7437 (-0.01 %)
0.7437 (-0.01 %)
0.7438 ( 0.00%)
0.7437 (-0.01 %)

0.7438 ( 0.00%)

* value in bracket is the percentage deviation of the discharge coefficient from that of test no. 4

Table 5.3  Variation of discharge coefficient with turbulence intensity i and length scale factor a

D &1

tappi
0.7436 (
0.7436 (
0.7435 ( -
0.7436 (
0.7436 (
0.7435 (-
0.7435 (-
0.7436 (
0.7435 (-

0.7436 (

/2D
ngs

0.00%)
0.00%)
0.01 %)
0.00%)
0.00%)
0.01 %)
0.01 %)
0.00%)
0.01 %)

0.00%)



It can be seen from table 5.3 that there is very
little variation in the computed discharge coefficients
for the range of values of i and X investigated. The
deviation of the discharge coefficient from the reference

value (with i = 0.003 and X = 0.333) is within 0.01 %.

Table 5.4 shows the results for 3 = 0.2 and for a
Reynolds number of 60,000. The deviation from the

reference wvalue is within 0.04 %.

Table 5.5 presents the results for 3 0.1 and 0.3

with Rep = 60,000. The deviation of the discharge coeffi-

cient is within 0.07 % of the reference value.

Thus, it can be seen that, for the range of values
considered, the variation in the inlet values of i and X
has very little effect on the discharge coefficient of
conical entrance orifice plate. This is in agreement with
the observation by McVeigh (25) that the conical entrance
orifice plate is comparatively insensitive to upstream

effects.

5.5 Effects of geometric tolerances on conical entrance
orifice plate
The British Standard for conical entrance orifice
plates specifies a conic entrance angle F of 45° + 1°.
The thickness of the conical entrance J is specified to

be 0.084d * 0.003d and the axial length of the parallel
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CLT

g=°¢2
test Reynolds

no. Number

—_

60,000
60,000
60,000
60,000
60,000
60,000
60,000
60,000
60,000

O 00 N oo U A W N

-
o

60,000

0.001
0.001
0.003
0.003
0.003
0.03
0.1
0.1

0.01 -0.1
(2 - step profile)

0.001 -0.1
(2 - step profile)

0.03
0.333
0.03
0.333
1.0
0.333
0.333
1.0
0.333

0.333

Corner

tappi
0.7360 (
0.7358 (-
0.7359 (
0.7359 (
0.7358 ( -
0.7359 (
0.7358 ( -
0.7356 ( -
0.7359 (

0.7359 (

ngs

0.01 %)
0.01 %)
0.00%)
0.00%)
0.01 %)
0.00%)
0.01 %)
0.04 %)
0.00%)

0.00%)

Discharge Coefficient

Flange
tappings

0.7358 (
0.7358 (
0.7358 (
0.7358 (
0.7358 (
0.7358 (
0.7358 (
0.7355 (
0.7358 (

0.7358 (

* value in bracket is the percentage deviation of the discharge coefficient from that of test no. 4

Table 5.4 Variation of discharge coefficient with turbulence intensity i and length scale factor a

D&1/2D
tappings
0.7355 ( 0.00 %)
0.7355 ( 0.00 %)
0.7355 ( 0.00%)
0.7355 ( 0.00 %)
0.7355 ( 0.00 %)
)
)
)
)

0.7355 ( 0.00%
0.7353 (-0.03 %
0.7355 ( 0.00%

(
(
0.7355 ( 0.00%
(
(.

0.7355 ( 0.00 %)



test Reynolds

B8 no. Number
0.1 1 60,000
2 60,000
3 60,000
0.3 1 60,000
2 60,000
3 60,000

A

0.001
0.003
0.1
0.001
0.003
0.1

0.03
0.333
1.0
0.03
0.333
1.0

Corner
tappings
0.7196 (-0.04%)
0.7199 ( 0.00%)
0.7196 (-0.04%)
0.7453 ( 0.03%)
0.7451 ( 0.00 %)
0.7447 (-0.05 %)

Discharge Coefficient

Flange
tappings
0.7195 (-0.04%)
0.7198 ( 0.00%)
0.7196 (-0.03%)
0.7452 ( 0.01 %)
0.7451 ( 0.00 %)
0.7446 (-0.07 %)

* value in bracket is the percentage deviation of the discharge coefficient from that of test no. 2 for each Bratio

Table 5.5 Variation of discharge coefficient with turbulence intensity i and length scale factor A

D&1/2D
tappings
0.7194 (-0.04%)
0.7197 ( 0.00%)
0.7195 (-0.03%)
0.7450 ( 0.01 %)
0.7449 ( 0.00%)
0.7445 (-0.05%)



bore e is specified to be 0.021d * 0.003d, where d is the
diameter of the orifice. From a manufacturing point of
view, the observance of the dimensional tolerances
associated with the conical entrance orifice plate can be
a time-consuming exercise, especially for small pipe
diameters, because the tolerance is a function of orifice
diameters. In fact, many of the available experimental
results on conical entrance orifice plates were obtained
on plates with dimensions outside the limits specified in

the British Standard.

Therefore, the LRN model developed in chapter 4 is
used to investigate the effects of wvariation in the
thickness of the conical entrance J, the axial length of
the parallel bore e and the conic entrance angle F on the

discharge coefficient.

At each value of (3, the simulation was performed
with two different grid distributions (121 x 54 grids and
184 x 72 grids for B = 0.1; 139 x 48 grids and 220 x 70
grids for B3 = 0.2; 151 x 46 grids and 229 x 62 grids for
P = 0.3). For values of J, e and F smaller than the
nominal values specified in BS 1042 : Section 1.2 (i.e.
J = 0.084d, e = 0.021d and F = 45°), the grid distribu-
tions with smaller number of grids were wused. The
distributions with larger number of grids were used for
values of J, e and F larger than that specified. This is

to ensure that the grid density in the region of interest



is sufficient for the solution to be regarded as grid-

independent, as determined in chapter 4.

Since the discharge coefficients obtained by
simulation may differ from the true value by several
percent, it is desirable to have a reference discharge
coefficient against which the effects of variation in
geometry can be estimated. Thus, for a given grid
distribution, the computed discharge coefficient with
values of J, e and F equal to the nominal wvalues speci-
fied in the British Standard (i.e. J = 0.084d, e = 0.02Id
and F = 45°) is used as the reference discharge coeffi-
cient. By comparing the reference discharge coefficient
with that obtained for different wvalues of J, e and F,
the effects of wvariation in these quantities on the

discharge coefficient can be estimated.

5.5.1 Effect of variation in the thickness of the conical

entrance

BS 1042 : Section 1.2 specifies the thickness of
the conical entrance J to be 0.084d * 0.003d. The effect
of variation in the thickness of the conical entrance is
given in table 5.6 and also in figures 5.19(a) to
5.19(c). These results were obtained with e = 0.021d and
F = 45°, the nominal values specified in the British
Standard. With the value of J within the limits specified
in the Standard (i.e. J = 0.084d * 0.003d), table 5.6

shows that the deviation of the discharge coefficient
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Thickness Percentage Deviation

¢] of Reynolds no. Reynolds no. Reynolds no.

Conical Entrance = 80 = 10,000 = 60,000

0.1 0.055 d -2.51 % -2.05 % -2.31 %
0.060 d -1.95 % -1.57 % -1.74 %

0.070 d -1.00 % -0.79 % -0.86 %

0.081 d -0.20 % -0.15% -0.18%

0.084 d 0.00 % 0.00 % 0.00 %

0.087 d 0.18% 0.15% 0.15%

0.100 d 0.81 % 0.68 % 0.76 %

0.110 d 1.17% 1.00 % 1.14%

0.115 d 1.34 % 1.15% 1.30 %

0.2 0.050 d -2.93 % -2.73 % -2.68 %
0.060 d -1.85 % -1.59 % -1.64 %

0.070 d -0.96 % -0.78 % -0.87 %

0.081 d -0.18% -0.13% -0.16%

0.084 d 0.00 % 0.00 % 0.00 %

0.087 d 0.17% 0.11 % -0.23 %

0.100 d 0.80 % 0.46 % 0.26 %

0.110 d 1.17% 0.62 % 0.68 %

0.120 d 1.49 % 0.70 % 0.88 %

0.130 d 1.77% 0.81 % 1.03 %

0.3 0.050 d -2.78 % -2.52 % -2.51 %
0.055 d -2.24 % -2.02 % -2.00 %

0.060 d -1.75 % -1.54 % -1.56 %

0.070 d -0.93 % -0.77 % -0.82 %

0.081 d -0.17% -0.15 % -0.20 %

0.084 d 0.00 % 0.00 % 0.00 %

0.087 d 0.24 % 0.19 % 0.09 %

0.100 d 0.84 % 0.47 % 0.50 %

0.110 d 1.22% 0.60 % 0.71 %

0.120 d 1.52 % 0.69 % 0.91 %

* The discharge coefficient for a thickness of 0.084d is used as the reference
value for calculating the percentage deviation; d is the orifice diameter.

Table 5.6 Percentage deviation of the discharge coefficient from the reference

value with changes in the thickness of the conical entrance
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from the reference value is within * 0.24 % for the 3

ratios and Reynolds numbers investigated.

From figures 5.19(a) to 5.19(c), it can be seen
that the general trend is for the deviation of the
discharge coefficient from the reference value to
increase as J moves away from the nominal value of 0.084d
specified in the Standard and the discharge coefficient
increases with the thickness of the conical entrance J
for the range of J tested. Since the axial length of the
parallel bore e is kept constant at 0.02Id, an increase
in the value of J means an increase in the thickness of
the orifice plate. Thus, the results agree with the trend
observed by Kastner and McVeigh (23), who conducted tests
on seven conical entrance orifice plates (with a nominal
value of 3 = 0.2) of different thickness at Reynolds
numbers below 3,000. They found that the discharge
coefficient increased with increasing thickness of the
plates. However, no information was provided as to
whether the increase in thickness was due to an increase

in J or e.

5.5.2 Effect of variation in the axial length of the
parallel bore
The axial length of the parallel bore e is speci-
fied in BS 1042 : Section 1.2 to be 0.021d * 0.003d. The
effect of variation in the axial length of the parallel

bore is given in table 5.7 and also in figures 5.20(a) to
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Axial length Percentage Deviation

3 of Reynolds no. Reynolds no. Reynolds no.

Parallel Bore = 80 = 10,000 = 60,000

0.1 0.015 d -0.88 % -0.38 % -0.22 %
0.016 d -0.73 % -0.32 % -0.18 %

0.017 d -0.59 % -0.25 % -0.13%

0.018 d -0.43 % -0.18% -0.10%

0.021 d 0.00 % 0.00 % 0.00 %

0.024 d 0.29 % 0.80 % 0.57 %

0.0255 d 0.43 % 1.23 % 0.90 %

0.027 d 0.57 % 1.65 % 1.25 %

0.028 d 0.66 % 1.90 % 1.45 %

0.029 d 0.74 % 2.13% 1.68%

0.2 0.013 d -0.90 % -1.04 % -0.88 %
0.015 d -0.67 % -0.71 % -0.64 %

0.018 d -0.32 % -0.32 % -0.30 %

0.021 d 0.00 % 0.00 % 0.00 %

0.024 d 0.21 % 0.30 % -0.04 %

0.027 d 0.39 % 0.56 % 0.42 %

0.030 d 0.55 % 0.86 % 0.58 %

0.032 d 0.65 % 1.07 % 0.72 %

0.3 0.013 d -0.57 % -1.22 % -0.97 %
0.015 d -0.41 % -0.87 % -0.70 %

0.018 d -0.18% -0.41 % -0.35 %

0.021 d 0.00 % 0.00 % 0.00 %

0.024 d 0.24 % 0.28 % 0.23 %

0.027 d 0.33 % 0.51 % 0.48 %

0.030 d 0.44 % 0.69 % 0.73 %

* The discharge coefficient for an axial length of 0.021 d is used as the reference
value for calculating the percentage deviation; d is the orifice diameter.

Table 5.7 Percentage deviation of the discharge coefficient from the reference

value with changes in the axial length of the parallel bore
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5.20(c) . These results were obtained with J — 0.084d and
F = 45°, the nominal values specified in the Standard.
With the value of e within the limits specified in the
Standard (i.e. e = 0.02Id * 0.003d), table 5.7 shows that
the variation of the discharge coefficient from the
reference value is within * 0.80 % for the 3 ratios and

Reynolds numbers investigated.

From figures 5.20(a) to 5.20(c), it can be seen
that the general trend is for the deviation of the
discharge coefficient from the reference value to
increase as e moves away from the nominal value of 0.02Id
given in the Standard and the discharge coefficient
increases with the axial length of the parallel bore e
for the range of e investigated. An increase in the value
of e implies a thicker plate as the thickness of the
conical entrance J is kept fixed at 0.084d. Thus, the
results again agree with the trend observed by Kastner

and McVeigh (23) as mentioned in section 5.5.1.

5.5.3 Effect of variation in the angle of the conical
entrance
BS 1042 : Section 1.2 specifies the angle of the
conical entrance F to be 45° + 1°. The effect of varia-
tion in the angle of the conical entrance is given in
table 5.8 and also in figures 5.21(a) to 5.21(c). These
results were obtained with J = 0.084d and e = 0.021d, the

nominal values specified in the Standard. With the wvalue

185



Angle Percentage Deviation

¢] of Reynolds no. Reynolds no. Reynolds no.

Conical Entrance = 80 = 10,000 = 60,000

0.1 35 0.77 % 2.00 % 1.67 %
40 0.56 % 1.25 % 1.20 %

43 0.25 % 0.54 % 0.54 %

44 0.13% 0.28 % 0.28 %

45 0.00 % 0.00 % 0.00 %

46 -0.15% -0.26 % -0.28 %

47 -0.31 % -0.50 % -0.53 %

50 -0.85 % -1.15% -1.18%

55 -1.91 % -2.31 % -2.23 %

0.2 35 0.47 % 1.75 % 1.26 %
40 0.36 % 1.30 % 0.86 %

43 0.18% 0.59 % 0.38 %

44 0.10% 0.31 % 0.20 %

45 0.00 % 0.00 % 0.00 %

46 -0.11 % -0.35 % -0.64 %

47 -0.22 % -0.74 % -1.13%

50 -0.62 % -1.83 % -1.73 %

55 -1.41 % -3.54 % -3.46 %

0.3 35 0.17% 1.78 % 1.33 %
40 0.21 % 1.1 % 0.87 %

43 0.11 % 0.51 % 0.39 %

44 0.07 % 0.27 % 0.17%

45 0.00 % 0.00 % 0.00 %

46 -0.10% -0.41 % -0.34 %

47 -0.17% -0.81 % -0.66 %

50 -0.37 % -1.96 % -1.67%

55 -1.01 % -3.98 % -3.40 %

The discharge coefficient for an angle of 45 degree is used as the reference
value for calculating the percentage deviation.

Table 5.8 Percentage deviation of the discharge coefficient from the reference

value with changes in the angle of the conical entrance
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of F within the limits specified in the British Standard
(i.e. F = 45° * 1°), table 5.8 shows that the deviation
of the discharge coefficient from the reference value is
within * 0.64 % for the p ratios and Reynolds numbers

investigated.

From figures 5.21(a) to 5.21(c), it can be seen
that the general trend is for the deviation of the
discharge coefficient from the reference value to
increase as F moves away from the nominal value of 45°
specified in the Standard, and the discharge coefficient
decreases with an increase in the conic entrance angle
for the range of F studied. This again agrees with the
observation of Kastner and McVeigh (23) who noted an
increase in the discharge coefficient for test plates

with a smaller bevel angle in their experiments.

5.5.4 Concluding remarks

The effect of geometric tolerances on the discharge
coefficient of the conical entrance orifice plate was
simulated using the LRN model. With all other parameters
kept fixed, the thickness of the conical entrance J, the
axial 1length of the parallel bore e and the conic
entrance angle F were varied from the nominal value as
specified in BS 1042 : Section 1.2, one at a time, in
order to estimate the effect of these variations on the
discharge coefficient. For the range of 3 ratios and

Reynolds numbers investigated, the wvariation of the
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discharge coefficient is within * 0.24 % of the reference
value when J 1is allowed to vary within the 1limits
specified in the Standard (e and F are kept constant at
their nominal wvalues). The corresponding value for e and
F is *+ 0.8 % and * 0.64 % respectively when they are

varied within the specified limits.

BS 1042 : Section 1.2 stated that the uncertainty
on the value of the discharge coefficient is * 2 % of
0.734 and the purpose of specifying the geometric
tolerances for the orifice is to ensure that the dis-
charge coefficient can be reproduced within the uncer-
tainty stated in the Standard. The discharge coefficient,
as computed by the LRN model, was shown to be a function
of the 3 ratio (section 5.2.1). Thus, if the discharge
coefficient of the conical entrance orifice plate is
taken as a function of 0, and with the same tolerance of
+ 2 % on its wvalue, then the specifications on the
geometric tolerances can be more restrictive than are

probably necessary.

Also, figures 5.19 and 5.20 show that the discharge
coefficient increases with both J and e. For a given
thickness (e + J) of the orifice plate, an increase in J
must be accompanied by a decrease in e and vice versa.
Thus, a positive deviation of the discharge coefficient
caused by an increase in J or e will be partly offset by

a negative deviation due to the accompanying decrease in
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the other parameter. Therefore, for a given orifice plate
thickness, the variation of the discharge coefficient
will be smaller than that shown in figures 5.19 and 5.20
as J and e deviate from their nominal values. Hence, some
latitude on the geometric tolerances as specified in the
Standard may be allowed. This will facilitate the
manufacture of the conical entrance orifice plates, as
observance of the dimensional tolerances specified in the
Standard can be a time-consuming exercise, especially for
small pipe diameters, because the tolerance is a function
of orifice diameter which depends on the pipe diameter

for a given (3.
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CHAPTER 6

CONCLUSIONS

6.1 Introductory remarks

The flow through the conical entrance orifice
plates depends on a number of parameters. The influence
of these parameters on the performance of the orifice can
be studied experimentally. But it will be very costly and
time-consuming, if not impossible, to cover all possible
combinations of these parameters in experiments. Alterna-
tively, computer modelling can be used to study the
performance of +the conical entrance orifice plates.
Widely ranging parameters can be introduced and evaluat-
ed, and, for selected cases, experiments can be carried
out to validate the results obtained by simulation. The
parameters can be varied one at a time, or in combina-
tions with each other, so that their influence on the
performance of the conical entrance orifice plate can be

better understood.

The work presented in this thesis shows the
applicability of a low Reynolds number k-e model of
turbulence in the simulation of flow through the conical

entrance orifice plate.

6.2 Achievements of the present study

The achievements of the work presented in this

thesis can be summarised as follows:
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1)

2)

3)

A model for conical entrance orifice plate flow
sensor was developed making use of the Lam and
Bremhorst k-€ model of turbulence and the
'"PHOENICS' computer code. There is reasonable
agreement between the discharge coefficient
computed by the model and the published wvalue
(within * 3 % of the value stated in BS 1042
Section 1.2) for the ratios and Reynolds numbers

investigated.

The use of pressure tappings other than corner
tappings was studied. BS 1042 : Section 1.2 stated
that corner tappings shall be used with conical
entrance orifice plates. The present investigation
indicated that flange tappings and D & hD tappings
can also be used, and that there is no significant
difference between the discharge coefficients for

the three types of pressure tappings.

The effect of Reynolds number on the discharge
coefficient was investigated. The present study
indicated that, for the /3 ratios used in the study,
the conical entrance orifice plates can be used for
Reynolds numbers up to at least 60,000, the maximum
Reynolds number tested in this investigation, which
is beyond the limits specified in BS 1042 : Section

1.2 : 1989 for the smaller ratios.
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4) The discharge coefficient was computed with
different values of /3. The results indicated that
the discharge coefficient is a function of /. If,
instead of a constant value of 0.734 as is stated
in the Standard, the discharge coefficient is given
as a function of f3, the uncertainty associated with

the discharge coefficient can be reduced.

5) The effect of geometric tolerances on the discharge
coefficient was explored. The results indicated
that the dimensional tolerances specified in the
British Standard for conical entrance orifice plate
can be more restrictive than are probably neces-
sary. Some latitude on the tolerances may be
allowed, and this will make the manufacture of the

conical entrance orifice plates an easier task.

6.3 Suggestions for future work

In the present study, the performance of conical
entrance orifice plate flow sensor was simulated, and
there are areas where the simulated results are at

variance with that given in the British Standard.

As there are only 1limited experimental results
available on the performance characteristics of conical
entrance orifice plate, further experimental efforts
would be required to better understand its performance

characteristics and to verify the wvalidity of the

195



simulateci results. This should lead to a better utiliza-
tion of conical entrance orifice plate as a low Reynolds

number flow measuring device.

Although the model was developed for conical
entrance orifice plate flow sensors, it can readily be
modified to suit other types of orifice plates. Thus, the
model can be used to investigate the behaviour of wvarious
orifice profiles and their potential as a low Reynolds

number metering device explored.
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IFFRGET) —1. OFFRRECED) T W= (100 FEVve O.FreEYsd
IR — 1. OFFREETE) =AW =(11.CEY2Z 1OreEYD
FFCEDH —1.OQFFREED A N =(120FEV2 1L OFreEYd
IR —1.QFFRETED A (130 FVR2 12 Frewsd
IFRXESD —1.QFFRTD A W= (L.O Y2 1B FreYss
FRECEGS) —1.O: IFFREED A N T (150 FEV2 KLOFEYS
BRED) —1.0; TFAGTE) A T (1S VRIS FFEYd
FFRCED —1.0: TFFGED A N (1 7.0V 1GFreEvd
RAED —1.OFFREGEGD T W (1SOFEY2 17 Fevsd
HRGES — 1. OFFRES T = (190 FEY2 1= OreEYd
REE) — 1. OFXFREED A = O V2 1 Frevwss
o PdA IO PERNW ST

IFFREESD) A FFACCA) —<FeP
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CEROPPE BodhAfitted aodreaises a agrid disstoriconm
CEROPP 7. \Uariades staad shhad Saanasd
ESI AV S AV VAV iy =S 55 |

P ACEFESODBRETFPASER/N . INK1. IR, NE1, D
CNVAFESODBRE T E - CHRIISCHRIS)
COWVAFES DBIREEF X HFRID)CHRRISY)

CCBROPPY  lgaties of = maeaalmmnm (@ mnaeids
RO =05 BB LEI==—=10
CBRUOPP 1Q INntarppdhesaetbta sfa pasasss—s ad aogoatces
CBEROPP 11 Initaliz=ation o vaiade a pacsity fields
TENNOO B \VIIWVIN
EEFMmO S T EaNT 1L 5/(O. QB3R
AN TAEDO—1. OAINT TN\ D—O 5V
RAIN TQOMNDD—O.CGHAIN TSSO TEN
AINTEPHOY /O3
AN TEELUIUD—O T T EI TENSEEIN
IS =="|a0 /2 \D)

RO 12 Ciroywation ad dffusion adoatha =
CBROP 13  Baswrdhay aditias ad soaad saouaees
FEEINSO

T DA D D10
e s e =—a ==

P ARCEAOWALLNYAL 1., 1. IR 1, S0, D
CRAQNXAL L\ CERIDZO.O) ; CCNACAL 1 FECERIDD, CBRID)
CCRAQNAL 1| BF2PCRRIEZ BRI

P ARCEAWALZNAL 1, 1. NRCTRCCZZOSE 1, D
CCOAQXAL 2\ CBERIDO.O); CKNANXALZ, FECERIDD, CBRID»
CCNAACVXAL 22, EFCERID, CHRRID)

PARCEANLET,ICOOM 1,1, IRC1,1,1, D
CNAANLET, A, FOELLU JVIVRIF R OD ; CKCSANNLET, vV WY/ ODIDRAAVINI
CCNAANLET, FECODIDNAS THFEIN; CCSANLET, B2 CAODIDNAGEFITY

P AR CEIdCDIATETTHECESL, 1, 1. R TNERRE 1, D
CCRACCDIATET R FDRIAAL QO

~NEE=1

NOCSEETEA

CDREEROO, CEEL 1,1, 2O, CEE D FEAXE)
EPITEBFOOCEEL 1,1, =D, NI =X E=+), FES=XCE=< )

FP A CEWALS VAL 1, 1.V I ESE AFE 1.1
CCRAQNXALTT\ , CERIIDO.O) ; CCSRANAL S FECHERID>CERID)
CRAQNYAL SEECERIDZCERRID)

PNCE-QNALANNAL L TVEE O S T ED, B o= =< 1), 1.1
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CERANMALAN\Y CERITPO.O) : CEACNAL L HECERIEP CERITSS
CCERANALAEEXCERITCERITD

P A CEAWALSILIVAL 1,1  YEES 1L N ZZC01, D
CCRAQNAL S\, CBRRIIDO.O) ; CCANVAL SHECCHERIIDDZCRRID)
CAQNALS EEF (BRI CERID)

* Ok ok ok ok ok ok ok K ok

UIE=CBb F€P<SHTY KOFEREFESER KDY  PARY (b iF icCE=
CCDHCPO. O CEEL 1,1, E 102G 1L T = Z 5 S oA
CCDRCBRO.O,CEEL 1,1, 2GS ZFS S ZHJS8 =< BD)
CCDRCBRO.O,CEEL 1,177 3G 5B S8 o 4a4. 268 a1E)
CCDHRCBRO.OCEEL 1,172 A4 A4S S FF S o= BD)
CPDRCBRO.OCEEL 1.1, 5 G 58 6 8 o= EB)
CCDREBRO.OCEEL 1.1, 657G G688 7 8B
CCDREBDRO.OCEEL 1,1, 7)W= S-S FE o< bB
CCDREBRO.O,CEEL 1,1, G S G SFHFS S O 8 e
CCDHEBRO.O,CEEL 1,1, O, O S ICOTFeE IR CE)
CCDHCPOO,CEEL 1,1, "GO G OSSO TL EZEES D)
CPDREPRO.OCEEL 1, 1, "2"GTL A G TL EESES O BT s
CPDREBPRO.OCEH L. 1, 1., "GRG R AZAA >SS s
CDREBRO.OCE L 1,1, " GITAEA G IS AEZE S >HL TS aaCE)
CPDRBRO.O,CE L .1, 1., "G KIS G L A SO TS aaCE)
CPDREBRO.OCEHL 1.1 "G E X G EhE I SO TS <E
CCPDREBRO.OCEEL .1, 1. >2CIGSA G IS ES 1T 7 6832 E)
CPDRCBRAO.OCEEL 1, 12T, A ST, SO B S <CE)
CCDREBRO.O,CEEL, 1, 1, "G B A G B IS S E)
CDREBO.O, CEEL, 1,1, "GRG R EEREE2O _FeEaaEs
CCPDREBO.O,CEEL 1, 1.2 CGEO N CCEO FE€E 2201 e e

CDREBRO. O MBI, 1.2 1, G 1,33—'1,233—-9
CCOHEBPO. O HCEA L, 1,YACG 1,03%E 11 eSS 1. F6€D
CCDRECBROD. S, CEEL . 1,17 ACG 1.0 G 1,78 1. 8> D

CORRBRO.O, MBI 1., 1.6 207G 2 FE8- 2 _F&33
CCDHEPO.OHCEAL . L 1YACG 205G 2 F683- 2 _F&33- )
CORRBO.SCEEL 1.1, 206G 2 F - 2 Fe63-

CORREBRO.O, MBI, 1.7 307G 38 3. F - 3
CDRRBO.OHCEL . 1,105 370G 3836 5
CODRRBRO.S,CEEL 1.1, 3G 38 3. F6 633

CCOREBO.O, NP, 1.0 A, <L, 8- <1, F&
CCDHEPO. O HUE .1, 1YAG 400G A, F6€- <1, F&€>-
CDRRPRO.S.CEEL . 1,1, A0S <L, T8 <, FE&>-

CCDRRBO O, MBI, 1.6 507G 568 576 5
CCDREBO.OHICE, 1,10AG 576G 568 S5 Fe63- 5
CDRRBO. S.CEFL_ . 1. ILYACG 55770086 5768 5. F8 5

CCDRREPO.O, MBI, 1.6 67 68> 6 F8> o
COHEPO.OHICE . 1. IYACG 676G 6. 8- G F> o
CDRRBO. S, CEFL_ .1, 1.,YACG 656G 6. 8- 6. F> o

CCDRRBO O, NMBI ., 1.5 7035 AG 7, F8D> 7, F8> )
CCDHEBO.OHCEL . 1,1, ACG 703 7.8 7, F&8> )
CCDHEBO. S, CEEL_ . 1,1, ACG 703 7,8 7, F&> 5

CCORREBO.O, MBI, 1,706 SNAG S-S F8 5
CCDHEPO O HIE1 .1, 1Y ACG SNV A SFOoOSsSFeE 35
CDRRBPO.SCEEL 1.1, SNV G S -3 Fer 5

CCDRREBO.O, MBI, 1,070 OVWG O, 8 9O, Fe> 9

CCDHEPO.OHICE . 1.1V ACG OVWGE O FS» O Fe&» 9
CDRRBO.S,CEEL .1, IYACG ONWAG O F8»- 9O Fe> 9
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CONPOR (0.0 ,NORTH,1,1,YAC-10,YAC-10,ZBO+IO0O,ZBO+IO)
CONPOR (0.0 ,HIGH ,1,1,YAC-10,YAC-10,ZBO+IO0O,ZBO+IO)
CONPOR(0.5,CELL ,1,1,YAC-10,YAC-10,ZBO+IO0O,ZBO+IO)

CONPOR (0.0,NORTH,1,1,YAC-11,YAC-11,ZBO+11,ZBO+11)
CONPOR(0.0,HIGH ,1,1,YAC-11,YAC-11,ZBO+11,ZBO+11)
CONPOR(0.5,CELL ,1,1,YAC-11,YAC-11,ZBO+11,ZBO+11)

CDREBO. O, NMB 11, 1 > C YA Gl FE P FE 850D
CDRREBRO.OHEHE1 . 1.1 2GR 22 G R r >0
CDRREBRO . S,.CEEL 1.1 2GR 2GR >0

CDREBO.O, MBI, 1 2GBTS > FES >
CDRRBRO.OHEHE1 ., 1,1 2G> FE >0
CCDREBRO.S,.CEEL 1. 1. 222G I GBSO FE 1D

CDREBAO.O.NMBI11., 1. "G A G L S S> L _FE KD
CPDRRBPRO.OHCE1 ., 1,1 Y2 ENWAEA G EL B SO KL TS >K)
CDREPRO.S.CEEL_ . 1,1 "G EYEA G EL SO FE KD

CONPOR (0.0,NORTH,1,1,YAC-15,YAC-15,ZBO+15,ZB0O+15)
CONPOR (0.0,HIGH ,1,1,YAC-15,YAC-15,ZBO+15,ZBO+15)
CONPOR (0.5,CELL ,1,1,YAC-15,YAC-15,ZBO+15,ZB0O+15)

CONPOR (0.0,NORTH,1,1,YAC-16,YAC-16,ZBO+16,ZBO+16)
CONPOR(0.0,HIGH ,1,1,YAC-16,YAC-16,ZBO+16,ZBO+16)
CONPOR(0.5,CELL ,1,1,YAC-16,YAC-16,ZBO+16,ZBO+16)

CCPDREBO. O, MBI, 1 AT AT, BSOS 1D
CCDREBRO.OHCE . 1, 1 YA T WA T, ST, S >TH
CCDRCBO. S, CEEL_ 1,1 YA GG T, BT, ST

CDREBRO. O NP1, 1 7> C I B Y C B I SO SO
CCDRCBRO.OHEHE1 .1, 1 7" GBS Yy C BB IO SO
CDREBPRO.S.CEEL_ . 1,1, "2 G BB YYy <GB I RSB TS

CCDREBO. O, NP, 1. 2G9N G I SO - S oD
CDRRBRO.OHCE .1, 1, 2SI G IO SO F SO
CDREBRO. S,CEEL_ , 1, 1. 2" G e G RIS oD

CONPOR(0.0,NORTH,1,1,YAC-20,YAC-20,2ZBO+20,ZB0O+20)
CONPOR(0.0,HIGH ,1,1,YAC-20,YAC-20,ZBO+20,2ZB0O+20)
CONPOR(0.5,CELL ,1,1,YAC-20,YAC-20,Z2B0O+20,2ZB0+20)

CONPOR (0.0,NORTH,1,1,YAC-21,YAC-21,ZB0O+21,ZB0O+21)
CONPOR(0.0,HIGH ,1,1,YAC-21,YAC-21,ZB0O+21,ZB0O+21)
CONPOR( 5,CELL ,1,1,YAC-21,YAC-21,ZBO+21,ZB0O+21)
ook g ek ek Kk
GROUP 14. Downstream pressure for PARAB=.TRUE.

GROUP 15. Termination of sweeps
DELCON=0.005

RESREF (P1)=0.5*DELCON*Q.5*WIN*3.14159*DIAM*DIAM/4.0

RESREF (W ) DELCON*WIN*RHOl*O 5*WIN*3.14159*DIAM*DIAM/4.0

RESREF (VI) .0*DELCON*WIN*RHO1*0.5*WIN*3.14159*DIAM*DIAM/4.0
RESREF (KE) l OE+5*DELCON*TKEIN*RHOL1*0.5*WIN*3.14159*DIAM*DIAM/4.0
RESREF (EP)=1.0E+8*DELCON*EPIN*RHO1*0.5*WIN*3.14159*DIAM*DIAM/4.0
LSWEEP=500

NPLT=100

TSTSWP=100

GROUP 16. Termination of iterations
LITER(PI)=10;LITER(VI)=10
LITER(W1)=10;LITER (KE)=10
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LITER(EP)=10
CBROPP 17 UlhxdkEardaaian deuaass
FEEASC, LINIRS>SO. 1);  FEL.ASQML FPASSE T OO0D
FEEAASQAV/VAAATE I O00D ; FEESGERPAATS I OO0DD
PFEEAASEERPAE T O 1D
CERUOPP 1= Linrits o variadess ao moaa = o taEn
CEROPBP 199 [DE:es caomur =l by sataellite o

ouTPUT (VI,Y,N,N,Y,Y,Y)
OUTPUT (KE, Y,N,N,Y,Y,Y)

RO, SGxb adue prirnt—ouast
AN, ERADEZH

CCBROBPZ3 add prirttout ad plot aaaibod
AR NP
=330 L[[TFrR=—==CG0
nm~-s= NIDJI==&

CERUOPB~ 21 [hayss for restats
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