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Abstract

This thesis concerns the estimation of the variance function in regression data when the 

classical assumption of constant variance is violated. We have adopted the assumption 

that either the variance function is parametric or is unknown but smooth. The purpose in 

this thesis is to develop the techniques that are currently available.

The thesis contains two major parts. After an introduction chapter, Chapters 2 and 3 

discuss the parametric approach for estimating variance functions. Chapter 2 reviews in 

depth a large and widely scattered literature, describes the specific procedures and provides 

an overview of the theory employed in estimating variance functions. Chapter 3 provides 

detailed empirical study of these procedures.

The second part of the thesis discusses the nonparametric approach for estimating 

variance functions. Chapter 4 describes in detail the techniques that are involved and 

studies these techniques empirically revealing that the use of sample standard deviations 

and absolute residuals may lead to better final variance estimates. One of the techniques 

associated with nonparametric approach is the determination of the amount of smoothing. 

Chapter 5 give some analytic theory particularly for bias, providing a new criterion for 

determining the amount of smoothing.

Finally, Chapter 6 applies both methods to real data.
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Chapter 1

INTRODUCTION

1.1 Introduction

Classical regression theory is concerned with the study of the relationship between a vari-

able Y  and a p - variate vector of variables X  =  (Xi, ■ ■ • , X P). The vector Y  is related 

to X  through some functional relationship whose form is specified up to a finite set of 

unknown parameters. The estimation of these parameters becomes the primary problem. 

The variance function for a standard homoscedastic regression model is constant, however 

for heteroscedastic regression models, variance is not constant. Heteroscedastic regression 

models are accepted as appropriate in a wide variety of fields. Statisticians often look 

at residual plots to investigate whether the model is heteroscedastic or not and what the 

appropriate behaviour of the variance function is. However, such subjective judging by eye 

may be quite misleading.

The variance estimates are needed for better understanding of the variability in the

12



data. Also, the better the estimates of the variances, the better the estimates of the 

regression parameters. In some applications, estimation of the variances is of independent 

interest or plays an important theoretical role in estimation of quantities other than the 

regression parameters. Thus, while much effort has been focused on the study of the 

estimation for the regression parameters, it is of increasing interest to investigate the 

estimation of the variance function as well.

In heteroscedastic regression models, the variances may themselves be determined by 

a regression function. There are two main approaches to the estimation of this variance 

function: the parametric approach which assumes that this function follows a parametric 

(linear or nonlinear ) model and the nonparametric approach which only assumes that this 

function is smooth.

The purpose of this thesis is to compare parametric and nonparametric methods for 

estimating the variance function in heteroscedastic regression models.

1.2 Model

Consider a general heteroscedastic regression model for observable data y¿ given by

Vi =  f (x i ,P )  +  e¿, * =  1, N  (1.1)

where, /  is an unknown mean response function, e¿ are uncorrelated errors with zero mean 

and variance of, is a p - vector of predictors, ¡3 is a p x 1 regression parameter and N
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is the total sample size. The heteroscedasticity represented by non constant cq may be 

regarded as of unknown form or may be modeled as a function of the independent variable 

x, known factors exogenous to the model and the regression parameters. The variance 

function may be completely known, specified up to additional unknown parameters or 

completely unknown.

1.3 Background

Before embarking on any technical details of the two approaches, we give a brief review of 

the literature.

In variance function estimation, we try to understand the structure of the variances as 

a function of predictors which might include the means. Thus variance function estimation 

is a form of regression and just as for regression on means, there are plotting techniques 

useful for understanding simple structure. Other methods first eliminate the location effects 

by forming the residuals after an appropriate fit to the means. One then computes the 

estimate of the variance function assuming that the residuals are the responses and the 

means are all known.

Simple models relating predictors, which might include modeling the logarithm of the 

variances as linear in the predictors, have been proposed. One might also hypothesize 

that the standard deviations or the variances follow a linear model in predictors. Another 

possibility is to model the inverses of the variances or standard deviations as linear in 

predictors. There are other natural models for the variances that might consist of two
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components, one constant and one depending on the mean. Alternatively, one can see the 

standard deviation modeled empirically as say a quadratic function of the predictors.

Methods for estimating the variance function in the parametric approach can be clas-

sified into four rough categories, (i) the mean and variance model holds (ii) a weighted 

regression of transformations of absolute residuals on their expected values assuming that 

the errors are independent and identically distributed (in) likelihood techniques (iv) 

replicated responses at each value of the predictor and use the sample variances.

These methods will be discussed in full details in Chapters 2 and 3.

Under the nonparametric approach, residuals, sample variances and difference schemes 

provide the basic building blocks. They can be improved by making neighbouring points 

share information. These, together with the techniques for improvement will be pursued 

in Chapters 4 and 5.

Finally, Chapter 6 is devoted to seeing how both parametric and nonparametric ap-

proaches work in practice. The question of how far is the nonparametric from the para-

metric variance model is considered and some final remarks included.
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Chapter 2

PARAMETRIC APPROACH

2.1 Introduction

The assumption is that the variances are not constant according to model (1.1). The 

problem of heterogeneity may be attacked directly by specifying models for both the mean 

and the variance and in particular a variance model with unknown parameters which must 

be estimated. There are many ways of doing this. In this chapter we will endeavor to 

rework in detail the most common methods for estimating variance functions in regression 

and in particular the estimation of these unknown parameters.

A general parametric model for the variance can be written as

=  ° 292(zi,Vi{P)iQ) (2.1)

where a is an unknown scale parameter, g is the variance function, Z{ is a known vector 

possibly containing x,-, //,■(/?) =  f(x{,f3) and 6 is an unknown r x 1 vector of parameters.
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There are a number of graphical techniques which can be used in choosing the model to 

be fitted by letting the data reveal themselves. The unweighted least squares residual plot 

is most widely used, see Weisberg (1985) and Carroll and Ruppert (1988, p. 29-51).

If Zi =  Xi, the variance depends on the predictors. The variance can also depend on 

the known mean /r¿(/?) or on the estimated mean response fii(fl).

In practice as well as for theoretical investigations, g is taken to be known and to satisfy 

appropriate smoothness conditions. In a model such as (2.1), estimation of the variances 

essentially reduces to the estimation of 9 , since ¡3 will be estimated routinely and the final 

estimates of ¡3 and 9 may be used to obtain a final estimate of a. Thus investigations of 

the properties of variance estimators for (2.1) focus on properties of estimators for 6. In 

some applications, estimation of 9 is not the only problem of interest. In chemical and 

biological assay problems, issues of prediction and calibration arise. In such problems, the 

estimator of 9 plays a central role. In radioimmunoassay, the statistical properties of pre-

diction intervals and constructs such as the minimum detectable concentration are highly 

dependent on how one estimates 9 . In engineering quality improvement applications, an 

important goal is to discover the sources of variability. This can be obtained directly from 

the variance function estimate. The foregoing discussion indicate that there are numerous 

practical situations in which the choice of the method for estimating the variance function 

will be important. In the case of model (2.1), the choice is defined by how we choose to 

estimate the variance function g , and in particular, 9.

Many of the methods for estimation of 9 that have been proposed in the literature are 

(possibly weighted) regression methods based on functions of either absolute residuals from

17



the current regression fit or in the case of replication at each design point, sample standard 

deviations. Still other methods are joint estimation methods based on assumptions about 

the underlying distributions in which (cr, ¡3, 6) are in principle estimated simultaneously. 

Considered here are methods which are simple or in common use. These methods include:

(0 Maximum Likelihood (” ) Pseudo Likelihood

(in) Weighted Squared Residuals M Weighted Absolute Residuals

(v) Logarithm Method (vi) Restricted Maximum Likelihood

(vii) Modified Maximum Likelihood ('via ) Extended Quasi Likelihood

(ix ) Rodbard (x) Sadler-Smith

These methods are considered in detail in Section (2.2). The author has reworked and 

consolidated all the basic formulae.

2.2 Procedures for Estimating 6

There follows a full description of the form of the specific procedures for estimating 6 that 

have been outlined under Section (2.f). These procedures will be looked into in detail in 

the univariate regression case.

2.2.1 Pseudo Likelihood Procedure

Gong and Samaniego (1981) use the terminology pseudo likelihood. This procedure makes 

no distributional assumptions but relies only on the basic mean model (1.1) and variance 

model (2.1). However its efficiency can be diminished by deviations from normality. Pseudo
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likelihood estimates of 9 are based on pretending that the regression parameter (3 is known. 

Then estimate 6 by maximizing the likelihood, assuming normality.

Pretend the data are normal, then write the likelihood as

n $ y , e / Y )  = n [ 2 * k y f c , w ( / ? M ) r * e x P[ - i¿=i 2 a2g2(zi, fii(p), 9)

2 cr2gz{zi, Hi(p): 9)

Let

l  =  log L(/?, <72, 9/Y)

Then

t
N N

log(27T) -  y  log<T2g2{zi,fii(P),9) f Efli[yi -  f{xj,(3)}2
2 a2g2(zilg l((3),9)

Now

gives

1 S £ , [ [ y . - / f e , /3 ) l jg / f e , ,8 ) ]
a 2

and

g2(zi,fii((3),9)
(2.2)

Equation (2.2) provides the estimate for the regression parameter /3 for some estimated 

value of 9. To obtain this estimated value of 9 we maximize the loglikelihood i(9, cr, ¡3/Y)

19



Where

L 0 , 9 , * 2/ Y )  =  Y[[27ra2g2(z i ,m 0 ) ,  6)] 2exp[
2 =  1

1 [ V i - f j x i j ) ] 2
2 cr2g2(zi, Hi0),  9)

=  ( 2 ^ - T ( a 2) - f [ g 2(zi,g i0 ) , e } - ^ e x ])[ I E  ? = i [V i - f ( x iJ ) }2 
2 a2g2( z i ,m 0 ) : e)

and (3 is obtained from equation (2.2). 

Now write

/ = l o g  L(f3,e,a2/Y)

■^log(27r) -  ^ lo g (a 2) -  ^ l o g \g2(Zi, g t0),9)\ -  i S l M ---- f ( xy ^ ] 2
2 2 ' 2 &[y { n 2 a2g2(zi,g i(/3),9)

N N N , 1  vN  r2
■ — log(27r) -  — log(a2) -  — log\g2(zt, gt(/3), 0)] -  -  8

where

yt -  f (x j , {3)

g{zi,ni(P),0)

Then

yields

dt
f o 2

N  1 N r2
■— + - V ^  = o
2<r2 2 ^  a42 = 1

Next, let || =  0. Then we have

(2.3)

- Ng(z { , fii(p), 0)^-g(zi, m($),  9) E ¿ = J y

g2(zi,gi(f3),9)
+

f ( xi,P)]2-^:9(zi,Vi(P),0)
a2g3(zi,fii($),0)

20



or

~ N wtg |
g(zi,Hi(Î3),6)

E lA v* -  /(z«,/3)]2^-g(^,^-(/3),fl)
a2g3(zi,Hi(Î3),d)

= 0

Simplifying gives
N

- N v t, +  £  
¿=1

=  0

or

- N a 2ve, +  E ili  rjv9i =  0

where

Then # is obtained by solving

Y^(rl -  ° 2)ve, =  0 (2.4)
i=l

While this procedure does not at first appear in this form to be based on a regression using 

squared residuals, examination of the estimating equations (2.3) and (2.4) for estimating a 

and 9 respectively show that they have the form of equations for weighted squared residuals.

2.2.2 Restricted Maximum Likelihood Procedure

One objection to the pseudo likelihood procedure is that no compensation is made for the 

loss of degrees of freedom associated with the estimation of (3. The restricted maximum 

likelihood procedure is obtained by modifying pseudo likelihood to account for the effect of 

’’ leverage” and for correcting the degrees of freedom loss. To obtain the adjustment define

21



the hat matrix

H NxN =  X , { X l X , Y 1X l

with diagonal elements ha where X* is the N  x p matrix where ¿th row is the transpose of 

the column vector

g(zi,m(P),6)

The diagonal elements ha are the leverage values. Then using these leverage values and 

changing the divisor of (2.3) to N — p where p is the number of regression parameters, we 

solve for 0 and a equations

y  [V i - f { x i ,P ) ]2 
i= 1 v 2g2(zi,[j-i0),O)

1

l-----------

1

i_______

_ vet _ . E f = i k ( l -h a ) )  _

obtaining

a r22 _ ¿-Jt—1 %
N - p (2.5)

and

¿=i (T2g2(zij /q(/3), 9) 

Finally 6 is obtained from

^  [s/i -  f ( x i j ) } 2Z- = L K (1 -  h u )\
t=i

= ° (2.6)
¿=i ¿=i

Where a2 is as in equation (2.5) and rt and vSi are as defined in Subsection (2.2.1).
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2.2.3 Least Squares on Squared Residuals Procedure

The motivating idea in this procedure is that the expectation of the squared residuals is 

approximately the variance. From equation (1.1), write the squared residuals as

[Vi -  fixiJ*)]2

where /?* is the current estimate of /?. We consider a regression problem where the re-

sponses are squared residuals and the regression function is its approximate expectation 

cr2g2(zi, //,•(/?*), 6). Thus write

E[yi ~ f(xi,/?*)]2 ~  a2g2(zi,fit(^),9)

Then minimize

~  / ( ^ i * ) ) 2 -  <r292(zi,l*i(P*),0)]2
i=1

in a and 6. However, for normally distributed data the squared residuals are themselves 

heteroscedastic with variance approximately proportional to

a4g4(zh fii(/3),e)

Thus one is naturally led to generalized least squares, see Jobson and Fuller (1980). Thus, 

for generalized least squares, this suggests minimizing with respect to a and 6 the weighted

23



least squares version

/(s«> A ) )2 -  ^ V f e ^ 'A ) ^ ) ] 2
04(*t>M&)A)

obtaining

y -  [(y.- -  f(xi ,P*))2 -  y 2g2(zi,Vi{i3*)J)](jg2(zi,iJ'i(l3*),o)
h  g4(zi,m0ir),ei,)

and

(2.7)

«=1
a2g2{zj, /x,-(&), g)]gf(^, /*,•(&), / (̂AQ, ¿0

g*(zi,m(pi'),0i')
( 2 .8 )

where is the current estimate of 9. Now solve equations (2.7) and (2.8) to get a and 9 

respectively. Next, to account for the effect of leverage minimize

y* [fa -  f(xuP*))2 -  o~2(l -  hn)g2(zi,fii0*),9)]2 
i=i [(1 -  hu)2g4(zi, m(P*), (9*)]

in er and 9 obtaining

y  [fa -  / f a ,  AO)2 -  a 2{ 1 -  fa)Vfa^fafa),fl)]fafa,/faAQ fa) = Q 
h i  [(1 -  M  V f a , Hi(Pi,), 0*)]

and

~ ((9. -  f(Xi, k ) f  -  k ( l  -  ha)2g2(zi, =  0
£¿ = 1 [(i -  M V H ^ M A O A ) ]
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with ha as defined under Subsection (2.2.2). Solving equations (2.9) and (2.10) gives a 

and 9 respectively. This is done iteratively and the procedure is outlined in Chapter 3.

2.2.4 Least Squares on Absolute Residuals Procedure

In analogy to Subsection (2.2.3), we look at the expectation of the absolute residuals as 

being approximately the standard deviation crg(zi, and write

E\yi ~ =  ag(zi,g i0 i,),9)

leading to the minimization of

¿=i /(*.•>&)! ag(zi,m{pi) , e ) } 2

with respect to cr and 9. However, since the residuals are to be appropriately weighted, 

Carroll and Ruppert (1988), suggest estimating 9 by minimizing with respect to a and 9 

the weighted version namely

[\ŷ  - f (xi ,P*)\ -  <rg(zj, m(Pi,),6)]2
.■=i g2{zii pt(/3*), 0*)

This implies that, to find a we solve

[\yi -  f(xi,P*)\ -  agfa, m0*),Q)\g(zi, /*,•(&), fl)
i=1 92(zi,gi(P*)J*)

(2.11)
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and for 0 solve

y  [\yi_ -  f (xiiP*)\ -  V9(zi,Pi(P*),0)]°g(zi,»i($*),0)£:g(zi,&($*), 0) _  

¿ = 1  g2{zi,Vi(P*)J*)

This can be written as

y  [ b i  -  f(Xj,P*) 1 -  _  0

¿=1 g2(zi,fii0*),0+)
( 2 . 1 2 )

where a is known from (2.11).

Next we modify this procedure to account for the effect of leverage by minimizing with 

respect to a and 0

y  [|y. -  f(xj ,  API -  a{ 1 -  hii)g(zi, g i0*),0)]2 
¿ 1  [(1 -  hii)2g2{zi, m 0*) ,  (9*)]

Differentiate with respect to d and 0 respectively and equate to zero obtaining equations

y' [b. ~  At)| -  cr( 1 ~  fei»)fl'( ,̂At«(/g*),^)b(.g.-,At«(^*),^) 
¿=i [(1 -  hu)g2(zi, m0*) ,  (9*)]

and

y ,  [b«~ -  f ( xiiP*) 1 -  ¿ ( 1  -  m;9(zi, Pi(P*),Q) _ Q
¿=i [(1 -  hti)g2(zi, ^ 0 * ) ,  0*)]
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2.2.5 Modified Maximum Likelihood Procedure

This is the problem of estimating variances by pooling information from a large number 

of small samples. At each predictor value x8-, observe m,- replicated responses ?/ij, i — 

1, ...,M  and j  =  1, ...,ra,-. First consider the case of equal replications m,- =  m so that 

M  =  IVm is the total number of observations. Raab (1981, p. 35) suggest the modification

ml  ̂ f m^—l \
of the standard likelihood replacing the term cr~~ by cr~l 2 > and gives a number of 

justifications. We adopt this modified likelihood and write

M

L(/3,6,a2/Y)  =  n [ 2 ™ y ( * ,M /? ) ,* ) ]  r *21}e x p [ - ]£ (yij-m(P))2
2 (r2g2(zi,Hi(P),6)

Taking logarithm obtain

 ̂— log L(/3,6, cr2/Y)
M M  m

) Y  lo g p ^ y ^ , 0)] -  £
¿=1 j=i

(frj -  /*«(/?))2 
2cr2g2(zi, fii(f3), 9)

Now differentiate with respect to a2 and equate to zero, to obtain

dl _  ,m -  1 i i ,  J_ ^  y ,  (tftj ~ /^(ff))2
9a2 2 (J2 2cr45r2(^i, //¿(/9), 6»)

giving
1 M  M  m

^ E ( m - 1) = E E
¿=1 ¿=1 i= l

(yjj -  Mft))2
2 cr4g2(zi,fii(l3),e)

or
(yii-m(P))2
32(zj,Vi0),(>)

m — 1)
(2.15)
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Similarly, differentiate l  with respect to 6 and equate to zero obtaining

ae
de

— (m ~i g(zi,MP)>&) hi hi v2g3{zi,Vi(P),0)

or

*=i i=i v 2g3(zi,Vi(P),0)
(m

i=i g(zi,9i(P),0)
(2.16)

Finally differentiate £ with respect to P and equate to zero getting

m
op

—  ( m —

M

1 ) E 90
g(zi,fii(P),6)

M  m

^ E E
f a j - b » ( / p )  l y y y -  

a2g2(zi,m(P),d) h h
(va - g t(P))2M*<MW)

a2g3(zi,fii(P),6)

y y  ( V a - M )  | ^  A  fa ,  ~  ft
l=i J=1 a2g2(zi,m(P),9) h h  a293{zi,9i{P)J)

M

DE
da(zi î(0),&)

90
g(zi,Hi(P),6)

=  0

(2.17)

Now solve equations (2.15), (2.16) and (2.17) to obtain a2 , 6 and P respectively. Note 

that for the usual maximum likelihood estimate, a is biased. It is made unbiased in this 

case by dividing the corrected sum of squares by the degrees of freedom rather than the 

sample size.

The unequal replication case is given in Subsection (3.2.6).

2.2.6 Extended Quasi Likelihood Procedure

Wedderburn (1974) gives the definition of quasi likelihood while Nelder and Pregibon
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(1987) discuss the extended quasi likelihood. When 9 is known and the variance function 

has the form (2.1), quasi likelihood estimation of (3 is a form of iterated generalized least 

squares. The extended quasi likelihood method is a joint estimation scheme which attempts 

to extend the notion of quasi likelihood to include estimation of 9. The method is based 

on the assumption that the data arise from a class of distributions depending on 6 and 

involves estimation of 9 by minimizing with respect to /?, 9 and a2 the extended quasi 

likelihood

Q+ =  - ^ X ^ log {27r(TV (^ ,y « ,0 ) }  -  ~2 [2  ¿T2 J y

2 f d̂P) y,- — u
yi g2(zi,m(P)iO)

du]

as in Davidian (1986, p. 16). If we differentiate Q+ with respect to 9 and a2 we obtain

d Q- N  d
aet~ o E[2

g(zi,Vi,Q) 4 r»dP)+
99 2 g{zi,yi,9) a2 Jyi g3(zi} 9) 89

rnnp) 
Jyi (

; } {^ -g (z^MP)^9)jdu]

and

_IydjL A  /
2 t i [a2 +  a* Jy

0Q+ _  1 ^ 1  , 2 fMP) y t -  U

y, g2(zi, g l(p),9)
du]

Equating the derivatives to zero gives 9 as the solution of

N , Vii 9) 4 rvdP) y j - u
g(z»yi,  9) a2 Jy, ^g3(zi,g i0 ) , 9 ) ) l d9i£[2

(J
} { ^ - g ( ziidi(P),9)}du} =  0 (2.18)

and for a2 we solve

Jy,i- 1 a* a’ ly, g2(zi,m((3),9)
(2.19)
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Similarly, differenting Q+ with respect to ¡3 gives

i=i 92(zi,l*i{P),0) dP
( 2.20)

2.2.7 Logarithm of Absolute Residuals Procedure

This procedure exploits the fact that

E\yi -  /(x¿,//¿(/?*))I ~  ag(zi,m(P+),9)

and uses a two-step estimation process. The first step consists of taking the natural loga-

rithms of the absolute residuals |j/,- — /(« ¿ , /¿¿(/3*))|. These are then regressed on

log{<7 g(zi,Hi0*),O)}

thereby yielding estimates of 9 as the slope and log a2 as the intercept. With the assumption 

that the errors are independent and identically distributed, this should be approximately 

a homoscedastic regression. A practical problem arises if one of the residuals is very near 

zero, in which case taking logarithms induces a rather large and artificial outlier. To avoid 

this potential difficulty for fitting the variance model, Carroll and Ruppert (1988) suggest 

that one might wish to delete a few of the smallest absolute residuals.
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2.2.8 Rodbard and Frazier Procedure

This method uses replication as in the case of modified maximum likelihood and it is 

identical to the logarithm method. The idea is to avoid dependence on unweighted methods. 

Here the absolute residual is replaced by the sample standard deviation and / ( x 8-,/3*) in 

the regression function is replaced by the sample mean yt. Thus the procedure is to regress 

the logarithm of the sample standard deviation on the logarithm of the sample mean.

2.2.9 Other Procedures

Two other procedures are as follows. First is the maximum likelihood procedure. The 

process here is the same as in the pseudo likelihood procedure. However instead of fixing 

/3 at the current value ¡3 and maximizing the likelihood function in 6, one maximizes the 

likelihood function jointly in (3 and 6. Maximum likelihood assumes that the variances do 

not depend on the mean. The second procedure is that of Sadler and Smith (1985). This 

is similar to the modified maximum likelihood procedure where one uses the sample mean 

yi instead of

2.3 Multiple Regression Model

The methodology discussed under the univariate regression model in Section (2.2) can be 

carried over to the multiple regression model without little alteration. For illustration, in 

this section we briefly discuss two methods; pseudo likelihood and restricted maximum 

likelihood. The other methods can be worked out in similar manner.
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In multiple regression, several predictors are used to model a single response variable.

The data can be depicted in an array as

Y X i X 2 •••• x p

yi Xu X12  ■ ■ Xip

V2 X21 X22 ■ ■ %2p

VN XN1 XN2 ■ XNp

The model is specified by a linear equation

Y  — fio +  +  f3 2X 2 + • • • +  flpX p +  e

and in matrix notation we write (2.21) as

Y  =  X /3 +  e

The mean and variance models are written as

E (Y )  =  fi((3) =  f (X , f3 )  =  X[3

(2.21)

( 2.22)

and

var(Y) =  a2 A  =  a2A(Z,^i(f3),d)
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respectively. For simplicity we consider the uncorrelated case, thus A is a diagonal matrix. 

Now proceed to estimate the regression parameters as under Subsection (2.3.1).

2.3.1 Estimation of (3

Now we assume normality and write the likelihood as

L ( 0 ,a \ A / Y )  =  (2nv2) - T \ A \ - i e x p { - ^ { Y  -  f ( X , P ) l TA-  )]}

and let

=  lo g ic s ,*  \ A / Y )

j  logp ™ 2) -  1 log | A\ -  ~ [ Y  -f ( X M TA - ' [ Y  -  )]

Then =  0. The following sequence of steps derives the basic matrix version of the 

likelihood equations

i d
2a2 dp'

Y t A - 1Y  -  Y TA~1f ( X , p ) -  [ f ( X ,P ) } TA~1Y  +  [ f (X ,P )Y  A - 1f ( X , p ) )  =  01T 4-1

which simplifies to

_  Y TA - ' n X , f 3 )  -  Y TA - ' f ( X , p +  =  0
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or

1
2 ^

( - 2  A l Y
d_

3(3
f (X , (3 )  +  2 A -1f(X,/3)

d_
d(3

f (X , f3 ) )  =  0

Now factorize and obtain

A - 1f ( X , / 3 ) - ^ f ( X , l3) =  0

or

l ^ f ( X , l 3 ) } TA - i [ Y ~ f ( X , f ) ) }  = 0

and finally

D TA~l [Y -  ii{/3)] =  0 (2.23)

where D  =  N  x p matrix of partial derivatives of f (X , (3 )  with respect to ¡3 and A -1 is the 

inverse of the variance matrix A ( Z , fi(f3),6). Now in the special case when n(/3) =  X/3, 

(2.23) becomes 1DTA~l [Y -  X(3] =  0 giving the standard form

/3 =  [DTA - lX ] - 1D TA~lY (2.24)

To obtain matrix A  1 proceed as in Subsection (2.3.2).
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2.3.2 Pseudo likelihood Estimation of 6

We maximize the loglikelihood L(0 ,a2, ß /Y)  where

N  , On N
Uß,0,<T2/Y) =  {27r)-T(lTi ) - T \ A \ - e x p { - — l Y ~ f ( X , ß ) Y A - I[ Y - f ( X , ß ) } }

Let

< = iog U f l , e y i Y )

= - y  log(2x) -  y  log(CT=) -  5 log | A| -  -  / ( X , j ) ] V  [V -  /(Jf, /3)]

Then

or

¿ { - A ^ 2 + [Y - / ( X , /3 ) f  A - ‘ [y -  f ( X , 0 ) ] }  0

giving

<r'2 = y [F  -  f ( X , P ) ) t Â[-  (2.25)

Next, write ^  =  0. Then use the following results of matrix differentiation (see for 

example Theil (1971))
r\

—~(aTX - la) =  —X ~ laaTX ~ l (2.26)
Usi.

and

2tlog|A | =  (A J’ ) - 1 (2.27)
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to obtain the partial derivative of £ with respect to 9. Thus

di_
dO ~2 A de 2a2

-A - ' {Y  -  f(X,ß)]{Y-

and

j 2{A - ' {Y  -  n x M l Y  -  f ( X , ß ) f A - ' - ^ A ]  -  A - ' - ^ A  =  0

g iv in g

A ~ ' [ Y - f ( X , ß ) ] [ Y - f ( x M TA~1^ A " 2a ~1M a  =  0

Thus to find 6 we solve the equations

A~'{Y  -  f ( X , ß ) ] [ Y  -  f ( X , ß ) ] TA - ' Ä  -  a2A~l Ä =  0

which can be written as

A~X[Y -  X ß ] [ Y  -  X ß\TA~xÄ -  ^ [ Y  -  X ß ] TA~x[Y -  X ß ] A ~ lÄ  =  0 (2.28)

where A is the diagonal matrix whose elements are

J 2 a2s K zij,vi(ß),°)i
j=i

i = 1

and A is a matrix of partial derivatives of A  with respect to 6.
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To correct leverage and degrees of freedom lost due to estimation of /3, let

[D t A~1]t  =  A

and compute the hat matrix H  as H  =  A ( A TA)~1A T. Further, let A n x n  be the diagonal 

matrix whose elements are the main diagonal of ( I  — H ) ,  where I  is an N  x TV identity 

matrix. Then, for 6 solve

A~l [Y -  Xf3][Y -  Xp\TA~l A  -  - ^ - - [ Y  -  X(3]TA~l [Y -  X p } A ~ xA A  =  0 (2.29) 

where A  is as defined in equation (2.28).

2.4 Generalized Multivariate Regression Model

In this section we shall limit our study to the restricted maximum likelihood only since 

all the other methods will follow similar computation. Let Y 1; • • •, Y p be N  X 1 vectors 

representing N independent observations. We assume a linear model of the form

Y  =  X B  +  E (2.30)

where Y  is a N  x p matrix of response observations, X  is a N  X q matrix of predictors, 

B  is a q x p matrix of unknown regression parameters and E  is a N  x p matrix of random

2.3.3 Restricted Maximum Likelihood Estimation of 9
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variables. The parameter vectors /3i which are the components of B  are specific to the 

chosen dependent variable Yi  and hence are different for each i , but the same X  appears 

in all models

Y t =  X(3t +  e t (2.31)

This is because the same explanatory variables are being used in each separate predictive 

model. Hence the multiple regression model (2.31) is obtained by extracting the zth column 

of each matrix in the multivariate regression model (2.30). See that there are p univariate 

regression equations in (2.31) of the form

Yi =  X l(3l +  e8 (2.32)

where Yi  is a N  x 1 vector of observations, X {  is a N x qt design matrix in the zth 

equation, (3i is a qt x 1 vector of unknown regression parameters and e, is a N  x 1 vector of 

random variables. Note that if X i  — X 2 =  ■ • • =  X p, then (2.32) reduces to (2.31). Now 

write (2.32) in compact and seemingly univariate form by defining Y  =  ( Y Y p ) T, 

¡3 =  • • • , /3p)r , e =  (e f , • • •, )T and X  is a diagonal matrix whose elements are

X i ,  ■ ■ ■, X p. This gives

Y  =  X'(3 +  e (2.33)

where Y  is a Np  x 1 matrix of observations, X  is a Np  x q block diagonal matrix of 

predictors, /3 is a q X 1 matrix of regression parameters, e is a Np  X 1 matrix of random 

variables and q =  9i- Observe that (2.33) looks exactly like (2.22) and therefore leads
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to
Ci .. fp Cm -1 .. .. 'T1 C. -1 ..
¡3 =  [D A X ] - rD  A Y

as the equation for the regression parameters and

(2.34)

. - l
A [Y -  X/3][Y -  X/3}1 A A -

1
Np — q

[ Y - X p f A  [ Y - X } 3 ] A  A A  =  0 (2.35)

as the equation for 6. Here A — Np x Np diagonal matrix whose elements are

91 <7p
E  a29K zij\ & (1)), • • • E  a29K zij\ /4P)(/?), 0(p))L
j=i i=i

* =  ./V

and A =  matrix of partial derivatives of A with respect to 6 where 6 =  (0^, ■ ■■,0 p )T, 

D  =  Np x q block diagonal matrix of partial derivatives of f (X , (3 )  with respect to /3,

A =  ( I Np — H ) ,  H  =  A (A TA ) - j A T and A =  [ i f A _1]T.

2.5 Conclusion

Different special cases of (2.1) have led to different procedures for estimation. All the basic 

equations have been rederived in a unifying framework.
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Chapter 3

PERFORMANCE OF THE PARAMETRIC

ESTIMATORS

3.1 Introduction

The procedures of Chapter 2 will be empirically studied. The objective is to have working 

experience with these procedures. In addition to the working assumptions such as normality 

there are other features that appear. For example the number of replications at each design 

point need not be constant. Also there is the problem of deleting a few absolute residuals 

that are very near zero in the case of logarithm of absolute residuals, for example choosing 

how many points to delete.

Using simulation, simple comparison is carried out for checking the similarity of these 

procedures if all conditions associated with them are met. For computational convenience, 

simple models for both mean and variance will be considered. Computation is carried out 

in S-PLUS programming language. The equations derived under Chapter 2 are general
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carry out the 

mathematical

3.2 Working Model

Consider a simple linear regression model

equations for any variance function encountered in practice. In order to 

simulations, these equations will be revisited once more to show the actual 

calculations involved for a simple model of univariate regression.

Vi — flo +  PiXi +  ej , i — (3.1)

and take a simple variance function (for example, Carroll and Ruppert (1988, p. 65))

var(yi) =  cr2g2{xi, 9) =  a2(l +  Ox2)2 (3.2)

In this model x =  0 is the minimum of g. Now insert (3.1) and (3.2) into the equations of 

Chapter 2 as follows

3.2.1 Equation for /3

From equation (3.1), write

E{yi) =  MP) = f{xit ft) = Po + PiXi
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and together with (3.2) substitute into equation (2.2) to have

N

E d
dfa f { x i,P)[

yt -  f (x j ,P )  
cr2(l +  Ox])2

=  0 , 3 =  0,1

giving

and

Expand to obtain

and

N

E d%f(Xii P) 

^ f ( Xi,P)

rVi ~ f(Xj,P)
{1 +  6x1)*

0

Vi -  f (* i ,p )  1 _  0 
(1 +  6x1)*

Vi — (A )  +  P\Xj)  _  q  

¿=1 (1 +  6x])2

y—r yiXi (PqX% d" PlX̂  )
h  (i +  ex?)2

Now write equation (3.3) as

(3.3)

(3.4)

E<
4 =  1

Vi
( i+ (M 0 !

N

} - £ {
4 =  1

Po + PlXj _
( 1 + 0 * ? ) ^ “

or
N

Po Ei
( 1 + 0 X ? ) 2

} + & E {
X;

=1 (1 +  @xi)

N

;} = E{
i=1 (i +  ^ 2)2

} (3.5)
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Similarly, write equation (3.4) as

N

=i a + o x n
;} + ä £ {

X■ N

} = £ { -
XiVi

z i  (i + 9x?y i=1 (i + 9x?y
(3.6)

In matrix form we have

£ f =1{ r} £ f =1{(i+fe?:

■} e £ i {(1+e*?:

(1+0X?)2

( l + 0 a ; ? ) 2

A)

A

£ f= i{ 2\2  .

z £ i {

(i+to2)

X i V i
(1+0x2i )2 }

Next, solve to obtain

ßo

ßi

E £ { rl E fc i{(1+0^) ,2\2  .

£ f= i{ (i+0x2)2} Ei=r{

( i + f e ? )

.2N  r
( l + 0 ^ ) 2 -

-1 _

E fe i( JLl.
(1 +037? )2

JV r x ty,Ei=i{ (1+ 0:.2\2

(3.7)

3.2.2 Pseudo Likelihood Equation for Ö

From equation (2.4), obtain 9 as

■ST-̂ rVi (ßo +  ß\Xi) -|2 1 C

r + f e ?  J
1 v ^ » ' ~  (&  +  /A®*) iv

- m T.1 +  Ox] N f r [ l 1 +  0x\ ]2Ei  1 +
=  0 (3.8)

and from equation (2.3) obtain

<7'
1 + 6 x ]

(3.9)
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3.2.3 Restricted Maximum Likelihood Equation for 6

From equation (2.6), obtain 6 as

Y^rVi -  (A) + ihxi)]2 x\ 1 ^  Vi -  0 0  +  ^Xi) x ?
1 +  ^  J l +  0x? iV — 2 l +  0x? J +

(3.10)

Where are the diagonal elements of the hat matrix defined in Subsection (2.2.2) and 

with obvious notation X *  is the N  x 2 matrix given by

1 -ffc2 1+8x2

Then from equation (2.5) we obtain

a2 _  1 f fy,- -  (fio +  f e h
^  -  2 ¿ f  1 +  Qx]

(3.11)

3.2.4 Least Squares on Squared Residuals Equation for 6

Leverage Not Corrected

From equation (2.8), obtain 6 as

y '  {[y.- -  (Â) +  ffi^ )]2 -  cr2(l +  ^ ¿ ) 2}(1 +  ^x?)(x?) _  0 
h  (i +  h x } y

(3.12)
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and from equation (2.7) obtain cr2 from equation

A  {[Vi  -  0 o  + P i X i ) ] 2 ~  g2(l + O x .?)2}(1 + 0 z ? ) 2

hi  ( 1 + i x 2)4

namely
\ p N  [ V i - 0 o+/3i^Q]2(l+fe^)2 

a 2 _  ^ =1 ( l + ^ ? ) 4
Ŷ iV / 1+yf \4
^ ‘=1' 1+0**?'

Leverage Corrected

(3.13)

From equation (2.10), solve for 6 as

A  {[y«~ ~ 0o  + &xj)]2 -  cr2(l -  fe»)2(l + <?x2)2}(l + 0x2)(x2) 
h  { \ - h lxf { i  +  h x iY

= o (3.14)

and from equation (2.9) obtain a2 as the solution of

A  {[yi -  0 0  + PiXj)]2 -  <r2(l -  h jif i l + 0x?)2}( 1 + Ox2)2 
h  (i -  h a f i i  +  0*x?)4

or
hi-(/3o+/3ia:0]2(l+tof)2 

^ ,-=1 ( l - / n i ) a ( l + 9 ^ ? )4
sr̂ N / l+flx2 34 
¿ ^ ¿  =  1  V 1  +  0 * 1 ?  /

where { *̂*} are as defined in Subsection (3.2.3).

(3.15)
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3.2.5 Least Squares on Absolute Residuals Equation for 6

Leverage Not Corrected

From equation (2.12), solve for 6 from

y ,  {\yz -  0 0  +  PiXj)\ -  <y(l +  8x?)}(l  +  Ox})(x}) _  Q 

i=i (1 +  9*x?)2
(3.16)

and from equation (2.11), obtain a from equation

(IVi ~ (A) + h xi)\ ~ a(1 + + <M) _ Q

1 =  1 ( 1 + M ? ) 2

namely
spN \yi-{Po+Pixj)\{i+ex̂ )
=j=i  (i+e+xi2)2

y / _Li2?£il_'i 2 
=i=l\(1+0**?)'

Leverage Corrected

From equation (2.14), solve for 9 as

(3.17)

y  {lift -  (A )  +  0 \2 j)\ -  u (  1 -  ha)( 1 +  f a 2) } ( l  +  0Zj)(xf) 

s  2( i + k x f ) 2
(3.18)

and from equation (2.13), obtain a from equation

y^ {\yi -  (A) +  fiiXj)] -  cr(l -  hii)( 1 +  0x])}{  1 +  Ox?)
h  (i +
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which simplifies to
V̂AT \Vi-(0O+0\Xi)\(l+ex̂ )
^ 1=1 ( l - M ( l + g * * i ) a

S^N / ( l +6x2t )

where {ha} are as defined in Subsection (3.2.3).

3.2.6 Modified Maximum Likelihood Equation for 6

From equation (2.15), obtain

. 1 1^ E " 1[s;J - ( A ,  +  A x ,)]2
‘ Efcdtm -  1) h i  (1 + 6xf,l

and from equation (2.16), solve for 9 as

^ E r = i [ ^ - ^ o + f e ) j 2̂ 2 , 1NV.
£ -----------bT 7 . „ 9^------------- (m - 1 ) L

M

¿ = 1 <7:(1 + 0x?)3 t i 1 +  0xl

Then obtain the equation for fS as per equation (2.17) which gives

h i  (l + fc?)2

or

y~> ( EJ=1 Vij fn(/3p + ftlXj) _

¿ r a  +  ^ r  h x a  +  <M)2

and hence the first equation is given by

M M X; 1 M X'™

^  (1 +  0*?)2 i= i (1 +  ^ ) 2 ™ S ' (1 +  ^ 2)

(3.19)

(3.20)

(3.21)
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Similarly, write the second equation as

M Xi M

=Î (1 +  te?)2
} +  & £ {

1 M  r . sr^m

a  ( i + f e ? ) 2 (i + « i ? )2

and in matrix notation write

$0

À

E ë i {

E & {

(i+fe2)2

(i+êx2ty

} E & {

} E & {

(i+fe?)2

__£Î__
(l+êæ?)2

-1 Em
_ >=i ~i
m  ( l + f e 2 ) 2  J

Em
_  7 = 1 y,] 1
m  J

Simplifying to

A)

À

E & { (l+tof)2

E & { (i+to?)2

} E & {

} Ej=i{

(l+E2)2^

- 4 — ]
( l  +  f e 2)2 /  J

¿W=l y.

spM l î=l

(1+to?)2

zjÿj 
(i+to2)2 J

(3.22)

Notice that since /q is unknown it is replaced by In the event of unequal replication, 

replace m by mt in equations (3.20) and (3.21) obtaining

‘ Ei!M m , - 1 )
E ^ i[y o -- (Â )  +  A ^ ) ]a 

è t  (i +  <M)2
(3.23)

and

y  Ej^lbo -  (A +
¿=1 CT2(1 +  0£?)3

f  (m,- -  1R2
¿ t  1 +  R 2

(3.24)
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3.2.7 Extended Quasi Likelihood equation for 6

From equation (2.18) obtain 9 as

+  exi)2 +  2yix i(Po +  &g.-) -  2vfx l -  x ì Cp q +  Plx )̂2 _  0
2 =  1 ( i + 0 x i Y

(3.25)

and from equation (2.19) obtain a2 from

<t 2(1 + 9x\)2 + 2yj(0o + f a i )  -  yf -  0 O + &x% f  _  Q
h i (i +  è x } f

or
[y2t+(Po+P\x>)2} 

^ i=1 (l + fef)2
V̂AT (l+fa^)2+2j/i(̂ o+/liXi)
^ i=1 (1+fc2)2

(3.26)

3.2.8 Algorithm

We now give an iterative procedure for obtaining 9 from the above formulated equations. 

The algorithm as presented here allows a general form for all the methods of estimating 6 

that have been considered. The procedure for the algorithm follow.

Step 1 Put the starting 9* equal to zero and obtain the starting /?*. Notice that this is 

equivalent to starting off with the least squares estimate of /?*.

Step 2 Obtain an estimate of a (closed form) from the starting ¡3+.

Step 3 Obtain the estimated 9 using the current 0 and a.

Step 4 Obtain new 0 using the current 9.
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Step 5 Obtain new a using the current 9 and ¡3.

Step 6 Repeat steps 3, 4 and 5.

Step 7 Stop when there is little change in both (3 and 9 say up to 10-8 accuracy. 

We summarize the algorithm in Figure 3.1.

Figure 3.1: Simple Algorithm Flow Diagram

3.3 Simulations

We begin the exercise by obtaining simulated data as follows. In model (3.1), let

e8 =  e,-er(l +  9x])

and generate independent values of e8- according to e,- ~  iV(0,1). Further, let the x[s be 

equally spaced on the interval [—1,1] with 0.1 spacing. Thus the simulations are performed
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with a sample of size N =  21. Next, fix (30 and to be 0 and 1 respectively. In model 

(3.2) let 6 be 1 and er2 be 0.3. Finally, in the event of replicated procedures take m =  2. 

For each procedure 100 simulations were carried out and the bias, root mean squared error 

and root mean integrated squared error where computed as

BIAS(v)  =
1

Too
100

—  V 5

RMSE(v)
100

£ ( ” *■ - v )2

and

R M ISE  =
\

i 100 f i 20001

Too §  |  20001 dj

obtaining the results as in Section (3.4). Here v indicates 0, a2, f30 and /3X respectively, dj 

is the difference between the fitted and the true function at the points Xj =  — 1, • • •, 1 at 

intervals of 0.001 and subscript i denotes the ¿th simulation. In the logarithm of absolute 

residuals procedure, the problem of the residuals near zero was avoided by discarding all 

the simulations which portrayed such a problem.

3.4 Empirical Results

The numerical outputs are presented in four tables. Table 3.1 gives the averages, Ta-

ble 3.2 gives the biases while Table 3.3 gives the root mean squared errors and Table 

3.4 gives the root mean integrated squared errors for the various methods under study.
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The abbreviations PLH, RML, SRI, SR2, AR1, AR2, LAR, EQL, MML, and ROD corre-

spond respectively to pseudo likelihood, restricted maximum likelihood, squared residuals 

with leverage, squared residuals without leverage, absolute residuals with leverage, abso-

lute residuals without leverage, logarithm of absolute residuals, extended quasi likelihood, 

modified maximum likelihood and Rodbard.

3.5 Discussion and Conclusion

Several different procedures were formulated to estimate the variance function with the 

emphasis on the estimation of 0. With the exception of Logarithm of Absolute Residuals 

(LAR), Extended Quasi Likelihood (EQL) and Rodbard (ROD) all the other procedures 

underestimate 9. We consider the absolute bias and rank these procedures according to the 

three criteria, absolute bias, root mean squared error and root mean integrated squared 

error as shown in Table 3.5. Absolute Residuals with leverage corrected (AR2) does best. 

However for RMSE Modified Maximum Likelihood (MML) seems to do well and for RMISE 

the best procedure is Pseudo Likelihood (PLH). Table 3.5 gives the ranking according to the 

three criteria. This clearly shows that although the differences are small Squared Residuals 

(SRI) and Absolute Residuals (AR2) are good at least for cases where replication is not 

available. Modified Maximum Likelihood (MML) could be recommended for replicated 

cases. Note that MML appear better because of the double sample size arising from the 

replication. Another observation is that the variances are larger than the biases for all the 

procedures as shown by Tables 3.2 and 3.6. No methods are terrible.
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9 a2 A) A
PLH 0.83 0.32 0.02 0.95
RML 0.96 0.23 0.00 0.97
SRI 0.86 0.28 0.01 1.02
SR2 0.87 0.32 0.02 1.02
AR1 0.92 0.20 -0.01 1.01
AR2 0.98 0.23 0.02 1.02
LAR 1.14 0.38 0.01 0.99
EQL 1.16 0.27 -0.02 1.05
MML 0.93 0.49 0.01 0.97
ROD 1.15 0.34 0.02 0.96

Table 3.1: Average Estimates

9 a2 A A
PLH -0.17 0.02 0.02 -0.05
RML -0.04 -0.07 0.00 -0.03
SRI -0.14 -0.02 0.01 0.02
SR2 -0.13 0.02 0.02 0.02
AR1 -0.08 -0.10 -0.01 0.01
AR2 -0.02 -0.07 0.02 0.02
LAR 0.14 0.08 0.01 -0.01
EQL 0.16 -0.03 -0.02 0.05
MML -0.07 0.19 0.01 -0.03
ROD 0.15 0.04 0.02 -0.04

Table 3.2: Biases

9 cr2 A> A
PLH 0.522 0.119 0.153 0.325
RML 0.568 0.191 0.183 0.311
SRI 0.474 0.111 0.131 0.309
SR2 0.565 0.137 0.160 0.288
AR1 0.530 0.120 0.139 0.326
AR2 0.510 0.122 0.133 0.283
LAR 0.481 0.118 0.122 0.316
EQL 0.490 0.104 0.158 0.326
MML 0.455 0.228 0.111 0.233
ROD 0.489 0.124 0.136 0.310

Table 3.3: Root Mean Square Errors
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PLH RML SRI SR2 AR1 AR2 LAR EQL MML ROD
0.202 0.326 0.217 0.221 0.274 0.247 0.374 0.207 0.303 0.294

Table 3.4: Root Mean Integrated Square Errors

BIAS
6

RMSE RMISE
PLH 9 7 1
RML 2 10 9
SRI 6 2 3
SR2 5 9 4
AR1 4 8 6
AR2 1 6 5
LAR 6 3 10
EQL 8 5 2
MML 3 1 8
ROD 7 4 7

Table 3.5: Ranking

9 a2 A A
PHL 0.244 0.014 0.025 0.103
RML 0.321 0.032 0.033 0.096
SRI 0.205 0.012 0.017 0.095
SR2 0.302 0.018 0.025 0.083
AR1 0.275 0.005 0.019 0.106
AR2 0.260 0.010 0.017 0.080
LAR 0.212 0.008 0.015 0.100
EQL 0.215 0.010 0.025 0.104
MML 0.202 0.016 0.012 0.054
ROD 0.217 0.014 0.018 0.095

Table 3.6: Variances
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Chapter 4

NONPARAMETRIC APPROACH

4.1 Introduction

The nonparametric approach differs radically from the parametric approach. Here, the 

only assumption about the variance functions is that they are given by an unknown but 

smooth function of the design or the mean response. Consider for example the case where 

the variance function is known to be determined by the x\s and rewrite model (1.1) as

yi =  f ( x i) +  eii i =■ (4.1)

We assume that the data are heteroscedastic and denote the possibly nonconstant variance 

function by g(x{), where g(xi) is unknown but assumed to be a smooth function. This 

chapter describes the techniques for carrying out the improvement of estimators based on 

data at a particular x%.
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There are two types of designs, the fixed design where the predictor variables x\s are 

equally spaced and the ’’ random” design where spacing is haphazard. Here the fixed 

design is considered and only univariate data is studied. To investigate how to estimate 

the function g(x{) a foundation is necessary. We call this foundation the initial variance 

estimate.

4.2 Initial Variance Estimates

There are three categories of initial variance estimates which include; (?) residuals (ii) 

sample variance and sample standard deviation (in) difference schemes. In all these initial 

variance estimates, the underlying idea is to remove the influence of the mean function 

first.

4.2.1 Residuals

Suppose the mean function f (x i )  were known then we define the residuals as

ri =  y i ~ f ( x i ) ,  i =  1, • • ■, iV (4.2)

Then take the square residuals as the initial estimate of g(xi). Modifying the squared 

residuals leads to some more initial variance estimates based on the squared residuals. One 

such modification is to take the logarithm of the squared residuals. Another possibility 

is to divide the squared residuals by some factor leading to studentized or standardized
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squared residuals as defined in Carroll and Ruppert (1988). We consider the cube root of 

the squared residuals as another possible modification. This particular modification has 

been frequently utilized in the diagnostics of heterogeneity.

Absolute residuals is another potential initial variance estimate. While squared resid-

uals can be thought of as estimating the variances, absolute residuals can be thought of 

as estimating the standard deviations. The modification procedure applied on the squared 

residuals are carried over without alteration leading to some more initial variance estimates 

based on the absolute residuals.

4.2.2 Sample Variance and Standard Deviation

Suppose that at each point X{ there are ml replication observations where >  2. Then 

we write the regression model with one dimensional predictor as

Uij f{xi)  T (4.3)

As an initial estimate of g(xi) take

TO,; — [Z X ïto  "  ÿ
- ~\2

J=1
(4.4)

and in analogy to the absolute residuals, take st- as the initial estimates of the standard 

deviations.
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4.2.3 Difference Schemes

These are weighted differences of the observations for points neighbouring a fixed X{ where 

the variance is to be estimated. The simplest example is the successive differences ¡ji+ 1 — y,. 

The general case considers weighted sums of any m >  2 observations where the weights 

are obtained through moving averages or some other criterion for example as described in 

Muller and Stadtmuller (1987). One general case is defined as

m2

9i = Y  wjVi+j (4-5)
j—mi

where Wj are weights such that EjL2mi wi =  EJL2mi w) =  h rni =  ~ [y ] , rn2 =  [y  -  |], 

m >  2 is a fixed integer and [.] denotes the integer part. Then we take gf as the initial 

variance estimates and \gi\ as the initial estimates for the standard deviations.

Another difference scheme is motivated by the variance formula

varfa)  =  E[yt -  E(yz)]2 =  E[y■} -  [E(y ,-)]2 (4.6)

leading to the use of the squared observations or absolute observations as the initial variance 

estimates.

4.3 Improving the Initial Estimates

We denote by zt the initial variance estimate at xt. In order to obtain a better estimate, 

we smooth the neighbouring values of Z{. For this purpose, view the initial estimate z,- as

58



measurement coming from the regression model

Zi =  g{xi) +  è» (4.7)

where g(x{) is unknown but smooth in the sense that g(.) has a continuous first derivative;

if Xi and x 2 are very close, so too should g(x i) and g(x2) and information about g(x i) can

be obtained from data at x2. Some of the best known smoothers are

1. Smoothing splines, Reinsch (1967), Rice and Rosenblatt (1981) and Wahba (1975).

2. K-nearest-neighbour smoother, Friedman (1975), Cover (1968) and Mack (1981).

3. Kernel smoothers with types Priestley-Chao (1972), Gasser- Muller (1979,1984), 

Nadaraya-Watson (1964), and Local Linear Regression smoother, Fan(1992, 1993).

Other smoothers have been considered in detail, Hastie and Tibshirani (1991). Kernel 

smoothers have been found to have minimax optimal properties, Gasser and Engel (1990).

4.4 Kernel Smoothing

We shall consider smoothing by the Gasser-Muller (1984) kernel smoother,

(4.8)

with So =  x i ,  s n  —  x n , s j  =  + ,̂+1 and 1 < j  <  N  — 1. Here b is the bandwidth or

smoothing parameter that controls the amount of smoothing and K  denotes the kernel
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(weight) function with properties K{ x)  >  0, f̂ °00K (x )  =  1 and K ( —x)  =  K( x)  for all x. 

The Gasser-Muller-type kernel smoother has been investigated and found to perform well 

relative to other kernel type smoothers, Jennen-Steinmetz and Gasser (1988), Mack and 

Muller (1988) and Hall and Wehrly (1991). To be able to apply the kernel smoother, b and 

K  must be chosen.

4.5 Choice of Kernel

In the context of kernel smoothing, two types of kernels for smoothing functions have been 

studied; the minimum variance kernels which minimize the asymptotic variance and the 

optimal kernels which minimize the asymptotic integrated mean squared error, Gasser, 

Muller and Mammitzsch (1985) and Muller (1984).

An important characterization of a kernel is its degree of smoothness since it will 

typically be inherited by the smoothed curve. It is typical to use a p times differentiable 

kernel, /i >  0. In practice, ¡x =  1 or fx =  2 is recommended (see, Muller and Wang (1994)). 

Further, for carrying out the smoothing procedure, the kernel is required to satisfy two 

conditions; (i) f \  K[x)dx  =  1, that is the kernel has support in the interval [—1,1] and 

(ii) the kernel is Lipschitz of order one in the interval [—1,1].

Definition 1 A continuous function /  is said to satisfy a Lipschitz condition of order a 

if there exists positive constants m and a such that |/(aq) — f ( x 2)| < m\x\ — x2\a 

for all x\ and x2 in the domain of / .

Remark Every continuous differentiable function /  on a closed interval [a, 6] satisfies a
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Lipschitz condition of order one on that interval.

Definition 2 A function /  defined in an interval is called continuous in that interval if 

it is continuous at every point of the interval.

In this thesis the kernel function

K( x)  =  -(1  — x 2) , \x\ <  1 (4.9)

is considered in detail. In addition to the above conditions there are two reasons why we 

chose to work with this kernel function. The first reason which is not very important is 

the computational convenience. The other reason is that this is an optimal kernel; optimal 

in the sense that it minimizes the asymptotic integrated mean square error as explained in 

Muller (1984).

4.6 Boundary Modification

There is one practical relevant problem that occurs when applying kernel smoothing. This 

is the boundary (edge) effects which is a phenomenon in which the bias of a smoother 

increases near the endpoints of the smoothed interval. To counteract this problem, we shall 

modify the kernel estimate near the boundaries by use of linear combination of estimates 

with several bandwidths, Rice (1984). Other techniques have been proposed to deal with 

problems of boundary or edge effects for nonparametric regression smoothing , Gasser 

and Muller (1979), Muller and Mammitzsch (1985), Rice and Rosenblatt (1983), Schuster
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(1985), Silverman (1986), Cline and Hart (1991), Hall and Wehrly (1991), Muller (1991) 

and Muller and Wang (1994).

4.6.1 Modification Procedure

Define

Bl  -  {xi : xx < Xi < xN}

as the left boundary region

/  =  {xi : Xi +  b < X{ < x n  — b}

as the interior where boundary effects do not occur and

Br  = {xi : xN -  b < Xi <  xN}

as the right boundary region. In /  use (4.8) without modification. Further, define

WQ(qi) = J  ̂  K(x)dx  , (4.10)

Wi(qi) =  J  xK(x)dx  , (4.11)

{q,) W ,te) ’

Oii — 2 Qi ,
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and

R M
< * * (£ ) -  -Rte)

then in Br  use

s(xi) =  g(xi,b) + fii\i(xi,b) -g(xi,bai)]

(4.12)

(4.13)

with

and ò is the bandwidth parameter used in the interior. Similarly, in B r  the procedure 

remains the same except that we integrate (4.10) and (4.11) from —qi to 1 where

and change the minus sign in (4.13) to plus sign. We therefore use in Br  the modified 

estimate

g(xi) =  g(xi, b) +  f3i[g(xi, b) +  \g(x{, bai)\\ (4,14)

4.T Choice of the Bandwidth Parameter

The theory of bandwidth choice in nonparametric regression is developing fast. Most of 

the bandwidth selectors studied in the literature are based on the minimization of some 

function of b which is related to the residual sum of squares. Cao, Cuevas and Manteiga 

(1994) have given a critical up-to-date review of the main methods currently available.
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However, no selector appears to be uniformly better. Considered here is a cross-validation

version proposed by Hardle and Marron (1985) which has been shown to work relatively

well, Hart and Wehrly (1992). The procedure is to minimize — g(x i)]2'w{x i) with

respect to b obtaining

This is equivalent to the weighted cross-validation score criterion, Silverman (1985). The 

weights w(xi) are to be estimated through moving averages.

Obtain the estimates of the weights by use of moving averages procedure, Silverman (1985). 

Proceed as follows:

Step 1 Obtain the unweighted g(xi)

Step 2 Compute rj =  [Z{ — g[x{)]2

Step 3 Compute w { x \ )  = ( rii — m2- + l)-1 Xphm, rf with m8- = max(l,z — k )  and n,- = 

min (TV, * +  k )  for some fixed constant k.  k  =  5 was found to perform well.

Step 4 Substitute w{xi) into (4.15) and obtain b

Step 5 A new value of </(x,-) is obtained using b

Step 6 Compute new weight estimates w ( x i )  = (rq — m* + 1)“ x̂ i>(n;z) YT3=mi r ]  where r j  

are the new residuals.

(4.15)

4.7.1 Iterative Estimation of the Weights
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Step 7 The process is repeated until convergence occurs.

Other techniques have been proposed to estimate the weights, Rice(1994), Breiman and 

Meisel(1976), Gasser, Muller and Stadtmuller (1987).

4.8 Empirical Study

We now carry out our simulation study. The study is comparative aimed at finding the 

initial estimator that could lead to better estimate of g(x{). The simulation procedure is 

similar to that carried out in the parametric case study. The details of the study follow. 

Consider a simple model

Vi = Xi + et- , i =  (4-16)

and take the true variance function as

var (yt) =  g(xt) =  0.3(1 +  x2f  (4.17)

Then in (4.16) let e,- =  e,\/0.3(l +  xf) and generate independent values of et- according to 

ti ~  iV(0,1). Thus the true mean function is E(yi) = X{. Now let the x[s be equally spaced 

on the interval [—1,1] with 0.1 spacing. As in the case of parametric variance function 

estimation study, the simulations are performed with a sample of size N  =  21. Table 4.1 

gives the true means and variances respectively. Then for each case 100 simulations were 

carried out and computed the bias, root mean squared error and root mean integrated
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True Mean True Variance
1. -1.0 1.20
2. -0.9 0.98
3. -0.8 0.81
4. -0.7 0.67
5. -0.6 0.55
6. -0.5 0.47
7. -0.4 0.40
8. -0.3 0.36
9. -0.2 0.32
10. -0.1 0.31
11. 0.0 0.30
12. 0.1 0.31
13. 0.2 0.32
14. 0.3 0.36
15. 0.4 0.40
16. 0.5 0.47
17. 0.6 0.55
18. 0.7 0.67
19. 0.8 0.81
20. 0.9 0.98
21. 1.0 1.20

Table 4.1: True Mean and True Variance

squared error as
i 100

BIAS[g(xi)\ = —  J 2 s ( xi) - g { x*)

RMSE[g(xi)} =
\

and
i 100

R M ISE

where subscript j  denotes the jth  simulation.
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4.9 Results

The numerical outputs are presented in 13 tables. Tables 4.2 — 4.5 give the smooth vari-

ances. Tables 4.6 —4.9 give the biases. Tables 4.10 — 4.13 give the root mean squared errors 

and Table 4.14 gives the root mean integrated squared errors. In these tables, r4- denote 

the ordinary residuals while r,- denote the scaled residuals where the scales are obtained 

by moving averages. We denote by s, the sample standard deviation where the number of 

replications is 2. Finally, gi denote the difference schemes defined in equation (4.5) and g,- 

indicate the difference schemes defined in equation (4.6).

4.10 Discussion and Comments

In the class of squared residuals the scaled squared residuals rf are good. They have low 

bias, low root mean squared error and low root mean integrated squared error. Absolute 

residuals show the same phenomenon offering |rt-| as the best in this class. Generally, 

absolute residuals seem to provide more reasonable estimates than those obtained by the 

squared residuals. They portray a far much better symmetrical distribution behaviour. As 

a consequence, in the smoothing of residuals recommending the use of absolute residuals 

looks acceptable.

In the same manner, sample standard deviations have more symmetrical distribution 

than sample variances. As indicated by the biases, root mean squared errors and root mean 

integrated squared errors it seems that smoothing sample standard deviations is preferable 

to smoothing sample variances.
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rf log (rf)
2

rf rf
1. 0.88 0.55 0.90 0.88
2. 0.70 0.49 0.77 0.78
3. 0.59 0.33 0.66 0.69
4. 0.51 0.30 0.57 0.61
5. 0.45 0.29 0.49 0.53
6. 0.43 0.24 0.43 0.47
7. 0.40 0.17 0.39 0.43
8. 0.40 0.17 0.35 0.39
9. 0.38 0.16 0.33 0.37
10. 0.39 0.15 0.32 0.35
11. 0.38 0.15 0.31 0.34
12. 0.38 0.16 0.31 0.34
13. 0.37 0.19 0.32 0.36
14. 0.39 0.23 0.35 0.38
15. 0.41 0.26 0.38 0.43
16. 0.44 0.31 0.44 0.48
17. 0.48 0.33 0.50 0.54
18. 0.58 0.34 0.56 0.61
19. 0.68 0.49 0.64 0.68
20. 0.72 0.50 0.73 0.75
21. 0.81 0.51 0.83 0.84

Table 4.2: Smooth Variance (Squared Residuals)
N log |r,;| i i-rt- 3 N

1. 0.78 0.43 0.82 0.87
2. 0.67 0.35 0.71 0.75
3. 0.57 0.28 0.60 0.64
4. 0.48 0.23 0.51 0.54
5. 0.41 0.19 0.43 0.46
6. 0.35 0.16 0.37 0.39
7. 0.31 0.14 0.32 0.34
8. 0.27 0.13 0.29 0.31
9. 0.25 0.12 0.26 0.28
10. 0.23 0.11 0.25 0.26
11. 0.23 0.11 0.24 0.26
12. 0.23 0.10 0.25 0.26
13. 0.25 0.11 0.26 0.28
14. 0.27 0.12 0.29 0.30
15. 0.30 0.14 0.32 0.34
16. 0.35 0.17 0.37 0.39
17. 0.40 0.20 0.42 0.45
18. 0.47 0.23 0.49 0.52
19. 0.54 0.27 0.57 0.61
20. 0.63 0.31 0.66 0.70
21. 0.72 0.36 0.76 0.81

Table 4.3: Smooth Variance (Absolute Residuals)
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a?
1. 1.02 0.95
2. 0.87 0.80
3. 0.72 0.67
4. 0.62 0.56
5. 0.52 0.46
6. 0.45 0.39
7. 0.41 0.32
8. 0.41 0.30
9. 0.39 0.28
10. 0.39 0.29
11. 0.38 0.29
12. 0.39 0.30
13. 0.38 0.30
14. 0.40 0.32
15. 0.41 0.34
16. 0.45 0.39
17. 0.50 0.46
18. 0.60 0.56
18. 0.72 0.67
20. 0.88 0.82
21. 1.05 0.94

Table 4.4: Smooth Variance (Sample Var and Std)
of |&| -2Qi |<M

1. 0.99 1.03 1.08 0.69
2. 0.79 0.85 0.88 0.55
3. 0.67 0.70 0.74 0.45
4. 0.57 0.58 0.64 0.37
5. 0.50 0.48 0.61 0.32
6. 0.47 0.40 0.60 0.28
7. 0.44 0.34 0.55 0.27
8. 0.43 0.30 0.53 0.26
9. 0.42 0.27 0.49 0.25
10. 0.43 0.25 0.49 0.25
11. 0.42 0.24 0.48 0.24
12. 0.43 0.24 0.49 0.23
13. 0.43 0.25 0.49 0.23
14. 0.46 0.27 0.53 0.23
15. 0.45 0.30 0.55 0.23
16. 0.51 0.35 0.61 0.25
17. 0.48 0.41 0.67 0.28
18. 0.57 0.49 0.78 0.33
19. 0.67 0.57 0.80 0.40
20. 0.81 0.68 0.95 0.51
21. 1.01 0.81 1.18 0.64

Table 4.5: Smooth Variance (Difference Schemes)
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rl logfrf)
2

Vi r?
1. -0.32 -0.65 -0.30 -0.32
2. -0.28 -0.49 -0.21 -0.20
3. -0.22 -0.48 -0.15 -0.12
4. -0.16 -0.48 -0.10 -0.06
5. -0.10 -0.37 -0.06 -0.02
6. -0.04 -0.26 -0.04 0.00
7. 0.00 -0.23 -0.01 0.03
8. 0.04 -0.23 -0.01 0.03
9. 0.06 -0.19 0.01 0.05
10. 0.08 -0.16 0.01 0.04
11. 0.08 -0.16 0.01 0.04
12. 0.07 -0.15 0.00 0.03
13. 0.05 -0.13 0.00 0.04
14. 0.03 -0.13 -0.01 0.02
15. 0.01 -0.14 -0.02 0.03
16. -0.03 -0.16 -0.03 0.01
17. -0.07 -0.22 -0.05 -0.01
18. -0.09 -0.33 -0.11 -0.06
19. -0.13 -0.32 -0.17 -0.13
20. -0.26 -0.48 -0.25 -0.23
21. -0.39 -0.69 -0.37 -0.36

Table 4.6: Bias (Squared Residuals)
N log |r,:| |r,:|3 \r,\

1. -0.42 -0.77 -0.38 -0.33
2. -0.31 -0.63 -0.27 -0.23
3. -0.24 -0.53 -0.21 -0.17
4. -0.19 -0.44 -0.16 -0.13
5. -0.14 -0.36 -0.12 -0.09
6. -0.12 -0.31 -0.10 -0.08
7. -0.09 -0.26 -0.08 -0.06
8. -0.09 -0.23 -0.07 -0.05
9. -0.07 -0.20 -0.06 -0.04
10. -0.08 -0.20 -0.06 -0.05
11. -0.07 -0.19 -0.06 -0.04
12. -0.08 -0.21 -0.06 -0.05
13. -0.07 -0.21 -0.06 -0.04
14. -0.09 -0.24 -0.07 -0.06
15. -0.10 -0.26 -0.08 -0.06
16. -0.12 -0.30 -0.10 -0.08
17. -0.15 -0.35 -0.13 -0.10
18. -0.20 -0.44 -0.18 -0.15
19. -0.27 -0.54 -0.24 -0.20
20. -0.35 -0.67 -0.32 -0.28
21. -0.48 -0.84 -0.44 -0.39

Table 4.7: Bias (Absolute Residuals)
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*1
1 . -0.18 -0.25
2. -0.11 -0.18
3. -0.09 -0.14
4. -0.05 -0.11
5. -0.03 -0.09
6. -0.02 -0.08
7. 0.01 -0.08
8. 0.05 -0.06
9. 0.07 -0.04
10. 0.08 -0.02
11. 0.08 -0.01
12. 0.08 -0.01
13. 0.06 -0.02
14. 0.04 -0.04
15. 0.01 -0.06
16. -0.02 -0.08
17. -0.05 -0.09
18. -0.07 -0.11
19. -0.09 -0.14
20. -0.10 -0.16
21. -0.15 -0.26

Table 4.8: Bias (Sample Var and Std)
of | Qi\ <7,2 |d,:|

1 . -0.21 -0.17 -0.12 -0.51
2. -0.19 -0.13 -0.10 -0.43
3. -0.14 -0.11 -0.07 -0.36
4. -0.10 -0.09 -0.03 -0.30
5. -0.05 -0.07 0.06 -0.23
6. 0.00 -0.07 0.13 -0.19
7. 0.04 -0.06 0.15 -0.13
8. 0.07 -0.06 0.17 -0.10
9. 0.10 -0.05 0.17 -0.07
10. 0.12 -0.06 0.18 -0.06
11. 0.12 -0.06 0.18 -0.06
12. 0.12 -0.07 0.18 -0.08
13. 0.11 -0.07 0.17 -0.09
14. 0.10 -0.09 0.17 -0.13
15. 0.05 -0.10 0.15 -0.17
16. 0.04 -0.12 0.14 -0.22
17. -0.07 -0.14 0.12 -0.27
18. -0.10 -0.18 0.11 -0.34
19. -0.14 -0.24 -0.01 -0.41
20. -0.17 -0.30 -0.03 -0.47
21. -0.25 -0.39 -0.02 -0.56

Table 4.9: Bias (Difference Schemes)
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rf logfr?)
2

rf rf
1. 0.81 0.90 0.66 0.65
2. 0.67 0.77 0.54 0.52
3. 0.55 0.58 0.45 0.44
4. 0.43 0.51 0.37 0.37
5. 0.32 0.44 0.31 0.30
6. 0.23 0.38 0.25 0.24
7. 0.17 0.34 0.21 0.20
8. 0.15 0.30 0.18 0.17
9. 0.14 0.29 0.16 0.16
10. 0.16 0.27 0.15 0.15
11. 0.16 0.26 0.15 0.15
12. 0.17 0.27 0.16 0.15
13. 0.17 0.29 0.18 0.17
14. 0.17 0.31 0.21 0.20
15. 0.20 0.36 0.25 0.24
16. 0.24 0.40 0.29 0.28
17. 0.30 0.46 0.33 0.31
18. 0.36 0.50 0.36 0.35
19. 0.43 0.54 0.39 0.38
20. 0.53 0.69 0.43 0.42
21. 0.64 0.83 0.51 0.50

Table 4.10: Root Mean Squared Error (Square Residuals)
|r,:| log r,:| 1 1 2 |r?-|3 |r,;|

1. 0.72 1.15 0.69 0.64
2. 0.55 0.93 0.52 0.49
3. 0.43 0.77 0.41 0.38
4. 0.35 0.64 0.32 0.30
5. 0.26 0.52 0.25 0.23
6. 0.22 0.45 0.21 0.20
7. 0.17 0.37 0.17 0.16
8. 0.17 0.33 0.15 0.14
9. 0.14 0.29 0.13 0.13
10. 0.14 0.29 0.13 0.12
11. 0.14 0.28 0.13 0.12
12. 0.14 0.30 0.13 0.13
13. 0.15 0.30 0.14 0.13
14. 0.17 0.35 0.17 0.16
15. 0.20 0.38 0.19 0.18
16. 0.24 0.45 0.22 0.22
17. 0.28 0.52 0.26 0.25
18. 0.36 0.65 0.34 0.32
19. 0.45 0.79 0.42 0.39
20. 0.57 0.98 0.54 0.50
21. 0.75 1.22 0.70 0.65

Table 4.11: Root Mean Squared Error (Absolute Residuals)
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s2i
1. 0.76 0.64
2. 0.54 0.52
3. 0.41 0.44
4. 0.31 0.37
5. 0.26 0.30
6. 0.23 0.27
7. 0.21 0.22
8. 0.19 0.20
9. 0.16 0.17
10. 0.15 0.17
11. 0.14 0.15
12. 0.15 0.16
13. 0.17 0.16
14. 0.20 0.18
15. 0.23 0.20
16. 0.26 0.23
17. 0.29 0.26
18. 0.34 0.32
19. 0.41 0.40
20. 0.51 0.50
21. 0.65 0.64

Table 4.12: Root Mean Squared Error (Sample Var and Std)
(if \Qi\ -2Qi | Qi\

1. 0.97 0.72 0.91 0.92
2. 0.81 0.58 0.77 0.77
3. 0.68 0.50 0.64 0.64
4. 0.59 0.41 0.54 0.52
5. 0.50 0.34 0.42 0.40
6. 0.42 0.27 0.34 0.33
7. 0.34 0.22 0.29 0.26
8. 0.27 0.19 0.24 0.21
9. 0.24 0.18 0.22 0.17
10. 0.21 0.17 0.21 0.17
11. 0.20 0.16 0.21 0.16
12. 0.19 0.17 0.21 0.18
13. 0.21 0.18 0.23 0.20
14. 0.25 0.22 0.25 0.26
15. 0.30 0.25 0.29 0.30
16. 0.34 0.30 0.33 0.37
17. 0.38 0.34 0.37 0.45
18. 0.42 0.40 0.42 0.55
19. 0.47 0.48 0.48 0.65
20. 0.53 0.57 0.58 0.77
21. 0.60 0.71 0.72 0.92

Table 4.13: Root Mean Squared Error (Difference Schemes)
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Squared Residuals
2

ri log(rf) ri A2 
0.353 0.670 0.344 0.334

Absolute Residuals N  log |r̂| | rt-11 |fj| 
0.368 0.638 0.345 0.322

Sample Var & Std S] Si
0.321 0.318

Difference Schemes 9i \9i\ 9i \9i\ 
0.434 0.428 0.437 0.393

Table 4.14: Root Mean Integrated Squared Error

Now the problem is to compare the results of the residuals, sample variances, sample 

standard deviations and difference schemes in order to get a general perspective and draw 

some practical conclusions. In this respect a natural idea is to disregard the estimates 

based on squared residuals and sample variances since they are seen to be outperformed by 

the corresponding estimates based on absolute residuals and sample standard deviations 

respectively. Then scrutinizing the biases, the square root of the mean squared errors and 

the square root of the mean integrated squared errors, it is seen that smoothing sample 

standard deviations is almost always more efficient and less biased than smoothing either 

the absolute residuals or the difference schemes.

4.11 Conclusion

Based on these simulations, the results indicate that in practice where replication is in-

volved, smoothing sample standard deviations might lead to better results. There are other 

situations where replication is not possible, then in such cases smoothing absolute residuals 

would serve as an alternative to sample standard deviations.
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Chapter 5

SOME ASYM PTOTIC THEORY FOR VARIANCE  

FUNCTION SMOOTHING

5.1 Introduction

In smoothing functions, most authors assert that the choice of the kernel function is of rela-

tively small importance. What matters is the choice of the smoothing parameter. However 

although the theory of selecting this parameter is widely expanding, there is yet no one 

particular method that is universally acceptable as the standard. Here, the contribution 

of both the bias and variance of the smoother to its mean squared error is investigated. 

The objective is to seek a standard criterion for selecting the smoothing parameter and to 

establish the validity of the claim that the choice of the kernel function does not matter. 

Both the homoscedastic and heteroscedastic regression cases are considered. Lengthy cal-

culations are conducted on MAPLE. This is indicated in the text. The more elementary 

calculations will be checked by hand. These matters are explained in greater detail in the
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Appendix together with a typical example.

5.2 Homoscedastic Regression

Consider the regression model

y i  =  f ( x i )  +  e i , i =  ! ,••■  , N

We shall assume that the observations are independent and normally distributed with mean 

zero and constant variance a2. Our kernel smoother of g(x{) is

-)du

where, s0 =  X\, &N =  XN, Sj =  X]+̂ +1 and 1 <  j  <  N  — 1. The kernel function is

K (x )  =  ^ (i -  x 2) , M <  1

and Zj are either the squared residuals, sample variance or difference schemes discussed in 

Chapter 4. We derive the bias, variance and mean square error associated with g(xi) and 

investigate them leading to some simple criterion for selecting the parameter b. Now, write 

the expectation of g(xi) as

1 N  t-s, q r  - — ii

m * i ) \  =  j E j f  (5.i)
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Then, due to our assumption, the Zj have a chi-squared distribution with one degree of

freedom. Thus E(zj ) =  =  1. Therefore (5.1) becomes

c’’2 r ,. i ^ t Xi u \3'\-\s,
= T ^ [4 { “ + 3 ( ~ ) ) L >-3=1

3<J2 ^ rrn , b( Xi Sj a3i | b t Xi Sj-i x3
4 6 2 hL li +  3 l b ) }  ^ - 1 +  olJ = 1 3V b )3}]

3 fT2 w  1
^  ~ Sj^  _  ^  ~  5j - i )3}] (5.2)

Now from the relation Sj — we see that Sj =  a?j + \h where h =  x !+1 — a;,-. Similarly

from 5j_x =  ^ 12+:gj see that sj_i =  Xj — ~h. Therefore write (5.2) as

3a 2 N 1 1 1
45 J2ih +  ~ xj -  2 /l)3 -  (x*' -  x j +  2 hf } ] (5.3)

For i fixed and j  =  1, • • •, iV

-  x3 =  (*' -  j)h
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Therefore write (5.3) as

3 rr2 ^  1 1 1
■71 U h +  -  j)h -  - h f  -  [(« -  j)h +  ~hf}\

3 —1

3a2 
4 b

N

+ U ■ • 1 \3
V:1 ' 3 2 ( i - i  + |)3}]

3iT2 w

! - ? >J=1

/i3
1262{ 12(z — i ) 2 +  1}]

3<t 2
~4b

N

Y , [h
&
¥

{¡2 - 2  i j + j J + T } ] (5.4)

Now put the sum inside to obtain

3a2 
4 b

[Nh
h3 N  N N

{ n p - 2 i J 2 j  +  E j 2 +  ^ } }
3 = 1 j=l62

=  3<j2 r A/fe ^  f y-a 2» ^  +  !) ■ N (N  +  1)(2N +  1) N 
4 b [ 2 6 12

^ { 1 2 Ni2 -  12iN(N  +  1) + 2N(N  + 1)(21V + 1) +  N}]
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=  cr2[y ^ (1 2 6 2 -  12i2h2 +  12iNh2 +  12ih2 -  AN2h2 -  6Nh2 -  3h2)]

=  <r2[— {12b2 - A N 2h2 +  h2(12i -  12i2 - 3 )  +  Nh2(l2i - 6 ) } ]  (5.5)

Let Nh =  L implying that h2 — jfp and Nh2 =  Then the bias is E[g(xi)] — a2

, r L l2 r2 T2(12i — 6) L2(\2i
=  (72[t ^ { 1252 -  l / /2 +  ----- ¿ +  V

12i2 -  3)
1663 N N 2 } - l ]

L3 T3(127 — 6) L3(l2i — 12i2 — 3),
4b3 _  +  l6b3N + lQb3N 2 ^

(5.6)

Let t — j  and write (5.6) as

31 t3 t3(12i — 6) t3(l2i — 12?2 — 3),
7 ~~ 7  ~  +  167V +  167V2

Thus

bias [<)(£;)]
<7
16

[127 -  413 -  16 +
673(2z -  1) 3i3(4i -  4z2 -  1)

TV + N 2
(5.7)

Next, write
N

var[£(xt-)] - E
h2k

var ( z j
-i  4 [1

,X ; — U
f ) d u f

9a4 N b Xi
8b2 +  7 _

3 =  1
E ( { ‘

^ ) 3} r , M i
{«J-l +  g( —

L - l  \3
)3} ) 5
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9 a4
W

N
X X 5.? -  sj -1 +
3 =  1

* ) * - ( * .• - a,--i)3} ) 2

9 a4
w

N
xx̂ +3 b2{ { X i  -  x j  - (x, -  X, +  ift )3} ) ! (5,8)

Then we use the relation X{ — Xj =  (i — j)h  and simplify to obtain

9(74 h3 2 .. .o 1 2

W ^ h ~ ¥ {l ~ 2 ,3+ :> + 1 5 »J=1

9<r4 n  9h4 1 h6 1
w  ̂ -  i f ’2 -  +̂ ¿ } + X 2 - 2‘2 +->2 + s>2>J=1

9(7 4 TV 2h4
8 b2 b2j =i
^ E ( ^ 2- ^ { * 2- 2* i + i 2 +  ̂ }  +  ^4{*4- 4*3i  +  6*2i 2 +  V - 4*i3- T + J 4+ X  +  T77})6 6  144

9 4  2h4 N N N h6 N N
=  m ( Nh2 ~ t t {-«2 ~ 2* E j  + Ei2 + £) + Vt { Ni‘ - 4-3 £  i + «! £  f

3=1 j=i i=i j=i862 v 62 

AT2 N N N N N
~  4* X X 3 ~ t X X  + X X 4 + « X i 2 + 777})

6  3 t r ;J ' f-1" ' 6 ^ "  ' 144J=1 3=1 3 =  1 3=1

It was most convenient to evaluate this expression using maple because expressions like 

J2jL 1 j r can be evaluated exactly using the maple summation command. There is confidence
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that the command can be applied to the whole formula. Thus we obtain

9<r 4 
8 6 2

(.Nh2
2 h4 
~¥~

{N i2 -
2iN(N  +  1) N(N + 1)(2N +  1) N  

77 + 7  + 12  ̂6
+  —  { N i 4 -  i7'3N(N  +  +  ^ N (N  +  l)(2iV +  1) +  Ni2 4tN2{N +  1)

64 2 6 6 4
*jV(JV +  l) N ( N +  l ) ( 2 N +  1){3N2 + 3 N - 1 )  N (N + l ) ( 2 N  +  1) N

+ 30 36 + 144 })

9<r4 2 21V64 2
8 ^ (JV,! -  — {! 

Nh

i(N +  1) +
(IV +  1)(21V +  1) 1

+  12}
i ( N +  1),4 {z4 -  2i3(N  +  1) +  z2(7V +  1)(2N  +  1) +  -  -  iN(N  +  l ) 2 -

6 6
(IV +  1)(27V +  l)(3iV2 +  37V — 1) (N +  1)(2N +  1) 1

30 +  36 + 144^

=  ^ ( 6 4 -  2b2h2{i2 -  i(N + 1) + ^  + ^  + 1 }
866 v 1 v ; 6 12;

+64{z4 -  2i3{N +  1) +  i2(N +  1)(27V + 1) +  ^  -  iN(N + l )2 -
6

(N  +  1)(27V +  1)(37V2 +  37V -  1) (TV +  1)(2N  +  1) 1
+  30 +  36 +  144 ^

¿(7V+1)
6

9 Nh2a4 
866

(64 -  2b2h2i2 +  2b2h2iN +  26262z -
2b2h2N 2

b2h2N

—2h4i3N -  2h4i3 +  2h4N 2i2 +  3h4Ni2 +  h4i2 +

3
64z2 
~6~

b2h2 b2h2
3 6

h4N 3i -  2h4N 2i -  64z7V

+ h4i4-4

64z7V h4i | 647V4 ( 647V3 
6 6~ + 5 +  2

647V2 64 647V2 647V 64 h4
~~3 30 + 18 +  ~ lF  +  36 +  144
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9cr4 ¿2(3i4 -  10i2 +  15) i4(t2(l -  2*) +  4i -  2)
~8~  ̂ 15TV + 2W2

t4(t2(36i2 -  36* +  7) +  9(4i -  4*2 -  1)) ¿6(36*'2 -  24i3 -  24i +  1)
+ la/v3 + u n 4

i6(720*4 -  1440*3 +  840*'2 -  120* +  1)
+  720W5 ^

Simplify on maple and obtain

+

+

cr4 r48^2(3i4 — 10t2 +  15) , 360i4(i2(l — 2*') +  4* — 2) 
var[0(xt-JJ -  64Ql N +  ^

40i4(i2(36*'2 -  36* +  7) +  9(4*' -  4*'2 -  1)) 60ie(36i2 -  24*'3 -  24* +  1)
N 3 +  TV4

i6(720*'4 -  1440*3 +  840*2 -  120*' +  1)
N 5 (5.9)

Now square (5.7) and add to (5.9) obtaining the mean square error of g(xi) as

-[80(3i -  t3 -  4)2 +
240i3(3f -  t3 -  4)(2* -  1) +  % t2(3t4 -  1012 +  15)

+

+

+

+

1280L” V"  ' N
m 3{3t2(2i -  l ) 2 +  2(3f -  t3 -  4)(4* -  4*2 -  1)} +  720t4(i2(l -  2») +  4* -  2)

N 2
180t6(2* -  1)(4* -  4i2 -  1) +  80t4( 2̂(36*2 -  36* + 7) +  9(4* -  4*'2 -  1))

N 3
45t6(ii -  4*'2 -  l ) 2 +  120i6(36*’2 -  24*'3 -  24* +  1)

2i6(720*'4 -  1440*’3 +  840*'2 -  120* +  1),
7V5 J (5.10)

It is expected that at the middle of the smoothing region, all the three discrepancy 

measures, the bias, the variance and the mean squared error should be minimal. The 

center of the smoothing region is given by * =  Substituting into (5.7), (5.9) and
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(5.10) using maple respectively we obtain

and

2 2

bias[£(rc w±i)] =  ^r(12/ ~  16) =  - ^ r ( /  +  4)(/ -  2)2

rA, „  (j4 3(3/6 — 40t4 +  240i2) 410/6 60/6 74t6n
v a r b fx ^ ) ]  =  — [-------------  --- —  + —  — ]

(5.11)

(5.12)

M S £ [g (x ^ ) ] a4 rr/, rt 3 ^ ,2  6(3/6 — 40i4 +  240t2) 820/6 120/6 148/6.
------ 5(12/ -  t3 -  16)2 +  -1---------------------------- - --------— + --------------------
1280L v ; N N 3 N 4 N 5

(5.13)

Now from (5.12) see that the variance is O(j^) and vanishes as N  —* oo. However from 

(5.11) we see that the bias at * =  does not depend on N  at all. Equating the leading 

term of (5.11) to zero gives t =  2 and L =  2b. We investigate three more kernels obtaining 

the leading term of the asymptotic bias at the center of the smoothing region as in Table 

5.1. Observe that equating the leading term to zero and solving gives t =  2. Thus the 

relation between L =  Nh and the bandwidth parameter b is same for all these kernels. 

Note that the pleasing factorizations in Table 5.1 formulae were discovered using the maple 

factorization command and checked by hand.

5.3 Heteroscedastic Regression

In this case the assumptions adopted in the homoscedastic regression case carry over with-
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out alteration. The only difference is that the data have nonconstant variance. In the

derivation procedure the difference becomes visible in the summing stage. Thus (5.4) 

becomes

E\g{xi)\ =  g(xj)[b2h -  h3i2 +  2h3ij -  h3j 2 -  (5.14)

Now assume that g{xi) is smooth and expand at xt in a Taylor expansion to give

g(xj) =  g(xi) +  (xj -  Xi)g'(xi) +
(xj -  Xi)2g"(xj)

2
+  . . .

and from (5.14) approximate E[g(x{)] by

3 ^

‘±W 3 =1
»¿Vi®*) +

(g,- - a , - ) V /(z,-)j ^
A3!2 + 2fc3ii -  -  *1]

=  ¿ E +  2h3ij -

Q Af 7 3

+  ̂  -  ^¿V(^i)[62/i -  h3i2 +  2/z3zj -  /z3; 2 -  — ]

+  +  2h3ij -  h3j 2 -  (5.15)

Then, since a, — x3 =  (z — j ) h : (5.15) becomes

£ « * . ) ]  =  1 #  E > 2A -  A3;2 +  2A3y  -463

3 g'(xi)
3 =1

// \ iV /z3,
46s XX* ~  j)h[b2h -  h3*2 +  2h3ij -  h3j 2 -  —  ]
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+ ^ 1 ^  £ ( <  -  ¿ ) W *  -  « 2 +  2 A3i j  -  A-3J= -  ( 5 .1 6 )

The bias at x t is E[g(xi)] — g(xi). Then the coefficient of g(xi) in (5.16) is exactly that of 

a2 in (5.7) namely

gjxi)
16

[12f -  4t3 -  16 +
6f3(2? -  1) 3f3(4? -  4i2

Jv2 (5-17)

Similarly the second term of (5.16) becomes

g'(xj)h2N  
32 b3

[-2 4 ib2 +  24h2i3 -  36h2i2N  -  36h2i2 +  24ih2N 2 +  36ih2N  +  Uih2

+  121V62 +  1262 -  6h2N 3 -  12h2N 2 -  lh2N -  h2}

g'(xi)L 24 iL 24 ¿3T3 36i2L3 36i2L3 24iL3 36iL3 UiL3 12 L
32 1 bN~ + b3N 3 ¥ W 2 b3N 3 + b3N  +  b3N 2 +  b3N 3 +  “T~
12 L 6L3 12 L3 7L3 L3

+  bN ~  b3 ~ ~¥n  ~  b3N 2 ~~ b3N 3'

and simplifying further in maple it becomes

9'(xi)L 12t(t - l ) { t  +  l)(2i -  1) t3[7 +  36?(z -  1)]
32 " +  N N 2

t3(2i -  1)(12?’2 -  12? +  1)
N 3 J (5.18)
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Likewise, for the last term of (5.16) obtain

9 jV [—360z2/>2 +  360i4h2 +  390h2?2 -  720i3h2N  -  720?3/?2 +  720i2h2N 2 
9606d

+  1080i2h2N +  3 m N b 2 +  360? 62 -  l20N2b2 -  1801V&2 -  6062 +  72h2N 4 +  180h2fV3 

+  130h2N 2 -  7h2 -  360ih2N 3 -  720th,2 N 2 -  390ih2N -  30ih2 +  Ibh2N]

-g " (x i )L 2 - 3 m 2L 360i4L3 390i2L3 720i3L3 720i3L3 720i2L3
960  ̂ bN2 +  b3N 4 +  b3N 4 IPN3 b3N 4 +  b3N 2

1080?2L3 360? L 360?;Z 120L 180L 60L ( 72L3 t 180L3
+ b3N 3 +  bN +  T /V2 b W  ~ b m + ~ P ~  +  b3N

130 L3 7L3 360?L3 720?'L3 390?L3 30iL3 15 L3
+ b3m  ~ b3N 4 ~~ b3N P N 2 b3N 3 ~ b3N 4 +  b3N 3'

and simplify in maple to get

- 9 " ( x t)L2 2 _  ^  _  180t(t ~ l)(t +  l)(2i -  1)
960 4 N

10f[36?(2f2 -  1)(* -  1) +  13i2 -  6] 15t3(2? -  l)(24i2 -  24? +  1)
+  TV2 N 3
, ¿3[30?(? — 1)(12?2 — 12? +  1) — 7]

+  ----------------------kTi--------------------- ) (5-19)

Now sum (5.17), (5.18) and (5.19) to obtain

bias[<)(£;)] =  (^A +  +  ^C)t  -  (^A +  B  +  ^ C ) i 3 -  A

+  6 i Z ( 2 i - l ) [ ( — A +  —  B + —  C)t2 -  —  B - ~  C] 
v ' v 16 16 32 ; 16 32 J

1 3 7 1 8  1 3 1
+  t z 2[— C -  ( i - A  +  ^ - B +  — C)t2 -  12?(? -  1 ){(— A + — B + — C)t2 

l16 v 16 32 96 ; v n v 16 32 16 ;
1

32 C'}]
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(5.20)

+ f^Z3(2t -  l ) ^ ;  -  1)(B +  C) +  i s  + ì q

Ct37 4
+ -ggQ-[7-30*(*-l)(12*2-1 2 i  + l)]

where A — g(xi), B =  g'(xì)L, C =  g"(xi)L2 and Z = jj. These substitutions were useful 

in allowing maple to aid the computation. Put i =  N±i in (5.20) and obtain

' S V - ' » - ! S £  M

Ignoring O (^ ) terms the coefficient of C is ^  — f£  which has a minimum at |\/5 Ri 1.5. 

Next, replace cr4 in (5.8) by

g(xj) = Sixi) +  {xj ~ xi) g\xiY +
{xj -  Xi)4g"(x i f

+  2 g ( x i ) ( x j  -  X i ) g ' ( x i )

+g(xi){xj x¿ )  g (xì) - f -  (Xj X{)g (x )̂(xj x{) g ( x , )

=  g(xi f  +  (* “  j ) 2h2g'(xi)2 +  

+ ( *  ~  j ) 2h2g(xi)g"(xi) -  (i

(i -  j f h 4g” (xi)2 _ 
4

-  j ) 3h3g'(xi)g"(xi)

2{i -  j)hg{xi)g'(xi)

to obtain

var[^(x,-)] 9g ( x j f
8b2

N 2 h4
£ [/> 2 -  § - { ?2 ~ 2 ¿i +  j 2 +
i=i 0

~  4z3j  +  6«2j 2 +  — 4«j3 —
o
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9h2g'(xi)2 ^  2 2 2/i4 2 o-- , -2 , 1 T

J=1

+  ̂ -{*4 -  4i3j  +  6i2j 2 +  J  -  ii j 3 U  , -4 , J 2 , 1 XI

I  + j  +  y + 144}]
9h4g"(xi)2 .. 4 r 7 o 2/i4 2 ,2 1

J = 1

+ ^ j { z’4 “ 4*3i  +  6*2i 2 +  ^ 4«iii -  v  +  j 4 +  y.•3 U
3 r +  i i i }]

.9M * ^ /(*0 _  j W  _  2 £ {i2 _  2tj +  j2 +  1 }

i=l

+ 7j{*4 -  + 6*2i 2 + B -  4zi 3 -  j  + j 4 +  + 777}]
1

144-

-  ; m 2 -  -  2i; + + 4 }
i=l

+  -  4i*j +  6i * f  +  |  -  A rf  - J  +  i ,  +  J  +  x i j } ]

_ 9 f t V ( ^ M  £ (i _  J )3 [ft2  _  _  2 y  +  , 2 +  7 }
i=l

+  ̂ { * 4 -  4^ i  +  &2j 2 +  J -  41J3 ~ j + j 4 + ~  +  ^ } ]  (5.22)

Work out the first term of (5.22) to obtain

^ 4 t ~77N [720b4 +  h4 -  1440/iVfc2 -  360/i262 +  840/i4;2 +  720/i424 -  480/i2iV2&2 
640 66

-  720h2Nb2 +  lU h 4N 4 +  360h4N 3 +  280/i4fV2 +  1440/i2iW&2 +  1440/z2i62

-  1440/iViV -  1440/iV +  1440/i4z2fV2 +  2160/iViV -  720h4iN3 -  1440h4iN2

-  840h4iN -  120h4i +  60/i4iV]

These particularly difficult computations had proved prohibitively hard before maple was
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used for the remainder of this section. Simplify up to the term upon to get

^ T [ 4 8 t 2Z(15 -  10i2 +  3t4) -  m t 4Z2(t2 -  2)(2i -  1)] (5.23)

The second term of (5.22) becomes

nr(x N
— ^ — — [9870h4iN +  1176h2b2 -  2520h2b2N  +  5040b4 -  90720h4iN4 -  30240ib4 

2688u6b

+  587h4 -  30240h4iN5 +  15120Nh4i2 +  226800i4h4lV +  80640/iV -  9870ft4*'2 

+  30240i6h4 -  10080ft4 +  16128ft4 TV4 +  2520h4N 3 -  3290h4N 2 +  105ft4lV 

+  15120ft4 IV5 +  4320ft47V6 +  10080b4 N 2 +  15120541V +  30240z2ft4 -  65520ftVft2

-  60480z4ft2ft2 -  161280ft4i3fV +  161280/iVlV2 -  210ft4i -  80640ft4iJV3 -  10080ft4i7V2

-  90720i5h4 -  90720i5h4N  +  151200h4i4N 2 +  90720h4i2N 4 +  226800ftV iV 3

-  !5l200h4i3N -  302i00h4 i3 N 2 -  21840h2N 2 -  120% h2b2N 4 -  30240h2b2N 3

-  30240ib4N  +  5040/i2i62 +  65520 h2ib2N  +  120960i3h2b2 +  120960?3ft2&27V

-  120960ftVft2fV2 -  181440ft2*2ft2./V +  60480ft2i62lV3 +  120960ft2z'627V2]

simplifying up to the term upon to

g'(xj)2L2 
26880

[288t2Z(35 -  42t2 +  15t4) 15120t2Z 2(t -  l ) 2(t +  l ) 2(2z -  1)] (5.24)
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The third term of (5.22) becomes

Qff (x N
otoonui [15120h4N 7 +  2520/*47V5 -  895h4 -  100864 -  57750h4 +  20880h4N 6 ZbooOb®

+  17850h4i2 +  l05h4N 3 +  146160/j476 +  30240h4i8 -  11550/i47V4

-  m h 4i3 -  282240h4i3N 5 +  120960h4i2N 6 -  30240/i4iiV7 +  282240/iVTV2 

+  423360/?4z62V -  120960h4i7N -  120960ftV -  15120ft475 +  423360ft4z47V4 

+  1058400ft4z47V3 -  423360ft4757V3 +  5950ft47V2 +  3360ft4 TV8 -  17850h4iN

-  846720ft47s7V2 -  438480ft4757V +  730800ft4z47V2 +  37800ft4747V -  846720ft4737V4

-  730800ft4737V3 -  50400ft4737V2 +  115500ft4737V +  37800ft4i27V3 -  115500ft4?27V2 

+  630h4i2N  +  423360ft4727V5 +  438480ftV7V4 -  120960ft477V6 -  146160ft477V5

-  15120ft477V4 -  420h4iN2 +  57750h4iN3 -  2520h2N3b2 -  61752h2b2

-  31248ft27V462 +  8400ft27V262 +  60487V4 ft4 +  151207V3 b4 +  100807V2 64

-  30240ft27V5ft2 -  8640ft27V6ft2 +  30240z464 -  5040ft277>2 +  181440ft2z57Vft2

+  181440ft27562 -  453600ft2 747Vft2 -  453600ft274ft2 +  60480«27V2ft4 +  90 7 2 0727V64 

+  3024072ft4 -  30 2 4077V3 ft4 -  6048077V2 b4 -  30240z7Vft4 -  60480z37V64

-  60 4 807364 +  302400/i2 737V362 +  604800ft2737V262 +  3 1 24 80/?2 73Â 62 +  10080ft27362

-  312480/z2727V262 -  15120ftV7Vft2 +  25200h2i2b2 -  181440/i2i2iV462 -  453600/t2i2N 3b2 

+  60480ft277V5ft2 +  181440ft277V462 +  156240ft277V362 -  25200/i277V62 +  10080ft277V2ft2]
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which simplifies up to the term upon to

^in-ron [96^ ( 63 -  +  35 4̂) ~ 3024*2Z 2{l(fi2 -  5t4 -  5 +  ¿(10 -  20t2 +  t4)}} (5.25)
1 U iozu

The fourth term of (5.22) becomes

_ g{x i )g (x l)h N Ĵ20h4i4N  _  \Q20h4i3N 2 +  m h 2Nb2 -  m b 2 N 3b2 -  720b4 +  3fi4 
64066

+  1440fi2z252 -  m h 2N 2b2 -  175fi4TV -  60fi4fV3 +  432h4N4 -  U0h4N 2

-  4200fiViV _  2880h4i2N 2 -  2880h4iN3 +  240h4N 5 +  7207V64 +  600fi262

-  1560/i4?:2 +  6112h4i -  720h4i4 +  1920h4i3 -  20S0h4iN2 -  1920h2ib2

-  1152/i4zAt4 +  8640i2fi2Ar262 -  1440h2i2Nb2 +  !920h2iN2b2]

simplifying up to the term upon -jb to

-  ^ M ^ [2 4 0 ^ (3  -  3t2 +  t4) -  8f2Z 2{90 +  ¿2(60 -  541i2 -  240* +  144if2)}] (5.26) 

Notice that the fifth term of (5.22) simplifies quickly to

t288t2z(35 -  m 2  +  15i") -  15120i2Z 2(f -  1 )2(t +  1 )2(2z -  1)] (5.27)
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Finally the last term of (5.22) becomes

g'{xi)g"(xi)h5N
[-240 i4h4 +  m 2 i 3h4N 4 -  508i3h4 +  2112i5h4 +  576«'7h4

51266

+  2880i4h2Nb2 -  5040i4h4N 3 -  48h4N 4 +  \21h4N 3 -  2h4N 2 -  288h4N 6 -  352h4N 5

-  3840i3h2N 2b2 -  Qi2h4 -  41h4iV -  72h4N 7 +  m i 3h4N  +  6048?5/i4iV -  6048«'2h4iV4

+  2880i4h2b2 -  5280i2h4N 3 -  480i2h4N 2 +  7Q2i2h4N  +  240ih4N 3 -  508ih4N 2 +  Qih4N  

+  2016h4N 5 +  2112ih4N 4 +  10080z'3/i4iV3 +  7040z3h4iV2 -  10080z4/?4# 2 -  5280i4h4N

-  2016 t2h4N 5 +  57Qih4N 6 +  82 ih4 +  4032i5h4lV2 +  504h27V362 +  48h2lV262

-  72h2Nb2 +  192h2N 5b2 +  576h2N 4b2 -  U4N3b4 -  288N2b4 -  144Nb4 +  576«'364

-  5760i3h2Nb2 -  2016i3h2b2 -  1152i5h2b2 +  576iN2b4 +  86iiNb4 +  288tb4 -  864i2Nb4

-  864i2b4 +  2880i2h2N 3b2 +  5760i2h2N 2b2 +  3024i2h2Nb2 +  lU i2h2b2 -  2 m i h 2N 2b2

-  lU ih2Nb2 +  lU ih2b2 -  1152ih2N 4b2 -  2880ih2N 3b2 -  2016i6h4Nb2 -  2016i6h4b2}

and simplifies up to the term upon ^  to

-  9 [24t2Z (8 f2 -  3t4 -  6) +  288t2Z 2{t -  l ) 2(t +  l ) 2(2z -  1)] (5.28)

Now sum (5.23), (5.24), (5.25), (5.26), (5.27) and (5.28) to get

var[^(xt-)] =  [ " ¿ 2(6 0 A2 +  2 0 5 2  +  3C>2 ~ 60AB +  20AC +  15BC)

+  ^ 4( - 140^ 2 -  8 4 5 2  -  iSC12 +  210AB -  84AC -  70BC)560 '
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+  ^ A 6(504A2 +  3605 2 +  70C 2 -  840AB +  360AC +  3155C)]Z 

+  [|a 2(4 5 2 +  C 2 +  8AB  +  4AC +  4BC -  8iB2 -  2?'C2 -  8zAC -  8iBC)

-  | -f4(12A2 +  1252 +  3C 2 -  8AB  +  12AC +  12567

-  2z(12A2 +  1252 +  3C2 -  16A5 +  12AC +  125C))

+  ¿ A 6(20A2 +  2052 +  5C2 -  24A5 +  20AC +  205C

-  ?(40A2 + 4 0 5 2 +  C 2 - 6 4 A 5  +  40AC +  405C ))]Z 2 (5.29)

with A, B, C and Z as defined under (5.20). Next, obtain the term up to Ay of the square 

of (5.20) as

A2 -  A A (6A  +  35  +  16C) +  4 - f2(6A +  35  +  C )2 +  ^ f 3A(20A +  155 +  6C)

-  ¿ 1 4(40A2 +  155 2 +  2C2 +  50 AB +  560AC +  115C) +  - 4 - t 6(20A +  15 5  +  6C)2
ozU o4uu

3
-  —  tZ(20t3A  -  60fA +  80A +  6f3C -  10tC -  3015 +  15t3B) 

x (t2C - C  +  2 t2A - 2  5  +  2t2B)(2i -  1)

+  Z 2[-^A1(1 -  6i +  6i2) +  — -f2(24AC +  460805 + 365 2 +  13C2 
o 256

+  12z(5C2z +  12AC1 -  185C1 +  1252?' -  125 2 -  5C2 -  12AC))

+  ¿ 1 3A(18A +  215 +  13C +  36i(i -  1)(2A +  35  +  2C))4o

+  C(810AC +  1440A5 +  885BC  +  540A2 +  8555 2 +  218C2
loZU

+ 18«(120A2 +  21052 +  56C2 +  220AC + 225BC  +  360A5)(*‘ -  1))

+  —' C(8615C +  908AC +  1770A5 +  900A2 +  8555 2 +  213C2 oo4(J
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+  36f(-100A2 +  100A2i -  10552 +  10552i -  27C 2 +  27C2f -  210AB  

-  112AC+ 2lOABi +  m B C i  +  U2ACi))\

and add it to (5.29) obtaining the mean squared error.

5.4 General Discussion and Recommendations

It is seen that the variance is O ( y )  so its contribution to the mean squared error is not 

as significant as that of the bias as N  becomes large. Therefore it looks reasonable to 

minimize the bias. It depends on the unknown a2 in the homoscedastic regression case 

and per our approximation on the unknown g(xi), g'(x{) and g"(xi) in the heteroscedastic 

regression case. A suggestion to reduce the bias is as follows. First consider the asymptotic 

bias model (5.7) and observe that the bias is symmetric in t about Thus biases are

equal at points i — 1 and i =  N. Substitute i =  N  into the leading term of equation (5.7) 

getting ^(12t — 4t3 — 16 +  y -  — ^y). Ignoring the O ( y )  terms we have A(121 — i t3 — 16) 

which is a minimum at t =  1. Then, recall from (5.11) that at the center our solution was 

t =  2. Therefore for the whole smoothing region, the good value of t should lie between 

1 and 2. Now observe what happens to the bias as t varies between 1 and 2 in figure 5.1. 

Certainly the bias is seen to vary with t. As t increases from 1 to 2 the bias decreases at 

the center but at the same time it increases at the ends and vice versa. To balance this 

kind of phenomenon consider i =  +  1) =  which is the center of one half of

the interval. Substitute into (5.7) and minimize with respect to t after ignoring the O ( y )
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CVI

Figure 5.1: Absolute bias: iV =  10, i =  1 (broken line) t =  1.5 (dotted line) and t =  2 
(bold line).

terms to get 12 — Equate to zero and solve to obtain 3 =  |-\/7 ~  1.5 and hence
4  4 *

(5.30)

This suggests a global constant bandwidth for the homoscedastic regression case. It is an 

amount of smoothing which should stabilize the variation of the bias between the center 

and the ends of the data. It will ensure that the bias at the ends is more or less of the 

same order of magnitude as in the interior.
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Another possible bias reduction criterion is to use local (varying) bandwidths. The idea 

here is to vary the bandwidth locally to smooth more at the ends where bias is very severe 

and to smooth less at the center where bias is minimal. To do this, use ti instead of t to 

obtain bi and see that when =  1, =  L. This indicates that b is large at the ends

of the data and therefore more smoothing there. Consequently, this implies that the bias 

is reduced at the ends while not affecting the bias at any other point at all. The amount 

of smoothing will keep reducing to the lowest value 6jv±i =  \L when t n± i =  2. Table 5.2 

shows that asymptotically only three different bandwidths will be needed. Table 5.2 shows 

the asymptotic bias at different points together with the corresponding values of t that will 

minimize it at these points. Only three different values of t are obtained, one at the end 

points, another one at the center and finally one for all other points. Therefore for local 

bandwidth smoothing use b =  L to smooth at the ends, b =  to smooth at the center 

and b =  |T to smooth everywhere else. In the same way, substitute the corresponding 

values of i into the heteroscedastic regression asymptotic bias model (5.20). Minimize 

the contribution to bias with respect to t after ignoring the 0 (A ) terms getting Table 

5.3. Maple was especially useful in obtaining the interesting closed form solutions in this 

section. See that in this case t lies between |\/5 and with the global bandwidth at

4 ____
t £±3 =  — ^2135 «  1 

as

b «  L (5.31)
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The major question that need to be answered here is: For what reason should one chose to 

consider the bias contribution term g"(xi) and not g'(xi) or g(xi)? To answer this question, 

go back to equation (5.21) and see that the bias at ?' =  does not depend on g'(xi). 

Further, from Tables 5.2 and 5.3 we can see the asymptotic contribution of the g"(xi) term. 

Also, recall that if the bias is considered at g(xi) it reduces to the homoscedastic regression 

case where the choice of kernel was found to have no significance effect at all, see Table 

5.1.

Now consider the quartic kernel function

1 5
K (x) =  —  (1 - x 2)2 , |x|<l (5.32)

and obtain the leading term of the coefficient of g"(xi) in the asymptotic bias as

336CF -  4032f3 +  1440t5 +  7Z[5040 -  10080? +  f2(20160? -  10080)

+  t4(5040 -  10080?')]

+  fZ 2[10080?2 -  10080? +  1680 +  f2(40320? -  40320?2 -  7280)

+  F*(30240?2 -  30240? +  6048)]

+  ¿3Z 3[40320?'3 -  60480?2 +  21840?' -  840 

+  f2(2520 -  50400?3 +  75600i2 -  30240?')]

+  t3Z 4[392 -  20160?'4 +  40320?’3 -  21840?2 +  1680?

+  f2(42 +  60480?2 +  50400?4 -  100800?3 -  10080?')]
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+  75Z 5[63 -  126i -  6048073 -  302407s +  75600*4 +  15120*2]

+  75Z 6[1008076 -  302407s +  30240?4 -  10080«3 +  126?2 -  126z +  93] (5.33)

where Z — 4-, Then substitute 7 =  N  to obtain

33607 -  40327s +  14407s +  Z(1008073 -  50407 -  50407s) 

+  Z 2(16807 -  728073 +  60487s) +  Z 3(84073 -  25207s)

+  Z 4(427s +  3927s) -  637SZ S +  937SZ 6

Ignore the O (^ ) terms and get 33607 -  403273 +  14407s. Minimizing with respect to 7 gives

iw =  i5
3V63 +  V821 «  1.1

Similarly, substitute 7 =  to obtain

16807 -  50473 +  457s +  Z 2(140073 -  16807 -  18975) 

+  Z 4(33675 -  89673) -  1927SZ 6

Minimize with respect to 7 after ignoring the O(jj)  terms and get

2
15

3V63 +  V 82l 2.2
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Finally, for i =  minimize 1470f — t3 +  p | pf5 with respect to t obtaining

tN±3 =  +  \/224069 «  1.7

Therefore, it is clear that a good choice of t for this kernel is between 1.1 and 2.2 which 

is around 1.7. Now compare the amount of smoothing of table 5.3 with the amount of 

smoothing offered by the quartic kernel function (5.32) and conclude that Table 5.3 gives 

oversmoothing.

Next, look at Table 5.3 and see that tpj is exactly the coefficient of kernel (4.9) while 

î n +i is twice this coefficient and t n+3 is the mean of ¿at and în ±i_ which is ~ times this
2 4 2 Z

coefficient. However, for the quartic kernel (5.32) observe that tjy is exactly the reciprocal 

of its coefficient with în ± i and tîL±i following immediately as above. Now, write kernel 

(4.9) and kernel (5.32) in a generalized form as

K (x ) — a{\ — x2)0 (5.34)

then obtain the values of t using the same argument as above

t/v =  a - *- 1 *3 , în ± 3 =  and î n +i =  2a “ ^- 1 ^ 3 (5.35)

Kernels which are defined as in (5.34) are called optimal kernels. They minimize the 

integrated mean squared error, Gasser, Muller and Mammitzsch (1985) give detailed ex-

planation. Another class of kernels for smoothing functions are those which minimize the
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asymptotic variance and are referred to as minimum variance kernels. An example is the 

kernel

K (x ) =  -(3  — 5x2) (5.36)

To be able to use formula (5.35), the coefficient of the minimum variance kernel is converted 

to the coefficient of an optimal kernel by multiplying the former by where k denotes 

the order of the kernel. The objective for this conversion is detailed in Gasser, Muller 

and Mammitzsch (1985). In this example, k is 2. For an illustration, obtain only the 

asymptotic bias contribution term g"(x {) at i — y -1  as —361 +  +  9t3 — j^ t3 +  jjrt3.

Ignore the O (^ ) terms and minimize with respect to t obtaining tN±i =  \V?> ~  1.2. Now 

use formula (5.35) to see that t n +i =  2(|)(|) =  1.2.

5.5 Conclusion Remarks

Given the asymptotic nature of all the arguments used in this chapter, it is established 

that the bandwidth parameter is clearly determined by the kernel function and the length 

of the smoothing region. The methodology developed here for the choice of this smoothing 

parameter is computationally simple. There are many reasons why this criterion of choice 

will be useful. It can in any case be used as a starting point for subsequent subjective 

adjustment for instance in boundary correction. To quote Silverman (1985, p. 5): ’’ Sci-

entists reporting or comparing their results will want to make reference to a standardized 

criterion” . If the smoothing is to be used routinely on a large number of data sets or as part 

of a larger procedure then this criterion is essential. It does not require any consideration
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to prior assumptions. Today the theory of selecting the bandwidth parameter is expanding 

in several directions. However there is no single selection procedure widely acceptable as 

a standard to be included in the software packages.
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Kernel Asymptotic bias at i =
1(3 - 5 x 2) — fj(7 — 2)(572 +  107 — 16)
t! ( i - * 2)2 ~ { t  -  2)3(372 +  187 +  32)
f ( l - * 2)3 - ¿ ( T -  2)4(573 +  4072 +  1167 +  128)

Table 5.1: Asymptotic bias at i =  for various kernels

i Asymptotic Bias ti bi
N 12* -  473 -  16 +  64  -  % 1 L

N+l 
___ 4 1.5 ¡L

N+3
4 1.5 ¥3(N+1)
4 12/ _  ZiT _  16 _  __ 3î _

4 JU 4 N 4/V2 1.5
W+l

___ 2___ 127 -  73 -  16 2 \L
Table 5.2: Amount of smoothing in homoscedastic regression

i Asymptotic Bias U k
N 7273 -  1207 i\/5 «  0.75 4 T 

3 hN+3 
4 54973 -  16807 ^V 2135  «  1 L

iV+1 
___ 2___ 973 -  607 |\/5 «  1.5 I t3L

Table 5.3: Amount of smoothing in heteroscedastic regression
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Chapter 6

APPLICATION TO SOME EXAMPLES 

6 .1  Introduction

Through artificially simulated data, the two approaches for estimating the variance function 

have been comprehensively studied in the preceding chapters. The conclusions arrived at 

in these chapters are investigated here through some real data situations. For this purpose, 

two examples are considered. A decisive procedure for checking the similarity or difference 

between the two estimated functions is described. Final remarks will be given regarding 

efficient and appropriate variance function estimation together with recommendations for 

some possible further extensions to this work.

6 .2  Examples

Let us consider the first example.
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6.2.1 Example 6.1 : Assay Data

The analysis of assay data has long been an important problem in clinical chemistry and 

the biological sciences. The most common method of analysis is to fit a nonlinear regression 

model to the data. This regression provides a way of exploring and presenting the rela-

tionship between the design variable and the response variable. It also gives predictions of 

observations yet to be made. Much recent work suggests that these data can be markedly 

heteroscedastic. Specifically, independent counts j/,j at concentrations aq for i =  1, • • •, N  

and j  — 1, • • •, mi are made.

The data set used here is the assay experiment example (McCullagh and Nelder, 1989, 

p. 417). The data was originally obtained by Chen, Bliss and Robbins in 1942. The data 

show the relationship between heart mass and body mass for 149 male cats used in the 

experiment (Table 6.1). Note that for the 21st value of the body weight, only one heart 

weight observation is made. Therefore this value will be deleted in the analysis of this 

example.

Compute the sample means and sample standard deviations as in Table 6.2 and consider 

the parametric method of estimation first. A plot of the raw means appear reasonably 

linear. Take as the model for the means in these data

f (x i ,  /?) =  /?0 +  [body weight]

In this case the Xi =  body weight range from 1.7 to 3.8 with 0.1 spacing and N  =  22. Since 

a plot of the raw standard deviations appear fairly quadratic, one might expect quadratic
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variation. Take as the model for the variances

af =  er2(l +  e x ] f

Now apply the modified maximum likelihood method of estimation equations (3.22), (3.23) 

and (3.24). The estimated parameters are

¿o =  —0.26 ¿1 =  4.04 9 =  11.5 a2 =  0.0003

The complete set of the estimated means and standard deviations is listed in Table 6.2. The 

algorithm typically converged after some 20 iterations at an accuracy of 10~8. Figure 6.1 

displays the combined plots of the raw means together with the parametrically estimated 

and smoothed means. Similarly Figure 6.2 shows the combined plots of the raw variances 

together with the parametrically and nonparametrically estimated variance functions. We 

see that the parametric variance function fitted is monotonically increasing because it 

always has minimum at x =  0 and x >  0 for all x.

It is clear from this plot that differences at some points are visible. The question arises 

if this naked eye observation between the two estimated variance functions can suggest the 

use of a nonparametric instead of parametric method. One way to proceed is to find out 

how far the nonparametric is from the parametric model.
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Figure 6.1: Mean plot: dots =  raw mean, dotted line = parametric mean with parametric 
variance model a2 — a2( 1 +  Ox2)2 and bold line =  smooth mean. Body weight range from 
1.7 to 3.8 with 0.1 spacing.
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Figure 6.2: Variance plot: dots =  raw variance, dotted curve =  parametric variance with 
parametric variance model of = <r2(l +  Ox])2 and bold curve =  smooth variance. Body 
weight range from 1.7 to 3.8 with 0.1 spacing.
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Measure the distance between them and use this as an informal test of

H0 : gb(xi) = g§(xi)

against

Hi : gb(xi) ± g§(xi)

with subscript b and 6 indicating nonparametric variance function and parametric variance 

function respectively. Compute the test statistic

T = J2(9b(Xi) -  gg(Xi))2
i=1

and reject the null hypothesis Ho in favour of the alternative hypothesis Hi if T >  x 2 with 

the critical rejection criterion value the 95th percentile of the xl  distribution where r is 

the number of parameters in the model. Thus, since T — 3.92 and x\ — 3-84 reject the 

null hypothesis at 0.05 level of significance.

The choice to use a squared deviation measure between the two fits is motivated by 

mathematical convenience. Certainly from a more data analytic point of view distances 

are more satisfactory which reflect similarities in the shape of the regression functions.

Next, investigate the effect of not specifying the parametric variance model correctly. 

Let a new parametric variance model perhaps with more parameters be

o f  =  cr2(6h +  02 Xi  +  O 'iX^Y
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and obtain the parameter estimates as

$o =  -0 .25 /h =  4.04 0i =  0.01 02 =  -0 .05 03 =  11.5 o 2 =  0.0003

Full set of the estimated means and standard deviations is listed in Table 6.3 and for more 

visual clearity, Figure 6.3 display the plots of both smoothed and parametrically fitted 

variance functions. Once again the iteration procedure took slightly more cycles and hence 

longer time. Note that an arbitrary scale transformation on 0i, 02 and 03 can be introduced 

so any single parameter can be fixed arbitrarily.

Now apply the test criterion and obtain T =  3.68 and x l  =  7.81. Thus do not reject 

the null hypothesis at 0.05 level of significance. Notice the slight difference between the 

present and the former values of f30 leading to some slight difference in the estimated means. 

Observe column 4 entries 11,16,18,20,and 21 of both Tables 6.2 and 6.3 and notice that 

they are slightly different. This simply tells us that misspecification of the variance model 

can lead to a poor result.

6.2.2 Example 6.2

As another example, consider a moderately large data set. This particular data set was 

very kindly provided by the Engineering Design Centre at City University. Data is collected 

from an experiment in which an electronic circuit is repeatedly simulated at various input 

settings as part of a Robust Engineering Design (RED) experiment. The circuit used 

is an audio preamplifier with a frequency in the range of 20Hz to 20KHz. This type of
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Figure 6.3: Variance plot: dots =  raw variance, dotted curve =  parametric variance with 
parametric variance model o f =  <j2(6h +  02Xi + 03x ] )2 and bold curve =  smooth variance. 
Body weight range from 1.7 to 3.8 with 0.1 spacing.
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Body
wt. Heart weight (gm.)
1.7 6.5 7.0
1.8 5.8 7.3 6.1 7.1 7.7 7.4
1.9 8.1 9.1 8.0 7.2 7.3 8.0
2.0 6.5 6.5 6.7 7.5 7.8 8.1 8.6 7.7
2.1 10.1 7.0 7.2 8.1 8.3
2.2 7.2 7.6 10.7 9.6 9.1 7.9 8.5 9.6 8.9
2.3 9.6 9.6 8.5 8.8 8.2 9.2 8.7 8.9
2.4 9.3 9.1 7.3 7.9 7.9 9.6 9.1 9.0 10.8 9.6
2.5 8.8 12.7 8.6 12.7 9.3 7.9 11.0 8.8 9.3 8.2 8.7 10.4 9.6
2.6 10.5 8.3 9.4 7.7 11.5 9.4 13.6 10.1 10.9 9.6 9.9
2.7 12.0 10.4 8.0 9.6 9.6 9.8 12.5 9.0 11.1 10.5 11.6 11.9
2.8 10.0 12.0 13.5 13.3 9.1 10.2 11.4 10.1 10.9
2.9 9.4 11.3 10.1 10.6 11.8
3.0 13.3 10.0 13.8 10.6 12.4 12.7 10.4 11.6 12.2
3.1 9.9 12.1 14.3 12.5 11.5 13.0
3.2 11.6 13.6 12.3 13.0 13.5 11.9
3.3 11.5 14.9 14.1 15.4 12.0
3.4 14.4 12.2 12.8 11.2 12.4
3.5 15.6 11.7 15.7 12.9 17.2
3.6 14.8 13.3 15.0 11.8
3.7 11.0
3.8 14.8 16.8
3.9 14.4 20.5

Table 6.1: Relation in male cats of heart weight in gm. to body weight in Kg.
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Bw
Xi

Raw Mean(Hw)
Vi

Smooth Mean 
Hi

Par Mean
/h

Raw std
•Si

Smooth std
Vi

Par std 
Vi

1.7 6.75 6.87 6.61 0.35 0.58 0.59
1.8 6.90 7.15 7.02 0.77 0.67 0.66
1.9 7.95 7.53 7.42 0.68 0.76 0.74
2.0 7.43 7.79 7.83 0.78 0.87 0.81
2.1 8.14 8.15 8.23 1.23 0.94 0.90
2.2 8.79 8.62 8.63 1.11 0.96 0.98
2.3 8.94 8.91 9.04 0.50 1.00 1.07
2.4 8.96 9.17 9.44 1.02 1.12 1.16
2.5 9.69 9.61 9.85 1.58 1.29 1.26
2.6 10.08 10.08 10.25 1.59 1.40 1.36
2.7 10.50 10.53 10.66 1.36 1.40 1.47
2.8 11.17 10.86 11.06 1.52 1.34 1.58
2.9 10.64 11.18 11.46 0.95 1.29 1.69
3.0 11.89 11.67 11.87 1.33 1.27 1.81
3.1 12.22 12.23 12.27 1.48 1.28 1.93
3.2 12.65 12.74 12.68 0.84 1.32 2.06
3.3 13.58 13.10 13.08 1.74 1.42 2.19
3.4 12.60 13.50 13.49 1.17 1.57 2.32
3.5 14.62 14.02 13.89 2.25 1.72 2.46
3.6 13.73 14.67 14.30 1.49 1.93 2.60
3.7 15.80 15.39 14.70 1.41 2.26 2.74
3.8 17.45 16.04 15.10 4.31 2.70 2.89

Table 6.2: Smooth and parametric numerical results with parametric model a2 — a2( 1 +  
9x2)2.
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Bw
Xi

Raw Mean(Hw) 
Vi

Smooth Mean Par Mean 
/A

Raw std Smooth std
¿i

Par std 
vi

1.7 6.75 6.87 6.61 0.35 0.58 0.57
1.8 6.90 7.15 7.02 0.77 0.67 0.64
1.9 7.95 7.53 7.42 0.68 0.76 0.72
2.0 7.43 7.79 7.83 0.78 0.87 0.80
2.1 8.14 8.15 8.23 1.23 0.94 0.88
2.2 8.79 8.62 8.63 1.11 0.96 0.96
2.3 8.94 8.91 9.04 0.50 1.00 1.05
2.4 8.96 9.17 9.44 1.02 1.12 1.15
2.5 9.69 9.61 9.85 1.58 1.29 1.24
2.6 10.08 10.08 10.25 1.59 1.40 1.34
2.7 10.50 10.53 10.65 1.36 1.40 1.45
2.8 11.17 10.86 11.06 1.52 1.34 1.56
2.9 10.64 11.18 11.46 0.95 1.29 1.67
3.0 11.89 11.67 11.87 1.33 1.27 1.79
3.1 12.22 12.23 12.27 1.48 1.28 1.91
3.2 12.65 12.74 12.67 0.84 1.32 2.04
3.3 13.58 13.10 13.08 1.74 1.42 2.17
3.4 12.60 13.50 13.48 1.17 1.57 2.30
3.5 14.62 14.02 13.89 2.25 1.72 2.44
3.6 13.73 14.67 14.29 1.49 1.93 2.58
3.7 15.80 15.39 14.69 1.41 2.26 2.72
3.8 17.45 16.04 15.10 4.31 2.70 2.87

Table 6.3: Smooth and parametric numerical results with parametric model of =  a2{9i + 
#2 Xi +  03x 2)2.
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Figure 6.4: Scatter plot: Gain versus Frequency

experiment originates from physics where the predictor is a frequency and the response is 

the gain of an electronic circuit.

The data consist of 552 design points and for each of these design points, twenty 

observations are made. Since this data is very large only pictures will be used to display 

the results. Further only smoothing will be considered with the aim of showing what 

happens with the use of the various bandwidths discussed under Chapter 5. Figure 6.4 

displays the scatter plot of these data. This gives a clear indication of the general pattern 

of the data. It makes the inhomogeneity in the variance very clear, specifically see how
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Figure 6.5: Smooth mean

the scatter spreads towards the right end. Obviously this indicates the data becoming 

more variable. Smooth the sample means getting the plot shown on Figure 6.5. Obtain 

the sample standard deviations and apply global smoothing giving the plot displayed in 

Figure 6.6 for the three bandwidths discussed under Chapter 5. Next apply local smoothing 

obtaining Figure 6.7.

6.3 Conclusion

Based on the experience of this work some advantages and disadvantages for both paramet-
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Figure 6.6: Global smooth: dots =  raw standard deviation, bold curve =  smooth standard 
deviation with big dotted curve =  smooth standard deviation with medium t and broken 
curve =  smooth standard deviation with small t.
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Figure 6.7: Local smooth: dots =  raw standard deviation and bold curve =  smooth stan-
dard deviation with the combination of the three t’s.
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ric and nonparametric approaches for estimating the variance function have been estab-

lished. It has been found that parametric methods have small biases but large variances. 

Smoothing is directly opposite, the biases are substantially large relative to the variances. 

However a bias reduction can be carried out. Notice again here the use of the word re-

duction and not eradication. Complete eradication of the bias remain a major unresolved 

problem. After reducing the bias, then both approaches are worthwhile. However, although 

parametric procedures are easier to understand, they can be poor if there is misspecification 

of the model to be fitted.

6.4 Some Open Problems

Obvious cases that could be of interest for further research emerged during the process of 

this exercise. A brief summary of some of these is listed here.

1. For purposes of simplicity, this work have required the case of equal spacing (fixed 

design). A valuable next step would be to determine just what would happen with 

the departure from this requirement to the case of nonequal spacing (random design).

2. The smoothing procedure developed here can be extended to multivariate data.

3. There is need to investigate the possibility of incorporating boundary kernels into 

the theory of Chapter 5 and see if this can offer any further bias reduction.

4. Another idea that may require some exploration is the possibility of relating a para-

metric model to the bias model developed in Chapter 5 to see if this relationship can
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lead to a further reduction of the bias.
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Appendix

The most lengthy computations in Chapter 5 were carried on MAPLE. The more elemen-

tary calculations were checked by hand. Because of the discrete nature of the summations 

for the equally spaced data, it can be assumed that maple gives the correct solutions for 

all formulae. An example is the formula j r ■> where r >  1 is an integer. The command

sum (j> , j  =  1..1V);

computed the definite sum over the given range 1 • • • N. The command

sum( j , j  =  1 - - - iV);

gives the solution |(JV +  l ) 2 — |iV — |. Combination of commands would then give a 

simplified solution. For example, to make this summation solution look neat we would use 

the command simplify. Thus

simplify(sum ( j , j  =  1 ■ • • N))-

would give the solution |N 2 +  |7V. This solution can then be made neater by a third 

command, say, factorize. Therefore

factor (simplify(sum(j,j =  1 • • • fV)));

121



gives the solution |N (N  +  1). For the minimization procedure of the kind following (5.33) 

we used the commands diff and solve giving us the real and complex roots. For example,

diff(12 * t  — 4* V 3 — 16, i);

would give the solution 12 — 1212. Using the commands solve and diif as

solve(diif(12 * t  — 4 * V 3 — 16, <));

would then give the real and the complex roots as 1, — | +  | / 3 2  and — | — | /3 2 . The

solve command was particularly useful in obtaining the closed form solutions in Tables 5.2

and 5.3. The following worked example is very typical of the way maple is used in Chapter

5.

Example

In this example we show in full details how MAPLE was used to move from the last part 

of equation (5.16) to equation (5.19).

1. MAPLE: Steps m l to m3 simplifies the term under the summation sign. Steps m4 

to m8 brings the summation sign inside. Step m9 finalizes the expansion of (5.16). 

Note that A = g"(xi).
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2. HAND: The important substitutions of L for Nh and t =  j  is done by hand in steps 

handi and hand2 for clarity.

3. MAPLE: After substitution is done, the term inside the bracket of step hand2 is 

computed and simplified in steps mlO to m23. In step m23, the coefficients of Ay 

and respectively can be simplified further as in steps m24 and m25. Then the 

required compact solution is obtained. The factor command was of considerable 

benefit here.

MAPLE

> m l :=  expand((?’ — j ) A2);

m l := i2 — 2ij + j 2

> m2 :=  (&A2 * h -  /T3 * T 2 +  2 * fc*3 * * * j  -  h '3* j '2  -  h* 3/12);

m2 := b2h — h3i2 -f 2h3ij  — h3j 2 — 1/12h3

> m3 :=  expand(ml * m2);

m3 :=  i2b2h — i4h3 +  4 i3h3j  — 6i2h3j 2 — l/12h3i2 — 2ijb2h 

+4 i j3h3 +  1 /6h3ij +  j 2b2h — j 4h3 — 1/12 h3 j 2
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> t o4 :=  ( #  * i"2 * #2  * h — N * i*4 * # 3  +  4 * T3 * /T3 * sum (j,j =  1 ..# ));

m4 :=  N i2b2h -  Ni4h3 +  4¿3/í3(1 /2 (#  +  l ) 2 -  1 /2 #  -  1/2)

> ra5 :=  (—6 * i*2 * # 3  * sum (jA2, j  =  1 ..# ) — #  * 1/12 * /T3 * T2);

mb :=  —6¿2/¿3( l /3 ( #  +  l )3 -  l /2 ( #  +  l ) 2 +  1 /6 #  +  1/6) -  1/12#/*3*2

> m6 :=  (—2 * ¿ * # 2  * h * sum(ji, j  =  1..JV) +  4 * ¿ * # 3  * sum (jA3, j  =  1..A^));

m6 := —2ib2h(l/2(N +  l ) 2 — 1 /2 #  — 1/2)

+4¿/í3(1 /4 (#  +  l ) 4 -  1/2(IV +  l )3 +  l /4 ( #  +  l ) 2)

> m7 :=  (1/6 * h* 3 * i * sum (j, j  =  1 ..# ) +  ¿>"2 * h * sum (jA2, j  =  1. .IV));

m l  :=  1/6/í3¿(1 /2 (#  +  l ) 2 — 1 /2 #  — 1/2)

+ ò2/ì (1 /3 (#  +  l ) 3 -  l /2 ( #  +  l ) 2 +  1 /6 #  + 1/6)

> m8 := ( - # 3  * sum (jA4, j  =  Ì..N) -  1/12 * # 3  * sum (jA2, j  — 1 ..# )) ;

m8 :=  —h3(l/b(N  +  l ) 5 -  l /2 ( #  +  l )4 +  l /3 ( #  +  l )3 -  1 /30#  -  1/30) 

-1 /1 2 /i3(1 /3 (#  +  l )3 -  l /2 ( #  +  l ) 2 +  1 /6 #  +  1/6)
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> m9 :=  (3 * A * /T2/(8 * b*3) * factor(m4 +  m5 -f m6 +  ml +  m8));

m9 :=  -l/960A /z3A (-720/z2z3iV +  360/z2z4 -  360z2/>2 +  390/zV 

+72/z2A 4 +  180/i27V3 +  130h2 N 2 -  7/z2 +  15h2N -  720/z2z3 

+720/z2z2iV2 +  1080h2Ni2 +  360ib2N  +  360zò2 -  360h2iN3 

—120h2iN 2 -  m h 2iN -  30h2i -  120b2N 2 -  180b2N  -  60b2)/b3

HAND

handi = - A L 2 m i 2L 360z'4L3 390i2L3 720z3L3 120i3L3 120i2L3
960 bN2 +  b3N 4 +  b3N 4 P N 3 b3N 4 +  b3N 2
1080z2L3 360zL 360iL 120L 180L 60L , 12L3 i 180L3

+ b3N 3 +  bN +  ~bN‘‘2 b bN~ ~ b N 2 +  ~lA~ +  b3N
130 L 3 I L 3 360iL3 120ÌL3 390i L 3 30iL3 15 L3

+  b3N 2 b3N 4 ~  b3N P N 2 b3N 3 ~ b3N 4 +  b3N 3'

—AL2 360i2t 360z4/3 390z2/3
hand? =  __ —[-----— -----1------—-----|- 120i3t;3.f3

960 N 2
1080z'2/3 360z/

+ ---- -------  +  -T 7 - +

N 4 
360z/

N 3 
13013 

' N 2

N 4

-  120t  -

N 3 
180/ 60/

720z3/3 720z2/3
+N 4 N 2 

18013
N N 2 

It3 360z/3 720z/3
N 4 N

N 
390z/3 

N 3

m + m  +  N 
30z73 _ 15/3 
I v 4" +  J p

MAPLE

> mlO :=  (-360  * i A2 * / /A " 2 +  360 * L 4 * / A3/1VA4 +  390 * T2 * / A3 /A A4);

z2/ z4/3
mlO := -3 6 0 —-  +  360— - +  390 

N 2 N 4
z^3
N 4
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> m il :=  (-720  * T3 * VZ/N'3 -  720 * *A3 * tA3/AT4 +  720 * *A2 * T3/iVA2);

¿3¿3 z3í3 i2t3 
” n  := -  72» 1 ^  + 72»1v 7

> m l2 :=  (1080 * *A2 * T3/7V'3 +  360 * ¿ * f/iV +  360 * i * t/N'2 -  120 * i);

2+3¿2Í it it
m 12 :=  1080—  +  360— + 360—  -  1207

7VJ iv IV2

> m l3 :=  (-180  * t/N -  60 * t/N'2 +  72 * T3 +  180 * T3/ÍV);

t t3
ml3 := —1807/7V -  60—  +  72i3 +  180 —

TV2 TV

> m l4 :=  (130 * V3/N'2 -  7 * <A3/JVA4 -  360 * * * T3/7V -  720 * i * i A3/JVA2);

i3 _ f ;+3it it3
m !4 :=  1 3 0 -  -  7 -  -  3 6 0 -  -  7 2 0 -

> ml5 :=  (-390  * i * i A3/JVA3 -  30 * ¿ * í A3/iVA4 +  15 * T3/iVA3);

it3
ml5 :=  —390——

N 3
it3 t3

3V  +  15i P

> m l6 :=  (mlO +  m il +  ml2 +  ml3 +  ml4 +  ml5);

ml6 :=  -360
z2i
TV2

z4*3 i2t3 i3t3 i3t3
— - 4- 390— -  720— -  720-----TV4 N 4 N 3 TV4

iH^
]J ñ
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> ral 7 :

> ml8 :

> m l9 :

>  t o 20 :

+ 1 0 8 0 ^  +  360^  +  360-^- -  120< -  180t/N -  60^7 +  72i3 iV'3 TV N 2
t3 f F it3 U3

+ 180jvr + 130j\rä “  - 360 jv
it it3

720—  -  390- 
N 2 N 3

30
if_
N 4

+ 15
N 3

= series(ml6, N);

m l7 := ( —720¿3í 3 +  360z4í3 +  390¿2*3 -  713 -  30z23)1V-4 

+  (—390¿í3 -  720¿3í 3 +  15í3 +  1080z2í 3)1V-3 

+ (—360?:2¿ +  360¿í -  720¿t3 + 130t3 +  720¿2í3 -  60¿)7V-2 

+ (-360¿¿3 +  180í3 +  360¿¿ -  180í)A^_1 +  (-120í +  7213)

((-720  * r 3 * r 3 +  360 * r 4 * T3 +  390 * T2 * f A3 -  7 * <A3 -  30 * * * i A3)/JVA4); 

, _ —720z3í3 +  360¿4¿3 +  390¿2í3 -  713 -  30¿/3

= ((-390  * t * íA3 -  720 * ¿A3 * íA3 + 15 * T3 +  1080 * *A2 * íA3)/JVA3);

ml9 :=
-390¿í3 -  720¿3¿3 +  15í3 +  1080¿2í3

TV5

((-360  * ¿A2 * í +  360 * t * í -  720 * i * f3  +  130 * +3 +  720 * f  2 * f  3 -  60 * í)/7V^2);

m20 := -360¿2í +  360¿í -  720¿í3 +  130í3 +  720¿2í3 -  60í
W2
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> m21 :=  ((—360 * i * V 3 +  180 * tA3 + 360 * i * t — 180 * t)/N);

m21 —360zt3 +  180¿3 +  360zt -  180t
Ñ

> m22 :=  (-120  * t + 72 * T3);

m22 :=  —120t +  7213

> m23 := (factor(mlS) +  factor(ml9) +  factor(m20) +  factor(m21) +  factor(m22));

t3(—720z3 +  360z4 +  390z2 -  7 -  30z) 
mZó :=  ---------------------------------------------------- -

N 4
1 c t3 (2z — l)(24z2 — 24z +  1)

N ~3
t(—36z2 +  36z -  T2it2 +  13t2 +  72i2t2 -  6 )

+ pp
, t(t — l)(t +  l ) ( 2 z — 1 ) 9

— 180—------ n  n +  24t(—5 +  3t2)

> m24 :=  (tA3 * factor( — 720 * zA3 +  360 * zA4 +  390 * zA2 — 30 * z) — 7));

m24 :=  t3(30¿(¿ -  l)(12z2 -  12t +  1) -  7)

> m25 :=  (10 * t * (factor(—36 * z'A2 +  36 * i — 72 * i * V2 +  72 * zA2 * t~2) -f 13 * tA2 — 6 ))

m25 := 10t(36z(-l +  2t2)(z -  1) +  13t2 -  6 )
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solution
- A L 2 r ,  2

w<24i<3‘ - 5>-
10t[36z(2i2 -  1)(* -

1 8 0 i ( i - l ) ( i  +  l ) ( 2 * - l )  
N

1) + 13t2 -  6 ]
N 2

I5t3(2i -  l)(24i2 -  24z +  1)
N 3

¿3[30z'(z -  1)(12* 2 -  12* +  1) -  7]
N 4 }
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