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ABSTRACT

A detailed investigation has been carried out to study loading and response of
a compliant cylindrical member in oscillatory flow. While many previous stud-
ies have been confined to fixed cylindrical members and limited to a sub-critical
Reynolds number range, in the present investigation studies are directed towards
higher Reynolds numbers, up to 3 x 105 and more. One of the important factors
for compliant members in oscillatory flow, the frequency ratio (i.e. the ratio of nat-
ural frequency of the test cylinder to the frequency of oscillation of the member)
has been investigated especially to identify its effect on Morison drag and inertia
force coefficients. This formed a basis for investigating the validity of the Mori-
son equation for a compliant cylinder. At at odd integer frequency ratios, Morison
force predictions based on measured cylinder displacements showed good correlation
with experimental results. They also showed limitations of Morison relative velocity
equation, particularly at Keulegan Carpenter numbers less than 25, where vortex

excited lift forces are dominant.

To predict both in-line forces and responses, a numerical model based on the linear
acceleration approach has been developed and used over all experimental conditions.
Even though some limitations of this model were observed at certain fluid loading
conditions, at higher KC numbers and at odd frequency ratios, the model in-line

force and response predictions were relatively good.

Another set of experiments was designed to study the effect of in-line high fre-
quency external oscillations superimposed on sinusoidal motion. A series of tests
with a range of superharmonic amplitudes was conducted for every frequency ratio
and at certain fixed KC numbers. Interestingly, the test results revealed that there
is a dependence of drag and inertia Morison coefficients on in-line superharmonic
oscillations. At lower KC numbers it was observed that the superharmonic excita-
tion has a profound effect on the coefficients, presumably through changes in the

vortex dynamics.



Finally a set of steady flow experiments was conducted in a towing tank. Similar
in-line external oscillations were imposed at frequencies close to the test cylinder’s
natural frequency. Hydrodynamic damping and drag coefficients were calculated

and compared with previous investigations.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Fluid loading and consequent response are important problems that continue to
attract attention in the offshore industry. Periodic fluid loading due to ocean waves
on many components like rigid cylindrical platform components, pontoons and jacket
members can be predicted reasonably well provided one has access to well controlled
experimental data. The forces that act on a fixed member in a flow are studied in
the literature as an in-line force which acts in the ambient flow direction, and a lift
force which is transverse to the direction of the flow. The magnitudes of these forces
depend on many factors like the cross section of the member, the incoming flow
velocity and the acceleration. However, if the member is flexibly mounted, other
parameters like the mass, damping and stiffness of the system play vital roles in fluid
loading and response. Marine systems such as offshore drilling risers, conductors,
tension leg platform tethers, deep-water jackets and Remotely Operated Vehicle

umbilicals are some of the members that fall into this category.

New techniques in structural design methods are leading to the development of
more slender members. Material saving and economic considerations generate the
need for slender designs. But, for certain types of environmental loading (i.e. dy-
namic loading like wave forces, vortex shedding forces) compliant members are prone
to oscillations at certain frequencies, leading sometimes even to structural damage.
If the member is lightly damped and its natural frequency is in the range for ex-
ternal environmental loading, there is a possibility of excessive oscillations. Apart
from this, there is another process called “lockon”, associated with vortex shedding,
in which the cylinder vibrations control the vortex shedding frequency. This some-

times plays a crucial role. When the vortex shedding frequency is near the natural



frequency of the oscillating member, it can lead to the “lockon” phenomenon and
increasing oscillation amplitude. Excessive oscillations also have considerable effect

on drag coefficients and consequent loading on marine pipelines and cables.

1.2 DRAG AND INERTIA COEFFICIENTS AND THEIR IMPORTANCE IN
FLUID LOADING ESTIMATION

At present it is common practice to estimate hydrodynamic loading by Morison’s
(1950) formula, though it has many limitations. For example when the member is
flexible, it is necessary to rely on the relative velocity formulation though in some
conditions this is not likely to be very accurate. Another consideration for compliant
members in oscillatory flow is that vortex shedding plays an important role in the
member’s response. There is a deficiency of large scale experimental studies in the
literature, probably due to experimental difficulties at higher Reynolds numbers
greater than 105. Some studies and reviews by Sarpkaya (1976), Bearman et al.,
(1985), Stansby and Isaacson (1987), Sarpkaya (1993) at higher Reynolds number
ranges indicate that the fluid loading behaviour could be different at large scale
and in field investigations from that observed at small scale. Further, for compliant

members differences are likely to be compounded.

1.3 VORTEX SHEDDING AND LIFT FORCES

One of the processes which needs much attention for compliant members is the
vortex shedding mechanism and the associated lift forces. Even though some exper-
imental and numerical studies are available on the vortex shedding process, knowl-
edge of its complex mechanisms and the interrelation between frequencies are very
much limited to small scale laboratory investigations. The vortex excited lift forces
in some conditions are much higher than the in-line fluid loading which attracts much
attention during design process of the members. Periodic loading and consequent
responses lead to fatigue damage and are some times even responsible for severe

failures. Structural parameters like member’s geometry, mass, damping and stiff-



ness have significant influence on response and hence vortex dynamics and related
loading. In the case of Tension Leg Platform members like tethers and conduc-
tor tubes, during the design process it is important to consider vortex loading and
avoid possible “lockon” condition. Another mechanism for high frequency excitation

3

is that referred to as “ springing ” or “ ringing ”. It is not clear how other dynamic
parameters like hydrodynamic damping in the presence of waves (a measure which
indicates the dissipation of energy due to viscous effects while the member oscillates)
influence the response of the member. In theory there is a direct relationship be-
tween hydrodynamic damping and drag coefficient, which may be used in response

prediction. The relative velocity between the oscillating member and the fluid flow,

related drag loading have significant influence on loading and consequent response.

1.4 PRESENT INVESTIGATIONS :

A detailed investigation has been carried out to study loading and response on a
compliant member in steady and unsteady flow. One of the important factors for
flexibly supported members, the frequency ratio (i.e. the ratio of natural frequency
of the test cylinder to the frequency of the external oscillations) was extensively
investigated over a wide range. A series of experiments was conducted to cover an
extensive range of KC numbers (KC = UmnT/d, where Un = is the maximum veloc-
ity of the oscillating cylinder, T' = time period of oscillations, d = is the diameter of
the test cylinder). One of the important features in the present investigation is that
test results were obtained at Reynolds numbers up to 3 x 105 (Re = Um d/v, where
v is the kinematic viscosity of the fluid i.e. water). With the help of the Morison
relative velocity formulation, drag and inertia force coefficients were derived for a

wide range of frequency ratios.

A set of investigations was conducted with superimposed high frequency in-line
excitations in oscillatory flow. Some interesting results were observed for drag and
inertia force coefficients and their dependence on external in-line oscillations revealed

that, for compliant members, Morison coefficients and hydrodynamic damping have



a significant influence on response prediction. Test results highlight the importance
of using Morison coefficients obtained from relative velocity formulation rather than

those obtained from fixed test cylinder data.

1.5 MODELLING

The linear acceleration approach has been used to model in-line force and response
with the Morison equation. At higher KC numbers and at odd frequency ratios,

the model predictions proved reasonably good.

1.6 FLUID LOADING ON STRUCTURES IN STEADY FLOW

Finally a set of steady flow experiments were conducted at higher Reynolds num-
bers. To investigate the significance of external in-line excitations on hydrodynamic
damping experiments were conducted with high frequency oscillations at fractions

of the natural frequency of the test cylinder.

Previous investigations are reviewed in Chapter 2 . In Chapter 3, the experimental
apparatus, experimental facilities and instrumentation are explained. Oscillatory

flow experiments and data analysis are presented in Chapter 4.

Chapter 5 deals with new experiments with external high frequency oscillations.
The dependence of Morison coefficients on external high frequency oscillations was

investigated.

A numerical model to predict in-line loading and response is presented in Chapter
6. It is based on the linear acceleration approach and experimental and model results

are compared for a wide range of experimental conditions.

Chapter 7 deals with a set of experiments in steady flow at higher Reynolds

numbers. Drag coefficients and hydrodynamic damping were investigated.



Finally in Chapter 8, conclusions from above investigations were identified and

presented.



CHAPTER 2

LITERATURE REVIEW

2.0 INTRODUCTION

In this brief review an attempt has been made to present previous work on fluid
loading and response on cylindrical members. In the first section a description about
fluid loading on structural elements is presented in general. In later sections studies
related to loading and response in steady flow, oscillatory flow and in wave loading
are discussed. Each section is subdivided into various experimental studies related to
loading on rigid, flexible members, and mathematical modelling. In the last section,
experimental investigations on hydrodynamic damping, field based investigations
and vortex suppressions methods are discussed. Finally, some conclusions from

previous investigations are presented.

2.1 FLUID LOADING ON STRUCTURES :

When fluid flows past a rigid cylindrical member, forces may act on it in both
in-line and transverse directions. These two force components are characterised
and investigated in the literature as an in-line force which acts in the fluid flow
direction, and a lift force which is transverse to the direction of the ambient flow.
Their magnitudes depend on the incoming flow velocity density, viscosity and the
member shape. As many offshore structural members which are exposed to contin-
uous wave and current loading have circular cross sections much of the research has
been directed towards loading on circular cylindrical members. Ever since Mori-
son, O’Brien, Johnson and Schaaff (1950) first presented an expression for in-line
loading on cylindrical piles, experimental investigations and related data have accu-
mulated at a great rate. Their theory for drag and inertia coefficients was basically
designed for wave loading on piles. It was also shown that, Cd and Cm values de-

pended on some parameters like D/H (where D is diameter of the pile and H is



the wave height). However, Wiegel (1964) found very large scatter in values of drag
and inertia coefficients from different investigations and experiments, and continu-
ing uncertainty has promoted major concern leading to many experimental studies.
In addition to this, if the structure is flexible, the problems associated with pre-
dicting both in-line loading and lift force estimates are compounded in many ways.
The mass, damping and stiffness of the structure individually affect significantly the
loading and consequent response. Notable examples of this type of slender ocean
structure are offshore drilling risers, conductors, deep-water jackets and Remotely
Operated Vehicle umbilicals. The relative velocity between a member and the in-
coming flow and vortex excited transverse loading pose a variety of problems related
to the frequency of the flow and the structure’s fundamental frequency. If at any
stage, the structure’s fundamental frequency is near an integer multiple of the ex-
ternal loading frequency, it may lead to excessive oscillations and consequent fatigue

and some times failure.

Fluctuating lift forces are due to the formation of vortices and their transporta-
tion downstream. Much research and many investigations have been devoted to
understanding vortex excited loading on rigid structural members. Comprehensive
reviews were presented by King (1974, 1977), Sarpkaya (1979b), Griffin (1981, 1985a,
1985b), Stansby and Isaacson (1987), Sarpkaya (1989), Wootton (1991). But very
limited experimental investigations are available on slender members to provide an
understanding of vortex excited loading and resultant response. Structural members
tend to oscillate transverse to the direction of flow at their fundamental frequency
and this may some times lead to the lock-on phenomenon, where the vortex shedding
frequency is equal to the oscillating member’s fundamental frequency. Even though
studies on the mechanism of vortex excitation are widely reported in the literature,
still this process and its relation with structural parameters like mass and damping
and their effects on response have not been studied at large scale. This is necessary

in order to understand the process under conditions close to the field environment.



Vortex excited in-line oscillations of slender members have been investigated in
the laboratory at small scale and this has improved the understanding of some of
these mechanisms. However, there is much more to be investigated to understand
the effect of streamwise oscillations on drag and inertia loading on slender or flexibly
mounted members. This is particularly true at high Reynolds numbers, appropriate

for the real ocean environment Sarpkaya (1993).

2.2.0 STEADY FLOW :

Piled structures often experience tidal flows that are nearly steady. If the members
are flexible, these flows tend to cause oscillations. Under controlled conditions,
steady flows can be simulated in the laboratory either with a towing carriage or in
a channel with flowing liquid. Most commonly, in order to achieve higher Reynolds
numbers, some experiments in steady flow conditions in literature were reported in
wind tunnel tests. Higher velocities and lower mass density enables tests to achieve

higher Reynolds number which are near to real field environment.

In the following subsections, some studies related to experimental and mathe-
matical models are presented. Section, 2.2.1, 2.2.2 and 2.2.3 deal respectively with
steady flow investigations on rigid members, flexibly mounted members and mathe-

matical modelling. Results of some studies are compiled and presented in Table 2.1.

2.2.1 STEADY FLOW INVESTIGATIONS ON RIGID MEMBERS:

Rigid members in steady flow experience two types of fluid loading. One is the
drag force in the direction of the fluid flow and the other is vortex excited fluid
load perpendicular to the direction of the fluid flow. This mainly depends on vortex
formation, transport and vortex shedding frequency. In some conditions, the lift

force is as large as the in-line drag loading and needs to be incorporated in designs.



Achenbach and Heinecke (1981) in wind tunnel studies, investigated vortex shed-
ding effects on smooth and rough cylinders. It was shown that an increase in surface
roughness has a significant effect on the drag coefficient. In the critical Reynolds
number range this was attributed to changes in boundary layer separation points.
Also, changes in Cd with critical, super critical and trans critical Reynolds num-
ber ranges were observed. In addition to this, changes in Strouhal number were

investigated for different blockage ratios.

Fleischmann and Sallet (1981) presented a review of vortex excited drag and
lift forces on cylindrical members. A comprehensive set of data was compiled and
discussed. The reason for scattering of data was attributed to physically different
modes of flow observed by different authors in the Reynolds number range 40 to

150.

In another wind tunnel study, Schewe (1983) investigated drag and lift force fluc-
tuations on a cylinder of 60 mm. diameter. Changes in drag coefficient at critical
Reynolds number range, Strouhal number variations and vortex excited lift forces
were investigated. Boundary layer separation, its changes with Reynolds number
and consequent lift force fluctuations were studied. Other factors like shear flows

were investigated by Zedan et al., (1988).

2.2.2 STEADY FLOW INVESTIGATIONS ON FLEXIBLE MEMBERS:

If a structural member is flexible and exposed to steady flow, flow induced forces
cause oscillations. The amplitude and direction of oscillations of the structural
member depends on the flow velocity, natural frequency of the member, damping,
stiffness and other parameters. In some conditions, members tend to oscillate in
the in-line direction either due to simultaneous or alternate vortex shedding. But
if the member is free to respond in the transverse direction, transverse oscillations
due to lift forces are much more dominant. It also depends on the frequency ratio

(fn |/ fs where fn = natural frequency of the member and fs = vortex shedding



frequency). Further, if the vortex shedding frequency is close to a natural frequency
of the oscillating member, it can lead to the “lockin” condition in which vortex

shedding frequency is controlled by the cylinder vibrations.

Scruton (1963) in one of the early experimental investigations identified three
types of common flow induced oscillations. The first one is vortex excited transverse
oscillations. The second type of oscillations is called galloping oscillations, familiar
for non-circular cross sections. These sections experience a fluid force that changes
with orientation to the flow. As the structure vibrates, its orientation relative to
the flow changes and this may cause unstable and very large -amplitude vibrations
Blevins (1990). The third type of oscillations is called ovalling. Tall stacks are
susceptible for ovalling oscillations,in which the largest amplitudes generally appears

at the top.

In experimental studies Wootton (1968) investigated vortex shedding lift forces on
model stacks at sub critical as well as at super critical flows in wind tunnel tests. It
was noted that the Reynolds number had a significant effect on response, and large
peak amplitudes of oscillation, observed at subcritical Reynolds numbers decreased
as the critical regime was approached. At small amplitudes, it was observed that
the aerodynamic forces acting on the stack were unaffected by the motion. But,
when the model and shedding frequencies coincided, large amplitudes were observed

within a limited speed range.

Scruton (1963) introduced the mass-damping parameter (2M 6/ p D2) (where
M = mass of the cylinder per unit length, p = fluid density , D = diameter of the

cylinder). Further studies on the effect of mass damping parameter were made by

Nakamura et al., (1971)

Oeyei a/., (1971) investigated another vortex excited phenomenon called double-
amplitude response in which, under given conditions near resonance, a circular cylin-

der may oscillate at one of two amplitudes. This is generally observed only for light
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mechanical damping. Experimental studies concentrated on establishing the effect
of different levels of nonlinearity in the restoring spring of an oscillating cylinder
and comparing the results with established theories. It was concluded that non-
linear stiffness was not the proper explanation for observations of double amplitude

response.

An experimental investigation on both stationary and oscillating cylinder of 0.15
m diameter at sub critical Reynolds numbers of 4.0 x 104 to 9.0 x 104 was reported
by Takashi Yano and Shigeru Takahara (1971) and discussed important observations
for lift forces. Unsteady aerodynamic lift force generated by the Karman vortex
street was presented for both stationary and externally excited cylinders. The lift
force for stationary cylinders was found found to vary with surface roughness, tur-
bulence wall interference, aspect ratio, and end effects. The absolute value of lift
force increased as the amplitude of cylinder oscillation increased and the mechanical
Strouhal number approaches 0.2. Similar studies were reported by Yamaguchi et al.,
(1971). The effect of some important parameters like damping, mass, spring con-
stant were studied. Among interesting observations, it was stated that the damping
had a strong effect on the oscillation frequency of the cylinders. It was also found
that the lift coefficient is hardly influenced by Reynolds number for the vibrating

cylinder in the sub-critical range.

Funakawa and Umakoshi (1971) presented two experimental investigations on
flexible externally excited cylinders in a wind tunnel. Their results showed the

dependency of amplitude on damping over a wide range of reduced velocities.

King (1974) presented experimental investigations for rigid and flexible cylinders

and showed comparisons with some full scale in-line oscillations.

Griffin and Ramberg (1976) studied in-line oscillations of a vibrating 4mm di-
ameter cylinder in steady flow in wind tunnel tests. The cylinder was fixed on a

yoke assembly enabling it to oscillate in the in-line direction. Experiments were
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conducted at a Reynold number of 190 . Cylinder in-line oscillations were imposed
near to twice the Strouhal frequency (i.e. vortex shedding frequency for a stationary
cylinder). At each frequency, the amplitude of oscillation was increased until the
vortex shedding frequency become synchronized. It was reported that the “lockin”
amplitude threshold was slightly lower than in the corresponding cross-flow case,
and that at a particular flow speed it extended to lower cylinder oscillation frequen-
cies. It was observed that, the vortex shedding locks on to the vibration frequency
over a range of frequencies from 120 percent to 250 percent of the Strouhal fre-
quency. Synchronized in-line oscillations occurred at reduced velocities 2.1 and 4.4
(Vr = V/(fD) where V = incident flow speed ,/ = forced vibration frequency, D
= diameter of cylinder). From flow visualization, the authors observed two distinct

forms of vortex shedding patterns and vortex fusion.

Stansby (1976) presented experimental results on a forced oscillating cylinder in
transverse direction in uniform and shear flows. The main emphasis was on the
region where the vortex shedding frequency coincided with the cylinder’s natural
frequency. It was reported that, in uniform flow, primary and tertiary locking on was
observed and, depending on the reduced amplitude and Reynolds number, secondary
locking on occurred only over a very small range of cylinder frequencies. The effect

of forced transverse oscillation was also studied by Sarpkaya (1977).

In a comprehensive review on flow induced vibrations on bluff bodies, Parkin-
son (1977) summarized a large volume of data which had been accumulated in the
Reynolds number range 1.0 x 105 to 1.0 x 106 for stationary and galloping cylin-
ders of rectangular sections. From this data he established relations between d/h
(depth/width), Strouhal number, drag coefficient and dimensionless transverse gal-
loping amplitudes. Further, from this data set he discussed the relation between
sizes of afterbody, flow conditions, resultant changes in shear layers Strouhal num-
ber and drag coefficient. Along with this discussion, two instability regions based
on relative velocity were mentioned and related arguments by different investigators

were presented. This clearly indicates that for bluff sections after body length plays



an important role.

Moe and Verley (1978) investigated damping by relative velocity as well as by
independent flow field assumptions. Experiments were conducted on an oscillating
pendulum type rig and, from logarithmic decrement of oscillations, the damping
was estimated. Their results results suggested that in the reduced velocity range
10 to 15 the relative velocity formulation rightly predicted the damping on the
basis of the steady drag coefficient on a rigid cylinder. However, at low reduced
velocities, the measured damping was more in agreement with the independent flow

field assumption.

Martin ct al., (1979), investigated the effect of decrease of mean drag in the critical
Reynolds number range in wind tunnel experiments conducted on a 30 cm diameter
cylinder. In-line stream wise oscillations were imposed from an externally oscillating
mechanism. Velocity fluctuations in the wake were recorded by hot-wire anemome-
ter, and the vortex shedding frequency was identified by spectral analysis. It was
shown how wake fluctuations were affected by the cylinder motion over a range of

Reynolds numbers.

Raven et al., (1985) conducted full scale dynamic testing of submarine pipelines
spans of diameters of 508mm and 500mm, in 40m spans Both in-line and transverse
responses depended on the gap between the pipe line and the sea bed, and the flow
velocity. It was observed that the proximity of a solid boundary can increase the
Strouhal number but, in the critical Reynolds number region, the vortex shedding
was disrupted and weak. One of the interesting conclusions from these tests was

that cross flow oscillations could occur for lower Vi (reduced velocity) than those

normally applied.

In another field investigation Vandiver and Chung (1987) gave measurements of
cable oscillation response in sheared flow. Their experimental results suggested that

the hydrodynamic damping role is one of the important aspects for predicting flow
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induced vibrations of cables.

Suzuki et al., (1992) presented transverse force and related response results on
cylindrical members. One of the important features of this investigation was that
test results were presented for various sets of data, for independently controlled
towing speed, oscillating amplitude, period and cylinder length. Transverse external

oscillations were imposed by a scotch yoke type oscillator.

Tomonary (1991) also presented results of externally excited stream wise oscilla-

tions in wind tunnel tests on circular cylinders.

2.2.3 STEADY FLOW INVESTIGATIONS : MATHEMATICAL MODELS

In order to simulate and predict transverse oscillations of members in steady flow,

some investigators have proposed mathematical models.

Hartlen and Currie (1970) proposed a model based on a lift -oscillator approach.
The fluctuating lift coefficient due to vortex shedding was characterised as a Van
der Pol oscillator driven by the cylinder motion. Tlhs model was tested for three
different conditions. For the rigidly fixed test cylinder, for an elastically mounted
one and finally for the externally excited case. Even though this model was said to
be rudimentary the predicted results were promising. Iwan and Blevins (1974) pro-
posed another model based on a “hidden” fluid variable, depending on the cylinder
cross section, a proportionality constant and a weighted average of the transverse
component of the flow. Both this and the previous approach from Hartlen and

Currie (1970) rely on data from experimental observations.

In one of the fundamental studies, Martin et al., (1981) proposed a mathematical
model to predict stream wise oscillations at critical Reynolds numbers. In this
analysis, the instantaneous drag acting on the cylinder was assumed to be the same

as the drag measured for a stationary cylinder at the same relative Reynolds number
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(i.e. the Reynolds number from relative velocity). The authors presented a model
which is able to predict self-excited fluid-elastic oscillations with an amplitude that
depends on the mean Reynolds number, dimensionless frequencies, dimensionless
damping and other parameters. In the mathematical treatment, the drag coefficient
and its dependence on Reynolds number in the critical range were discussed and its

sensitivities towards blockage ratios were presented from published data.

These analytical predictions were compared with field measurements of Imming-
ham jetties and it was reported that the predicted hydroelastic vibrations were in
good agreement with the field measurements. Interestingly, it was also reported that
good agreement had been observed for the reduced velocity range over which finite
amplitude solutions were found, which is of more practical significance. In conclu-
sion the authors pointed out that, in the critical Reynolds number range (in steady
flows) there was an intense dependence of drag, lift and vortex shedding frequency
but this was not fully investigated in laboratory because of problems in achieving the
critical Reynolds number range particularly in water flows. Besides this, in stream
wise oscillations, because of the relative velocity between the flow and the cylinder
in a narrow but finite range of Reynolds number, the dominant component of wake
fluctuation occurs at the frequency of oscillations of the cylinder rather than the
usual vortex shedding frequency generally observed for a fixed cylinder. This means

that there is an unsteady component of drag at the cylinder frequency.

Vandiver (1985) proposed a prediction model for transverse response of flexible
members like cables in sheared flow. Some aspects relating to “lockin” response
amplitude and its relation to mass ratio were identified in relation to fluid exciting
forces and structural damping. Some of the factors like hydrodynamic damping in
the non-locked in regions, the form of the lift coefficient for uniform and sheared
cases and the dependence of the locked-in region on damping ratio and bandwidth

were discussed.
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Reid (1990a,b) proposed a model based on strip theory approach for vortex excited
in-line oscillations for non-uniform flows. Response prediction at resonance was
based on establishment of an equilibrium between the structural damping of the
system and the net input energy i.e., hydrodynamic work in equals structural work
out. Based on this, the model was developed further and some important factors like
the stability parameter, the coefficient of maximum oscillating drag and the reduced
velocity, were involved in the final equation for predicting in-line response. In the
reduced velocity range 1.0 to 3.7 hydrodynamic damping was assumed as zero. The
model was validated against experimental data for the Reynolds number range 6.7

x 103 to 1.5 x 106 and stability parameter Ks < 0.30.

Lowdon ct a/.,(1991) presented a mathematical model based on boundary layer
time delay model for streamwise vibration of an isolated cylinder by vortex shedding.
This method basically depends on the momentum-integral form and is solved by the

finite difference method. However, this model is limited to laminar flow conditions.

2.3.0 OSCILLATORY FLOW :

Oscillatory flow can be classified into two kinematically similar types, one where
a rigid cylinder oscillates in still water and the other where a stationary cylinder
experiences oscillating flow. When a cylindrical body is submerged in a accelerating
fluid, it experiences a hydrodynamic force associated with fluid acceleration. This

force is called as inertia force. For a two dimensional flow, in case of circular sections,

F=CmPA* (2.1)

where A = irdl/ 4, Cmis the inertia coefficient, and d is the cylinder diameter.
This inertia force can be considered as a sum of two terms. The first part is the
force (Froude - Krylov force) that acts on the cylinder due to the pressure field of

the undisturbed fluid (as if the cylinder were absent) and is equal to



Ft = 2.2)

The second part is due to the deviation of pressure field due to the presence of the

body which is generally associated with added mass. The force can be expressed as

Fd= CapA— (2.3)

»

Therefore Cm = Ca+ 1 * The “ virtual mass ” is generally used to describe the

total inertia force.

On the other hand, if the cylinder is moving with velocity U in stationary fluid,

the term F* will be zero but Fd will be same.

Most of the experimental investigations in wave loading and in oscillatory flow are
directed towards presenting results in relation to the Keulegan Carpenter number
KC = UT/d (where, U is amplitude of the incoming velocity, T is time period and
d is the characteristic length - generally the cylinder diameter). Another important
dimensionless number is the Reynolds number (Re = U d ;v , // =kinematic viscos-
ity). Some investigations in oscillatory flow are compiled and presented in Table:
2.2. In subsections 2.3.1 and 2.3.2 previous studies on rigid and flexible members
are discussed respectively and mathematical models related to loading and response

prediction are presented in section 2.3.3.

2.3.1 OSCILLATORY FLOW INVESTIGATIONS ON RIGID MEMBERS:

Keulegan and Carpenter (1958) provided a comprehensive set of average drag and
inertia coefficients plotted against a period parameter or KC number. They studied
flow patterns around cylinders by using a jet of coloured dye. In the following 30
years many investigations on Morison loading, mostly at small scale and many in

U-tubes, were published.
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In a key study, in U-tube investigations Sarpkaya (1986b), presented results for a
wide range of Keulegan Carpenter number and ft (ratio of Reynolds number to KC
number) values for smooth as well as for rough circular cylinders. He stated that
drag, inertia and maximum force coefficients at high Reynolds numbers greater than
105 are weak functions of Reynolds number or ft. But there is not much evidence
that post critical conditions were reached. Harmonic analysis showed the importance

and variation of all first ten harmonics of lift coefficient.

In other investigation on fixed cylinders Sarpkaya (1990) presented the effect of
roughness on drag and inertia as well as lift force coefficients. As marine roughness
is common in the real sea environment, problems associated with roughness, in-
creases in diameter, projected area, displaced volume and resultant increase in drag
loading, increase in mass and consequent reduction in natural frequency, increase in
structural weight were identified. Differences in values of lift, drag and inertia coef-
ficients on rough circular cylinders were attributed to the vortex shedding process
along with natural causes from the flow characteristics or the inherent variability of
the forces acting on a cylinder in oscillating flow. Another reason for disagreement
between data obtained in similar conditions was mentioned as the three dimension-
ality effects. From different sets of controlled experimental data, author concluded
that the effect of roughness has a dominant influence on drag, inertia as well as on

lift coefficients.

In recent large scale studies, Chaplin (1988a,b) conducted experiments by oscil-
lating a rigid cylinder in still water in planar oscillatory and as well as in elliptical
orbital flow. In the first set of experiments, results were in Reynolds number range
2 x 104 to 2.8 x 105 and in KC number range 6 to 20. To achieve higher ranges of
Reynolds numbers, a Random Planar Motion mechanism was used. In most cases it
was reported that drag and inertia coefficients agreed well with Sarpkaya’s U-tube
results. Apart from this test results were compared with wave flume results on rigid
cylinders and differences were observed due to non-uniform orbital nature of the

wave motion and wave induced currents. In the second stage, experiments were at
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higher Reynolds number range but in elliptical orbital flow. In this investigation,
studies were directed towards horizontal cylinders. Major emphasis was given to
study the effect of ellipticity on drag, inertia and total force coefficients and it was
showen that considerable reductions in inertia coefficients were observed at higher
ellipticity. The reason for this drop was partially attributed to circulation around
the cylinder in the same direction as that of the orbital flow in horizontal cylin-
ders. In recent large scale study, by the same author (1993) studies up to 7.5 x 10s

Reynolds number were presented.

Justesen (1989) presented experimental results on large cylinders of 0.5 m. in
diameter in oscillatory flow at supercritical and transcritical flow (2.5 x 105to 1.0 x
106) and at KC numbers 1to 16 on both smooth and rough cylinders. Experimental
studies confirmed large variation of hydrodynamic coefficients in KC number range
1to 16 and which were attributed to the vortex shedding process and their dominant
influence in this range. In KC number range 7 to 15 it was observed that the vortex
excited lift forces are as large as in-line forces. Regarding the vortex shedding
process, it was observed that the transverse force has characteristic modes to which
it locks-on depending on the KC number. It was again confirmed that roughness
has a significant influence on drag and inertia force coefficients as well as lift force

coefficients.

In one of the recent investigations Anaturk (1991) presented experimental studies
of a 400 mm diameter rigid cylinder in low amplitude oscillations. Along with ex-
perimental investigations a theoretical model was presented for the drag coefficient.
Test results were compared with the model as well as with Stokes’ solutions. High
dependency of drag and inertia force coefficients at low KC numbers for smooth
cylinders was observed which might be due to vortex excited loading. However,
these factors were not discussed in this investigation. Other contributions in this
area are Hamann and Dalton (1971), Garrison et al., (1977), Garrison (1990),
Marchand et al.,, (1988), Ikeda et al., (1988), Bearman and Obasaju (1989), Ki-
noshita (1991).
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2.3.2 OSCILLATORY FLOW INVESTIGATIONS ON FLEXIBLE MEMBERS :

Laird (1962) discussed some aspects of flexible vertical oscillating cylinders. Ex-
periments on a 50.8 mm. diameter cylinder in oscillatory flow at Reynolds number
range 1.7 x 104 to 3.4 x 104 were reported. Results showed that cylinder oscillations
generated an increase in loading. The effect of changing the natural frequency of
the cylinder on each side of the eddy frequency was studied and it was shown that
the smallest response was when the natural frequency was farthest from the eddy

shedding frequency.

Finally among some of the important conclusions, it was stated flexible cylinders
which can undergo oscillations of more than half the cylinder diameter, oscillate at
the vortex-shedding frequency transversely and at twice the eddy frequency in the
in-line direction. More stiffly supported cylinders, tend to vibrate in both transverse

and in-line directions at the natural frequency of the cylinder.

Sarpkaya (1978) presented experimental results on a cylinder in water tunnel
oscillatory flow. External oscillations of the cylinder were imposed by means of a
yoke assembly. Lift forces were expressed as a combination of drag and inertia terms.
It was observed that the in-line force on cylinder undergoing transverse oscillations

increased with increasing a/d (amplitude/diameter) ratio.

Verley (1978) presented experimental investigations of oscillating cylinders in a
current and oscillatory flow. Hydrodynamic damping and its dependence on currents
of various velocities for three test cylinders were presented. It was noted that the
viscous oscillatory drag coefficient was inversely proportional to the amplitude of
motion and thus forms only a significant proportion of the total drag for small

amplitudes of motion.

Sarpkaya (1979a) presented U-tube oscillatory flow experimental results on elas-

tically mounted cylinders along with a mathematical model for lift force. It was
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demonstrated that the cylinder undergoes self-excited transverse oscillations at re-
duced velocity 5.5 and, interestingly, lift force coefficient amplifies to twice that for
rigid cylinder in oscillatory flow. This indicates the important and adverse effects of
loading on flexibly mounted oscillating cylinders compared with rigid ones. In order
to investigate the method to predict transverse response and lift force coefficient, for
a given cylinder, a response parameter which incorporates parameters like cylinder
mass, damping, cylinder diameter and Keulegan Carpenter number was presented.
Close agreement was reported for transverse response prediction and experimental

values.

Sarpkaya and Rajabi (1979) presented experimental results obtained in the U-tube
for elastically mounted cylinders. Experimental studies were confined to transverse
hydroelastic oscillations in the reduced velocity range up to 5.5. It was suggested
that the effective way to reduce the oscillation amplitude is to decrease the lift coeffi-
cient in the nascent state either by use of a splitter plate or spoilers etc. However, in
the case of streamwise oscillations, due to relative velocity, lift force coefficients may
be different from those for a cylinder oscillating transversely. At critical Reynolds
numbers, there is an interrelation between cylinder velocity and force coefficients.
The relative velocity induces fluctuations in drag as well as lift forces and this aspect

of experimental investigations has not been well explored in the literature.

McConnell and Park (1982a,b) discussed experimental results of a cylindrical
member oscillating in still water along with a mathematical model to predict the
lift force. Experiments were presented for two types of cylinder conditions. One
laterally restrained and another for the cylinder free to respond in the transverse
direction. Frequency analysis and corresponding lift force harmonics were presented
and identified the largest component at the vortex shedding frequency and further
analysis was presented related to vortex shedding frequency and side bands. Re-
sponse results were plotted against velocity ratio (a/d)(fn/fd) which the authors
believed better than the KC number. Further the natural frequency of the cylinder

response was found as function of velocity ratio at 6, 7 and 8 indicating that the
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significance of added mass.

Sumer and Fredsoe (1988) investigated transverse oscillations of cylindrical mem-
bers at higher Reynolds numbers of 4 x 105 at fixed reduced velocity VI'and with con-
stant hydroelastic properties. Experiments were reported at two ranges of Reynolds
numbers at lower sub-critical flow up to 10s and at upper sub-critical range 1 x 105
to 4 x 10s. Experimental findings and an observed double amplitude response for a
range of reduced velocities, suggested that vibrations at higher Reynolds numbers
are markedly different from those at low Reynolds numbers in the sub-critical range.
However it was suggested that the Reynolds number effect might disappear for large
values of the roughness parameter (Ks/D) and therefore model similarity might be

achieved for flexible marine risers.

Obasaju et al., (1988) concentrated on finding strengths and motions of vortices
from experimental investigations in order to understand developments of both in-line
and transverse forces. They adopted a mode-averaging scheme to make measure-
ments of the circulation around a circuit enclosing the cylinder to obtain average
cycles of the time history of the transverse force. Experiments were reported on
circular cylinder of diameters ranging from 19.1 mm to 74.8 mm. Drag and iner-
tia coefficients were compared with both sectional force(i.e.pressure) measurements
in the U-tube and in a water channel. The coefficient of the transverse force was
also calculated and the highest magnitude of the coefficient was determined for each
mode. Distinct peaks were observed in r.m.s. lift force coefficient at KC values
10 and 17. For a circular cylinder a steady transverse force with a coefficient of
about 0.5 at KC — 14 was observed. One dominant vortex was formed in each
half-cycle on the same side of the cylinder and it was concluded that there would be
a mechanism for generating a steady force. Circulation pattern and strength and,
from flow visualization, the relationships between non-dimensional vortex strength
and Reynolds number were established. It was observed that in transverse regime
vortices were some times shed in two cells,each cell occupying roughly half the length

of the cylinder. From experimental studies of non-dimensional circulation, for dif-
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ferent KC numbers, it was concluded that, in all regimes, fully formed vortices have
roughly the same circulation. Also from measurements the span-wise correlation of
vortex shedding does not decrease with increasing KC number and for KC number
greater than 30 the correlation is no longer very sensitive to KC number. This may
be the reason for relatively smaller changes in lift as well as drag and inertia force

coefficients at higher KC numbers.

In another investigation Kozakiewicz et al., (1991) obtained correlation measure-
ments along a vibrating cylinder near a wall in oscillatory flow. External oscillations
were imposed transverse to the direction of the carriage motion. It was found that
the proximity of the wall to the cylinder was not very important. Similar externally
imposed oscillations in transverse direction were reported by Moeller and Leehey
(1982). In order to investigate damping forces in a viscous fluid, Otter (1990) con-

ducted experiments by externally exciting a cylinder.

In recent experimental investigations, Bearman and Mackwood (1991) presented
experimental studies in a U-tube on flexibly mounted cylinders and discussed trans-
verse and in-line responses at different ranges of KC numbers. In another experi-
mental investigation, externally excited oscillating rectangular cylinder test results
were presented by Deniz and Staulbi (1991). Test results were compared with quasi-

steady and unsteady-aerofoil theory.

In a recent experimental investigation, Wu (1992) presented experimental inves-
tigations of forced and vortex excited vibrations on a single test cylinder. Vibration
responses in in-line as well as in transverse directions were measured and presented.
It was stated that the hydrodynamic force on a cylinder vibrating in-line with and
transversely to a uniform current consists of several harmonics. In the in-line di-
rection it consists of 2/, 4/ and 6/ where as the lift force on the other hand, has
components of /, 3/ and 5/ (/ = transverse motion frequency). Along with this, a

mathematical model which illustrates above conclusions was presented.



2.3.3 OSCILLATORY FLOW INVESTIGATIONS: MATHEMATICAL MODELS
Bearman et al.,, (1984), described a model equation (previously used by Verley
(1982)) for lift force prediction in waves and in oscillating flows. In this quasi steady
model, Strouhal number has a constant value of 0.2. Model results were tested for
planar oscillatory flow over KC number range of 5 to 53 and good agreement was

reported in higher KC number than at lower ranges of KC number.

In another mathematical model Leconte and Piquet (1988) discussed a numerical
solution, in which, the unsteady Navier-Stokes Equations were used to investigate
vortex shedding characteristics behind a circular cylinder in uniform stream with

superimposed in-line or transverse forced oscillations.

Skomedal et al., (19S9) presented a numerical model for the computation of vortex
shedding induced vibration. This is basically a discrete vortex method, and model
results were compared with published measurements. This model is basically meant
for flexibly mounted cylindrical members in uniform flow. Good agreement was

reported between model and above experimental results.

Sarpkaya and Putzig (1992) presented some numerical experimental results for
oscillating circular cylinders with a mean flow obtained from solutions of the Navier-
Stokes equations with the stream function and the vorticity as variable. The authors
reported the existence of a wake with three rows of heterostrophic vortices at certain
KC numbers and relative current velocities. These numerical studies are confined
to smaller KC and Reynolds number regimes owing to computational restrictions.
It is of practical significance to find the combined effect of oscillatory flow with mean

velocity on in-line force and lift force coefficients.

Stansby (1993) in recent mathematical investigation discussed forces on a circular
cylinder in elliptical orbital flows at low Keulegan Carpenter range. Morison drag
and inertia coefficients for both in-line and transverse directions were presented at

KC numbers less than 1.5. The results confirm that even small changes to the
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flow pattern might be responsible for significant changes in Morison coefficients.
Further, the author outlined the relation of Morison coefficients in both in-line and
transverse directions to ellipticity. It was found that at KC number more than one,
due to the slow rotation of a cloud of vorticity, forces can contain components whose
frequency is different from the orbital frequency; this is responsible for scatter in

drag coefficients for successive half cycles.

2.4.0 WAVE LOADING :

In the following subsections, 2.4.1 and 2.4.2, experimental investigations on fixed
as well as flexible cylinders in waves are discussed. Finally some mathematical
models are presented in section 2.4.3. Some of them were compiled and presented

in Table: 2.3

2.4.1 WAVE LOADING INVESTIGATIONS ON RIGID MEMBERS:

In one large scale experimental investigation, Bearman et al., (1985) discussed
wave loading experimental investigations on a 0.5m diameter circular cylinder. Ex-
periments were conducted in both periodic and random waves. Tests were reported
for vertical as well as horizontal cylinder positions. One of the important aspects of
this large scale experimental study is that the highest Reynolds number 5 x 105 was
achieved in laboratory conditions and no change in force coefficients with Reynolds
number was observed. Regarding vortex excited lift force, it was observed that at
certain KC numbers the peak transverse force was greater than the in-line force.
This confirms the earlier experimental observations of Bidde (1972) and Chakrabarti
et al., (1976). Poor agreement was reported with Morison equation for horizontal

cylinders and this was attributed to strong vortex shedding components.

Bliek and Klopman (1988) studied nonlinear frequency modelling of wave forces on
large vertical and horizontal cylinders. Experimental results of random wave forces

on both vertical and horizontal cylinders were analysed with linear and nonlinear
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force models and it was observed that nonlinear model permits a more detailed

representation of the fluid loading behaviour.

Bearman (1988) presented results for rigid and flexible cylinders with smooth and
rough surfaces in the Reynolds number range up to 5.5 x 105. Due to asymmetry
in the vortex shedding pattern, a considerable increase in drag coefficient at lower
KC numbers was reported. This was attributed to an increase in wall shear stress
and boundary layer causing the resultant increase in drag coefficient. Regarding lift
force coefficient surface roughness induces larger lift forces compared with those of
smooth cylinders and this implies that surface roughness increases the strength of
the vortices. In the case of a flexible cylinder experiencing wave loading, a significant
amplification of drag coefficient was observed and also a correlation between r.m.s.
response and drag coefficient. It was reported that drag loading was more on an
oscillating cylinder than on a fixed cylinder. With Morison’s equation, a poor fit
was observed at KC = 8 Other important investigations are Schuurmans and
Lagers (1990), Isaacson and Maull (1976), Bliek Antoine and Gert Klopman (1988),
Lagers (1990), Falco et al., (1991), Wu and Eatock Taylor (1991), Haritos (1992),

Koterayama and Nakamura (1992).

2.4.2 WAVE LOADING INVESTIGATIONS ON FLEXIBLE MEMBERS:

Some of the fundamental studies related to oscillations of cylinders in waves and
currents were conducted by Verley and Jones (1982) on cylinders of diameter 19
mm, 25.4 mm and 50.8 mm with natural frequencies ranging from 1.7 Hz. to 6.7
Hz. and with wave frequencies in the range of 0.5 Hz to 1.0 Hz. In a second phase of
experiments, tests were conducted on horizontal cylinders attached to a pendulum in

still or flowing water and time averaged drag and inertia coefficients were obtained.

Bearman and Hall (1987) presented results of dynamic response of circular cylin-
ders in waves and in oscillatory flow (U-tube) and it was observed that the transverse

response due to vortex shedding depends on the Keulegan Carpenter number and the
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ratio between the cylinder’s natural frequency and the frequency of the flow. From
experimental observations it was noticed that peak responses could occur when this
frequency ratio takes integer multiples. At higher frequency ratios, the expected
response would occur at higher Keulegan Carpenter numbers. This indicates the
significant effect of the frequency ratio on the member undergoing large amplitude

oscillations.

In a comprehensive review, Naudascher (1987) presented results from steady
stream wise vibrations and related processes. Some of the relevant studies of this
kind were investigated by Vandiver and Chung (1984), Vandiver (1985), Vantorre
(1990).

Demirbilek et al, (19S9) investigated drag and damping on a flexibly mounted
vertical cylinder in still water as well as in waves. The application of the Morison
formula for wave loading on both vertical and horizontal cylinders was discussed, and
the relatively poor fit for fixed horizontal cylinders in wave flows was highlighted.
However it was mentioned that the Morison relative velocity formulation works well
for periodic flows. Along with Morison’s relative velocity formulation, independent

flow field formulation for fluid damping was investigated.

Wave loading experimental studies on flexibly mounted piles were also presented
by Yu and Zhang (1988) for both regular and irregular waves. Maull and Kaye
(1988) investigated the response of a pin-jointed cylinder in waves. Tests were
reported for the cylinder free to oscillate in both in-line and transverse directions
simultaneously and also when restrained in one direction. It was stated that, the
transverse response was the same whether is constrained to move in the transverse
direction or not, but it was observed that in-line oscillations were strongly influenced
by transverse oscillations. Finally a means of prediction for transverse oscillations

was reported.
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Nwogu et al., (1992) discussed some of the frequency dependent force coefficients
on a compliant cylinder in irregular waves. Morison relative velocity and indepen-
dent flow field models were adopted and force coefficients were estimated. Force
coefficients for compliant cylinders were slightly less than those for fixed cylinders.
Cylinder response predictions from relative velocity formulation and fixed cylin-
der coefficients agreed reasonably well with measured values. But in the indepen-
dent flow field model it was reported that the response predictions were more than
measured values around resonance and this was attributed to higher values of hy-
drodynamic damping for compliant cylinders in waves. This investigation focuses
attention on the dependency of force coefficients on the frequency of oscillations
of the structure ; it would be interesting to see similar results at higher Reynolds

numbers and a wide range of Keulegan Carpenter numbers.

2.4.3 WAVE LOADING INVESTIGATIONS : MATHEMATICAL MODELS

Numerical models for wave loading were presented by some authors e.g. Graham

and Djahansouzi (1991) and Nakamura (1992).

2.5 HYDRODYNAMIC DAMPING AND VORTEX SUPPRESSION METHODS :

Some of the fundamental studies related to hydrodynamic damping were reported
by Moe and Verley (1978) (1980). Results relating to inertia coefficient, oscillating
drag coefficient and steady drag coefficient were presented for various reduced ve-
locities. It was concluded that use of the Morison relative velocity formula to obtain
hydrodynamic damping may be unconservative leading to overprediction of damp-
ing. Apart from this, other investigations by Shop et al., (1976), Chakrabarti and
Hanna (1990), Huse (1991) were reported in recent literature. Some other results

related to damping were presented by Schwanecke (1988).

In his field based experimental investigation, Brownridge (1991) presented results

from a deep water monitoring exercise. Some of the existing methods to suppress
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vortex induced vibrations like helical stakes or designing the riser to avoid the crit-
ical lock-on velocities were discussed but it was felt that even though they reduce
amplitude of vibration they tend to cause considerable increased drag loading on
conductors. Riser response for single mode vibrations was observed at reduced veloc-
ities 4.5 to 6 and the drag due to vortex induced vibrations was observed to increase
by as much as 70 percent. Even though at present many devices are available for re-
ducing vortex excited vibrations and critical lock on velocities, they tend to increase
drag loading on conductors. Methods and systems are needed to reduce or avoid

lock-on conditions without amplifying drag loading on slender marine structures.

More field based investigations were presented by Brooks (1987), Bruchi et al.,
(1982, 1989), Tassini et al., (1989).

Grundmeier et al., (1989) discussed an advanced procedure for analysing wind-
induced vortex-shedding vibration and presented a vibration damper, a simple and
effective suppression device. Authors reviewed some of the existing and past pro-
cedures for evaluating vortex shedding vibrations and presented details of vibration
damper along with already existing devices. Halkyard and Grote (1987) discussed
some aspects related to pipe strumming and techniques related to strum suppres-
sion. In another investigation, Halkyard (1991) presented a method for analysing

vortex excited motions and drag for moored bluff bodies.

Other notable laboratory investigations on vortex excited loading were presented
by Achenbach and Heinecker (1981), Airy et al., (1988), Angrilli et al., (1982), Hal-
lam et al., (1978), Ikeda et al., (1981), Lecoinite et al., (1988), McNown and Keule-

gan (1959). Some recent experimental investigations for lift forces were reviewed by

Sheppard and Omar (1992).
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2.6 CONCLUSIONS

1. In general there is a scarcity of experimental data at large scale particularly on
flexible members. But problems associated with flexible offshore members as in ma-
rine risers, Remotely Operated Vehicle umbilicals and Tension Leg Platform tethers
are mostly at high Reynolds numbers and further loading and response studies at

this range are required.

2. Vortex excited streamwise loading and consequent oscillations have not been

thoroughly studied under laboratory conditions.

3. Transverse externally excited cylinder motions have been reported by many ex-
perimental investigators. However, virtually no experiments at the critical Reynolds
number range with externally excited streamwise oscillation have been reported. Ex-
ternally excited in-line oscillation is more relevant to many offshore installations (due
to tidal variations and currents) and its effect on loading needs detailed fundamental

study.

4. It has been observed in the literature that vortex excited lift forces on slender
members are much greater than that on fixed members. However, it has not yet
been investigated whether this occurs also when the member’s natural frequency is

an integer multiple of the external streamwise loading frequency.

5. Even though some theoretical and wind tunnel tests were reported about abrupt
drag loading changes at critical Reynolds number in steady flow, more experimental
investigations are needed to understand loading and response physics in this range

for flexible members.

6. Vortex excited loading will become more complicated when the slender member
is in oscillatory flow. The relative velocity between oscillator and the member sig-
nificantly changes vortex shedding pattern and its frequency in oscillatory flow at
higher Reynolds number range. Consequently, lift forces are entirely different from

those on rigid oscillating members.

7. Added mass is not the same for fixed and flexibly mounted cylinders. This may
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significantly influence changes in loading and response.

8. Vortex shedding origin development and consequent loading related to wave load-
ing studies are very limited in literature and studies on flexibly mounted members
are scarce. In some KC number ranges vortex excited lift forces are as large as

in-line forces.
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NAME AND
YEAR
Yainaguchi
et al.,
(1971)

Martin,
Doyle and
Jansen

(1979)

Moe and
Verley
(1980)

Martin,
Currie and
Naudascher

(1981)

Bruschi
et al.,
(1982)

Sumer and
Fredsoe

(1988)

Bearman and
Obasaju
(1989)

IN-LINE OR
TRANSVERSE
Karman Vortex

wind tunnel

transverse

oscillations

wind tunnel
experiments

ext.excitation

loading
due to waves

and currents

streamwise
oscillations
mathematical

modelling

vortex shedding
on submarine
pipe lines
full scale and

models

transverse

oscillations

in-line
oscillations
with steady

current

EXPERIMENTS
AND MODELS
0.15, 0.1, 0.07m
diameter
Experiments in

Subcritical Rug.

0.3m dia.cyl.
in uniform

velocity.

0.0202m 0.032m
0.052m dia.Cyl.

in wave tank.

steady drag
coeff.and
Reynolds no.

dependence.

Wind tunnel
0.118m dia.
Full scale

0.508m dia

submarine pipe

0.1 and 0.2m

dia.cylinders

Expts.in 3m
wide Flume and

carriage .

Lift force and
Reduced vel.
KC = 10,14,18,34
0.04m dia.cyl.
experiments in
open water

channel

Re.No.

COMMENTS

1.5 X 104 to 6.5 X 104

Aerodynamic force

Lift Force Investigated

Re.No.

Damping investigated

R
Re.No

on vibrating cyl.

1.5 x 105 to
5.0 X 105

At low Reynolds
Numbers .

Hydrodynamic

Model and Field
in-line oscillations
Compared at
Re.No.2 x 105 to
4 X 105

e.No.8.5 x 104 and

.1.7 x 10s to 2.22 x 10s

Vortex Shedding

oscillations studied

Table 2.1 Steady flow experiments

Re.No. 4.0 x 105
KC 10 to 100

in-line
oscillating
cylinder
with steady

current



NAME AND
YEAR
Hamann and
Dalton
(1971)

Sarpkaya
(1978)

Sarpkaya
(1979)

McConnel and
Park (1980)

Demirbilek,
Moe and
Yttervoll

(1987)

Bearman and
Hall (1987)

Chaplin
(1988)

Chaplin
(1993)

IN-LINE OR
TRANSVERSE
Oscillating
cylinder in

still water

transverse
externally
excited

oscillations

transverse

oscillations

rigid and

flexible supports

relative vel,
independent
flow fields,
wave flume

and pendulum

transverse

oscillations
in waves and
planar oscill-

atory flow.

Oscillating
cylinder in

still water

Oscillating
cylinder in

still water

Table 2.2 Oscillatory flow experiments

EXPERIMENTS
AND MODELS
0.625, 1, 1.5 in
dia.cyl.tested in
water tank by
oscillating

mechanism

in open return
water tunnel.
Ext.Oscillations
Yoke assembly.
0.019,0.038 m

dia.cylinders.

U-tube 0.05
0.127m dia.Cyl.

smooth and rough

0.058m dia.Cyl.
Water Tank

and Carriage.

0.1m dia.Cyl.
(Vertical)

Quasy steady
model .
Experiments
in U-tube
40 mm dia.

cylinder

0.16m, 0.315m
dia.cyl.in
elliptical

orbital flow

0.50m vertical

dia.cyl.tested in

simulator tank
oscillating

mechanism

COMMENTS

Re.No0.5.0 x 103 to

2.5 X 104
Cmh Cdl

proposed for

lift force.

transverse response

model proposed.

Response Parameter

Mentioned.

Re.No0.3.0 x 103 to

2.5 x 104

Damping by Morison
Independent flow field

formula.

at integer

multiples
of frequency
ratio - peak
response

observed

Re.No0.2.0 x 104 to

2.8 x 105
KC 6 to 20

Re.No0.2.5 x 10s to

7.5 x 105
I(C 5 to 25



NAME AND
YEAR

Bidde
(1970)

Moe and
Verley
(1980)

Verley and
Johns (1982)

Demirbilek,
Moe and
Yttervoll

(1987)

Bearman and
Hall (1987)

IN-LINE OR
TRANSVERSE

lift forces
on piles

in waves

loading
due to waves

and currents

in-line and

transverse
oscillations in

waves and

currents

relative vel.
and
independent
flow fields
wave flume

and pendulum

transverse

oscillations
in waves and
planar oscill-

atory flow.

EXPERIMENTS
AND MODELS

0.0127m,0.0413m
dia.piles in

wave channel

0.0202m 0.032m
0.052m dia.Cyl.

in wave tank.

Fluid induced
damping,
Subecritical

Reynolds no.

Flow visualisa-

tion Experiments
in wave flume
and pendulum
0.0190m,0.0254m
0.0508m dia.
Cylinders.

0.1m dia.Cyl.
(Vertical)

Quasy steady
model .
Experiments
in U-tube
40 mm dia.

cylinder

COMMENTS

Re.No0.850 to 29,950
KC 09 TO 20.4
longitudinal and
lift forces,eddy

formation.

Investigation.

At low Reynolds
Numbers .
Hydrodynamic

Damping investigated

a) slender
cylinder in
waves
b) oscillating
cylinder in-line

with current

Damping by Morison
independent flow field

formula.

at integer

multiples
of frequency
ratio - peak
response

observed

Table 2.3 Wave loading experiments
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CHAPTER 3

EXPERIMENTAL ARRANGEMENTS

3.0 INTRODUCTION :

The basic aim of this large scale experimental investigation is to study the loading
and response of a flexibly mounted cylinder in oscillatory flow at high Reynolds num-
bers. In order to achieve high Reynolds numbers in the laboratory, it is necessary
to design large scale experiments. This, coupled with the requirements for flexible
systems poses design challenges for the main experiment and related instrumenta-
tion. Considering these main factors new experiments have been designed according

to the needs of the present study.

3.1 TEST CYLINDER :

The cylinder used in the tests was a steel tube of 168 mm outside diameter and 5
mm wall thickness. A steel cylinder was chosen for its stiffness. A new flexible
support system was designed to hold the test cylinder and to act as a “spring
supported ” system, allowing the cylinder to oscillate in the streamwise direction
only. The test cylinder is supported at both ends on short arms instrumented with
strain gauges which will be described in subsequent sections. The length of the
test cylinder is 1326 mm and it is fitted with circular end plates on each side. The

surface of the cylinder was painted to achieve a smooth finish.

3.2 THE FLEXIBLE SYSTEM:

In view of the nature and size of the investigation, instead of adopting a conven-
tional spring supported system, a flexible support system was designed consisting of
two arms made of BS hollow square steel sections (Fig: 3.1). Each arm comprises

upper and lower sections, 50 x 50 mm and 5 mm thick, with a 30 x 30 x 3 mm
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section in the middle. The middle section telescopes into the larger sections on both
ends. By changing the effective length of the middle arm, this type of design enables
us to change the system’s natural frequency without changing the mass of the test
cylinder. This system was originally designed for the Random Wave Loading Simu-
lator which will be described in next section. To fix the arms of the test cylinder to
the simulator carriage, two fixtures were designed (Fig: 3.1 top) to clamp the arms
firmly with bolts and plates inside. At the bottom of the arms, the cylinder is fixed
to studs on each side and a middle bar which passes through the cylinder from one
end to the other. Each stud is equipped with two strain gauges in predesigned slots
for in-line and lift force measurement (Fig: 3.1) and (Fig: 3.2 a,b). To avoid three
dimensional effects, both sides of the test cylinder were fitted with end plates made

of PVC of 2.5 times the diameter of the test cylinder(Fig: 3.2 b).

3.3 RANDOM WAVE LOADING SIMULATOR :

The major experimental facility in which most of these experiments were con-
ducted is referred to as the Random Wave Loading Simulator Chaplin (1993). This
consists basically of an x-y carriage mechanism driven by two 32kW hydraulic motors
with 200 mm diameter sprockets and reinforced toothed belts mechanism (Fig: 3.3
a,b). This system is capable of simulating planar oscillatory flow with simultaneous
movement of X and Y carriages operated by a servo motor mechanism. However, in
the present investigation, the flexibly mounted horizontal cylinder was designed for
experimentation in oscillatory flow only (i.e. in x-direction). The X-carriage runs on
8m horizontal linear bearings on the sides of the sump of dimensions 10.5 m length,
4 m wide and 1.8 m depth.The Y-carriage runs on guided bearings transverse to the
direction of X-carriage motion. Both X and Y carriage motions and the oil supply
pumps are controlled by CED 1401 interface and a PC. Commands can be sent to
the oil pumps to start and run the motors and simultaneously feedback signals from
each are received. From the feedback signals, the carriage velocity and accelerations

can be calculated. New software has been developed for this experimental investiga-
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tion to impose superharmonic oscillations at integer multiples of the test cylinder’s

natural frequency while it is undergoing oscillatory motion Chaplin (1994a).

3.4 INSTRUMENTATION :

The test cylinder is instrumented with different sets of TML strain gauges type
FLA-2.350 (Fig: 3.2 a,b), (Fig: 3.4 a). These are foil type strain gauges and were
selected for measuring the expected loading on the test cylinder, each with resistance
of 350 ohms. One set of strain gauges was fixed at the top of the arms to measure
the bending moment, from which the response of the cylinder could be calculated.
In order to measure streamwise loading another set of full-bridge strain gauges were
mounted at both ends of the test cylinder supporting studs at the bottom. As these
strain gauges are to be submerged a polyurethane coating was applied after fixing.
A number of coats of wax was applied to protect the strain gauges from water, and
also to avoid interference of electronic circuits with water. The input voltage for each
strain gauge bridge is supplied through the Fylde signal conditioners and amplifiers
(Fig: 3.5). Signals from the bottom strain gauges were filtered at frequencies above

20Hz to avoid electronic noise. For for the top strain gauges no filter was used.

3.5 DATA COLLECTION :

For all this experimental investigation the CED1401 data acquisition system was
used. This is a 32 channel data logger capable of converting analogue to digital at
the required speed demanded for this study. For this experimental investigation only
seven channels were utilized. FORTRAN 77 has been used throughout to run the
simulator, to collect data from all the transducers, and for subsequent analysis. The
simulator control software causes the carriage to oscillate at the required amplitude
in sinusoidal motion with the desired frequency. The software also allows superhar-
monic oscillations to be imposed at the natural frequency of the test cylinder. For
each cycle of oscillation it collects 512 points for each data channel and writes a

file for post processing. The frequency of data sampling adjusts automatically to
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provide 512 points for each oscillating time period of the carriage.

3.6.0 CALIBRATION :

In this section, calibrations of strain gauges and accelerometers were discussed.

3.6.1 STRAIN GAUGES :

Among the three sets of strain gauges, two sets which measure in-line loading and
response were calibrated simultaneously. For in-line calibration, a ball-bearing pul-
ley mechanism (Fig: 3.5 a) was adopted and loading was applied at increments of 10
Newtons and calibrated with the COLLECT Chaplin (1994a) software of CED1401.
For calibration loading, a ball bearing pulley mechanism has been adopted in or-
der to avoid frictional effects and proper care was been taken to eliminate errors
in loading. In order to calibrate in-line loading strain gauges, a string is connected
horizontally to the test cylinder (Fig: 3.5 a) at one end and after passing over the
pulley a loading hanger is connected to the other end of the rope for incremental
loading. Calibration was performed to cover the expected range of loading and to
check the linearity of the instruments. Linear regression (which is built in to the
collection software) was performed and only calibrations which give correlation co-
efficients higher than 0.999 were accepted. For transverse force calibration, loading
was applied at increments of 10 Newtons and calibrated with COLLECT software
using the CED1401. As with streamwise loading, this set of strain gauges was also
calibrated for the expected range of transverse loading (Fig: 3.5 b). Calibration
plots for top in-line strain gauges(for response measurement), bottom in-line strain

gauges and bottom lift force strain gauges are shown in Fig: 3.6 a,b,c respectively.

3.6.2 STIFFNESS MEASUREMENT AND CALIBRATION :

In order to measure the stiffness of the total system, two static electronic digital

displacement transducers were fixed at either end of the test cylinder bottom studs.
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The basic aim was to obtain the total system stiffness while performing in-line
force calibration. While calibrating, simultaneous measurements of the test cylinder
displacement for each load increment were recorded and the average from these two
records was used. A linear relation between applied static load and corresponding
static response of the test cylinder was established and the slope of this linear relation

gives the system total stiffness.

3.6.3 ACCELEROMETER CALIBRATION :

In the present study, one Bruel and Kjaer accelerometer was used for measurement
of carriage acceleration. From the carriage acceleration, carriage displacement and
velocity were calculated through an FFT . In order to calibrate the accelerometer, a
sinusoidal excitation and a function generator were used (Fig: 3.7 a). Known sinu-
soidal excitation at a known frequency was given as input to the accelerometer and
the corresponding CED1401 units were recorded. A linear relation between accel-
eration and CED1401 units was obtained. A calibration plot for this accelerometer

was shown in Fig: 3.7 b.

3.7.0 FREE VIBRATION TESTS :

Once calibrations were completed, three series of free vibration test were per-
formed: 1) In air with the cylinder empty ii) In air with cylinder full of water iii)

Test cylinder in the simulator basin fully submerged in still water.

3.7.1 EMPTY CYLINDER IN AIR :

The test cylinder was supported by flexible arms and was fixed at the top. This
enables us to oscillate it freely in air and record the decaying oscillations. From
these tests, as shown in Fig: 3.8 a, log(Am/A1) versus —(n —1) was plotted (where
Xn represents the amplitude of the n th oscillation and n is the number of the os-

cillation). The slope of the line represents the logarithmic decrement of structural
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damping (<P of the system; in this case 0.0129 (Fig: 3.8 b). In order to obtain
the structural damping of the system, the damping due to air which was calculated
for the test cylinder system was subtracted (see below). While the cylinder was
oscillated freely in air, from in-line force records (maximum) (from top strain gauge
decaying oscillations) and stiffness of the system, maximum amplitude of oscillations
of the test cylinder was calculated. From the amplitude of oscillations and time pe-
riod of oscillations, velocity of the cylinder was computed. From the following set

of calculations, damping due to air was calculated.

F = lpalCddLU \U |\ (3.1)

where ,

F = is the drag force

Pair = mass density of air 1.23 kg / m3

Cd = drag coefficient (here taken as approximately 0.8)
d = diameter of the test cylinder (0.168m)

L = length of the test cylinder (1.326m)

U = velocity of the test cylinder

However, after linearization of velocity term,

U\U\= V2*"-cos{ut) (3.2)
<7T

the equation can be simplified as below.

1 S
F = -pairCddLV2— cos(ut) (3.3)

Further, from free vibration records in air, the maximum velocity of the test cylinder

was obtained as V = 0.305 m/s and the above equation can be written as,

F = -pairCddLVj*(Vcos(wt)) (3.4)

After substituting relevant terms, it can be simplified as,
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F = (0.02842)1>cos(u>l) (3.5)

from this expression, it is easy to identify damping as

C = 0.02842. But damping can be expressed in terms of the logarithmic decrement

of damping as

(Cn)

(3.6)
(»/KM)

where,

K — stiffness of the system (6493.59 N/m)

M = mass of the total system (36.4383 kgs.)

8 = logarithmic decrement of the damping

From these expressions, & for air was obtained as 0.0001836 and it was subtracted
from the value 0.0129097 which was obtained from above free oscillations test when
the cylinder was oscillating in air. It should be noted that the appropriate drag
coefficient should probably be greater than 0.8 for very small amplitude oscillations
(Sarpkaya (1986)). Nevertheless the effect of air damping would still be very small in
comparison with structural damping. Finally the structural damping of the system

was thus obtained as § = 0.0127262 and it was used in subsequent calculations.

In addition to this, to check the natural frequency of the test cylinder system, spectra
of free oscillation records were plotted (Fig: 3.8 ¢). From this spectrum, the natural
frequency of the test cylinder in this case was obtained as 2.094 Hz. Once the
structural damping and natural frequencies of the test cylinder were obtained, the
system natural frequency was checked with calculated values of structural mass and
stiffness of the system. The calculated natural frequency of the test cylinder was
obtained as 2.125 Hz. The difference between measured and calculated frequencies

is only 1.7 percent.
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3.7.2 CYLINDER WITH WATER IN AIR:

In the second free oscillation test, the cylinder was freely oscillated in air after
it had been completely filled with water and sealed. From free vibration tests,
decaying oscillations were recorded (Fig: 3.9 a) and damping (Fig: 3.9 b) and natural
frequency were calculated as described before. In order to check the measured
natural frequency the calculated frequency value from the stiffness of the system and
the mass of the test cylinder (including in this case the water inside the cylinder) was
compared. From spectra of measured decaying oscillations, the natural frequency
was obtained as 1.602 Hz (Fig: 3.9 c¢). From calculations, it was obtained as 1.622
Hz. In this case difference between measured and calculated natural frequencies is

only 1.24 percent.

3.7.3 CYLINDER IN SIMULATOR BASIN :

Once the calibrations were completed, the test cylinder was placed in the simulator
water tank and fixed to the carriage. As the system consists of a rigid horizontal
cylinder flexibly mounted by two arms, every care was taken to fix the system firmly

to the carriage.

3.7.4 FREE VIBRATION TESTS UNDER WATER :

After the test cylinder had been fixed to the simulator carriage, free vibration
tests were carried out in still water. Water depth was maintained constant through-
out the experimental studies at 1.259m. A long string was attached to the centre of
the cylinder and plucked and released immediately allowing the cylinder to oscillate
freely and gradually return to rest (Fig: 3.10 a). As before, the decaying oscilla-
tions were recorded and the damping (Fig: 3.10 b) and natural frequency of the
test cylinder were measured. From the spectra of the free decaying oscillations, the
natural frequency was obtained as 1.315 Hz (Fig: 3.10 c¢). In order to avoid buoy-

ancy effects and also to minimise any undesired fixing conditions, the stiffness of the
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system was measured when completely submerged in still water. This was measured
by a ball bearing pulley and rope on which a load was applied in increments and the
resultant deflection was recorded by electronic digital transducers. As mentioned in
subsection 3.6.2 a linear relationship between the applied load and deflection was
measured. Stiffness measurement plots are shown in Fig: 3.11 a, b. While mea-
suring stiffness, a correction for extension of the rope was made producing a result
of 7205 N/m. This stiffness value was used in all subsequent calculations and data
processing. To check the natural frequency of the test cylinder under water, this
stiffness and mass, including the added mass due to cylinder, end plates and studs
was considered. From computations, the natural frequency of the test cylinder was

obtained as 1.315Hz.

Cylinder Damping 6 Natural Frequency % Daff.

measured calculated

a. Empty cyl.

in air 0.0129 2.094 Hz. 2.125 Hz. 1.70
b. Cyl.with
water in air 0.0186 1.602 Hz. 1.622 Hz. 1.24

c¢. Cylinder in
tank with full 0.0454 1.315 Hz. 1.315 Hz. 0.00

of water

Table: 3.1 Free vibration tests (oscillatory flow)

3.8 HYDRODYNAMIC DAMPING :

In order to investigate the variation of hydrodynamic damping with amplitude,
six sets of free vibration tests as described in subsection 3.6.4 were performed. From
the strain gauge free decay oscillation records as shown in Fig: 3.12a the aver-
age amplitude of first ten free oscillations was calculated. Hydrodynamic damping

(logarithmic decrement of hydrodynamic damping) was estimated from free decay
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oscillations observed in the bottom in-line force strain gauge records. Finally a plot
which shows the relation between hydrodynamic damping and amplitude is shown in
Fig: 3.12b. In addition to this, a graph showing drag coefficient verses KC number
was presented in Fig: 3.12 c. Drag coefficients were calculated from free vibration

tests as described in Eqns. 3.4 to 3.6.

3.9 CONCLUSIONS:

This chapter has described the experimental arrangements and all measurements

suggest that the equipment performed as required.
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Fig: 3.1 Test Cylinder in Random Wave
Loading Simulator Basin
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3.2 (a) Cylinder Bottom Strain Gauge
Arrangement and End Plates
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Fig: 3.2 (b) Cylinder Studs with Strain Gauges
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Fig: 3.3 (a) Test Cylinder in Oscillatory Flow
( Random Wave Loading Simulator)
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Fig: 3.3 (b) Test Cylinder in Air
( Filled With Water )
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Fig: 3.4 (a) Top Strain Gauge on Cylinder Arm
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Fig: 3.4 (b) Instrumentation and data logger
used in Experiments
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Fig: 3.5 (a) In-line Force Calibration Arrangement
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Fig: 3.5 (b) Lift Force Calibration Arrangement
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Fig: 3.7
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DISPLACEMENT

Fig: 3.11 (a) Total Stiffness Measurement
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Fig: 3.12
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CHAPTER 4

ANALYSIS OF RELATIVE VELOCITY MORI-
SON COEFFICIENTS

4.0 INTRODUCTION

In this chapter a series of experimental findings will be presented from oscilla-
tory flow studies. In Section 4.1 three sets of experiments for different frequency
parameter (3 are discussed and compared with previous well established oscillatory
flow studies on fixed cylinders in similar conditions (even though the present study
is on flexible cylinders). An overall presentation of test results for drag and inertia
coefficients, as well as for lift and total force coefficients along with test cylinder re-
sponse are presented for a wide range of frequency ratios. Section 4.2 deals with the
Morison best fit for in-line force and response from comparisons with experimental
results. Section 4.3 contains a brief discussion about the significance of the drag co-
efficient at low Keulegan Carpenter numbers. As the present investigation is mainly
concerned with oscillating cylinders, in Section 4.4, spectral presentations of in-line
force, response, vortex excited lift force and the external oscillation of the cylinder
are presented for the three sets of parameters which were discussed in Section 4.1.
Section 4.5 deals with lift and in-line force comparisons for a wide range of frequency
ratios (i.e. F.R = /,, / fOwhere fn —natural frequency of the test cylinder and f Q=
external oscillating frequency of the test cylinder) Finally, in Section 4.6, an attempt
has been made to identify relationships between inertia and drag coefficients for all
sets of data. In addition to this a harmonic analysis has been presented for lift and
in-line forces. In Section 4.7 conclusions were drawn and the above discussions are

summarised.
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4.1 PRELIMINARY EXPERIMENTS :

Experiments were conducted on a test cylinder of diameter 0.168m and length
1.326m with a flexible support system which was described in Chapter 3. The
natural frequency of the system under water is 1.315 Hz. Even though the present
system is flexible, three sets of preliminary tests were conducted at frequency pa-
rameters (jffj as described by Sarpkaya (1986)) ;/3of 3460, 4720 and 6555, at which
Sarpkaya (1986) has tested a rigidly supported cylinder. In Fig: 4.1, 4.2, and 4.3,
test results are compared with corresponding oscillatory flow experimental findings
on rigid cylinders of Sarpkaya (1986). In all these experiments, the relative velocity
and accelerations were used in Morison’s formula to obtain least square drag and
inertia coefficients from the in-line force (Sarpkaya and Isaacson (1981)). Relative
velocity was also used to determine total force coefficients. An inertia force due to
the mass of the test cylinder was subtracted in deriving all inertia coefficients as well
as for in all in-line force root mean square values and in the subsequent harmonic
analysis. Also, when the cylinder is moving in stationary fluid, the Froude-Krylov
force is absent and so the inertia coefficient has to be obtained from the following

equation.

Cm—Ca+ 1 (4-1)

where,

Cm = inertia force coefficient

Ca —added mass coefficient

While comparing with Sarpkaya’s (1986) test results an important consideration
is that the present measurements were on an oscillating flexible cylinder while his
refer to rigid test cylinders. However, since in these data sets the cylinder natural
frequency was not an integer multiple of the external oscillatory frequency the
cylinder oscillations were not very important and the test cylinder closely followed
the external oscillation. Normalized cylinder in-line response curves are presented

in Fig: 4.1 (d), Fig: 4.2 (d), Fig: 4.3 (d). It is therefore reasonable to expect the
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close agreement observed between present and Sarpkaya’s test results for similar ;3
values. On the whole, drag and inertia coefficients are well correlated with Sarp-
kaya’s results in the KC number range less than 7 and at higher KC range from
20 to 50 for all these three sets of data. However, in the KC range where vortex
shedding influences are more predominant, i.e., in 7 < KC < 20 , no close agree-
ment has been observed, and the severe changes in drag and inertia coefficients for
very small changes of KC number around 10 are absent in the present data. This
clearly indicates the dominant influence of vortex shedding; in the present case end
conditions were much less favourable and vortex shedding would have been much

weaker than in U-tube conditions.

In Fig: 4.4 drag and inertia coefficients are presented for all sets of integer fre-
quency ratios. At lower KC number range, there is a significant increase in the
inertia coefficient with increase in frequency ratio. But, in case of drag coefficients,
for corresponding ranges of KC numbers, a decrease in drag coefficients can be seen
for an increase in frequency ratio i.e., for the same KC number the higher the fre-
quency ratio the smaller the drag coefficient and the higher the inertia coefficient.
One important factor is these changes are not significant at higher values of KC
numbers i.e., after 50. This is similar for drag coefficients in Fig: 4.1 (b), Fig: 4.2
(b), Fig: 4.3 (b) as well as in Fig (b). Another important aspect is for frequency
ratio from 2 to 7, in fact inertia and drag coefficient values varied as smooth family

of curves for different frequency ratios.

Total force coefficients and normalized cylinder in-line responses are presented for
corresponding sets of frequency ratios in Fig: 4.5. At low A'C', in Fig: 4.5 (a) there
is an increase in force coefficients with increasing frequency ratio. In Fig: 4.5 (b) a
reduction in response occurs with the increasing in frequency ratio at a given KC.
This is in accordance with the drag coefficients’ set presented in Fig: 4.4 (a), i.e., an
increase in frequency ratio reduces drag coefficients as well as cylinder responses. In

Fig: 4.6, drag and inertia force coefficients are compared with the well established
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results in literature from Bearman ct al., (1985), Chaplin (1993), Justesen (1989),

Sarpkaya (1979) and Longoria ct al., (1991).

4.2 MORISON’S BEST FIT AND EXPERIMENTAL FORCES :

In order to calculate drag and inertia force coefficients from the Morison rela-
tive velocity formulation as mentioned above, the least squares error minimization

method was adopted.

F = 0.5PDCA(U —x) \U—x \+0.25irpD2[(Ca+ 1)(U -x) + x/ (4.2)

F = in-line force
= mass density of water (kg/?7i3)
D = diameter of the cylinder
(. = drag coefficient
U = velocity of the oscillating system (rig)
x = velocity of the cylinder
Ca = added mass coefficient

U = acceleration of the oscillating system

x = acceleration of the cylinder

In data acquisition, for each KC number, 20 cycles of data were collected with
512 points for each cycle. To eliminate excessive high frequency mechanical and
electronic noise, filters were used with a cut off frequency of 20Hz. for both in-line
and lift force channels. LTsing relative velocity and acceleration records, and Morison
drag and inertia coefficients, force records were re-plotted along with the original
in-line force measurements in Fig: 4.7 to 4.12. For each frequency ratio, five sets of

plots are presented for different I(C numbers.

At even frequency ratios, i.e., at 2, 4 and 6 in Fig: 4.7(e), 4.9(e) and 4.11(e)

respectively and at KC numbers up to 25 the Morison fit is not in close agreement



with experimental records. However, for the same range of KC numbers, a better
fit is observed for odd frequency ratios i.e., 3, 5 and 7 in Fig: 4.8(e), Fig: 4.10(e)
and Fig: 4.12(e). This is probably linked to the fact that Morison loading has
spectral peaks at odd frequency multiples. For KC numbers above 25 reasonably

good agreement is observed between measured and Morison in-line forces.

4.3 DRAG COEFFICIENT INFLUENCE AT LOWER I<C NUMBERS:

At low KC numbers the force is inertia dominated. An attempt has been made
for two sets of frequency ratios to find the significance of the drag coefficient at low
KC numbers. In Fig: 4.13 for three KC numbers ranging from 4.245 to 9.597, ex-
perimental and Morison reconstruction plots are presented for frequency ratio 2. In
each case two force traces are presented along with the original in-line experimental
record. In second force record, the drag coefficient was made zero. It is interesting to
observe that, there is not much difference between these force records at KC = 4.24.
But as the KC number increased, as shown in Fig: 4.13(b) and (c), the significance
of the drag coefficient becomes greater, as can be clearly seen in these two records.
In addition to this at the odd frequency ratio 7, similar observations are presented
in Fig: 4.14 (a), (b) and (c). It is very clear that at very low KC numbers, there is

virtually no influence of drag coefficient on the Morison reconstruction plots.

4.4 SPECTRAL PRESENTATION:

For one non-integer frequency ratio, spectra of lift-force, in-line force, in-line re-
sponse and external oscillations are presented in Fig: 4.15. These sets of data were
basically acquired to compare with Sarpkayas’s (1986) data sets. In Fig: 4.15(d), the
first spectral peak appears at the oscillating rig frequency. At the natural frequency

of the test cylinder, there is almost no peak at all.

In order to identify the importance of the frequency ratio, spectral plots are shown

in Fig: 4.16 to Fig: 4.17 for frequency ratios 6 and 7. Unlike the former spectra,
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these sets of data refer to cases where the natural frequency is an integer multiple of
the external oscillating frequency. Spectral peaks now appear at integer multiples
of the external oscillating frequency particularly in the in-line force and response
spectra. Even though, vortex shedding force and its frequency are more predominant
in transverse force spectra, it is interesting to observe the corresponding spectral
peaks in accordance with in-line force spectral peaks in Fig: 4.16(a) and 4.17(a).
However, in Fig: 4.16(a) for frequency ratio 6, transverse force spectra, the spectral
peak at cylinder frequency is not as clear as in Fig: 4.17 (a) which is for frequency
ratio 7. In case of spectra of external oscillations, the first large spectral peak can

be seen at the frequency of the rig oscillations.

4.5 IN-LINE FORCES :

This section examines how the lift changes in relation to the in-line forces at
various K C numbers and frequency ratios. In Fig: 4.18 a series of graphs are shown
for all integer frequency ratios 2 to 7 where r.m.s. in-line force and lift force are
plotted with respect to KC number. From these graphs it is clear that in every
frequency ratio set, in a particular range of KC numbers, the lift force r.m.s. values
are near or sometimes more than the in-line force r.m.s. values. For frequency ratio
2, in KC number range 6 to 9, lift force r.m.s. values are higher than in-line force
r.m.s. values and similar dominance can be observed for other frequency ratios.
But, the ranges vary with the frequency ratio. This KC number range, where lift
force is predominant increases with increase in frequency ratio. For frequency ratio
of 3, 4, 5, 6 and 7, it is in the ranges 12 < KC < 16, 15 < KC < 20, 20 < KC
< 30, for 25 < KC < 33, 22 < KC < 35 respectively. To illustrate clearly and
identify significant changes in magnitudes of forces, a number of time series plots
are presented in Fig: 4.19 to 4.21. In each figure, time series plots for five KC
numbers are shown. In Fig: 4.19 (c) and (d) for frequency ratio 2, it is clear how
lift forces are more dominant than in-line forces at K C number range 6.85 and 7.97

respectively. Similar plots for frequency ratio 4 and 7 in Fig: 4.20(c), (d) and in



Fig: 4.21 (c), (d) confirm the significantly higher values of lift forces comparing with

in-line forces at certain ranges of lower KC numbers.

4.6.0 LIFT FORCES :

In this chapter lift force and lift force harmonics are discussed for three sets of
data for fixed cylinders. In section 4.6.1 data sets were for frequency parameter /?

= 3460, /3= 4720 and for /3= 6555.

4.6.1 COMPARISON WITH SARPKAYA’S (1986) RESULTS :

In Fig: 4.22 (a) r.m.s. lift force values are compared with Sarpkaya’s (1986) U-
tube oscillatory flow results on fixed cylinders for the same values of the frequency
parameter. From this figure, it can be observed that, the r.m.s. values are signifi-
cantly less than Sarpkaya’s test results in I(C number ranges 10 to 25 and at higher
K C number values present results are closer to Sarpkaya’s values. This can be at-
tributed to strong vortex shedding in Sarpkaya’s (1986) experiments and subsequent
lift force changes for oscillating cylinders. Further, in (b) to (f) first five harmonics
are compared. In all these five harmonics, even though the magnitudes changes, in
KC number range from 10 to 25 higher fluctuations were observed. But, at odd
harmonics 3 and 5 reasonable agreement was observed with rigid cylinder data sets.
In Fig: 4.23 and in Fig: 4.24 similar sets of data for frequency parameter (3 = 4720
and 6555 are presented. In Fig: 4.25 normalized lift force r.m.s. and harmonics at

the oscillating rig frequency and at the test cylinder natural frequency are presented.

In Fig: 4.26, a series of harmonic presentations for ratio of lift to in-line force
are shown for all frequency ratios. An important observation is that the ratio of
the strength of each harmonic component changes with the KC number and the
frequency ratio. This shows for frequency ratio 2, the maximum peaks of harmonic
ratios appeared in KC number range 7 to 10, whereas this range is from 14 to 20

for frequency ratio 3. Finally in Fig: 4.28 (b) for frequency ratio 7, this is in KC

67



number range 45 to 55. This gives an idea of the increase in ratio of harmonics

strength with respect to frequency ratio.

In Fig: 4.30 (a) ratio of r.m.s. lift-force to r.m.s. in-line force show that an increase
in frequency ratio increases the KC number where peak values occur. Some more
graphs for different harmonics are shown in Fig: 4.31 and in Fig: 4.32. In Fig: 4.33
to Fig: 4.35, normalized lift force harmonics are presented for all frequency ratios 2
to 7 and from this, the dominant harmonics in different K C ranges are identified and
presented in Fig: 4.36. It is interesting to note that, at lower KC numbers, for each
frequency ratio, corresponding harmonics are more dominant and later, harmonics

in increasing order predominant with increasing K C numbers.

4.7.0 RESULTS FOR FREQUENCY RATIOS 2.85, 3 AND 3.15

A limited but detailed attempt has been made to investigate the effect of integer
and non-integer values of frequency ratios around ratio 3. In section 4.7.1 drag and
inertia force coefficients and their variations are illustrated and in section 4.7.2 in-
line force and response harmonics are presented. Finally in section 4.7.3 lift forces

and lift force harmonics are discussed.

4.7.1 DRAG AND INERTIA FORCE COEFFICIENTS :

In all previous discussions, experimental investigations were presented for a wide
range of frequency ratios. However, it is not clear how small changes in the frequency
ratio around an integer value affects hydrodynamic forces and responses. In Fig: 4.37
(a) and (b) drag and inertia force coefficients are illustrated for frequency ratios 2.85,
3 and 3.15. From this figure, in KC number range 1 to 10, drag and inertia coefficient
values are higher for a frequency ratio of 3 than for both frequency ratios 2.85 or
3.15. Another interesting observation is that for frequency ratio 3.15 the coefficients
are smaller than either of the above two sets. At KC number values higher than

10, there is no significant change in drag coefficient but the above changes persist
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for inertia coefficients.

4.7.2 IN-LINE FORCE AND RESPONSE :

In order to identify in-line force variations a series of harmonics are presented in
Fig: 4.38 (a) and Fig: 4.39 (a). R.m.s values of in-line forces are largest, in KC
number range 1to 10, at the integer value 3; but, all even harmonics, 2, 4, 6, 8 and
10 are dominant for lesser value of frequency ratio 2.85 and odd harmonics 1, 3, 5,
7, 9 are dominant for the integer value of frequency ratio 3 and the higher value of

3.15.

In Fig: 4.38 (b) and Fig: 4.39 (b) of in-line response is plotted. R.m.s. responses
were more dominant for integer value of frequency ratio 3 at KC number range 1
to 10 . Significant changes have been observed in KC number range 1 to 18 for all

3, 5, 7 and 9 even harmonics.

4.7.3 LIFT FORCE :

Regarding lift forces, even though they are significant they are random for all three
sets of frequency ratios. However, for odd harmonics, rapid changes were observed
at KC number ranges 4 to 10 and 12 to 18. R.m.s. lift force and 3rd harmonics are

shown in Fig: 4.38 (¢) and Fig: 4.39 (c) respectively.

4.8 CONCLUSIONS :

Some of the important conclusions are summarized below.
1. Even though the present investigation is on flexibly mounted oscillating cylin-
ders, generally good agreement has been observed with Sarpkaya’s hydrodynamic
coefficients for similar frequency parameters in KC number ranges less than 7 and

at higher values of KC number more that 50. However, in KC number range 7
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to 20 there i1s poor agreement. This can be attributed to the importance of vortex
shedding on in-line force. In Sarpkaya’s (1986) experiments the test cylinder was in
a U-tube, where the flow was more 2 Dimensional than in the present case, where

some flow was free to pass around the ends.

2. There were significant changes in all hydrodynamic coefficients and cylinder
responses with respect to frequency ratio. For the same K C number, the higher the
frequency ratio, the smaller the drag coefficient and the higher the inertia coefficient.
Similarly, for total force coefficient, an increase in force coefficients can be seen for
an increase in frequency ratio. Cylinder responses were in accordance with changes
in the drag coefficient, i.e., an increase in frequency ratio reduces the drag coefficient

as well as cylinder’s responses.

3. Regarding the Morison best fit, at even frequency ratios, up to KXC number of
25, the Morison fit is not well correlated with experimental records. However, for the
same range of KC numbers a relatively good fit appeared for odd frequency ratios.
But above a KC number of 25 good Morison fit was observed for all frequency ratios

for in-line force and response records.

4. From experimental findings it was concluded that, drag coefficient has little
significance in Morison fit at lower KC numbers i.e., less than 5. This, implies that,
at smaller amplitudes, in-line loading is mainly due to inertia force acting on the

test cylinder.

5. From spectral analysis, it is clear that, when the test cylinder natural frequency
is in integer multiples of the external oscillating frequency, maximum spectral densi-
ties (i.e. spectral peaks) appear at multiples of external oscillating frequency. This
clearly appeared in all four sets of data. These spectral peaks are more clear for in-
line force and consequent response, indicating that frequency ratio has a significant

influence on these factors.
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6. From analysis and time series presentation, it was identified that there were
some ranges of KC numbers for each frequency ratio, where lift forces are more

dominant than in-line forces.

7. Results at non-integer frequency ratios indicated that drag and inertia co-
efficients are sensitive to non-integer frequency ratios in KC number ranges 1 to

10.
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Fig: 4.4 Inertia and Drag Coefficients
for different frequency ratios
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Fig: 4.5 Total force coefficients and in-line
response for different frequency ratios
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Freq.Ratio............... : 2
Cyl.Diameter............. : 0.1683m
Cyl.Length................ 1.326m
Mass (total)............. : 63.1188

Stiffness(under water) : 7205 N/m
Log.Decrement of

Struc.Damping (delta)..: 0.01273
Natural Frequency ... : 1.315 Hz.

Fig: 4.7 In-line force Morison's fit for
frequency ratio fn/f0 = 2
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Fig: 4.8 In-line force Morison's fit for
frequency ratio fo/f0 - 3
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Struc.Damping (delta)..: 0.01273
Natural Frequency ... : 1.315 Hz.

Fig: 4.9 In-line force Morison's fit for
frequency ratio fo/fQ= 4
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Natural Frequency ... : 1.315 Hz.

Fig: 4.10 In-line force Morison's fit for
frequency ratio fn/fo = 5
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Struc.Damping (delta)..: 0.01273
Natural Frequency ..... : 1.315 Hz.

Fig: 4.11 In-line force Morison s fit for
frequency ratio fn/fo = 6

85



D (0] 80.0 :
Z
W0
b
Z
g 00
e
W
° 700 020C
?" A0 7.74 X 10
1.658
3.685
: 1.882 EXPERIMENT Cm 1.871 EXPERIMENT
: 7 lo 12 MORISION FIT mo cycles 7 to 12 MORIS10N FIT
-40'00.0 1.0 2.0 30 4.0 5.0 6.0 7.0 80 9.0 10.0 11.0 0.0 1.0 2.0 3.0 40 5.0 6.0 7.0 8.0 9.0 10.0 11.0
TIME TIME
(a) (b)
(c) (d)

Freq.Ratio............... i
Cyl.Diameter............. : 0.1683m
Cyl.Length..............: 1.326m
Mass (total)............. : 63.1188 Kag.

Stiffness(under water) : 7205 N/m
Log.Decrement of

Struc.Damping (delta)..: 0.01273
Natural Frequency ..... : 1.315 Hz.

(e)

Fig: 4.12 In-line force Morison's fit for
frequency ratio fn/fo = 7

86



(a)

(b)

300.0
5 200.0

100.0

e

-
EN

loo.o

S

-200.0

-300.0

SN g

-400.0

-500.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

TIME

(c)

Fig: 4.13 Significance of Drag coefficient
at lower I<C numbers frnfc = 2

87



(a)

100.0

50.0

00

-50.0

INLINE FORCE/UNIT LENGTH

- 100.0

-150.0
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

TIME

(b)

INLINE FORCE/UNIT LENGTH

(c)

Fig: 4.14 Significance of Drag coefficient
at lower I<C numbers fo/f0 = 7

88



LIFT FORCE SPECTRA Freq.Ratio : f,/f, - 7.8914

N
*
g
Z
=
E
—
%)
Z
m
A
<)
[
%)
(a)
Freq.Ratio : f,/f, = 7.8914
IN-LINE FORCE SPECTRA
~
*
*
g
Z
et
&
)
Z.
&)
A
m
[
%)

Fig: 4.15 (a, b) Spectral presentation (Sarpkaya's
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Fig: 4.16 (a, b) Spectral presentation for fn/f0 = 6
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Fig: 4.16 (¢, d) Spectral presentation for fn/f0 = 6
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Fig: 4.17 (a, b) Spectral presentation for fo/f0 = 7
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Fig: 4.17 (c, d) Spectral presentation for fn/fQ= 7
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Fig: 4.19 In-line and lift force time-series comparison
for frequency ratio fn/f, = o

96



FORCE/(0.5%rho*Um**2%dr) FORCE/(0.5%rho, Um*»2*dr)

FORCE/(0.5*rho*Um**2*dr)

TIME (SEC)

(e)

Freq.Ratio......cccueeos 4
Cyl.Diameter............. : 0.1683m
Cyl.Length................ 1.326m
Mass (total)............ : 63.1188 Kg.

Stiffness(under water) : 7205 N/m
Log.Decrement of

Struc.Damping (delta)..: 0.01273
Natural Frequency ..... : 1.315 Hz.
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CHAPTER 5

INFLUENCE OF SUPERHARMONICS ON DRAG
AND INERTIA COEFFICIENTS

5.0 INTRODUCTION

It is one of the common features of many flexible members like tension leg plat-
form tethers and Remotely Operated Vehicle umbilicals that they experience exces-
sive oscillations when a natural frequency of the member is an integer multiple of
the natural frequency of the waves. These excessive oscillations have a major signif-
icance on drag loading and hydrodynamic damping which are essential for force and
response predictions during the design process. However, there is little experimen-
tal information on the effect of in-line oscillations on loading and response in the
literature, particularly at higher Reynolds numbers. At present it is not clear how
in-line oscillations and consequent relative velocity and accelerations affect drag and
inertia coefficients. It is also not clear how in-line stream wise oscillations influence
hydrodynamic damping and consequent drag loading. In view of the importance
of the practical application of streamwise oscillations, a set of new experiments
was designed and conducted in which superharmonic in-line external excitation was

imposed while the cylinder was undergoing oscillatory flow.

In section 5.1 investigations related to external superharmonic oscillations for drag
and inertia coefficients are presented. In order to identify the effect of frequency
ratio, some sets of drag and inertia coefficients are illustrated in section 5.2. In
section 5.3 an attempt has been made to present the overall effect of superharmonic
oscillations on drag and inertia coefficients. Possibly also the phase of the excitation
has some influence but in these experiments no attempt was made to achieve any

particular phase relationship between the two components of motion.
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51 SUPERHARMONIC OSCILLATIONS :

In these experiments, the frequency of the motion was set to integer sub-multiples
of the natural frequency of the test cylinder. In order to impose external superhar-
monic excitation at each frequency ratio, superharmonic oscillations were imposed
on the carriage motion at the cylinder’s natural frequency. This means that, in
oscillatory flow, the cylinder experienced superharmonic in-line force oscillations.
In the series of experiments, for every oscillating amplitude (i.e. for each specific
K C number), the superharmonic amplitude oscillations were imposed for a range of

frequency ratios from 2 to 7.

In Fig: 5.1, 5.2, 5.3 and 5.4 time series plots for in-line force and in-line responses
for different superharmonic oscillations are presented. These forces are after sub-
traction of the loading due to the inertia of the cylinder itself. These figures clearly
demonstrate the effect of in-line superharmonic excitation and the consequent in-
crease in loading and response. However, it is interesting to observe (Fig: 5.2 and
Fig: 5.4) that at higher KC numbers the effect of external superharmonic oscilla-

tions is less significant.

In Fig: 5.5 the drag coefficient variation with respect to the external excitation
is presented for frequency ratios ranging from 2 to 7. In each figure, every curve
represents a particular KC number. This gives an understanding of how the drag
coefficient is varying with KC number for a range of superharmonic oscillation
amplitudes. From the above figures it is easy to observe that changes in drag

coefficient are greater at lower KC numbers.

In Fig: 5.6, for the same frequency ratios, changes in inertia coefficients are shown
and follow similar variations as mentioned above for drag coefficients for similar
ranges of KC numbers. However, significant changes are more predominant in case
of inertia coefficients throughout the KC number ranges. This could be due to the

effect of phase along with magnitude of superharmonic oscillating amplitudes.
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In order to identify possible reasons for these changes the following points are

mentioned.

a. Smaller KC numbers imply lower amplitudes of oscillations. That means, at
lower KC numbers, flow separation may take place only when the superharmonic
excitation exceeds a certain level. Even at moderate KC numbers seperation may
be strongly effected by superharmonic excitation. This may be the reason for signif-
icant changes in coefficients. Also no proven experimental studies confirm that, for
flexibly mounted oscillating cylinders, the added mass is the same as rigid oscillating

cylinders Sarpkaya (1993).

b. At lower KC numbers (less than 20), vortex excited forces are more predomi-
nant and responsible for transverse lift forces. However, vortex formation, evolution,
and transport are different from those of rigid cylindrical members in oscillatory flow.
From previous observations (Chapter 4) it is quite clear that even small changes in
oscillating amplitude make significant changes in force coefficients. From this infer-
ence, it can be concluded that the strong influence of vortex excited loading might
be the reason for larger changes in drag as well as inertia force coefficients at any

particular KC number.

c. At lower KC numbers, (i.e. smaller amplitudes) flexibly mounted cylinder
oscillation grows rapidly with low levels of superharmonic excitation. That means
relative velocities as well as relative accelerations influence force coefficient calcu-
lations. This could be one of the reasons for variations of drag and inertia force

coefficients at fixed KC numbers.

5.2 EFFECT OF FREQUENCY RATIO:

The ratio of natural frequency of the test cylinder to the oscillating frequency is
one of the parameters which has much practical significance. It is possible in prac-

tice that, when the natural frequency of the cylinder is an integer multiple of the
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frequency of external environmental loading (such as waves and vibrations), exces-
sive oscillations of the system result causing fatigue and structural damage. In order
to identify the frequency ratio influence, in Fig: 5.7, some test results are compared
for similar values of KC numbers for different frequency ratios. In Fig: 5.7 (a)
and (b) for frequency ratios 3,5,6 and 7, drag and inertia coefficients are compared
and it is clearly evident that the frequency ratio has a significant influence at KC
numbers 7 to 9, and the higher the frequency ratio, the larger the changes (even
for small changes in superharmonic excitation). Similar variations were observed
in both drag and inertia coefficients. Also in (¢) and (d) for KC numbers 15 and
16 some more test results are illustrated and these observations confirm the above

findings, at higher KC numbers.

5.3 DRAG AND INERTIA FORCE COEFFICIENTS WITH SUPERHARMON-
ICS:

In order to demonstrate effect of superharmonic oscillations at different frequency
ratios, in Fig: 5.8 and Fig: 5.9 a series of graphs of drag and inertia force coef-
ficients against KC for frequency ratios ranging from 2 to 7 are illustrated. It is
clearly demonstrated that, for frequency ratios 2,3 and 4, the external superhar-
monic influence is strongest for I(C number range 1 to 10. However, for higher
frequency ratios ranging from 4 to 7 rapid changes in drag force coefficients are
significant in KC number ranges from 1 to 25. But, in Fig: 5.9 (f) the influence of
external excitation is virtually significant for entire I(C range 1 to 55. This again
can be observed in Fig: 5.6 (f) as well. However, this is not the case for drag force

coefficients.

5.4 CONCLUSIONS :

1. It was observed that the drag and inertia coefficients are functions of external

superharmonic oscillation amplitudes.



2. These changes can be attributed to the significant added mass effects, dominant

vortex excited lift forces, relative velocities and accelerations at lower K C numbers.
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Fig: 5.5 Drag coefficient variation with respect to
superharmonic oscillations for frequency
ratio fo/f0 = 2,3,4,5,6 and 7
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Fig: 5.6 Inertia coefficient variation with respect to
superharmonic oscillations for frequency
ratio fo/f0 = 2,3,4,5,6 and 7
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Fig: 5.7 Effect of frequency ratio on drag and
inertia coefficients
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CHAPTER 6

IN-LINE FORCE AND RESPONSE EXPERIMENTS
AND MODEL RESULTS

6.0 INTRODUCTION

In this chapter a time-stepping numerical model has been proposed to predict
in-line force and response in oscillatory flow using the relative velocity Morison
equation. The velocity and acceleration of the oscillating rig were obtained from
measured motor displacements by the Fast Fourier Transform technique. Important
parameters like mass, stiffness and structural damping of the system were measured

and incorporated at appropriate stages of the model.

6.1 RELATIVE VELOCITY AND RELATIVE ACCELERATION :

Equation of motion for the carriage is

X —asm oot (6-1)

a = is the amplitude of the oscillating rig

X = is the oscillating rig displacement and ® represents the angular frequency of
the oscillating rig and t is the time (See Fig: 6.1). Higher frequency components
were added to rig velocity and accelerations as described in subsequent paragraphs.

The basic force equation for the cylinder is

(Ms+ Ki)a+ CSV+ Ksx = I<dU - V) \(U- V) \+U{I<i + Ms) (6.2)

where

Ms = mass of the system + water mass inside cylinder

Ki = added mass of water for test cylinder
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Ki = pCan— L (6.3)

Ca = added mass coefficient
Cs = structural damping of the system

Ka = stiffness of the system under water

(6.4)

Cd = drag coefficient

L = length of the test cylinder

x = displacement of the cylinder relative to the carriage

V = velocity of the cylinder relative to the carriage

a = acceleration of the cylinder relative to the carriage

U = velocity of the rig

U = acceleration of the rig

The basic principle in this numerical model is the linear acceleration approach; the
acceleration of the flexible cylinder is assumed to be linearly varying over each time
step and on this basis the velocity and accelerations are estimated at the end of the
time step. In the beginning, just before the rig starts to oscillate, the initial condi-
tions such as displacement and velocity of the rig and cylinder are zero. From these
initial conditions the displacement of the flexible cylinder at the end of the first time
step is estimated by Newton-Raphson iteration. Once the cylinder displacement is
obtained, the velocity and acceleration of the cylinder can be derived from the above
assumption. In the next step, in order to obtain the cylinder displacement, veloc-
ity and acceleration, the corresponding previous values are used and this process
is continued. As this is a numerical procedure, it takes some iterations and cycles
for stabilisation. In order to compare in-line force and in-line responses of experi-
mental values, results after several cycles are considered. Appropriate velocity and
accelerations were added to the computed rig motion to simulate externally imposed
superharmonic oscillations. In Fig: 6.1 line diagrams for the test cylinder and model

are presented.
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6.2 LINEAR ACCELERATION APPROACH FOR VELOCITY AND ACCELER-
ATION :

If Vi, al etc., represent the velocity and acceleration at the beginning of the time

step, and V2, a2 those at the end, then

rSt
Vo= Vf+ /  adt (6.5)
r8t
Vo= VI + [/  (al+ at)dt (6.6)
Jo

1 St
V2= Wi+ [aif + -412 (6.7)

2 0
ve2= Vi+ (Li8 + \:.a82 (6.8)

Similarly the displacement of the test cylinder at the end of the first time step is,

rSt
X =X\+ vdt (6.9)
Jo
fst . 1,
2= x\+ [/ (Vi+ alt+ —at2)dt (6.10)
1 1 S
x2— c1+ (Vit + —ille2+ T<~3) (6.11)
2 0 o
X2 =x\ B V\&+ A (6.12)
The rate of change of acceleration is,
(«2-«i) (6.13)
a~ St
Vo= Vi+ alét+ —st(d2 —ai) (6.14)
V2= Vi+ -aiSt+ -a’St (6.15)
X2 —X\ & VSt = —(]8t -+ (2 — &) (6.16)
X2 — X\ 4- VSt " ~custr  ~ci28t (6.17)
3 6

From the above relations, acceleration of the cylinder at beginning of second time
step can be estimated in terms of cylinder displacements and the initial velocity and

accelerations of the cylinder.
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xi —xi — V\8& — \a-i8t2

«2 = . (6.18)
1*a
1 1 xi —x\ —V\&—\al&t2
Vo= VA a,St+ - % cd e e (6.19)
6
1..3 ) 1 ...
V2= I+ ~(\8t 4 —(x2—xj — ——ajii2) (6.20)

Again from the above relations, the velocity of the cylinder at the end of the time
step can be estimated in terms of cylinder displacements and initial velocity and

acceleration.

Vi=|-(x2- X!)- 2V, - IfliSt (6.21)
01 Z

These formulae are substituted into the equation of motion.
(M, + K))a2+ C,V2+ K.xi = KdfUi - V2) |(U2- V2) |+U2Ki+ M.) (6.22)

Which is then solved for x2 . This process can then be repeated after substituting

x2 for x\ etc.,

6.3 DRAG AND INERTIA FORCE COEFFICIENTS :

In the present mathematical model the drag and inertia force coefficients were

derived from the measurements using the Morison relative velocity formulation.

6.4 IN-LINE FORCE AND RESPONSE :

In Fig: 6.2 (a,b), for one test run, time series for in-line force and in-line responses
are shown for the model and experimental values at K C number 1.607 and frequency
ratio 7. These records are with superharmonic oscillations. Besides this, the Morison
reconstruction time series plot for in-line force is also shown in the same figure
(¢). In this case the in-line force includes the inertia of the test cylinder. Very
good agreement between the original force record and the Morison reconstruction

can be observed. In the case of model and experimental in-line force records, the
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inertia force due to the mass of the test cylinder was subtracted from experimental
force records and compared with corresponding model values. Where as in Morison
reconstruction force records inertia force due to test cylinder is included. In this
case, the predicted values are not in such good agreement with experimental results
for both forces and responses. This is because, at lower KC numbers, the inertia

force due to the mass of the test cylinder is dominant.

However, in Fig: 6.3 (a,b), for frequency ratio 6, KC number 35.12 and without
superharmonic oscillations, time series plots for force indicate fair agreement with
model predictions. But for the response plots, agreement is less satisfactory. The
Morison reconstruction for force records in Fig: 6.3 (c) is in good agreement with
measured force. In this case, at higher KC number 35.12, the inertia force due
to mass of the test cylinder is relatively less significant in the original in-line force
signal and this might be the reason for better agreement between force and model

records.

In another case in Fig: 6.4 (a,b), time series plots for frequency ratio 7, KC
number 16.06 and with superharmonic oscillations are shown. In this case model
predictions are smaller than experimental values. But the Morison reconstruction
for the force record is reasonably good. In this case again, the inertia force due
to mass of the test cylinder is significant. From the above observations, it can
be concluded that agreement between experiments and model results depend on the
frequency ratio (i.e. the ratio of the natural frequency of the cylinder to the external
oscillating frequency) and I(C number range indicating the effect of flow separation
and vortex excited lift force influence in in-line force. The unpredictable effects of
three dimensional flow probably also contribute to relatively poor predictions of the

model where vortex excited loading effects are predominant.

In Fig: 6.5 for all frequency ratios from 2 to 7 values of r.m.s. in-line force are
compared with model results. Model predictions in KC number ranges where vortex

excited lift forces are dominant are not in good agreement with experimental values

135



but at higher KC numbers, agreement is better. Similar observations can be found
for in-line responses in Fig: 6.6. One possible reason could be that the effect of
vortex excited loading might be affecting the in-line forces and responses. But at

higher KC numbers, these effects are less significant.

In another set of observations, experimental and model harmonics are compared
separately at the carriage frequency and at the test cylinder’s natural frequency.
The carriage frequency was set at between one half and one-seventh of the natural
frequency of the test cylinder. In Fig: 6.7 and Fig: 6.8 experimental harmonics at the
carriage frequency are compared with model harmonic values for both in-line force
and response. Model predictions are relatively good for in-line force and response at
higher KC numbers but at lower KC numbers, the model agreement is not good.
In Fig: 6.9 and Fig: 6.10 model and experimental harmonics are compared again
at the cylinder’s natural frequency. Agreement in this case is poor for all frequency

ratios.

In Fig: 6.11 to Fig: 6.16, a series of graphs for model and response are presented
for superharmonic oscillations. As described in Chapter 5, for every frequency ra-
tio, for a wide range of fixed KC numbers, superharmonic oscillations at the test
cylinder’s natural frequency were imposed at different amplitudes. This study was
mainly intended to investigate the effect of superharmonic external excitation on
the cylinder, and consequent changes in drag and inertia coefficients. However, to
test the validity of the present model, experimental results are compared at every
frequency ratio set for different conditions. In the case of in-line forces, the inertia
force due to the mass of the test cylinder was subtracted from experimental and
model values. Three different sets are compared for in-line force and responses. The
first one is the root mean square value of in-line force and in-line responses. Each
value was the average of several cycles. The second one refers to the component at
the carriage frequency. The third one is the harmonic value at the test cylinder’s
natural frequency. In other words, if the test cylinder was oscillated at frequency

ratio 7, the 7th harmonic is that at the test cylinder’s natural frequency. For both
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harmonic components, the final value was the average of several cycles. In every
case normalized values of in-line force and in-line response were compared. Forces
were normalized with ( | p Usms d ) where Urms is the root mean square value of
the oscillating rig velocity, d is the diameter of the test cylinder and p is the mass

density of water. Responses were normalized with the diameter of the test cylinder.

In Fig: 6.11 in-line r.m.s. results are compared with model values. In many
cases, where lift forces are predominant due to vortex excitation, model predictions
are poor. But at relatively higher KC numbers a reasonable agreement can be
observed. Similar observations can be seen in Fig: 6.12 for in-line response root
mean square values. This further demonstrates the effect of vortex loading on in-

line forces and response in certain ranges of KC numbers as discussed in Chapter 4

In Fig: 6.13 and Fig: 6.14 in-line loading and responses are compared with model
values at fundamental harmonics of the oscillating cylinder frequency or in other
words at the carriage rig frequency. Model and experimental values are in relatively
good agreement at odd frequency ratios i.e., 3, 5 and 7 but no reasonable agreement
can be seen at even frequency ratios and for in-line force, model predictions are

higher than experimental values.

In Fig: 6.15 and Fig: 6.16 in-line loading and responses are compared at the test
cylinder’s natural frequency as before. Reasonable agreement was observed only at
higher KC number values. A notable observation is that at all frequency ratios,

model predictions are lower than experimental values.

6.5 CONCLUSIONS:

1. Overall performance of the model indicates the limitations of the Morison
equation. Besides this, response predicted with least square Morison coefficients are

not in good agreement with measurements.
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2. The Vortex shedding process and vortex dynamics influence in-line force and

consequent response at lower KC numbers.

3. At certain harmonics model predictions are better than others, indicating the
importance of certain harmonics in relative velocity Morison formulation for flexibly
mounted cylinders. At odd frequency ratios, model and experimental values showed

better agreement than at even frequency ratios.
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(a)

(b)

Fig: 6.1 Test Cylinder, Simulator Carriage
and Model Line diagram
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(b)

(c)
Fig: 6.3 Model and Experimental values for
in-line force and in-line response
for frequency ratio 6 and KC = 35.12
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(b)

Fig: 6.4 Model and Experimental values for
in-line force and in-line response
for frequency ratio 7 and KC = 16.06
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CHAPTER 7

STEADY FLOW EXPERIMENTS

7.0 INTRODUCTION

In this chapter experimental investigations in steady flow at higher Reynolds numbers
are presented. In the critical Reynolds number range, there have been few investigations
on fluid loading on flexibly mounted cylinders, on the resultant vortex shedding process
and the response. In addition, hydrodynamic damping on oscillating cylinders is a
process which is poorly covered in the literature due to experimental problems. In
section 7.1.0 some of the general principles are identified. In section 7.2.0 the major
experimental facility in which the test cylinder was moved on a servo controlled carriage
is described. In section 7.3.0 the data analysis for stream-wise response of the test
cylinder at various reduced velocity (Vr) ranges is discussed. Finally section 7.4.0

presents some conclusions.

7.1 FLUID LOADING ON STRUCTURES IN STEADY FLOW :

For steady flow, experimental investigations can be performed either on fixed cylin-
drical models in flowing fluid, or by towing cylindrical members in still water by means
of a carriage. In either case, if the physical model is flexibly mounted, the fluid loading
and consequent response are more complex than on fixed models. Apart from structural
properties like stiffness, mass and damping, other parameters like the vortex shedding
frequency also play an important role in fluid loading and consequent response. In
addition to this, the added mass of oscillating members is not always same from fixed
members. Very few investigations are available in the literature on this aspect, which

has considerable bearing on the prediction of response for flexible members.

At critical Reynolds numbers, the drag loading on the test cylinder is very sensitive

even to minor changes in Reynolds number. This means minor changes in steady
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velocity can cause fluctuating drag loading possibly causing in-line oscillations Martin
(1981), Naudascher (1987). In order to investigate this regime experimentally external
in-line oscillations were superimposed on the test cylinder in steady flow at a certain

frequency, and its response was measured.

7.2 EXPERIMENTS DESCRIPTION :

A new experimental facility has been designed to tow the horizontal cylinder in still
water to model steady flow conditions. This system consists of a carriage with four
hard rubber coated steel wheels. A pair of rails was provided for the carriage to enable
it to run smoothly as shown in Fig: 7.1 (a) . These rails and the carriage are at the top
of the wave flume of length 55 m, 1.7 m wide and depth 1.8 m. At one end of the flume
there is a beach and at the other end a servo motor which drives the carriage through
a gear box. The gear box is connected to a shaft which has pulleys on either side of the
flume, in which two steel cables run. The carriage is connected to the cables, and its
velocity can be controlled through a feedback system from the motor. The maximum

steady velocity which can be reached through this mechanism is 3 m/s.

A pair of “ I” sections were mounted on the carriage, to which the supports of the test
cylinder arms were fixed. This arrangement enables the test cylinder to oscillate only
in-line in the direction of carriage movement (according to the design). A description
of the test cylinder, end plates, strain gauge arrangements is given in 3.4.0. The same

set up is used for steady flow tests.

7.3.0 CALIBRATIONS AND FREE VIBRATION TESTS :

Before experimental investigations, calibrations were conducted for strain gauges
and for an accelerometer on the carriage. A new accelerometer was developed for the

purpose consisting of a pressure transducer and a horizontal column of water Chaplin

(1994b).
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7.3.1 CALIBRATIONS :

Before calibrations, the flume was emptied and in-line calibrations of the top strain
gauges, the bottom strain gauges and the stiffness of the system were performed (see
Fig: 7.1). All calibrations were done with the CED1401 data acquisition system and
with COLLECT Chaplin (1994a) software as described in 3.6.0. In order to measure
the stiffness of the system, digital electronic dial gauges were installed at both bottom
ends of the test cylinder as shown in Fig: 7.1 (b). While calibrating, at every load
increment, the displacement of the cylinder was measured at both dial gauges and the

average displacement was used.

7.3.2 FREE VIBRATIONS TESTS :

Free vibration tests were conducted to obtain the natural frequency and damping of
the system. The carriage was clamped to the rails and the test cylinder was oscillated
freely in air. From bottom strain gauge free vibration records the natural frequency
and damping were calculated. The natural frequency was compared with the calculated
value of 2.48 Hz. and the difference was only 2 percent. The logarithmic decrement of
damping was measured from bottom strain gauges as 0.022. Once the calibrations and
free vibration tests were completed the flume was filled with water. Water depth was
maintained constant throughout the experimental investigations as 1.425 m. In still
water, the cylinder was oscillated and released for free vibrations. Again from bottom
strain gauge free vibration records, natural frequency and damping were calculated.
The natural frequency of the cylinder in still water was compared with the calculated
value of 1.55 Hz. and again the difference is only 2 percent. Besides this, damping was

measured as 0.047. These results are shown in the Table 7.1 below.
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Cylinder Damping & Natural Frequency % Diff.
measured calculated
a. Empty cyl.
in air 0.022 2.53 Hz. 2.48 Hz. 2.00
¢. Cylinder in
flume full 0.047 1.52 Hz. 1.55 Hz. 2.00

of water

Table 7.1 Free vibration tests (steady flow)

7.4.0 EXPERIMENTS AND DATA ANALYSIS :

In the beginning a few experiments were conducted by towing the test cylinder at
a steady speed over a wide range of reduced velocities from 1.5 to 4.0. No in-line
oscillations were observed. The mass damping parameter K, = 2 m 8/ p d2where m
is mass of the test cylinder including inside water mass and added mass, 81is damping in
still water, p is mass density of water, d is the diameter of the test cylinder, was 0.264.
This is in a range in which previous reported results, Naudascher (1987), do show
oscillations in the Reynolds number range 7-25 x 103. However in the present case,
the Reynolds number range was from 6.8 to 14 x 104. No oscillations were observed

in the present case. The difference in Reynolds numbers may explain the fact.

The main experimental tests were conducted in three different stages. The basic
purpose of the experimental investigation was to investigate the effect of external in-
line oscillations on drag loading, response and hydrodynamic damping. External super
harmonic oscillations at the test cylinder natural frequency and at factors of its natural
frequency were imposed through the external servo motor control mechanism, while
the carriage was moving with a steady velocity. Basically three sets of superharmonic
excitations were imposed. In the first instance, external in-line oscillations at the
natural frequency of the test cylinder were imposed at different amplitudes. Later,
one set of superharmonics at 0.9 times the natural frequency of the test cylinder and

another at 1.1 times the natural frequency of the test cylinder were imposed at different
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amplitudes while the test cylinder was travelling at reduced velocities W of 2.0, 2.5,
3.0, 3.5, 4.0. The reduced velocity WV in this case is defined as the ratio of velocity
V to the product of natural frequency of the test cylinder / and its diameter d (VI'=
V/(fd)). This means that at every reduced velocity, there are three sets of externally
excited oscillations at three different frequencies. At every frequency, superharmonic

oscillations were imposed at seven different amplitudes of oscillations.

Every test was started when the water in the flume was almost completely settled
and in every test the carriage was towed in one direction only. This reduces interference

effects caused by large wake turbulence from previous runs.

Fortran coding was written to process each data file. The number of points for
each cycle was identified from spectra of actual oscillations of the test cylinder. From
FFT analysis, the in-line response from the top strain gauges and the in-line external
excitation amplitude from the accelerometer are calculated. For presentation in-line
response was normalized with the diameter of the test cylinder. The final value is the

average of several cycles.

7.4.1 IN-LINE EXTERNAL EXCITATION AT STEADY FLOW :

In Fig: 7.2 three sets of graphs are shown for various external excitations at different
reduced velocities ranging from 2.0 to 4.0. In Fig: 7.2 (a) external superharmonic oscil-
lations were imposed at 0.9 times the natural frequency of the test cylinder (1.52Hz.).
This figure indicates that the in-line response for a given external oscillation is larger
at lower reduced velocities. In Fig: 7.2 (b), (c) similar plots are shown for exter-
nal superharmonic oscillations of 1.0 and 1.1 times the natural frequency of the test

cylinder.

In Fig: 7.3 several plots for different reduced velocities are shown. In all cases except
Vi = 2 the in-line response is highest when the external in-line oscillations are imposed

at the natural frequency of the test cylinder; oscillations imposed 0.9 or 1.1 times
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natural frequency result in smaller responses for the same external in-line oscillation

amplitude. This demonstrates the importance of the external excitation frequency on

the hydrodynamic damping and also identifies how relatively small changes in external

loading can significantly influence response.

7.42 HYDRODYNAMIC DAMPING :

Several plots for in-line response and external excitation are presented for various

external excitations. From these relations, hydrodynamic damping was estimated from

following calculations.

Considering the oscillating test cylinder as single degree of freedom system, the

following equation can represent the system.

iny + ¢y + ky = ka cos (11)

The response can be represented as

y = alcos (0t — (>

and on this basis, the solution can be inferred as follows

ka 1

kR V(@ - + (2«ft)2
then

where,

w0 =

m = mass of the test cylinder including added mass

¢ = damping
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k — stiffness of the system

ar = in-line response of the the test cylinder
a = external in-line excitation

w0 = natural frequency of the test cylinder

u = external excitation in-line frequency

From the above equations, once we know the external excitation and corresponding
response, it is possible to estimate hydrodynamic damping in the form of the damping
coefficient £ Fig: 7.4 shows typical relationships between external excitation and
response. From the slope of each line, the damping coefficient £ was calculated from
above expressions for every reduced velocity. In Fig: 7.5 the relation between damping
coefficient and reduced velocity is shown for the three external excitation frequencies.
These results clearly demonstrate that the hydrodynamic damping is a function of the

external excitation frequency.

7.4.3 DRAG COEFFICIENT :

From the above results for hydrodynamic damping, the fluctuating drag coefficient

can be derived from the following expressions:

F= Cj*pd(V+  cos (uit)fL (7.6)

assuming V < V

where V cos(cot) is the cylinder velocity

(7.7)

from this expression

fluctuating part of force is

F=cd-pd2V(V cos (c0ot))L (7.8)
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F = Cd-p(l2VL x [cylinder velocity] (7.9)

from the following relations above equation can be rewritten as

- t
¢d (VIpd2L /Anm) (7.10)

Drag coefficients were calculated for various reduced velocities and at different external
excitation frequencies and are shown in Fig 7.6. In Fig: 7.7 drag coefficients are com-
pared with previous investigations of Moe and Verley (1978). In order to compare test
results, at each point the reduced amplitude (a/d) (where a is amplitude and d is the
diameter of the cylinder) is printed. The present results at various external excitations
showed much higher values than Moe and Verley (1978) at same reduced velocities.
In order to compare qualitatively, present and Moe and Verley (1978) results, a non-
dimensional parameter (7 * V/d) where T is the time period, V is the mean velocity
and d is the diameter of the test cylinder was calculated for each case. This parameter
ranges from 1.82 to 4.45 for present results compared with 2.84 to 47.25 for Moe and
Verley (1978) results. This large variation in Moe and Verley (1978) results might be
the reason for differences between present and Moe and Verley (1978) results. Other
possible reasons can be attributed to the effect of in-line external excitations imposed
in the present case at multiples of the natural frequency of the test cylinder. Another
important aspect observed in the present results is the calculated drag coefficient is
dependent on the reduced velocity as well as external excitation frequency. The change
in drag coefficients might be due to wake formation and its changes due to external

frequency of oscillations.

7.5 CONCLUSIONS

1. In steady flow experiments, external excitation has considerable influence on the
in-line response of the test cylinder. In-line oscillations not only depend on external
in-line oscillations amplitudes but also on excitation frequencies. Even small changes

with respect to the cylinder’s natural frequency (i.e. even 10 percent) make significant
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differences in the in-line response.

2. Calculated drag coefficients are higher than Moe and Verley (1978) values in the

present case.

3. The above steady flow tests were repeated over a similar reduced velocity range
with end plates increased in diameter from 0.42 m (2.5 x diameter) to 0.59 m (3.5 x
diameter). No in-line oscillations were observed. The difference in Reynolds number

range from previous studies may still be the reason for no oscillations at steady speed.
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Fig: 7.1 (a) Carriage, test cylinder and related
instrumentation
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Fig: 7.1 (b) Carriage, test cylinder and related
instrumentation
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Fig: 7.4 In-line response and
external excitation
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Fig: 7.5 Hydrodynamic damping at various
reduced velocities

Reduced Velocity (Vr)

Fig: 7.6 Drag coefficient at various
reduced velocities
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CHAPTER 8

CONCLUSIONS

From the experimental investigations and modelling in oscillatory and steady flow

experiments described above, conclusions are summarized as follows.

1. There is a scarcity of experimental data at large scale particularly on flexible
members. But problems associated with flexible offshore members such as in marine
risers, Remotely Operated Vehicle umbilicals and Tension Leg Platform tethers are
mostly at higher Reynolds number ranges and further studies of loading and response

in this regime are required.

2. Several experimental investigations were reported in the literature on external
transverse excitations on test member. But very limited results are available on ex-
ternally imposed in-line oscillations at higher Reynolds numbers. These studies have
significant implications for the real field environment in the context of loading and

response of compliant members due to tides and currents.

3. Even though experimental investigations in wind tunnels have been reported
in the literature studying changes in the flow at critical Reynolds numbers, there is
much to be studied for compliant members in steady flow in water since drag loading
and hydrodynamic damping are interrelated. Vortex excited lift and its relation with
various parameters like KC number and Reynolds number on rigid members are very
much different from those on flexibly supported members. In some ranges of KC
numbers, vortex excited lift is more dominant than in-line forces. If the member is

compliant, the magnitude of lift at a given KC number is likely to be different.

4. Earlier results in this investigation were compared with Sarpkaya’s (1986) test
results on fixed cylinders of U-tube data for similar frequency parameter. Even though

the present test cylinder was compliant, the measurements in reasonable agreement
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with above test data at higher KC numbers. This can be attributed to the fact that
at non integer frequency ratios, the test cylinder oscillations are not very significant.
It further confirms that, in KC number range 7-20, due to vortex excited lift forces,

the present test results are different from those of fixed cylinder data.

5. The frequency ratio has a significant influence on the in-line fluid loading and
consequent response. Present experimental results indicated that for similar KC num-
bers, a higher frequency ratio means a smaller drag coefficient and a higher inertia
coefficient. In the case of the total force coefficient, an increase in force coefficients
was observed for an increase in frequency ratio. Cylinder responses were in accordance

with changes in the drag coefficient.

6. Good Morison fit was observed for odd frequency ratios below KC number 25
but it is not the case for even frequency ratios. At KC numbers more than 25 good fit

was observed for all frequency ratios.

7. From a series of findings for different frequency ratios, it was concluded that the
drag coefficient has no influence on Morison fit at KC numbers less than 5 indicating
that, in this range in-line loading is mainly due to inertia force acting on the test

cylinder.

8. For this compliant cylinder test data, maximum spectral densities were observed
at multiples of the external oscillating frequency when the oscillating frequency was
in integer multiples of the test cylinder natural frequency. These spectral peaks are
very significant for in-line force and responses. This confirms the importance of the
harmonic content when the environmental loading frequency in field condition is an

integer fraction of the natural frequency of the test cylinder.

9. It was observed that external high frequency oscillations at the test cylinder’s
natural frequency have a significant effect on drag and inertia force coefficients while

the cylinder is undergoing oscillatory flow. Further investigations revealed that these
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force coefficients are functions of external high frequency oscillation amplitudes. At
lower KC number range, the influence of external superharmonic oscillations is more
significant. Possible reasons were identified as the higher relative velocities, significant

difference of added mass for compliant members and dominant vortex excited lift forces.

10. A numerical model depending on the linear acceleration approach was developed
for the present experimental investigations. As the relative velocity Morison coefficients
were used in this model, it indicated the limitations of the relative velocity Morison
equation at lower KC number range. However, at higher KC numbers, the model
predictions are reasonably good. Further, it was observed that at odd frequency ratios,
model and experimental values showed better agreement than at even frequency ratios.

This shows the importance of the frequency ratio.

11. A new set of experiments in steady flow were conducted at higher Reynolds
number range (7 to 14 x 104 ). External in-line oscillations at factors of test cylinder’s
natural frequency have significant influence on in-line force and response in steady flow.
Even small changes (i.e. even 10 percent) can cause considerable influence on in-line

force and response.

12. From a set of experimental findings it was concluded that hydrodynamic damping
and drag coefficient are functions of reduced velocity (W = V/fd, where V = steady
flow velocity, / = natural frequency of the test cylinder, d = diameter of the test

cylinder) and external excitation frequency.
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