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ABSTRACT

A detailed investigation has been carried out to study loading and response of 

a compliant cylindrical member in oscillatory flow. While many previous stud-

ies have been confined to fixed cylindrical members and limited to a sub-critical 

Reynolds number range, in the present investigation studies are directed towards 

higher Reynolds numbers, up to 3 x 105 and more. One of the important factors 

for compliant members in oscillatory flow, the frequency ratio (i.e. the ratio of nat-

ural frequency of the test cylinder to the frequency of oscillation of the member) 

has been investigated especially to identify its effect on Morison drag and inertia 

force coefficients. This formed a basis for investigating the validity of the Mori-

son equation for a compliant cylinder. At at odd integer frequency ratios, Morison 

force predictions based on measured cylinder displacements showed good correlation 

with experimental results. They also showed limitations of Morison relative velocity 

equation, particularly at Keulegan Carpenter numbers less than 25, where vortex 

excited lift forces are dominant.

To predict both in-line forces and responses, a numerical model based on the linear 

acceleration approach has been developed and used over all experimental conditions. 

Even though some limitations of this model were observed at certain fluid loading 

conditions, at higher KC  numbers and at odd frequency ratios, the model in-line 

force and response predictions were relatively good.

Another set of experiments was designed to study the effect of in-line high fre-

quency external oscillations superimposed on sinusoidal motion. A series of tests 

with a range of superharmonic amplitudes was conducted for every frequency ratio 

and at certain fixed KC  numbers. Interestingly, the test results revealed that there 

is a dependence of drag and inertia Morison coefficients on in-line superharmonic 

oscillations. At lower KC  numbers it was observed that the superharmonic excita-

tion has a profound effect on the coefficients, presumably through changes in the 

vortex dynamics.
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Finally a set of steady flow experiments was conducted in a towing tank. Similar 

in-line external oscillations were imposed at frequencies close to the test cylinder’s 

natural frequency. Hydrodynamic damping and drag coefficients were calculated 

and compared with previous investigations.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Fluid loading and consequent response are important problems that continue to 

attract attention in the offshore industry. Periodic fluid loading due to ocean waves 

on many components like rigid cylindrical platform components, pontoons and jacket 

members can be predicted reasonably well provided one has access to well controlled 

experimental data. The forces that act on a fixed member in a flow are studied in 

the literature as an in-line force which acts in the ambient flow direction, and a lift 

force which is transverse to the direction of the flow. The magnitudes of these forces 

depend on many factors like the cross section of the member, the incoming flow 

velocity and the acceleration. However, if the member is flexibly mounted, other 

parameters like the mass, damping and stiffness of the system play vital roles in fluid 

loading and response. Marine systems such as offshore drilling risers, conductors, 

tension leg platform tethers, deep-water jackets and Remotely Operated Vehicle 

umbilicals are some of the members that fall into this category.

New techniques in structural design methods are leading to the development of 

more slender members. Material saving and economic considerations generate the 

need for slender designs. But, for certain types of environmental loading (i.e. dy-

namic loading like wave forces, vortex shedding forces) compliant members are prone 

to oscillations at certain frequencies, leading sometimes even to structural damage. 

If the member is lightly damped and its natural frequency is in the range for ex-

ternal environmental loading, there is a possibility of excessive oscillations. Apart 

from this, there is another process called “lockon” , associated with vortex shedding, 

in which the cylinder vibrations control the vortex shedding frequency. This some-

times plays a crucial role. When the vortex shedding frequency is near the natural
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frequency of the oscillating member, it can lead to the “lockon” phenomenon and 

increasing oscillation amplitude. Excessive oscillations also have considerable effect 

on drag coefficients and consequent loading on marine pipelines and cables.

1.2 DRAG AND INERTIA COEFFICIENTS AND THEIR IMPORTANCE IN 

FLUID LOADING ESTIMATION

At present it is common practice to estimate hydrodynamic loading by Morison’s 

(1950) formula, though it has many limitations. For example when the member is 

flexible, it is necessary to rely on the relative velocity formulation though in some 

conditions this is not likely to be very accurate. Another consideration for compliant 

members in oscillatory flow is that vortex shedding plays an important role in the 

member’s response. There is a deficiency of large scale experimental studies in the 

literature, probably due to experimental difficulties at higher Reynolds numbers 

greater than 105. Some studies and reviews by Sarpkaya (1976), Bearman et al., 

(1985), Stansby and Isaacson (1987), Sarpkaya (1993) at higher Reynolds number 

ranges indicate that the fluid loading behaviour could be different at large scale 

and in field investigations from that observed at small scale. Further, for compliant 

members differences are likely to be compounded.

1.3 VORTEX SHEDDING AND LIFT FORCES

One of the processes which needs much attention for compliant members is the 

vortex shedding mechanism and the associated lift forces. Even though some exper-

imental and numerical studies are available on the vortex shedding process, knowl-

edge of its complex mechanisms and the interrelation between frequencies are very 

much limited to small scale laboratory investigations. The vortex excited lift forces 

in some conditions are much higher than the in-line fluid loading which attracts much 

attention during design process of the members. Periodic loading and consequent 

responses lead to fatigue damage and are some times even responsible for severe 

failures. Structural parameters like member’s geometry, mass, damping and stiff-
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ness have significant influence on response and hence vortex dynamics and related 

loading. In the case of Tension Leg Platform members like tethers and conduc-

tor tubes, during the design process it is important to consider vortex loading and 

avoid possible “lockon” condition. Another mechanism for high frequency excitation 

is that referred to as “ springing ” or “ ringing ” . It is not clear how other dynamic 

parameters like hydrodynamic damping in the presence of waves (a measure which 

indicates the dissipation of energy due to viscous effects while the member oscillates) 

influence the response of the member. In theory there is a direct relationship be-

tween hydrodynamic damping and drag coefficient, which may be used in response 

prediction. The relative velocity between the oscillating member and the fluid flow, 

related drag loading have significant influence on loading and consequent response.

1.4 PRESENT INVESTIGATIONS :

A detailed investigation has been carried out to study loading and response on a 

compliant member in steady and unsteady flow. One of the important factors for 

flexibly supported members, the frequency ratio (i.e. the ratio of natural frequency 

of the test cylinder to the frequency of the external oscillations) was extensively 

investigated over a wide range. A series of experiments was conducted to cover an 

extensive range of K C  numbers (K C  =  UmT/d, where Um =  is the maximum veloc-

ity of the oscillating cylinder, T =  time period of oscillations, d =  is the diameter of 

the test cylinder). One of the important features in the present investigation is that 

test results were obtained at Reynolds numbers up to 3 x 105 (Re =  Um d/v, where 

v is the kinematic viscosity of the fluid i.e. water). With the help of the Morison 

relative velocity formulation, drag and inertia force coefficients were derived for a 

wide range of frequency ratios.

A set of investigations was conducted with superimposed high frequency in-line 

excitations in oscillatory flow. Some interesting results were observed for drag and 

inertia force coefficients and their dependence on external in-line oscillations revealed 

that, for compliant members, Morison coefficients and hydrodynamic damping have

3



a significant influence on response prediction. Test results highlight the importance 

of using Morison coefficients obtained from relative velocity formulation rather than 

those obtained from fixed test cylinder data.

1.5 MODELLING

The linear acceleration approach has been used to model in-line force and response 

with the Morison equation. At higher KC  numbers and at odd frequency ratios, 

the model predictions proved reasonably good.

1.6 FLUID LOADING ON STRUCTURES IN STEADY FLOW

Finally a set of steady flow experiments were conducted at higher Reynolds num-

bers. To investigate the significance of external in-line excitations on hydrodynamic 

damping experiments were conducted with high frequency oscillations at fractions 

of the natural frequency of the test cylinder.

Previous investigations are reviewed in Chapter 2 . In Chapter 3, the experimental 

apparatus, experimental facilities and instrumentation are explained. Oscillatory 

flow experiments and data analysis are presented in Chapter 4.

Chapter 5 deals with new experiments with external high frequency oscillations. 

The dependence of Morison coefficients on external high frequency oscillations was 

investigated.

A numerical model to predict in-line loading and response is presented in Chapter 

6. It is based on the linear acceleration approach and experimental and model results 

are compared for a wide range of experimental conditions.

Chapter 7 deals with a set of experiments in steady flow at higher Reynolds 

numbers. Drag coefficients and hydrodynamic damping were investigated.
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Finally in Chapter 8, conclusions from above investigations were identified and

presented.



CHAPTER 2

LITERATURE REVIEW

2.0 INTRODUCTION

In this brief review an attempt has been made to present previous work on fluid 

loading and response on cylindrical members. In the first section a description about 

fluid loading on structural elements is presented in general. In later sections studies 

related to loading and response in steady flow, oscillatory flow and in wave loading 

are discussed. Each section is subdivided into various experimental studies related to 

loading on rigid, flexible members, and mathematical modelling. In the last section, 

experimental investigations on hydrodynamic damping, field based investigations 

and vortex suppressions methods are discussed. Finally, some conclusions from 

previous investigations are presented.

2.1 FLUID LOADING ON STRUCTURES :

When fluid flows past a rigid cylindrical member, forces may act on it in both 

in-line and transverse directions. These two force components are characterised 

and investigated in the literature as an in-line force which acts in the fluid flow 

direction, and a lift force which is transverse to the direction of the ambient flow. 

Their magnitudes depend on the incoming flow velocity density, viscosity and the 

member shape. As many offshore structural members which are exposed to contin-

uous wave and current loading have circular cross sections much of the research has 

been directed towards loading on circular cylindrical members. Ever since Mori- 

son, O’Brien, Johnson and Schaaff (1950) first presented an expression for in-line 

loading on cylindrical piles, experimental investigations and related data have accu-

mulated at a great rate. Their theory for drag and inertia coefficients was basically 

designed for wave loading on piles. It was also shown that, Cd and Cm values de-

pended on some parameters like D/H (where D is diameter of the pile and H is
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the wave height). However, Wiegel (1964) found very large scatter in values of drag 

and inertia coefficients from different investigations and experiments, and continu-

ing uncertainty has promoted major concern leading to many experimental studies. 

In addition to this, if the structure is flexible, the problems associated with pre-

dicting both in-line loading and lift force estimates are compounded in many ways. 

The mass, damping and stiffness of the structure individually affect significantly the 

loading and consequent response. Notable examples of this type of slender ocean 

structure are offshore drilling risers, conductors, deep-water jackets and Remotely 

Operated Vehicle umbilicals. The relative velocity between a member and the in-

coming flow and vortex excited transverse loading pose a variety of problems related 

to the frequency of the flow and the structure’s fundamental frequency. If at any 

stage, the structure’s fundamental frequency is near an integer multiple of the ex-

ternal loading frequency, it may lead to excessive oscillations and consequent fatigue 

and some times failure.

Fluctuating lift forces are due to the formation of vortices and their transporta-

tion downstream. Much research and many investigations have been devoted to 

understanding vortex excited loading on rigid structural members. Comprehensive 

reviews were presented by King (1974, 1977), Sarpkaya (1979b), Griffin (1981, 1985a, 

1985b), Stansby and Isaacson (1987), Sarpkaya (1989), Wootton (1991). But very 

limited experimental investigations are available on slender members to provide an 

understanding of vortex excited loading and resultant response. Structural members 

tend to oscillate transverse to the direction of flow at their fundamental frequency 

and this may some times lead to the lock-on phenomenon, where the vortex shedding 

frequency is equal to the oscillating member’s fundamental frequency. Even though 

studies on the mechanism of vortex excitation are widely reported in the literature, 

still this process and its relation with structural parameters like mass and damping 

and their effects on response have not been studied at large scale. This is necessary 

in order to understand the process under conditions close to the field environment.
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Vortex excited in-line oscillations of slender members have been investigated in 

the laboratory at small scale and this has improved the understanding of some of 

these mechanisms. However, there is much more to be investigated to understand 

the effect of streamwise oscillations on drag and inertia loading on slender or flexibly 

mounted members. This is particularly true at high Reynolds numbers, appropriate 

for the real ocean environment Sarpkaya (1993).

2.2.0 STEADY FLOW :

Piled structures often experience tidal flows that are nearly steady. If the members 

are flexible, these flows tend to cause oscillations. Under controlled conditions, 

steady flows can be simulated in the laboratory either with a towing carriage or in 

a channel with flowing liquid. Most commonly, in order to achieve higher Reynolds 

numbers, some experiments in steady flow conditions in literature were reported in 

wind tunnel tests. Higher velocities and lower mass density enables tests to achieve 

higher Reynolds number which are near to real field environment.

In the following subsections, some studies related to experimental and mathe-

matical models are presented. Section, 2.2.1, 2.2.2 and 2.2.3 deal respectively with 

steady flow investigations on rigid members, flexibly mounted members and mathe-

matical modelling. Results of some studies are compiled and presented in Table 2.1.

2.2.1 STEADY FLOW INVESTIGATIONS ON RIGID MEMBERS:

Rigid members in steady flow experience two types of fluid loading. One is the 

drag force in the direction of the fluid flow and the other is vortex excited fluid 

load perpendicular to the direction of the fluid flow. This mainly depends on vortex 

formation, transport and vortex shedding frequency. In some conditions, the lift 

force is as large as the in-line drag loading and needs to be incorporated in designs.
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Achenbach and Heinecke (1981) in wind tunnel studies, investigated vortex shed-

ding effects on smooth and rough cylinders. It was shown that an increase in surface 

roughness has a significant effect on the drag coefficient. In the critical Reynolds 

number range this was attributed to changes in boundary layer separation points. 

Also, changes in Cd with critical, super critical and trans critical Reynolds num-

ber ranges were observed. In addition to this, changes in Strouhal number were 

investigated for different blockage ratios.

Fleischmann and Sallet (1981) presented a review of vortex excited drag and 

lift forces on cylindrical members. A comprehensive set of data was compiled and 

discussed. The reason for scattering of data was attributed to physically different 

modes of flow observed by different authors in the Reynolds number range 40 to 

150.

In another wind tunnel study, Schewe (1983) investigated drag and lift force fluc-

tuations on a cylinder of 60 mm. diameter. Changes in drag coefficient at critical 

Reynolds number range, Strouhal number variations and vortex excited lift forces 

were investigated. Boundary layer separation, its changes with Reynolds number 

and consequent lift force fluctuations were studied. Other factors like shear flows 

were investigated by Zedan et al., (1988).

2.2.2 STEADY FLOW INVESTIGATIONS ON FLEXIBLE MEMBERS:

If a structural member is flexible and exposed to steady flow, flow induced forces 

cause oscillations. The amplitude and direction of oscillations of the structural 

member depends on the flow velocity, natural frequency of the member, damping, 

stiffness and other parameters. In some conditions, members tend to oscillate in 

the in-line direction either due to simultaneous or alternate vortex shedding. But 

if the member is free to respond in the transverse direction, transverse oscillations 

due to lift forces are much more dominant. It also depends on the frequency ratio 

(fn /  fs where fn =  natural frequency of the member and fs =  vortex shedding
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frequency). Further, if the vortex shedding frequency is close to a natural frequency 

of the oscillating member, it can lead to the “lockin’’ condition in which vortex 

shedding frequency is controlled by the cylinder vibrations.

Scruton (1963) in one of the early experimental investigations identified three 

types of common flow induced oscillations. The first one is vortex excited transverse 

oscillations. The second type of oscillations is called galloping oscillations, familiar 

for non-circular cross sections. These sections experience a fluid force that changes 

with orientation to the flow. As the structure vibrates, its orientation relative to 

the flow changes and this may cause unstable and very large -amplitude vibrations 

Blevins (1990). The third type of oscillations is called ovalling. Tall stacks are 

susceptible for ovalling oscillations,in which the largest amplitudes generally appears 

at the top.

In experimental studies Wootton (1968) investigated vortex shedding lift forces on 

model stacks at sub critical as well as at super critical flows in wind tunnel tests. It 

was noted that the Reynolds number had a significant effect on response, and large 

peak amplitudes of oscillation, observed at subcritical Reynolds numbers decreased 

as the critical regime was approached. At small amplitudes, it was observed that 

the aerodynamic forces acting on the stack were unaffected by the motion. But, 

when the model and shedding frequencies coincided, large amplitudes were observed 

within a limited speed range.

Scruton (1963) introduced the mass-damping parameter (2M  6 /  p D2) (where 

M  =  mass of the cylinder per unit length, p =  fluid density , D =  diameter of the 

cylinder). Further studies on the effect of mass damping parameter were made by 

Nakamura et al., (1971)

Oeyei a/., (1971) investigated another vortex excited phenomenon called double-

amplitude response in which, under given conditions near resonance, a circular cylin-

der may oscillate at one of two amplitudes. This is generally observed only for light
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mechanical damping. Experimental studies concentrated on establishing the effect 

of different levels of nonlinearity in the restoring spring of an oscillating cylinder 

and comparing the results with established theories. It was concluded that non-

linear stiffness was not the proper explanation for observations of double amplitude 

response.

An experimental investigation on both stationary and oscillating cylinder of 0.15 

m diameter at sub critical Reynolds numbers of 4.0 x 104 to 9.0 x 104 was reported 

by Takashi Yano and Shigeru Takahara (1971) and discussed important observations 

for lift forces. Unsteady aerodynamic lift force generated by the Karman vortex 

street was presented for both stationary and externally excited cylinders. The lift 

force for stationary cylinders was found found to vary with surface roughness, tur-

bulence wall interference, aspect ratio, and end effects. The absolute value of lift 

force increased as the amplitude of cylinder oscillation increased and the mechanical 

Strouhal number approaches 0.2. Similar studies were reported by Yamaguchi et al., 

(1971). The effect of some important parameters like damping, mass, spring con-

stant were studied. Among interesting observations, it was stated that the damping 

had a strong effect on the oscillation frequency of the cylinders. It was also found 

that the lift coefficient is hardly influenced by Reynolds number for the vibrating 

cylinder in the sub-critical range.

Funakawa and Umakoshi (1971) presented two experimental investigations on 

flexible externally excited cylinders in a wind tunnel. Their results showed the 

dependency of amplitude on damping over a wide range of reduced velocities.

King (1974) presented experimental investigations for rigid and flexible cylinders 

and showed comparisons with some full scale in-line oscillations.

Griffin and Ramberg (1976) studied in-line oscillations of a vibrating 4mm di-

ameter cylinder in steady flow in wind tunnel tests. The cylinder was fixed on a 

yoke assembly enabling it to oscillate in the in-line direction. Experiments were
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conducted at a Reynold number of 190 . Cylinder in-line oscillations were imposed 

near to twice the Strouhal frequency (i.e. vortex shedding frequency for a stationary 

cylinder). At each frequency, the amplitude of oscillation was increased until the 

vortex shedding frequency become synchronized. It was reported that the “lockin’’ 

amplitude threshold was slightly lower than in the corresponding cross-flow case, 

and that at a particular flow speed it extended to lower cylinder oscillation frequen-

cies. It was observed that, the vortex shedding locks on to the vibration frequency 

over a range of frequencies from 120 percent to 250 percent of the Strouhal fre-

quency. Synchronized in-line oscillations occurred at reduced velocities 2.1 and 4.4 

(Vr =  V/(fD) where V =  incident flow speed , /  =  forced vibration frequency, D 

=  diameter of cylinder). From flow visualization, the authors observed two distinct 

forms of vortex shedding patterns and vortex fusion.

Stansby (1976) presented experimental results on a forced oscillating cylinder in 

transverse direction in uniform and shear flows. The main emphasis was on the 

region where the vortex shedding frequency coincided with the cylinder’s natural 

frequency. It was reported that, in uniform flow, primary and tertiary locking on was 

observed and, depending on the reduced amplitude and Reynolds number, secondary 

locking on occurred only over a very small range of cylinder frequencies. The effect 

of forced transverse oscillation was also studied by Sarpkaya (1977).

In a comprehensive review on flow induced vibrations on bluff bodies, Parkin-

son (1977) summarized a large volume of data which had been accumulated in the 

Reynolds number range 1.0 x 105 to 1.0 x 106 for stationary and galloping cylin-

ders of rectangular sections. From this data he established relations between d/h 

(depth/width), Strouhal number, drag coefficient and dimensionless transverse gal-

loping amplitudes. Further, from this data set he discussed the relation between 

sizes of afterbody, flow conditions, resultant changes in shear layers Strouhal num-

ber and drag coefficient. Along with this discussion, two instability regions based 

on relative velocity were mentioned and related arguments by different investigators 

were presented. This clearly indicates that for bluff sections after body length plays
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an important role.

Moe and Verley (1978) investigated damping by relative velocity as well as by 

independent flow field assumptions. Experiments were conducted on an oscillating 

pendulum type rig and, from logarithmic decrement of oscillations, the damping 

was estimated. Their results results suggested that in the reduced velocity range 

10 to 15 the relative velocity formulation rightly predicted the damping on the 

basis of the steady drag coefficient on a rigid cylinder. However, at low reduced 

velocities, the measured damping was more in agreement with the independent flow 

field assumption.

Martin ct al., (1979), investigated the effect of decrease of mean drag in the critical 

Reynolds number range in wind tunnel experiments conducted on a 30 cm diameter 

cylinder. In-line stream wise oscillations were imposed from an externally oscillating 

mechanism. Velocity fluctuations in the wake were recorded by hot-wire anemome-

ter, and the vortex shedding frequency was identified by spectral analysis. It was 

shown how wake fluctuations were affected by the cylinder motion over a range of 

Reynolds numbers.

Raven et al., (1985) conducted full scale dynamic testing of submarine pipelines 

spans of diameters of 508mm and 500mm, in 40m spans Both in-line and transverse 

responses depended on the gap between the pipe line and the sea bed, and the flow 

velocity. It was observed that the proximity of a solid boundary can increase the 

Strouhal number but, in the critical Reynolds number region, the vortex shedding 

was disrupted and weak. One of the interesting conclusions from these tests was 

that cross flow oscillations could occur for lower Vr (reduced velocity) than those 

normally applied.

In another field investigation Vandiver and Chung (1987) gave measurements of 

cable oscillation response in sheared flow. Their experimental results suggested that 

the hydrodynamic damping role is one of the important aspects for predicting flow
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induced vibrations of cables.

Suzuki et al., (1992) presented transverse force and related response results on 

cylindrical members. One of the important features of this investigation was that 

test results were presented for various sets of data, for independently controlled 

towing speed, oscillating amplitude, period and cylinder length. Transverse external 

oscillations were imposed by a scotch yoke type oscillator.

Tomonary (1991) also presented results of externally excited stream wise oscilla-

tions in wind tunnel tests on circular cylinders.

2.2.3 STEADY FLOW INVESTIGATIONS : MATHEMATICAL MODELS

In order to simulate and predict transverse oscillations of members in steady flow, 

some investigators have proposed mathematical models.

Hartlen and Currie (1970) proposed a model based on a lift -oscillator approach. 

The fluctuating lift coefficient due to vortex shedding was characterised as a Van 

der Pol oscillator driven by the cylinder motion. Tlhs model was tested for three 

different conditions. For the rigidly fixed test cylinder, for an elastically mounted 

one and finally for the externally excited case. Even though this model was said to 

be rudimentary the predicted results were promising. Iwan and Blevins (1974) pro-

posed another model based on a “hidden” fluid variable, depending on the cylinder 

cross section, a proportionality constant and a weighted average of the transverse 

component of the flow. Both this and the previous approach from Hartlen and 

Currie (1970) rely on data from experimental observations.

In one of the fundamental studies, Martin et al., (1981) proposed a mathematical 

model to predict stream wise oscillations at critical Reynolds numbers. In this 

analysis, the instantaneous drag acting on the cylinder was assumed to be the same 

as the drag measured for a stationary cylinder at the same relative Reynolds number
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(i.e. the Reynolds number from relative velocity). The authors presented a model 

which is able to predict self-excited fluid-elastic oscillations with an amplitude that 

depends on the mean Reynolds number, dimensionless frequencies, dimensionless 

damping and other parameters. In the mathematical treatment, the drag coefficient 

and its dependence on Reynolds number in the critical range were discussed and its 

sensitivities towards blockage ratios were presented from published data.

These analytical predictions were compared with field measurements of Imming- 

ham jetties and it was reported that the predicted hydroelastic vibrations were in 

good agreement with the field measurements. Interestingly, it was also reported that 

good agreement had been observed for the reduced velocity range over which finite 

amplitude solutions were found, which is of more practical significance. In conclu-

sion the authors pointed out that, in the critical Reynolds number range (in steady 

flows) there was an intense dependence of drag, lift and vortex shedding frequency 

but this was not fully investigated in laboratory because of problems in achieving the 

critical Reynolds number range particularly in water flows. Besides this, in stream 

wise oscillations, because of the relative velocity between the flow and the cylinder 

in a narrow but finite range of Reynolds number, the dominant component of wake 

fluctuation occurs at the frequency of oscillations of the cylinder rather than the 

usual vortex shedding frequency generally observed for a fixed cylinder. This means 

that there is an unsteady component of drag at the cylinder frequency.

Vandiver (1985) proposed a prediction model for transverse response of flexible 

members like cables in sheared flow. Some aspects relating to “lockin’’ response 

amplitude and its relation to mass ratio were identified in relation to fluid exciting 

forces and structural damping. Some of the factors like hydrodynamic damping in 

the non-locked in regions, the form of the lift coefficient for uniform and sheared 

cases and the dependence of the locked-in region on damping ratio and bandwidth 

were discussed.
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Reid (1990a,b) proposed a model based on strip theory approach for vortex excited 

in-line oscillations for non-uniform flows. Response prediction at resonance was 

based on establishment of an equilibrium between the structural damping of the 

system and the net input energy i.e., hydrodynamic work in equals structural work 

out. Based on this, the model was developed further and some important factors like 

the stability parameter, the coefficient of maximum oscillating drag and the reduced 

velocity, were involved in the final equation for predicting in-line response. In the 

reduced velocity range 1.0 to 3.7 hydrodynamic damping was assumed as zero. The 

model was validated against experimental data for the Reynolds number range 6.7 

x 103 to 1.5 x 106 and stability parameter Ks < 0.30.

Lowdon ct a/.,(1991) presented a mathematical model based on boundary layer 

time delay model for streamwise vibration of an isolated cylinder by vortex shedding. 

This method basically depends on the momentum-integral form and is solved by the 

finite difference method. However, this model is limited to laminar flow conditions.

2.3.0 OSCILLATORY FLOW :

Oscillatory flow can be classified into two kinematically similar types, one where 

a rigid cylinder oscillates in still water and the other where a stationary cylinder 

experiences oscillating flow. When a cylindrical body is submerged in a accelerating 

fluid, it experiences a hydrodynamic force associated with fluid acceleration. This 

force is called as inertia force. For a two dimensional flow, in case of circular sections,

Fi =  CmPA ^  (2.1)

where A =  ird1 /  4, Cm is the inertia coefficient, and d is the cylinder diameter. 

This inertia force can be considered as a sum of two terms. The first part is the 

force (Froude - Krylov force) that acts on the cylinder due to the pressure field of 

the undisturbed fluid (as if the cylinder were absent) and is equal to

1 6



Ft = P(2.2)

The second part is due to the deviation of pressure field due to the presence of the 

body which is generally associated with added mass. The force can be expressed as

Fd =  CapA—  (2.3)

Therefore Cm =  Ca +  1 • The “ virtual mass ” is generally used to describe the 

total inertia force.

On the other hand, if the cylinder is moving with velocity U in stationary fluid, 

the term F* will be zero but Fd will be same.

Most of the experimental investigations in wave loading and in oscillatory flow are 

directed towards presenting results in relation to the Keulegan Carpenter number 

K C  = UT/d (where, U is amplitude of the incoming velocity, T is time period and 

d is the characteristic length - generally the cylinder diameter). Another important 

dimensionless number is the Reynolds number (Re =  U d ¡v  , // =kinematic viscos-

ity). Some investigations in oscillatory flow are compiled and presented in Table: 

2.2. In subsections 2.3.1 and 2.3.2 previous studies on rigid and flexible members 

are discussed respectively and mathematical models related to loading and response 

prediction are presented in section 2.3.3.

2.3.1 OSCILLATORY FLOW INVESTIGATIONS ON RIGID MEMBERS:

Keulegan and Carpenter (1958) provided a comprehensive set of average drag and 

inertia coefficients plotted against a period parameter or K C  number. They studied 

flow patterns around cylinders by using a jet of coloured dye. In the following 30 

years many investigations on Morison loading, mostly at small scale and many in 

U-tubes, were published.
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In a key study, in U-tube investigations Sarpkaya (1986b), presented results for a 

wide range of Keulegan Carpenter number and ft (ratio of Reynolds number to KC  

number) values for smooth as well as for rough circular cylinders. He stated that 

drag, inertia and maximum force coefficients at high Reynolds numbers greater than 

105 are weak functions of Reynolds number or ft. But there is not much evidence 

that post critical conditions were reached. Harmonic analysis showed the importance 

and variation of all first ten harmonics of lift coefficient.

In other investigation on fixed cylinders Sarpkaya (1990) presented the effect of 

roughness on drag and inertia as well as lift force coefficients. As marine roughness 

is common in the real sea environment, problems associated with roughness, in-

creases in diameter, projected area, displaced volume and resultant increase in drag 

loading, increase in mass and consequent reduction in natural frequency, increase in 

structural weight were identified. Differences in values of lift, drag and inertia coef-

ficients on rough circular cylinders were attributed to the vortex shedding process 

along with natural causes from the flow characteristics or the inherent variability of 

the forces acting on a cylinder in oscillating flow. Another reason for disagreement 

between data obtained in similar conditions was mentioned as the three dimension-

ality effects. From different sets of controlled experimental data, author concluded 

that the effect of roughness has a dominant influence on drag, inertia as well as on 

lift coefficients.

In recent large scale studies, Chaplin (1988a,b) conducted experiments by oscil-

lating a rigid cylinder in still water in planar oscillatory and as well as in elliptical 

orbital flow. In the first set of experiments, results were in Reynolds number range 

2 x 104 to 2.8 x 105 and in K C  number range 6 to 20. To achieve higher ranges of 

Reynolds numbers, a Random Planar Motion mechanism was used. In most cases it 

was reported that drag and inertia coefficients agreed well with Sarpkaya’s U-tube 

results. Apart from this test results were compared with wave flume results on rigid 

cylinders and differences were observed due to non-uniform orbital nature of the 

wave motion and wave induced currents. In the second stage, experiments were at
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higher Reynolds number range but in elliptical orbital flow. In this investigation, 

studies were directed towards horizontal cylinders. Major emphasis was given to 

study the effect of ellipticity on drag, inertia and total force coefficients and it was 

showen that considerable reductions in inertia coefficients were observed at higher 

ellipticity. The reason for this drop was partially attributed to circulation around 

the cylinder in the same direction as that of the orbital flow in horizontal cylin-

ders. In recent large scale study, by the same author (1993) studies up to 7.5 x 10s 

Reynolds number were presented.

Justesen (1989) presented experimental results on large cylinders of 0.5 m. in 

diameter in oscillatory flow at supercritical and transcritical flow (2.5 x 105 to 1.0 x 

106) and at KC  numbers 1 to 16 on both smooth and rough cylinders. Experimental 

studies confirmed large variation of hydrodynamic coefficients in K C  number range 

1 to 16 and which were attributed to the vortex shedding process and their dominant 

influence in this range. In KC  number range 7 to 15 it was observed that the vortex 

excited lift forces are as large as in-line forces. Regarding the vortex shedding 

process, it was observed that the transverse force has characteristic modes to which 

it locks-on depending on the KC  number. It was again confirmed that roughness 

has a significant influence on drag and inertia force coefficients as well as lift force 

coefficients.

In one of the recent investigations Anaturk (1991) presented experimental studies 

of a 400 mm diameter rigid cylinder in low amplitude oscillations. Along with ex-

perimental investigations a theoretical model was presented for the drag coefficient. 

Test results were compared with the model as well as with Stokes’ solutions. High 

dependency of drag and inertia force coefficients at low K C  numbers for smooth 

cylinders was observed which might be due to vortex excited loading. However, 

these factors were not discussed in this investigation. Other contributions in this 

area are Hamann and Dalton (1971), Garrison et al., (1977), Garrison (1990), 

Marchand et al., (1988), Ikeda et al., (1988), Bearman and Obasaju (1989), Ki- 

noshita (1991).
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2.3.2 OSCILLATORY FLOW INVESTIGATIONS ON FLEXIBLE MEMBERS :

Laird (1962) discussed some aspects of flexible vertical oscillating cylinders. Ex-

periments on a 50.8 mm. diameter cylinder in oscillatory flow at Reynolds number 

range 1.7 x 104 to 3.4 x 104 were reported. Results showed that cylinder oscillations 

generated an increase in loading. The effect of changing the natural frequency of 

the cylinder on each side of the eddy frequency was studied and it was shown that 

the smallest response was when the natural frequency was farthest from the eddy 

shedding frequency.

Finally among some of the important conclusions, it was stated flexible cylinders 

which can undergo oscillations of more than half the cylinder diameter, oscillate at 

the vortex-shedding frequency transversely and at twice the eddy frequency in the 

in-line direction. More stiffly supported cylinders, tend to vibrate in both transverse 

and in-line directions at the natural frequency of the cylinder.

Sarpkaya (1978) presented experimental results on a cylinder in water tunnel 

oscillatory flow. External oscillations of the cylinder were imposed by means of a 

yoke assembly. Lift forces were expressed as a combination of drag and inertia terms. 

It was observed that the in-line force on cylinder undergoing transverse oscillations 

increased with increasing a/d (amplitude/diameter) ratio.

Verley (1978) presented experimental investigations of oscillating cylinders in a 

current and oscillatory flow. Hydrodynamic damping and its dependence on currents 

of various velocities for three test cylinders were presented. It was noted that the 

viscous oscillatory drag coefficient was inversely proportional to the amplitude of 

motion and thus forms only a significant proportion of the total drag for small 

amplitudes of motion.

Sarpkaya (1979a) presented U-tube oscillatory flow experimental results on elas-

tically mounted cylinders along with a mathematical model for lift force. It was
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demonstrated that the cylinder undergoes self-excited transverse oscillations at re-

duced velocity 5.5 and, interestingly, lift force coefficient amplifies to twice that for 

rigid cylinder in oscillatory flow. This indicates the important and adverse effects of 

loading on flexibly mounted oscillating cylinders compared with rigid ones. In order 

to investigate the method to predict transverse response and lift force coefficient, for 

a given cylinder, a response parameter which incorporates parameters like cylinder 

mass, damping, cylinder diameter and Keulegan Carpenter number was presented. 

Close agreement was reported for transverse response prediction and experimental 

values.

Sarpkaya and Rajabi (1979) presented experimental results obtained in the U-tube 

for elastically mounted cylinders. Experimental studies were confined to transverse 

hydroelastic oscillations in the reduced velocity range up to 5.5. It was suggested 

that the effective way to reduce the oscillation amplitude is to decrease the lift coeffi-

cient in the nascent state either by use of a splitter plate or spoilers etc. However, in 

the case of streamwise oscillations, due to relative velocity, lift force coefficients may 

be different from those for a cylinder oscillating transversely. At critical Reynolds 

numbers, there is an interrelation between cylinder velocity and force coefficients. 

The relative velocity induces fluctuations in drag as well as lift forces and this aspect 

of experimental investigations has not been well explored in the literature.

McConnell and Park (1982a,b) discussed experimental results of a cylindrical 

member oscillating in still water along with a mathematical model to predict the 

lift force. Experiments were presented for two types of cylinder conditions. One 

laterally restrained and another for the cylinder free to respond in the transverse 

direction. Frequency analysis and corresponding lift force harmonics were presented 

and identified the largest component at the vortex shedding frequency and further 

analysis was presented related to vortex shedding frequency and side bands. Re-

sponse results were plotted against velocity ratio (a/d)(fn/fd) which the authors 

believed better than the KC number. Further the natural frequency of the cylinder 

response was found as function of velocity ratio at 6, 7 and 8 indicating that the

21



significance of added mass.

Sumer and Fredsoe (1988) investigated transverse oscillations of cylindrical mem-

bers at higher Reynolds numbers of 4 x 105 at fixed reduced velocity VT and with con-

stant hydroelastic properties. Experiments were reported at two ranges of Reynolds 

numbers at lower sub-critical flow up to 10s and at upper sub-critical range 1 x 105 

to 4 x 10s. Experimental findings and an observed double amplitude response for a 

range of reduced velocities, suggested that vibrations at higher Reynolds numbers 

are markedly different from those at low Reynolds numbers in the sub-critical range. 

However it was suggested that the Reynolds number effect might disappear for large 

values of the roughness parameter (Ks/D) and therefore model similarity might be 

achieved for flexible marine risers.

Obasaju et al., (1988) concentrated on finding strengths and motions of vortices 

from experimental investigations in order to understand developments of both in-line 

and transverse forces. They adopted a mode-averaging scheme to make measure-

ments of the circulation around a circuit enclosing the cylinder to obtain average 

cycles of the time history of the transverse force. Experiments were reported on 

circular cylinder of diameters ranging from 19.1 mm to 74.8 mm. Drag and iner-

tia coefficients were compared with both sectional force(i.e.pressure) measurements 

in the U-tube and in a water channel. The coefficient of the transverse force was 

also calculated and the highest magnitude of the coefficient was determined for each 

mode. Distinct peaks were observed in r.m.s. lift force coefficient at K C  values 

10 and 17. For a circular cylinder a steady transverse force with a coefficient of 

about 0.5 at KC — 14 was observed. One dominant vortex was formed in each 

half-cycle on the same side of the cylinder and it was concluded that there would be 

a mechanism for generating a steady force. Circulation pattern and strength and, 

from flow visualization, the relationships between non-dimensional vortex strength 

and Reynolds number were established. It was observed that in transverse regime 

vortices were some times shed in two cells,each cell occupying roughly half the length 

of the cylinder. From experimental studies of non-dimensional circulation, for dif-
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ferent KC  numbers, it was concluded that, in all regimes, fully formed vortices have 

roughly the same circulation. Also from measurements the span-wise correlation of 

vortex shedding does not decrease with increasing KC  number and for K C  number 

greater than 30 the correlation is no longer very sensitive to K C  number. This may 

be the reason for relatively smaller changes in lift as well as drag and inertia force 

coefficients at higher KC  numbers.

In another investigation Kozakiewicz et al., (1991) obtained correlation measure-

ments along a vibrating cylinder near a wall in oscillatory flow. External oscillations 

were imposed transverse to the direction of the carriage motion. It was found that 

the proximity of the wall to the cylinder was not very important. Similar externally 

imposed oscillations in transverse direction were reported by Moeller and Leehey 

(1982). In order to investigate damping forces in a viscous fluid, Otter (1990) con-

ducted experiments by externally exciting a cylinder.

In recent experimental investigations, Bearman and Mackwood (1991) presented 

experimental studies in a U-tube on flexibly mounted cylinders and discussed trans-

verse and in-line responses at different ranges of K C  numbers. In another experi-

mental investigation, externally excited oscillating rectangular cylinder test results 

were presented by Deniz and Staulbi (1991). Test results were compared with quasi-

steady and unsteady-aerofoil theory.

In a recent experimental investigation, Wu (1992) presented experimental inves-

tigations of forced and vortex excited vibrations on a single test cylinder. Vibration 

responses in in-line as well as in transverse directions were measured and presented. 

It was stated that the hydrodynamic force on a cylinder vibrating in-line with and 

transversely to a uniform current consists of several harmonics. In the in-line di-

rection it consists of 2 /, 4 /  and 6 /  where as the lift force on the other hand, has 

components of / ,  3 /  and 5 /  ( /  =  transverse motion frequency). Along with this, a 

mathematical model which illustrates above conclusions was presented.



2.3.3 OSCILLATORY FLOW INVESTIGATIONS: MATHEMATICAL MODELS 

Bearman et al., (1984), described a model equation (previously used by Verley 

(1982)) for lift force prediction in waves and in oscillating flows. In this quasi steady 

model, Strouhal number has a constant value of 0.2. Model results were tested for 

planar oscillatory flow over KC  number range of 5 to 53 and good agreement was 

reported in higher KC  number than at lower ranges of K C  number.

In another mathematical model Leconte and Piquet (1988) discussed a numerical 

solution, in which, the unsteady Navier-Stokes Equations were used to investigate 

vortex shedding characteristics behind a circular cylinder in uniform stream with 

superimposed in-line or transverse forced oscillations.

Skomedal et al., (19S9) presented a numerical model for the computation of vortex 

shedding induced vibration. This is basically a discrete vortex method, and model 

results were compared with published measurements. This model is basically meant 

for flexibly mounted cylindrical members in uniform flow. Good agreement was 

reported between model and above experimental results.

Sarpkaya and Putzig (1992) presented some numerical experimental results for 

oscillating circular cylinders with a mean flow obtained from solutions of the Navier- 

Stokes equations with the stream function and the vorticity as variable. The authors 

reported the existence of a wake with three rows of heterostrophic vortices at certain 

K C  numbers and relative current velocities. These numerical studies are confined 

to smaller K C  and Reynolds number regimes owing to computational restrictions. 

It is of practical significance to find the combined effect of oscillatory flow with mean 

velocity on in-line force and lift force coefficients.

Stansby (1993) in recent mathematical investigation discussed forces on a circular 

cylinder in elliptical orbital flows at low Keulegan Carpenter range. Morison drag 

and inertia coefficients for both in-line and transverse directions were presented at 

K C  numbers less than 1.5. The results confirm that even small changes to the
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flow pattern might be responsible for significant changes in Morison coefficients. 

Further, the author outlined the relation of Morison coefficients in both in-line and 

transverse directions to ellipticity. It was found that at KC  number more than one, 

due to the slow rotation of a cloud of vorticity, forces can contain components whose 

frequency is different from the orbital frequency; this is responsible for scatter in 

drag coefficients for successive half cycles.

2.4.0 WAVE LOADING :

In the following subsections, 2.4.1 and 2.4.2, experimental investigations on fixed 

as well as flexible cylinders in waves are discussed. Finally some mathematical 

models are presented in section 2.4.3. Some of them were compiled and presented 

in Table: 2.3

2.4.1 WAVE LOADING INVESTIGATIONS ON RIGID MEMBERS:

In one large scale experimental investigation, Bearman et al., (1985) discussed 

wave loading experimental investigations on a 0.5m diameter circular cylinder. Ex-

periments were conducted in both periodic and random waves. Tests were reported 

for vertical as well as horizontal cylinder positions. One of the important aspects of 

this large scale experimental study is that the highest Reynolds number 5 x 105 was 

achieved in laboratory conditions and no change in force coefficients with Reynolds 

number was observed. Regarding vortex excited lift force, it was observed that at 

certain K C  numbers the peak transverse force was greater than the in-line force. 

This confirms the earlier experimental observations of Bidde (1972) and Chakrabarti 

et al., (1976). Poor agreement was reported with Morison equation for horizontal 

cylinders and this was attributed to strong vortex shedding components.

Bliek and Klopman (1988) studied nonlinear frequency modelling of wave forces on 

large vertical and horizontal cylinders. Experimental results of random wave forces 

on both vertical and horizontal cylinders were analysed with linear and nonlinear
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force models and it was observed that nonlinear model permits a more detailed 

representation of the fluid loading behaviour.

Bearman (1988) presented results for rigid and flexible cylinders with smooth and 

rough surfaces in the Reynolds number range up to 5.5 x 105. Due to asymmetry 

in the vortex shedding pattern, a considerable increase in drag coefficient at lower 

K C  numbers was reported. This was attributed to an increase in wall shear stress 

and boundary layer causing the resultant increase in drag coefficient. Regarding lift 

force coefficient surface roughness induces larger lift forces compared with those of 

smooth cylinders and this implies that surface roughness increases the strength of 

the vortices. In the case of a flexible cylinder experiencing wave loading, a significant 

amplification of drag coefficient was observed and also a correlation between r.m.s. 

response and drag coefficient. It was reported that drag loading was more on an 

oscillating cylinder than on a fixed cylinder. With Morison’s equation, a poor fit 

was observed at KC  =  8. Other important investigations are Schuurmans and 

Lagers (1990), Isaacson and Maull (1976), Bliek Antoine and Gert Klopman (1988), 

Lagers (1990), Falco et al., (1991), Wu and Eatock Taylor (1991), Haritos (1992), 

Koterayama and Nakamura (1992).

2.4.2 WAVE LOADING INVESTIGATIONS ON FLEXIBLE MEMBERS:

Some of the fundamental studies related to oscillations of cylinders in waves and 

currents were conducted by Verley and Jones (1982) on cylinders of diameter 19 

mm, 25.4 mm and 50.8 mm with natural frequencies ranging from 1.7 Hz. to 6.7 

Hz. and with wave frequencies in the range of 0.5 Hz to 1.0 Hz. In a second phase of 

experiments, tests were conducted on horizontal cylinders attached to a pendulum in 

still or flowing water and time averaged drag and inertia coefficients were obtained.

Bearman and Hall (1987) presented results of dynamic response of circular cylin-

ders in waves and in oscillatory flow (U-tube) and it was observed that the transverse 

response due to vortex shedding depends on the Keulegan Carpenter number and the
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ratio between the cylinder’s natural frequency and the frequency of the flow. From 

experimental observations it was noticed that peak responses could occur when this 

frequency ratio takes integer multiples. At higher frequency ratios, the expected 

response would occur at higher Keulegan Carpenter numbers. This indicates the 

significant effect of the frequency ratio on the member undergoing large amplitude 

oscillations.

In a comprehensive review, Naudascher (1987) presented results from steady 

stream wise vibrations and related processes. Some of the relevant studies of this 

kind were investigated by Vandiver and Chung (1984), Vandiver (1985), Vantorre 

(1990).

Demirbilek et al., (19S9) investigated drag and damping on a flexibly mounted 

vertical cylinder in still water as well as in waves. The application of the Morison 

formula for wave loading on both vertical and horizontal cylinders was discussed, and 

the relatively poor fit for fixed horizontal cylinders in wave flows was highlighted. 

However it was mentioned that the Morison relative velocity formulation works well 

for periodic flows. Along with Morison’s relative velocity formulation, independent 

flow field formulation for fluid damping was investigated.

Wave loading experimental studies on flexibly mounted piles were also presented 

by Yu and Zhang (1988) for both regular and irregular waves. Maull and Kaye 

(1988) investigated the response of a pin-jointed cylinder in waves. Tests were 

reported for the cylinder free to oscillate in both in-line and transverse directions 

simultaneously and also when restrained in one direction. It was stated that, the 

transverse response was the same whether is constrained to move in the transverse 

direction or not, but it was observed that in-line oscillations were strongly influenced 

by transverse oscillations. Finally a means of prediction for transverse oscillations 

was reported.
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Nwogu et al., (1992) discussed some of the frequency dependent force coefficients 

on a compliant cylinder in irregular waves. Morison relative velocity and indepen-

dent flow field models were adopted and force coefficients were estimated. Force 

coefficients for compliant cylinders were slightly less than those for fixed cylinders. 

Cylinder response predictions from relative velocity formulation and fixed cylin-

der coefficients agreed reasonably well with measured values. But in the indepen-

dent flow field model it was reported that the response predictions were more than 

measured values around resonance and this was attributed to higher values of hy-

drodynamic damping for compliant cylinders in waves. This investigation focuses 

attention on the dependency of force coefficients on the frequency of oscillations 

of the structure ; it would be interesting to see similar results at higher Reynolds 

numbers and a wide range of Keulegan Carpenter numbers.

2.4.3 WAVE LOADING INVESTIGATIONS : MATHEMATICAL MODELS

Numerical models for wave loading were presented by some authors e.g. Graham 

and Djahansouzi (1991) and Nakamura (1992).

2.5 HYDRODYNAMIC DAMPING AND VORTEX SUPPRESSION METHODS :

Some of the fundamental studies related to hydrodynamic damping were reported 

by Moe and Verley (1978) (1980). Results relating to inertia coefficient, oscillating 

drag coefficient and steady drag coefficient were presented for various reduced ve-

locities. It was concluded that use of the Morison relative velocity formula to obtain 

hydrodynamic damping may be unconservative leading to overprediction of damp-

ing. Apart from this, other investigations by Shop et al., (1976), Chakrabarti and 

Hanna (1990), Huse (1991) were reported in recent literature. Some other results 

related to damping were presented by Schwanecke (1988).

In his field based experimental investigation, Brownridge (1991) presented results 

from a deep water monitoring exercise. Some of the existing methods to suppress
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vortex induced vibrations like helical stakes or designing the riser to avoid the crit-

ical lock-on velocities were discussed but it was felt that even though they reduce 

amplitude of vibration they tend to cause considerable increased drag loading on 

conductors. Riser response for single mode vibrations was observed at reduced veloc-

ities 4.5 to 6 and the drag due to vortex induced vibrations was observed to increase 

by as much as 70 percent. Even though at present many devices are available for re-

ducing vortex excited vibrations and critical lock on velocities, they tend to increase 

drag loading on conductors. Methods and systems are needed to reduce or avoid 

lock-on conditions without amplifying drag loading on slender marine structures.

More field based investigations were presented by Brooks (1987), Bruchi et al., 

(1982, 1989), Tassini et al., (1989).

Grundmeier et al., (1989) discussed an advanced procedure for analysing wind- 

induced vortex-shedding vibration and presented a vibration damper, a simple and 

effective suppression device. Authors reviewed some of the existing and past pro-

cedures for evaluating vortex shedding vibrations and presented details of vibration 

damper along with already existing devices. Halkyard and Grote (1987) discussed 

some aspects related to pipe strumming and techniques related to strum suppres-

sion. In another investigation, Halkyard (1991) presented a method for analysing 

vortex excited motions and drag for moored bluff bodies.

Other notable laboratory investigations on vortex excited loading were presented 

by Achenbach and Heinecker (1981), Airy et al., (1988), Angrilli et al., (1982), Hal- 

lam et al., (1978), Ikeda et al., (1981), Lecoinite et al., (1988), McNown and Keule- 

gan (1959). Some recent experimental investigations for lift forces were reviewed by 

Sheppard and Omar (1992).
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2.6 CONCLUSIONS

1. In general there is a scarcity of experimental data at large scale particularly on 

flexible members. But problems associated with flexible offshore members as in ma-

rine risers, Remotely Operated Vehicle umbilicals and Tension Leg Platform tethers 

are mostly at high Reynolds numbers and further loading and response studies at 

this range are required.

2. Vortex excited streamwise loading and consequent oscillations have not been 

thoroughly studied under laboratory conditions.

3. Transverse externally excited cylinder motions have been reported by many ex-

perimental investigators. However, virtually no experiments at the critical Reynolds 

number range with externally excited streamwise oscillation have been reported. Ex-

ternally excited in-line oscillation is more relevant to many offshore installations (due 

to tidal variations and currents) and its effect on loading needs detailed fundamental 

study.

4. It has been observed in the literature that vortex excited lift forces on slender 

members are much greater than that on fixed members. However, it has not yet 

been investigated whether this occurs also when the member’s natural frequency is 

an integer multiple of the external streamwise loading frequency.

5. Even though some theoretical and wind tunnel tests were reported about abrupt 

drag loading changes at critical Reynolds number in steady flow, more experimental 

investigations are needed to understand loading and response physics in this range 

for flexible members.

6. Vortex excited loading will become more complicated when the slender member 

is in oscillatory flow. The relative velocity between oscillator and the member sig-

nificantly changes vortex shedding pattern and its frequency in oscillatory flow at 

higher Reynolds number range. Consequently, lift forces are entirely different from 

those on rigid oscillating members.

7. Added mass is not the same for fixed and flexibly mounted cylinders. This may
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significantly influence changes in loading and response.

8. Vortex shedding origin development and consequent loading related to wave load-

ing studies are very limited in literature and studies on flexibly mounted members 

are scarce. In some KC  number ranges vortex excited lift forces are as large as 

in-line forces.
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N A M E  A N D  
Y E A R

IN -L IN E  O R  
T R A N S V E R S E

E X P E R IM E N T S  
A N D  M O D E L S

C O M M E N T S

Y ain agu ch i 
et a l., 
(1 9 7 1 )

K arm an V ortex  
w ind tunnel 

transverse 
oscilla tion s

0 .15 , 0 .1 , 0 .07m  
d iam eter 

E xperim en ts in 
S u bcritica l R u g .

R e .N o . 1.5 x 104 to  6 .5  x 104 
A e ro d y n a m ic  fo rce  

on  v ib ra t in g  cy l.
L ift F orce  In vestiga ted

M a rtin , 
D oy le  and 

Jansen 
(1 9 7 9 )

w ind  tunnel 
experim en ts 

ex t.ex c ita tion

0 .3m  d ia .cy l. 
in un iform  

velocity .

R e .N o . 1.5 x  105 to  
5 .0  X 105

M o e  and 
V erley 
(1 9 8 0 )

load in g  
due to  waves 
and currents

0 .0202m  0 .032m  
0 .052m  d ia .C y l. 

in w ave tank.

A t  low  R ey n o ld s  
N u m bers  . 

H y d ro d y n a m ic  
D a m p in g  in vestiga ted

M a rtin , 
C u rrie  and 
N au dasch er 

(1 9 8 1 )

stream w ise
oscillation s

m ath em atica l
m od ellin g

stead y  drag  
coe ff.an d  

R eyn o ld s  n o. 
d ep en d en ce .

M o d e l and  F ield  
in -lin e  oscilla tion s  

C o m p a re d  at 
R e .N o .2  x  105 to  

4 X 105

B rusch i 
et a l., 
(1 9 8 2 )

v or tex  shedding 
on subm arine 

p ip e  lines 
full scale and 

m odels

W in d  tunnel 
0 .118m  dia. 

Full scale 
0 .508m  dia 

su bm arin e  p ip e

R e .N o .8 .5  x  104 and 
R e .N o .1 .7  x  10s to  2 .22  x  10s 

V o rte x  Shedd in g  
oscilla tion s  studied

Sum er and 
F redsoe  
(1 9 8 8 )

transverse
oscillation s

0.1 and 0 .2m  
d ia .cy lin ders  
E xp ts .in  3m  

w ide F lu m e and 
carriage  .

R e .N o . 4 .0  x  105 
K C  10 to  100

B earm an  and 
O b a sa ju  

(1 9 8 9 )

in-line 
oscilla tion s 
w ith stead y  

current

L ift fo rce  and 
R edu ced  vel. 

K C  =  10 ,14 ,18 ,34  
0 .04m  d ia .cy l. 

exp erim en ts  in 
op en  w ater 

channel

in -lin e  
o scilla tin g  

cy lin der 
w ith  stead y  

current

Table 2.1 Steady flow experiments



N A M E  A N D  
Y E A R

IN -L IN E  O R  
T R A N S V E R S E

E X P E R IM E N T S  
A N D  M O D E L S

C O M M E N T S

H am an n  and 
D a lton  
(1 9 7 1 )

O scilla tin g  
cy lin der in 
still w ater

0 .62 5 , 1, 1.5 in 
d ia .cy l.tested  in 
w ater tank by 

oscilla tin g  
m echan ism

Sarpkaya
(1 9 7 8 )

transverse
extern ally

excited
oscilla tion s

in op en  return  
w ater tunnel. 

E x t.O sc illa tion s  
Y oke assem bly. 
0 .019 ,0 .038  m  
d ia .cy lin ders.

R e .N o .5 .0  x  103 to  
2 .5  X 104 

Cm h Cdl 
p ro p o se d  for 

lift fo rce .

Sarpkaya
(1 9 7 9 )

transverse
oscilla tion s

U -tu b e  0 .05  
0 .127m  d ia .C y l. 

s m o o th  and rou gh

tran sverse  respon se  
m o d e l p ro p o se d . 

R esp on se  P a ra m eter 
M en tion ed .

M cC o n n e l and 
P ark  (1 9 8 0 )

rigid  and 
flex ib le  su pp orts

0 .058m  d ia .C y l. 
W a ter Tank 

and C arriage.

R e .N o .3 .0  x  103 to  
2 .5  x  104

D em irb ilek , 
M o e  and 

Y tte rv o ll  
(1 9 8 7 )

relative vel, 
ind ep en d en t 
flow  fields, 
w ave flum e 

and pend u lu m

0.1m  d ia .C y l. 
(V ertica l)

D a m p in g  b y  M orison  
In d ep en d en t flow  field 

form u la .

B earm an  and 
H all (1 9 8 7 )

transverse 
oscilla tion s 

in w aves and 
p lanar o scill-

a to ry  flow .

Q u asy  stead y  
m o d e l . 

E xperim en ts 
in U -tu b e  

40 m m  dia. 
cy lin der

at in teger 
m ultip les  

o f  freq u en cy  
ra tio  - peak  

resp on se  
ob served

C hap lin
(1 9 8 8 )

O scilla tin g  
cy lin der in 
still w ater

0 .1 6 m , 0 .315m  
d ia .cy l.in  
e llip tica l 

o rb ita l flow

R e .N o .2 .0  x  104 to  
2 .8  x  105 

K C  6 t o  20

C hap lin
(1 9 9 3 )

O scilla tin g  
cy lin der in 
still w ater

0 .50 m  vertica l 
d ia .cy l.te sted  in 
s im u lator tank 

oscilla tin g  
m echan ism

R e .N o .2 .5  x  10s to  
7 .5  x  105 

I ( C  5 to  25

Table 2.2 Oscillatory flow experiments



N A M E  A N D  
Y E A R

IN -L IN E  O R  
T R A N S V E R S E

E X P E R IM E N T S  
A N D  M O D E L S

C O M M E N T S

B id d e
(1 9 7 0 )

lift forces  
on  piles 
in waves

0 .01 27 m ,0 .0 41 3m  
d ia .p iles in 

w ave channel

R e .N o .850 to  29 ,950  
K C  0 .9  T O  20.4  
lon g itu d in a l and 
lift fo rce s ,e d d y  

fo rm a tio n . 
In vestiga tion .

M o e  and 
V erley  
(1 9 8 0 )

loa d in g  
due to  w aves 
and currents

0 .0202m  0 .032m  
0 .052m  d ia .C y l. 

in w ave tank.

A t  low  R eyn o ld s  
N u m bers  . 

H y d ro d y n a m ic  
D a m p in g  in vestiga ted

V erley  and 
John s (1 9 8 2 )

in -line and 
transverse 

oscilla tion s  in 
w aves and 

currents

Fluid  in d u ced  
d am p in g , 

S u bcritica l 
R ey n o ld s  n o. 

F low  visua lisa -
tion  E xp erim en ts  

in w ave flum e 
and p en d u lu m  

0 .01 90 m ,0 .0 25 4m  
0 .0508m  dia. 

C y lin d ers .

a ) slender 
cy lin d er  in 

w aves
b )  oscilla tin g  

cy lin d er  in -line 
w ith  current

D em irb ilek , 
M o e  and 

Y tte rv o ll  
(1 9 8 7 )

relative vel. 
and

in d ep en d en t 
flow  fields 

w ave flum e 
and p en d u lu m

0 .1m  d ia .C y l. 
(V e r tica l)

D a m p in g  b y  M ori son  
in d ep en d en t flow  field 

fo rm u la .

B earm an  and 
Hall (1 9 8 7 )

transverse 
oscilla tion s  

in w aves and 
p lanar oscill-

a to ry  flow .

Q u asy  stead y  
m o d e l . 

E xperim en ts 
in U -tu b e  

40 m m  dia. 
cy lin der

at in teger 
m ultip les  

o f  freq u en cy  
ra tio  - peak  

resp on se  
ob serv ed

Table 2.3 Wave loading experiments
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CHAPTER 3

EXPERIMENTAL ARRANGEM ENTS

3.0 INTRODUCTION :

The basic aim of this large scale experimental investigation is to study the loading 

and response of a flexibly mounted cylinder in oscillatory flow at high Reynolds num-

bers. In order to achieve high Reynolds numbers in the laboratory, it is necessary 

to design large scale experiments. This, coupled with the requirements for flexible 

systems poses design challenges for the main experiment and related instrumenta-

tion. Considering these main factors new experiments have been designed according 

to the needs of the present study.

3.1 TEST CYLINDER :

The cylinder used in the tests was a steel tube of 168 mm outside diameter and 5 

mm wall thickness. A steel cylinder was chosen for its stiffness. A new flexible 

support system was designed to hold the test cylinder and to act as a “spring 

supported ” system, allowing the cylinder to oscillate in the streamwise direction 

only. The test cylinder is supported at both ends on short arms instrumented with 

strain gauges which will be described in subsequent sections. The length of the 

test cylinder is 1326 mm and it is fitted with circular end plates on each side. The 

surface of the cylinder was painted to achieve a smooth finish.

3.2 THE FLEXIBLE SYSTEM:

In view of the nature and size of the investigation, instead of adopting a conven-

tional spring supported system, a flexible support system was designed consisting of 

two arms made of BS hollow square steel sections (Fig: 3.1). Each arm comprises 

upper and lower sections, 50 x 50 mm and 5 mm thick, with a 30 x 30 x 3 mm
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section in the middle. The middle section telescopes into the larger sections on both 

ends. By changing the effective length of the middle arm, this type of design enables 

us to change the system’s natural frequency without changing the mass of the test 

cylinder. This system was originally designed for the Random Wave Loading Simu-

lator which will be described in next section. To fix the arms of the test cylinder to 

the simulator carriage, two fixtures were designed (Fig: 3.1 top) to clamp the arms 

firmly with bolts and plates inside. At the bottom of the arms, the cylinder is fixed 

to studs on each side and a middle bar which passes through the cylinder from one 

end to the other. Each stud is equipped with two strain gauges in predesigned slots 

for in-line and lift force measurement (Fig: 3.1) and (Fig: 3.2 a,b). To avoid three 

dimensional effects, both sides of the test cylinder were fitted with end plates made 

of PVC of 2.5 times the diameter of the test cylinder(Fig: 3.2 b).

3.3 RANDOM WAVE LOADING SIMULATOR :

The major experimental facility in which most of these experiments were con-

ducted is referred to as the Random Wave Loading Simulator Chaplin (1993). This 

consists basically of an x-y carriage mechanism driven by two 32kW hydraulic motors 

with 200 mm diameter sprockets and reinforced toothed belts mechanism (Fig: 3.3 

a,b). This system is capable of simulating planar oscillatory flow with simultaneous 

movement of X and Y carriages operated by a servo motor mechanism. However, in 

the present investigation, the flexibly mounted horizontal cylinder was designed for 

experimentation in oscillatory flow only (i.e. in x-direction). The X-carriage runs on 

8m horizontal linear bearings on the sides of the sump of dimensions 10.5 m length, 

4 m wide and 1.8 m depth.The Y-carriage runs on guided bearings transverse to the 

direction of X-carriage motion. Both X and Y carriage motions and the oil supply 

pumps are controlled by CED 1401 interface and a PC. Commands can be sent to 

the oil pumps to start and run the motors and simultaneously feedback signals from 

each are received. From the feedback signals, the carriage velocity and accelerations 

can be calculated. New software has been developed for this experimental investiga-
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tion to impose superharmonic oscillations at integer multiples of the test cylinder’s 

natural frequency while it is undergoing oscillatory motion Chaplin (1994a).

3.4 INSTRUMENTATION :

The test cylinder is instrumented with different sets of TML strain gauges type 

FLA-2.350 (Fig: 3.2 a,b), (Fig: 3.4 a). These are foil type strain gauges and were 

selected for measuring the expected loading on the test cylinder, each with resistance 

of 350 ohms. One set of strain gauges was fixed at the top of the arms to measure 

the bending moment, from which the response of the cylinder could be calculated. 

In order to measure streamwise loading another set of full-bridge strain gauges were 

mounted at both ends of the test cylinder supporting studs at the bottom. As these 

strain gauges are to be submerged a polyurethane coating was applied after fixing. 

A number of coats of wax was applied to protect the strain gauges from water, and 

also to avoid interference of electronic circuits with water. The input voltage for each 

strain gauge bridge is supplied through the Fylde signal conditioners and amplifiers 

(Fig: 3.5). Signals from the bottom strain gauges were filtered at frequencies above 

20Hz to avoid electronic noise. For for the top strain gauges no filter was used.

3.5 DATA COLLECTION :

For all this experimental investigation the CED1401 data acquisition system was 

used. This is a 32 channel data logger capable of converting analogue to digital at 

the required speed demanded for this study. For this experimental investigation only 

seven channels were utilized. FORTRAN 77 has been used throughout to run the 

simulator, to collect data from all the transducers, and for subsequent analysis. The 

simulator control software causes the carriage to oscillate at the required amplitude 

in sinusoidal motion with the desired frequency. The software also allows superhar-

monic oscillations to be imposed at the natural frequency of the test cylinder. For 

each cycle of oscillation it collects 512 points for each data channel and writes a 

file for post processing. The frequency of data sampling adjusts automatically to
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provide 512 points for each oscillating time period of the carriage.

3.6.0 CALIBRATION :

In this section, calibrations of strain gauges and accelerometers were discussed.

3.6.1 STRAIN GAUGES :

Among the three sets of strain gauges, two sets which measure in-line loading and 

response were calibrated simultaneously. For in-line calibration, a ball-bearing pul-

ley mechanism (Fig: 3.5 a) was adopted and loading was applied at increments of 10 

Newtons and calibrated with the COLLECT Chaplin (1994a) software of CED1401. 

For calibration loading, a ball bearing pulley mechanism has been adopted in or-

der to avoid frictional effects and proper care was been taken to eliminate errors 

in loading. In order to calibrate in-line loading strain gauges, a string is connected 

horizontally to the test cylinder (Fig: 3.5 a) at one end and after passing over the 

pulley a loading hanger is connected to the other end of the rope for incremental 

loading. Calibration was performed to cover the expected range of loading and to 

check the linearity of the instruments. Linear regression (which is built in to the 

collection software) was performed and only calibrations which give correlation co-

efficients higher than 0.999 were accepted. For transverse force calibration, loading 

was applied at increments of 10 Newtons and calibrated with COLLECT software 

using the CED1401. As with streamwise loading, this set of strain gauges was also 

calibrated for the expected range of transverse loading (Fig: 3.5 b). Calibration 

plots for top in-line strain gauges(for response measurement), bottom in-line strain 

gauges and bottom lift force strain gauges are shown in Fig: 3.6 a,b,c respectively.

3.6.2 STIFFNESS MEASUREMENT AND CALIBRATION :

In order to measure the stiffness of the total system, two static electronic digital 

displacement transducers were fixed at either end of the test cylinder bottom studs.
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The basic aim was to obtain the total system stiffness while performing in-line 

force calibration. While calibrating, simultaneous measurements of the test cylinder 

displacement for each load increment were recorded and the average from these two 

records was used. A linear relation between applied static load and corresponding 

static response of the test cylinder was established and the slope of this linear relation 

gives the system total stiffness.

3.6.3 ACCELEROMETER CALIBRATION :

In the present study, one Bruel and Kjaer accelerometer was used for measurement 

of carriage acceleration. From the carriage acceleration, carriage displacement and 

velocity were calculated through an FFT . In order to calibrate the accelerometer, a 

sinusoidal excitation and a function generator were used (Fig: 3.7 a). Known sinu-

soidal excitation at a known frequency was given as input to the accelerometer and 

the corresponding CED1401 units were recorded. A linear relation between accel-

eration and CED1401 units was obtained. A calibration plot for this accelerometer 

was shown in Fig: 3.7 b.

3.7.0 FREE VIBRATION TESTS :

Once calibrations were completed, three series of free vibration test were per-

formed: i) In air with the cylinder empty ii) In air with cylinder full of water iii) 

Test cylinder in the simulator basin fully submerged in still water.

3.7.1 EMPTY CYLINDER IN AIR :

The test cylinder was supported by flexible arms and was fixed at the top. This 

enables us to oscillate it freely in air and record the decaying oscillations. From 

these tests, as shown in Fig: 3.8 a, log(Arn/A ri) versus — (n — 1) was plotted (where 

X n represents the amplitude of the n th oscillation and n is the number of the os-

cillation). The slope of the line represents the logarithmic decrement of structural
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damping (<$) of the system; in this case 0.0129 (Fig: 3.8 b). In order to obtain 

the structural damping of the system, the damping due to air which was calculated 

for the test cylinder system was subtracted (see below). While the cylinder was 

oscillated freely in air, from in-line force records (maximum) (from top strain gauge 

decaying oscillations) and stiffness of the system, maximum amplitude of oscillations 

of the test cylinder was calculated. From the amplitude of oscillations and time pe-

riod of oscillations, velocity of the cylinder was computed. From the following set 

of calculations, damping due to air was calculated.

F = l-p aiTCddLU \ U \ (3.1)

where ,

F =  is the drag force

Pair =  mass density of air 1.23 kg /  m3

Cd =  drag coefficient (here taken as approximately 0.8)

d =  diameter of the test cylinder (0.168m)

L =  length of the test cylinder (1.326m)

U =  velocity of the test cylinder 

However, after linearization of velocity term,

U\U\= V2^-cos{ut) (3.2)
<j7T

the equation can be simplified as below.

1 s
F =  -pairCddLV2 — cos(ut) (3.3)

Further, from free vibration records in air, the maximum velocity of the test cylinder 

was obtained as V =  0.305 m /s and the above equation can be written as,

F  =  -pairCddLV j^(Vcos(wt)) (3.4)

After substituting relevant terms, it can be simplified as,

40



(3.5)

from this expression, it is easy to identify damping as 

C =  0.02842. But damping can be expressed in terms of the logarithmic decrement 

of damping as

F  =  (0.02842)1>cos(u>l)

(Cn)
(y/KM)

(3.6)

where,

K  — stiffness of the system (6493.59 N/m)

M  =  mass of the total system (36.4383 kgs.)

8 =  logarithmic decrement of the damping

From these expressions, 8 for air was obtained as 0.0001836 and it was subtracted 

from the value 0.0129097 which was obtained from above free oscillations test when 

the cylinder was oscillating in air. It should be noted that the appropriate drag 

coefficient should probably be greater than 0.8 for very small amplitude oscillations 

(Sarpkaya (1986)). Nevertheless the effect of air damping would still be very small in 

comparison with structural damping. Finally the structural damping of the system 

was thus obtained as 8 =  0.0127262 and it was used in subsequent calculations.

In addition to this, to check the natural frequency of the test cylinder system, spectra 

of free oscillation records were plotted (Fig: 3.8 c). From this spectrum, the natural 

frequency of the test cylinder in this case was obtained as 2.094 Hz. Once the 

structural damping and natural frequencies of the test cylinder were obtained, the 

system natural frequency was checked with calculated values of structural mass and 

stiffness of the system. The calculated natural frequency of the test cylinder was 

obtained as 2.125 Hz. The difference between measured and calculated frequencies 

is only 1.7 percent.
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3.7.2 CYLINDER WITH WATER IN AIR:

In the second free oscillation test, the cylinder was freely oscillated in air after 

it had been completely filled with water and sealed. From free vibration tests, 

decaying oscillations were recorded (Fig: 3.9 a) and damping (Fig: 3.9 b) and natural 

frequency were calculated as described before. In order to check the measured 

natural frequency the calculated frequency value from the stiffness of the system and 

the mass of the test cylinder (including in this case the water inside the cylinder) was 

compared. From spectra of measured decaying oscillations, the natural frequency 

was obtained as 1.602 Hz (Fig: 3.9 c). From calculations, it was obtained as 1.622 

Hz. In this case difference between measured and calculated natural frequencies is 

only 1.24 percent.

3.7.3 CYLINDER IN SIMULATOR BASIN :

Once the calibrations were completed, the test cylinder was placed in the simulator 

water tank and fixed to the carriage. As the system consists of a rigid horizontal 

cylinder flexibly mounted by two arms, every care was taken to fix the system firmly 

to the carriage.

3.7.4 FREE VIBRATION TESTS UNDER WATER :

After the test cylinder had been fixed to the simulator carriage, free vibration 

tests were carried out in still water. Water depth was maintained constant through-

out the experimental studies at 1.259m. A long string was attached to the centre of 

the cylinder and plucked and released immediately allowing the cylinder to oscillate 

freely and gradually return to rest (Fig: 3.10 a). As before, the decaying oscilla-

tions were recorded and the damping (Fig: 3.10 b) and natural frequency of the 

test cylinder were measured. From the spectra of the free decaying oscillations, the 

natural frequency was obtained as 1.315 Hz (Fig: 3.10 c). In order to avoid buoy-

ancy effects and also to minimise any undesired fixing conditions, the stiffness of the

42



system was measured when completely submerged in still water. This was measured 

by a ball bearing pulley and rope on which a load was applied in increments and the 

resultant deflection was recorded by electronic digital transducers. As mentioned in 

subsection 3.6.2 a linear relationship between the applied load and deflection was 

measured. Stiffness measurement plots are shown in Fig: 3.11 a, b. While mea-

suring stiffness, a correction for extension of the rope was made producing a result 

of 7205 N/m. This stiffness value was used in all subsequent calculations and data 

processing. To check the natural frequency of the test cylinder under water, this 

stiffness and mass, including the added mass due to cylinder, end plates and studs 

was considered. From computations, the natural frequency of the test cylinder was 

obtained as 1.315Hz.

Cylinder Damping 6 Natural Frequency % Diff.

measured calculated

a. Empty cyl.

in air 0.0129 2.094 Hz. 2.125 Hz. 1.70

b. Cyl.with

water in air 0.0186 1.602 Hz. 1.622 Hz. 1.24

c. Cylinder in

tank with full 0.0454 1.315 Hz. 1.315 Hz. 0.00

of water

Table: 3.1 Free vibration tests (oscillatory flow)

3.8 HYDRODYNAMIC DAMPING :

In order to investigate the variation of hydrodynamic damping with amplitude, 

six sets of free vibration tests as described in subsection 3.6.4 were performed. From 

the strain gauge free decay oscillation records as shown in Fig: 3.12a the aver-

age amplitude of first ten free oscillations was calculated. Hydrodynamic damping 

(logarithmic decrement of hydrodynamic damping) was estimated from free decay

43



oscillations observed in the bottom in-line force strain gauge records. Finally a plot 

which shows the relation between hydrodynamic damping and amplitude is shown in 

Fig: 3.12b. In addition to this, a graph showing drag coefficient verses K C  number 

was presented in Fig: 3.12 c. Drag coefficients were calculated from free vibration 

tests as described in Eqns. 3.4 to 3.6.

3.9 CONCLUSIONS:

This chapter has described the experimental arrangements and all measurements 

suggest that the equipment performed as required.
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Fig: 3.1 Test Cylinder in Random Wave 
Loading Simulator Basin
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3.2 (a) Cylinder Bottom Strain Gauge 
Arrangement and End Plates
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Fig: 3.2 (b) Cylinder Studs with Strain Gauges
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Fig: 3.3 (a) Test Cylinder in Oscillatory Flow 
( Random Wave Loading Simulator)
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Fig: 3.3 (b) Test Cylinder in Air 
( Filled With Water )
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Fig: 3.4 (a) Top Strain Gauge on Cylinder Arm
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Fig: 3.4 (b) Instrumentation and data logger 
used in Experiments
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Fig: 3.5 (a) In-line Force Calibration Arrangement
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Fig: 3.5 (b) Lift Force Calibration Arrangement
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Fig: 3.7 (a) Accelerometer calibration and Excitor
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CHAPTER 4

ANALYSIS OF RELATIVE VELOCITY MORI- 

SON COEFFICIENTS

4.0 INTRODUCTION

In this chapter a series of experimental findings will be presented from oscilla-

tory flow studies. In Section 4.1 three sets of experiments for different frequency 

parameter (3 are discussed and compared with previous well established oscillatory 

flow studies on fixed cylinders in similar conditions (even though the present study 

is on flexible cylinders). An overall presentation of test results for drag and inertia 

coefficients, as well as for lift and total force coefficients along with test cylinder re-

sponse are presented for a wide range of frequency ratios. Section 4.2 deals with the 

Morison best fit for in-line force and response from comparisons with experimental 

results. Section 4.3 contains a brief discussion about the significance of the drag co-

efficient at low Keulegan Carpenter numbers. As the present investigation is mainly 

concerned with oscillating cylinders, in Section 4.4, spectral presentations of in-line 

force, response, vortex excited lift force and the external oscillation of the cylinder 

are presented for the three sets of parameters which were discussed in Section 4.1. 

Section 4.5 deals with lift and in-line force comparisons for a wide range of frequency 

ratios (i.e. F.R =  / „  /  f 0 where f n — natural frequency of the test cylinder and f Q =  

external oscillating frequency of the test cylinder) Finally, in Section 4.6, an attempt 

has been made to identify relationships between inertia and drag coefficients for all 

sets of data. In addition to this a harmonic analysis has been presented for lift and 

in-line forces. In Section 4.7 conclusions were drawn and the above discussions are 

summarised.
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4.1 PRELIMINARY EXPERIMENTS :

Experiments were conducted on a test cylinder of diameter 0.168m and length 

1.326m with a flexible support system which was described in Chapter 3. The 

natural frequency of the system under water is 1.315 Hz. Even though the present 

system is flexible, three sets of preliminary tests were conducted at frequency pa-

rameters ( jffj as described by Sarpkaya (1986)) ¡3 of 3460, 4720 and 6555, at which 

Sarpkaya (1986) has tested a rigidly supported cylinder. In Fig: 4.1, 4.2, and 4.3, 

test results are compared with corresponding oscillatory flow experimental findings 

on rigid cylinders of Sarpkaya (1986). In all these experiments, the relative velocity 

and accelerations were used in Morison’s formula to obtain least square drag and 

inertia coefficients from the in-line force (Sarpkaya and Isaacson (1981)). Relative 

velocity was also used to determine total force coefficients. An inertia force due to 

the mass of the test cylinder was subtracted in deriving all inertia coefficients as well 

as for in all in-line force root mean square values and in the subsequent harmonic 

analysis. Also, when the cylinder is moving in stationary fluid, the Froude-Krylov 

force is absent and so the inertia coefficient has to be obtained from the following 

equation.

Cm — Ca +  1 (4-1)

where,

Cm =  inertia force coefficient 

Ca — added mass coefficient

While comparing with Sarpkaya’s (1986) test results an important consideration 

is that the present measurements were on an oscillating flexible cylinder while his 

refer to rigid test cylinders. However, since in these data sets the cylinder natural 

frequency was not an integer multiple of the external oscillatory frequency the 

cylinder oscillations were not very important and the test cylinder closely followed 

the external oscillation. Normalized cylinder in-line response curves are presented 

in Fig: 4.1 (d), Fig: 4.2 (d), Fig: 4.3 (d). It is therefore reasonable to expect the
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close agreement observed between present and Sarpkaya’s test results for similar ¡3 

values. On the whole, drag and inertia coefficients are well correlated with Sarp-

kaya’s results in the KC  number range less than 7 and at higher K C  range from 

20 to 50 for all these three sets of data. However, in the KC  range where vortex 

shedding influences are more predominant, i.e., in 7 <  KC  < 20 , no close agree-

ment has been observed, and the severe changes in drag and inertia coefficients for 

very small changes of K C  number around 10 are absent in the present data. This 

clearly indicates the dominant influence of vortex shedding; in the present case end 

conditions were much less favourable and vortex shedding would have been much 

weaker than in U-tube conditions.

In Fig: 4.4 drag and inertia coefficients are presented for all sets of integer fre-

quency ratios. At lower KC  number range, there is a significant increase in the 

inertia coefficient with increase in frequency ratio. But, in case of drag coefficients, 

for corresponding ranges of K C  numbers, a decrease in drag coefficients can be seen 

for an increase in frequency ratio i.e., for the same KC  number the higher the fre-

quency ratio the smaller the drag coefficient and the higher the inertia coefficient. 

One important factor is these changes are not significant at higher values of K C  

numbers i.e., after 50. This is similar for drag coefficients in Fig: 4.1 (b), Fig: 4.2 

(b), Fig: 4.3 (b) as well as in Fig (b). Another important aspect is for frequency 

ratio from 2 to 7, in fact inertia and drag coefficient values varied as smooth family 

of curves for different frequency ratios.

Total force coefficients and normalized cylinder in-line responses are presented for 

corresponding sets of frequency ratios in Fig: 4.5. At low A'C', in Fig: 4.5 (a) there 

is an increase in force coefficients with increasing frequency ratio. In Fig: 4.5 (b) a 

reduction in response occurs with the increasing in frequency ratio at a given KC. 

This is in accordance with the drag coefficients’ set presented in Fig: 4.4 (a), i.e., an 

increase in frequency ratio reduces drag coefficients as well as cylinder responses. In 

Fig: 4.6, drag and inertia force coefficients are compared with the well established
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results in literature from Bearman ct al., (1985), Chaplin (1993), Justesen (1989), 

Sarpkaya (1979) and Longoria ct al., (1991).

4.2 MORISON’S BEST FIT AND EXPERIMENTAL FORCES :

In order to calculate drag and inertia force coefficients from the Morison rela-

tive velocity formulation as mentioned above, the least squares error minimization 

method was adopted.

F =  0.5PDCd(U — x) \ U — x \ +0.25ir pD2[(Ca +  l ) ( U - x )  +  x] (4.2) 

F  =  in-line force

p =  mass density of water (kg/?7i3)

D =  diameter of the cylinder 

Cj. =  drag coefficient

U =  velocity of the oscillating system (rig) 

x =  velocity of the cylinder 

Ca =  added mass coefficient 

U =  acceleration of the oscillating system 

x =  acceleration of the cylinder

In data acquisition, for each KC  number, 20 cycles of data were collected with 

512 points for each cycle. To eliminate excessive high frequency mechanical and 

electronic noise, filters were used with a cut off frequency of 20Hz. for both in-line 

and lift force channels. LTsing relative velocity and acceleration records, and Morison 

drag and inertia coefficients, force records were re-plotted along with the original 

in-line force measurements in Fig: 4.7 to 4.12. For each frequency ratio, five sets of 

plots are presented for different I(C  numbers.

At even frequency ratios, i.e., at 2, 4 and 6 in Fig: 4.7(e), 4.9(e) and 4.11(e) 

respectively and at KC  numbers up to 25 the Morison fit is not in close agreement
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with experimental records. However, for the same range of K C  numbers, a better 

fit is observed for odd frequency ratios i.e., 3, 5 and 7 in Fig: 4.8(e), Fig: 4.10(e) 

and Fig: 4.12(e). This is probably linked to the fact that Morison loading has 

spectral peaks at odd frequency multiples. For K C  numbers above 25 reasonably 

good agreement is observed between measured and Morison in-line forces.

4.3 DRAG COEFFICIENT INFLUENCE AT LOWER I<C NUMBERS:

At low K C  numbers the force is inertia dominated. An attempt has been made 

for two sets of frequency ratios to find the significance of the drag coefficient at low 

K C  numbers. In Fig: 4.13 for three KC  numbers ranging from 4.245 to 9.597, ex-

perimental and Morison reconstruction plots are presented for frequency ratio 2. In 

each case two force traces are presented along with the original in-line experimental 

record. In second force record, the drag coefficient was made zero. It is interesting to 

observe that, there is not much difference between these force records at K C  =  4.24. 

But as the K C  number increased, as shown in Fig: 4.13(b) and (c), the significance 

of the drag coefficient becomes greater, as can be clearly seen in these two records. 

In addition to this at the odd frequency ratio 7, similar observations are presented 

in Fig: 4.14 (a), (b) and (c). It is very clear that at very low K C  numbers, there is 

virtually no influence of drag coefficient on the Morison reconstruction plots.

4.4 SPECTRAL PRESENTATION:

For one non-integer frequency ratio, spectra of lift-force, in-line force, in-line re-

sponse and external oscillations are presented in Fig: 4.15. These sets of data were 

basically acquired to compare with Sarpkayas’s (1986) data sets. In Fig: 4.15(d), the 

first spectral peak appears at the oscillating rig frequency. At the natural frequency 

of the test cylinder, there is almost no peak at all.

In order to identify the importance of the frequency ratio, spectral plots are shown 

in Fig: 4.16 to Fig: 4.17 for frequency ratios 6 and 7. Unlike the former spectra,

65



these sets of data refer to cases where the natural frequency is an integer multiple of 

the external oscillating frequency. Spectral peaks now appear at integer multiples 

of the external oscillating frequency particularly in the in-line force and response 

spectra. Even though, vortex shedding force and its frequency are more predominant 

in transverse force spectra, it is interesting to observe the corresponding spectral 

peaks in accordance with in-line force spectral peaks in Fig: 4.16(a) and 4.17(a). 

However, in Fig: 4.16(a) for frequency ratio 6, transverse force spectra, the spectral 

peak at cylinder frequency is not as clear as in Fig: 4.17 (a) which is for frequency 

ratio 7. In case of spectra of external oscillations, the first large spectral peak can 

be seen at the frequency of the rig oscillations.

4.5 IN-LINE FORCES :

This section examines how the lift changes in relation to the in-line forces at 

various K C  numbers and frequency ratios. In Fig: 4.18 a series of graphs are shown 

for all integer frequency ratios 2 to 7 where r.m.s. in-line force and lift force are 

plotted with respect to K C  number. From these graphs it is clear that in every 

frequency ratio set, in a particular range of KC  numbers, the lift force r.m.s. values 

are near or sometimes more than the in-line force r.m.s. values. For frequency ratio 

2, in K C  number range 6 to 9, lift force r.m.s. values are higher than in-line force 

r.m.s. values and similar dominance can be observed for other frequency ratios. 

But, the ranges vary with the frequency ratio. This KC  number range, where lift 

force is predominant increases with increase in frequency ratio. For frequency ratio 

of 3, 4, 5, 6 and 7, it is in the ranges 12 <  K C  < 16, 15 <  K C  <  20, 20 <  KC  

<  30, for 25 <  K C  <  33, 22 <  K C  <  35 respectively. To illustrate clearly and 

identify significant changes in magnitudes of forces, a number of time series plots 

are presented in Fig: 4.19 to 4.21. In each figure, time series plots for five K C  

numbers are shown. In Fig: 4.19 (c) and (d) for frequency ratio 2, it is clear how 

lift forces are more dominant than in-line forces at K C  number range 6.85 and 7.97 

respectively. Similar plots for frequency ratio 4 and 7 in Fig: 4.20(c), (d) and in
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Fig: 4.21 (c), (d) confirm the significantly higher values of lift forces comparing with 

in-line forces at certain ranges of lower KC  numbers.

4.6.0 LIFT FORCES :

In this chapter lift force and lift force harmonics are discussed for three sets of 

data for fixed cylinders. In section 4.6.1 data sets were for frequency parameter /? 

=  3460, ¡3 =  4720 and for /3= 6555.

4.6.1 COMPARISON WITH SARPKAYA’S (1986) RESULTS :

In Fig: 4.22 (a) r.m.s. lift force values are compared with Sarpkaya’s (1986) U- 

tube oscillatory flow results on fixed cylinders for the same values of the frequency 

parameter. From this figure, it can be observed that, the r.m.s. values are signifi-

cantly less than Sarpkaya’s test results in I(C  number ranges 10 to 25 and at higher 

K C  number values present results are closer to Sarpkaya’s values. This can be at-

tributed to strong vortex shedding in Sarpkaya’s (1986) experiments and subsequent 

lift force changes for oscillating cylinders. Further, in (b) to (f) first five harmonics 

are compared. In all these five harmonics, even though the magnitudes changes, in 

K C  number range from 10 to 25 higher fluctuations were observed. But, at odd 

harmonics 3 and 5 reasonable agreement was observed with rigid cylinder data sets. 

In Fig: 4.23 and in Fig: 4.24 similar sets of data for frequency parameter (3 =  4720 

and 6555 are presented. In Fig: 4.25 normalized lift force r.m.s. and harmonics at 

the oscillating rig frequency and at the test cylinder natural frequency are presented.

In Fig: 4.26, a series of harmonic presentations for ratio of lift to in-line force 

are shown for all frequency ratios. An important observation is that the ratio of 

the strength of each harmonic component changes with the K C  number and the 

frequency ratio. This shows for frequency ratio 2, the maximum peaks of harmonic 

ratios appeared in KC  number range 7 to 10, whereas this range is from 14 to 20 

for frequency ratio 3. Finally in Fig: 4.28 (b) for frequency ratio 7, this is in KC
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number range 45 to 55. This gives an idea of the increase in ratio of harmonics 

strength with respect to frequency ratio.

In Fig: 4.30 (a) ratio of r.m.s. lift-force to r.m.s. in-line force show that an increase 

in frequency ratio increases the KC  number where peak values occur. Some more 

graphs for different harmonics are shown in Fig: 4.31 and in Fig: 4.32. In Fig: 4.33 

to Fig: 4.35, normalized lift force harmonics are presented for all frequency ratios 2 

to 7 and from this, the dominant harmonics in different K C  ranges are identified and 

presented in Fig: 4.36. It is interesting to note that, at lower K C  numbers, for each 

frequency ratio, corresponding harmonics are more dominant and later, harmonics 

in increasing order predominant with increasing K C  numbers.

4.7.0 RESULTS FOR FREQUENCY RATIOS 2.85, 3 AND 3.15

A limited but detailed attempt has been made to investigate the effect of integer 

and non-integer values of frequency ratios around ratio 3. In section 4.7.1 drag and 

inertia force coefficients and their variations are illustrated and in section 4.7.2 in-

line force and response harmonics are presented. Finally in section 4.7.3 lift forces 

and lift force harmonics are discussed.

4.7.1 DRAG AND INERTIA FORCE COEFFICIENTS :

In all previous discussions, experimental investigations were presented for a wide 

range of frequency ratios. However, it is not clear how small changes in the frequency 

ratio around an integer value affects hydrodynamic forces and responses. In Fig: 4.37 

(a) and (b) drag and inertia force coefficients are illustrated for frequency ratios 2.85, 

3 and 3.15. From this figure, in KC  number range 1 to 10, drag and inertia coefficient 

values are higher for a frequency ratio of 3 than for both frequency ratios 2.85 or 

3.15. Another interesting observation is that for frequency ratio 3.15 the coefficients 

are smaller than either of the above two sets. At K C  number values higher than 

10, there is no significant change in drag coefficient but the above changes persist
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for inertia coefficients.

4.7.2 IN-LINE FORCE AND RESPONSE :

In order to identify in-line force variations a series of harmonics are presented in 

Fig: 4.38 (a) and Fig: 4.39 (a). R.m.s values of in-line forces are largest, in KC  

number range 1 to 10, at the integer value 3; but, all even harmonics, 2, 4, 6, 8 and 

10 are dominant for lesser value of frequency ratio 2.85 and odd harmonics 1, 3, 5, 

7, 9 are dominant for the integer value of frequency ratio 3 and the higher value of 

3.15.

In Fig: 4.38 (b) and Fig: 4.39 (b) of in-line response is plotted. R.m.s. responses 

were more dominant for integer value of frequency ratio 3 at K C  number range 1 

to 10 . Significant changes have been observed in K C  number range 1 to 18 for all 

3, 5, 7 and 9 even harmonics.

4.7.3 LIFT FORCE :

Regarding lift forces, even though they are significant they are random for all three 

sets of frequency ratios. However, for odd harmonics, rapid changes were observed 

at K C  number ranges 4 to 10 and 12 to 18. R.m.s. lift force and 3rd harmonics are 

shown in Fig: 4.38 (c) and Fig: 4.39 (c) respectively.

4.8 CONCLUSIONS :

Some of the important conclusions are summarized below.

1. Even though the present investigation is on flexibly mounted oscillating cylin-

ders, generally good agreement has been observed with Sarpkaya’s hydrodynamic 

coefficients for similar frequency parameters in K C  number ranges less than 7 and 

at higher values of KC  number more that 50. However, in K C  number range 7
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to 20 there is poor agreement. This can be attributed to the importance of vortex 

shedding on in-line force. In Sarpkaya’s (1986) experiments the test cylinder was in 

a U-tube, where the flow was more 2 Dimensional than in the present case, where 

some flow was free to pass around the ends.

2. There were significant changes in all hydrodynamic coefficients and cylinder 

responses with respect to frequency ratio. For the same K C  number, the higher the 

frequency ratio, the smaller the drag coefficient and the higher the inertia coefficient. 

Similarly, for total force coefficient, an increase in force coefficients can be seen for 

an increase in frequency ratio. Cylinder responses were in accordance with changes 

in the drag coefficient, i.e., an increase in frequency ratio reduces the drag coefficient 

as well as cylinder’s responses.

3. Regarding the Morison best fit, at even frequency ratios, up to K C  number of 

25, the Morison fit is not well correlated with experimental records. However, for the 

same range of KC  numbers a relatively good fit appeared for odd frequency ratios. 

But above a K C  number of 25 good Morison fit was observed for all frequency ratios 

for in-line force and response records.

4. From experimental findings it was concluded that, drag coefficient has little 

significance in Morison fit at lower KC  numbers i.e., less than 5. This, implies that, 

at smaller amplitudes, in-line loading is mainly due to inertia force acting on the 

test cylinder.

5. From spectral analysis, it is clear that, when the test cylinder natural frequency 

is in integer multiples of the external oscillating frequency, maximum spectral densi-

ties (i.e. spectral peaks) appear at multiples of external oscillating frequency. This 

clearly appeared in all four sets of data. These spectral peaks are more clear for in-

line force and consequent response, indicating that frequency ratio has a significant 

influence on these factors.
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6. From analysis and time series presentation, it was identified that there were 

some ranges of KC  numbers for each frequency ratio, where lift forces are more 

dominant than in-line forces.

7. Results at non-integer frequency ratios indicated that drag and inertia co-

efficients are sensitive to non-integer frequency ratios in K C  number ranges 1 to 

10.
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(a)

(b)

Fig: 4.4 Inertia and Drag Coefficients 
for different frequency ratios
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(a )

(b)

Fig: 4.5 Total force coefficients and in-line
response for different frequency ratios
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CHAPTER 5

INFLUENCE OF SUPERHARMONICS ON DRAG  

AND INERTIA COEFFICIENTS

5.0 INTRODUCTION

It is one of the common features of many flexible members like tension leg plat-

form tethers and Remotely Operated Vehicle umbilicals that they experience exces-

sive oscillations when a natural frequency of the member is an integer multiple of 

the natural frequency of the waves. These excessive oscillations have a major signif-

icance on drag loading and hydrodynamic damping which are essential for force and 

response predictions during the design process. However, there is little experimen-

tal information on the effect of in-line oscillations on loading and response in the 

literature, particularly at higher Reynolds numbers. At present it is not clear how 

in-line oscillations and consequent relative velocity and accelerations affect drag and 

inertia coefficients. It is also not clear how in-line stream wise oscillations influence 

hydrodynamic damping and consequent drag loading. In view of the importance 

of the practical application of streamwise oscillations, a set of new experiments 

was designed and conducted in which superharmonic in-line external excitation was 

imposed while the cylinder was undergoing oscillatory flow.

In section 5.1 investigations related to external superharmonic oscillations for drag 

and inertia coefficients are presented. In order to identify the effect of frequency 

ratio, some sets of drag and inertia coefficients are illustrated in section 5.2. In 

section 5.3 an attempt has been made to present the overall effect of superharmonic 

oscillations on drag and inertia coefficients. Possibly also the phase of the excitation 

has some influence but in these experiments no attempt was made to achieve any 

particular phase relationship between the two components of motion.
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5.1 SUPERHARMONIC OSCILLATIONS :

In these experiments, the frequency of the motion was set to integer sub-multiples 

of the natural frequency of the test cylinder. In order to impose external superhar-

monic excitation at each frequency ratio, superharmonic oscillations were imposed 

on the carriage motion at the cylinder’s natural frequency. This means that, in 

oscillatory flow, the cylinder experienced superharmonic in-line force oscillations. 

In the series of experiments, for every oscillating amplitude (i.e. for each specific 

K C  number), the superharmonic amplitude oscillations were imposed for a range of 

frequency ratios from 2 to 7.

In Fig: 5.1, 5.2, 5.3 and 5.4 time series plots for in-line force and in-line responses 

for different superharmonic oscillations are presented. These forces are after sub-

traction of the loading due to the inertia of the cylinder itself. These figures clearly 

demonstrate the effect of in-line superharmonic excitation and the consequent in-

crease in loading and response. However, it is interesting to observe (Fig: 5.2 and 

Fig: 5.4) that at higher KC  numbers the effect of external superharmonic oscilla-

tions is less significant.

In Fig: 5.5 the drag coefficient variation with respect to the external excitation 

is presented for frequency ratios ranging from 2 to 7. In each figure, every curve 

represents a particular KC  number. This gives an understanding of how the drag 

coefficient is varying with KC  number for a range of superharmonic oscillation 

amplitudes. From the above figures it is easy to observe that changes in drag 

coefficient are greater at lower KC  numbers.

In Fig: 5.6, for the same frequency ratios, changes in inertia coefficients are shown 

and follow similar variations as mentioned above for drag coefficients for similar 

ranges of K C  numbers. However, significant changes are more predominant in case 

of inertia coefficients throughout the KC  number ranges. This could be due to the 

effect of phase along with magnitude of superharmonic oscillating amplitudes.
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In order to identify possible reasons for these changes the following points are 

mentioned.

a. Smaller K C  numbers imply lower amplitudes of oscillations. That means, at 

lower K C  numbers, flow separation may take place only when the superharmonic 

excitation exceeds a certain level. Even at moderate K C  numbers seperation may 

be strongly effected by superharmonic excitation. This may be the reason for signif-

icant changes in coefficients. Also no proven experimental studies confirm that, for 

flexibly mounted oscillating cylinders, the added mass is the same as rigid oscillating 

cylinders Sarpkaya (1993).

b. At lower K C  numbers (less than 20), vortex excited forces are more predomi-

nant and responsible for transverse lift forces. However, vortex formation, evolution, 

and transport are different from those of rigid cylindrical members in oscillatory flow. 

From previous observations (Chapter 4) it is quite clear that even small changes in 

oscillating amplitude make significant changes in force coefficients. From this infer-

ence, it can be concluded that the strong influence of vortex excited loading might 

be the reason for larger changes in drag as well as inertia force coefficients at any 

particular KC  number.

c. At lower KC  numbers, (i.e. smaller amplitudes) flexibly mounted cylinder 

oscillation grows rapidly with low levels of superharmonic excitation. That means 

relative velocities as well as relative accelerations influence force coefficient calcu-

lations. This could be one of the reasons for variations of drag and inertia force 

coefficients at fixed KC  numbers.

5.2 EFFECT OF FREQUENCY RATIO:

The ratio of natural frequency of the test cylinder to the oscillating frequency is 

one of the parameters which has much practical significance. It is possible in prac-

tice that, when the natural frequency of the cylinder is an integer multiple of the
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frequency of external environmental loading (such as waves and vibrations), exces-

sive oscillations of the system result causing fatigue and structural damage. In order 

to identify the frequency ratio influence, in Fig: 5.7, some test results are compared 

for similar values of KC  numbers for different frequency ratios. In Fig: 5.7 (a) 

and (b) for frequency ratios 3,5,6 and 7, drag and inertia coefficients are compared 

and it is clearly evident that the frequency ratio has a significant influence at K C  

numbers 7 to 9, and the higher the frequency ratio, the larger the changes (even 

for small changes in superharmonic excitation). Similar variations were observed 

in both drag and inertia coefficients. Also in (c) and (d) for K C  numbers 15 and 

16 some more test results are illustrated and these observations confirm the above 

findings, at higher KC  numbers.

5.3 DRAG AND INERTIA FORCE COEFFICIENTS WITH SUPERHARMON-

ICS:

In order to demonstrate effect of superharmonic oscillations at different frequency 

ratios, in Fig: 5.8 and Fig: 5.9 a series of graphs of drag and inertia force coef-

ficients against KC  for frequency ratios ranging from 2 to 7 are illustrated. It is 

clearly demonstrated that, for frequency ratios 2,3 and 4, the external superhar-

monic influence is strongest for I(C  number range 1 to 10. However, for higher 

frequency ratios ranging from 4 to 7 rapid changes in drag force coefficients are 

significant in KC  number ranges from 1 to 25. But, in Fig: 5.9 (f) the influence of 

external excitation is virtually significant for entire I(C  range 1 to 55. This again 

can be observed in Fig: 5.6 (f) as well. However, this is not the case for drag force 

coefficients.

5.4 CONCLUSIONS :

1. It was observed that the drag and inertia coefficients are functions of external 

superharmonic oscillation amplitudes.
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2. These changes can be attributed to the significant added mass effects, dominant 

vortex excited lift forces, relative velocities and accelerations at lower KC  numbers.
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Fig: 5.5 Drag coe f f ic ien t  variation with resp ect  to
superharm on ic  osc il la t ions for  freq u en cy
ratio fn/ f 0 = 2,3,4,5,6 and 7
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Fig: 5.6 Inertia co e f f ic ie n t  variation with respect  to
su perharm on ic  osc i l la t ions  for  freq uen cy
ratio fn/ f 0 = 2,3,4,5,6 and 7
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Fig: 5.7 Effect of frequency ratio on drag and 
inertia coefficients
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CHAPTER 6

IN-LINE FORCE AND RESPONSE EXPERIMENTS 

AND MODEL RESULTS

6.0 INTRODUCTION

In this chapter a time-stepping numerical model has been proposed to predict 

in-line force and response in oscillatory flow using the relative velocity Morison 

equation. The velocity and acceleration of the oscillating rig were obtained from 

measured motor displacements by the Fast Fourier Transform technique. Important 

parameters like mass, stiffness and structural damping of the system were measured 

and incorporated at appropriate stages of the model.

6.1 RELATIVE VELOCITY AND RELATIVE ACCELERATION :

Equation of motion for the carriage is

X  — asm cot (6-1)

a =  is the amplitude of the oscillating rig

X  =  is the oscillating rig displacement and co represents the angular frequency of 

the oscillating rig and t is the time (See Fig: 6.1). Higher frequency components 

were added to rig velocity and accelerations as described in subsequent paragraphs. 

The basic force equation for the cylinder is

(Ms + Ki)a +  CSV +  Ksx = I<d(U -  V) \ (U -  V) \ +U{I<i +  Ms) (6.2)

where

Ms =  mass of the system +  water mass inside cylinder 

Ki =  added mass of water for test cylinder
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Ki =  pCan— L (6.3)

Ca =  added mass coefficient

Cs =  structural damping of the system

K a =  stiffness of the system under water

(6.4)

Cd =  drag coefficient 

L =  length of the test cylinder

x =  displacement of the cylinder relative to the carriage 

V =  velocity of the cylinder relative to the carriage 

a =  acceleration of the cylinder relative to the carriage 

U =  velocity of the rig 

U =  acceleration of the rig

The basic principle in this numerical model is the linear acceleration approach; the 

acceleration of the flexible cylinder is assumed to be linearly varying over each time 

step and on this basis the velocity and accelerations are estimated at the end of the 

time step. In the beginning, just before the rig starts to oscillate, the initial condi-

tions such as displacement and velocity of the rig and cylinder are zero. From these 

initial conditions the displacement of the flexible cylinder at the end of the first time 

step is estimated by Newton-Raphson iteration. Once the cylinder displacement is 

obtained, the velocity and acceleration of the cylinder can be derived from the above 

assumption. In the next step, in order to obtain the cylinder displacement, veloc-

ity and acceleration, the corresponding previous values are used and this process 

is continued. As this is a numerical procedure, it takes some iterations and cycles 

for stabilisation. In order to compare in-line force and in-line responses of experi-

mental values, results after several cycles are considered. Appropriate velocity and 

accelerations were added to the computed rig motion to simulate externally imposed 

superharmonic oscillations. In Fig: 6.1 line diagrams for the test cylinder and model 

are presented.
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6.2 LINEAR ACCELERATION APPROACH FOR VELOCITY AND ACCELER-

ATION :

If Vi, a\ etc., represent the velocity and acceleration at the beginning of the time 

step, and V2, a2 those at the end, then

rSt
V2 =  Vf +  /  adt (6.5)

r8t
V2 =  V| +  /  (ai +  àt)dt 

Jo
(6.6)

1 st
V2 =  Vi +  [aif +  - ¿ i 2]

2, 0
(6.7)

V2 =  Vi +  (Ii8t +  \:à8t2 (6.8)

Similarly the displacement of the test cylinder at the end of the first time step is,
rSt

X2 =  X\+ vdt
Jo

(6.9)

f st 1
x-2 =  X\ +  /  (Vi +  ci\t +  —àt2)dt (6.10)

1 1 St
x2 — ;C1 +  (Vit +  —ill t2 +  T<^3)

2 0 0
(6.11)

X2 = X\ H- V\8t +  -f- (6.12)

The rate of change of acceleration is,

( « 2 - « i )
a ~ St

(6.13)

V2 =  Vi +  ci\6t +  —8t(d2  — ai) (6.14)

V2 =  Vi +  -a i S t  +  -a ^ S t (6.15)

X2 — X\ -f- V\8t -f* —(i]8t -f- (^2 — &i) (6.16)

X2 — X\ 4- V\8t -j" ~~cii8t̂  ~ci28t 
3 6

(6.17)

From the above relations, acceleration of the cylinder at beginning of second time

step can be estimated in terms of cylinder displacements and the initial velocity and 

accelerations of the cylinder.
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(6.18)«2 =
x -ì — xi — V\8t — \a-i8t2

ì* a
1 1 xi — x\ — V\8t — \a\8t2

V> =  V ^ - a ,S t + - * - i ----------- --------------------
6

1 3  1
V2 =  V\ +  ~(i\8t 4* — (x2 — xj — — —a ji i2)

(6.19)

(6.20)

Again from the above relations, the velocity of the cylinder at the end of the time 

step can be estimated in terms of cylinder displacements and initial velocity and 

acceleration.

Vi =  | -(x2 -  X!) -  2V, -  I fl iSt (6.21)
01 Z

These formulae are substituted into the equation of motion.

(M, +  K;)a2 +  C,V2 + K.xi =  Kd{Ui -  V2) | (U2 -  V2) | +Ù2(K ì +  M.) (6.22)

Which is then solved for x2 . This process can then be repeated after substituting 

x2 for x\ etc.,

6.3 DRAG AND INERTIA FORCE COEFFICIENTS :

In the present mathematical model the drag and inertia force coefficients were 

derived from the measurements using the Morison relative velocity formulation.

6.4 IN-LINE FORCE AND RESPONSE :

In Fig: 6.2 (a,b), for one test run, time series for in-line force and in-line responses 

are shown for the model and experimental values at K C number 1.607 and frequency 

ratio 7. These records are with superharmonic oscillations. Besides this, the Morison 

reconstruction time series plot for in-line force is also shown in the same figure 

(c). In this case the in-line force includes the inertia of the test cylinder. Very 

good agreement between the original force record and the Morison reconstruction 

can be observed. In the case of model and experimental in-line force records, the
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inertia force due to the mass of the test cylinder was subtracted from experimental 

force records and compared with corresponding model values. Where as in Morison 

reconstruction force records inertia force due to test cylinder is included. In this 

case, the predicted values are not in such good agreement with experimental results 

for both forces and responses. This is because, at lower K C  numbers, the inertia 

force due to the mass of the test cylinder is dominant.

However, in Fig: 6.3 (a,b), for frequency ratio 6, K C  number 35.12 and without 

superharmonic oscillations, time series plots for force indicate fair agreement with 

model predictions. But for the response plots, agreement is less satisfactory. The 

Morison reconstruction for force records in Fig: 6.3 (c) is in good agreement with 

measured force. In this case, at higher K C  number 35.12, the inertia force due 

to mass of the test cylinder is relatively less significant in the original in-line force 

signal and this might be the reason for better agreement between force and model 

records.

In another case in Fig: 6.4 (a,b), time series plots for frequency ratio 7, KC  

number 16.06 and with superharmonic oscillations are shown. In this case model 

predictions are smaller than experimental values. But the Morison reconstruction 

for the force record is reasonably good. In this case again, the inertia force due 

to mass of the test cylinder is significant. From the above observations, it can 

be concluded that agreement between experiments and model results depend on the 

frequency ratio (i.e. the ratio of the natural frequency of the cylinder to the external 

oscillating frequency) and I(C  number range indicating the effect of flow separation 

and vortex excited lift force influence in in-line force. The unpredictable effects of 

three dimensional flow probably also contribute to relatively poor predictions of the 

model where vortex excited loading effects are predominant.

In Fig: 6.5 for all frequency ratios from 2 to 7 values of r.m.s. in-line force are 

compared with model results. Model predictions in KC  number ranges where vortex 

excited lift forces are dominant are not in good agreement with experimental values
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but at higher KC  numbers, agreement is better. Similar observations can be found 

for in-line responses in Fig: 6.6. One possible reason could be that the effect of 

vortex excited loading might be affecting the in-line forces and responses. But at 

higher K C  numbers, these effects are less significant.

In another set of observations, experimental and model harmonics are compared 

separately at the carriage frequency and at the test cylinder’s natural frequency. 

The carriage frequency was set at between one half and one-seventh of the natural 

frequency of the test cylinder. In Fig: 6.7 and Fig: 6.8 experimental harmonics at the 

carriage frequency are compared with model harmonic values for both in-line force 

and response. Model predictions are relatively good for in-line force and response at 

higher K C  numbers but at lower KC  numbers, the model agreement is not good. 

In Fig: 6.9 and Fig: 6.10 model and experimental harmonics are compared again 

at the cylinder’s natural frequency. Agreement in this case is poor for all frequency 

ratios.

In Fig: 6.11 to Fig: 6.16, a series of graphs for model and response are presented 

for superharmonic oscillations. As described in Chapter 5, for every frequency ra-

tio, for a wide range of fixed K C  numbers, superharmonic oscillations at the test 

cylinder’s natural frequency were imposed at different amplitudes. This study was 

mainly intended to investigate the effect of superharmonic external excitation on 

the cylinder, and consequent changes in drag and inertia coefficients. However, to 

test the validity of the present model, experimental results are compared at every 

frequency ratio set for different conditions. In the case of in-line forces, the inertia 

force due to the mass of the test cylinder was subtracted from experimental and 

model values. Three different sets are compared for in-line force and responses. The 

first one is the root mean square value of in-line force and in-line responses. Each 

value was the average of several cycles. The second one refers to the component at 

the carriage frequency. The third one is the harmonic value at the test cylinder’s 

natural frequency. In other words, if the test cylinder was oscillated at frequency 

ratio 7, the 7th harmonic is that at the test cylinder’s natural frequency. For both
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harmonic components, the final value was the average of several cycles. In every 

case normalized values of in-line force and in-line response were compared. Forces 

were normalized with ( | p U?ms d ) where Urms is the root mean square value of 

the oscillating rig velocity, d is the diameter of the test cylinder and p is the mass 

density of water. Responses were normalized with the diameter of the test cylinder.

In Fig: 6.11 in-line r.m.s. results are compared with model values. In many 

cases, where lift forces are predominant due to vortex excitation, model predictions 

are poor. But at relatively higher KC  numbers a reasonable agreement can be 

observed. Similar observations can be seen in Fig: 6.12 for in-line response root 

mean square values. This further demonstrates the effect of vortex loading on in-

line forces and response in certain ranges of K C  numbers as discussed in Chapter 4

In Fig: 6.13 and Fig: 6.14 in-line loading and responses are compared with model 

values at fundamental harmonics of the oscillating cylinder frequency or in other 

words at the carriage rig frequency. Model and experimental values are in relatively 

good agreement at odd frequency ratios i.e., 3, 5 and 7 but no reasonable agreement 

can be seen at even frequency ratios and for in-line force, model predictions are 

higher than experimental values.

In Fig: 6.15 and Fig: 6.16 in-line loading and responses are compared at the test 

cylinder’s natural frequency as before. Reasonable agreement was observed only at 

higher K C  number values. A notable observation is that at all frequency ratios, 

model predictions are lower than experimental values.

6.5 CONCLUSIONS:

1. Overall performance of the model indicates the limitations of the Morison 

equation. Besides this, response predicted with least square Morison coefficients are 

not in good agreement with measurements.
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2. The Vortex shedding process and vortex dynamics influence in-line force and 

consequent response at lower KC  numbers.

3. At certain harmonics model predictions are better than others, indicating the 

importance of certain harmonics in relative velocity Morison formulation for flexibly 

mounted cylinders. At odd frequency ratios, model and experimental values showed 

better agreement than at even frequency ratios.
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(a)

(b)

Fig: 6.1 Test Cylinder, Simulator Carriage 
and Model Line diagram
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(b)

(c )
Fig: 6.3 Model and Experimental values for

in - l in e  fo rce  and in - l in e  response
for  frequency  ratio 6 and KC = 35.12
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(b)

Fig: 6.4 Model and Experimental values for
in - l in e  force  and in - l in e  response
for  frequency  ratio 7 and KC = 16.06
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CHAPTER 7

STEADY FLOW EXPERIMENTS

7.0 INTRODUCTION

In this chapter experimental investigations in steady flow at higher Reynolds numbers 

are presented. In the critical Reynolds number range, there have been few investigations 

on fluid loading on flexibly mounted cylinders, on the resultant vortex shedding process 

and the response. In addition, hydrodynamic damping on oscillating cylinders is a 

process which is poorly covered in the literature due to experimental problems. In 

section 7.1.0 some of the general principles are identified. In section 7.2.0 the major 

experimental facility in which the test cylinder was moved on a servo controlled carriage 

is described. In section 7.3.0 the data analysis for stream-wise response of the test 

cylinder at various reduced velocity (Vr) ranges is discussed. Finally section 7.4.0 

presents some conclusions.

7.1 FLUID LOADING ON STRUCTURES IN STEADY FLOW :

For steady flow, experimental investigations can be performed either on fixed cylin-

drical models in flowing fluid, or by towing cylindrical members in still water by means 

of a carriage. In either case, if the physical model is flexibly mounted, the fluid loading 

and consequent response are more complex than on fixed models. Apart from structural 

properties like stiffness, mass and damping, other parameters like the vortex shedding 

frequency also play an important role in fluid loading and consequent response. In 

addition to this, the added mass of oscillating members is not always same from fixed 

members. Very few investigations are available in the literature on this aspect, which 

has considerable bearing on the prediction of response for flexible members.

At critical Reynolds numbers, the drag loading on the test cylinder is very sensitive 

even to minor changes in Reynolds number. This means minor changes in steady
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velocity can cause fluctuating drag loading possibly causing in-line oscillations Martin 

(1981), Naudascher (1987). In order to investigate this regime experimentally external 

in-line oscillations were superimposed on the test cylinder in steady flow at a certain 

frequency, and its response was measured.

7.2 EXPERIMENTS DESCRIPTION :

A new experimental facility has been designed to tow the horizontal cylinder in still 

water to model steady flow conditions. This system consists of a carriage with four 

hard rubber coated steel wheels. A pair of rails was provided for the carriage to enable 

it to run smoothly as shown in Fig: 7.1 (a) . These rails and the carriage are at the top 

of the wave flume of length 55 m, 1.7 m wide and depth 1.8 m. At one end of the flume 

there is a beach and at the other end a servo motor which drives the carriage through 

a gear box. The gear box is connected to a shaft which has pulleys on either side of the 

flume, in which two steel cables run. The carriage is connected to the cables, and its 

velocity can be controlled through a feedback system from the motor. The maximum 

steady velocity which can be reached through this mechanism is 3 m/s.

A pair of “ I ” sections were mounted on the carriage, to which the supports of the test 

cylinder arms were fixed. This arrangement enables the test cylinder to oscillate only 

in-line in the direction of carriage movement (according to the design). A description 

of the test cylinder, end plates, strain gauge arrangements is given in 3.4.0. The same 

set up is used for steady flow tests.

7.3.0 CALIBRATIONS AND FREE VIBRATION TESTS :

Before experimental investigations, calibrations were conducted for strain gauges 

and for an accelerometer on the carriage. A new accelerometer was developed for the 

purpose consisting of a pressure transducer and a horizontal column of water Chaplin 

(1994b).
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7.3.1 CALIBRATIONS :

Before calibrations, the flume was emptied and in-line calibrations of the top strain 

gauges, the bottom strain gauges and the stiffness of the system were performed (see 

Fig: 7.1). All calibrations were done with the CED1401 data acquisition system and 

with COLLECT Chaplin (1994a) software as described in 3.6.0. In order to measure 

the stiffness of the system, digital electronic dial gauges were installed at both bottom 

ends of the test cylinder as shown in Fig: 7.1 (b). While calibrating, at every load 

increment, the displacement of the cylinder was measured at both dial gauges and the 

average displacement was used.

7.3.2 FREE VIBRATIONS TESTS :

Free vibration tests were conducted to obtain the natural frequency and damping of 

the system. The carriage was clamped to the rails and the test cylinder was oscillated 

freely in air. From bottom strain gauge free vibration records the natural frequency 

and damping were calculated. The natural frequency was compared with the calculated 

value of 2.48 Hz. and the difference was only 2 percent. The logarithmic decrement of 

damping was measured from bottom strain gauges as 0.022. Once the calibrations and 

free vibration tests were completed the flume was filled with water. Water depth was 

maintained constant throughout the experimental investigations as 1.425 m. In still 

water, the cylinder was oscillated and released for free vibrations. Again from bottom 

strain gauge free vibration records, natural frequency and damping were calculated. 

The natural frequency of the cylinder in still water was compared with the calculated 

value of 1.55 Hz. and again the difference is only 2 percent. Besides this, damping was 

measured as 0.047. These results are shown in the Table 7.1 below.
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Cylinder Damping 8 Natural Frequency % Diff.

measured calculated

a. Empty cyl.

in air 0.022 2.53 Hz. 2.48 Hz. 2.00

c. Cylinder in

flume full 0.047 1.52 Hz. 1.55 Hz. 2.00

of water

Table 7.1 Free vibration tests (steady flow)

7.4.0 EXPERIMENTS AND DATA ANALYSIS :

In the beginning a few experiments were conducted by towing the test cylinder at 

a steady speed over a wide range of reduced velocities from 1.5 to 4.0. No in-line 

oscillations were observed. The mass damping parameter K , =  2 m 8 /  p d2 where m 

is mass of the test cylinder including inside water mass and added mass, 8 is damping in 

still water, p is mass density of water, d is the diameter of the test cylinder, was 0.264. 

This is in a range in which previous reported results, Naudascher (1987), do show 

oscillations in the Reynolds number range 7-25 x 103. However in the present case, 

the Reynolds number range was from 6.8 to 14 x 104. No oscillations were observed 

in the present case. The difference in Reynolds numbers may explain the fact.

The main experimental tests were conducted in three different stages. The basic 

purpose of the experimental investigation was to investigate the effect of external in-

line oscillations on drag loading, response and hydrodynamic damping. External super 

harmonic oscillations at the test cylinder natural frequency and at factors of its natural 

frequency were imposed through the external servo motor control mechanism, while 

the carriage was moving with a steady velocity. Basically three sets of superharmonic 

excitations were imposed. In the first instance, external in-line oscillations at the 

natural frequency of the test cylinder were imposed at different amplitudes. Later, 

one set of superharmonics at 0.9 times the natural frequency of the test cylinder and 

another at 1.1 times the natural frequency of the test cylinder were imposed at different
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amplitudes while the test cylinder was travelling at reduced velocities Vr of 2.0, 2.5, 

3.0, 3.5, 4.0. The reduced velocity Vr in this case is defined as the ratio of velocity 

V to the product of natural frequency of the test cylinder /  and its diameter d (VT =  

V/(fd)). This means that at every reduced velocity, there are three sets of externally 

excited oscillations at three different frequencies. At every frequency, superharmonic 

oscillations were imposed at seven different amplitudes of oscillations.

Every test was started when the water in the flume was almost completely settled 

and in every test the carriage was towed in one direction only. This reduces interference 

effects caused by large wake turbulence from previous runs.

Fortran coding was written to process each data file. The number of points for 

each cycle was identified from spectra of actual oscillations of the test cylinder. From 

FFT analysis, the in-line response from the top strain gauges and the in-line external 

excitation amplitude from the accelerometer are calculated. For presentation in-line 

response was normalized with the diameter of the test cylinder. The final value is the 

average of several cycles.

7.4.1 IN-LINE EXTERNAL EXCITATION AT STEADY FLOW :

In Fig: 7.2 three sets of graphs are shown for various external excitations at different 

reduced velocities ranging from 2.0 to 4.0. In Fig: 7.2 (a) external superharmonic oscil-

lations were imposed at 0.9 times the natural frequency of the test cylinder (1.52Hz.). 

This figure indicates that the in-line response for a given external oscillation is larger 

at lower reduced velocities. In Fig: 7.2 (b), (c) similar plots are shown for exter-

nal superharmonic oscillations of 1.0 and 1.1 times the natural frequency of the test 

cylinder.

In Fig: 7.3 several plots for different reduced velocities are shown. In all cases except 

Vr =  2 the in-line response is highest when the external in-line oscillations are imposed 

at the natural frequency of the test cylinder; oscillations imposed 0.9 or 1.1 times
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natural frequency result in smaller responses for the same external in-line oscillation 

amplitude. This demonstrates the importance of the external excitation frequency on 

the hydrodynamic damping and also identifies how relatively small changes in external 

loading can significantly influence response.

7.4.2 HYDRODYNAMIC DAMPING :

Several plots for in-line response and external excitation are presented for various 

external excitations. From these relations, hydrodynamic damping was estimated from 

following calculations.

Considering the oscillating test cylinder as single degree of freedom system, the 

following equation can represent the system.

inÿ +  cÿ + ky =  ka cos (u>t) 

The response can be represented as

(7.1)

y =  aT cos (cot — (¡>)

and on this basis, the solution can be inferred as follows

ka 1

k V (1 -  +  (2 « ft )2
then

a

where,

uj0 =

m =  mass of the test cylinder including added mass 

c =  damping

(7.2)

(7.3)

(7.4)

(7.5)
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a =  external in-line excitation

ui0 =  natural frequency of the test cylinder

u =  external excitation in-line frequency

From the above equations, once we know the external excitation and corresponding 

response, it is possible to estimate hydrodynamic damping in the form of the damping 

coefficient £. Fig: 7.4 shows typical relationships between external excitation and 

response. From the slope of each line, the damping coefficient £ was calculated from 

above expressions for every reduced velocity. In Fig: 7.5 the relation between damping 

coefficient and reduced velocity is shown for the three external excitation frequencies. 

These results clearly demonstrate that the hydrodynamic damping is a function of the

k — stiffness of the system

ar =  in-line response of the the test cylinder

external excitation frequency.

7.4.3 DRAG COEFFICIENT :

From the above results for hydrodynamic damping, the fluctuating drag coefficient 

can be derived from the following expressions:

F  =  Cj^pd(V +  cos (uit)fL (7.6)

assuming V <  V

where V cos (cot) is the cylinder velocity

(7.7)

from this expression 

fluctuating part of force is

F =  cJ-pd2V(V  cos (cot))L
i t

(7.8)
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(7.9)F =  Cd-p(l2VL x [cylinder velocity] 

from the following relations above equation can be rewritten as

c d = t (7.10)
(VT pd2 L / Anm)

Drag coefficients were calculated for various reduced velocities and at different external 

excitation frequencies and are shown in Fig 7.6. In Fig: 7.7 drag coefficients are com-

pared with previous investigations of Moe and Verley (1978). In order to compare test 

results, at each point the reduced amplitude (a/d) (where a is amplitude and d is the 

diameter of the cylinder) is printed. The present results at various external excitations 

showed much higher values than Moe and Verley (1978) at same reduced velocities. 

In order to compare qualitatively, present and Moe and Verley (1978) results, a non- 

dimensional parameter (T * V/d) where T is the time period, V is the mean velocity 

and d is the diameter of the test cylinder was calculated for each case. This parameter 

ranges from 1.82 to 4.45 for present results compared with 2.84 to 47.25 for Moe and 

Verley (1978) results. This large variation in Moe and Verley (1978) results might be 

the reason for differences between present and Moe and Verley (1978) results. Other 

possible reasons can be attributed to the effect of in-line external excitations imposed 

in the present case at multiples of the natural frequency of the test cylinder. Another 

important aspect observed in the present results is the calculated drag coefficient is 

dependent on the reduced velocity as well as external excitation frequency. The change 

in drag coefficients might be due to wake formation and its changes due to external 

frequency of oscillations.

7.5 CONCLUSIONS

1. In steady flow experiments, external excitation has considerable influence on the 

in-line response of the test cylinder. In-line oscillations not only depend on external 

in-line oscillations amplitudes but also on excitation frequencies. Even small changes 

with respect to the cylinder’s natural frequency (i.e. even 10 percent) make significant
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differences in the in-line response.

2. Calculated drag coefficients are higher than Moe and Verley (1978) values in the 

present case.

3. The above steady flow tests were repeated over a similar reduced velocity range 

with end plates increased in diameter from 0.42 m (2.5 x diameter) to 0.59 m (3.5 x 

diameter). No in-line oscillations were observed. The difference in Reynolds number 

range from previous studies may still be the reason for no oscillations at steady speed.
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Fig: 7.1 (a) Carriage, test cylinder and related 
instrumentation
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Fig: 7.1 (b) Carriage, test cylinder and related 
instrumentation
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( c ) (d)

Fig: 7.4 In-line response and 
external excitation
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Fig: 7.5 H ydrodynam ic dam ping  at various 
red u ced  ve loc it ies
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Fig: 7.6 Drag c o e f f i c ie n t  at various 
red u ced  velocit ies
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CHAPTER 8

CONCLUSIONS

From the experimental investigations and modelling in oscillatory and steady flow 

experiments described above, conclusions are summarized as follows.

1. There is a scarcity of experimental data at large scale particularly on flexible 

members. But problems associated with flexible offshore members such as in marine 

risers, Remotely Operated Vehicle umbilicals and Tension Leg Platform tethers are 

mostly at higher Reynolds number ranges and further studies of loading and response 

in this regime are required.

2. Several experimental investigations were reported in the literature on external 

transverse excitations on test member. But very limited results are available on ex-

ternally imposed in-line oscillations at higher Reynolds numbers. These studies have 

significant implications for the real field environment in the context of loading and 

response of compliant members due to tides and currents.

3. Even though experimental investigations in wind tunnels have been reported 

in the literature studying changes in the flow at critical Reynolds numbers, there is 

much to be studied for compliant members in steady flow in water since drag loading 

and hydrodynamic damping are interrelated. Vortex excited lift and its relation with 

various parameters like KC  number and Reynolds number on rigid members are very 

much different from those on flexibly supported members. In some ranges of KC  

numbers, vortex excited lift is more dominant than in-line forces. If the member is 

compliant, the magnitude of lift at a given K C  number is likely to be different.

4. Earlier results in this investigation were compared with Sarpkaya’s (1986) test 

results on fixed cylinders of U-tube data for similar frequency parameter. Even though 

the present test cylinder was compliant, the measurements in reasonable agreement
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with above test data at higher KC  numbers. This can be attributed to the fact that 

at non integer frequency ratios, the test cylinder oscillations are not very significant. 

It further confirms that, in KC  number range 7-20, due to vortex excited lift forces, 

the present test results are different from those of fixed cylinder data.

5. The frequency ratio has a significant influence on the in-line fluid loading and 

consequent response. Present experimental results indicated that for similar K C  num-

bers, a higher frequency ratio means a smaller drag coefficient and a higher inertia 

coefficient. In the case of the total force coefficient, an increase in force coefficients 

was observed for an increase in frequency ratio. Cylinder responses were in accordance 

with changes in the drag coefficient.

6. Good Morison fit was observed for odd frequency ratios below K C  number 25 

but it is not the case for even frequency ratios. At KC  numbers more than 25 good fit 

was observed for all frequency ratios.

7. From a series of findings for different frequency ratios, it was concluded that the 

drag coefficient has no influence on Morison fit at K C  numbers less than 5 indicating 

that, in this range in-line loading is mainly due to inertia force acting on the test 

cylinder.

8. For this compliant cylinder test data, maximum spectral densities were observed 

at multiples of the external oscillating frequency when the oscillating frequency was 

in integer multiples of the test cylinder natural frequency. These spectral peaks are 

very significant for in-line force and responses. This confirms the importance of the 

harmonic content when the environmental loading frequency in field condition is an 

integer fraction of the natural frequency of the test cylinder.

9. It was observed that external high frequency oscillations at the test cylinder’s 

natural frequency have a significant effect on drag and inertia force coefficients while 

the cylinder is undergoing oscillatory flow. Further investigations revealed that these
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force coefficients are functions of external high frequency oscillation amplitudes. At 

lower K C  number range, the influence of external superharmonic oscillations is more 

significant. Possible reasons were identified as the higher relative velocities, significant 

difference of added mass for compliant members and dominant vortex excited lift forces.

10. A numerical model depending on the linear acceleration approach was developed 

for the present experimental investigations. As the relative velocity Morison coefficients 

were used in this model, it indicated the limitations of the relative velocity Morison 

equation at lower KC  number range. However, at higher K C  numbers, the model 

predictions are reasonably good. Further, it was observed that at odd frequency ratios, 

model and experimental values showed better agreement than at even frequency ratios. 

This shows the importance of the frequency ratio.

11. A new set of experiments in steady flow were conducted at higher Reynolds 

number range (7 to 14 x 104 ). External in-line oscillations at factors of test cylinder’s 

natural frequency have significant influence on in-line force and response in steady flow. 

Even small changes (i.e. even 10 percent) can cause considerable influence on in-line 

force and response.

12. From a set of experimental findings it was concluded that hydrodynamic damping 

and drag coefficient are functions of reduced velocity ( Vr = V/fd, where V =  steady 

flow velocity, /  =  natural frequency of the test cylinder, d =  diameter of the test 

cylinder) and external excitation frequency.
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