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Abstract
We propose a general modular approach to support decision-makers’ response in the
early stages of a pandemic with resource expansion, motivated by the shortage of
Covid-19-related intensive care units (ICU) capacity in 2020 in Italy. Our approach
uses (1) a stochastic extension of an epidemic model for scenarios of projected infec-
tions, (2) a capacity load model to translate infections into scenarios of demand for
the resources of interest, and (3) an optimization model to allocate this demand to
the projected levels of resources based on different values of investment. We demon-
strate this approach with the onset of the first and second Covid-19 waves in three
Italian regions, using the data available at that time. For epidemic modeling, we used a
parsimonious stochastic susceptible-infected-removed model with a robust estimation
procedure based on bootstrap resampling, suitable for a noisy and data-limited envi-
ronment. For capacity loading, we used a Cox queuing model to translate the projected
infections into demand for ICU, using stochastic intensity to capture the variability of
the patient arrival process. Finally, we used stochastic dynamic optimization to select
the best policy (when and how much to expand) to minimize the expected number
of patients denied ICU for any level of investment in capacity expansion and obtain
an efficient frontier. The frontier allows a trade-off between investment in additional
resources and the number of patients denied intensive care. Moreover, in the panic-
driven early days of a pandemic, decision-makers can also obtain the time until which
they can postpone action, potentially reducing investment costs without increasing the
expected number of denied patients.

K E Y W O R D S
capacity expansion, Covid-19, disaster response, ICU, Italy, pandemic modeling

1 INTRODUCTION

By the end of 2021, Covid-19 had already taken an estimated
15 million lives as estimated by the WHO, in part due to a
shortage of intensive care units (ICUs) and other resources.
We provide a general approach to determine the optimal tim-
ing and extent of resource expansion, say, ICUs, in the early
stages of a pandemic with budget constraints and the high
uncertainty in the growth of infected people. Furthermore, we
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apply it retrospectively for the early stages of the first and sec-
ond waves of Covid-19 in three regions in Italy that suffered
high fatalities.

We frame the problem as that of capacity expansion under
demand uncertainty, an established topic in the operations
literature (Luss, 1982; Van-Mieghem, 2003). In health-
care, capacity management involves decisions related to
the allocation of such critical resources as facilities, equip-
ment, and personnel (Smith-Daniels et al., 1988) that can
have life-or-death implications. Moreover, in a pandemic,
we must plan for peak demand to avoid waiting lists,
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even though the demand surge would eventually subside.
Finally, we focus on the supply-side response to a pan-
demic by expanding resource capacity proactively, keeping
demand-side responses such as lockdowns, quarantine, and
vaccinations that “flatten the epidemic curve” outside the
scope of this paper.

The modular approach we propose for resource capacity
expansion allows alternative models to be used, depending
on the pandemic or the type of resource. The three modules
in our approach are (1) a stochastic extension of an epidemic
model to create scenarios for the daily number of infections
in the coming weeks, (2) a capacity load model to translate
the projected infections to demand for the resource of inter-
est, and (3) an optimization model to allocate the demand to
the resource at different levels of capacity corresponding to
different levels of investment.

We illustrate this approach by applying it retrospectively to
the early days of the first and second Covid-19 waves in the
three regions in Italy—Lombardia, Piemonte, and Veneto—
that have different per capita ICU capacity, taking care to
use only the information available at the time. First, we used
a parsimonious susceptible-infected-removed (SIR) epidemic
model, suitable for a noisy and data-limited environment,
such as the onset of a pandemic. Second , we used a queuing
model to translate the projected infections into demand for
ICU. The variance of the number of arrivals in any interval
here is larger than the mean in a pandemic, unlike a Poisson
process. Finally, we used dynamic programming to allocate
the demand to ICU capacity, which changes with different
levels of investment. The decision-maker can see the efficient
frontier of the expected number of patients denied intensive
care with investment. We also obtain the optimal time to post-
pone action, reducing costs without increasing the expected
number of denied patients.

In the rest of the paper, Section 2 discusses our contribu-
tion to the existing literature. Section 3 describes our modular
approach. Sections 4–6.1 detail the three modules in turn,
along with the application to the Italian regions for the first
two waves of the pandemic. Section 7 concludes.

2 CONTRIBUTION TO THE
LITERATURE

In the literature on capacity expansion under uncertainty, the
canonical objective is minimizing the investment while lim-
iting the unmet demand, see Luss (1982) and Van-Mieghem
(2003). We invert this perspective by minimizing the unsat-
isfied demand with a constrained budget. Additionally, we
provide the marginal cost (shadow price) for admitted
patients as an output instead of requiring it as an input to the
model. Nor do we need an ex ante penalty for the trade-off
between the cost of intervention and the value of a statistical
life or a quality life year saved (Li et al., 2023), for example,
$10 million in the United States (Kniesner & Viscusi, 2005).

We contribute to the pandemic-focused healthcare oper-
ations literature with the economics of capacity expansion,

enabling decision-makers with an approach that is more
comprehensive and flexible compared to similar papers. Fur-
thermore, each of the three modules introduces innovations in
our retrospective application for Covid-19 in Italy. Important
outputs of our approach for decision-makers are (1) the min-
imum (expected) number of patients denied use of ICU (or
other limited resource), given the existing ICU capacity and
investment for increasing it; (2) the budget increase needed
to accommodate an additional patient, that is, the shadow
price; (3) the time until which decision-makers can post-
pone action, reducing costs without increasing the expected
number of denied patients; and (4) the ceiling beyond which
further investment is useless.

2.1 A modular approach to capacity
expansion in a pandemic

Our modular approach supports decision-makers in the early
stages of a pandemic with planned capacity expansion using
(1) a stochastic epidemic model to project scenarios of the
infection spread in the early days of a pandemic with high
uncertainty, (2) a capacity loading system to translate infec-
tions into the need for the resources of interest, and (3) an
optimization method to allocate the demand to the resources
available at different levels of investment (Figure 1).

The operations literature on Covid-19 focuses either on
containing the demand or increasing the supply of needed
resources (Table 1). The demand-focused stream investi-
gates “flattening the epidemic curve” (Evgeniou et al., 2022;
Ferguson et al., 2020; Jain & Rayal, 2022; Perkins & Espana,
2020; Shahmanzari et al., 2022) containment measures such
as lockdown or quarantine, given a fixed capacity for the ICU
(or other pertinent resource). The supply-focused stream, in
which our paper is positioned, focuses on capacity expan-
sion of ICU (or other resource) (Alban et al., 2020; Lu et al.,
2021; Ouyang et al., 2020; Shi et al., 2022; Wood et al.,
2020). Unlike our use of three models—epidemic, demand,
and optimization—many researchers have used just two of
the modules. Moreover, they have not used stochasticity in
their epidemic modeling. Some have used the Poisson pro-
cess with deterministic intensity in the second module, which
is not suitable for the early pandemic stages with data of ques-
tionable quality. Other researchers have not used optimization
in the third module, limiting themselves to what-if analy-
ses. Table 1 provides an overview; Sections 2.2–2.4 below
provide with module-specific details.

Wood et al. (2020) and Gonçalves et al. (2022) straddle
both literature in considering both containment measures and
ICU (or hospital) capacity. However, they use only what–if
analysis rather than optimization in the last stage. Gonçalves
et al. (2022) propose a complex compartmental model that
captures links between the different quantities (e.g., hospital
[or ICU] loading influences the number of infected individu-
als). However, their model is deterministic and cannot capture
the uncertainty in the future demand by simply choosing
parameter values randomly chosen from arbitrary ranges. In
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F I G U R E 1 Our modular framework comprises three models: (1) The stochastic epidemic model produces infection scenarios, (2) the capacity load
model converts these scenarios to the demand for resources, and (3) the optimal allocation model allocates the demand to the resources at different levels of
investment.

contrast, for generality of use in future pandemics, we use a
parsimonious compartmental epidemic model (SIR) and esti-
mate the parameters for future demand uncertainty and its
evolution from the reported infection data to date.

Our work also contributes to the literature specific to
each module. We have (a) a robust estimation and fore-
cast procedure for the epidemic model during the early days
of a pandemic, (b) the use of a Cox stochastic process
rather than, say, a nonhomogeneous Poisson process for the
arrival of patients, and (c) a stochastic dynamic programming
model for capacity expansion. Below, we discuss each of the
three modules.

2.2 Epidemic modeling

The epidemiology literature offers several models extending
the baseline SIR epidemic model for the spread of infections.
These are compartmental and agent-based models. Compart-
mental models extend the baseline SIR model by adding
more “compartments” depicting the status of individuals at
any time: susceptible, exposed, infectious, hospitalized, crit-
ical, other–recovered, released, or dead (see, for instance,
Mamon, 2020). Agent-based models simulate the rule-based
interactions of individuals to infer the system’s behavior,
thus extending compartmental models (Cuevas, 2020; Kerr
et al., 2021). Besides agents, compartmental models can be
extended with more states. For instance, Bertsimas et al.
(2021) present differential equations leads to predictions
of hospitalizations and infections, an susceptible-exposed-
infectious-removed (SEIR)-based model with 11 states to
include varying states of patient recovery, detection, and
quarantine. However, such models require estimating many
parameters for which data would be difficult to obtain at the
start of a pandemic. We use the stochastic version of the SIR
compartmental model that has low data requirements at the
onset of a pandemic because it has very few parameters.

Other researchers use time-dependent parameters to extend
compartmental models specific to a country (Calafiore et al.,
2020; Y. Chen et al., 2020; Ferrari et al., 2021). Chatterjee

et al. (2020) used a time-dependent infection rate to study the
pandemic in India and other countries. A more sophisticated
model is adaptive SIR (Shapiro et al., 2021; Shi et al., 2022)
with a time-dependent reproduction number (and hence the
infection rate). The daily value is estimated directly from data
without assuming any particular functional form. However,
this approach allows only short-term projection for 1 or 2
weeks to manage emergency day-to-day operations. This is
because the reproduction number is taken as the last estimated
value when projecting forward.

We use a parsimonious SIR model with a parametric time-
dependent infection rate. In contrast to the above approaches,
we have the flexibility to match past data and the ability
to perform robust estimations during the early days of a
pandemic when there is very little or noisy data. Like us,
Chatterjee et al. (2020) also use a time-dependent infection
rate and Shahmanzari et al. (2022) use a stochastic extension
of an epidemic model. However, the novelty of our approach
lies in (1) the robust estimation method going beyond the
point estimate of model parameters by reconstructing the
empirical joint distribution of the estimators and (2) creat-
ing scenarios of projected daily infections, incorporating the
uncertainty in the estimated parameters in the simulated sce-
narios of infections. In contrast, the recent Covid-19-related
literature (Table 1) typically adopts deterministic compart-
mental epidemiological models, possibly with simulation to
vary parameters over an arbitrary range.

2.3 Capacity demand modeling

The demand-focused literate does not adopt a specific model
for ICU (or hospital) demand (Table 1). For instance, Fergu-
son et al. (2020) consider the number of hospitalized cases
requiring critical care simply as a fixed percentage of symp-
tomatic patients. In the supply-focused literature, demand is
modeled with compartmental or queuing models. Z. Chen
and Kong (2022) and Gonçalves et al. (2022) propose deter-
ministic compartmental models, which include hospitalized
and critically ill patients.

 19375956, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pom

s.13985 by C
ity U

niversity O
f L

ondon L
ibrary, W

iley O
nline L

ibrary on [26/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 GAMBARO ET AL.Production and Operations Management

T
A

B
L

E
1

C
ov

id
-1

9
m

ot
iv

at
ed

pa
pe

rs
in

th
e

O
M

lit
er

at
ur

e.

R
ef

er
en

ce
D

ec
is

io
n

fo
cu

s
Su

pp
ly

fo
cu

s
IC

U
de

m
an

d
m

od
el

St
oc

ha
st

ic
de

m
an

d
E

pi
de

m
ic

m
od

el
St

oc
ha

st
ic

ep
id

em
ic

O
pt

im
iz

at
io

n
R

ea
lw

or
ld

da
ta

C
as

e
st

ud
y

Fe
rg

us
on

et
al

.(
20

20
)

C
on

ta
in

m
en

t
-

-
-

✓
-

-
✓

✓

Pe
rk

in
s

an
d

E
sp

an
a

(2
02

0)
C

on
ta

in
m

en
t

-
-

-
✓

-
✓

✓
✓

Ja
in

an
d

R
ay

al
(2

02
2)

C
on

ta
in

m
en

t
-

-
-

-
✓

✓
-

-

E
vg

en
io

u
et

al
.(

20
22

)
C

on
ta

in
m

en
t

-
-

-
✓

-
✓

✓
✓

Sh
ah

m
an

za
ri

et
al

.(
20

22
)

C
on

ta
in

m
en

t
-

-
-

✓
✓

✓
✓

-

A
lb

an
et

al
.(

20
20

)
IC

U
ca

pa
ci

ty
✓

✓
✓

-
-

-
-

-

O
uy

an
g

et
al

.(
20

20
)

IC
U

ad
m

is
si

on
/d

is
ch

ar
ge

✓
✓

✓
-

-
✓

-
-

Z
.C

he
n

an
d

K
on

g
(2

02
2)

H
os

pi
ta

lc
ap

ac
ity

an
d

ad
m

is
si

on
po

lic
y

✓
✓

-
✓

-
-

✓
✓

G
on

ça
lv

es
et

al
.(

20
22

)
C

on
ta

in
m

en
ta

nd
ho

sp
ita

l/I
C

U
ca

pa
ci

ty
✓

✓
-

✓
-

-
✓

✓

L
u

et
al

.(
20

21
)

IC
U

ad
m

is
si

on
po

lic
y

✓
✓

✓
✓

-
-

✓
✓

W
oo

d
et

al
.(

20
20

)
C

on
ta

in
m

en
ta

nd
IC

U
ca

pa
ci

ty
✓

✓
✓

✓
-

-
✓

✓

Sh
ie

ta
l.

(2
02

2)
R

es
ou

rc
e-

tr
an

ss
hi

pm
en

t
✓

✓
✓

✓
-

✓
✓

✓

T
hi

s
pa

pe
r

R
es

ou
rc

e
(I

C
U

)
ca

pa
ci

ty
✓

✓
✓

✓
✓

✓
✓

✓

A
bb

re
vi

at
io

ns
:I

C
U

,i
nt

en
si

ve
ca

re
un

its
;O

M
,o

pe
ra

tio
ns

m
an

ag
em

en
t.

Queuing systems are widely used in the healthcare litera-
ture to model emergency unit workloads. Prior to Covid-19,
the literature typically used queuing models with a constant
arrival rate (McManus et al., 2004; Ridge et al., 1998). More
recently, Alban et al. (2020) and Ouyang et al. (2020) also
use a constant arrival rate of patients to a fixed ICU capac-
ity. The pandemic also motivated some researchers to make
modifications: Lu et al. (2021), Wood et al. (2020), and Shi
et al. (2022) assume a deterministic time-dependent arrival
rate linked to the average trend of the epidemic. In particular,
Lu et al. (2021) simulate ICU demand for Covid-19 patients
with a deterministic epidemic SEIR (susceptible-exposed-
infected-removed) model and discrete event simulation of
Covid-19 patient flow in ICUs. Wood et al. (2020) use a
multichannel queuing model to simulate the demand on ICU
capacity. Shi et al. (2022) model hospital (and ICU) workload
through the Covid pandemic by integrating a deterministic
time-dependent SIR epidemic model with a stochastic net-
work model of patient movement among various units within
the hospital.

The wider healthcare literature also uses queuing models
with an infinite number of servers (hence, no queuing) to
capture the future demand for patients needing a constrained
resource like intensive care. Heemskerk et al. (2017, 2022)
also propose an infinite-server queuing system with a mixed
Poisson arrival process in a random environment, a special
case of a stationary Cox process. Boxma et al. (2019) also
analyze an infinite-server queue system where the arrival rate
process is a shot-noise process.

We contribute by applying a Cox queuing model with a
stochastic intensity of arrivals that depends on the observed
number of newly infected individuals. Doing so has two
advantages. First, we can capture the variability of the arrival
process (for the resource in question) due to the random
nature of the disease spread, particularly in the early stages.
Second, a common drawback in using Cox queuing models
is that the intensity of the process is not observable, so esti-
mating the model from data is difficult (Rydén, 1996). In our
case, the patient arrival rate (for ICU or some other resource)
is proportional to the observable number of daily new cases.

2.4 Optimal allocation of capacity

Not all researchers use an optimization module as we do in
our three-pronged approach. Indeed, Ferguson et al. (2020),
Alban et al. (2020), Z. Chen and Kong (2022), Gonçalves
et al. (2022), Lu et al. (2021), and Wood et al. (2020) do not
propose any optimization of capacity or other policy levers.
However, Ferguson et al. (2020) perform what–if analyses on
nonpharmaceutical interventions (NPIs) on the demand side,
while Wood et al. (2020) extend their analyses with different
levels of ICU capacity. Lu et al. (2021) study the admission
policy of patients concerning their death risk profile, given a
fixed level of ICU capacity. Furthermore, Shi et al. (2022) use
the projected demand of each hospital in a hospital system for
decision models for resource (re)allocation.
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In contrast, our work seeks to determine an optimal policy
for capacity expansion. Moreover, we do so from the pub-
lic health perspective for an entire region, similar to Jiang
and Sodhi (2019) for NHS England, rather than for a ward
or a hospital. We use stochastic dynamic programming with
selected classes of control policies, similar to Shahmanzari
et al. (2022). Like them, we prove the Pareto efficiency of the
optimal policies. Moreover, we can demonstrate other ana-
lytical results, such as the existence of the optimal policy,
the convexity of the efficient frontier, and strong duality. Our
work and Shahmanzari et al. (2022) are complementary in
that we analyze a supply-focused problem to expand capacity
with a given (stochastic) level of demand, while they study
a demand-focused one with containment measures to reduce
demand with a given ICU capacity. We optimize the ICU
capacity, given future epidemic scenarios that could include
containment measures.

3 APPLICATION TO ICU CAPACITY
EXPANSION DURING COVID-19

We now apply our approach to a specific pandemic, Covid-
19, for ICU capacity as the limited resource in the Italian
setting of 2020. Italy had the highest reported per capita death
rate globally at the end of 2020, with Lombardia, Piemonte,
and Veneto regions being the worst hit (each region being
responsible for its public health). One reason for the high
death toll in Italy (and other countries) was inadequate ICU
capacity.

Expanding the capacity of such a resource is both costly
and time critical. ICU costs already constitute a large por-
tion of total hospital costs, accounting for 8–30% of the entire
hospital budget (Kilic et al., 2019). The direct daily cost of a
single ICU in Germany, Italy, the Netherlands, and the United
Kingdom ranges from €1168 to €2025, with labor being
the main cost (Tan et al., 2012). The cost was even higher
during the pandemic—as much as 20% more for Covid-19
patients—due to comorbidity and the need for more ICU staff
per patient.

We obtained region-specific daily data concerning
infected, dead, recovered, and hospitalized people pub-
lished on the official Italian Government site1 from February
24 to December 31, 2020, for the three regions. Our focus is
the onset of the two waves of Covid in 2020, so the decision
horizons in our application span (1) March 10 to the end of
May 2020 for the first wave and (2) October end to December
end for the second. We then carried out the following steps
for the first wave:

1. Stochastic epidemic modeling: First, we estimated the SIR
model using the official data on the daily infected peo-
ple available for the 2 weeks from February 24 to March
10, 2020, for the first wave. Then, we generated 10,000
scenarios of daily new infections for the decision horizon
from March 10, 2020, onwards for 90 days to the end of
May.

2. Capacity demand: Next, we translated infections into
demand for ICU capacity. We estimated and simulated
a queuing system with a stochastic arrival rate propor-
tional to the epidemic process. We estimated the queuing
model using official data of daily admissions in the ICU of
Covid-19 patients for the same 2-week period from Febru-
ary 24 to March 10, 2020, relying on clinical estimates of
the average length of stay (ALOS) of a Covid patient in
the ICU. We then simulated the ICU demand from March
10 onwards for 90 days using the demand scenarios from
the previous step.

3. Optimal allocation of capacity: Finally, we used our pro-
posed optimization procedure to find the optimal capacity
expansion policy regarding when and how much to expand
to minimize the expected number of patients denied ICU.
The principal optimization problem minimizes the cumu-
lative expected number of patients denied ICU in the
remainder of the 90-day decision horizon at any time,
given the budget constraint on total investment for this
period. The optimal policy provides the optimal number
of new beds and its timing by way of the critical ICU load
to trigger the capacity expansion.

We followed the same procedure for the second wave. By
then, Veneto had already acquired more-than-adequate ICU
capacity. Therefore, we have omitted the results for the sec-
ond wave for this region. Next, we describe the application of
each successive module of our approach in Sections 4, 5, and
6.1, respectively.

4 MODULE 1: STOCHASTIC EPIDEMIC
MODELING

This section details our stochastic SIR model and the robust
estimation and projection procedure for infection scenarios.

4.1 The epidemic model

The SIR model is a compartmental model with the popula-
tion divided into susceptible, infected, and removed groups,
the last one including both recovered and deceased people.
Recovered people are assumed to become immune till the
decision horizon.

The stochastic epidemic SIR model. Let St and It repre-
sent the number, respectively, of susceptible and infected at
any time t ≥ 0. In the stochastic extension of the SIR model,
susceptible and infected individuals are modeled as a two-
dimensional Markov chain process (St, It); Andersson and
Britton (2000) discuss the general stochastic epidemic model.
Any increment of the stochastic process is expressed as

⎧⎪⎨⎪⎩
ΔSt = −𝛽t

St

N
ItΔt + ΔZ1,

ΔIt = 𝛽t
St

N
ItΔt − 𝛾 ItΔt − ΔZ1 + ΔZ2,

(1)
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6 GAMBARO ET AL.Production and Operations Management

where N = St + It + Rt is the population size which
is constant over time t ≥ 0, given the assumption of
the population being closed. The number of removed
patients can be obtained by difference, that is, Rt = N −

St − It. The random variables ΔZ1 and ΔZ2 are condi-
tionally centered Poisson increments with zero mean and

conditional variances 𝛽t
St

N
ItΔt and 𝛾 It Δt, respectively.

If we drop the stochastic terms ΔZi from Equations (1)
and let Δt → 0, the equations reduce to the classical
deterministic SIR model (Andersson & Britton, 2000).
Finally, Ct = It + Rt represents the cumulative total num-
ber of cases from the beginning of the epidemic process,
while ΔCt = Ct+Δt − Ct is its (daily) variation and ΔCt =

−ΔSt.
The rate parameters. The rate of removal 𝛾 is the sum of

the recovery and death rates and is biological in that it is
virus-specific. The literature assumes 𝛾 is constant over time,
at least within a single wave of a pandemic, although it does
change slowly due to virus mutation and vaccination. In con-
trast, 𝛽t, the rate of infection, varies even within the decision
horizon due to containment policies:

𝛽t =

⎧⎪⎨⎪⎩
𝛽0 for 0 ≤ t < t0

(𝛽0 − 𝛽F)e−𝜆(t−t0)2
+ 𝛽F for t ≥ t0,

where t0 is the time when NPIs start to have effects, 𝛽0 is
the initial value of the infection rate, 𝜆 is a positive parameter
that modulates the speed at which the infection rate decreases,
and 𝛽F ≤ 𝛽0 is the asymptotic long-term value. There are
generalizations that allow for negative 𝜆 values that corre-
spond to an increased contagion rate because of interventions
being terminated or seasonal influences, but these are not
considered here.

Basic and effective reproduction numbers. The reproduc-
tion number determines the progress of the epidemic, and
it can be either basic or effective (Chowell et al., 2007).
The basic reproduction number, 0, is the average num-
ber of people infected by an infected person when almost

all the population is susceptible, that is, at time t0 0 =
𝛽0

𝛾
.

The effective reproduction number varies in time with the
decrease in the number of susceptible individuals in the popu-
lation and with the implementation of pandemic containment
systems (or the introduction of a vaccine) that reduce the
number of daily cases. The effective reproduction number at
any time t ≥ t0 as

t =
St

N
⋅
𝛽t

𝛾
=

St

N

[
(0 −F)e−𝜆(t−t0)2

+F

]
. (2)

Here, F = (𝛽F∕𝛾) ≤ 0 is the asymptotic long-term value
of the reproduction number when we assume 𝜆 > 0. The
changing value of t allows us to distinguish the initial expo-
nential growth in infections from their long-run decay to zero
as St → 0 in time.

4.2 Model estimation and scenario
generation

Epidemic data have two sources of uncertainty, generally
ignored in the literature, regarding the new cases each day: (1)
the reporting error, such as delays in official registrations of
daily cases, and (2) the disease dynamics that are inherently
stochastic because recovery time and time to get infected are
random variables. We incorporate the uncertainty by using
the (joint) probability distribution of the parameter estima-
tors to perform a Monte Carlo sensitivity analysis (Gonçalves
et al., 2022) of the parameter values, as described below. We
can produce longer-term forecasts that are also more robust
against reporting errors in the data. Doing so is particularly
useful at the beginning of a pandemic, when there is not much
data and that too is noisy, in part, due to reporting errors.

Parameter estimation. During the early days of an epi-
demic, the effects of the depletion of the susceptible
population are small, and we can assume exponential growth
for most infectious diseases (Anderson & May, 1991). Con-
sequently, the number of new cases per unit of time ΔCt
increases exponentially, and the exponential-growth rate Λ

is a function of the basic reproduction number 0 and the
removal rate 𝛾, with Λ(0, 𝛾) = (0 − 1) 𝛾. Following Ma
(2020), we assume that the number of cases at day ti, ΔCti
is independently Poisson distributed with mean C0eΛ(0,𝛾) ti

to estimate (0, 𝛾). We obtain point estimates for the param-
eters by maximizing the log-likelihood function numerically
as follows:

(̂0, �̂�, Ĉ0) = argmax(0,𝛾,C0)

N−1∑
i=0

−C0eΛ(0,𝛾) ti

+ΔCti log C0 + ΔCti Λ(0, 𝛾) ti, (3)

where C0 is the number of infected people at time t0 and N is
the number of days observed.

Interval estimation of the parameters is important as the
precision of the estimates. For this reason, we adopt a robust
procedure producing an interval estimation of the parameters
by reconstructing the (empirical) joint probability distribu-
tion of the estimators (̂0, �̂�, Ĉ0). A natural way to estimate
such a distribution is to use a resampling method such as
the bootstrap. We do so by generating sets of realizations
of the daily cases curve using parametric bootstrap (Chow-
ell et al., 2007; Efron & Tibshirani, 1986). In particular, for
day ti with i = 1, … ,N − 1, each realization of daily cases
is sampled from a Poisson distribution with a mean equal to
that of the observed data, ΔCti (Chowell et al., 2007). Then,
the empirical distribution of each parameter, and even their
joint distribution, (0, 𝛾), is reestimated from each of 10,000
bootstrapped epidemic curves. Confidence intervals are com-
puted from the inverse empirical distribution functions for
each parameter.

In estimating R0 and 𝛾 jointly, we improve upon the typi-
cal practice for estimating compartmental models (Chowell
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ICU CAPACITY EXPANSION IN A PANDEMIC 7
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et al., 2007; Favier et al., 2020; Shapiro et al., 2021; Shi
et al., 2022). Typically, the value of removal rate 𝛾 in the SIR
model (or the latent period in the SEIR model) is fixed to a
value chosen using clinical observations, and the estimation
(and bootstrap) procedure focuses only on the reproduction
number. However, the estimators of parameters 0 and 𝛾 are
strongly dependent, as we confirmed by assessing their joint
bootstrap distribution for the three Italian regions. Hence,
fixing a particular value for 𝛾 can create significant bias
in the (unconditional) point estimate of 0. Indeed, such a
choice affects the marginal distribution of the 0 estimator,
something not considered by Chowell et al. (2007).

Forecasting the epidemic curve. We use these bootstrap
estimates of (R0, 𝛾) to simulate the stochastic epidemic
model, thus taking into account the uncertainty in the esti-
mated parameters due to the data and that inherent in the
epidemic process. We assume a plausible range of values
for the asymptotic value F and for the parameter 𝜆 of
the exponential function, as in Equation (2). The parame-
ter 𝜆 modulates the speed at which the reproduction number
tends to the asymptotic value F . In particular, the quan-
tity t̄ =

√
log 2∕𝜆 is the half-life of the reproduction number,

that is, t̄ =
1

2
(0 +F). In the early stages of a pandemic,

there is only a little data available on the estimation of the
reproduction number dynamics t. However, we fix a plau-
sible range of values for F and t̄ using estimates of t from
previous pandemics (Chowell et al., 2007; Cori et al., 2013;
Thompson et al., 2019). (We discuss this in more detail in
the next two subsections about the two Covid waves in Italy.)
Over time, interventions and the decrease in susceptible indi-
viduals limit the spread of the virus, eventually reducing the
value of the number of reproductions to below one. Hence, we
simulate the asymptotic value of the reproduction number F
from a uniform distribution over the interval [LB, 1), where
LB > 0 is a lower bound. Predicting the speed of decline in
reproductive numbers is more complex, as it depends on the
effectiveness of various interventions. (An extension of our
procedure would be to perform a what–if analysis on the
intervention effectiveness (Ferguson et al., 2020) and inte-
grate it with our analysis of the ICU demand forecast and
capacity optimization.)

Generating future scenarios. We perform the following
steps to simulate the future numbers of daily cases ΔCt: (1)
randomly sample values of (0, 𝛾) from their bootstrap joint
distribution; (2) randomly sample the asymptotic value of the
reproduction number F from a uniform distribution in the
interval [LB, 1); (3) fix the value of the reproduction num-
ber half-life t̄; (4) simulate the trajectories of St, It and Rt via
Equation (1) and obtain the total number of cases Ct and daily
cases ΔCt; recall that ΔCt = −ΔSt.

We include both sources of variability in the simulation
of future daily cases with this procedure. A Monte Carlo
sensitivity analysis captures simultaneous changes in epi-
demic parameters. While Gonçalves et al. (2022) use a
similar procedure, they randomly select all the parameter
values from uniform independent distributions over arbi-

TA B L E 2 Calibrated parameters values (0, 𝛾) of the SIR model
using data from February 24 to March 10, 2020, with 95% confidence level
intervals (CI).

Region 0 CI 95% 𝜸 CI 95%

Lombardia 3.2 [2.8, 3.5] 0.094 [0.091, 0.100]

Piemonte 4.5 [2.7, 5.9] 0.08 [0.07, 0.10]

Veneto 3.5 [2.2, 4.3] 0.09 [0.08, 0.11]

trary ranges. Moreover, they do not consider dependency
between the parameter estimators. Instead, we capture the
realistic uncertainty in future epidemic scenarios from the
reported data.

4.3 The first Covid-19 wave

We first calibrated the SIR epidemic model using 2020 data
only from February 24 to March 10 with maximum likelihood
to estimate 0 and 𝛾. Then, we reconstructed confidence
intervals and the empirical joint distribution of the two
estimators using the parametric bootstrap described in Sec-
tion 4.2. Finally, we projected the daily cases for the 90-day
decision horizon.

Table 2 presents the estimated parameters of SIR model 0
and 𝛾 and the corresponding 95% confidence intervals. The
values of the basic reproduction number 0 and the recovery
rate 𝛾 are similar across the three regions and are similar to
other preliminary results concerning Covid-19 spread in Italy
available at that time (D’Arienzo & Coniglio, 2020). Taking
the estimated value of the rate 𝛾, we estimated the average
removal time from 9 to 14 days. Figure 2 illustrates the joint
probability distribution of the parameter estimators and the
marginal distribution of the 0 estimator. Indeed, 0 and
𝛾 show strong dependency. This is why assigning an arbi-
trary value to 𝛾, as commonly done with SIR modeling, can
lead to a strong bias in estimating the value and the marginal
distribution of 0.

We set the start date to be March 10, 2020, when the prime
minister (decree of the President of the Council of Minis-
ters) decreed several containment measures. Next, we had to
assume a plausible range of values for the asymptotic value
F and of the half-life of the reproduction number t̄ to fore-
cast the epidemic curve (Section 4.2). Studies estimating the
reproduction number t for Covid-19 were not yet available
on March 10. Therefore, we consulted the literature on previ-
ous pandemics to select a plausible range of values for F
and t̄. Over time, the number of reproductions reduces to
below one. We simulated the asymptotic value F from a
uniform distribution over the interval [0.5, 1), thus taking into
account the uncertainty in the reproduction number evolution.
Furthermore, looking at the literature on previous pandemics
(Chowell et al., 2007; Cori et al., 2013; Thompson et al.,
2019), we noted that the reproduction number t reaches 1
in around three weeks for cases with similar values of 0,
suggesting a half-life t̄ of 7 days. With all the parameters in
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8 GAMBARO ET AL.Production and Operations Management

F I G U R E 2 Top: The bootstrap joint distribution of the estimator of parameters (0, 𝛾). Bottom: The marginal distribution of the estimator of 0 for the
three regions. The distributions are obtained using data from February 24 to March 10, 2020, and 10,000 simulations for the parametric bootstrap. [Color
figure can be viewed at wileyonlinelibrary.com]

TA B L E 3 The table shows calibrated parameter values (t0 , 𝛾) of the
SIR model using data from October 7 to 30, 2020, with 95% confidence
level intervals.

Region t0 CI 95% 𝜸 CI 95%

Lombardia 2.3 [2.2, 3.1] 0.06 [0.04, 0.07]

Piemonte 2.1 [2.0, 2.3] 0.08 [0.07, 0.10]

Abbreviation: CI, confidence interval.

place, we were able to project daily new-case scenarios for
the 90-day decision horizon from March 10, 2020, onwards.

4.4 The second Covid-19 wave

We recalibrated the SIR parameters for the second wave
using data from October 7 to 30, 2020. The 60-day deci-
sion horizon takes us to December end. As before, we took
the reproduction number t as constant over 0 ≤ t ≤ t0 and
equal to t0 , with t0 being October 30, 2020, when the
Prime Minister again announced several containment mea-
sures across Italy and the reproduction number started to
decrease. Our estimation procedure was the same as in the
first wave, but the results reflect the differences between the
two waves of the pandemic. Table 3 reports the estimated val-
ues and confidence intervals of t0 and 𝛾 for Lombardia and
Piemonte, respectively. (We skipped Veneto for the second
wave due to overexpansion of ICU capacity in the region.)

The estimated values of the reproduction numbers t0 in both
Lombardia and Piemonte are smaller than the estimates of the
basic reproduction numbers 0 from the first epidemic wave,
possibly due to personal protective equipment and social dis-
tancing. Furthermore, for Lombardia, we observe a decrease
in the value of the removal rate 𝛾, which implies an increase
in the average removal time—from 10 to 25 days—and sug-
gests a possible increase in the average recovery time and thus
the ALOS in ICU (or hospital).

We simulated the asymptotic value F again from
uniform[0.5, 1). A longer reproduction number half-life, t̄ at
14 days was necessary because of the smaller starting value
t0 and because the announced interventions were reversed
to reduce their negative economic impact.

5 MODULE 2: CAPACITY LOADING

We now detail our Cox∕M∕∞ queuing model for translat-
ing infection scenarios into demand scenarios for ICU. The
stochastic arrival intensity at time t is proportional to the daily
reported new infections ΔCt. In our parsimonious model, ser-
vice times have an exponential distribution with the ALOS
in ICU as the mean. (We can easily generalize the model to
service times with any nonnegative distribution.) We did not
limit the number of servers as queuing is not practical here,
in line with the review by Worthington et al. (2020).

Creating scenarios for load on ICU. We simulated the
queue to forecast its length, that is, the number of patients
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ICU CAPACITY EXPANSION IN A PANDEMIC 9
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in ICU Pt, assuming the daily numbers of arrivals at ICU
are independent Poisson random variables, conditional on
the daily number of new cases. Given the ith realization of
{ΔCs}

t
s=0, the number of arrivals in [t − Δt, t], A(i)

t , is

A(i)
t ∼ Poisson(a ΔC(i)

t ), (4)

where a > 0 is the average value of the fraction of the newly
infected who needs ICU. Then At is a Cox process, with
the stochastic intensity proportional to the number of new
cases ΔCt. We took E(i)

t , the number of patients leaving
the ICU after treatment in [t − Δt, t], as a truncated Pois-
son random variable, conditional on the number of patients
in ICU at time t − Δt, that is, E(i)

t = min(Ẽ(i)
t ,P

(i)
t−Δt), and

Ẽ(i)
t ∼ Poisson(𝜇 P(i)

t−Δt), where 𝜇 = 1∕ALOS is the exit rate.
Finally, we updated the number of patients in ICU at time t as

P(i)
t = P(i)

t−Δt + A(i)
t − E(i)

t . (5)

We did not include uninfected patients in intensive care in our
analysis, but we can accommodate them easily in an exten-
sion. In any case, the number of non-Covid-19 patients who
needed ICU hospitalization during the first epidemic wave in
Italy (March 2020–May2020) was much lower than before
the pandemic due to the postponement of all nonurgent surgi-
cal interventions, and the reduction of postsurgical intensive
care (Naderi et al., 2021; Ridge et al., 1998).

5.1 Estimating and forecasting the ICU
demand model

For each region, we fitted the ICU demand model using his-
torical data of daily cases and ICU patients from February 24
to March 10 for the first wave and from October 7 to 30 for
the second wave. We estimated the fraction a of the newly
infected Covid patients needing ICU using a maximum like-
lihood procedure. The daily number of arrivals in ICU, At,
is distributed as independent Poisson random variables with
their mean value proportional to the daily cases, ΔCt, as in
Equation (4). We obtained confidence intervals using para-
metric bootstrap (Efron & Tibshirani, 1986), similar to our
estimation of the SIR model parameters. Additionally, we
estimated the ALOS using the available clinical information
at the observed date to forecast the future ICU demand of
Covid-19 patients using the queuing model.

5.2 The first Covid-19 wave

The results are given in Table 4. The average fraction of
newly infected individuals who need intensive care a in Equa-
tion (4), ranged from 4% to 10% (see Table 4). Note that
this is the fraction of the reported new cases which under-
estimates the actual ones. Indeed, the estimated ratio between

TA B L E 4 Estimated average fraction of new cases that need intensive
care, a (Equation 4), using data from February 24 to March 10, 2020.

Region a (%) CI 95%

Lombardia 6.0 [5.5, 6.6]

Piemonte 10.2 [7.9, 12.7]

Veneto 4.4 [3.4, 5.4]

Abbreviation: CI, confidence interval.

TA B L E 5 Estimated average fraction a (Equation 4) of new cases that
need ICU, using data from 7 to 30 October 2020.

Region a (%) CI 95%

Lombardia 0.39 [0.35, 0.45]

Piemonte 0.48 [0.40, 0.55]

Abbreviation: CI, confidence interval.

the actual and official number of total cases for Covid-19
typically ranges from 4× to 10× in the literature (McCul-
loh et al., 2020; Shi et al., 2022), depending on the country
and the stage of the pandemic. Thus, our method for estimat-
ing a compensates for the underestimation in official data,
ultimately giving the correct projections for the demand for
ICU.

Regarding the ALOS in ICU, no data were available at the
beginning of the pandemic on ALOS for Covid-19 patients
in ICU. We simply chose ALOS = 12 days, doubling the
6 days in ICU in pre-Covid-19 times in Italy (Agodi et al.,
2018). Figure 3 compares the forecasting scenarios with
the out-of-sample data of the ICU workload. We see that
the actual progression of ICU load in the out-of-sample
period for Lombardia and Piemonte falls within the forecast
confidence intervals.

For the first wave in Veneto, we performed a sensitivity
analysis on the value of the reproduction number half-life
t̄, defined in Section 4.2, that we set equal to 7 days as
obtained from the literature. With this choice, simulations of
future ICU demand were always below the initial number
of available beds in intensive care K0, therefore making the
capacity expansion useless. For this reason, we additionally
performed a what–if analysis by considering a more conser-
vative scenario with t̄ = 10 days, the smallest value for which
our simulations generated a future demand that exceeded the
initial capacity for Veneto.

5.3 The second Covid-19 wave

We estimated the ICU demand for each region from Octo-
ber 7 to 30, 2020. The results of our analysis reflect the
different behavior of the two pandemic waves. For instance,
estimated values of the proportion a of Covid patients need-
ing ICU are much smaller than in the first wave (Table 5).
Contact tracing was more effective, and even asymptomatic
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10 GAMBARO ET AL.Production and Operations Management

F I G U R E 3 Historical ICU workload from February 24 until March 10 (blue) and later (cyan). The solid black line is the mean forecast demand, and the

dashed black lines represent the 95% confidence interval around the mean. ICU demand is per 100,000 people for all three regions. ICU ALOS
1

𝜇
= 12 days.

The half-life of the reproduction number t̄ = 7 days for (a)–(c) and for sensitivity analysis t̄ = 10 days for (d). CI, confidence interval; ICU, intensive care unit.
[Color figure can be viewed at wileyonlinelibrary.com]

and paucisymptomatic patients were detected. Moreover,
improvements in treating Covid-19 reduced the fraction of
critically ill patients.

Unlike in the first wave, clinical information was already
available on Covid-19 patients by the beginning of October
2020. ALOS for Covid-19 patients in ICU estimated from
clinical observations had a wide range of values in the litera-
ture of that time. We chose ALOS = 20 days (Lapidus et al.,
2020)2 for the ICU workloads in Figure 4.

6 MODULE 3: OPTIMAL CAPACITY
ALLOCATION

Our ICU capacity management model seeks to help decision-
makers achieve the best trade-off between the cost of

expanding ICU capacity and the number of patients denied
admission to ICU due to inadequate capacity. We take these
two quantities as the decision-makers’ ICU capacity policy
𝜋, selected from a set of feasible policies Π in Section 6.2.

Let K𝜋
t be the total number of intensive-care beds avail-

able at time t for a capacity (expansion) policy 𝜋. Then K𝜋
t

is endogenous for the optimization. The stochastic demand
process, the number of critically ill patients who need ICU
access—or some other critical resource—each day t, Pt, is
exogenous to the optimization. The couple (K𝜋

t ,Pt) defines
the state of the system at each time t. The exogenous part of
the state, Pt, evolves according to a known stochastic process
as in Section 5 and Equation (5), independent of the policy
𝜋. (The independence between endogenous and exogenous
components is a classical approximation in dynamic pro-
gramming literature (Bertsekas, 2007).) At each time t, the
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F I G U R E 4 Historical ICU workload from October 7 to October 30, 2020 (blue) and later (cyan). The black line is the mean forecast demand after
October 30, while the dashed lines are the 95% confidence interval around the mean. ICU demand is per 100,000 inhabitants for both regions. Half-life value
of the reproduction number t̄ = 14 days, ALOS = 20 days for both regions. CI, confidence interval; ICU, intensive care unit. [Color figure can be viewed at
wileyonlinelibrary.com]

decision-maker chooses an action changing the capacity of
the resource ΔK𝜋

t that depends on the current state (Kt,Pt).
The capacity policy is the sequence of actions ΔK𝜋

t over
[0,T], that is, 𝜋 := {ΔK𝜋

t }T
t=0. The operational state of the

system at time t + 1, K𝜋
t+1(K𝜋

t , ΔK𝜋
t ), depends on the policy

𝜋 and the state at time t.
The number of patients denied ICU access. The imme-

diate loss lt signifies the number of patients denied access
to the resource (ICU in this context) on day t. If the num-
ber of patients Pt exceeds the ICU capacity K𝜋

t + ΔK𝜋
t , then

Pt − K𝜋
t − ΔK𝜋

t patients must be refused ICU access. Oth-
erwise, all infected people needing intensive care would be
admitted to ICU at time t, so that

lt(Pt,Kt, ΔKt) = max(Pt − Kt − ΔKt, 0). (6)

The expected cumulative number of patients, LT , refused ICU
admission at the time [0,T] depends on the policy 𝜋 through
the capacity dynamic {K𝜋

t }T
0 and the actions ΔK𝜋

t :

LT (𝜋) = 𝔼

[
T∑

t=0

lt(Pt,K
𝜋
t , ΔK𝜋

t )

]
, (7)

where the immediate loss lt is defined above in Equation (6).
If needed, the expected value in the model can be replaced by
some other metric, say, the 75th percentile.

The expected cost of capacity expansion. The decision-
maker has to consider the costs. Each intensive (or subinten-
sive) therapy unit is subject to setup and maintenance costs.
Let the unit setup cost be h0, the unit maintenance cost be
h1, and the extra cost for a patient due to medicine, hospital
staff, etc. be h2. The total daily cost ct comprises (1) the setup

cost of additional units of capacity, h0 ⋅ max(ΔK𝜋
t , 0); (2) the

maintenance cost of all the units at time h1 (K𝜋
t + ΔK𝜋

t );
and (3) the daily patient-related cost, h2(Pt) (K𝜋

t + ΔK𝜋
t ).

Therefore,

ct(Pt,Kt, ΔKt) = h0 ⋅ max(ΔKt, 0) + h1 ⋅ (Kt + ΔKt)

+ h2(Pt) ⋅ (Kt + ΔKt). (8)

Our model manages healthcare personnel expenditure in a
flexible way through the cost for patient h2(Pt). In fact, the
healthcare staff can be hired on a fixed-term basis, or, once
the health crisis has been resolved, they can be relocated to
other departments. (See details on cost-parameter estimations
in Section 6.3.) Given the immediate cost ct in Equation (8),
the total expected cost CT (𝜋) for a policy 𝜋 over [0,T] is
given by

CT (𝜋) = 𝔼

[
T∑

t=0

ct(Pt,Kt, ΔKt)

]
. (9)

6.1 The capacity expansion optimization

We can now specify the optimization problem with a
parameterized investment budget M.

Efficient frontier. We minimize LT , the expected number
of patients denied ICU access, subject to the budget M. Then
V(M) is the efficient frontier with the optimal value of LT a
function of the budget M ∈ [M0,∞), where M0 is the mini-
mum total expected cost in Equation (9) without expansion
to maintain the initial capacity, K0. Thus, given some budget
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12 GAMBARO ET AL.Production and Operations Management

level M, V(M) is the minimum number of patients that we
expect to lose. Accordingly, we can solve the optimization
problem

V(M) := min
𝜋∈Π

{LT (𝜋) | CT (𝜋) < M}, (10)

with LT and CT defined in Equations (7) and (9). The
optimization problem in Equation (10) can be equivalently
expressed as the recursive Bellman equation (Bertsekas,
2007) for M ∈ [M0, +∞) over t ∈ [0,T − 1] as

Vt(M; Pt,Kt) = min
ΔKt∈t(Pt ,Kt)

lt(Pt,Kt, ΔKt)

+𝔼t[Vt+1(M − ct(Pt,Kt, ΔKt); Pt+1,Kt+1)]

VT (M; PT ,KT ) = min
ΔKT∈T (PT ,KT )

{lT (PT ,KT , ΔKT ) |
cT (PT ,KT , ΔKT ) ≤ M}, (11)

where Vt represents the efficient frontier for each value of
resource M and t is the set of feasible actions, given the
current state of the system at time t, (Pt,Kt). Next, we make
the following assumption to guarantee the existence of the
solution to the above problem

Assumption 1. The number of beds Kt is bounded, that is,
there exists Kmax such that Kt ≤ Kmax for each t.

Assumption 1 is not a serious limitation in numerical appli-
cations. In fact, Kmax is fixed to a value greater than the
maximum number of patients needing ICU across all simula-
tions and all paths, that is Kmax > maxt∈1,…,T maxj P(j)

t , where
j is the index of Monte Carlo simulation. Now we can assert

Proposition 1. Given Assumption 1, there exists an optimal
policy for V(M) in Equation (10).

For proof, apply the Weierstrass theorem to each step
t = 1, … ,T in (11), then for each state (Pt,Kt) there exists
the optimal quantity ΔK∗

t (Pt,Kt) and 𝜋∗ = (ΔK∗
1 , … , ΔK∗

T ).
The Weierstrass theorem requires that the objective function
lt(Pt,Kt, ΔKt) + 𝔼t[Vt+1(M − ct(Pt,Kt, ΔKt); Pt+1,Kt+1)] is
continuous, which is the case here. The theorem also requires
that the feasible regions t(Pt,Kt) are closed and bounded.
In the most general case, that is, without any restriction on
the feasible policy set, the only requirement for an action to
be feasible is the total number of resources being nonneg-
ative, that is, Kt ≥ 0 for all t ∈ [0,T], so that t(Pt,Kt) =
[−Kt, +∞). If the feasible regions are bounded as per
Assumption 1, then t(Pt,Kt) = [−Kt,K

max − Kt]. □

Next, we present an analytical result on the efficient fron-
tier, which will be useful for the definition of the optimal
investment level M∗. For this result, we need

Assumption 2. The set of feasible policy Π is convex.

Assumption 2 is satisfied both in the general case and in the
case of irreversible expansion (see Section 6.2). In the general
case, Π is the set of all the policies 𝜋 such that the number
of beds K𝜋

t is positive and lower than Kmax (Assumption 1)
for t = 1, … ,T . Then, Π is the set of solutions of the follow-
ing system of linear inequalities, −K0 −

∑n−1
j=1 ΔKj ≤ ΔKn ≤

Kmax − K0 −
∑n−1

j=1 ΔKj for n = 1, … ,T , and it is convex. In
the case of irreversible expansion, the feasible policies are
determined by two decision variables (K̄, b), taking values in
the convex set [0,Kmax] × [0, 1].

Proposition 2. Given Assumptions 1 and 2, the efficient
frontier V(M) in (10) is decreasing in M and convex.

The objective function LT (𝜋) defined in Equation (7) is
convex, being the sum of the immediate losses in Equa-
tion (6), which are convex. Moreover, given Assumption 2
and the convexity of the cost function defined in (9), the fea-
sible region  := {𝜋 ∈ Π | C(𝜋) ≤ M} for M ∈ [M0, +∞) is
convex. We conclude that if the optimization problem in (10)
is convex, then V(M) is convex; see Boyd and Vandenberghe
(2004), section 5.6.1. Moreover, as the immediate loss lt is
decreasing in ΔKt while the immediate cost ct is increasing,
V(M) is decreasing. □

The dual problem. The dual of the optimization problem in
Equation (10) is

max
n>0

min
𝜋∈Π

(𝜋, n), (12)

where (𝜋, n) = LT (𝜋) + n (CT (𝜋) − M) is the Lagrangian
function and n is the Lagrange multiplier. To prove
strong duality, we need to assume the smoothness of LT
and CT functions, that is, differentiable with respect to
(ΔK𝜋

1 , … , ΔK𝜋
T ). This is a reasonable assumption, particularly

as both quantities are expected values. The Karush–Kuhn–
Tucker conditions are difficult to prove in this case, although
we did not see any duality gap in our numerical applica-
tion. In line with Simon and Blume (1994, Chapter 19) and
Boyd and Vandenberghe (2004, Chapter 5), we require the
following assumption.

Assumption 3. Assume that LT (𝜋) and CT (𝜋) are smooth
enough to be differentiable with respect to (ΔK𝜋

1 , … , ΔK𝜋
T )

and that the Karush–Kuhn–Tucker conditions are satisfied.

We can now assert

Proposition 3. Given Assumptions 2 and 3, strong duality
holds for the primal problem in (10) and the dual problem in
(12).

Proposition 3 holds given that the primal problem in 10
is convex; for proof, see Boyd and Vandenberghe (2004,
Chapter 5).
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ICU CAPACITY EXPANSION IN A PANDEMIC 13
Production and Operations Management

Shadow price. Solving the dual problem in (12), we obtain
the optimal value of the Lagrange multiplier n(M). Under
suitable regularity conditions in Assumption 3, the following
equality holds:

n(M) = −
𝜕V(M)
𝜕M

. (13)

Given a unit increase in the budget, the shadow price n(M)
represents the marginal increase in those given admission,
equivalently, the marginal decrease in the number of patients
denied access to ICU. From Proposition 2, the function n(M)
defined in (13) is always positive and decreasing in the
resource level M. So, the larger the budget for investment,
the smaller the additional number of patients that need to be
admitted to ICU.

The optimal investment level M∗. Let M∗ be the largest
resource level at which n(M) is strictly positive, that is,

M∗ := sup{M ∈ [M0,∞) | n(M) > 0}. (14)

M∗ is the threshold resource level beyond which no fur-
ther investment is useful for admitting more patients. If
M∗ is finite, it represents the optimal investment level, that
is the smallest budget level at which the efficient frontier
V(M) reaches its minimum value, that is, M∗ = min{M ∈

[M0,∞) | M ∈ argmin V(M)}. In fact, if M∗ is finite and M ≥

M∗, then V(M) = V(M∗). Allocating an amount larger than
M∗ will not decrease the expected number of patients denied
the critical resource (ICU). The decision-makers can choose
to invest an amount smaller than M∗ but expect denying
access to patients, according to the efficient frontier valuation,
that is, if M < M∗ then V(M) > V(M∗).

Pareto efficiency of the optimal policy. Our capacity man-
agement model trades the number of patients denied access
and the total expected cost. We could alternatively express our
model as a multiobjective minimization problem to minimize
both the number of patients denied ICU and the ICU total
cost over a set of feasible policies. The optimization problem
in Equation (10) is reconstructed, applying the 𝜖-constrained
method to the multiobjective optimization problem. Then, the
optimal policy 𝜋∗ upon solving (10) is weakly Pareto effi-
cient (Ehrgott, 2005, Section 4.1). Using the 𝜖-constrained
method, we define a second optimization problem similar to
Equation (10), in which we minimize the cost, subject to a
limit on the number of patients denied ICU, that is

min
𝜋∈Π

{CT (𝜋) | LT (𝜋) ≤ N}, (15)

where N > 0 represents the tolerated level of expected loss
LT .

Proposition 4. If there exist two values (M̂, N̂) ∈ [M0,∞) ×
[0,∞), such that a feasible policy 𝜋∗ ∈ Π is solution of prob-
lem (10) for M = M̂ and problem (15) for N = N̂, then, 𝜋∗ is
Pareto efficient and LT (𝜋∗) = N̂ and CT (𝜋∗) = M̂.

For proof, see Ehrgott (2005, Section 4.1). In our numerical
application, we verified the efficiency of our solutions solving
both optimization problems (10) and (15).

Marginal cost of a single patient for ICU. We now consider
the dual optimization problem of (15), that is

max
m>0

min
𝜋∈Π

{CT (𝜋) + m (LT (𝜋) − N)}, (16)

where N > 0 represents the tolerated level of expected loss
LT . This optimization problem allows us to quantify the
marginal cost (shadow price) for an admitted patient, as the
optimal value of the Lagrange multiplier m(N), under a suit-
able regularity condition as we presented in Assumption 3
and Proposition 3.

6.2 Capacity expansion policy

The two quantities of interest—the cost CT and the number of
patients denied the critical resource (ICU) LT—depend on the
adopted expansion policy 𝜋 via the actions in changing ICU
capacity, ΔK𝜋

t . In the typical case, as presented in previous
sections, a policy 𝜋 ∈ Π is feasible if the capacity at each
time t is positive and below the maximum capacity, that is,
0 ≤ K𝜋

t ≤ Kmax.
In an extreme case, the decision-makers could adopt

an emergency policy of expanding the resource capacity
incrementally every day with updated infection information.
However, we avoided such a daily (and possibly reactive)
emergency expansion because of the lead times entailed
for ICU expansion. Instead, we seek to plan ICU capac-
ity expansion using a medium-term perspective, in this
instance, of a few weeks rather than a few hours. Such
an expansion is typical in healthcare: structural changes,
such as creating new hospital wards, need to be planned
and are rarely reversible. Indeed, dismantling the medical
equipment of ICUs leads to a minimal recovery of the
invested resources. As such, our model anticipates a quan-
tum and irreversible expansion (at least in the near term) of
ICU capacity during the decision horizon at the start of a
pandemic.

Such an expansion puts restrictions on the set of feasi-
ble policies Π. In particular, we choose the set Π, such
that a policy 𝜋 is admissible if the actions ΔK𝜋

t are defined
as

ΔK𝜋
t (K̄, b) = K̄ 𝟙{t>𝜏(b)+d},

(K̄, b) ∈ ℝ+ × [b0, 1], (17)

where 𝟙 is the indicator function, d is the time necessary to
make new beds available, b0 is the initial occupancy percent-
age of the ICU, and 𝜏 is the time at which the preparation
for the new beds, including staff training, starts. (Recall that
K̄ is limited by an upper bound Kmax.) We take 𝜏 to be the
first day on which Pt exceeds the threshold value b K0 with
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14 GAMBARO ET AL.Production and Operations Management

b0 < b < 1, that is,

𝜏(b) = min{t > 0 : Pt ≥ b K0}. (18)

With K0 beds initially, K̄ is the number of additional units
that would become operational at time 𝜏 + d. Here, the delay
term d captures the time for expanding resource capacity,
in this case, for installing the new beds and equipment and
recruiting additional trained healthcare staff. The resource
(ICU) capacity level at time t is therefore K𝜋

t (K̄, b) = K0 +

K̄ 𝟙{t>𝜏(b)+d}.
Percentage occupation as the trigger for capacity expan-

sion. As soon as a predetermined fraction b of the initially
available ICU beds (or other critical resource) is occupied,
the decision-maker decides whether or not to make an addi-
tional K̄ new beds available. This approach is consistent with
the color code policy in Italy when different parts of the
regions were assigned different colors depending on the ICU
occupancy rate, represented in our model by the parameter
b. Therefore, planners have to determine the optimal values
of two decision variables when the threshold is exceeded:
(1) the threshold value b and (2) how many new units K̄
to create. This choice of the expansion policy form simpli-
fies the optimization problems in Equations (12) and (16) for
practical application.

6.3 Application to the two waves of
Covid-19

Starting with the 100,000 scenarios for ICU demand
described in the previous section on ICU workload, we per-
formed a grid search to determine the optimal expansion
policy, depending on the decision variables b and K̄. The
mesh grid for K̄ was set to be [1, 2K0] with a unit step and

[b0, 1] for b with a step size equal to
1

K0
, where b0 =

P0

K0
and

P0 and K0 are the initial number of ICU patients and beds,
respectively. For the first phase, the number of pre-Covid-19
critical care beds K0 was taken for each region from the Ital-
ian “Ministero della Salute” 2018 Bulletin.3 For the second
wave, K0 was equal to the number of beds available at the
beginning of October 2020 in each region.

Costs. The cost parameters are the same for all three
regions. The fixed cost of setting up each new ICU bed
is h0 = €80, 000. This cost comprises the bed at €10,000–
15,000; a ventilator costing €10,000–25,000, depending on
the model; a monitor for at €10,000–20,000; mobile wall
units, around €10,000 in total; at least five infusion pumps
per bed at €2000 each; and shared equipment (ultrasound,
bronchoscope, advanced hemodynamics, and hemofiltration
machine) costing at least €10,000/bed and the unit main-
tenance cost h1 = €3000/year per bed. The additional unit
cost for patients, h2(Pt) is taken as an exponentially decreas-
ing function, ranging from €392,000/year to €200,166/year
to incorporate the medications and the remuneration of the
resuscitating anesthesiologist and nurses. There is an inten-

sive care doctor every 6–10 patients and a nurse every two
or three patients, the proportion dropping as the number of
patients increases in critical times like a pandemic.

6.4 The first Covid-19 wave

Efficient frontier. Figure 5 shows the efficient frontiers
obtained for the three regions using the ICU load scenar-
ios developed earlier and obtained by solving Equation (10).
The three efficient frontiers are convex and decreasing as
proved in Proposition 2. Lombardia and Piemonte are quite
different from Veneto in needing a larger ICU capacity expan-
sion. The number of expected patients denied ICU access
corresponding to the minimum investment V(M0) is lower
in Veneto than for Lombardia and Piemonte. This substan-
tial difference depends on both the initial conditions and the
severity of the pandemic. The number of ICUs per 100,000
inhabitants at the outset of the pandemic was 8.6, 7.4, and
10.1 in the three regions, respectively. Moreover, the max-
imum expected number of patients needing ICU, that is,
𝔼[maxt∈[0,T] Pt], per 100,000 inhabitants is 14, 9, and 7 for
the three regions, respectively.

Timing the decision to expand. Another important aspect of
the proposed capacity optimization model is the “timing” of
the optimal expansion strategy. The optimal decision time 𝜏
represents the time until which the decision maker can post-
pone action, reducing costs without affecting the expected
number of denied patients. In our application, 𝜏 is deter-
mined by the critical loading level b∗ in Equation (18). The
critical loading level b∗—and hence the optimal decision
time—depends on the initial ICU occupancy level b0 and
the preparation (setup) time d for capacity expansion (adding
beds). Therefore, a larger setup time d means a lower crit-
ical value b∗ to activate the decision-making for expansion.
Therefore, as previously mentioned, b∗ cannot fall below the
initial ICUs occupancy level b0, as in the case of decision
dates of March 10 and October 30 in 2020 in our illustration.
In practice, however, the decision-maker can find herself in
two opposing scenarios. In the first scenario with b∗ much
greater than b0, delays in preparing new beds do not affect the
expected number of denied patients; in fact, a greater value
of d is compensated by reducing b∗ and the efficient fron-
tier does not change with d. In the second scenario, where b∗

approaches b0, the setup delay parameter d does impact the
number of patients denied ICU and, thus, the efficient fron-
tier. The effect is more pronounced at high levels of resources,
as shown in Figure 6, which reports the efficient frontiers of
Lombardia and Piemonte for different values of d. As illus-
trated in Figure 6, in the case of Piemonte, an increase in the
setup time from 5 to 10 days can be managed by reducing the
critical loading level b∗ without affecting the efficient fron-
tier. However, the impact of the preparation time d on the
efficient frontier is more pronounced for Lombardia, charac-
terized by a larger value of the initial level b0 with respect
to Piemonte, that is 54% and 20%, respectively. Moreover,
as illustrated in Figure 6, for larger values of d, the expected
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F I G U R E 5 Efficient frontier: The minimum achievable expected number of patients denied ICU as a function of the investment budget V(M) as of
March 10, 2020, for the three regions. Setup time for additional capacity d = 5 days. (For Veneto, t̄= 10 days for demonstration only.) IC, intensive care.
[Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 6 Efficient frontier: The minimum achievable expected number of patients denied ICU as a function of the investment budget V(M) as of
March 10, 2020, for Lombardia and Piemonte. Setup times for additional capacity is d = 5, 10, or 15 days. IC, intensive care. [Color figure can be viewed at
wileyonlinelibrary.com]

number of patients denied ICU does not approach zero as the
budget increases, that is, limM→∞ V(M) > 0 or equivalently
V(M∗) > 0. This means that there is a threshold delay level d
in setup time beyond which not all patients can be admitted,
no matter how much resources are invested.

Shadow price of budget increase. Figure 7 reflects the
solution of the problem in Equation (12) with the num-
ber of additional admitted patients for a given unit increase
of the budget, n(M). As expected, the function n(M) is
always decreasing in the resource level M. Table 6 shows
the optimal investment level M∗ as per Equation (14) and
the corresponding optimal expansion policy 𝜋(b∗, K̄∗) for
each region.

Contrasting our approach with a deterministic model.
Table 6 compares the optimal investment and the optimal
expansion policy obtained with our model to that obtained

from a deterministic model with a unique demand scenario
equal to the mean value of Pt. Table 6 shows that we underes-
timate the necessary resources using this deterministic model,
highlighting the importance of having a stochastic model. The
difference in optimal resource level M∗ is 21 million euros
for Lombardia, 12 million euros for Piemonte, and 25 million
euros. The difference in the optimal expansion capacity K̄∗

is 1.4 new beds per 100,000 inhabitants for Lombardia, 2.8
beds for Piemonte, and 2.2 beds for Veneto. Also, the timing
of the expansion is affected by the choice of the model, this is
particularly important for Piemonte, where the critical load-
ing level b∗ goes from 30% to 55%, leading to any delay in
acting becoming dangerous. So, a stochastic model like ours
is valuable compared to a deterministic one.

Sensitivity to a tolerated level of denial of access. Figure 8
shows the marginal cost per admitted patient in ICU m(N),
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16 GAMBARO ET AL.Production and Operations Management

F I G U R E 7 Shadow price: the increase in the number of admitted patients given a unit increase of budget n(M) as of March 10, 2020, for the three
regions. The capacity setup time d = 5 days. [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 8 The marginal cost for admitted patients as a function of the tolerated loss m(N) (see Equation 16). Preparation time d = 5 days. IC,
intensive care. [Color figure can be viewed at wileyonlinelibrary.com]

TA B L E 6 The optimal investment level M∗, the corresponding
optimal number of new beds K∗, and the critical loading level b∗ from the
deterministic model underestimate those needed as per the stochastic model
we used. Preparation time is d = 5 days. (For Veneto, t̄= 10 days for
demonstration only.).

Model Region
M∗ (million
euro)

b∗

(%)
K∗ (per 100,000
inhabitants)

Stochastic Lombardia 118 58 6.5

Piemonte 36 30 4.5

Veneto 25 44 2.2

Deterministic Lombardia 97 54 5.1

Piemonte 24 55 1.7

Veneto 0 - 0

as defined in Equation (16). The function m(N) grows indef-
initely as the (tolerated) expected number of patients denied
ICU N approaches the value V(M∗) (or equivalently the value
obtained by limM→∞ V(M) > 0). This implies that to push
the number of patients denied ICU to its minimum value, the
marginal cost is infinite, which is consistent with the number
of additional admitted patients for unit investment n(M) = 0
for M > M∗.

6.5 The second Covid-19 wave

After the first wave, Veneto expanded the number of ICU
beds from 10.1 beds per 100,000 inhabitants to 16.8. Con-
sequently, the region did not need to expand ICU capacity
at the start of the second pandemic wave, as we also saw
recommended by our models. The expansion carried out by
Veneto was much larger than that suggested by our model
(6.7 new beds instead of 2.2), incurring in additional and per-
haps unnecessary costs. Lombardia increased the number of
ICU beds from 8.6 per 100,000 inhabitants in February 2020
by 1.3 beds to 9.9 beds at the beginning of October 2020.
During the first pandemic wave, the region reached a max-
imum of 14 ICU patients per 100,000 inhabitants by using
temporary ICUs carved out of operating theatres, inpatient
posts, or even military field hospitals. These beds were dis-
mantled by the end of the first wave, leading to a shortfall
of ICU capacity again in the second wave. Our model sug-
gested a structural expansion of 6.5 new beds per 100,000
inhabitants, larger than the actual one of 1.3 (Table 6). Sim-
ilar reasoning can also be applied to Piemonte. Before the
second wave, Piemonte expanded the structural ICU capac-
ity from 7.4 by 1.0 beds to 8.4 ICU beds per 100,000
inhabitants. Our model suggested 4.5 new beds per 100,000
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ICU CAPACITY EXPANSION IN A PANDEMIC 17
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F I G U R E 9 Efficient frontier: The minimum achievable expected number of patients denied ICU as a function of the investment budget V(M) as of
October 30, 2020, for Lombardia and Piemonte. Preparation time d = 5 days. IC, intensive care. [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 1 0 Shadow price: the increase in the number of admitted patients given a unit increase of budget n(M) as of October 30, 2020, for Lombardia
and Piemonte. Preparation time d = 5 days. [Color figure can be viewed at wileyonlinelibrary.com]

inhabitants would have been ideal (Table 6). Figure 9 shows
the efficient frontiers from Equation (10) for Lombardia and
Piemonte regions, respectively, given the projected demand
scenarios explained in the previous section. The two effi-
cient frontiers are convex and decreasing (Proposition 2). The
resource level ranges from €52 million–66 million for Lom-
bardia and from €20 million–60 million for Piemonte. The
minimum expected cost M0, necessary to maintain the ini-
tial number of intensive care beds without any expansion,
depends on the daily numbers of occupied ICU beds through
the marginal cost h2, as in Equation (9). The average value
of M0 is €52 million for Lombardia and €24 million for
Piemonte.

TA B L E 7 The optimal investment level M∗, the corresponding
optimal number of new beds K∗ per 100,000 inhabitants in the region, and
the critical loading level b∗. Preparation time is d = 5 days.

Region
M∗ (million
euro) b∗

K∗ (per 100,000
inhabitants)

Lombardia 58 80% 0.6

Piemonte 53 59% 6.1

Figure 10 shows the number of admitted patients for a unit
increase of budget obtained by solving the dual problem in
Equation (12). Table 7 shows the optimal investment level M∗
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and the corresponding optimal expansion policy 𝜋(b∗, K̄∗) in
either region.

7 DISCUSSION

This paper has introduced a general modular approach for
capacity expansion under uncertainty in the early stages of
a pandemic to meet the expected demand for the resources
in the coming weeks. We used the approach—in retrospect—
to three regions in Italy for the two waves of the pandemic
between February 2020 to January 2021. The application
illustrated the inputs and techniques needed and the out-
put obtained for decision-makers. In the Covid-19-related
operations management literature, the emphasis is typically
on the uncertainty of future demand. However, modeling
this uncertainty is not straightforward during the early stage
of a pandemic. There are a number of challenges at this
stage: (1) noisy data from which to estimate parameters, (2)
incorporating uncertainty in an optimization framework, and
(3) the impact of uncertainty on optimal management deci-
sions. Our work contributes by addressing these challenges.
First, we proposed a robust estimation and forecasting pro-
cedure of epidemic and demand models, including both the
variability due to noisy and limited data (through Monte
Carlo sensitivity analysis of the epidemic parameters) and
the inherently stochastic dynamics of epidemic and demand
processes. Second, we formalized a stochastic dynamic opti-
mization problem that incorporates the uncertainty into the
management decision process. Finally, we showed that the
uncertainty of future scenarios has a material impact on the
optimal results. For instance in the first pandemic wave, for
the three Italian regions, we compare the optimal ICU expan-
sion policies obtained with the full model to a deterministic
model that considers only the average future demand sce-
nario. We conclude from the large differences that the model
error is not negligible and, therefore, having a stochastic
extension of the model is valuable.

7.1 Research implications

Managing health emergencies such as the recent Covid-19
epidemic requires both supply and demand responses. This
paper is focused on the supply side, providing an approach
to capacity expansion of scarce resources like ICUs in the
early stages of a pandemic. Further research may extend
this approach to optimally manage the policy levers—the use
of lockdown, isolation, quarantine, and vaccination—on the
demand side. Note that our optimal solution is a policy, not
a single-number solution. The expansion is contingent on the
filling up of capacity, so if demand-side responses “flatten”
the rise in the number of daily cases, the capacity expansion
would be delayed as the threshold for expansion would not
be met. On the demand side, assessing how delays in impos-
ing restrictions impact the availability and the cost of ICU

capacity is possible by integrating our model with what–if
analyses (see, for instance, Ferguson et al., 2020) or with
compatible optimization problems (see Shahmanzari et al.,
2022). In particular, integrating demand and supply sides in
a unique optimization framework present interesting theoret-
ical and computational challenges. Moreover, new variants of
Covid-19 emerged even as vaccination drives are underway in
many countries, including Italy. There is a need to investigate
how to modify the stochastic epidemic model to incorporate
vaccination drives with different (and possibly deteriorat-
ing) efficacy and new variants. The overall modular approach
would still be helpful. Another policy lever is allocating
the scarce ICU capacity to needy patients, which requires
straightforward prioritization rules for uniform implementa-
tion across all hospitals in the region. Extending our approach
to that of Lu et al. (2021) can lead to a more comprehensive
discussion of the supply side levers, including prioritization
of access. Finally, future research could investigate the long-
term consequences of the steep decline in ICU admissions
of uninfected patients during the pandemic. For instance,
researchers could analyze mortality data of oncological or
cardiopathy patients.

7.2 Implications for practice

During a public health emergency response, leaders must
make several critical decisions in a rapidly changing envi-
ronment with limited data. We have shown that even with
imperfect data from only the first few days of a pan-
demic, along with known cost and setup time parameters
for expanding resources, our method can provide an effi-
cient frontier of investment needed to limit the denial of
beds to patients. Decision-makers can then decide the accept-
able trade-off between investment in additional resources and
patients denied care. Moreover, our model requires only a
small number of variables. Therefore, decision-makers can
use our approach to capture the effect of the uncertainty in
projecting future demand during the early days of a pan-
demic. How the high uncertainty in the future spread of
infections is modeled is crucial, and our approach provides
much more insight than a simplistic what–if analysis on a
deterministic model with arbitrary parameter ranges. Addi-
tionally, decision-makers would also make decisions at the
right time. Our approach captures the nontrivial relation-
ships between the setup time for capacity expansion and
the optimal intervention time just as it does between the
setup time and the expected number of patients who might
be denied access to life-critical resources. Regarding tim-
ing, while an early decision on capacity expansion intuitively
denies ICU access to fewer patients, our model also shows
when delays in expansion can be accepted without affecting
the expected number of admitted patients. This is particu-
larly useful as the passage of time provides better information
to the decision-maker. Finally, our approach suggests that
in future pandemics the chaotic decision-making observed
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during the initial days of successive waves of Covid-19 can
be replaced by rational decision-making with model-based
information that our approach provides.
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