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From Supply Chain Risk to Systemwide Disruptions: Research Opportunities in 
Forecasting, Risk Management, and Product Design 

 

Structured Abstract 

Purpose: Supply chains must rebuild for resilience to respond to challenges posed by systemwide 

disruptions. Unlike past disruptions that were narrow in impact and short-term in duration, the Covid 

pandemic presented a systemic disruption and revealed shortcomings in responses. This study outlines 

an approach to rebuilding supply chains for resilience, integrating innovation in areas critical to supply 

chain management. 
 

Design/methodology/approach: The study is based on extensive debates among the authors and their 

peers. We focus on three areas deemed foundational to supply chain resilience: (1) forecasting, the 

starting point of supply chain planning, (2) the practices of supply chain risk management, and (3) product 

design, the starting point of supply chain design. We debated and pooled our viewpoints to outline key 

changes to these areas in response to systemwide disruptions, supported by a narrative literature review 

of the evolving research, to identify research opportunities.  
 

Findings: All three areas have evolved in response to the changed perspective on supply chain risk 

instigated by the pandemic and resulting in systemwide disruptions. Forecasting, or prediction generally, 

is evolving from statistical and time-series methods to human-augmented forecasting supplemented with 

visual analytics. Risk management has transitioned from enterprise to supply chain risk management to 

tackling systemic risk. Finally, product design principles have evolved from design-for-manufacturability 

to design-for-adaptability. All three approaches must work together.  
 

Originality: We outline the evolution in research directions for forecasting, risk management, and product 

design and present innovative research opportunities for building supply chain resilience against 

systemwide disruptions. 
 

Keywords: Resilience, forecasting, prediction for resilience, supply chain risk management, systemwide 

disruptions. 

 

Paper Type: Viewpoint  
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1. Introduction 

The 2020s have underscored that global supply chains must prepare against the risks of systemwide 

disruptions. Although supply chain management during crises has been studied extensively in the 

literature, the primary focus has been on supply-chain-specific disruptions (e.g., Chopra and Sodhi, 2014; 

Azadegan et al., 2021; Drozdibob et al., 2022). The literature has not looked at broad and systemic 

disruptions that simultaneously impact multiple industries across the globe (Shen et al., 2021), as 

witnessed by the impact of the Covid-19 pandemic, the microchip shortage that continues to bedevil the 

auto industry (Ramani et al., 2022), and the inflation in Europe and the US.  Companies across all industry 

sectors have struggled to develop resilience in their supply chains against such challenges. While there 

have been past disasters, the potential for economic damage from disruptions now—and in the future—

is considerably higher because of tightly connected global supply chains (Azadegan et al., 2020; Faruquee 

et al., 2021). The critical question facing supply chain scholars and managers is: How can organisations 

build resilience to systemwide disruptions without sacrificing cost-effectiveness? 

To provide an answer, we conceptualise resilience tied to the phenomenon of interest, namely 

systemwide disruptions, through debate, advocacy, and refutation (MacInnis, 2011). As such, we debate 

the changes needed in developing supply chain resilience as Covid-19 forced us to rethink resilience from 

individual supply chain disruptions to systemwide disruptions that affect most supply chains. We chose 

three key domains of research on supply chains: (1) forecasting, the starting point of supply chain planning 

and production planning, (2) the practices in supply chain risk management, the very reason for this article, 

and (3) product design, the starting point of supply chain design. The need to create better ways to 

forecast under increasing uncertainty is self-evident. Likewise, moving from enterprise or supply chain risk 

management to tackle systemic risk is necessary for environments bearing the risk of systemwide 

disruptions. Product design underlies both, in addition to the design of the supply chain itself. Next, we 

compare supply chain management in the pre- and post-2020 periods to see how supply chain practice 

and research are already changing in response to systemwide disruptions. Given the sheer size of the 

existing literature, which prohibits a comprehensive, structured review, we conduct a narrative review. 

Finally, we outline research opportunities in all three domains and their integration.  

The rest of the paper is structured as follows: Sections 2, 3, and 4 present the changing focus of 

forecasting, risk management, and design, respectively, each comparing pre-2020 with the 2020s. Finally, 

section 5 concludes with opportunities for research on resilient operations and supply chains, including 

integrating the three approaches. 



4 
 

2. Changes in Forecasting and Demand Prediction 

Forecasting seeks to predict future events based on data and is at the heart of an enterprise’s ability to 

respond to its environment. Forecasts drive entire supply chains and enterprise resource planning (ERP) 

systems; all enterprise decisions are driven by projections of the future and associated risk assessments 

at various levels: long-term and highly aggregated strategic planning at one extreme and short-term 

disaggregated forecasts at the other.  

2.1 Quantitative and Judgmental Forecasting pre-2020 

The long history of forecasting research pre-2020 had primarily looked at the accuracy and selection of 

methods given the availability of data. Forecasting methods can be broadly categorised into four groups, 

the first three being quantitative—i.e., statistical, artificial intelligence (AI), and simulation/optimisation) 

—and the fourth qualitative, based on human judgment. The literature has historically been divided on 

the relative value of judgmental (qualitative) versus quantitative methods, with several authors warning 

of judgment’s high subjectivity (e.g., Klayman 1988; Bazerman, 1998). Many studies have pointed to the 

shortcomings inherent in judgmental forecasting due to limitations of human cognition, and biases 

inherent in judgmental forecasting can create significant and volatile swings of forecast errors, which can 

seriously impact decisions such as those for supply chain planning. Other authors, however, have provided 

conceptual or empirical support for using judgment in forecasting (e.g., Edmundson et al., 1988; Lawrence 

et al., 1985; Arvan et al., 2019; Khosrowabadi et al., 2022). The primary reason for supporting qualitative 

forecasting is that judgment is privy to the latest information on environmental changes, which managers 

can rapidly incorporate into their forecasts. Furthermore, judgmental methods offer users a sense of 

“ownership” that cannot be discounted, as these users are often responsible for implementing plans to 

respond to forecasts (Lawrence et al., 2006; Goodwin et al., 2007). Their trust in the forecast is essential 

for implementation.  

Quantitative methods are based on mathematical modelling and algorithms. These methods are 

objective and consistent, capable of handling large amounts of data and uncovering complex relationships. 

Moreover, given good data, quantitative methods are generally more accurate than judgmental methods 

(Lawrence et al., 2006). Statistical and AI methods have attracted attention in many applications in recent 

years with the increasing availability of “big” data, which has fuelled implementation and enabled more 

robust quantitative models. In general, statistical models dominated before 2010 but were overtaken by 

AI models in the literature for a short period before a resurgence after 2014. Makridakis et al. (2020) 
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compared AI models with classical statistical models to evaluate their performance across multiple 

forecasting horizons using a large subset of monthly time series from the M4 Competition (International 

Institute of Forecasters). After comparing the post-sample accuracies of popular AI methods with eight 

traditional statistical ones, they found that the performance of statistical methods dominated AI methods 

across all accuracy measures and forecasting horizons. Moreover, the computational requirements for AI 

models were considerably higher than those of statistical methods. These findings are further supported 

by other studies that looked at forecasting methods in practice.  

2.2 Combining Methods in the 2020s 

Simple statistical models, such as exponential smoothing, dominated the pre-2020 period, particularly in 

manufacturing contexts. However, as environments have become highly dynamic and volatile since 2020, 

these methods are no longer adequate. Implementing good forecasting processes and achieving desirable 

forecast accuracy in these contexts can be seen as a “wicked problem” that is practically impossible to 

solve (Churchman, 1967; Rittel and Webber, 1973) due to its complexity and incomplete and changing 

data requirements. As a result, actionable risk assessments appear almost impossible to obtain, as 

highlighted by the disruptions over the recent past. Initially, the Covid-19 pandemic resulted in 

widespread shortages and stockouts of all items, from food to computers and automobiles. Although 

supply chain disruptions were partly to blame, a fundamental problem was the inability of companies to 

forecast how a new work-from-home lifestyle would impact consumer buying patterns. Subsequently, 

most retailers—from Target to Walmart—found themselves holding mountains of excess inventory. There 

were too many wrong items, and not enough of those consumers wanted. As a result, items ordered by 

retailers that were popular during the days of the pandemic are now pouring in—only to be met with 

customers whose preferences and shopping habits have changed again. Similarly, airlines—from 

American Airlines to Southwest—did a dismal job in forecasting, with a continued inability to meet 

consumer demand for travel. Collectively these examples illustrate the inadequacy of old forecasting 

methods and the need for different approaches (Estrin et al., 2020). We must not forget that forecasts 

provide an anchor or baseline for planning (and design) for resilience, which is more cost-effective than 

just responding to disruption. 

Why were old forecasting approaches inadequate after the first wave of Covid-19? Although 

quantitative methods are objective and consistent, they require quantifiable data to generate forecasts. 

Moreover, data should be representative, which becomes an issue under change conditions and for scarce 

events with low probability. Current quantitative forecasting models are often based on sophisticated 
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machine-learning methods. Despite tremendous advancements in analytics and AI and the availability of 

vast data, these technologies are still too narrow in what they can achieve. In addition to depending upon 

the quality of data, the output of these algorithms can also get trapped in “local optima.” For example, an 

algorithm may find better solutions than those nearby in the search process but not see that there are 

better solutions that are dissimilar to current solutions for a complex problem, which require 

understanding context and employing creativity. 

By contrast, humans can interpret data sets of limited size and detect non-trivial patterns across 

various datasets. This capability requires context awareness, experience, intuition, and domain-specific 

knowledge. Although humans can only process small data sets, lack consistency, and often bring biases to 

decision-making, they can also develop novel solutions (Peysakhovich and Karmarkar, 2016). An excellent 

example of the difference in “intelligence” between humans and analytical algorithms is offered by 

(Brooks, 2017, Section 3): 

Suppose a person tells us that a particular photo shows people playing Frisbee in the park. Do we naturally 

assume that this person can answer questions like What is the shape of a Frisbee? Roughly how far can a 

person throw a Frisbee? Can a person eat a Frisbee? Approximately how many people play Frisbee at once? 

Can a three-month-old person play Frisbee? Is today’s weather suitable for playing Frisbee? 
 

This example illustrates the kinds of contextual connections humans make that are not offered by 

analytical algorithms but are needed for forecasting in highly dynamic environments to recognise 

unknowns. Judgmental or qualitative methods also have the advantage of incorporating last-minute 

‘inside’ or ‘soft’ information, such as short notice of a competitor’s advertising campaign, a snowstorm 

delaying a shipment, or a heat wave increasing ice cream sales. In November of 2021, for example, 

Walmart announced that they were overriding their algorithm-based forecasts for holiday sales, as 

historical data were based on a pre-Covid-19 environment.  

Most researchers agree that human judgment and analytics have unique, opposite strengths and 

weaknesses (Sanders and Ritzman, 2001; Sanders, 2000; 2017; Fildes and Goodwin, 2008; Moritz et al., 

2014); this is called “Moravec’s Paradox” (Brynjolfsson and Mitchell, 2017; Sanders and Wood, 2022). An 

ideal forecasting methodology is therefore based on the “collective intelligence” of both judgmental and 

statistical forecasting approaches, augmenting analytics with human judgment (Sanders and Wood, 2022; 

Taylor-Phillips and Freeman, 2022). Table 1 illustrates the complementary strengths of these methods 

(Sanders, 2017). 
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Table 1: Complementarity of statistical forecasting and judgment methods (Sanders, 2017) 

 Statistical methods 

Complementarity 

Human judgement 

Strengths 

- Process large data sets 
- Precision and accuracy 
- Flexibility and scaling 
- Speed 

- Connect unrelated areas 
- Creative and innovative 
- Explain decisions 
- Empathy and emotion 

Weaknesses 

- Only as good as the 
data 

- Lack creativity and 
innovation 

- Cannot explain the 
decision 

- Lack empathy and 
emotion 

- Processing limitations 
- Subject to cognitive biases 
- Inconsistent 
- Physical limitations 

 

 

3. Changes in Supply Chain Risk Management 

Managers are accustomed to developing risk management strategies in ordered domains characterised 

by known risks. Over time, researchers have proposed different approaches to tackle the effects on supply 

chains of notable disruptive events such as the Fukushima tsunami in Japan in 2011 and 9/11 (Chopra and 

Sodhi, 2014). However, these approaches are not adequate to contain the prolonged effects of disruptions 

caused by the 2008-09 financial crisis and Covid-19. Therefore, risk management needs to be extended 

from variability to building resilience in environments with systemwide disruptions. 

3.1 Risk Management pre-2020 

The supply chain risk literature looks at risks in two broad categories, variability (e.g., demand fluctuations 

or delays) and disruptions (e.g., El Baz and Ruel, 2021; Ivanov, 2020a; Ivanov, 2020b). All companies are 

subject to variations that impact operations. Since the beginning of the 20th century, scientific 

management, Fordism, just-in-time (JIT), and lean production have helped companies become more 

efficient through, for example, heijunka (Hüttmeir et al., 2009) and Six Sigma (Kumar et al., 2008). 

Variability is included in calculations to manage inventory buffers, while many tools exist to identify root 

causes and thus improve performance (Berman et al., 2011). 

Since the beginning of the 21st century, the focus has shifted from delays (variability) to disruptions 

(Chopra and Sodhi, 2004). These disruptions are low-likelihood events with potentially significant impacts. 

Unlike variability, which can typically be quantified with probability distributions informed by historical 
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data, sparse events cannot empirically inform the construction of probability distributions (and hence our 

anticipation of such events in the future) other than assigning such labels as “low” likelihood and “high” 

impact.  

The literature suggests that, like variability, disruptions—even those with massive impacts like the 

Fukushima disaster of 2011—can be contained with operational countermeasures such as inventory, 

redundant capacity, and reduced geographic concentration (Chopra and Sodhi, 2004). Other measures 

are supply chain segmentation and regionalisation (Chopra and Sodhi, 2014).  

3.2 Risk Management in the 2020s 

Since 2020, however, we have experienced a prolonged and systemic propagation of disruptions, with 

each triggering disruptions in other sectors. Supply chains have more tightly interconnected material and 

information flows spread over larger geographical areas than in earlier decades. Tighter coupling 

(interconnectivity) among firms via their supply chains increases network complexity (Simon, 1962) and 

uncertainty, including unknown unknowns (Ramasesh & Browning, 2014). The interconnectedness within 

and across global supply chains means that disruptions propagate faster and are more widespread than 

before. Issues with controllable variability remain, but organisations must now consider unordered 

environments characterised by low-probability events with unknown or unforeseen causes (Browning and 

Ramasesh, 2015; Alexander et al., 2018).  

Such prolonged disruptions can be widespread geographically. They can be considered ‘correlated’ 

(common mode failures) in that distant locations could be affected simultaneously, as with Covid-19. The 

correlation makes risk management approaches like supplier diversification less effective than they would 

be with uncorrelated risks since risk pooling effects disappear. The risk of such systemic disruptions 

increases with the degree of interconnectivity (coupling) in the system—with global supply chains from 

different sectors being linked through shared suppliers or customers.  

Thus, the significant change in the 2020s is the awareness of disruptions becoming systemic, affecting 

not just the supply chains of a few companies but entire sectors. Several researchers have highlighted the 

phenomenon of systemic risk. Ivanov (2020a) discussed the distinctive features of disruption risks 

characterised by long-term existence, uncertainty, and propagation, emphasising a systemic view of such 

(super) disruptions. Scheibe and Blackhurst (2018) discussed systemic risk in a supply chain, albeit focused 

primarily on propagation within the supply chain. Dolgui et al. (2020) noted the ‘ripple effect’ of such a 

disruption and described the downstream propagation of the downscaled demand fulfilment in the supply 

chain. Ivanov (2020a) and Ivanov and Dolgui (2020) studied the ripple effect of pandemic-related 
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disruptions. Furthermore, Haren and Simchi-Levi (2020) provided two examples of Covid-19-induced 

ripple effects in the supply chains of Fiat Chrysler Automobiles (now Stellantis) and Hyundai, while Ramani 

et al. (2022) showed that the disruptions caused by the microchip shortage in the auto industry could spill 

over into other sectors in ways that even an omniscient central planner cannot anticipate or manage. 

Other papers have proposed approaches to tackle systemic risk in the wake of Covid-19 or for 

preparing against future pandemics. Queiroz et al. (2022) reviewed the literature tied to epidemics and 

proposed a framework to study operational issues—adaptation, digitalisation, preparedness, recovery, 

ripple effect, and sustainability—and suggested that the traditional supply chain models may not yield 

solutions to long-term, global, pandemic-driven disruptions. Chowdhury et al. (2021) identified key 

research themes: the impact of the Covid-19 pandemic, resilience strategies for managing impact and 

delivery, the role of technology in implementing resilience strategies, and supply chain sustainability in 

the context of the pandemic. Among the issues studied, the key focus areas were: demand spikes for 

essential goods and services (Chowdhury et al., 2021; Ivanov and Dolgui, 2021; Queiroz et al., 2022), 

shortages of essential products (Hobbs, 2020), on-time delivery failures (Ivanov and Das, 2020), supply 

disruptions and scarcity of parts, increased backlog due to production disruptions and labour shortages 

(Ivanov and Das, 2020; Mehrotra et al., 2020), and transportation delays and disruption in distribution 

channels (Choi, 2020; Ivanov and Dolgui, 2020). Finally, Ivanov and Dolgui (2021) also discussed the need 

to adapt supply chains to better prepare against future pandemics to make supply chains more viable in 

the long term (Ivanov and Dolgui, 2020). 

Recent disruptions have only increased the emphasis on resilience in supply chains. Resilience signifies 

the ability to resist the impact and, if impacted, recover to reach a (possibly new) steady state to continue 

to satisfy consumer demand (e.g., Chopra et al., 2021; Wieland and Durach, 2021). Inventory reservation, 

backup and emergency inventory at the distribution centre, backup capacity and standby capability (Sodhi 

and Tang, 2021a), and multi-level commons (Chopra et al., 2021) have all been suggested as strategies for 

systemwide disruptions in the recent Covid-19-motivated supply chain literature. 

 

4. Changes in Design for x 

Products, manufacturing processes, and supply chains are all complex systems that require careful design. 

These systems typically emerge from simpler, nearly decomposable ones, simplifying the description of 

their behaviour and increasing their resilience to disturbances, as in Simon’s (1962) classic example of the 
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watchmakers, Tempus and Hora. Decomposable systems are modular, where subgroups of elements 

communicate with other subgroups through standardised interfaces in a standardised architecture 

(Baldwin and Clark, 2000; Langlois, 2002). Modularity underlies the concepts of design for 

manufacturability, characteristic of the pre-2020 period seeking manufacturing and supply-chain 

efficiency, and design for adaptability (DFA), which has become more critical in the post-2020 period. 

Below, we discuss some aspects of “design for x,” where x has come to represent an increasingly larger 

set of concerns over the years. 

4.1 Design for x before 2020 

The 1980s brought to the literature an explicit acknowledgement of the importance of early design 

decisions on later production, sourcing, and other product lifecycle implications (e.g., Whitney, 1988). 

Efforts around this time focused on design for manufacturability (DFM) or design for manufacture and 

assembly (DFMA—e.g., Boothroyd et al., 1994), both of which entail designing components with early 

considerations of their producibility as well as their functionality (Anderson, 2020). As production became 

globally distributed, the methods of DFM needed an extension for global supply chains. These methods 

required the operationalisation of any product’s architecture as a key decision variable for supply chain 

managers and product designers (e.g., Fixson, 2005). Accordingly, decisions about the design of the 

product, production process, and supply chain—and the trade-offs among these—had to be made early, 

during a product’s design stage, with inputs from not only designers but also production and supply chain 

experts (Fine, 1998; Fine et al., 2005), and information from forecasting and risk management. However, 

the prolific research stream on DFM has not focused on the ability to adapt and quickly recover from 

disruptive events when designing such systems.  

4.2 Design for x in the 2020s 

Carrying the ideas of ex-ante “design for x” even further, design for adaptability (DFA) seeks to 

increase a system’s lifetime value by planning appropriate modularity early in its lifecycle, during its design 

stage, to be more readily redesigned or upgraded to meet unknown future requirements. DFA research 

to date has focused on product development. For instance, according to Engel et al., (2017, p.877), 

designers purposefully make a product’s design more adaptable by endowing it with “degrees of freedom 

that enable the addition of new capabilities and the improvement of existing capabilities through 
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economies of substitution (Garud and Kumaraswamy 1995).” These degrees of freedom result from 

designers’ decisions about a product’s components, interfaces, and modules.  

Decoupling a system’s components (i.e., making the system more modular) enables various modules 

to evolve at different rates without compromising the system’s overall functionality. In contrast, changes 

to an integral (non-modular) system require redesigning and retesting the entire system when making any 

change. Thus, modular products can be redesigned more easily (as product variants or upgrades). Such 

changes are more complex and expensive in less-modular products because the entire product must be 

redesigned instead of only particular (often the most dynamic) modules. Hence, DFA increases the 

resilience of a product line or platform and potentially upgradable products. However, more modularity 

is not always cost-effective. Modularity may be characterised as a portfolio of options whose value 

depends on the technological and market conditions at some future time (de Neufville, 2001; Baldwin and 

Clark, 2002; Engel et al., 2017). Increasing the number of modules in a system provides more options to 

change some modules but not others. However, more modules result in more inter-module interfaces 

and higher transaction, coordination, and standardisation costs. Thus, some of these module options may 

not be worth the investment.  

Furthermore, the value of the module options depends not only on the amount of modularity but also 

on how the modularity is achieved (which components reside in which modules and which component 

interfaces span the modules versus being encapsulated by them), as well as on all projected futures. Engel 

et al. (2017) offered a conceptual framework grounded in the theories of modularity, options, and 

interface costs to measure a product’s architecture adaptability value (AAV). Weighing the specific 

benefits of increased modularity (the forecasted value of the options created) against its specific 

coordination and transaction costs indicates the modular architecture that maximises AAV.  They made 

several observations from their case studies of DFA in real products: 

- The amount of modularity generally has a concave, ∩-shaped relationship with AAV, as both too 

little and too much modularity are problematic. 

- The amount of modularity alone does not determine overall AAV, because which components are 

assigned to which modules matters as much as the number of modules. 

- Components exhibiting fast rates of technological change should not reside in the same module 

with components that evolve slowly, allowing the former to be more easily replaced in the next 

version of the product without having to redesign the stable components. 
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- Products containing components with heterogeneous rates of technological change should have 

greater modularity than products composed of components with homogenous rates of 

technological change. 

 

Of course, product components and modules might need to change for other reasons besides technology 

evolution, such as the need for alternative sources of nearly compatible substitutes. Hence, these insights 

are highly likely to apply to supply chain resilience considerations, as we will discuss below. 

5. Discussion 

Many disruptive events are low probability and nearly impossible to anticipate individually but essentially 

inevitable collectively. Consequently, most of the means to build resilience presented in the literature 

focus on limiting the impact and propagation of disruptions. These approaches include decoupling 

inventories and capacity, increasing supply chain visibility (i.e., the “ability to see from one end of the 

pipeline to the other” - Christopher and Peck, 2004), developing multiple options for sourcing (redundant 

suppliers), and improving the management of supplier relationships to reduce the likelihood of a firm 

being affected by disruptions propagating through those connections (Bode and Wagner, 2015; Han and 

Shin, 2016; Scholten et al., 2020; van Hoek, 2020). Such approaches take a pre-2020 perspective and are 

mainly concerned with controlling variability, even when dealing with disruptions.  

While studies of supply chain disruptions post-2020 are emerging, there is significant scope for 

research to improve our understanding of systemic disruptions that affect entire industries and 

economies. Moreover, means developed can require additional or redundant resources that incur costs, 

even if a disruption does not occur within the decision horizon. As with insurance, an inherent tension 

exists between cost-effectiveness and resilience against massive disruptions affecting multiple sectors. 

This is how we arrived at the question that motivated us: How can organisations build resilience against 

systemwide disruptions without sacrificing cost-effectiveness?  As an answer, we explore some research 

opportunities for each of the three areas discussed in this study and then consider how to integrate them. 

5.1 Forecasting for Environments with Systemwide Disruptions 

To extend the combined methods described in Section 2, we note two basic, complementary strategies 

to extract intelligence from data. The first is a human augmentation of quantitative forecasting methods. 

The second is visual analytics, the interdisciplinary science of analytical reasoning supported by graphical 
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interfaces (Chung and Thomas, 2004; Winkenbach, 2017). Visual analytics provides tools that enable 

humans to view the data’s information better and communicate it to stakeholders (Aigner et al., 2008). 

Visual analytics enhances automation's human augmentation and enables better intelligence extraction 

from big data.  For instance, the maintenance team at a major middle-eastern airport uses visual analytics 

to predict the health of the baggage handling system (Koenig et al., 2021). Through ‘marrying’ visual 

analytics with human augmentation of quantitative forecasting models, we can develop—and keep 

updating—helpful forecasts that will contribute to improved resilience in supply chains. Both approaches 

offer research opportunities, as they are still nascent.  

Meanwhile, computers also encounter problems predicting irrational and nonrational behaviour that 

underlies mass phenomena such as panic and fake news. In these settings, human judgement may help 

or harm. Recent disruptions highlight an emotional dimension (in addition to behaviour and ethics) that 

remains widely disregarded in the supply chain literature. Finally, social capital matters (Polyviou et al., 

2020). Human augmentation relies on competent people who care—hence, a need to upskill and reskill 

the workforce—and research is needed on how to do that. This is vital to improving the accuracy of human 

forecasting and early detection of weak signals of disruption in supply chains. 

5.2 Risk Management for Environments with Systemwide Disruptions 

According to normal accident theory (NAT), supply chain disruptions may be viewed as “normal” 

system accidents in the sense that they are unavoidable in highly complex systems that outpace human 

capabilities for modelling and control (Perrow, 1999; Hopkins, 1999).  “Normal” here includes both 

variability and disruptions in the sense mentioned above. Thus, NAT implies that we need to reduce 

complexity or enhance the capacity to cope with it (Shrivastava et al., 2009). Considering that the 

complexity of supply chains as systems is expected to grow in the foreseeable future, further research on 

containing or mitigating the disruptions becomes essential. 

Super disruptions (Rozhkov et al.,2022) require extreme supply chain management with massive 

unforeseen changes in demand, supply, or both (Sodhi and Tang, 2021a). One way is to create commons 

– or shared resources – for multiple companies or product lines within the same company to use as 

needed (Chopra et al., 2021). “Ad hoc” supply chains (Müller et al., 2022) may need to be created, for 

instance, in response to a global pandemic (Srinivasan et al., 2022), such as building ventilators in the US 

and the UK with the help of auto companies (Sodhi and Tang, 2021b). Having capacity in addition to 

inventory—and, more importantly, capability—can help design such supply chains rapidly in disaster 

situations (Li et al., 2022). Humanitarian supply chains in the wake of a major disaster are also ad hoc. 
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Scenario planning to identify plausible risks and their impact can be helpful, especially where the decision 

horizon is far into the future (Sodhi, 2003).  

We must also develop ways to use the increasingly available data and digital technologies to 

estimate the impact and other cascading disruptions. The use of data can help build digital twins of 

connected supply chains to understand the implications of unfolding events, compute thousands of what-

if scenarios, and build ‘nonlinear’ supply chain models, thereby facilitating managers to make accurate 

and informed decisions for lower cost (Tozanli and Saénz, 2022) or sustainability (Apte and Spanos, 2021). 

With fast-paced information changes, managers’ behaviour and decision-making may differ from stable 

environments. So, behavioural models would also be helpful. 

We must also devise ways for managers to understand trade-offs as the shift toward supply chain 

resilience (Tukamuhabwa et al., 2015; Hendry et al., 2018; de Sá et al., 2019; Faruquee et al., 2021) can 

appear to conflict with pre-2020 efficiency practices such as sole suppliers, ‘zero’ inventory, and even risk 

management. However, Chopra and Sodhi (2014) argued that win-win solutions could reduce both risk 

exposure and costs rather than only force trade-offs. Each organisation faces different types of risk that 

require different types of risk management (Table 2). Even in systemwide disruptions, the need for dealing 

with day-to-day variability continues, requiring inventory management and managing the risk of 

disruptions with supply chain segmentation and regionalisation (Chopra and Sodhi, 2014). Risk 

management will be most effective if we consider approaches that span the rows of Table 2. The research 

opportunity is how to design and operate supply chains that can perform even in highly disruptive 

environments because of their resilience to systemic risk.  
 

Table 2: Overarching view of risk management approaches before 2020 and in the 2020s 

 Variability in 
Operations Prevention and response efforts Risk assessment modelling 

Be
fo

re
 2

02
0 

Some regular 
variability 

- Preventing variability from 
entering or leaving any subsystem 
with upstream and downstream 
buffers outside the subsystem 

- Probabilistic models (normal 
distribution) for the probability 
and impact of unsatisfactory 
outcomes such as unmet demand 

Disruptions - Supply chain design to contain 
impact in case of a risk incident 
with regionalization and 
segmentation  
- Reactive efforts to respond to 

disruptions (Toyota brakes; Aisin 
fire) and seeking to return to the 
original state 

- Probabilistic models with right-
skewed distributions (e.g., log-
normal). Identification of plausible 
risks and responses through 
scenario planning 
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20
20

 a
nd

 la
te

r 
Systemic risk with 
multiple, 
interacting 
disruptions 

- Adapt to post-disruption reality 
aiming for a new state rather than 
the original one, anticipating 
further disruptions 
- Change business or operating 

model (online or omnichannel 
retail) 
- Multiple disruptions create chaos, 

further risks generated by the 
responses taken 
- Seek the establishment of 

industry commons from 
government and cooperation with 
competitors and companies from 
other sectors 

- Use data to estimate the impact 
and other disruptions.  
- Identification of plausible risks 

and responses through scenario 
planning  
- Digital twins of connected supply 

chains to understand the 
implications of unfolding events.  
- Behavioural modelling for 

decision making. 

 

5.3 Design for Environments with Systemwide Disruptions 

The prolific research streams on “design for x” have not yet focused on the ability of supply chains to 

adapt and quickly recover from disruptive events. As production is now more interconnected and globally 

distributed, it is essential to extend such methods to supply chains, which requires the operationalisation 

of a product’s architecture as a key decision variable for operations and supply chain managers and 

product designers. The concept of DFA should be extended from products to production processes and 

even entire supply chains (Tozanli and Saénz, 2022) with an eye for design for resilience (DFR), which 

applies DFA to supply chain configuration (e.g., Fixson, 2005; Huang et al., 2005)—the generation of the 

optimal design of the products, manufacturing processes, and supply sources to enable an effective, 

efficient, and resilient supply chain. DFR applies to a product and its supply chain because the product 

design determines the complexity and size of the process that produces and sources it. For example, with 

the use of additive manufacturing (e.g., 3D printing) technologies, oil and gas giant Shell managed to 

maintain its digital warehouse during the Covid-19 pandemic for supplying replacement parts locally by 

commissioning the job to a local manufacturer for 3D printing the parts, allowing the company to reduce 

part replacement times from 16 to two weeks (Shell Global, 2021). However, not all parts can be sourced 

this way unless designed initially with a view toward 3D printing. Operationalisation and decision models 

such as AAV can help managers prioritise which parts merit such emphasis. 



16 
 

Although Engel et al.’s (2017) observations listed earlier pertain to product design (and warrant 

further research even in that domain), their insights nevertheless suggest fruitful avenues for 

manufacturing systems and supply chains to increase resilience: 

- Should highly dynamic nodes in the network of supplier firms – those with higher uncertainty or 

risk – be decoupled from more stable ones? Should the decoupling occur by grouping high-risk 

components (or flows) and providing appropriate redundancy or inventory? 

- Should components with higher (supply chain) risks be modularised for easy substitution with 

minimal impact on the product’s performance, such as when electronic devices are designed to 

use any of several different types of microchips instead of only one that might become unavailable? 
 

Questions like these portend new research areas to explore how DFA can further enable DFR in operations 

and supply chains. 

5.4 Taking an Integrated Approach  

Table 3 summarises the main research issues for each area discussed above. Forecasting provides 

inputs to risk management, which entails identifying risks and riskiness (risk awareness), risk attitudes, 

and risk reduction. Design—whether for the product, manufacturing system, or supply chain—focuses on 

creating means to absorb and reduce the impact of adverse events when focused on resilience. It provides 

the means to manage risks. We thus argue that we need to advance the tools for forecasting, risk 

management, and design individually but also find ways to integrate them to enable supply chain 

resilience in environments with systemwide disruptions. For instance, a modular product design with a 

low lead time for assembling modules greatly simplifies demand forecasting versus individual modules, 

especially if the respective demands are weakly correlated. Likewise, product design can ensure the 

commonality and substitutability of parts across product lines, affording less expensive ways of creating 

redundancy among suppliers and warehouses, which are vital for containing supply chain risk.  

 

Table 3: Research issues for forecasting, risk management, and design for resilience 

Domain Research opportunity 

Forecasting 

• How can we develop a standardised process to ensure forecasting data 
are clean and reliable? 

• How can we use scenario planning effectively in complex environments 
prone to disruptions? 

• How can we combine expert judgment with algorithms in forecasting? 
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• How can we enhance human judgment and decision making through data 
visualisation techniques? 

• What influence have emotions? 

Risk management 

• How can we manage the risk-shift phenomenon, where attempts to 
reduce risk in one area or for one stakeholder do not actually reduce a 
risk but rather just shift it elsewhere? 

• What are the behavioural aspects of risk attitudes and preferences?  How 
can a resilient supply network include a mixture of aggressive and 
conservative agents or firms? 

• How can we improve the identification and analysis of risks? 

Design of products (and 
their production 

processes and supply 
chains) 

• How should product, production process, and supply chain architectures 
be modularized to increase resilience? 

• How should product components, production activities, and supply chain 
members be designed and chosen to improve resilience with minimal 
effects on efficiency and effectiveness? 

• How should interfaces among system nodes (product components, 
production activities, and supply chain members) be managed to increase 
resilience? 

• What are the best ways to predict the option values of product 
components, production activities, and suppliers? 

• How to design products, processes, and supply chains to manage risk 
economically? 

 

The need for integration across these areas is urgent. It is meaningless to worry about risk 

management if the forecast, or rather, prediction, which provides the input, is wrong or if the means built 

into the system's design are too limited. For example, Lorentz et al. (2021) found that management 

attention should focus on supply risk sources and the recoverability of the network simultaneously. Thus, 

an integrated approach provides a rich source of research opportunities: 

1. Conceptual foundation: Human augmentation of quantitative forecasting methods can be 

subdivided according to risk type, focusing quantitative forecasting on variability aspects and 

human augmentation on low probability events. These predictions can be used to calculate and 

evaluate different risks and guide product and supply chain decisions, such as the location and 

size of buffers for resilience. Conceptual research is needed to further disentangle the 

relationships between risk type, supply risk sources and means to build resilience, and their 

impact on forecasts. A language common to computers and humans needs to be developed and 

standards introduced, as currently, there is no standard language for risk, resilience, or recovery. 

2. Rapid supply chain configuration:  Further research is needed to understand the configuration 

and performance outcomes of ad hoc supply chains (Müller et al., 2022) set up in response to a 

specific, acute need (e.g., disruptions such as Covid-19). Such supply chains are the norm in 
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disaster responses. Research possibilities include how the ‘ad-hoc supply chain’ concept could be 

used to design future supply chains. Moreover, adopting a particular set of standards and rules 

may enable self-organising, complex-adaptive supply chains to emerge faster (cf., Levardy and 

Browning, 2009). Counterintuitively, would the increased standardisation of supply chain nodes 

enable greater agility and adaptability (Browning, 2014), e.g. through interoperability? 

3. Procurement: Another area that can benefit from innovating its process based on the DFR concept 

is the procurement function. Procurement includes setting up long-term contracts with suppliers 

and transport service providers, especially in industries like auto or electronics. Reviewing the 

traditional procurement model suited for the ordered domain to include more flexible, digitally 

enabled models for unordered domains provides another exciting avenue for future research 

when combined with the principles of adaptability and resilience. 

4. New methods for planning and control: The design of a product often precedes that of its 

production and supply chain, and it predetermines many of the risks that a producing firm and its 

supply chain will face. The product (with its modules) determines the supply chain’s design and 

vice versa. Similar, demand planning (including forecasting) occurs early in operational planning, 

followed by supply chain planning and production planning as sequential modules. This heuristic 

simplifies the planning tasks by modularising them. Such modularisation of planning may have 

been adequate in the pre-2020 years, but now it should be fundamentally questioned, such as in 

the context of advanced planning and scheduling. Systemic disruptions require a continual and 

rapid plan adjustment towards the “new normal”. Planning parametrizes the capabilities build 

into a supply chain, e.g., through DFR. Planning and control must therefore be systematically 

revised, using the lessons learned from disruptive events as inputs.   

5. Impact of supply chain design on forecasting and risk management: New ways of operating supply 

chains also affect forecasting and risk management, highlighting the problem's circularity and that 

new means must be developed that consider future developments and opportunities. Including 

counterfactual analysis and models can help close the loop within DFR by incorporating different 

‘what-if’ situations. The application of Digital Twin has, for example, helped DHL and Airbus to 

model their industrial system, industrial constraints, inventories, and assets against different 

‘what-if’ scenarios and gave them capabilities to visualise hidden suppliers in the long chain, 

optimise material flows, and expose previously invisible interdependencies. 

6. Understanding and communicating the negative impact of resilience efforts: Some systemic 

disruptions could be caused by misguided efforts to create resilience. For example, increasing 
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inventory levels or the supplier base increases resilience for the buying firm but could cause a 

capacity shortage at the supplying firm, leading to more disruptions. Similarly, while supply chain 

visibility is helpful, it also significantly increases system nervousness, the potential for 

opportunism, and the risk of propagation. There is a need to formalise these trade-offs and 

develop the means to communicate them to managers. 

7. Resilience of information flows: While our focus is primarily on physical supply chains, disruptions 

may also occur in the software maintaining resilience. This aspect of cybersecurity needs more 

attention. There has been a significant movement towards design science and the pragmatic 

validity of artefacts. More research is required to focus on resilience against internal and external 

(e.g., cyber-attack) disturbances. 

8. Design and geographical span: Finally, geopolitical tensions not only exacerbate uncertainties but 

also directly impact supply chain design (Roscoe et al., 2022; Sodhi and Tang, 2022)—e.g., cobalt 

mining or microchips could also be connected to DFA with alternative materials for such products 

as car batteries or electronic chips. We need to revisit supply chain network design in light of such 

tensions and uncertainty on the one hand and adaptability on the other.  

 

In summary, we can only achieve the grand challenge of supply chain resilience by building it into the 

design of the products, processes, and information systems they depend on, from raw materials to 

finished products and all affected stakeholders. The supply chain management literature must increase 

its scope and breadth to make a meaningful contribution in the years ahead. 
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