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Ontology learning as a use case for neural-symbolic integration

Pascal Hitzler et al.
AIFB, University of Karlsruhe, Germany

Abstract
We argue that the field of neural-symbolic integra-
tion is in need of identifying application scenarios
for guiding further research. We furthermore argue
that ontology learning — as occuring in the con-
text of semantic technologies — provides such an
application scenario with potential for success and
high impact for neural-symbolic integration.

1 Neural-Symbolic Integration
Intelligent systems based on symbolic knowledge processing
on the one hand, and on artificial neural networks (also called
connectionist systems) on the other, differ substantially. They
are both standard approaches to artificial intelligence and it
would be very desirable to combine the robust neural net-
working machinery with symbolic knowledge representation
and reasoning paradigms like logic programming in such a
way that the strengths of either paradigm will be retained.
The importance of these efforts to bridge the gap between
the connectionist and symbolic paradigms of Artificial Intel-
ligence has been widely recognised. Since the amount of hy-
brid data which includes symbolic elements as well as statis-
tical aspects and noise increases dramatically in diverse areas
such as bioinformatics or text and web domains, this prob-
lem is of particular practical importance. The merging of the-
ory (background knowledge) and data learning (learning from
examples) in neural networks has been indicated to provide
learning systems that are more effective than purely symbolic
and purely connectionist systems, especially when data are
noisy and described by real-valued as well as symbolic com-
ponents.

The above results, due also to the massively parallel ar-
chitecture of neural networks, contributed decisively to the
growing interest in developing neural-symbolic systems, i.e.
hybrid systems based on neural networks that are capable of
learning from examples and background knowledge, and of
performing reasoning tasks in a massively parallel fashion.
Typically, translation algorithms from a symbolic to a con-
nectionist representation and vice-versa are employed to pro-
vide either (i) a neural implementation of a logic, (ii) a logical
characterization of a neural system, or (iii) a hybrid system
that brings together features from connectionism and sym-
bolic Artificial Intelligence.

However, while symbolic knowledge representation is
highly recursive and well understood from a declarative point
of view, neural networks encode knowledge implicitly in their
weights as a result of learning and generalisation from raw
data which is usually characterized by simple feature vectors.
While significant theoretical progress has recently been made
on knowledge representation and reasoning using neural net-
works on the one side and direct processing of symbolic and
structured data with neural methods on the other side, the in-
tegration of neural computation and expressive logics such
as first order logic is still in its early stages of methodolog-
ical development. As for knowledge extraction, neural net-
works have been applied to a variety of real-world problems
(e.g. in bioinformatics, engineering, robotics), having been
particularly successful when data are noisy, but entirely sat-
isfactory methods for extracting symbolic knowledge from
such trained networks are still to be found, and principled
problems to ensure the stability and learnability of recursive
models currently impose severe restrictions on connection-
ist systems. In order to advance the state of the art, we
believe that it is necessary to look at the biological inspira-
tion for neural-symbolic integration, to use more formal ap-
proaches for translating between the connectionist and sym-
bolic paradigms, and to pay more attention to potential appli-
cation scenarios. We will argue in the following that ontology
learning provides such an application scenario with potential
for success and high impact.

2 The Need for Use Cases
The general motivation for research in the field of neural-
symbolic integration just given arises from conceptual obser-
vations on the complementary nature of symbolic and neural-
network-based artificial intelligence which we described.
This conceptual perspective is sufficient for justifying the
mainly foundations-driven lines of research being undertaken
in this area so far. However, it appears that this conceptual
approach to the study of neural-symbolic integration has now
reached an impasse which requires the identification of use
cases and application scenarios in order to drive future re-
search.

Indeed, the theory of integrated neural-symbolic systems
has reached a quite mature state but has not been tested so
far on real application data. From the pioneering work by
McCulloch and Pitts [22], a number of systems have been



developed in the 80s and 90s, including Towell and Shav-
lik’s KBANN [28], Shastri’s SHRUTI [26], the work by
Pinkas [24], Hölldobler [17], and d’Avila Garcez et al. [11;
13], to mention a few, and we refer to [8; 12; 15] for compre-
hensive literature overviews. These systems, however, have
been developed for the study of general principles, and are
in general not suitable for real data or application scenarios.
Nevertheless, these studies provide methods which can be ex-
ploited for the development of tools for use cases, and signif-
icant progress can now only be expected by developing prac-
tical tools out of the fundamental research undertaken in the
past.

The systems just mentioned — and most of the research
on neural-symbolic integration to date — is based on propo-
sitional logic or similarly finitistic paradigms. Significantly
large and expressible fragments of first order logic are rarely
being used because the integration task becomes much harder
due to the fact that the underlying language is infinite but shall
be encoded using networks with a finite number of nodes [6].
The few approaches known to us for overcoming this prob-
lem are work on recursive autoassociative memory, RAAM,
initiated by Pollack [25], which concerns the learning of re-
cursive terms over a first-order language, and research based
on a proposal by Hölldobler et al. [19], spelled out first for
the propositional case in [18], and reported also in [16]. It is
based on the idea that logic programs can be represented —
at least up to subsumption equivalence [21] — by their asso-
ciated single-step or immediate consequence operators. Such
an operator can then be mapped to a function on the real num-
bers, which can under certain conditions in turn be encoded or
approximated e.g. by feedforward networks with sigmoidal
activation functions using an approximation theorem due to
Funahashi [10]. Despite a number of sophisticated theoretical
results building on the latter approach — reported e.g. in [19;
4; 16; 6; 5] —, first-order neural-symbolic integration still
appears to be a widely open issue, where advances are very
difficult, and it is very hard to judge to date to what extent
the theoretical approaches can work in practice. The devel-
opment of use cases with varying levels of expressive com-
plexity are therefore needed in order to drive the development
of methods for neural-symbolic integration beyond proposi-
tional logic.

3 Semantic Technologies and Ontology
Learning

With amazing speed, the world wide web has become a
widely spread means of communication and information
sharing. Today, it is an integral part of our society, and will
continue to grow. However, most of the available information
cannot easily be processed by machines, but has to be read
and interpreted by human readers. In order to overcome this
limitation, a world-wide research effort is currently being un-
dertaken, following the vision spelled out by Berners-Lee et
al. [7], to make the contents of the world wide web accessi-
ble, interpretable, and usable by machines. The resulting ex-
tension of the World Wide Web is commonly being referred
to as the Semantic Web, and the underlying technological in-
frastructure which is currently being developed is referred to

Figure 1: The Semantic Web Layer Cake

as Semantic Technologies.
A key idea of the effort is that web content shall be pro-

vided with conceptual background — often referred to as on-
tologies [27] — which allows machines to put the informa-
tion into a context in order to make it interpretable. These re-
search efforts are grouped around the so-called semantic web
layer cake, shown in Figure 1; it depicts subsequent layers of
functionality and expressiveness, which shall be put in place
incrementally. Most recently — having established RDF and
RDFSchema as basic syntax — the OWL Web Ontology Lan-
guage [2; 23], which is a decidable fragment of first-order
logic, has been recommended by the world wide web consor-
tium (W3C) for the ontology vocabulary.

Conceptual knowledge is provided by means of statements
in some logical framework, and the discussion concerning
suitable logics is still ongoing. Description Logics [3] will
most likely play a major role, as they provide the founda-
tion for OWL, but other approaches are also being considered.
Currently, the development of an expressive rule-based logic
layer on top of OWL for the inference of ontological knowl-
edge is being investigated. But also fragments or OWL, in-
cluding Horn and propositional languages, are being used, as
different application scenarios necessitate different trade-offs
between expressibility, conceptual and computational com-
plexity, and scalability.

The construction of ontologies in whatever language, how-
ever, appears as a narrow bottleneck to the proliferation of
the Semantic Web and other applications of Semantic Tech-
nologies. The success of the Semantic Web and its technolo-
gies indeed depends on the rapid and inexpensive develop-
ment, coordination, and evolution of ontologies. Currently,
however, these steps all require cumbersome engineering pro-
cesses, associated with high costs and heavy time strain on
domain experts. It is therefore desirable to automate the on-
tology creation and ontology refinement process, or at least
to provide intelligent ontology learning systems that aid the
ontology engineer in his task.

From a bird’s eye’s view, such a system should be able to
handle terms and synonyms, in order to build abstract con-
cepts and concept hierarchies from text-based websites. This
basic ontological knowledge then needs to be further refined
using relations and rules, in accordance with established or
to-be-established standards for ontology representation. Cur-
rent systems [9] use only very basic ontology languages, but
technological advances are expected soon, since the need for



expressive ontology languages is generally agreed upon.

4 Ontology Learning as Use Case
We argue that ontology learning as just described constitutes
a highly interesting application area for neural-symbolic in-
tegration. As use case it appears to be conceptually sound,
technically feasible, and of potential high impact. We present
our arguments in the following.

4.1 Conceputally Sound
Machine learning methods based on artificial neural networks
are known to perform well in the presence of noisy data. If
ontologies are to be learned from such uncontrolled data like
real existing webpages or other large data repositories, the
handling of noise becomes a real issue. At the same time,
making reasonable generalizations by learning from input
data like html pages requires to take background knowledge
into account, which in this case is naturally ontology-based
and thus symbolic. Furthermore, the required output neces-
sarily has to be in a logic-based format because it will have
to be processed by standard tools from the semantic web con-
text.

The ontology learning setting thus requires the integration
of symbolic and neural-networks-based approaches, which is
provided by the methods developed in the field of neural-
symbolic integration.

While it cannot be argued that research on purely symbolic
ontology learning methods still leaves much scope for fur-
ther development, current results and systems indicate that
machine learning of ontologies is a very hard task and that
the most suitable methods and approaches still remain to be
identified. We believe that in the end mixed strategies will
have to be combined in order to arrive at practical tools, and
due to the above mentioned reasons neural-symbolic learning
components can be expected to play a significant role.

4.2 Technically Feasible
The specific nature of ontology research led to the develop-
ment of a variety of different ontology representation lan-
guages, and various further modifications or these. Some
of them are depicted in Figure 2. Standardization efforts are
successfully being undertaken, but it is to be expected that a
number of ontology languages of different logical expressiv-
ity will remain in practical use. This diversity is natural due
to the different particular needs of application scenarios.

As we have identified earlier, the different levels of expres-
sivity correspond well to the specific requirements on a use
case scenario to drive neural-symbolic integration research.
Propositional methods can be applied to the learning of con-
cept hierarchies or DLP ontologies. Decidable fragments
such as the different versions of OWL provide more sophis-
ticated challenges without having to tackle the full range of
difficulties inherent in first-order neural-symbolic integration.
We also expect that the learning of conceptual knowledge
should harmonize naturally with learning paradigms based on
Kohonen maps or similar architectures.

Figure 2: Some ontology languages. Arrows indicate inclu-
sions between the languages. Concept hierarches are simple
is-a hierarchies corresponding to certain fragments of propo-
sitional logic. The standard OWL [2; 23] already comes in
different versions. DLP [14; 29] refers to a weak but prac-
tically interesting datalog fragment of OWL. F-Logic [20;
1] provides an alternative ontology paradigm.

4.3 High Potential Impact
The learning of ontologies from raw data has been identified
as an important topic for the development of Semantic Tech-
nologies. These, in turn, are currently migrating into various
research and application areas in artificial intelligence and
elsewhere, including knowledge management, ambient com-
puting, cognitive systems, bioinformatics, etc. At the same
time, ontology learning appears to be a very hard task, and
suitable new learning methods are currently being sought.
Neural-symbolic integration has the potential for significant
contricutions to this area and thus to one of the currently
prominent streams in computer science.

5 Conclusions
We have identified ontology learning as a potential use case
for neural-symbolic integration. We believe that this would
further neural-symbolic integration as a field, and provide sig-
nificant contributions to the development of Semantic Tech-
nologies.

References
[1] Jürgen Angele and Georg Lausen. Ontologies in F-

logic. In Steffen Staab and Rudi Studer, editors, Hand-
book on Ontologies, pages 29–50. Springer, 2004.

[2] Grigoris Antoniou and Frank van Harmelen. Web On-
tology Language: OWL. In Steffen Staab and Rudi
Studer, editors, Handbook on Ontologies, pages 67–92.
Springer, 2004.

[3] Franz Baader, Diego Calvanese, Deborah McGuinness,
Daniele Nardi, and Peter Patel-Schneider, editors. The



Description Logic Handbook: Theory, Implementation,
and Applications. Cambridge University Press, 2003.

[4] Sebastian Bader and Pascal Hitzler. Logic programs, it-
erated function systems, and recurrent radial basis func-
tion networks. Journal of Applied Logic, 2(3):273–300,
2004.

[5] Sebastian Bader, Pascal Hitzler, and Artur S. d’Avila
Garcez. Computing first-order logic programs by fib-
ring artificial neural network. In Proceedings of the 18th
International FLAIRS Conference, Clearwater Beach,
Florida, May 2005, 2005. To appear.

[6] Sebastian Bader, Pascal Hitzler, and Steffen Hölldobler.
The integration of connectionism and knowledge repre-
sentation and reasoning as a challenge for artificial in-
telligence. In L. Li and K.K. Yen, editors, Proceedings
of the Third International Conference on Information,
Tokyo, Japan, pages 22–33. International Information
Institute, 2004. ISBN 4-901329-02-2.

[7] Tim Berners-Lee, James Hendler, and Ora Lassila. The
semantic web. Scientific American, May 2001.

[8] Anthony Browne and Ron Sun. Connectionist inference
models. Neural Networks, 14(10):1331–1355, 2001.

[9] Philipp Cimiano, Andreas Hotho, and Steffen Staab.
Clustering ontologies from text. In Proceedings of
the Conference on Lexical Resources and Evaluation
(LREC), 2004.

[10] Ken-Ichi Funahashi. On the approximate realization of
continuous mappings by neural networks. Neural Net-
works, 2:183–192, 1989.

[11] Artur S. d’Avila Garcez, Krysia Broda, and Dov M.
Gabbay. Symbolic knowledge extraction from trained
neural networks: A sound approach. Artificial Intelli-
gence, 125:155–207, 2001.

[12] Artur S. d’Avila Garcez, Krysia B. Broda, and Dov M.
Gabbay. Neural-Symbolic Learning Systems — Founda-
tions and Applications. Perspectives in Neural Comput-
ing. Springer, Berlin, 2002.

[13] Artur S. d’Avila Garcez and Gerson Zaverucha. The
connectionist inductive lerarning and logic program-
ming system. Applied Intelligence, Special Issue on
Neural networks and Structured Knowledge, 11(1):59–
77, 1999.

[14] Benjamin Grosof, Ian Horrocks, Raphael Volz, and Ste-
fan Decker. Description logic programs: Combining
logic programs with description logics. In Proc. of
WWW 2003, Budapest, Hungary, May 2003, pages 48–
57. ACM, 2003.
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ham Wrightson, editors, Parallelization in Inference
Systems, volume 590 of Lecture Notes in Artificial In-
telligence, pages 82–120. Springer, Berlin, 1992.

[16] Pascal Hitzler, Steffen Hölldobler, and Anthony K.
Seda. Logic programs and connectionist networks.
Journal of Applied Logic, 3(2):245–272, 2004.

[17] Steffen Hölldobler. Automated Inferencing and Con-
nectionist Models. Fakultät Informatik, Technische
Hochschule Darmstadt, 1993. Habilitationsschrift.

[18] Steffen Hölldobler and Yvonne Kalinke. Towards a
massively parallel computational model for logic pro-
gramming. In Proceedings ECAI94 Workshop on Com-
bining Symbolic and Connectionist Processing, pages
68–77. ECCAI, 1994.

[19] Steffen Hölldobler, Yvonne Kalinke, and Hans-Peter
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