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Abbreviations: SACE, survivor average causal effect  

CRT, cluster-randomized trial 

LMM, linear mixed model  

MCMC, Monte Carlo Markov Chain 

ABSTRACT 

Many studies encounter clustering due to multicenter enrollment and non-mortality outcomes, such as 

quality-of-life, that are truncated due to death; i.e., missing not at random and nonignorable. Traditional 

missing data methods and target causal estimands are suboptimal for statistical inference in the presence 

of these combined issues, which are especially common in multicenter studies and cluster-randomized 

trials (CRTs) among the elderly or seriously ill. Using principal stratification, we developed a Bayesian 

estimator that jointly identifies the always-survivor principal stratum in a clustered/hierarchical data 

setting and estimates the average treatment effect among them (i.e., the survivor average causal effect, 

SACE). In simulations, we observed low bias and good coverage with our method. In a motivating CRT, 

the SACE and the estimate from complete case analysis differed in magnitude, but both were small, and 

neither was incompatible with a null effect. However, the SACE estimate has a clear causal interpretation. 

The option to assess the rigorously defined SACE estimand in studies with informative truncation and 

clustering can provide additional insight into an important subset of study participants. Based on the 

simulation study and CRT reanalysis, we provide practical recommendations for using the SACE in CRTs 

and code to support future research.  
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INTRODUCTION 

Outcomes such as quality of life are frequently measured non-mortality outcomes used to assess general 

health, recovery, and the impact of medical interventions.1–3 In studies with non-trivial mortality, such as 

among the elderly, or those with critical and serious illnesses, patient-centered outcome measures often 

cannot be captured for a sizeable proportion of participants who die during the study period.4,5 Non-

mortality outcomes missing due to death raises conceptual and empirical issues. First, death itself is an 

outcome of interest. Second, as the non-mortality outcome is empirically unmeasured (i.e., undefined) 

among those who die, imputation approaches may not appeal to certain stakeholders.6–8 Relatedly, 

composite outcomes require that some subjective valuation be used concerning what value should be used 

for those who die.9,10 Further, from a causal inference perspective, many strategies may not provide 

estimates with a clear causal interpretation under the counterfactual outcomes framework11–13 because 

surviving study participants under treatment and control can be systematically different, which obscures 

the target estimand.  

 

Adapted from Suzuki,14 Figure 1 portrays what is often termed the “truncation-by-death” problem. In this 

setting, the survivor status (S) and quality of life outcome (Y) of an individual can be influenced by the 

treatment (D) as well as an unobserved variable (U). The unobserved variable (U) can also be potentially 

associated with the treatment (D), but would be less likely if the treatment (D) is assigned in a 

randomized trial setting. Under the counterfactual outcomes framework, there is considerable literature on 

estimating causal effects using principal stratification.15–19 This framework has been applied to study non-

mortality outcomes in individually randomized trials,4,18 as well as to address protocol compliance, patient 

encouragement, and other problems in public health and social science settings (e.g., the effect of job 

training programs and behavioral health interventions).16,17,20,21 Principal stratification seeks to identify 

strata of patients by their pre-exposure characteristics. The stratum of primary interest includes those who 

would always survive through the end of the trial period regardless of treatment assignment. The effect of 

an intervention in this stratum of “always-survivors” is termed the survivor average causal effect (SACE). 
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The SACE is a meaningful estimand because, without additional assumptions, only the always-survivors 

have both counterfactual outcomes well-defined. Thus, the SACE avoids survivor bias (i.e., observed and 

unobserved characteristics of survivors in treatment and control are likely different) and summarizes the 

treatment effect without needing additional assumptions on the counterfactual outcomes for the non-

survivors.5,10,22,23 However, the always-survivors target population is not directly observed; i.e., not all 

participants have a definitive strata membership, but principal strata must be identified to estimate the 

SACE. Bayesian inference is particularly attractive for this purpose as the posterior strata membership 

can be updated through a Monte Carlo Markov Chain (MCMC) algorithm, while posterior predictive 

distributions for the SACE can be conditional on the strata membership.15,16  

 

Herein, we extend and use principal stratification to estimate the SACE using Bayesian inference in 

cluster-randomized trials (CRTs) with death truncation. In contrast to individual-level randomization, 

CRTs randomize groups of individuals to treatments.24,25 Cluster-level randomization is used when the 

intervention is designed for a system-level improvement or when randomization is not feasible at the 

individual level (see Turner and colleauges25 for a review). As a result, the outcome observations are 

often more similar within clusters than between clusters, causing a positive intracluster correlation that 

must be accounted for in the analysis stage to avoid inflated type I error. To estimate the SACE in CRTs, 

we developed a Bayesian approach that leverages the baseline covariates to predict the counterfactual 

survivor status and the counterfactual outcomes. As we explicate in the methods, our approach includes 

both a principal stratification model and an outcome model, for which we developed an iterative sampling 

algorithm to estimate the model parameters jointly, and hence the SACE in CRTs. 

 

METHODS 

Causal framework and assumptions 

We consider the counterfactual outcome framework, where the causal effect is defined as the difference 

between the two counterfactual outcomes averaged across a common population.12,13 We assume (1) the 
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Stable Unit Treatment Value Assumption (SUTVA) by which patients receive no different forms or 

versions of treatments and that no interference exists and (2) that the treatment is randomized at the 

cluster level and is independent of both the potential survivor status and counterfactual outcome of all 

individuals in each cluster. In a CRT with 𝐼 clusters and 𝑛𝑖 individuals in each cluster, denote the cluster-

level treatment and control assignment as 𝐷𝑖 = 1,0 respectively, where 𝑖 = 1, … , 𝐼. For the 𝑗 th individual 

(𝑗 = 1, … , 𝑛𝑗) in the 𝑖 th cluster, we define {𝑌𝑖𝑗(1), 𝑌𝑖𝑗(0)} as the counterfactual outcomes for each 

individual under treatment and control. We are typically interested in the average causal effect, 𝛿 =

𝐸(𝑌𝑖𝑗(1) − 𝑌𝑖𝑗(0)) if the counterfactual outcomes are well defined for the entire trial population. 

However, when outcomes are truncated, the average causal effect can only be defined for a subset of 

patients. Estimating the average causal effect among a meaningful subgroup in this setting involves (1) 

using the covariates and survival status to identify the potentially unobserved always-survivor stratum, 

and (2), comparing counterfactual outcomes within the always-survivor stratum under treatment and 

control. We now describe models for each of these components. 

 

Principal strata model for survivor status 

We define 𝑆𝑖𝑗 as the observed survival status of a patient with 𝑆𝑖𝑗 = 1 indicating survival, and 𝑆𝑖𝑗 = 0 

indicating death. Under the potential outcomes framework, the joint values of potential survival status 

produce four strata. These include: 

1. always-survivors (𝑆𝑖𝑗(1) = 𝑆𝑖𝑗(0) = 1): patients who will survive until the end of the study 

regardless of the treatment status.  

2. protected (𝑆𝑖𝑗(1) = 1, 𝑆𝑖𝑗(0) = 0): patients who will survive only under treatment.  

3. harmed (𝑆𝑖𝑗(1) = 0, 𝑆𝑖𝑗(0) = 1): patients who will survive only under control. 

4. never-survivors (𝑆𝑖𝑗(1) = 𝑆𝑖𝑗(0) = 0): patients who will not survive regardless of treatment. ORIG
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We make an additional assumption of monotonicity such that the treatment does not lead to worse 

survival, and, thus, the harmed strata is assumed away.17,26 Monotonicity is a plausible assumption in 

trials when interventions are carefully piloted for safety considerations. However, we acknowledge that 

an intervention can lead to worse survival in some patients, and in such instances, the monotonicity 

assumption will be questionable. In scenarios where the proportion of harmed strata is close to zero, 

modeling the harmed strata can also lead to computational challenges, in which case the monotonicity 

assumption represents a practical consideration for model fitting. In our motivating trial, we considered 

the harmed patients to be rare (if not non-existent) and undertook the analysis assuming monotonicity. 

Potential approaches to relaxing this assumption are discussed later. Under monotonicity, the principal 

strata membership is observed for survivors in the control group and the deceased in the treatment group, 

but is unknown for survivors in the treatment group or the deceased in the control group. Table 1 presents 

the strata membership attribution for each observed data group under monotonicity. Baseline covariates 

play a critical role in identifying the principal strata. Suppose 𝐺𝑖𝑗 = {00,10,11} indicates principal strata 

membership, where 𝐺𝑖𝑗 = 00 for never-survivors, 𝐺𝑖𝑗 = 10 indicates protected individuals, and 𝐺𝑖𝑗 =

11 indicates always-survivors. Assuming 𝑋𝑖𝑗 as a covariate vector with both cluster-level and individual-

level covariates and further including an intercept, the principal strata can be modeled using multinomial 

logistic regression with 𝐺𝑖𝑗 = 11 as the reference group, 

𝑃(𝐺𝑖𝑗 = 00) =
𝑒𝑿𝑖𝑗

𝑇 𝜷

1 + 𝑒𝑿𝑖𝑗
𝑇 𝜷 + 𝑒𝑿𝑖𝑗

𝑇 𝜸
,     𝑃(𝐺𝑖𝑗 = 10) =

𝑒𝑿𝑖𝑗
𝑇 𝜸

1 + 𝑒𝑿𝑖𝑗
𝑇 𝜷 + 𝑒𝑿𝑖𝑗

𝑇 𝜸
,      

𝑃(𝐺𝑖𝑗 = 11) =
1

1 + 𝑒𝑿𝑖𝑗
𝑇 𝜷 + 𝑒𝑿𝑖𝑗

𝑇 𝜸
 

Here, 𝜷 and 𝜸 are 𝑝-dimensional regression coefficient vectors for never survivors versus always 

survivors and for the protected versus always survivors, respectively; each component of 𝜷 and 𝜸 is 

interpreted as the log odds ratio. To ensure numerical stability, we recommend choosing the (likely) 

largest strata as the reference category for the multinomial logistic model. 
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In addition, cluster-level random intercepts can be added when principal strata membership is believed to 

be correlated due to cluster randomization. Alternatively, a nested Probit model for the strata membership 

can be used,16 however, the regression coefficients are more challenging to interpret. Thus, we did not 

pursue the nested Probit model further but derived its posteriors with a latent variable specification to 

support its use by interested readers (Web Appendix 1).  

 

Models for potential outcomes 

After defining the principal strata model, we specify counterfactual outcome models within each principal 

stratum. Specifically, only the always-survivors have well-defined counterfactual outcomes under both 

treatment and control (𝑌𝑖𝑗(0), 𝑌𝑖𝑗(1)) since they are not subject to truncation. Patients in protected strata 

have only one well-defined counterfactual outcome under treatment but their counterfactual outcome 

under the control condition is truncated by death (𝑌𝑖𝑗(0) =∗, 𝑌𝑖𝑗(1)). Among the always-survivors, each 

counterfactual outcome can be modeled as a function of covariates adjusting for clustering, whereas only 

one counterfactual outcome for each protected patient can be similarly modeled. 

 

Now, let 𝜶1
11, 𝜶0

11, and 𝜶1
10 be 𝑝-dimensional vectors of regression coefficients for covariates in these 

three groups: always-survivors in the treatment (𝐺𝑖𝑗 = 11, 𝐷𝑖 = 1), always-survivors in the control 

(𝐺𝑖𝑗 = 11, 𝐷𝑖 = 0), and protected individuals in the treatment (𝐺𝑖𝑗 = 10, 𝐷𝑖 = 1). Let 𝑌𝑖𝑗 be the 

outcomes where {𝑖, 𝑗 ∈ 𝑆𝑖𝑗(𝐷) = 1}. Let  𝜂𝑖 be the cluster-level random effects following a normal 

distribution with mean zero and variance of 𝜏2; let the residual errors follow a normal distribution with a 

mean equal to zero and variance of 𝜎2. The assumed linear mixed models (LMMs) for the counterfactual 

outcomes can then be summarized as in Table 2. The random-effects term 𝜂𝑖 is required here to account 

for the intra-cluster correlation coefficient (ICC), 𝜌 =
𝜏2

𝜏2+𝜎2, a quantity that is central to the design and 

analysis of CRTs, as ignoring the ICC in the outcome model leads to an inflated type I error rate.27 With 

the outcome model specified for always-survivors, the SACE can be defined as,  
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𝛿 =  𝐸(𝑌𝑖𝑗(1) − 𝑌𝑖𝑗(0)|𝐺𝑖𝑗 = 11) 

We leverage the mixture modeling assumptions and the monotonicity to jointly estimate the strata 

membership probability and the counterfactual outcome model parameters for each patient. This approach 

produces the treatment effect for each always survivor, which can be averaged over the always survivor 

subpopulation to identify the SACE. Beyond the mixture modeling approach, we acknowledge that other 

structural assumptions can be used to identify SACE even in the absence of monotonicity; see, for 

example, Hayden et al.28 and Shepherd et al.29  

  

Joint inference of the outcome model and the principal strata model 

Posterior inference of the parameters in the principal strata model and the outcome model can be achieved 

through a MCMC algorithm. The algorithm is summarized in the Appendix, and detailed derivations for 

each step are in the Web Appendix 1. The algorithm uses Gibbs sampling steps to update outcome 

regression model parameters, where conjugate priors of normal and inverse gamma distributions are 

specified (details in Web Appendix 1). The algorithm further implements a Metropolis-Hastings step for 

the principal stratification model. To increase the convergence speed for 𝜷 and 𝜸, we use a random-walk 

Metropolis algorithm30 that draws proposals from multivariate t distributions, 𝑡(𝑠𝛽𝑻𝛽) and 𝑡(𝑠𝛾𝑻𝛾), that 

center at the values of the previous iteration. The parameters 𝑠𝛽  and 𝑠𝛾 scale the covariance to achieve 

optimal acceptance rates, and both 𝑻𝛽and 𝑻𝛾 is a 𝑝 × 𝑝-dimensional component-specific scale matrix. We 

use the adaptive proposal approach by Haario and colleagues31 to tune 𝑻𝛽 and 𝑻𝛾 by utilizing empirical 

covariance from an extended burn-in. As indicated by asterisks “*” in the Appendix, when the principal 

strata model also accounts for clustering (denoted as 𝜒𝑖 for the random intercept, where 𝜒𝑖~𝑁(0, 𝜙2), it 

can be updated using the same approach as for 𝜷 and 𝜸.  
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Simulation study 

We conducted a simulation study to validate our algorithm. Specifically, we simulated a two-arm CRT 

with 1,500 individuals with varying cluster size 𝑚 and number of clusters 𝑛 as 

(𝑚, 𝑛) = {(50,30), (25,60), (15,100)}. We simulated two continuous covariates following 𝑋𝑖𝑗1~𝑁(0,4) 

and 𝑋𝑖𝑗2~𝑈𝑛𝑖𝑓(−5,5), respectively. For the principal stratification model, we let 𝜷 = {−1,0.3,0.5}, and 

𝜸 = {−0.8,0.6,0.4} so that the stratum proportions are 21.1% for never-survivors, 26.5% for protected, 

and 52.4% for always-survivors. We generated the potential outcomes following Table 2, where we set 

𝜶1
11 = {1.5, 0.5, 0.8},𝜶0

11 = {0.2, 0.3, 0.6}, and 𝜶1
10 = {−1.5, 0.9, 0.5}. We set 𝜎2 = 5 and 𝜏2 = 1 with an 

induced ICC of 0.167, which falls within the commonly reported range of 0-0.2.32,33 For each simulated 

data set under each combination of (𝑚, 𝑛), we implemented the Bayesian method with 10,000 MCMC 

iterations (with the first 2,500 iterations as burn-in). In addition, to evaluate the impact of varying cluster 

sizes, we considered scenarios with the mean cluster sizes and number of clusters as (�̅�, 𝑛) =

{(50,30), (25,60), (15,100)} and generated the data with a large coefficient of variability (defined as 

CV = �̅�/√𝑣𝑎𝑟(𝑚)) of 1.0. Additional simulations with smaller outcome ICCs (0.01 or 0.05), smaller 

numbers of clusters and/or cluster sizes, and when the principal strata models include random intercepts 

(with induced ICC of 0.05 or 0.10 on the latent response scale34) were also performed. We calculated the 

average posteriors means, relative bias, and coverage across 200 simulated data sets. All analyses were 

performed using R 4.0.1. R code for the simulation, including the data-generating process and the MCMC 

sampler, is available online. 

 

Analysis of the motivating trial example 

We applied our methodology to analyze the Whole Systems Demonstrator (WSD) Telecare Questionnaire 

Study.35,36 The WSD study was a CRT randomized at the general practice (GP) level that evaluated the 

effect of telecare on the health-related quality of life and psychological well-being of 1,189 elderly 

recipients of social care in the United Kingdom over 12-months: 639 participants were randomized at the 
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cluster level into the telecare (TC) arm and 550 to usual care (UC). Recipients were additionally clustered 

within GPs across three English Local Authorities. The rationale of the TC intervention is not only its 

potential health benefit, but also its advantage in cost-effectiveness.37 There were a total of 204 GPs, and 

the cluster size varied from 1 to 26. The TC arm installed electronic sensors in the home of recipients that 

provided safety monitoring (e.g., falls of recipients, fires at home). The UC arm did not receive TC. Our 

illustration focuses on the health-related quality of life measured by the EQ-5D-VAS index score, a self-

rated scale (range: 0-100) on five domains of mobility, self-care, usual activities, pain and discomfort, and 

anxiety and depression, 12 months post-randomization.38,39 Higher scores represent better overall quality 

of life. The sample size, cluster number, and results reported herein vary slightly from the original 

published analysis due to different analytic methods and outcome data. 

 

We considered trial participants as non-survivors if they were deceased or had seriously deteriorated 

health such that a self-reported health outcome for them could not be measured or collected, and thus 

undefined. Recipients with seriously deteriorated health included those who were too ill, unable to 

continue due to dementia or deteriorated mental capacity, moved to long-term nursing care, residential 

care, sheltered housing, or family caregiver. For missing data in the baseline covariates and outcomes not 

due to death or seriously deteriorated health, we used multiple imputation6,13 to impute a single dataset to 

fill those missing entries. Note that a fully Bayesian approach that incorporates the imputation in the 

proposed algorithm can also be implemented. Since the goal of our illustration is not focused on the 

missing covariate problem, we did not pursue this direction. The resulting dataset had 127 (10.7%) cases 

with truncated outcomes.  

 

For both the principal stratification model and the potential outcome models, our baseline covariates 

included gender, age, ethnicity, participants’ highest level of education, an indicator for only-adult 

household, number of comorbidities, impairment score, physical health score, mental health score, and 

EQ-5D-VAS index score.35 We used LMMs for the outcome regression model and multinomial logistic 
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regression for the principal strata model, as previously specified. We did not pursue the more complex 

model that accounted for the random effects in the principal strata model because the average cluster size 

was too small, and a handful of clusters had a size of one, which would cause convergence issues (we 

discuss this further in the discussion). Two MCMC chains of 100,000 iterations were implemented where 

the first 25,000 iterations were set as burn-in. We started each chain using random initials. Model 

convergence and chain mixing were checked by traceplots. All analyses were performed using R 4.0.1. In 

addition, as a comparison model that might be frequently used in practice in the absence of our method, 

we estimated a LMM based on complete outcomes adjusting for the same baseline covariates. 

 

RESULTS 

Simulation study 

Table 3 presents the simulation results of the key model parameters for the scenario of (𝑚, 𝑛) =

(15,100). Relative bias and coverage were presented for 𝜶𝟏
𝟏𝟏, 𝜶𝟎

𝟏𝟏, the SACE, and the ICC. Our results 

show that the posterior means for most parameters are accurate with less than 10% bias and above 90% 

coverage. In particular, the SACE estimate is close to the truth (%Bias = -5.2%), and the coverage 

probability was 0.93. The results for the other two scenarios of (𝑚, 𝑛) = {(50,30), (25,60)} are similar 

where SACE estimates both have less than 5.0% percent bias and ≥ 0.95 coverage (see Web Tables 1-3 

for full results). Additional simulations with variable cluster sizes (Web Tables 4-6), principal strata 

model specification with random effects (Web Tables 7-10), a small number of clusters and/or cluster 

sizes (Web Tables 11-12) and variable outcome ICCs (Web Tables 13-14) showed similar performance. 

 

Illustrative analysis  

As noted, our approach allows for adjustment for covariates and clustering. As is common in CRTs, 

several prognostic variables were preselected for adjustment in the primary analysis; the variables we 

used in our analysis are summarized in Table 4. Our model identified 88.8% of recipients as always-

survivors, 2.2% as protected, and 8.9% as never-survivors. The posterior mean of the ICC was 0.002 with 
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a credible interval (i.e., 2.5% and 97.5% of the posterior sample) of [0.000,0.020], suggesting a small 

intra-cluster correlation in EQ-5D-VAS. 

 

Table 5 summarizes the analytical results of our analysis. The SACE point estimate for the effect of TC 

on the EQ-5D-VAS was -0.70, with a credible interval spanning potential effects that ranged from a 

decrease of -3.11 to an increase of 0.83. The estimated effect suggests that TC did not markedly improve 

the EQ-5D-VAS compared to UC among the principal strata of always-survivors. 

 

Web Figure 1 depicts the average number of always-survivors, protected, and never-survivors by cluster 

based on the posterior sample of strata membership after burn-in. Many clusters have recipients possibly 

from all three strata. A notable advantage of our Bayesian approach is that the baseline characteristics of 

always-survivors can be obtained by averaging over the baseline covariates among always-survivors in 

the posterior sample of principal strata membership. This summary is provided in Web Table 15. In our 

illustration, the demographics, socioeconomic status, and baseline health status among the always 

survivors are similar to the overall population. This is unsurprising in this specific illustration as 88.8% of 

recipients were identified as always-survivors.  

 

Finally, in Table 5, the LMM point estimate and 95% confidence interval based on the recipients with 

observed outcomes was -0.93 (95% confidence interval: -3.24 to 1.38). This result is in line (again due to 

overlap in this specific illustration, but this is not guaranteed), with the SACE. However, it is important to 

note that while similar in our illustration, the LMM estimate does not have a causal interpretation as the 

analytic sample for the LMM estimate included recipients deemed belonging to the protected stratum. 

Intuitively, it suggests that the protected recipients in the TC arm who were likely to die tended to be 

those with worse health outcomes in the treatment group.  
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DISCUSSION 

The SACE is a well-defined causal estimand that describes the effect of an intervention among 

participants who would survive regardless of their randomized assignment in a trial. We used Bayesian 

principal stratification to estimate the SACE in a CRT where the hierarchical data structure due to 

clustered randomization is accounted for in the modeling and data analysis. Since strata membership is 

not fully identifiable for some participants, Bayesian estimation is a particularly attractive strategy to 

address uncertain strata membership of the counterfactual survivor status. Of note, our approach considers 

the model-based credible interval estimation under the Bayesian framework, and therefore differs from 

the usual cluster-robust variance approach under the frequentist framework.40 The extent to which a 

cluster-robust variance approach applies to our Bayesian modeling framework merits additional research. 

 

In our simulations, we observed low bias and good coverage of the true SACE parameter with our 

methods. In our analysis of the WSD Telecare trial, 88.8% of the participants were identified as always-

survivors, and the SACE suggested no significant change in health-related quality of life measure at 12 

months (-0.70, 95% credible interval: [-3.11, 0.83]). This point estimate was slightly smaller than that 

estimated from a complete case analysis using a naïve LMM model (-0.93, 95% confidence interval: [-

3.24, 1.38]). We note that our result is only based on a one-time measure at 12 months, which is different 

from the original result published by Hirani and colleauges35 where they utilized repeated outcome 

measures at different time points and considered different covariates. Adapting the principal stratification 

framework for CRTs with repeatedly measured outcomes requires additional methodological 

development. While our analysis of the WSD trial showed limited effect on the EQ-5D-VAS outcome, 

telecare may impact other physical health outcomes or have cost-effectiveness properties due to 

prevention or earlier intervention on health needs. 
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Practical recommendations 

During the development and implementation of our methodology, we identified some analytic 

considerations that users may need to consider. First, the monotonicity assumption may be plausible for 

practice-level interventions like the one used in the WSD study setting, where installing electronic sensors 

in the TC arm was unlikely to harm participants. Before the implementation of many medical trials, 

interventions are evaluated in pilot studies with safety monitoring; thus, this assumption may often be 

reasonable. Relaxing the monotonicity assumption by adding the “harmed strata” (i.e., participants that 

die in treatment but survive in control) is possible. However, fitting the mixture model with an additional 

harmed strata is an added layer of computational considerations, and additional simulations are needed to 

fully understand the benefit of including this strata when the harmed population is relatively rare. Beyond 

the mixture modeling framework, other types of structural assumptions or sensitivity parameters are 

necessary to relax the monotonicity assumption,28,29,41,42 and represent a fruitful direction for future 

investigations in the context of CRTs. Second, our simulation studies show that the use of non-

informative priors can achieve adequate performance without sufficient knowledge of key model 

parameters from existing studies. However, Bayesian approaches have an inherent advantage of 

leveraging existing knowledge through informative priors on key parameters to sharpen the model 

performance. For example, Turner and colleauges43,44 have demonstrated that compared to the non-

informative priors, incorporating informative half-normal and beta priors on the outcome ICC parameter 

(based on published ICC estimates) can produce narrower credible intervals for the outcome ICC and 

variance components parameters. We anticipate this finding to be applicable for estimating the SACE. 

Third, while we have provided methods to account for clustering in the principal strata membership 

model, the model fitting can be substantially more challenging than its counterpart without clustering. In 

the analysis of the WSD trial, the principal strata membership model failed to converge due to several 

extremely small clusters. Thus, we did not consider clustering in the principal strata membership model. 

Therefore, in practice, specifying more complex principal strata membership models often require the 

absence of extremely small clusters. On the other hand, our additional simulation results (Web Tables 7-
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10) have shown that when the ICC in the principal strata model is not exceeding 0.10, specifying the 

principal strata model without a random intercept can still achieve adequate performance characteristics 

and can be sufficient. However, we acknowledge that our assessment is limited to the data-generating 

process we considered, and a more systematic comparison between clustered and un-clustered principal 

strata models in CRTs is warranted. Lastly, our additional simulation (Web Tables 11-12) shows our 

method can be employed to estimate SACE in relatively small CRTs (e.g., 20 clusters with cluster size of 

25). We caution against using our model in even smaller CRTs, as additional research to address small-

sample challenges in these settings is needed. 

 

The use of the SACE in CRTs (and individually-randomized trials) also requires some practical 

considerations from the design perspective as the always-survivors stratum is a subset of trial participants 

that cannot be identified until after randomization and trial completion. Though a more attractive target 

estimand, and thus alternative to composite outcomes, imputation, or other approaches to deal with 

truncated outcomes, there is always a threat of a loss of power with the SACE due to the inherently 

smaller sample size of this stratum. However, this concern may be partially offset when the treatment 

effect is likely to be larger among the always-survivors stratum than the overall population (i.e., average 

treatment effect).45,46 Relatedly, without knowing the size or characteristics of the always-survivors 

stratum prior to a study, power calculations may be a challenge, particularly when sample sizes are 

constrained and cannot be increased. Thus, we believe we can offer three practical recommendations for 

using the SACE in a trial. First, the SACE may be most ideal as a pre-planned secondary analysis in trials 

with smaller available sample sizes, and only considered for the primary analysis in larger pragmatic trials 

or in trials where effect sizes and always-survivors rates can be anticipated with reasonable certainty to be 

in some range, and thus available sample sizes are adequate.45 Second, as is recommended when working 

with other uncertain trial design elements, we recommend that Monte Carlo simulation studies be 

undertaken to assess statistical power.47,48 Jo45 provides statistical power guidance for trials with treatment 

noncompliance that is potentially relevant to those using the SACE. Closed-form sample size solutions 
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for noncompliance in CRTs could be extended to the SACE in future work. Third, when there is interest 

in conducting primary analysis to estimate the SACE, approaches for sample size re-estimation with pre-

planned interim analysis49 may be considered, but require future development. 
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Table 1. Data elements and principal strata membership based on observed survivor status and treatment 

status under the monotonicity assumption. 

 

Observed group 

Observed 

treatment 

status 

Observed 

survival 

status 

Observed  

outcomea 

Unobserved 

outcome 

(Possible) strata 

membership 

under monotonicity 

𝐷𝑖 = 1, 𝑆𝑖𝑗 = 1 

Yes Yes 

𝑌𝑖𝑗

= 𝑌𝑖𝑗(1) 

𝑌𝑖𝑗(0) Always-survivor or 

Protected 

𝐷𝑖 = 1, 𝑆𝑖𝑗 = 0 Yes No  𝑌𝑖𝑗 = 𝑌𝑖𝑗(1) = * 𝑌𝑖𝑗(0) Never-survivor 

𝐷𝑖 = 0, 𝑆𝑖𝑗 = 1 

No Yes 

𝑌𝑖𝑗

= 𝑌𝑖𝑗(0) 

𝑌𝑖𝑗(1) Always-survivor 

𝐷𝑖 = 0, 𝑆𝑖𝑗 = 0 No No 𝑌𝑖𝑗 = 𝑌𝑖𝑗(0) = * 𝑌𝑖𝑗(1) Protected or Never-survivor 

a: ‘*’ indicates truncation by death. 
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Table 2. Outcome model by principal strata and counterfactual of treatment status.  

 

Principal Strata  Counterfactual in treatment (𝐷𝑖 = 1) Counterfactual in Control (𝐷𝑖 = 0) 

Always-survivors (𝐺𝑖𝑗 = 11)  𝑌𝑖𝑗(1) = 𝑁(𝑿𝑖𝑗
𝑇 𝜶1

11 + 𝜂𝑖 , 𝜎2)  𝑌𝑖𝑗(0) = 𝑁(𝑿𝑖𝑗
𝑇 𝜶0

11 + 𝜂𝑖 , 𝜎2) 

Protected (𝐺𝑖𝑗 = 10)  𝑌𝑖𝑗(1) = 𝑁(𝑿𝑖𝑗
𝑇 𝜶1

10 + 𝜂𝑖 , 𝜎2)   

Never-survivors (𝐺𝑖𝑗 = 00)     
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Table 3. Bias in posterior means and coverage for 𝜶𝟏
𝟏𝟏, 𝜶𝟎

𝟏𝟏, SACE, and ICC for the scenario of (𝑚, 𝑛) =

(15,100) over 200 MCMC sampler simulations each with 10,000 iterations and 2,500 burnin (see full 

results in Web Appendix 2).         

 

Parameters &true values Posterior mean %Bias Coverage 

𝜶𝟏
𝟏𝟏 = (

1.5
0.5
0.8

) 

1.28 -14.4 0.93 

0.46 -7.5 0.95 

0.77 -3.8 0.95 

𝜶𝟎
𝟏𝟏 = (

−1.5
0.9
0.5

) 

-1.5 0.1 0.99 

0.9 -0.1 0.97 

0.5 -0.1 0.96 

ICC = 0.17 0.17 0.0 0.96 

SACE = 2.85 2.7 -5.2 0.93 

Abbreviation: ICC, intracluster correlation coefficient; SACE: survivor average causal effect. 
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Table 4. Descriptive statistics for baseline covariates of 1,189 participants in the Whole Systems 

Demonstrator Telecare Questionnaire Study. Mean (SD) is presented for continuous variables and n (%) 

for categorical variables. Due to the use of a different imputation method, these numbers vary slightly 

from the original trial publication.  

Covariates 
Intervention Control Total 

No. % No. % No. % 

Gender             

           Female 205 37.3 219 34.3 424 35.7 

           Male 345 62.7 420 65.7 765 64.3 

Agea 73.9 (14.3) 74.3 (13.6) 74.1 (13.9) 

Ethnicity             

          White 485 88.2 568 88.9 1053 88.6 

          Non-white 65 11.8 71 11.1 136 11.4 

Highest level of education             

         No formal education 359 65.3 421 65.9  780 65.6 

         GCSE/ O’levels 92 16.7 132 20.7  224 18.8 

         A’levels/HNC 29 5.3 42 6.6  71 6.0 

        University level 26 4.7 16 2.5  42 3.5 

         Grad or professional 44 8.0 28 4.4  72 6.1 

Only adult household             

          Yes 286 52.0 344 53.8 630 53.0 

          No 264 48.0 295 46.2 559 47.0 

Number of comorbiditiesa 1.1 (1.5) 1.1 (1.4) 1.1 (1.5) 

Impairment score a 27.7 (14.3) 28.6 (15.6) 28.2 (15.1) 

Physical health scorea 28.3 (8.7) 27.9 (8.5) 28.1 (8.6) 

Mental health scorea 33.0 (8.0) 33.1 (7.8) 33.1 (7.9) 

EQ-5D-VAS index scorea 52.7 (22.0) 53.2 (22.0) 53.0 (22.0) 

Abbreviation: GCSE, general certificate of secondary education; HNC, higher national certificate. 
a
 Values are expressed as mean (standard deviation). 
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Table 5. Results of the survivor average causal effect estimate and the proportion of recipients in each 

principal strata with the Bayesian joint modeling and linear mixed-effects model estimates.  

 

 Posteriors Point estimate 95% Credible/Confidence interval  

SACE -0.70 -3.11, 0.83 

�̅�(1) 53.04 51.33, 54.74 

�̅�(0) 53.74 51.88, 55.03 

Proportion of never-survivors 0.09 0.07, 0.11 

Proportion of protected 0.02 0.00, 0.05 

Proportion of always-survivors 0.89 0.88, 0.89 

ICC 0.003 0.000, 0.020 

Linear mixed-effects model  -0.93 -3.24, 1.38 

    Abbreviation: ICC, intracluster correlation coefficient; SACE: survivor average causal effect. 
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Appendix. Pseudo algorithm for the joint modeling of outcome and principal strata membership. 

 

Pseudo-algorithm: 

1. Input: Set multivariate normal priors for regression coefficients, 𝜶1
11, 𝜶0

11, 𝜶0
10, 𝜷 and 𝜸, and inverse 

Gamma priors for 𝜎2, 𝜏2 (and 𝜙2).  

2.            Set random initials for all parameters. 

3. For S iterations, do: 

4.            Sample 𝜶1
11, 𝜶0

11 and 𝜶0
10 from multivariate normal posteriors. 

5.            For each cluster, sample 𝜂𝑖 from a normal posterior. 

6.            Sample 𝜏2 from inverse Gamma posterior. 

7.            Sample 𝜎2 from inverse Gamma posterior. 

8.            Sample 𝜷 and 𝜸 jointly as follows: 

a. Draw candidates of 𝜷 and 𝜸 from a proposal distribution (mv-t dist.). 

b. Compute rejection ratio, 𝛼 based on likelihood and prior information. 

c. Sample a random number 𝜅 from a 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝛼). 

d. If 𝜅 = 1 then accept the candidates; If 𝜅 = 0 then reject the candidates. 

9.            *For each cluster, sample 𝜒𝑖 using the rejection sampling approach. 

10.            *Sample 𝜙2from inverse Gamma posterior. 

11.             Update the principal strata membership 𝐺𝑖𝑗 following the Bayes rule. 

12.             Estimate SACE among always-survivors (𝐺𝑖𝑗 = 11). 

13.  Output: SACE 
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Figure 1. Conceptual diagram for the outcome truncated by death problem. (D: treatment; S: survivor 

status; Y: outcome; U: unobserved variables; solid lines with arrow: directed effect; dashed line: potential 

association). This figure is adapted from Reference 14, Suzuki E. Generalized Causal Measure The 

Beauty Lies in Its Generality: The authors respond. Epidemiology. 2015;26(4):490-495. 
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