
              

City, University of London Institutional Repository

Citation: Child, C. H. T. & Stathis, K. (2006). Rule Value Reinforcement Learning for 

Cognitive Agents. Paper presented at the Fifth International Joint Conference on 
Autonomous Agents and Multiagent Systems (AAMAS`06), 8 - 12 May 2006, Hakodate, 
Hokkaido, Japan. doi: 10.1145/1160633.1160773 

This is the unspecified version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/3001/

Link to published version: https://doi.org/10.1145/1160633.1160773

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Rule Value Reinforcement Learning for Cognitive Agents
Chris Child and Kostas Stathis 

City University, London, UK 

{c.child, k.stathis}@city.ac.uk 

 
 

ABSTRACT 
RVRL (Rule Value Reinforcement Learning) is a new algorithm 
which extends an existing learning framework that models the 
environment of a situated agent using a probabilistic rule 
representation. The algorithm attaches values to learned rules by 
adapting reinforcement learning. Structure captured by the rules is 
used to form a policy. The resulting rule values represent the 
utility of taking an action if the rule’s conditions are present in the 
agent’s current percept. Advantages of the new framework are 
demonstrated, through examples in a predator-prey environment. 

Categories and Subject Descriptors 
I.2.1 [AI/GEN] 

General Terms 

Algorithms 

Keywords 
Reinforcement learning, perception, action, planning, situated 
agents, stochastic, environment, probabilistic logic. 

1. INTRODUCTION 
The overall aim of our research is to build agents that can learn to 
act autonomously in a stochastic environment through experience 
gathered from interaction with the environment. Acquired 
stochastic logic rules are used to provide a compact model of the 
effects of agent action in the environment, and reinforcement 
learning techniques are used to plan within that model. RVRL 
provides a method for planning and action within this context. 

If the environment the agent is modelling can be described in 
terms of a set of state variables, a factored state-model can be 
used. This describes the environment in terms of the dependencies 
between state variables and the evolution of these variables with 
respect to the actions taken by an agent. 

The method used in this research is to create planning operators 
from experience of interactions with the environment. These rules 
predict how the environment will change when the agent takes an 
action. The general form of a stochastic planning operator is 
expressed as a rule of the form:  

p: e � a, c 

p is the probability that the effects (e) of this operator will become 
true given the conditions (a, c) of the operator hold. a is the action 

taken by the agent, and c is a set of state variables representing the 
context of the agent’s perception of the environment for the 
operator. Both a and c may be empty. In order to restrict the 
number of possible operators, e is defined to be a single state 
variable for each operator. 

The process of building a rule set from experience requires the 
identification of conditions relevant to the effects of a rule. An 
effective method of building planning operators from experience 
is to use statistical significance to identify whether additional 
conditions are relevant to the outcome. This is the method used to 
create the rule sets in this work using ASDD [2]. ILP has also 
been used to learn rules of this form [3]. Precedence between 
rules is used to resolve conflicts in situations where two or more 
rule-sets match the conditions for the same output variable (for 
full details of the “precedence” algorithm, see [2]). This paper is 
an abridged version of the work presented in [1]. 

2. RULE VALUE REINFORCEMENT 
LEARNING 
Section 1 outlined the use of rules to model an environment. The 
next task is to use this rule model to develop an effective policy. 
One method of achieving this is to use Q-Learning [1]. The 
update function for Q-learning is as follows: 

'
'

( , ) ( , ) [ max ( ', ') ( , )]s
a

Q s a Q s a R Q s a Q s aα γ← + + −  (2.1) 

s and a are the states and actions. Q(s,a) indicates the current 
Q value for the state action pair. This update rule gradually 
improves estimates on the target function Q. The α parameter is a 
step-size, indicating how quickly the new estimate should change 
the old one. γ indicates the discount factor, determining the 
influence of future rewards on the current state. If we use this 
function and take sample results (i.e. s’ is taken to be the random 
result after taking action a in state s) the learning is one-step 
temporal difference (TD) learning.  

2.1 The Rule Value Update Function 
RVRL uses the same principle as TD learning to update a value 
associated with each rule, rather than each state. The main 
advantages of using a state-based aggregation method, such as 
RVRL, over standard reinforcement learning are that the agent: 

a) Does not store a value-map containing every state-action. 

b) Can generalize over many states, allowing each value to 
represent states with similar properties. 

If a model of the environment is available, full backup values can 
be used. Rather than taking a random sample for s

t+1
, the 

probability (P) of reaching each possible next state (s’) given 
that action (a) was taken in state (s) can be used in the equation, 
and the best next action taken as the maximum action (a) for each 
possible next state, as in dynamic programming (DP). The update 
function for DP [4] is: 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 

AAMAS’06, May 8-12, 2006, Hakodate, Hokkaido, Japan. 

Copyright 2006 ACM 1-59593-303-4/06/0005...$5.00. 

    792



'' ''

( , )

( , ) [ max ( ', ') ( , )]
a

sss as

Q s a

Q s a R Q s a Q s aP α γ

←

+ + −�
   (2.2) 

The stochastic planning operators act as a model in RVRL. It is 
therefore possible to use an adaptation of equation (2.2). The rule 
values for operators cannot be updated directly using this equation 
because more than one rule will match the next state (s’) and 
would therefore be used to generate consecutive states due to 
several output variables being present. The rule learning function, 
therefore, replaces Q(s’,a’) with an  average value for all 
matching rules which have precedence (and would therefore be 
used in generation of the successor state). The rules with 
precedence are used to give the most accurate representation of 
the dynamics of the environment in state s’.  

Q(s,a) is replaced by the value of the rule which will be 
updated. All matching rules are updated in turn by the update 
function because their estimated value will be improved by the 
update, whether they have precedence or not. The update function 
for RVRL is defined as: 

( )( )

''
''

,

( ) ( )

[ max ( ( ', '))

( )]

a

sss
as

forEach rule MatchingRules s a

Q rule Q rule

R AvgQ WinningRules s a

Q rule

P α γ

∈

← +

+

−

� �
� �� �
� �
� �
� �� �

�
(2.3) 

AvgQ(WinningRules(s’,a’)) returns the average rule 
value for rules which have precedence in state s’ if action a’ is 
taken. AvgQ(WinningRules(s’,a’)) finds the average 
value of the winning rules and returns the value. 
MatchingRules(s,a) returns all rules whose conditions 
match the current state and action. The values of all the returned 
rules are updated by equation (2.3). 

2.2 Iterative Rule Value Evaluation 
The process of building successor states described in [2], 
combined with the rule-value update function (2.3) allows 
continuous generation of next states from an initial state and 
updates the rule values until satisfactory values have been 
generated.  This process is described by the following algorithm: 

Initialise Q(rule) = 0, for all rule ∈ rules; 
Repeat { 
  Initialise s = random state, a = random action; 
  Generate next states, s’ and prob(s’) for s,a 
  totalValue = 0; totalReward = 0; 
  For each s’ ∈ successor states { 
    totalReward += reward(s’) * prob(s’); 
    maxActionValue = -∞; 
    maxAction = null; 
    For each a’ ∈ actions { 
       actionValue = AvgQ(WinningRules(s’,a’)); 
       if (actionValue > maxActionValue) 
         maxActionValue = actionValue; } 
    totalValue += maxActionValue * prob(s’); } 
  For each rules ∈ matchingRules(s,a) { 
    Q(rule) = Q(rule) + 
              α[totalReward + γ*totalValue; 
              –Q(rule)]; } 
} for n steps 
 

The sampling (TD learning) equivalent to this method would take 
a sample next state s’ rather than calculating the probability of 
each next state. The process is otherwise the same. 

3. EXPERIMENTATION 
We tested RVRL in a predator prey environment, consisting of a 
4x4 grid surrounded by a wall and containing a predator agent (P) 
and a prey agent (A). P has caught A if A is on the same square as 
P at the end of A’s move, represented as A being under P (or 
Agent_U). A selects a random action every move. Both P and A 
have four actions: move north (Move_N), east (Move_E), south 
(Move_S) and west (Move_W). An action moves an agent one 
square in the direction, unless there is a wall, in which instance 
there is no effect. P and A move alternate turns. An agent’s 
percept gives the contents of the four squares around it and the 
square under it. Each square can be in one of three states: empty 
(E), wall (W) or agent (A).  

 

Figure 3-1: P, A in 4x4 grid. P’s percept is shown to the right. 
The task for RVRL was to construct an effective policy under the 
above, allowing the predator to catch the prey with optimal 
frequency. The task is complicated by the fact that the predator 
(P) is only adjudged to have captured the prey (A) if it moves 
into, or remains in, the predator’s square at the end of its turn. P 
and A will continue to move after the prey is caught (continuous 
task). 

In experiments it was found that, with a small amount of 
experience in the environment, P will tend to move next to A but 
not on-top of it. This is a good tactic as A is likely to move onto P 
and be caught. The optimal tactic, however, was found to be one 
in which P moves into A’s square every move. This enables the 
predator (P) to be constantly in sight of the prey (A) and catch it 
whenever it moves into a wall. An example of a rule which 
captures this behaviour is: Agent_N, Move_N. Our experiments 
showed that RVRL gives high value to this rule and the S, E 
and W equivalents. Rules which attain higher value than the 
above have conditions such as: {Agent_U, Move_N, Wall_N, 
Wall_E}, in which P is on-top of the A in the NE corner of the 
map and choose action move north, into a wall  (giving P a 50% 
chance of catching A). Wall_N and Wall_E are state variables 
representing that there is a wall north and east. The “effects” of 
the rules are not shown, because equal value will be learned for all 
rules with the same conditions. A sample of the final rule weights 
from rules learned from 60,000 moves experience after RVRL 
was run on the rule set for 15,000 iterations is given in Table 1. 

Rules 1 and 2 have the same conditions but different actions (P is 
in the SW corner of the grid, with A underneath it). The rule has a 
positive value if P moves into a wall (1) and a negative value if 
the P moves away from the wall (2). P would, therefore, move 
into the wall and thus have the highest chance of catching A (50% 
chance of A moving into a wall). 

Rules 3 and 4 have the same weight. If P takes the move north 
action (3), it will be on-top of A and will catch it if it moves into 
the wall to the west (25% chance). If P takes the move north 

    793



action in (4) it will move into the wall and therefore stay on-top of 
A. P will then catch A if it moves into the wall to the north (25% 
chance). These two situations should be of equal utility to the 
agent, which has been successfully learned by RVRL. 

Table 1: Sample rule weights for rules learned from 60,000 
moves experience and 15,000 iterations of RVRL. 

No. Conditions Value 
1 Move_W, Wall_W, Wall_S, Agent_U 0.43 
2 Move_E, Wall_W, Wall_S, Agent_U -0.03 
3 Move_N, Wall_W, Agent_N 0.11 
4 Move_N, Wall_N, Agent_U 0.11 
5 Move_E, Agent_E -0.07 
6 Move_W, Agent_E -0.21 
7 Move_S -0.28 
8  -0.28 

Rules 5 and 6 show the weights for moving east onto the prey to 
the east and moving west away from a prey to the east. Moving 
onto the prey has higher weight as expected. Rules 7 and 8 have 
the same value. Rule 7 is the value of moving south with no other 
information. Rule 8 has no conditions and is thus the value of 
taking a random move in the environment. These rules are both 
effectively random and thus have equal weight. 

The performance of RVRL was compared with: 

a) Dyna-Q: Q-Learning reinforcement learner with frequency 
based environment model. 

b) SR-Q: A stochastic rule based model of the environment was 
used to build a state, action value map. This is the equivalent 
of running Q-learning, using the rule based model for 
experience to build the Q(s, a) map. This method is described 
in [2]. 

RVRL builds a Q(rule) map, assigning value to each rule. Table 2 
gives a comparison of the three methods. 

In each test case the methods were given the same experience with 
which to build the model. The predator and prey were run for a set 
number of steps, taking random moves at each step. Using the 
model, each method ran Q-learning (in the first two cases), or 
RVRL for 15,000 iterations to build a value map. Once the map 
had been created, each method ran for 40,000 steps in the predator 
prey environment, selecting the action with the highest utility at 
each step. The number of times P caught A was then recorded. 
Average moves taken for P to capture A is given in Table 2. 

The two Q-learning based methods selected the best action at each 
step picking the highest valued action from all matching Q(s,a) 
values for the current state (s). RVRL picked the highest valued 
action from all matching AvgQ(WinningRules(s,a)). 

Table 2: Moves per capture: Dyna-Q, Stochastic Rule model Q 
(SR-Q) and Rule Value Reinforcement Learning (RVRL).  

Method 100 500 1000 10000 15000 30000 60000 
Dyna-Q 17.5 16.4 12.0 8.8 7.4 6.2 4.6 
SR-Q 13.1 13.4 11.5 9.2 8.8 7.1 4.7 
RVRL 13.2 12.7 11.3 9.3 8.1 7.0 4.7 

Moves per capture for P taking random moves is 16.01. A trail 
was also run on a “perfect” model (Dyna-Q built from 400,000 
moves). In this instance P averaged 4.32 moves per capture. 

The results in Table 2 for 100, 500 and 1000 moves training data 
show that RVRL is more effective than Dyna-Q when little 
experience has been gathered. In this case the Dyna-Q agent is 

forced to take a random move in many of the states encountered in 
the test, because it has no experience which matches the situation. 
With this limited model, Dyna-Q “expected” the prey to move in 
the same way as it did in the training data, resulting in picking a 
poor action. The RVRL agent, however, was able to make 
generalisations in two ways: first to generalise the model using the 
stochastic logic rules, which allows the system to predict future 
states from the current state, even when this state has not been 
seen before; second, RVRL learned values are applicable across 
multiple states, allowing learned values to be applied in unseen 
states. This allows the small amount of experience gathered to be 
generalised and used, which is demonstrated by the improved 
performance under these conditions. SR-Q is only able to make 
use of the first of these generalisations, and therefore performed 
slightly better than Dyna-Q, but not as well as RVRL. 

As the state action map gains a larger amount of experience 
(10,000, 15,000 and 30,000 steps), its model becomes closer to a 
perfect model in this test environment, while the generalisations 
made by the rule learner become less effective. This is due largely 
to shortcomings in the ASDD modelling method with this level of 
training data [2] which is reflected in the similar performance of 
the SR-Q results, rather than shortcomings in the RVRL 
algorithm. When the learned rules become a near perfect 
representation of the environment (at 60,000 steps training data), 
the results show that RVRL is capable of learning near perfect 
valued rules, and thus the utility of taking an action in the current 
state, again demonstrating that the rule values are capable of 
capturing a policy at least as effectively as a state action model 
under these conditions. 

4. CONCLUSIONS 
This paper has presented the Rule Value Reinforcement Learning 
(RVRL) method. RVRL is a state-based aggregation technique, in 
that states which behave in a similar way with respect to a given 
action sequence and goal are given the same value. Results in our 
experimentation are extremely encouraging in that the algorithm is 
able to learn rule-values which accurately capture the utility of 
actions in the predator-prey environment without the need for a 
state-action map.  

5. REFERENCES 
[1] Child, C. and Stathis, K. “Learning to Act with RVRL agents”. City 

University Technical Report. (2006). 

[2] Child, C. and Stathis, K. “The Apriori Stochastic Dependency 
Detection (ASDD) Algorithm for Learning Stochastic Logic Rules”, 
In Proceedings of the 4th International Workshop on Computation 
Logic in Multi-agent Systems (CLIMA-04), J. Dix, J. Leiter (Eds), 
Florida, Jan, (2004).  

[3] Pasula, H. M, Zettlemoyer, L.S. and Kaelbling, L.P. “Learning 
Probabilistic Relational Planning Rules.” Proceedings of the 
Fourteenth International Conference on Automated Planning and 
Scheduling, ICAPS, 73-82, (2004). 

[4] Sutton, R.S., and Barto, A.G. “Reinforcement Learning: An 
Introduction”. A Bradford Book, MIT Press, (1998). 

[5] Watkins, C. J. C. H. “Learning from Delayed Rewards.” PhD thesis, 
Cambridge University, (1989).  

    794




