

City, University of London Institutional Repository

Citation: Child, C. H. T. & Stathis, K. (2005). SMART (Stochastic Model Acquisition with

ReinforcemenT) learning agents: A preliminary report. Lecture Notes in Computer Science:
Adaptive Agents and Multi-Agent Systems II, 3394, pp. 73-87. doi: 10.1007/978-3-540-
32274-0_5

This is the draft version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/3003/

Link to published version: https://doi.org/10.1007/978-3-540-32274-0_5

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

SMART (Stochastic Model Acquisition with ReinforcemenT) Learning
Agents: A Preliminary Report

Christopher Child* and Kostas Stathis
Department of Computing,

School of Informatics,
City University, London

{c.child,k.stathis}@city.ac.uk

Abstract

We present a framework for building agents that learn using SMART, a system that combines
stochastic model acquisition with reinforcement learning to enable an agent to model its
environment through experience and subsequently form action selection policies using the acquired
model. We extend an existing algorithm for automatic creation of stochastic strips operators (Oates
et. al 1995) as a preliminary method of environment modelling. We then define the process of
generation of future states using these operators and an initial state and finally show the process by
which the agent can use the generated states to form a policy with a standard reinforcement
learning algorithm. The potential of SMART is exemplified using the well-known predator prey
scenario. Results of applying SMART to this environment and directions for future work are
discussed.

* Corresponding author.

1 Introduction
Reinforcement learning has been shown to be a powerful
tool in the automatic formation of action policies for
agents (Kaelbling et. al. 1996). There are two main
approaches: Value learning (V-Learning) which assigns a
value to each state in the system and Q-Learning, which
assigns a value to each state action pair (Sutton and Barto
1998). V-learning assigns state values by propagating back
rewards received in future states after taking an action
according to a policy. V-learning is limited in application
because it requires a model of the world in order to predict
which state will occur after each action. Q-Learning is
more widely applicable because it assigns rewards to a
state action pair. The agent is therefore not required to
predict the future state and does not require a model. Often
it is impossible for the designer of an agent to provide a
model of the environment. Even if the environment has
been designed in software, the transition from state to state
may be impossible for the designer to predict due to
factors such as the action of other agents.

In this paper we investigate “stochastic model acquisition”.
We define this to be any system which enables an agent to
acquire a model of its environment from the environment.
To be more precise we are modelling the agent’s
perception of the environment because this is all the
information which it has access to. Initially the agent has
knowledge of the actions it can perform, but not the
effects, and has a percepive function that maps a world

state to a set of percep variables. The agent’s task is to
discover which variables are effected by its actions, the
conditions under which these effects will occur, and an
associated probability. Using this model the agent can
develop an action policy to achieve a goal using
reinforcement learning. Similar work on modelling in
deterministic environments has been called “discovery”
(Shen 1993) and “constructivist AI” (Drescher 1991).

A well-studied model based reinforcement learning
architecture is Dyna-Q (Sutton & Barto 1998). The
algorithm suffers from the disadvantage that it relies on
statistical measures of entire state transitions rather than
state variable transitions. These require multiple visits to
each state in a stochastic environment before an accurate
model can be built. As the number of states increases
exponentially with the number of state variables in the
system, the method quickly becomes impractical.

Our approach is motivated by a number of observations:

1. V-learning reduces the state space for the reward
function as compared to Q-learning by an order of
magnitude;

2. Construction of a model allows us to make predictions
about state action pairs that have previously not been
visited;

3. Learning in the model, rather than through
environment interaction can reduce the learning time
of reinforcement learning algorithms.

4. Changes in the agents goals (reward function) result in
re-learning a state-value map from the model, rather
than re-learning in the environment. A new policy can
therefore be formed with no environment interaction.

Several methods have been evaluated for representing a
stochastic environment using a factored state model
(Boutilier et. al. 1999). The most compact representation is
identified as the use of probabilistic STRIPS operators
(Hanks 1990). Other methods they describe are generally
based on two-tier Bayesian networks. These require
exponentially large storage for the probability matrix as
the number of state variables increases, unless the structure
of variable dependencies is known. This structure can be
learned but is a research area in itself. The MSDD
algorithm (Oates et. al. 1995) has been shown to be an
effective method of learning stochastic STRIPS operators
and will therefore be used in this work.

Having generated a set of stochastic STRIPS operators, the
next stage is to generate expected world states using these
STRIPS operators. Finally we use a standard
reinforcement learning algorithm to create a value map and
therefore an action policy for the agent. This results in a
fully functional agent mind, generated with no human
intervention.

2 Motivating Example
The broad motivation for this research is towards
automatic action selection mechanisms for robotics,
software agent and computer game applications. For the
purposes of this extended abstract we have selected the
well known predator prey scenario, which is a very simple
example of an agent which has a limited number of actions
and a restricted perceptual system.

Figure 1 : Simple predator prey scenario. F indicates the
predator (fox) and R the prey (rabbit).

We will be using a simple predator prey scenario (Figure
1). There is a four by four grid surrounded by a “wall”.
There is one predator and one prey. The predator will be
assumed to have caught the prey when it lands on the same
square. In this instance the prey will simply select a
random action. Both predator and prey have four actions:
move north, east, south and west. An action has the effect
of moving the agent one square in the selected direction,
unless there is a wall, in which instance there is no effect.
The predator and prey move in alternate turns. The agent’s
percep gives the contents of the four squares around it and

the square it is on. Each square can be in one of three
states: empty, wall or agent. For example a predator agent
which is situated in the north west corner of the grid with a

prey to the east would have the percep <WALL, AGENT,

EMPTY, WALL, EMPTY> corresponding to the squares to the
north, east, south, west and under respectively, as shown in
figure 2.

3 Framework
The stages of the agent system are as follows: stochastic
model acquisition, state generation and policy generation.

3.1 Stochastic Model Acquisition

3.1.1 Stochastic STRIPS operators
The STRIPS planning operator representation has, for each
action, a set of preconditions, an “add” list, and a “delete”
list (Fikes and Nilsson 1971). The STRIPS planner was
designed for deterministic environments, with the
assumption that actions taken in a state matching the
operator’s preconditions would consistently result in the
state changes indicated by the operators add and delete
lists. In a non-deterministic environment a less restrictive
view is taken, allowing actions to be attempted in any
state. The effects of the action then depend on the state in
which it was taken and are influenced by some properties
external to the agents perception which appear random
from the agent’s perspective.

We follow the format for stochastic STRIPS operators
used by Oates & Cohen (Oates and Cohen 1996). A
stochastic STRIPS operator takes the form:

O = < a, c, e, p >

where a specifies an action, c specifies a context, e the
effects and p the probability. If the agent is in a state
matching the context c, and takes the action a, then the
agent will observe a state matching the effects e with
probability p.

Contexts and effects of operators are specified as a list of
tokens representing the percep and the action of the agent
in the order described in section 2, with the addition of a
wildcard symbol (*) denoting irrelevance, which matches
any token.

As an example of the use of wildcards, consider the
following operator:

W

W E A

E

Figure 2: The predator agent percep

<MOVE EAST, (* WALL * * *), (* WALL * * *)> Prob:1.0

In this example: a is MOVE EAST, c is (* WALL * * *), e is (*

WALL * * *) and p is 1.0.

This operator specifies that if the agent chooses to move
north and the contents of the square to the north is detected
as WALL then the contents of the square to the north of
the agent on the next time step will still be a wall, with
probability 1.0. The wildcards specify that this condition is
irrelevant of anything else that the agent observes1. The
percep order is as specified in section 2.

3.2 Learning STRIPS operators
We have chosen to use Multi-Stream Dependency
Detection (MSDD) (Oats et. al. 1995) to learn the STRIPS
operators in this context. Although inductive logic
programming (ILP) (Muggleton 2000) is powerful in its
domain area of learning predicate logic rules, it is still an
open research area to generate reliable stochastic logic
rules with the system. MACCENT is another inductive
logic system specifically designed for learning stochastic
rules (Dehaspe 1997), but is not well suited to large rule
sets. MSDD has been chosen for its suitability to deal with
the domain area, and has previously been shown to be able
to generate stochastic STRIPS operators from data (Oates
and Cohen 1996).

3.2.1 MSDD
Formal statements of both the MSDD algorithm and its
node expansion routine are given in the algorithms below.
MSDD is a batch algorithm and uses H, the precep data
observed by the agent in the preconditions-effects format
shown in section 3.1.1. The function f evaluates the best
node to expand next and typically counts the co-
occurrence of the node’s preconditions and effects. This
requires a complete pass over the data set H.

MSDD (H, f, maxnodes)
1. expanded = 0
2. nodes = ROOT-NODE()
3. while NOT-EMPTY(nodes) and expanded < maxnodes
do

a. remove from nodes the node n maximising
f(H,n)

b. EXPAND(n), adding its children to nodes
c. increment expanded by the number of

children generated in (b)

EXPAND (n)
1. for i from m down to 1 do

a. if n.preconditions[i] ≠ ‘*’ then
return children

b. for t ∈ Ti do
i. child = COPY-NODE(n)
ii. child.preconditions[i] = t
iii. push child onto children

2. repeat (1) for the effects of n
3. return children

1 Note that the agent’s percep does not include the agent itself.

This algorithm does not specify which children should be
generated before others, but does ensure that each
dependency is explored only once, and facilitates pruning
of the search. For example, all descendants of the node

<*, (WALL * * * *), (WALL * * * *)>

can be pruned because there is no need to explore rules
with a wildcard in the action position, and all descendants
of this node will be expanded from the rightmost wildcard
resulting in children with no action.

We have made two changes to standard MSDD. The first
is in EXPAND (b.iii). We check that the generated child
matches at least one observation in the database before
adding it to children. For example, MSDD can generate
the rule <*, (WALL WALL WALL * *), (* * * * *)>, but in our
environment the agent can only observe a maximum of two
walls (when it is positioned in the corner of the map). A
check against the data set will reveal that the generated
rule has no matches and can be eliminated from the node
list, along with it’s children as a consequence. This
prevents the generation of a large number of incorrect
rules, which would have been eliminated in the “filter”
stage of MSDD.

The second change is that the effect part of the rule is only
allowed to have one non-wildcard element. We have made
this change because a very large number of rules are
generated by standard MSDD. Combining individual effect
fluents can generate complete successor states. This has
the disadvantage that illegal states can be created, such as
<WALL WALL WALL * *>. These can, however, be eliminated
using constraints (section 3.3).

3.2.2 Filter
The second stage of MSDD is the “filter” process, which
removes specific rules already covered by more general
ones. For example, <C1 C2 * * *> is a more specific version
of <C1 * * * *>. If the condition C2 has no significant effect
on the probability of the rule then it is unnecessary. For
example, MSDD could generate two rules as follows:

<MOVE NORTH, (WALL WALL * * *), (* WALL * * *)> Prob: 1.0
<MOVE NORTH, (* WALL * * *), (* WALL * * *)> Prob: 1.0

Both of these rules tell us that, if the agent moves north
and there was a wall to the east, it will observe a wall to
the east on the next move. The extra information that there
was a wall to the north does not affect the agent’s
subsequent observation. More general operators are
preferred because a reduced number of rules can cover the
same information. For operators which do not have a
probability of 1 we are testing, for an operator O = <a, c,
e, p>, whether Prob (e | c1, c2, a) and Prob (e | c1, a) are
significantly different. If not, the general operator is kept
the specific one discarded.

FILTER (D, H, g)
1. sort D in non-increasing order of generality
2. S = {}
3. while NOT_EMPTY(D)

a. s = POP(D)
b. PUSH (s, S)
c. for d ∈ D do

if SUBSUMES(s, d) and G(s, d, H) < g then
remove d from D

4. Return S

Where D is the set of dependency operators generated by
MSDD. H is the history of observations made by the agent.
SUBSUMES(d1, d2) is a Boolean function defined to
return true if dependency operator d1 is a generalisation of
d2. G(d1, d2, H) returns the G statistic to determine whether
the conditional probability of d1’s effects given its
conditions is significantly different from d2’s effects given
its conditions. The parameter g is used as a threshold,
which the G statistic must exceed before d1 and d2 are
considered different2.

For example, dependency d1 below returns a very low G
statistic when compared with d2:

d1:<MOVE NORTH, (WALL * EMPTY * AGENT), (* * * * AGENT) >
d2:<MOVE NORTH, (WALL * * * AGENT), (* * * * AGENT) >

The additional condition that there is an EMPTY square to
the south does not effect the probability of an agent being
present on the square it inhabits after a move north (which
will be the same square because there is a wall to the
north). The predator agent already has the information that
the prey is in the same square and that there is a WALL to
the north, so the square to the south will either be the prey
or be empty irrelevant of the empty square to the south.
For an explanation of calculation of the G statistic see
Oates et. al. (1995).

3.2.3 Rule Complements
When running MSDD on data collected from the predator
prey scenario, we observed that the “filter” process
occasionally filters rules and not their complements. For
example the filter process could filter d2 below, but leave
d1:

d1: <MOVE NORTH, (WALL WALL * * AGENT), (* * * * AGENT) >
d2: <MOVE NORTH, (WALL WALL * * AGENT), (* * * * EMPTY) >

This would cause a problem in the state generation
(section 3.3), because the rule generates only states with
agents present. To avoid this we have added a further step
to the algorithm in order to search through all generated
rules checking that their complement rules are present.
This process is less problematic in our system because
rules only have effects in one fluent.

2 A value of 3.84 for g tests for statistical significance at the 5%
level.

AddRuleComplements(D, H)
for d ∈ D do
f = d.effect
for fValue ∈ possibleValues(f)
if fValue not equal to f.value
newRule = copy of d with d.effect set to

fValue
if newRule is not present in D

if newRule has match in H
add newRule to D

The above algorithm goes through all rules in the learned
dependencies, D, checking that all possible values of its
effect fluent are either present in D already or do not
match any observations in the history H. If a missing rule
is found it is added to D.

3.3 Generating States from learned
rules

The state generator function of the SMART learning
process generates all possible next states, with associated
probabilities, for an action that the agent could take in a
given state. These states are generated using the rules
learned by MSDD from the history of observations. This
state generation process is necessary for the agent to
generate a state value map using reinforcement learning
(section 3.3.5).

Our modified implementation of the MSDD algorithm
generates a set of rules with only one fluent in the effects
part in order to reduce substantially the number of rules
that must be evaluated. When we match these against some
initial conditions, such as:

<MOVE EAST, (EMPTY WALL WALL EMPTY EMPTY)>

The subset of the generated rules matching these conditions is
shown in Table 1.

Table 1: Subset of the generated dependency rules
matching the condition <MOVE EAST, (EMPTY WALL WALL

EMPTY EMPTY)>. E = EMPTY, W = WALL and A = AGENT. The
table shows the rule set after removing general rules
(section 3.3.1).

Conditions Effects Pr
Action N E S W U N E S W U
EAST * W * * * * W * * * 1.0
EAST * * W * * * * W * * 1.0
EAST E W * E * * * * A * 0.07
EAST E W * E * * * * E * 0.93
EAST E W * * E A * * * * 0.03
EAST E W * * E E * * * * 0.97
EAST E * W E * A * * * * 0.06
EAST E * W E * E * * * * 0.94
EAST E W * E E * * * * E 1.0

Notice that the rule set correctly tells us that moving east
when there is a wall to the east results in us still observing
a wall to the east. Also moving east with a wall to the
south results in a wall to the south irrespective of any other
contextual information. The rule set captures all the
information we require for the given state and action and
has the advantage that rules are also applicable to many
other states.

The generated rule set for a given situation can provide
several rules for each output fluent. To generate individual
states from these rules we have to decide which rules are
more relevant in the given situation. The following
sections describe the process by which we choose rules,
and why the decision was made to process the rules in this
way. The stages of the state generator are:

1. Remove general rules covered by specific.

2. Remove rules with less specific effects.

3. Generate possible states and probabilities.

4. Remove impossible states using constraints and
normalise the state probabilities.

The output of the state generator is a table of states and
associated probabilities.

3.3.1 Remove General Rules Covered by
Specific

The subset of the generated rules that apply to a specific
state action pair may contain rules with different
conditions applicable to the same effect fluent. If the
environment has not been well explored by the agent, a
general rule may be more reliable because a specific rule
will not have been encountered as often in the history of
observations made by the agent. If, however, the agent has
been allowed to explore the environment extensively, as
was the case in our experiments, we can assume that a
specific rule is likely to contain more relevant information
than a general one. An expansion to the system would be
to choose less specific rules depending on the statistical
confidence measure of each rule. This is a subject for
further research.

General rules are removed by searching through the rest of
the dependencies for other nodes with an effect for the
same fluent. If another rule is found which is more specific
the general rule is removed. Rules with equal specificity
are not removed.

RemoveRulesCoveredBySpecific(rules)
sort rules in non-increasing order of generality
for rule ∈ rules
for testRule ∈ rules after rule
if effectFluent of rule is same

position as effectFluent of testRule
if rule.wildcards > testRule.wildcards

remove rule from rules

Table 2 gives an example of rules that were removed to
give the rule set in Table 1. The rules were removed
because a more specific rule was available for the same
effect fluent.

Table 2: The first two rules in the above table were removed
because the specific rule (in bold) covered them.

Conditions Effects Pr
Action N E S W U N E S W U
EAST * * * E * * * * * A 0.04
EAST * * * E * * * * * E 0.96
EAST E W * E E * * * * E 1.0

3.3.2 Remove Rules With Less Specific
Effects

MSDD generates rules with equally specific conditions but
less specific results. Rules which are more specific in the
effects part are providing us with the information that the
given effect cannot arise in this context. We can therefore
eliminate the less specific effects. The rules shown in
italics in Table 1 are removed by this part of the state
generation process, because other rules exist with equal
specificity of effect.

removeLessSpecificOutcome(rules)
for rule ∈ rules do
effectP = position of effect in testRule
NumEffects = countRules(rule.conditions,

effectP)
for other ∈ matchingNodes do

if other has same effectP and same
conditions

otherNumEffects
= countRules(other.conditions,

effectP)
if otherNumEffects >= NumEffects

removeRules(other.conditions, effectP)
else if otherNumbOfEffects > 0

removeRules(rule.conditions, effectP)

If we do not remove rules with less specific effect in this
way the state generator can produce states which could not
occur in the real environment. Consider for example the
rules in Table 3.

Table 3: Removing rules with less specific outcomes. Rules in
Italics are removed because their outcome is less specific than
the other rules with the same effect fluent.

Conditions Effects Pr
Action N E S W U N E S W U
NOR E E W * E E * * * * 0.94
NOR E E W * E A * * * * 0.06
NOR E E * E E E * * * * 0.07
NOR E E * E E A * * * * 0.05
NOR E E * E E W * * * * 0.88

The rules removed by this process, shown in italics, state
that a move north could result in a wall to the north. In fact
there is a wall to the south in the original state. A move
north could, therefore, only result in an empty square or an
agent, as there is no situation in which the agent can move

from one wall to another opposite in a single move in the
environment.

3.3.3 Generate Possible States
The possible states are generated by:

1. Creating a new state from each combination of effect
fluent values in the remaining rules.

2. Multiply the probability of each effect rule to
generate the probability of each state.

The states generated from the rules in Table 1 are as
follows:

Table 4: Possible after states for the given state and action
generated from the rules in Table 1.

NORTH EAST SOUTH WEST UNDER Pr:
EMPTY WALL WALL EMPTY EMPTY ~0.91
EMPTY WALL WALL AGENT EMPTY ~0.07
AGENT WALL WALL EMPTY EMPTY ~0.02
AGENT WALL WALL AGENT EMPTY ~0.001

There were two rules for the “north” fluent with results
EMPTY and AGENT, and two rules for the “west” fluent with
results EMPTY and AGENT. The other rules had one result
each resulting in a total of: 2 * 1 * 1* 2 * 1 = 4 possible
states. The probabilities are found by multiplying together
the probabilities of the rules which resulted in these
fluents.

3.3.4 Remove Impossible States with
Constraints

Some of the states generated could not occur in the domain
area. For example in the predator prey scenario the
operators may generate a percep with two agents, when
there is only one agent in the world. We would ultimately
like our agent to generate its own constraints that tell it
which world states are impossible. A rule such as
IMPOSSIBLE (* * AGENT AGENT *) would allow elimination
of the impossible world states generated. For the purposes
of this paper, we will be using a user-defined set of
constraints. If we do not use these constraints the
erroneous generated states can propagate to create world
states where there are five prey agents, or walls surround
the predator agent, and the model becomes meaningless as
it is too far detached from the real world states. Currently
our system simply removes impossible states by checking
that each generated state does not contain more than one
agent, or walls opposite each other. This method breaks
the principle of an autonomous learning agent that learns a
model of its environment without human intervention. A
constraint generator will therefore be the subject of future
research.

After elimination of illegal states the probabilities of
remaining states are normalised by dividing the probability
of each state by the total probability of all generated states

to give the final states. The state in italics in Table 4 is
removed by this process because it contains two agents.

3.3.5 Removing Unused Rules
In the present system the state generator has to continually
search through the dependency list and remove general
rules which are covered by specific ones. We could reduce
both the size of the rule set, and the time taken to generate
states by removing general rules which are never used to
generate states from the rule set as follows:

Starting from the most general rule, in order of increasing
specificity, we check to see if there is a set of more
specific rules entirely covering the possible observed
values of each wildcard fluent. If, for example, the rule set
below exists:

d1: <MOVE NORTH, (* * * * AGENT), (* * * * AGENT) >
d2: <MOVE NORTH, (* * * * AGENT), (* * * * EMPTY) >

The following more specific rule set would cover the
above rules and cause them to be unused:

d1: <MOVE NORTH, (WALL * * * AGENT), (* * * * AGENT) >
d2: <MOVE NORTH, (WALL * * * AGENT), (* * * * EMPTY) >
d3: <MOVE NORTH, (EMPTY * * * AGENT), (* * * * AGENT) >
d4: <MOVE NORTH, (EMPTY * * * AGENT), (* * * * EMPTY) >

Notice that the more specific rule set covers WALL and
EMPTY, but does not have an AGENT value. In our predator
prey scenario it is not possible to have two agents in one
percep. These rules therefore cover all fluent values with
the remaining value finding no matches in the database.
This feature has not been implemented in the current
system.

3.4 Generating Policies
We use standard reinforcement learning techniques to
generate a policy for the agent. The acquired model allows
us to use value iteration, which is a simple and efficient
method of generating a value map for the agent (Sutton &
Barto 1998). The update equation for value iteration is
given by:

)]'([max)('
'

'1 sVRPsV k
a
ss

s

a
ss

a
k γ+= �+

The value of state s on pass k +1 of the value iteration is
calculated by taking the maximum valued action. The
value of the action is equal to the sum for s’ of the
probability of action leading from state s to s’ multiplied
by the reward plus the discounted value of state s’ on pass
k.. In order to generate a value map, we start with a state
generated by a random initial position of the predator prey
scenario and add this to the value map. A single entry in
the value map is as follows:

State, Value, Reward

State is a percep (e.g. <WALL, WALL, EMPTY, EMPTY,

EMPTY>). Reward is set to a positive value if there is an
AGENT in the last position of the percep (corresponding
to the predator catching the prey) and zero or a negative
value otherwise. Value, for each state is then generated by
repeated application of the following algorithm, with the
next state to refine picked at random from those generated
in the getCreateStateValue step of the algorithm below.

refineValue(state, actions, valueMap)
maxUtility = 0
for action ∈ actions do
nextStatesAndProb = generateStates(state,

action)
actionUtility = 0
for afterState ∈ nextStatesAndProb
getCreateStateValue(afterState)
actionUtility += afterState.probability *

(afterState.value * γ + afterState.reward)
if (actionUtility > maxUtility)
maxUtility = actionUtility

setStateValue(valueMap, state, maxUtility)

4 Empirical Results
Performance of the policy generated by SMART learning
was assessed by tested against a standard Dyna-Q
algorithm (Sutton and Barto 1998). Dyna-Q is a model
based learning system, which uses a state map generated
by recording the frequency with which each action in each
state leads to the next state. Dyna-Q has previously been
applied to the predator prey scenario presented in this
paper (Varsy 2002). We therefore repeat the test
conditions used for this work using the SMART
framework, for the purposes of comparison.

4.1 Test Conditions
An experimental run consisted of a sequence of trials or
episodes that end after the prey has been captured. In the
first trial of each run, the predator and prey are given the
start position as indicated by Figure 1. The result of an
experiment was the number of steps required for the
predator to catch the prey averaged over 30 runs. Each run
was 2000 steps, giving 1000 moves for both the predator
and prey agents.

In our test environment we allowed the agent to gather a
perceptual history (H) from 10,000 iterations of the
environment. Our extended MSDD algorithm was
subsequently run on the observation history to generate
stochastic STRIPS operators. The state generator and
reinforcement learning algorithm were then applied for
2,000 iterations to generate a value map. Reward was set
to 1.0 for a state where the prey agent is “under” the
predator, and –0.1 otherwise. The discount factor (γ) was
0.9. The environment was then run according to the test
conditions. On each environment update the predator agent
picked the highest utility action. This was achieved using a
similar process to the selection of highest utility action in
the “refineValue” algorithm (section 3.4).

Table 5: Average life-span of prey under test conditions

Action Method Prey life-span

Random moves 16.37

Dyna-Q 7.04

SMART learning 9.72

Both predator and prey taking random moves resulted in
the predator being on the same square as the prey every
16.37 moves. This result is expected. There are 16 squares
in the grid and the predator will randomly occupy the same
square roughly once every 16 moves. The extra fraction is
probably due to the start positions being at opposite ends
of the grid.

Using Dyna-Q the predator caught the prey in an average
of 7.04 moves. Dyna-Q was required to learn a policy
during the run, and, as the predator and prey take alternate
turns, half the moves are taken by the prey and although
random, are likely to result in the prey evading the
predator.

SMART learning resulted in the predator catching the prey
in an average of 9.72 moves. Initially this might appear to
be a low score when compared to Dyna-Q, because the
agent enters the world with a fully formed policy. An ideal
state action policy should result in the predator being able
to move onto the prey’s square every time it moves once it
has caught it the initial time. This would result in a prey
life-span of approximately 2 moves. The SMART learner,
however, is a state-value method, and does not have access
to the immediate effect of its action as it perceives just

before it moves and not just after. The prey takes a move
between these two perceptions, so the predator is only able
to learn by an approximate method.

Figure 3 shows order of perceptions from the perspective
of the predator. The predator initially has the perception
P1. The move east action takes the predator onto the
agent’s square. The predator, however, does not observe
the percep Px, because it is the prey’s turn to move. When
the predator observes again at P2 the prey has moved out
of the capture square. Methods such as Dyna-Q suffer less
from this problem, because reward is associated with the
state, action pair (e.g. <P1, Move East>) and the predator

W

W E A

E
Predator:

Move East
Prey:

Move West

W

E A E

E

W

A E E

EP1 Px P2

Figure 3: Order of perceptions in predator-prey scenario

is therefore able to associate rewards with the actions
which produced them.

Despite this problem, SMART learning enabled the agent
to form a good policy in the predator prey environment
and the failure to form an optimum policy owes more to
the experimental conditions than a problem with the
learning technique itself.

5 Conclusions and Future Work
We have presented a framework for stochastic model
acquisition, which promises to be a powerful extension to
the reinforcement learning paradigm. We have shown how
to overcome some of the problems encountered when
attempting to generate next states from automatically
acquired STRIPS operators and demonstrated that action
policies can be developed using a model represented by
these operators.

The ability to learn a model of the environment through
experience automates an otherwise difficult or impossible
process for an agent designer. Future experiments aim to
demonstrate that the agent can keep important experience
when its goals are changed and the designer is able to
change the reward structure and learn a new policy without
the need for expensive interaction with the environment.

The use of a rule learning method to acquire a model
provides an accessible format for a human designer. If the
system is not performing as the designer wishes the rules
can be investigated and anomalies spotted more easily than
with a black box learning system such as a neural network.

Subjects of further research will include:

• Testing the system in an environment more suited to
model based learning, in which the results of action
are immediately perceivable by the agent.

• Evaluation of rule learning methods in environments
with greater independence between state variables,
where stochastic STRIPS operators are likely to more
efficiently compress the environment model.

• The addition of a parameterised value learning system
to estimate state values, allowing compression of the
state value map (Tesauro 1994)

• Investigation of stochastic predicate logic rule
learning methods to learn stochastic situation calculus
rules (Muggleton 2000). This would also require the
use of a relational reinforcement learning method
(Dzeroski et. al. 2000) to learn state values.

6 Acknowledgements
Chris Child would like to acknowledge the support of
EPSRC, grant number 00318484.

References

Boutilier, C. Dean, T.Hanks, S. 1999. Decision-Theoretic
Planning: Structural Assumptions and Computational
Leverage. Journal of Artificial Intelligence Research 11:
1-94.

Dzeroski, S. and De Raedt, L. and Blockeel, H. 1998.
Relational Reinforcement Learning. International
Workshop on Inductive Logic Programming.

Drescher, G.L. 1991. Made-Up Minds, A Constructivist
Approach to Artificial Intelligence. The MIT Press.

Fikes, R.E. and Nilsson, N.J. 1971. STRIPS: a new
approach to the application of theorem proving to
problem-solving. Artificial Intelligence 2(3-4): 189-208.

Hanks, S. 1990. Projecting plans for uncertain worlds.
Ph.D. thesis, Yale University, Department of Computer
Science.

Kaelbling, L. P. and Littman, H.L. and Moore, A.P. 1996.
Reinforcement Learning: A Survey. Journal of Artificial
Intelligence Research 4: 237-285.

Muggleton, S.H. 2000. Learning Stochastic Logic
Programs. Proceedings of the AAAI2000 Workshop on
Learning Statistical Models from Relational Data, L.
Getoor and D. Jensen, AAAI

Oates T., Schmill, M.D., Gregory, D.E. and Cohen P.R.
1995. Detecting complex dependencies in categorical data.
Chap. in Finding Structure in Data: Artificial Intelligence
and Statistics V. Springer Verlag.

Oates, T. and Cohen, P. R. 1996. Learning Planning
Operators with Conditional and Probabilistic Effects.
AAAI-96 Spring Symposium on Planning with Incomplete
Information for Robot Problems, AAAI.

Sutton, R.S., and A.G. Barto. 1998. Reinforcement
Learning: An Introduction. A Bradford Book, MIT Press.

Shen, W. 1993. Discovery as Autonomous Learning from
the Environment. Machine Learning 12: 143-165.

Tesauro, G.J. 1994. TD-Gammon, a self-teaching
backgammon program, achieves master-level play. Neural
Computation 6, 2: 215-219.

Varsy, R. 2002. Extending Planning and Learning Through
Reinterpretation of World Model. M.Sc. thesis, City
Univesity.

