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Abstract: Steel-fiber-reinforced scoria aggregate concrete (SFSAC), which contains scoria aggregate
and steel fiber, was developed to reduce the environmental impacts and improve the energy efficiency
of buildings. Experimental studies were performed. The test variables included steel fiber volume con-
tents (0%, 0.5%, 1.0%, and 1.5%), freeze-thaw cycles (0 and 25 times), and temperature (20 ◦C, 200 ◦C,
400 ◦C, 600 ◦C, and 800 ◦C). Mass loss, relative dynamic elastic modulus, mechanical properties, and
the variation pattern of the complete stress–strain curves were analyzed through rapid freeze-thaw,
high-temperature, and mechanical tests. The test results showed that after 25 freeze-thaw cycles and
then exposure to high temperatures, the surfaces of SFSAC specimens showed aggregate spalling
accompanied by dense cracks. Moreover, the residual mechanical properties of steel-fiber-reinforced
natural aggregate concrete (SFNAC) were better than those of natural aggregate concrete (NAC).
Although the incorporation of steel fiber cannot significantly improve the anti-freezing performance
of SFSAC, it can improve the residual mechanical properties of SFSAC, and the optimal amount of
incorporation is 1%, considering the economic cost factors. The stress–strain curves of both SFSAC
and SFNAC showed the same trend after freeze-thaw cycles and then high temperatures, i.e., the
peak stress decreased, the peak strain increased, and the descending section tended to level off.
Finally, based on the concrete damage mechanics theory, considering the role of steel fibers in the
uniaxial compression process of scoria aggregate concrete (SAC) and the effect of freeze-thaw and
high-temperature tests on the SFSAC, the mechanical damage model and the uniaxial compression
stress–strain constitutive model were proposed as being able to highly accurately reflect the overall
process damage characteristics of SFSAC after freeze-thaw and then high-temperature tests, and also
provided a theoretical basis for the high-temperature resistance assessment of SFSAC structures in
cold regions.

Keywords: scoria aggregate concrete; freeze-thaw cycle; high temperature; steel fiber; mechanical
properties; stress-strain constitutive model

1. Introduction

Lightweight concrete (LWC) has been extensively researched as a structural and
nonstructural building material due to its beneficial qualities, which include low density,
superior thermal insulation, and fire resistance. However, compared with natural aggregate
concrete, lightweight concrete has a lower load-bearing capacity, and the coarse and fine
aggregates tend to float during the preparation process, which leads to a weak part at
its top [1]. To minimize the disadvantages of lightweight concrete and to reduce its self-
weight, the coarse aggregates can be partially replaced with light aggregates to obtain
lightweight concrete [2,3]. Lightweight concrete has been used for over 50 years in the
United States, Italy, and Sweden [3,4]. Its significant benefits include reduced dead loads [5],
reduced thermal conductivity, and thermal and acoustic insulation [6,7]. Different types
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of lightweight aggregates, such as expanded clay and shale, pumice perlite, and various
wastes, are used in concrete to make it lightweight [8–10]. For example, Bogas J A used
natural lightweight volcanic scoria from the Azores to replace the crushed stone in normal
concrete to prepare lightweight concrete and investigated the slag substitution rate’s effect
on the concrete’s mechanical properties [11]. Hossain K M A and Klccedi A et al. reached
similar conclusions through their experiments, i.e., the compressive strength of concrete
was reduced by 30–68% when ordinary crushed stone aggregates were replaced by volcanic
scoria aggregates at a volume admixture of approximately 50% [12,13]. In response to
the above problems, many studies [14,15] have shown that using fibers in lightweight
aggregate concrete is a suitable solution. For example, Campione G investigated the effect
of steel fibers on the compressive strength of expanded clay light aggregate concrete under
monotonic loading and cyclic loading and showed that the incorporation of steel fibers at
0.5%, 1%, and 2% by volume increased the compressive strength of the lightweight concrete
by 22%, 29%, and 38% under monotonic loading and by 23%, 23%, and 41% under cyclic
loading, respectively [16]. The steel-fiber-reinforced scoria aggregate concrete (SFSAC)
employed in this study is a novel material that uses both steel fiber and scoria aggregate to
reduce environmental impact and improve building energy efficiency.

In recent years, scholars have extensively investigated the material properties of
lightweight concrete after exposure to high temperatures [17] or freeze-thaw cycles [18].
The results have shown that the performance of lightweight concrete after exposure is
significantly degraded. Bin Cai investigated the mechanical properties of scoria aggregate
concrete (SAC) after heating it to 800 ◦C. The test results showed that the damage mode
of volcanic scoria concrete is greatly influenced by temperature. The strength reduction
increases when the temperature exceeds 400 ◦C, and the strength reduction reaches 78%
when the temperature reaches 800 ◦C [19]. In addition, Bin Cai and Wen-Li Hu developed
a finite element model (FEM) and simulated the seismic behavior of SAC beam-column
nodes to analyze the postfire seismic performance of SAC and to address the beam-column
nodes accurately and efficiently. R Rahnavard conducted an experimental study of the
fire resistance of four CF-CFS combination columns [20]. The test results showed that the
main failure mode of the short square and rectangular CF-CFS combination columns was
local and twisted buckling of the CFS members. Bin Cai and Ning Lv conducted four-point
bending tests on volcanic scoria concrete beams (VSC) after being subjected to fire [21]. The
test results showed that when subjected to fire for 90 min, the ultimate bearing capacity of
VSC decreased by about 11% compared with that of beams at ambient temperature, and the
ultimate bearing capacity of normal concrete beams under the same conditions decreased
by about 17.5%.

The study’s results showed that nonlinear spring units representing scoria and natural
aggregates could be used to simulate bond-slip behavior. The spring elements simulate the
clamping curve well [22]. Rubén Serrano studied the performance of steel-fiber-modified
concrete after exposure to high temperatures, and the test results showed that the concrete
cooling rate after fire exposure is slowed after adding steel fibers and that concrete with
PP fibers has lower strength than concrete with steel fibers at the same admixture and
temperature (below 400 ◦C) [23]. Xiaoyong Zhang investigated the mechanical properties
of steel-fiber-reinforced nano concrete (SFRNC) after high-temperature exposure and found
that SFRNC incorporated with steel fibers could improve the mechanical properties of
the specimens [24]. Dugenci studied the effect of high temperature on concrete with four
steel fiber doses (0%, 0.5%, 1%, and 1.5%), and the test results showed that 1.0% steel fiber
concrete had the lowest compressive strength loss [25]. L. Feo and F. Ascione studied
the compressive strength of high-strength concrete after freeze-thaw cycles at different
steel fiber admixtures, and the test results showed that the compressive strength of the
concrete after the freeze-thaw cycles increased by 25% and 29% after adding 1.25% and
2.50% steel fibers, respectively [26]. Cesar Medina prepared recycled aggregate concrete
with aggregates containing 20–25% ceramic sanitary ware industrial waste and explored
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its durability. The test results showed that the recycled aggregate contents was positively
correlated with the frost resistance of the concrete [27].

However, in actual projects, concrete structures are not subjected to only a single influ-
encing factor and may experience the combined effects of several factors. In cold regions,
concrete structures such as roads and bridges continue to be subjected to freeze-thaw cycles
after a fire. In addition to freeze-thaw damage, buildings of metallurgical and chemical
enterprises, high-temperature flue gas chimneys, and other structures are also exposed to
high temperatures. The internal temperature of a building can reach 200 ◦C~300 ◦C or even
500 ◦C~600 ◦C. Freeze-thaw cycles can degrade the mechanical properties and durability
of concrete. For buildings that are exposed to fire, high-temperature safety performance is
essential. Wu Y. studied the frost durability of ordinary concrete after high-temperature
exposure through experiments. In contrast, few studies have been reported on the damage
mechanism of lightweight concrete when subjected to high temperatures and freeze-thaw
cycles [28]. In summary, studying the mechanical properties of steel-fiber-reinforced scoria
concrete (SFSAC) after being subjected to freeze-thaw cycles and then exposure to high tem-
peratures is essential for analyzing the fire response of fiber lightweight concrete structures
after severe cold conditions and for post-disaster damage assessment and repair.

In this study, freeze-thaw and high-temperature tests were conducted on lightweight
scoria aggregate concrete (volcanic scoria isovolumetric partial replacement of crushed
stone) with four steel fiber admixtures (0%, 0.5%, 1.0%, and 1.5%) to investigate the freeze-
thaw and high-temperature damage, mechanical property degradation, and stress–strain
curve change law of SFSAC and to establish a mechanical property damage model under
different steel fiber admixtures. A mechanical damage model and an SFSAC constitutive
structure equation with different steel fiber dopings are proposed, which can provide a
reference for the research and application of SFSAC after freeze-thaw cycles followed by
high temperature damage.

2. Materials and Methods
2.1. Materials

The materials used to prepare test blocks are described in Table 1. Figure 1 shows the
appearance of the volcanic scoria and steel fiber used for concrete preparation. The volcanic
scoria used in the test was porous volcanic scoria from the Gushanzi Mine, Huinan County,
Jilin Province, China. The chemical and mineral compositions of the volcanic scoria are
listed in Tables 2 and 3, respectively. The chemical composition of each component of the
scoria aggregate sample was analyzed by X-ray fluorescence spectrometry to obtain the
percentage of oxides, and mineral composition was analyzed using X-ray diffractometry.
Figure 2 shows the grading curves of volcanic scoria aggregate.

Table 1. Materials for experimental.

Materials Information

Cement P.O42.5 ordinary Portland cement of Jilin Yatai Cement Co., Ltd., Changchun, China.
Sand River sand; the fineness modulus: 2.7; the bulk density: 1260 kg/m3

Stone Ordinary gravel; size gradation: 16–35 mm; the bulk density: 1480 kg/m3

Scoria Size gradation: 5–25 mm; the bulk density: 750 kg/m3; 1 h water absorption: 35.6%;
crushing index: 21%

Fly ash I grade fly ash of Changchun FAW Group; the bulk density: 2560 kg/m3

SF Wave type; density: 7900 kg/m3; tensile strength: 1300 MPa; elastic modulus:
3.75 GPa; crack elongation: 3.2%; aspect ratio: 52

Water Ordinary tap water
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2.2. Mix Proportion Design of the Specimens

Because the mechanical properties of lightweight concrete can be greatly reduced
when the replacement rate of lightweight aggregate exceeds 50% [2], four groups of scoria
aggregate concrete (SAC) test blocks and four groups of natural aggregate concrete (NAC)
test blocks were designed in the experiment by replacing 40% of the crushed stone with
an equal volume of volcanic scoria aggregate and adding steel fibers (0%, 0.5%, 1.0%,
and 1.5% by volume). The designations and mixing ratios of the concrete test block
groups are shown in Table 4. The numbers after “SAC” or “NAC” denote the volume of
steel fibers added. For example, the SAC-1.5 test block group represents volcanic scoria
concrete blended with steel fibers (SFSAC) at a volumetric ratio of 1.5%. Referring to
GB/T50080-2002 [29], concrete specimens were created using second feeding and ready-
mixed cement mortar (mortar stone wrapping method), and a total of 480 cubic blocks with
dimensions of 100 mm × 100 mm × 100 mm and 240 prismatic blocks with dimensions of
100 mm × 100 mm × 300 mm were prepared.
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Table 4. Mix ratio of fiber reinforced scoria aggregate concrete.

Groups Cement Water Fly Ash Sand Gravel Scoria VSF

NAC-0 382 210 85 564 1127 0 0
NAC-0.5 382 210 85 564 1127 0 0.5
NAC-1.0 382 210 85 564 1127 0 1.0
NAC-1.5 382 210 85 564 1127 0 1.5

SAC-0 382 210 85 564 676 258 0
SAC-0.5 382 210 85 564 676 258 0.5
SAC-1.0 382 210 85 564 676 258 1.0
SAC-1.5 382 210 85 564 676 258 1.5

Note: VSF represents the SF volume contents; The units of other materials are all kg/m3.

2.3. Freeze-Thaw Cycle Testing of the Specimens

Freeze-thaw cycle tests were carried out on the concrete blocks according to the rapid
freezing method of GB/T50082-2009 [30]. After 25 freeze-thaw cycles, the test blocks were
removed to measure their mass and dynamic elastic modulus. The dynamic elastic modulus
of the concrete was measured with a dynamic elastic modulus measuring instrument (HYT-
DT-10W, Beijing Hangjian Huaye Science and Technology Development Co., Ltd., Beijing,
China). Figure 3 shows the instrument of the freeze-thaw test.
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exterior of freeze-thaw machine (c) Real-time temperature monitoring. (The legend shows the informa-
tion on the outside display of the freeze-thaw machine to monitor the real-time temperature of the test
block and the freeze-thaw cycle process. −18.1 ◦C represents the sensor center temperature; −21 ◦C
indicates the temperature of the freezing fluid.) (d) Schematic diagram of the freeze-thaw machine.

2.4. Thermal Treatment of the Specimens

A combined resistance furnace with a heating rate of 10 ◦C/min was used for the
elevated temperature tests, as shown in Figure 4. These tests were performed using a
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stepwise heating scheme. The initial furnace temperature was set to 20 ◦C. When the center
temperature of the test block reached 100 ◦C, the furnace temperature was held for 30 min
and then increased by 50 ◦C, followed by further increases to the target temperatures of
200 ◦C, 400 ◦C, 600 ◦C, and 800 ◦C sequentially. When the furnace temperature reached
one of the target temperatures (200 ◦C, 400 ◦C, 600 ◦C, or 800 ◦C), it was held for 2 h so
that thermal stability was achieved in the test block, after which the high-temperature
furnace was turned off. The test block was cooled to room temperature in the furnace
before being removed.
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2.5. Loading Tests and Data Acquisition

Uniaxial compression tests and splitting tensile tests were carried out in accordance
with GT50081-2019 [31] using a Type YAR-2000 electrohydraulic servo universal testing
machine. The loading schemes of the uniaxial compression tests and splitting tensile tests
are shown in Figure 5a,b, respectively. The loading rates of the two tests were set to 5 kN/s
and 0.6 kN/s, respectively. To obtain complete stress–strain curves in the axial compression
tests, loading was applied with displacement control at a rate of 0.002 mm/s, which was
adjusted to 0.001 mm/s when the peak load was reached. The data in Table 5 are the
average values of the results from three strength tests.

The stress was read directly by a computer. The strain measurements were acquired
using the digital image correlation (DIC) technique, as shown in Figure 6a,b. Compared
with the traditional contact measurement method, DIC has the advantages of high accuracy,
noncontact measurement, and no special-environmental requirements.
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Table 5. Cube compressive strength of all test blocks (MPa).

Number of Freezing and
Thawing

Groups
Temperature (◦C)

20 ◦C 200 ◦C 400 ◦C 600 ◦C 800 ◦C

0 SAC-0 41.4 40.9 33.4 20.7 11.8
0 SAC-0.5 43.3 42.9 35.9 23.5 12.2
0 SAC-1.0 44.0 43.7 38.2 26.0 13.9
0 SAC-1.5 44.2 44.1 39.1 27.3 14.0
0 NAC-0 46.0 42.8 34.6 17.9 9.0
0 NAC-0.5 46.6 43.5 36.3 19.2 9.7
0 NAC-1.0 48.6 45.8 39.8 21.1 10.0
0 NAC-1.5 49.1 47.0 40.9 21.9 10.1

25 SAC-0 31.8 28.4 22.7 14.0 8.0
25 SAC-0.5 34.0 30.0 25.3 15.9 9.1
25 SAC-1.0 34.8 32.0 27.1 17.8 10.2
25 SAC-1.5 35.0 32.8 27.8 18.7 11.0
25 NAC-0 33.9 29.4 23.3 11.8 5.6
25 NAC-0.5 34.7 30.5 24.7 13.0 6.1
25 NAC-1 36.0 32.9 27.1 14.3 6.8
25 NAC-1.5 36.0 33.5 28.0 15.0 6.9

Note: The content of volcanic scoria and steel fiber in the table is volumetric contents.
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3. Results and Discussion
3.1. Observations of SFSAC after Freeze-Thaw Cycles and High-Temperature Exposure

Figure 7 shows the apparent condition of the SAC-1.0 test block after freeze-thaw
cycles and then elevated-temperature exposure. The number before the letters “SAC”
indicating the concrete type, represents the number of freeze-thaw cycles.
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As shown in Figure 7, after 25 freeze-thaw cycles, the surface of SAC-1.0 became rough
and uneven, and its mortar spalled to different degrees. Furthermore, after being subjected
to a temperature of 200 ◦C following the freeze-thaw cycles, the surface of SAC-1.0 showed
a small number of microcracks with small widths generated outwardly at the edge of the
spalling mortar. As the temperature rose to 400 ◦C, the cement mortar on the surface of
SAC-1.0 further spalled after the freeze-thaw cycles, and steel fibers and coarse aggregate
were faintly visible.

With increasing temperature, surface degradation of the test blocks that did not
undergo freeze-thaw cycles was mainly reflected in the formation, propagation, and devel-
opment of cracks. In contrast, the surfaces of the test blocks that did undergo freeze-thaw
cycles showed flaky or scaly spalling due to freeze-thaw damage prior to being subjected
to elevated temperatures. These spalling areas were easily connected and penetrated each
other, resulting in relatively fine and dense cracks on the surfaces of the test blocks that
had undergone freeze-thaw cycles.

3.2. Freeze-Thaw Damage to SFSAC and SFNAC

Quantitatively evaluating the degree of freeze-thaw damage to concrete through
observation in a comprehensive and objective manner is difficult. The mass loss rate
and the relative dynamic elastic modulus loss are generally considered effective indica-
tors for evaluating the degree of freeze-thaw damage. In this study, the mass loss rate
of concrete blocks was calculated using Equation (1) by measuring the wet weight of
100 mm × 100 mm × 400 mm prismatic blocks, with the surface water wiped off before
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and after freeze-thaw cycles, and the relative dynamic elastic modulus of the concrete
blocks after freeze-thaw cycles was calculated using Equation (2).

∆Wn =
W0 − Wn

W0
× 100% (1)

where ∆Wn is the mass loss rate of the concrete specimen after n freeze-thaw cycles, W0 is
the water-filled mass of the concrete specimen before any freeze-thaw cycles (g), and Wn is
the mass of the concrete specimen after n freeze-thaw cycles (g).

Pn =
Efn
Ef0

=
T2

0
T2

n
(2)

where Pn is the relative dynamic elastic modulus of the concrete specimen after n freeze-
thaw cycles, Efn is the dynamic elastic modulus of the concrete specimen after n freeze-thaw
cycles (GPa), Ef0 is the dynamic elastic modulus of the concrete specimen before any freeze-
thaw cycles (GPa), Tn and T0 are the ultrasonic waves of the specimen after n and 0
freeze-thaw cycles (µs), respectively.

Figure 8a compares the mass loss rates of SFSAC and SFNAC with different steel
fiber content after 25 freeze-thaw cycles. Regardless of the steel fiber contents, after
25 freeze-thaw cycles, the mass of the SFSAC did not decrease but rather increased, while
that of the SFNAC showed a significant loss. Considering the appearance of the SFSAC
after the freeze-thaw cycles, the increase in the SFSAC mass was probably due to the frost
heave of capillary water stored in a large number of pores in the volcanic scoria aggregate
during the alternation of positive and negative temperatures; as a result, the micro-cracks
in the volcanic scoria aggregate and concrete matrix propagated and developed, thereby
increasing the volume of the pores in the concrete matrix and enabling the concrete to draw
a large amount of water, the mass of which was greater than the mass lost by the spalling
of the outer mortar. In comparison, the ordinary crushed stone aggregate was not as rich a
pore structure as the volcanic scoria. Therefore, with the same steel fiber content, the mass
loss rate of the SFNAC was generally higher than that of the SFSAC.
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Figure 8. (a) Comparison of mass loss rates of SFSAC and SFNAC with different steel fiber contents
after 25 freeze-thaw cycles. (b) Comparison of relative dynamic elastic modulus of SFSAC and
SFNAC after 25 freeze-thaw cycles.

Figure 8b compares the relative dynamic elastic modulus values of the SFSAC and
SFNAC with different steel fiber contents after 25 freeze-thaw cycles. With the same steel
fiber contents, after 25 freeze-thaw cycles, the relative dynamic elastic modulus of the
SFNAC was slightly higher than that of the SFSAC. In addition, the relative dynamic elastic
modulus values of the SFSAC and SFNAC increased slightly with increasing steel fiber
contents, but the increase did not exceed 13%. When the steel fiber contents exceeded
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1%, the relative dynamic elastic modulus values of the SFSAC and SFNAC decreased
to different degrees, indicating that a small number of steel fibers slightly inhibited the
development of cracks inside the SAC and NAC but that an excessive steel fiber content
aggravated the damage inside the concrete that had undergone freeze-thaw cycles.

3.3. Cube Compressive Strength

The cube compressive strength values were derived from the failure loads obtained
from the uniaxial compression tests and were calculated using Equation (3). Table 5 shows
the cube compressive strengths of the test blocks obtained from the tests.

fcu =
F
A

(3)

where f cu is the concrete cube compressive strength (MPa), F is the test-block breaking load
(N), and A is the test-block bearing area (mm2).

Figure 9a,b show the compressive strengths of the SFSAC and SFNAC, respectively,
with different steel fiber contents after freeze-thaw cycles followed by elevated-temperature
exposure. The cube compressive strengths of the SFSAC and SFNAC both decreased
gradually with increasing temperature, and their cube compressive strengths decreased
significantly more quickly when the temperature exceeded 400 ◦C.
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high temperature. (b) Cube compressive strength of SFNAC after 25 freeze-thaw cycles and then
high temperature.

Figure 10a,b show the relative compressive strengths of the SFSAC and SFNAC, respec-
tively, with different steel fiber contents after freeze-thaw cycles and elevated-temperature
exposure. After freeze-thaw cycling and exposure to a temperature of 800 ◦C, for steel
fiber contents of 0%, 0.5%, 1.0%, and 1.5%, the compressive strength of the SFSAC de-
creased by 75%, 73.2%, 70.6%, and 68.7%, respectively. The compressive strength of the
SFNAC decreased by 83.6%, 82.4%, 81.3%, and 80.9%, demonstrating that the compressive
strengths of SAC and NAC could be improved to some extent by adding steel fibers. Still,
the improvement was insignificant when the steel fiber content exceeded 1%. In summary,
combined with the effect of steel fiber agglomeration on SFSAC compatibility and economic
benefits, the optimal volume contents of steel fiber is 1% [25]. The residual axial compres-
sive strengths of NAC are calculated by Euro code 1992-1-2 [32] at various temperatures.
The decreasing trend of the relative compressive strength of SFSAC and SFNAC specimens
subjected to 25 freeze-thaw cycles after being subjected to high temperature tends to be
consistent with Euro code 1992-1-2. Since SFSAC and SFNAC are affected by freeze-thaw
action in this paper, the residual compressive strengths of SFSAC and SFNAC are generally
smaller than NAC (Euro code) in the range of 20 ◦C to 800 ◦C.
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Figure 10. Relative compressive strength of SFSAC and SFNAC after 25 freeze-thaw cycles and then
high temperature. (a) Relative compressive strength of SFSAC after 25 freeze-thaw cycles and then
high temperature. (b) Relative compressive strength of SFNAC after 25 freeze-thaw cycles and then
high temperature.

The compressive strengths of the test blocks with a steel fiber content of 1% are shown
in Figure 11a. Regardless of the number of freeze-thaw cycles, after the temperature
exceeded 400 ◦C, the strength of the SFNAC decreased rapidly. In contrast, the strength
of the SFSAC decreased relatively slowly. The strength of the SFSAC was higher than
that of the SFNAC, indicating that the addition of volcanic scoria aggregate improved the
high-temperature resistance of the concrete.
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then elevated-temperature exposure.

As shown in Figure 11b, the test and fitted values of the SFSAC compressive strength
after freeze-thaw cycles and then elevated-temperature exposure are in good agreement,
indicating that the fitting formulas can satisfactorily predict the cube compressive strength
of SFSAC after freeze-thaw cycles and elevated-temperature exposure. We choose the
qualitative standard of the coefficient of determination R2 proposed to assess the regression
coefficients in each graph. The R2 is calculated as Equation (4). Table 6 shows the fitting
formulas for the cube compressive strengths of SFSAC with different steel fiber contents
after freeze-thaw cycles and then elevated-temperature exposure. In Table 6, the coefficient
of determination R2 is an indication of the degree of fit of the regression equation or
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regression curve to the test results. When R2 tends to 1, it indicates a good fit of the
regression equation; when R2 tends to 0, it indicates a poor fit of the regression equation.

R2 = 1 − ∑(yi − y)2

∑(yi − y)2 (4)

where y = f(xi) is the value of the function obtained by bringing xi into the regression
equation, yi is the experimental result, and y is the average of the experimental results.

Table 6. The fitting formulas for the cube compressive strengths of SFSAC.

Steel Fiber Content Compressive Strength Fitting Formula R2

VSF = 0% fcu,T
fcu

= 1.025 − 0.06593
(

T
100

)
− 0.004124

(
T

100

)2 (5) 0.9932

VSF = 0.5% fcu,T
fcu

= 1.018 − 0.05377
(

T
100

)
− 0.005229

(
T

100

)2 (6) 0.9932

VSF = 1.0% fcu,T
fcu

= 1.015 − 0.03001
(

T
100

)
− 0.007433

(
T

100

)2 (7) 0.9943

VSF = 1.5% fcu,T
fcu

= 1.015 − 0.03658
(

T
100

)
− 0.006901

(
T

100

)2 (8) 0.9931

Note: f cu,T is the cube compressive strength (Mpa) of SFSAC after high temperature. f cu is the cube compressive
strength (Mpa) of SFSAC at normal temperature.

3.4. Cube Splitting Tensile Strength

The values of the cube splitting tensile strength were also derived from the failure
loads obtained in the tests and were calculated by Equation (9). Table 7 shows the cube
splitting tensile strengths of the tested blocks. The data in Table 7 are the average values of
the results from three strength tests.

fLpt =
2F
πA

(9)

where f Lpt is the concrete splitting tensile strength (MPa), F is the test-block breaking load
(N), and A is the test-block splitting surface area (mm2).

Table 7. Cube splitting tensile strength of all test blocks (MPa).

Number of Freezing and
Thawing

Groups
Temperature (◦C)

20 ◦C 200 ◦C 400 ◦C 600 ◦C 800 ◦C

0 SAC-0 3.13 2.80 2.41 1.57 0.92
0 SAC-0.5 3.75 3.39 3.01 1.99 1.06
0 SAC-1.0 4.31 3.92 3.53 2.43 1.25
0 SAC-1.5 4.48 4.23 4.11 2.51 1.27
0 NAC-0 7.18 6.17 4.63 2.94 1.53
0 NAC-0.5 7.42 6.46 5.08 3.33 1.72
0 NAC-1.0 7.86 6.93 5.41 3.62 1.84
0 NAC-1.5 8.04 7.13 5.73 3.91 1.87

25 SAC-0 1.97 1.75 1.35 0.87 0.49
25 SAC-0.5 2.43 2.19 1.74 1.21 0.69
25 SAC-1.0 2.79 2.57 2.11 1.52 0.88
25 SAC-1.5 2.97 2.80 2.31 1.71 1.01
25 NAC-0 4.16 3.67 2.59 1.53 0.55
25 NAC-0.5 4.32 3.91 2.85 1.79 0.65
25 NAC-1.0 4.58 4.19 3.21 1.97 0.70
25 NAC-1.5 4.69 4.37 3.43 2.13 0.72

Note: The content of volcanic scoria and steel fiber in the table is volumetric contents.

Figure 12a,b present the cube splitting tensile strengths of SAC and NAC with different
steel fiber contents, respectively, after freeze-thaw cycles and then elevated-temperature
exposure. The splitting tensile strengths of the SFSAC and SFNAC both decreased gradually
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with increasing temperature, and the rates of decrease in the splitting tensile strengths of
the two began to increase to different degrees when the temperature exceeded 200 ◦C.
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Figure 13a,b show the relative cube splitting tensile strengths of SFSAC and SFNAC,
respectively, with different steel fiber contents after freeze-thaw cycles and then elevated
temperature exposure. After 25 freeze-thaw cycles and then 800 ◦C exposure, the splitting
strengths of SAC-0, SAC-0.5, SAC-1.0, and SAC-1.5 decreased by 75.2%, 71.7%, 68.5%, and
66%, respectively, and the splitting strengths of NAC-0, NAC-0.5, NAC-1.0, and NAC-1.5
decreased by 86.8%, 85%, 84.8%, and 84.7%, respectively. Therefore, the splitting strength
loss of the SFSAC was smaller than that of the SFNAC, and the addition of steel fibers
effectively improved the splitting tensile strengths of the SFSAC and SFNAC. In addition,
the increase in tensile strength by steel fibers was lower when the steel fiber content
exceeded 1%. In summary, combined with the effect of steel fiber agglomeration on SFSAC
compatibility and economic benefits, the optimal volume contents of steel fiber is 1% [25].
Xiaoyong Zhang explored the splitting tensile strength of SFRNC under different steel fiber
contents [24]. From Figure 13, the splitting tensile strength of SFSAC and SFNAC subjected
to freeze-thaw action was significantly less than that of SFRNC after the temperature
exceeded 400 ◦C. This indicates that the hydration products such as Ca(OH)2 in the SFSAC
and SFNAC specimens that had experienced 25 freeze-thaw cycles began to decompose
earlier when the temperature action was higher, resulting in a large degree of decay of the
bond stress between the aggregates and the cement mortar, causing further damage to the
integrity of the concrete.

Analysis of Figure 14a reveals that the splitting tensile strength of the SFNAC de-
creased more quickly than that of the SFSAC in the range of 400 ◦C to 800 ◦C, regardless of
whether they had undergone freeze-thaw cycles. In addition, the splitting tensile strengths
of SFSAC and SFNAC that had undergone freeze-thaw cycles decreased at a slower rate
than those of SFSAC and SFNAC that had not undergone freeze-thaw cycles, indicating
that the freeze-thaw cycles inhibited the reduction in the splitting tensile strength of the
fiber-reinforced concrete with increasing temperature.

As shown in Figure 14b, the test and fitted values of the SFSAC splitting tensile strength
after freeze-thaw cycles and then elevated-temperature exposure are in good agreement,
indicating that the fitting formulas can satisfactorily predict the splitting tensile strength of
SFSAC after freeze-thaw cycles and then elevated-temperature exposure. The R2 is also
calculated as Equation (4). Table 8 shows the fitting formulas for the splitting tensile strength
of SFSAC with different steel fiber contents after freeze-thaw cycles and then elevated-
temperature exposure. The correlation coefficients R2 of regression Formulas (10)–(13) are
0.9957, 0.9982, 0.9989, and 0.9983, respectively.
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25 freeze-thaw cycles and then high temperature.
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Table 8. The fitting formulas for the cube splitting tensile strength of SFSAC.

Steel Fiber Content Split Tensile Strength Fitting Formula R2

VSF = 0% fLpt,T
fLpt

= 1.028 − 0.07508
(

T
100

)
− 0.002996

(
T

100

)2 (10) 0.9957

VSF = 0.5% fLpt,T
fLpt

= 1.021 − 0.05930
(

T
100

)
− 0.004214

(
T

100

)2 (11) 0.9982

VSF = 1.0% fLpt,T
fLpt

= 1.015 − 0.04128
(

T
100

)
− 0.005860

(
T

100

)2 (12) 0.9989

VSF = 1.5% fLpt,T
fLpt

= 1.015 − 0.03107
(

T
100

)
− 0.006746

(
T

100

)2 (13) 0.9983

Note: f Lpt,T is the cube splitting tensile strength (Mpa) of SFSAC after high temperature. f Lpt is the cube splitting
strength (Mpa) of SFSAC at normal temperature.

3.5. Stress–Strain Relationship
3.5.1. Characteristic Indices

Tables 9 and 10 show the two characteristic indices (elastic modulus Ec and peak strain
εcp) of the stress–strain curves of different groups of test blocks with different steel fiber
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volume contents. The elastic modulus of the concrete was taken as the slope of the secant
line from the point corresponding to the 40% peak stress (f c,r) in the ascending section of
the stress–strain curve to the origin of the coordinate. The peak strain was taken as the
strain corresponding to the axial stress at the peak of the stress–strain curve.

Table 9. Elastic modulus after freeze-thaw and then high temperature for each group of test
blocks (GPa).

Characteristic
Index

Number of Freezing
and Thawing

Groups
Temperature (◦C)

20 200 400 600 800

Ec (Gpa)

0 SAC-0 20.358 16.393 11.880 6.303 2.598
0 SAC-0.5 20.828 16.521 11.990 6.397 2.667
0 SAC-1.0 21.116 17.179 12.486 6.106 2.491
0 SAC-1.5 20.768 17.161 12.033 6.171 2.475
0 NAC-0 29.898 21.822 12.370 3.908 0.228
0 NAC-0.5 30.777 22.758 12.783 3.950 0.289
0 NAC-1.0 30.400 22.196 12.788 3.648 0.264
0 NAC-1.5 30.799 22.586 12.987 4.051 0.250
25 SAC-0 13.735 10.359 5.007 2.670 0.841
25 SAC-0.5 13.863 10.288 5.134 2.791 0.769
25 SAC-1.0 13.925 10.581 5.001 2.775 0.853
25 SAC-1.5 14.170 10.718 5.174 2.850 0.809
25 NAC-0 23.765 16.244 6.382 2.139 0.095
25 NAC-0.5 24.506 17.020 6.624 2.336 0.046
25 NAC-1.0 24.195 16.676 6.367 2.168 0.065
25 NAC-1.5 24.290 17.082 6.598 2.195 0.071

Note: The results reported in the table are the average of the three measurements.

Table 10. Peak strain after freeze-thaw and then high temperature for each group of test blocks.

Characteristic
Index

Number of Freezing
and Thawing

Groups
Temperature (◦C)

20 200 400 600 800

εcp

0 SAC-0 1911 2013 2731 3630 5343
0 SAC-0.5 2134 2267 2819 3743 5473
0 SAC-1.0 2320 2491 2924 4327 5667
0 SAC-1.5 2439 3127 3281 4792 6191
0 NAC-0 2013 2127 3573 5727 8591
0 NAC-0.5 2238 2395 3769 5952 8863
0 NAC-1.0 2385 2581 3863 6262 9040
0 NAC-1.5 2519 3312 4104 6618 9365
25 SAC-0 2731 2793 3461 5612 8035
25 SAC-0.5 2814 2982 3637 5912 8173
25 SAC-1.0 2873 3110 3716 6315 8341
25 SAC-1.5 2923 3536 3842 7059 8917
25 NAC-0 2245 2531 3913 6866 10,265
25 NAC-0.5 2353 2833 4285 7120 11,263
25 NAC-1.0 2504 3071 4483 7691 11,559
25 NAC-1.5 2632 3473 4694 8371 12,007

Note: The results reported in the table are the average of the three measurements; the content of scoria and steel
fiber in the table is volume content. The peak strain value is the median value in table ×10−6.

Figure 15a shows the elastic modulus values of SFSAC and SFNAC with steel fiber
contents of 0% and 1%, respectively, after freeze-thaw cycles and then elevated-temperature
exposure. Analysis of Table 9 and Figure 15a indicates that the elastic modulus values of
SFSAC and SFNAC that had undergone freeze-thaw cycles and then elevated-temperature
exposure were hardly influenced by the addition of steel fibers and decreased gradually
with increasing temperature. Because the freeze-thaw cycles had similar weakening effects
on the elastic moduli of test blocks with different steel fiber contents, the change in the
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elastic modulus under a steel fiber contents of 1% was selected for analysis, as shown in
Figure 15b. After freeze-thaw cycles, as the fire temperature of SFSAC and SFNAC increased
from 400 ◦C to 800 ◦C, the elastic moduli of SAC-1.0 and NAC-1.0 decreased by 21.1%
and 28.9%, respectively. The elastic modulus of SFNAC decreased rapidly, indicating that
adding the volcanic scoria aggregate effectively improved the high-temperature resistance
of the concrete at a high fire temperature.
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Figure 15. (a) Elastic modulus of SFSAC and SFNAC after freeze-thaw cycle and then elevated-
temperature exposure. (b) Elastic modulus of SAC-1.0 and NAC-1.0 before and then after freeze-
thaw cycle.

Figure 16a shows the variations in the peak strains of SFSAC and SFNAC with steel
fiber contents of 0% and 1%, respectively, that had undergone freeze-thaw cycles with
increasing temperature. Analysis of Table 9 and Figure 16a reveals that after 25 freeze-thaw
cycles, the peak strains of the SFSAC and SFNAC both increased gradually with increasing
temperature. When the temperature exceeded 400 ◦C, the peak strains of the two increased
significantly because the strain difference between the aggregate and the cement mortar at
elevated temperatures induced a small compressive stress in the mortar in the initial stage.
As the temperature increased, the compressive stress gradually decreased and changed
to high tensile stress, resulting in increases in the microcracks inside the test block. This
thermal expansion incompatibility gradually became pronounced after the temperature
exceeded 400 ◦C.
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The peak strain corresponding to a steel fiber content of 1% is shown in Figure 16b. As
the fire temperature of SFSAC and SFNAC that had undergone freeze-thaw cycles increased
from 200 ◦C to 800 ◦C, the peak strains of SAC-1.0 and NAC-1.0 that had undergone freeze-
thaw cycles increased by 37.3% and 26.6%, respectively, and the peak strains of SAC-1.0
and NAC-1.0 that had not undergone freeze-thaw cycles increased by 37.7% and 28.6%,
respectively. After the temperature exceeded 200 ◦C, the peak strain of the SFSAC increased
slowly compared with that of the SFNAC, and the peak strain of the SFSAC was always
smaller than that of the SFNAC.

3.5.2. Compressive Stress–Strain Curve

Figure 17a,b show the stress–strain curves of SFSAC with steel fiber contents of 0%
and 1%, respectively, that had not undergone freeze-thaw cycles and had been exposed to
different temperatures. Figure 18a,b show the stress–strain curves of SAC-0 and SAC-1.0,
which had undergone 25 freeze-thaw cycles and had been exposed to different temperatures.
Figure 19a,b show the stress–strain curves of NAC-0 and NAC-1.0 that had not undergone
freeze-thaw cycles and had been exposed to different temperatures. Figure 20a,b show the
stress–strain curves of NAC with steel fiber contents of 0% and 1%, respectively, that had
undergone 25 freeze-thaw cycles and had been exposed to different temperatures.
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Figure 20. Stress–strain curve of SFNAC with steel fiber contents of 0% and 1% after freeze-thaw
cycle and then high temperature. (a) 25-NAC-0. (b) 25-NAC-1.0.

Figures 17–20 illustrate that the SFSAC and SFNAC that had undergone 25 freeze-thaw
cycles had a reduced peak stress, increased peak strain, and simultaneously decreased initial
tangent modulus and peak secant modulus. These results occurred because the freeze-thaw
cycles caused damage inside the concrete, which led to a decrease in concrete strength and
resulted in a compaction effect in the concrete, decreased stiffness and increased strain. In
addition, regardless of whether freeze-thaw cycles were conducted, as the temperature
increased, the peak stress and the corresponding peak strain of the stress–strain curve of
the test block with each steel fiber contents gradually increased, the descending section of
the curve gradually became gentler, the ultimate strain gradually increased, and the curve
tended to flatten overall.

Figure 21 shows the stress–strain curves of SAC-1.0 and NAC-1.0 that had undergone
25 freeze-thaw cycles and then 200 ◦C exposure, which demonstrates that after test blocks
with the same steel fiber contents underwent the same number of freeze-thaw cycles and
elevated temperature exposure, the slope of the ascending section of the SFSAC curve at the
initial stage of loading was smaller than that of the SFNAC, and the peak stress decreased
slightly. As the strain exceeded the peak strain, the curves of the test blocks made of volcanic
scoria concrete declined more quickly, and SFSAC showed more pronounced brittleness.
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Compared with test blocks that had not undergone freeze-thaw cycles, test blocks that
had undergone freeze-thaw cycles experienced increases in peak strain and ultimate strain
and a decrease in the area enclosed by the descending section and the horizontal axis, as
shown in Figure 22, indicating that a “pseudoplastic” platform appeared in the test blocks
after the freeze-thaw cycles and that the overall energy dissipation capacity of the concrete
was reduced.
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Figure 23 shows the stress–strain curves of SFSAC with various steel fiber contents
after 25 freeze-thaw cycles. With increasing steel fiber content, the test blocks in each
group exhibited two significant differences, i.e., the peak strain increased, and the descend-
ing section decreased at a slower rate because the steel fibers had little influence on the
mechanical properties of the SFSAC in the initial stage of compression. However, in the
crack development stage and the failure stage, the steel fibers effectively impeded the
development of cracks within the SFSAC, provided restraints and improved the brittleness
of the SAC.
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3.6. Constitutive Model of SFSAC

A wealth of research results on the constitutive equations of ordinary concrete af-
ter elevated-temperature exposure or simulated freeze-thaw cycles are available [33,34].
Nonetheless, few studies have examined the uniaxial compressive constitutive relations
of fiber volcanic scoria concrete after freeze-thaw cycles and then elevated-temperature
exposure. In this study, with reference to the uniaxial compressive stress–strain relation
model in GB50010-2010 [35], the stress–strain curve of SFSAC after freeze-thaw cycles and
then high-temperature exposure is divided into ascending and descending sections. The
parameters n and α in Equation (14) are the shape parameters related to the ascending and
descending sections, respectively, of the stress–strain curve, and the stress–strain curve
becomes steeper as n and α increase. The constitutive stress–strain equation and the pa-
rameters n and α are given in Equations (14) and (15), respectively. Table 11 shows the
results of the regression fitting analysis for the stress–strain curves under different steel
fiber contents. {

y = nx
n−1+xn , x ≤ 1

y = x
α(x−1)2+x

, x ≥ 1 (14)

where x = ε
εcp

, y = σ
fc,r

n =
Ecεcp

Ecεcp − fc,r
(15)

Figures 24–27 compares the experimental curve and its fit under each steel fiber con-
tent. The correlation coefficients R2 are all greater than 0.95 for the ascending sections
of the curves, and the average correlation coefficient R2 is 0.946 for the descending sec-
tions. Comprehensively considering the correlation coefficients R2 of the ascending and
descending sections of the fitted curves and Figures 24–27 clearly reveals that the curves
calculated by the constitutive stress–strain equation are in good agreement with the test
curves, indicating that the established constitutive equation is able to accurately predict the
full stress–strain curve from the tests.
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Table 11. Results of fitting of stress–strain curve parameters.

Groups Temperature
(◦C)

Shape Parameters

n R2 α R2

SAC-0 20 2.981 0.9940 27.74 0.8937
SAC-0 200 3.799 0.9963 12.00 0.9480
SAC-0 400 40.08 0.9954 9.504 0.9379
SAC-0 600 4.452 0.9950 8.178 0.9832
SAC-0 800 13.33 0.9989 3.577 0.9873

SAC-0.5 20 4.313 0.9823 10.81 0.9893
SAC-0.5 200 7.366 0.9904 6.747 0.9714
SAC-0.5 400 48.53 0.9882 18.72 0.9855
SAC-0.5 600 3.560 0.9960 9.645 0.8588
SAC-0.5 800 30.00 0.9793 3.603 0.9660
SAC-1.0 20 4.508 0.9805 12.20 0.8185
SAC-1.0 200 4.312 0.9963 6.038 0.9327
SAC-1.0 400 29.34 0.9537 7.876 0.9957
SAC-1.0 600 3.993 0.9943 13.66 0.9888
SAC-1.0 800 319.7 0.9840 10.31 0.9836
SAC-1.5 20 3.904 0.9848 4.958 0.9150
SAC-1.5 200 3.941 0.9770 68.74 0.9517
SAC-1.5 400 25.95 0.9753 18.00 0.8838
SAC-1.5 600 4.685 0.9912 26.68 0.9638
SAC-1.5 800 6.638 0.9922 3.809 0.9828
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4. Conclusions

According to the experimental results obtained in this study, the following conclu-
sions are drawn regarding the cube compressive strength, cube splitting tensile strength,
stress–strain curve and constitutive equation of SFSAC after freeze-thawing and then
high-temperature exposure:

(1) After only 25 freeze-thaw cycles, the surfaces of the SFSAC specimens showed a light
degree of surface mortar peeling and fine aggregate dislodgement, while after the
SFSAC specimens were subjected to both freeze-thaw cycles and high temperatures,
the surfaces showed dense and fine cracks caused by connecting through in the
peeled areas.

(2) The incorporation of steel fibers did not significantly reduce the freeze-thaw damage
to SAC, and the incorporation of steel fibers caused a small increase in the dynamic
elastic modulus, but the increase was not more than 13%, which had little effect on the
mass loss rate. The addition of air-entraining agents could be considered to further
improve the freezing resistance.

(3) After 25 freeze-thaw cycles, the mechanical properties of both SFSAC and SFNAC
decayed with increasing temperature, but the decay characteristics were different. In
particular, after the temperature exceeded 400 ◦C, the incorporation of the volcanic
scoria aggregate had an enhancing effect on the mechanical properties of the con-
crete, which indicated that the advantages of SAC incorporated with volcanic scoria
aggregate at a 40% substitution rate in freeze-thaw followed by high-temperature
environments could not be ignored. In addition, the incorporation of steel fibers can
improve the compressive strength and splitting tensile strength of SFSAC, and 1%
incorporation is optimal.

(4) Considering the effects of steel fiber admixtures on the compressive strength and
splitting tensile strength of SFSAC after the dual action of freeze-thaw cycles and then
high-temperature exposure, the fitting equations of the compressive strength and
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splitting tensile strength were established based on an analysis of experimental data,
and the accuracy of each model was verified by the experimental results reported in
this paper.

(5) After experiencing freeze-thaw and then high-temperature effects, the stress–strain
curves of SFSAC and SFNAC had basically the same characteristics, i.e., the peak
stress decreased, the peak strain increased, the elastic modulus decreased significantly,
and the decreasing section decreased more slowly with increasing temperature. In
contrast, the curve of SFSAC was more affected by freeze-thaw cycles. In addition,
the incorporation of steel fibers can improve the ductility of SAC after freeze-thaw
cycling and improve the brittleness of SAC.

(6) Based on the existing theoretical model of the concrete, a segmental stress-strain
full-curve constitutive model was established by considering the characteristics of
SFSAC, and the model fitting results were in good agreement with the test curves,
which accurately described the deformation characteristics of SFSAC under a uniaxial
compressive load with different steel fiber admixtures.
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