
              

City, University of London Institutional Repository

Citation: Rajana, K. & Giaralis, A. (2022). A hybrid nonlinear rooftop isolated tuned mass 

damper-inerter system for seismic protection of building structures. Proceedings of the 
International Conference on Natural Hazards and Infrastructure, ISSN 2623-4513 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/30096/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


                               
3rd International Conference on Natural Hazards & Infrastructure 

5-7 July 2022, Athens, Greece 

 
 

A hybrid nonlinear rooftop isolated tuned mass damper-inerter system for 

seismic protection of building structures 
 

Komal Rajana1, M.Sc., Agathoklis Giaralis, Ph.D., M.ASCE 
City, University of London, UK 

 

 

ABSTRACT 
 

In recent years, the passive tuned mass damper inerter (TMDI) has been widely considered in the literature for 

the seismic demand mitigation of building structures. Its effectiveness relies on careful design/tuning of the 

TMDI stiffness and damping properties, while its performance improves with the increase of the inertance 

property, which is readily scalable, as well as with spanning several floors when placed to the top of buildings. 

Nevertheless, TMDI configurations spanning several floors may be impractical for ordinary structures. This 

paper addresses the above issue by presenting a novel hybrid energy dissipation system, termed rooftop 

isolated tuned mass damper inerter (RI-TMDI). The RI-TMDI comprises an additional seismically isolated 

floor with a TMDI placed atop of buildings, making it applicable for seismically retrofitting of existing 

structures as well as for enhancing the seismic performance of new structures. The motivation of the RI-TMDI 

is based on the fact that the vibration control potential of TMDIs improve as the floor they are installed to is 

designed to be more flexible. Herein, a three degree of freedom (3-DOF) structural system is put forward to 

study the potential of RI-TMDI for seismic response mitigation of buildings, modelled as linear damped single 

degree of freedom structures, in which isolator bearings are modelled through the Bouc-Wen model. Statistical 

linearization is applied to expedite optimal RI-TMDI tuning such that the input energy dissipated by the TMDI 

is maximized under white noise excitation. A pilot parametric numerical investigation is undertaken to assess 

the influence of the isolator flexibility and damping properties and of the TMDI inertance to the tuning and 

performance of the RI-TMDI under white noise excitation. Further, results from nonlinear response history 

analyses for four recorded GMs applied to optimally tuned RI-TMDI systems are reported. It is found that the 

efficacy of RI-TMDI for suppressing seismic structural displacement demands improves as the effective post-

yielding flexibility of the isolators increases, provided that the TMDI is equipped with sufficiently high 

inertance. However, this improvement comes at the cost of increased deflection of the isolators. To this end, it 

is shown that by increasing inertance both building and isolator displacements may be reduced.      
 

Keywords: hybrid passive vibration control, tuned mass damper inerter, seismic isolation, optimal design 
 

 

INTRODUCTION AND MOTIVATION 
 

Over the past decades, the passive linear tuned mass damper (TMD) has been widely studied in the scientific 
literature for the seismic protection of conventional fixed-based buildings (see e.g. De Angelis et al. 2012 and 
references therein) as well as base isolated buildings (see e.g. De Domenico and Ricciardi 2018a and 
references therein). The TMD comprises a secondary free-to-oscillate mass attached to the building (primary) 
structure via stiffeners, commonly modelled as a linear spring, in parallel with viscous dampers, commonly 
modelled as a linear dashpot. The TMD stiffness and damping properties are designed/tuned for a given 
secondary mass to minimize the primary structure response of interest. For fixed-based buildings TMDs are 
typically placed to the top floor aiming to mitigate top floor dynamics by tuning to the first (fundamental) 
building natural period. For base isolated buildings, the TMD is placed at the isolation layer (basement) 
aiming to mitigate the lateral sway of the isolators. 

Regardless of the TMD placement and the type of primary building structure, TMDs require significantly 
large secondary mass for the effective mitigation of earthquake-induced oscillations (De Angelis et al 2012, 
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Reggio and De Angelis 2015). To relax this requirement, Marian and Giaralis (2013, 2014) introduced the 
tuned mass damper inerter (TMDI) configuration which couples the TMD with an inerter, a mechanical 
device that produces a resisting force proportional to the relative acceleration at its ends (Smith 2002). The 
device constant of proportionality is termed ‘inertance’ and is in mass units (kg). In the TMDI, the inerter 
acts as a mass amplifier contributing inertia (but not weight) to the TMD through the inertance property by 
connecting the secondary mass to a different floor/location from the one that the TMD is attached to. 
Meanwhile, several inerter prototypes relying on different technologies have been devised and experimentally 
verified demonstrating that inertance scales-up practically independently from the inerter physical mass 
(Smith 2020). In this regard, numerous studies focused on the use of TMDI for seismic lateral sway demands 
mitigation of base-isolated structures and demonstrated the TMDI superiority over the TMD by connecting 
the secondary mass to the ground via an inerter, numerically (e.g. De Domenico and Ricciardi 2018b, De 
Angelis et al. 2019) and experimentally (e.g. Pietrosanti et al. 2021). Similarly, several works explored the 
potential of TMDI for the seismic response mitigation of fixed-based buildings by placing a TMDI towards 
the top floors (e.g. Giaralis and Taflanidis 2018, Ruiz et al. 2018, Taflanidis et al. 2019, Kaveh et al. 2020, 
Patsialis et al. 2021, Djerouni et al. 2022). In these studies, it was found that the efficacy of TMDI for seismic 
response mitigation is considerably enhanced by letting the inerter connect the secondary mass to several 
floors below the one that the mass is attached to. However, the practicality of TMDI configurations spanning 
several floors is limited.  

To this end, Sedhain and Giaralis (2019) and Wang and Giaralis (2021) recently demonstrated that a TMDI 
configuration contained within a flexible top storey becomes similarly effective as TMDI configurations 
spanning several regular floors. In the last works, the flexible storey was materialized by local modifications 
(e.g., increasing the floor height or reducing the columns sections). Inspired by the above work, this study 
investigates the possibility of coupling a TMDI with a seismically isolated floor which can be added atop of 
existing building structures or included in the design of new structures. In this configuration, once the isolators 
yield under severe ground motion, a flexible top floor is created which, in turn, increases the effectiveness of 
the TMDI for seismic energy dissipation. The herein configuration termed, rooftop isolated tuned mass 
damper inerter, (RI-TMDI) resembles the roof-garden partial isolated TMD advocated in Matta and De 
Stefano (2009), but considers an inerter to reduce significantly the secondary mass. The RI-TMDI is also 
well-related to TMDI-equipped base isolated structures studied by Domenico and Ricciardi (2018b) and De 
Angelis et al. (2019) among several other researchers. However, in the aforementioned works, the inerter was 
grounded while the isolation layer was part of the primary structure to be seismically protected. Instead, in 
the RI-TMDI the isolation layer is part of the hybrid vibration absorber and is used to improve the efficacy 
of the TMDI. In the following section, the proposed RI-TMDI is presented and is analytically modelled 
through a nonlinear dynamical system. Next, optimal RI-TMDI tuning is undertaken based on a energy-based 
criterion and facilitated by treating the nonlinear term contributed by the isolator through statistical 
linearization. The optimal tuning and performance of the RI-TMDI is assessed through a parametric 
numerical investigation assuming white noise seismic excitation, as well as though nonlinear time-history 
analyses for a small suite of recorded ground motions. 
 
 

PROPOSED ROOFTOP ISOLATED TUNED MASS DAMPER INERTER (RI-TMDI) SYSTEM 
 

System description and mechanical modelling 
 

The proposed hybrid energy dissipation system is applicable for the seismic protection of existing as well as 

of new buildings (primary structures). It comprises a seismically isolated rigid slab, placed atop of the primary 

building structure, and a tuned mass damper inerter (TMDI) sandwiched between the isolated slab and the top-

most slab of the primary structure. The resulting rooftop isolated tuned mass damper inerter (RI-TMDI) system 

is graphically shown in Fig. 1a. From a practical viewpoint, the isolated slab can serve as a roof-garden to a 

new or to an existing building as demonstrated in Matta and De Stefano (2009). Further, any standard type of 

isolation bearing used in base isolated buildings may be employed in the RI-TMDI (Naeim and Kelly 1999), 

though this study adopts lead rubber bearings (LRBs). Moreover, the TMDI can be readily integrated within 

the isolation layer as it is lightweight and can be made sufficiently compact (see e.g. Pietrosanti et al 2021 and 

references therein). Specifically, the TMDI (Marian and Giaralis 2013, 2014) consists of a relatively small 

secondary vibrating mass which is connected to the isolated slab through stiffeners and standard viscous energy 

dissipative devices (eg. fluid viscous dampers), as shown in Fig.1(b), and to the top-most slab of the primary 

structure through an inerter device (Smith 2002, 2020). Various compact and lightweight full-scale inerter 

prototypes with inertance values several orders larger than their physical mass have been devised and 



experimentally verified for large-scale structural earthquake engineering applications (e.g. Nakamura et al 

2014, Nakaminami et al 2017).  

In this work, a simplified mechanical model with three degrees of freedom (3-DOF) is adopted to study the 

performance of RI-TMDI, shown in Fig. 1b. In this model, the primary structure is represented by a linear 

damped single degree of freedom structure with mass ms, inherent damping coefficient cs and stiffness ks. The 

nonlinear behaviour of the LRBs is modelled using the versatile Bouc-Wen hysteretic model (Wen 1980), 

while mi is mass of the isolated slab. Further, a linear TMDI is taken as it has been recently established through 

pertinent shaking table testing that nonlinear effects do not significantly compromise the motion control 

efficacy of the TMDI (Pietrosanti et al. 2020, 2021). In detail, the TMDI model includes the secondary mass 

md, the stiffness coefficient kd, the viscous damping coefficient cd, and the inertance b (Fig. 1b).  

 

 
Figure 1.  Proposed rooftop isolated tuned mass damper inerter (RI-TMDI) system and simplified 3-DOF 

model of a SDOF primary structure equipped with RI-TMDI   

 

Nonlinear equations of motion   

The governing equations of motion of the 3-DOF mechanical model in Fig.1b under seismic horizontal 

acceleration excitation gu  can be written as  
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in terms of the relative displacement coordinates us, ui= uis – us and uk= ud – uis where us, uis and ud are the 

lateral displacements of the primary structure, the isolated slab, and the secondary mass, respectively, relative 

to the ground. In Eq.(1) and hereafter a dot over a symbol denotes time differentiation. Further, Fb and Fi are 

the restoring forces of the inerter and the LRB. For an ideal linear inerter element, the inerter force is given as 

(Smith 2002)   

 

( )= +b i kF b u u ,  (2) 

 

while the LRB force is taken equal to  

 

( )1 += + −i i i i i yzF c u k u F ,  (3) 

 

where ci is the LRB viscous damping coefficient, ki is the initial (pre-yielding) LRB lateral stiffness, α is the 

rigidity ratio defined as the post-yielding to the pre-yielding LRB stiffness, Fy is the LRB yielding strength, 

and z is a hysteretic coordinate governed by the first-order differential equation (Wen 1976) 
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In the last equation, q is the LRB yielding displacement, while A, β, γ and η are dimensionless parameters of 

the Bouc-Wen model which control the shape of the hysteretic loops. By introducing the following 

dimensionless parameters: natural frequencies of the structure, ωs, and of the TMDI, ωd, as  
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critical damping ratios of the structure, ξs, of the LRB, ξi, and of the TMDI, ξd, as 
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mass ratios of the isolated slab, μi, and of the TMDI, μd, and TMDI inertance ratio, βd, as 
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and normalized LRB yielding strength, Fo, as 
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where g=9.81m/s2, the equations of motion in Eq.(1) can be written in matrix form as 
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It is important to recognize that the system of equations in Eq.(9) is nonlinear due to the hysteretic generalized 

coordinate z in Eq.(4). This nonlinearity significantly impedes the design/tuning of RI-TMDI by requiring 

computationally expensive nonlinear response history analyses. To this end, RI-TMDI design is herein 

expedited by assuming that the seismic excitation is a Gaussian stationary random process and by treating the 

nonlinear relationship in Eq.(4) through statistical linearization to define an equivalent linear stochastically 

excited system. The response statistics of the equivalent linear system are then used for optimal RI-TMDI 

tuning. The next section presents the statistical linearization step and response statistics derivation for the 

equivalent linear system.  

 

STATISTICAL LINEARIZATION AND RANDOM VIBRATION ANALYSIS 

 

The statistical linearization scheme proposed by Wen (1980) replaces the nonlinear first-order differential 

equation in Eq.(4) by the following linear equation 
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where ceq and keq are deterministic parameters. Under the assumption of gu being a stationary Gaussian 

stochastic process and taking z and 
ix  processes in Eq.(11) to be jointly Gaussian, the parameters ceq and keq 

can be determined in closed form by minimising the expected value of the squared difference between the right 

hand side of Eq.(4) and Eq.(11) (see also Roberts and Spanos 2003 and Mitseas et al 2018). For the special 

case of η=1, which defines smooth hysteretic loops, the parameters ceq and keq are found by (Wen 1980)  
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where E [.] is the mathematical expectation operator and 𝜎𝑧 and 𝜎�̇�𝑖 are the standard deviation of the processes 

z and ix , respectively. 

To this end, the equations of motion of the nonlinear RI-TMDI equipped SDOF system in Eqs.(4) and (10) are 

approximated by a surrogate linear system of equations corresponding to an equivalent linear structural system 

(ELS). The equations of motion of the ELS are written in state-space form as 
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In the above expressions, 0(m,n) is the m-by-n zero matrix, I(m) is the m-by-m identity matrix, and the exponent 

(-1) demotes matrix inversion. Note that in Eqs.(13) and (14) the response displacement coordinates of the 

ELS are denoted by a different symbol from those of the nonlinear system in Eqs. (4) and (10) (i.e. x is used 

instead of u) to emphasize that the ELS response is an approximation of the response of the nonlinear system.  

Importantly, the parameters ceq and keq in Eq.(12) depend on the ELS response statistics of z and �̇�𝑖. For the 

case of gu  being Gaussian white noise, the response statistics of the ELS populating the covariance matrix Γ 

are found by solving the Lyapunov equation (e.g. Roberts and Spanos 2003)       
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where So is the spectral intensity of the white noise. In this work, the white noise ground acceleration intensity 

is related to the peak ground acceleration (PGA) using the expression 
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which is derived based on a 3-sigma rule assumption between standard deviation and peak value. In Eq.(16)  

ωmax is the maximum excitation frequency taken equal to 20π rad/s. 

In the ensuing computational work, the Lyapunov equation in Eq.(15) is numerically solved using the built-in 

MATLAB function lyap to obtain the covariance matrix Γ. The diagonal elements of the covariance matrix 

are the variances of all the states in vector x, while the off-diagonal elements include all the response cross-



variance terms. Given dimensionless parameters in Eqs.(5)-(8) and the white noise intensity in Eq.(16), the 

parameters ceq and keq of the ELS in Eq.(12) and the ELS response statistics in Γ are determined numerically 

by iterative use of Eqs. (12) and (15) until convergence (i.e. until the change of the parameters are below a 

pre-defined threshold) as detailed in Roberts and Spanos (2003).    
 

 

ENERGY-BASED OPTIMAL DESIGN OF THE RI-TMDI  

 

The optimal RI-TMDI design/tuning scheme adopted in this study treats the TMDI stiffness and damping 

properties as the primary (free) design variables, while the remaining RI-TMDI properties are taken as 

secondary (fixed). This consideration facilitates the parametric investigation of the RI-TMDI performance for 

different LRB and inerter properties which are expected to be critical for the seismic performance of the 3-

DOF system in Fig. 1b based on previous works (De Domenico and Ricciardi 2018, De Angelis et al. 2019, 

Wang and Giaralis 2021). The objective function of the optimal design problem to be minimized is taken to 

be the so-called filtered energy index (FEI) (De Domenico and Ricciardi 2018a, 2018b) defined as 
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The above energy performance function stems from the work of Reggio and De Angelis (2015) and represents 

the portion of the total input seismic energy which is not dissipated by the damping element of the TMDI, thus 

stressing the LRB and the primary structure (see also De Angelis et al. 2019). By minimizing FEI in Eq.(17), 

the energy dissipated by the TMDI is maximized (numerator in the right hand side ratio of Eq.(17)) which 

ultimately protects the primary structure and reduces the deflection of the LRBs. 

In this setting, the optimization problem governing the design of the RI-TMDI is defined as: find the TMDI 

stiffness and damping properties which minimize FEI in Eq.(17) given the primary structure properties, LRB 

properties and TMDI inertial (mass and inertance) properties under white noise excitation with So spectral 

intensity. This is mathematically written as  
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1y

ymin FEI ,  (18) 

 

where y1={ξd λ} with λ=ωd/ωs is the vector of the primary nondimensional design variables and y2={ωs ξs ξi μi 

μd βd Fo} is the vector of the secondary design variables. Notably, with ξd and λ known, the TMDI stiffness 

and damping properties kd and cd can be found from Eqs. (5) and (6). The optimization problem in Eq.(18) is 

solved numerically using a pattern search algorithm implemented in the built-in MATLAB function 

fminsearch. The solution requires evaluation of all the ELS response statistics appearing in Eq.(17) which 

are contained in the covariance matrix Γ found by solving Eq.(15) as part of the statistical linearization.  

 

 

PARAMETRIC INVESTIGATION OF OPTIMAL RI-TMDI TUNING AND ELS PERFORMANCE 

 

In this section optimal RI-TMDI tuning is pursued under white noise excitation for a range of different LRB 

and inertance properties, while performance is gauged with respect to the ELS displacement variance of the 

primary structure and of the isolated slab, and 𝜎𝑥𝑠 and 𝜎𝑥𝑖, respectively. In all structural systems considered in 

this parametric investigation, the primary structure inherent damping ratio and natural frequency are taken as 

𝜉𝑠 = 0.01 and 𝜔𝑠 = 2𝜋 (i.e. natural period 1s), respectively. The Bouc-Wen model parameters are taken as 

A=1, β=γ= 0.5 and η= 1, commonly assumed in the literature to represent LRBs with smooth strain-softening 

behavior (Jangid 2010, De Domenico and Ricciardi 2018b). The mass ratio of the isolated slab is taken as 𝜇𝑖 =
0.10 to roughly correspond to the mass of one story in a 10-storey primary building structure. A small TMDI 

secondary mass ratio is chosen as  𝜇𝑑 = 0.01 to account for the physical mass of the TMDI device equipment 

and connections. A wide range of inertance ratios 𝛽𝑑 from 0.5% to 25% is considered in the parametric 

investigation. Note that such inertance ratios are foreseen to be technologically realizable for most building 

structures, based on the scalability of full-scale inerter prototypes that have been experimentally verified in the 

literature. For instance, the ball-screw inerter prototype in Nakamura et al. (2014) reached 2000t of inertance, 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Jangid%2C+R+S


while the hydraulic inerter prototype in Nakaminami et al. (2017) exceeded 10000t of inertance. Further, 

different values of the LRB viscous damping ratio 𝜉𝑖 and normalized yielding strength, Fo, are considered to 

study the influence of the LRB damping and effective flexibility. The latter is herein quantified through the 

effective post-yield isolation period defined as (e.g. Jangid 2010) 
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In this work, the LRB yielding displacement is kept constant at q=0.015 m and the rigidity ratio is taken equal 

to α= 0.1. Therefore, by the varying the normalized yielding strength, the effective LRB period Ti in Eq.(19) 

changes to model LRBs with different effective flexibility. This is key consideration for the RI-TMDI as 

previous work (Sedhain and Giaralis 2019, Wang and Giaralis 2021) have shown that TMDI motion mitigation 

effectiveness improves as the flexibility of the storey the TMDI is installed to increases. In all cases, a PGA 

value of 0.3g is assumed in specifying the white noise excitation intensity in Eq.(16).   

 

Influence of LRB effective flexibility with inertance 

 

Figure 2 reports results from optimal RI-TMDI designs obtained by solving Eq.(18). Specifically, the objective 

function (FEI) and the optimal TMDI tuning parameters are plotted against the inertance ratio 𝛽𝑑 for 5 different 

values of LRB normalised yielding strength 𝐹𝑜. The corresponding isolation period in Eq.(19) is included in 

the Fig.2 for the different 𝐹𝑜 values. The LRB viscous damping ratio is taken equal to 𝜉𝑖 = 0.01 which is a 

commonly adopted value for LRBs (De Domenico and Ricciardi 2018b). 

 

 
Figure 2. (a) Objective function (FEI), (b) optimal TMDI viscous damping ratio and (c) optimal TMDI 

frequency ratio plotted against inertance ratio, for five different LRB yielding strength values Fo. 

 

It is seen, Fig. 2a, that FEI decreases monotonically with the inertance for all considered LRBs verifying the 

key role of inertance to increase seismic energy dissipation at the TMDI rather than at the LRBs. This is 

achieved through an increase to the optimal TMDI damping property as seen in Fig 2b. Nevertheless, the rate 

of FEI decrease with inertance saturates rapidly and increase of 𝛽𝑑 above 8% has insignificant effect to FEI. 

More importantly, FEI reduces significantly for any fixed inertance value as the LRB effective flexibility 

increases (i.e. as the LRB normalised yielding strength 𝐹𝑜 reduces). This is an important outcome which 

confirms the engineering intuition behind employing isolation bearings to enable a soft top-floor which, in 

turn, improves the motion control efficacy of TMDI as demonstrated in recent publications (Sedhain and 

Giaralis 2019, Wang and Giaralis 2021). Caution needs to be exercised, however, to ensure that sufficient 

inertance is provided to the TMDI (at least 5% inertance ratio for the case-study herein considered) as for small 

inerter values, large FEI values are noted, indicating that seismic energy dissipation takes place at the LRBs, 

rather than at the TMDI. Regarding the optimal TMDI tuning ratio λ=ωd/ωs, it is seen in Fig. 2c that it depends 

and varies more with inertance, rather than with LRB flexibility, which is the opposite compared to the optimal 

TMDI damping ratio in Fig. 2b. 

The effectiveness of the optimal RI-TMDI tuning in Fig.2 is assessed in Fig.3 by plotting the ELS displacement 

variance of the primary structure and of the isolated floor versus the inertance ratio and for the five different 

LRB yielding strength values. Results are normalized by the uncontrolled structure displacement variance 𝜎𝑥𝑜
2  

of the primary structure exposed to the same white noise excitation. Interestingly, the trends of primary 

structure variance in Fig. 3a with inertance follow those of FEI in Fig.2a only for the more flexible LRBs. For 



LRBs with isolation period Ti below 2.5s, an increase in the inertance ratio above 3% results in increasing the 

response of the RI-TMDI equipped primary structure. Still, for any fixed value of inertance above 3%, 

significant reductions to the primary structure response are achieved by reducing the LRB isolation period. 

Nevertheless, these improvements come at the cost of increased isolator deflections as shown in Fig.3b. 

Conveniently, though, Fig. 3b also suggests that the isolator deflections are effectively reduced by increasing 

the inertance. Overall, the reported data in Fig. 3 demonstrate that there are non-trivial dependencies between 

inertance, LRB flexibility, primary structure vibration mitigation and isolator deflections. In this regard, 

careful RI-TMDI design is required which should employ sufficiently flexible LRBs for improved vibrations 

mitigation of the primary structure in conjunction with sufficiently large inertance values (10% or above for 

the case-study) to ensure that vibration mitigation is driven by the TMDI and not by the LRBs while LRB 

seismic deflection demands remain at reasonable levels, comparable with the deflection of the uncontrolled 

primary structure.  

 

 
Figure 3. Normalized displacement variance of (a) primary structure and (b) isolated slab by the 

displacement variance of the uncontrolled primary structure 𝜎𝑥𝑜
2 versus inertance ratio for various Fo. 

 

Influence of LRB viscous damping with inertance   

 

Herein, attention is turned to quantifying the influence of the LRB viscous damping ratio 𝜉𝑖 to the optimal RI-

TMDI tuning and performance. To this aim, Fig.4 plots FEI and optimal TMDI tuning parameters against the 

inertance ratio 𝛽𝑑 for three different values of 𝜉𝑖, while Fig.5 plots ELS displacement variance of the primary 

structure and of the isolated floor versus the inertance ratio for the same 𝜉𝑖 values. A common normalised LRB 

yielding strength 𝐹𝑜 = 0.075 is assumed. The range of 𝜉𝑖 values considered are based on previous published 

literature on LRB modelling through the Bouc-Wen model (Jangid 2010, De Domenico and Ricciardi 2018b) 

and represent different levels of rubber damping properties. It is found that the optimal TMDI tuning 

parameters are relatively insensitive to 𝜉𝑖, especially for inertance ratios up to 10% (Fig. 4). Still, 𝜉𝑖 
significantly affects the deflection of the primary structure and of the isolated layer for any fixed inertance 

value as seen in Fig. 5. Lower value of 𝜉𝑖 is beneficial to the primary structure response, but it is detrimental 

to the deflection of the isolators. In this respect, the selection of 𝜉𝑖 is an important design parameter in the RI-

TMDI, together with the inertance and the LRB flexibility which needs to be carefully decided upon to leverage 

the trade-off between primary structure and isolation layer deflections.  

 

 
Figure 4. (a) Objective function (FEI), (b) optimal TMDI viscous damping ratio and (c) optimal TMDI 

frequency ratio plotted against inertance ratio, for three different LRB critical damping ratio values 𝜉𝑖. 



 
Figure 5. Normalized displacement variance of (a) primary structure and (b) isolated slab by the 

displacement variance of the uncontrolled primary structure 𝜎𝑥𝑜
2 versus inertance ratio for various 𝜉𝑖. 

 

 

SEISMIC PERFORMANCE ASSESSMENT OF OPTIMAL RI-TMDI EQUIPPED STRUCTURES 

 

In the previous section, white noise excitation was assumed to model the seismic action while performance 

was gauged using the ELS. Nevertheless, earthquake-induced ground motion has time-varying amplitude and 

frequency content, while the ELS is an approximation of the nonlinear RI-TMDI system in Fig.1b. Therefore, 

it is deemed essential to assess the seismic performance of the RI-TMDI using nonlinear response history 

analysis (NRHA) for a number of field-recorded earthquake ground motions (GMs). In this regard, two near-

field and two far-field GMs are considered which have been adopted by Ohtori et al (2004) for benchmark 

seismic assessment of buildings equipped with vibration control devices. The far-field records have been 

recorded during the El Centro event (1940) and the Tokachi-ochi event (1968) with PGA 3.417 m/s2 and 2.250 

m/s2, respectively. The near-field records have been recorded during the Northridge event (1994) and the Kobe 

event (1995) with PGA 8.2676 m/s2 and 8.1782 m/s2, respectively. Fig. 6 plots primary structure displacement 

time-histories obtained from NRHA for two different RI-TMDI systems, optimally tuned for white noise 

excitation as detailed in the previous section. The four GMs are scaled such that their PGA becomes equal to 

0.3g which was assumed in the optimal RI-TMDI tuning. This scaling is deemed essential to ensure 

consistency of the seismic action intensity used for RI-TMDI design and assessment. To draw an interesting 

comparison, one system has the stiffest LRB properties of those considered in the previous section (Fo= 0.125; 

Ti=2.19s) and the other system has the most flexible LRB properties (Fo= 0.035; Ti=4.15s).  

It is found that RI-TMDI reduces appreciably the peak and, even more, the root mean square response of the 

primary structure for all four considered GMs compared to the uncontrolled structure. It is also seen that the 

RI-TMDI system with the most flexible LRBs is significantly more effective than the system with the stiffer 

LRBs for all the GMs. Overall, the reported time-history data from NRHA confirm the trends in Fig. 3a, which 

used the ELS response under white noise excitation, and establish the potential of RI-TMDI for seismic 

protection of building structures. 

 

 

CONCLUDING REMARKS 

 

This paper presented a novel hybrid energy dissipation system for the seismic protection of buildings, termed 

RI-TMDI, which combines an additional “fake” seismic isolated floor with a TMDI placed atop building 

structures. The motivation of the RI-TMDI was based on the fact that the vibration control potential of TMDIs 

improve as the floor they are installed to is designed to be more flexible. A 3-DOF structural system has been 

put forward to study the potential of RI-TMDI for the task in which isolator bearings have been modelled 

through the Bouc-Wen model. Statistical linearization was applied to expedite optimal RI-TMDI tuning such 

that the input energy dissipated by the TMDI is maximized under white noise excitation. A pilot parametric 

numerical investigation was undertaken to assess the influence of the isolator flexibility and damping 

properties, taken as LRBs, and of the TMDI inertance to the tuning and performance of the RI-TMDI under 

white noise excitation. Further, NRHA results for four recorded GMs applied to two different optimally tuned 

RI-TMDI systems were reported.    

 



 

 

 

 
Figure 6. Primary structure response of uncontrolled and RI-TMDI equipped structures under different 

recorded ground motions obtained by response history analysis. 



The overarching finding from the herein reported numerical results is that there is a trade-off between the 

building structure displacement demand and the deflection of the isolators. In detail, the efficacy of RI-TMDI 

for suppressing seismic structural displacement demands improves as the effective post-yielding flexibility of 

the LRB isolators increases, provided that the TMDI is equipped with sufficiently high inertance. This effect 

has been demonstrated for both white noise excitation and for recorded GMs. However, this improvement 

comes at the cost of increased deflection of the isolators. These deflections may be contained by increasing the 

viscous damping property in the LRB isolators, which, nevertheless, is detrimental to building structure 

response, as shown under white noise excitation. Still, by increasing inertance and using flexible LRBs, both 

building and isolator displacements are reduced under white noise excitation.    

Overall, numerical results presented in this pilot study demonstrate good potential of RI-TMDI for seismic 

retrofitting existing building structures as well as for improving the seismic performance of new ones. 

However, further work is warranted to explore the trade-off between inertance and isolator flexibility for 

different structural properties, levels of seismic intensity and types of isolators. Extension to the case of multi-

storey building models is further left for future work.  
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