IT City Research Online
UNIVEREIST;]OggLfNDON

City, University of London Institutional Repository

Citation: Garcez, A. & Zaverucha, G. (1999). The connectionist inductive learning and

logic programming system. Applied Intelligence Journal, 11(1), pp. 59-77. doi:
10.1023/a:1008328630915

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/301/

Link to published version: https://doi.org/10.1023/a:1008328630915

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

The Connectionist Inductive Learning and Logic
Programming System

Artur S. d’Avila Garcez
Department of Computing - Imperial College
180 Queen’s Gate, SW7- 2BZ, London - UK

aag@doc.ic.ac.uk

Gerson Zaverucha
COPPE Engenharia de Sistemas e Computacao - UFRJ
Caixa Postal: 68511, CEP: 21945-970, Rio de Janeiro - Brazil

gerson@cos.ufrj.br

January 13, 1999

Abstract

This paper presents the Connectionist Inductive Learning and Logic
Programming System (C-IL?P). C-IL°P is a new massively parallel
computational model based on a feedforward Artificial Neural Net-
work that integrates inductive learning from examples and background
knowledge, with deductive learning from Logic Programming. Start-
ing with the background knowledge represented by a propositional logic
program, a translation algorithm is applied generating a neural network
that can be trained with examples. The results obtained with this re-
fined network can be explained by extracting a revised logic program
from it. Moreover, the neural network computes the stable model of
the logic program inserted in it as background knowledge, or learned
with the examples, thus functioning as a parallel system for Logic Pro-
gramming. We have successfully applied C-IL?P to two real-world
problems of computational biology, specifically DNA sequence analy-
ses. Comparisons with the results obtained by some of the main neural,
symbolic, and hybrid inductive learning systems, using the same do-
main knowledge, show the effectiveness of C-IL®P.

Keywords: Theory Refinement, Machine Learning, Artificial Neural
Networks, Logic Programming, Computational Biology.

1 Introduction

The aim of neural-symbolic integration is to explore and benefit from the
advantages that each paradigm confers. Among the advantages of artificial

neural networks are its massive parallelism, inductive learning and gener-
alization capabilities. On the other hand, symbolic systems can explain
their inference process (e.g. through automatic theorem proving), and use
powerful declarative languages for knowledge representation.

“It is generally accepted that one of the main problems in building Ex-
pert Systems (which are responsible for the industrial success of Artificial
Intelligence) lies in the process of knowledge acquisition, known as the knowl-
edge acquisition bottleneck” [31]. An alternative is the automation of this
process using Machine Learning techniques [36]. Symbolic machine learn-
ing methods are usually more effective if they can exploit a background
knowledge (incomplete domain theory). In contrast, neural networks have
been successfully applied as a learning method from examples only (data
learning) [52]. As a result, the integration of theory and data learning in
neural networks seems to be a natural step towards more powerful training
mechanisms.

Learning strategies can be classified as: learning from instruction, learn-
ing by deduction, learning by analogy, learning from examples and learning
by observation and discovery [34]; the latter two are forms of inductive learn-
ing. The inductive learning task employed in symbolic machine learning is
to find hypotheses that are consistent with a background knowledge to ex-
plain a given set of examples. In general, these hypotheses are definitions of
concepts described in some logical language. The examples are descriptions
of instances and non-instances of the concept to be learned, and the back-
ground knowledge provides additional information about the examples and
the concepts’ domain knowledge [31].

In contrast to symbolic learning systems, neural networks’ learning im-
plicitly encodes patterns and their generalizations in the networks’ weights,
so reflecting the statistical properties of the trained data [8]. It has been
indicated that neural networks can outperform symbolic learning systems,
especially when data are noisy [52]. This result, due also to the massively
parallel architecture of neural networks, contributed decisively to the grow-
ing interest in combining, and possibly integrating, neural and symbolic
learning systems (see [30] for a clarifying treatment on the suitability of
neural networks for the representation of symbolic knowledge).

Pinkas [42, 43] and Holldobler [24] have made important contributions to
the subject of neural-symbolic integration, showing the capabilities and lim-
itations of neural networks for performing logical inference. Pinkas defined a
bi-directional mapping between symmetric neural networks and mathemat-
ical logic [11]. He presented a theorem showing a weak equivalence between
the problem of satisfiability of propositional logic and minimizing energy
functions; in the sense that for every well-formed formula (wff) a quadratic
energy function can efficiently be found, and for every energy function there
exists a wff (inefficiently found), such that the global minima of the function
are exactly equal to the satisfying models of the formula. Holldobler pre-

sented a parallel unification algorithm and an automated reasoning system
for first order Horn clauses, implemented in a feedforward neural network,
called the Connectionist Horn Clause Logic (CHCL) System.

In [25], Holldobler and Kalinke presented a method for inserting propo-
sitional general logic programs [32] into three-layer feedforward artificial
neural networks. They have shown that for each program P, there exists a
three-layer feedforward neural network A with binary threshold units that
computes Tp, the program’s fixed point operator. If A/ is transformed into
a recurrent network by linking the units in the output layer to the corre-
sponding units in the input layer, it always settles down in a unique stable
state when P is an acceptable program' [4, 13]. This stable state is the least
fixed point of T’p, that is identical to the unique stable model of P, so pro-
viding a declarative semantics for P (see [19] for the stable model semantics
of general logic programs).

In [57], Towell and Shavlik presented KBANN (Knowledge-based Artifi-
cial Neural Network), a system for rules’ insertion, refinement and extraction
from neural networks. They have empirically shown that knowledge-based
neural networks’ training based on the backpropagation learning algorithm
[48] is a very efficient way to learn from examples and background knowl-
edge. They have done so by comparing KBANN’s performance with other
hybrid, neural and purely symbolic inductive learning systems’ (see [31] and
[37] for a comprehensive description of symbolic inductive learning systems,
including Inductive Logic Programming).

The Connectionist Inductive Learning and Logic Programming (C-IL* P)
system is a massively parallel computational model based on a feedforward
artificial neural network that integrates inductive learning from examples
and background knowledge, with deductive learning from Logic Program-
ming. Starting with the background knowledge represented by a proposi-
tional general logic program, a translation algorithm is applied (see figure
1 (1)) generating a neural network that can be trained with examples (2).
Furthermore, that neural network computes the stable model of the program
inserted in it or learned with the examples, so functioning as a massively
parallel system for Logic Programming (3). The result of refining the back-
ground knowledge with the training examples can be explained by extracting
a revised logic program from the network (4). Finally, the knowledge ex-
tracted can be more easily analyzed by an expert that decides if it should
feed the system once more, closing the learning cycle (5). The extraction
step of C-IL*P (4) is beyond the scope of this paper, and the interested
reader is referred to [7].

In section 2, we present a new translation algorithm from general logic
programs (P) to artificial neural networks (N') with bipolar semi-linear neu-
rons. The algorithm is based on Holldobler and Kalinke’s translation algo-

L An acceptable program P has exactly one stable model.

Connectionist System

Inference
Machine

e ————————————

| 3 | _
: : Explanation

Figure 1: The Connectionist Inductive Learning and Logic Programming
System.

rithm from general logic programs to neural networks with binary threshold
neurons [25]. We also present a theorem showing that A" computes the
fixed-point operator (Tp) of P. The theorem ensures that the translation
algorithm is sound. In section 3, we show that the result obtained in [25]
still holds, i.e. A is a massively parallel model for Logic Programming.
However, N can also perform inductive learning from examples efficiently,
assuming P as background knowledge and using the standard backpropa-
gation learning algorithm as in [57]. We outline the steps for performing
both deduction and induction in the neural network. In section 4, we suc-
cessfully apply the system to two real-world problems of DNA classification,
which have become benchmark data sets for testing machine learning sys-
tems’ accuracy. We compare the results with other neural, symbolic, and
hybrid inductive learning systems. Briefly, C-IL?P’s test-set performance is
at least as good as KBANN’s and better than any other system investigated,
while its training-set performance is considerably better than KBANN’s. In
section b, we conclude and discuss directions for future work.

2 From Logic Programs to Neural Networks

It has been suggested that the merging of theory (background knowledge)
and data learning (learning from examples) in neural networks may provide
a more effective learning system [15, 57]. In order to achieve this objective,
one might first translate the background knowledge into a neural network
initial architecture, and then train it with examples using some neural learn-
ing algorithm like backpropagation. To do so, the C-IL?P system provides
a translation algorithm from propositional (or grounded) general logic pro-
grams to feedforward neural networks with semi-linear neurons. A theorem

then shows that the network obtained is equivalent to the original program,
in the sense that what is computed by the program is computed by the
network and vice-versa.

Definition 1 A general clause is a rule of the form A «— L4, ..., L, where
A is an atom and L; (1 <1i<k) is a literal (an atom or the negation of an
atom). A general logic program is a finite set of general clauses.

To insert the background knowledge, described by a general logic pro-
gram (P), in the neural network (N'), we use an approach similar to Holl-
dobler and Kalinke’s [25]. Fach general clause (C}) of P is mapped from the
input layer to the output layer of N through one neuron (N;) in the single
hidden layer of A. Intuitively, the translation algorithm from P to A has
to implement the following conditions: (7) The input potential of a hidden
neuron (NN;) can only exceed N;’s threshold (6;), activating IV}, when all the
positive antecedents of () are assigned the truth-value “true” while all the
negative antecedents of Cj are assigned “false”; and (2) The input potential
of an output neuron (A) can only exceed A’s threshold (64), activating A,
when at least one hidden neuron N, that is connected to A is activated.

Example 2 Consider the logic program P = {A «— B,C,notD; A — E, I
B «}. The translation algorithm should derive the network N of figure 2,
setting weights (W's) and thresholds (0's) in such a way that conditions (1)
and (2) above are satisfied. Note that, if N ought to be fully-connected, any
other link (not shown in figure 2) should receive weight zero initially.

s

rr 1

Interpretations

Figure 2: Sketch of a neural network for the above logic program P.

Note that, in example 2, we have labelled each input and output neu-
ron as an atom appearing, respectively, in the body and in the head of a
clause of P. This allows us to refer to neurons and propositional variables
interchangeably and to regard each network’s input vector i = (i1, ..., im)
(j(<j<m) € [—1,1]) as an interpretation for P2 If i; € [Amin, 1] then the
propositional variable associated to the j-th neuron in the network’s input
layer is assigned “true”, while ¢; € [—1, —Ap;,] means that it is assigned
“false”, where Apin € (0,1) is a predefined value as shown in the notation
below. Note also that each hidden neuron N} corresponds to a clause C} of
P.

The following notation will be used in our translation algorithm.

Notation : Given a general logic program P, let ¢ denote the number of
clauses () (1 <1 < g) occurring in P;

m, the number of literals occurring in P;

Apin, the minimum activation for a neuron to be considered “active”
(or “true”), 0 < Apn < 1;

Apmaz, the maximum activation for a neuron to be considered “not
active” (or “false”), —1 < Amaa < 0;

h(x) = He%m — 1, the bipolar semi-linear activation function, where
3 is the steepness parameter (that defines the slope of h(x));

g(x) =z , the standard linear activation function;

W (resp. -W), the weight of connections associated with positive (resp.
negative) literals;

0, the threshold of hidden neuron /N; associated with clause Cj;

6 4, the threshold of output neuron A, where A is the head of clause
i

k;, the number of literals in the body of clause Cj;
P, the number of positive literals in the body of clause Cf;
ny, the number of negative literals in the body of clause C;

;, the number of clauses in P with the same atom in the head for
each clause Cj;

MAXc,(ki, 1), the greater element among k; and g, for clause (7,

MAXp(k1, .y kg, iy, -0 ty), the greatest element among all &’s and
w's of P.

2 An interpretation is a function from propositional variables to {“true”, “false”}. A
model for P is an interpretation that maps P to “true”.

For instance, for the program P of example 2, g = 3, m = 6, ky = 3,
k2:2, k3:0,p1:2,p2:2,p3:0,n1:1,n2:(), n3:0,u1:2,u2:
2, pg =1, MAXc, (b1, p1) = 3, MAXcy (K2, pg) = 2, MAXcy(ks, pi3) = 1,
and M AXp(ky, kb, k3, i1, fig, Hig) = 3.

In the translation algorithm below, we define Apn = & (k,pn), W =
Eo(h(x), kypy Amin), 01 = &3(k, Amin, W), and 04 = &4(pt, Amin, W) such
that conditions (1) and (2) are satisfied, as we will see later in the proof of
theorem 3.

Given a general logic program P, consider that the literals of P are
numbered from 1 to m such that the input and output layers of N are
vectors of maximum length m, where the i-th neuron represents the i-th
literal of P. Assume, for mathematical convenience and without loss of
generality, that Apmaee = —Amin.

L. Calculate MAXp (K1, ..., kg, iy, s ftg) of P;

MAXp(kl,...,kq,ul,...,uq)fl .

2. Calculate A,n > Ay (Bt)11

2 In(14+Amin)—in(1—Amin) .
3. Calculate W = 3 MAXp (E1sskqoft1seeestiq)(Amin— 1)+ Amin 1 7

4. For each clause C; of P of the form A « L, ..., Ly (k> 0):

(a) Add a neuron N; to the hidden layer of N;

(b) Connect each neuron L; (1 < i < k) in the input layer to the
neuron NV in the hidden layer. If L; is a positive literal then set
the connection weight to W; otherwise, set the connection weight
to —W;

(¢) Connect the neuron N in the hidden layer to the neuron A in
the output layer and set the connection weight to W;

(d) Define the threshold (6;) of the neuron N; in the hidden layer as
0, = %W .

(e) Define the threshold (64) of the neuron A in the output layer as
014 — (1+Ami;)(17MZ)W .

5. Set g(z) as the activation function of the neurons in the input layer of
N. In this way, the activation of the neurons in the input layer of A/,
given by each input vector i, will represent an interpretation for P.

6. Set h(x) as the activation function of the neurons in the hidden and
output layers of . In this way, a gradient descent learning algorithm,
such as backpropagation, can be applied on N efficiently.

7. If AV ought to be fully-connected, set all other connections to zero.

Since N contains a bipolar semi-linear (differentiable) activation func-
tion h(x), instead of a binary threshold non-linear activation function, the
network’s output neurons activations are real numbers in the range [—1, 1].
Therefore, we say that an output within the range [Ayy, 1] represents the
truth-value “true”, while an output within [—1, —A;,;,] represents “false”.
We will see later in the proof of theorem 3 that the above defined weights
and thresholds do not allow the network to present activations in the range
<_Amin7 Amm)

Note that the translation of facts of P into A, for instance B « in
example 2, is done by simply taking & = 0 in the above algorithm. Alter-
natively, each fact of the form A <« may be converted to a rule of the form
A « T that is inserted in A using & = 1, where T' denotes “true”, and is
an extra neuron that is always active in the input layer of N, i.e. T has
input data fixed at “1”. From the point of view of the computation of P by
N, there is absolutely no difference between the above two ways of inserting
facts of P into . However, considering the subsequent process of inductive
learning, regarding P as background knowledge, if A « is inserted in N
then the set of examples to be learned afterwards can defeat that fact by
changing weights and/or establishing new connections in A'. On the other
hand, if A « T is inserted in A/ then A can not be defeated by the set of
examples since the neuron 7' is clamped in A. Defeasible and nondefeasible
knowledge can therefore be respectively inserted in the network by defining
variable and fixed weights/neurons.

The above translation algorithm is based upon the one presented in [25],
where N is defined with binary threshold neurons. It is known that such
networks have limited ability to learn. Here, in order to perform inductive
learning efficiently, N is defined using the activation function h(z). An im-
mediate result is that A can also perform inductive learning from examples
and background knowledge as in [57]. Moreover, the restriction imposed over
W in [25], where it is shown that A computes Tp for W = 1, is weakened
here, since the weights must be able to change during training.

Nevertheless, in [57], and more clearly in [55], the background knowledge
must have a “sufficiently small” number of rules as well as a “sufficiently
small” number of antecedents in each rule® in order to be accurately en-
coded in the neural network. Unfortunately, these restrictions become quite
strong or even unfeasible if, for instance, Ay = % as in ([57], Section 5:
Empirical Tests of KBANN). Consequently, an interpretation that does not
satisfy a clause can wrongly activate a neuron in the output layer of N.
This results from the use of the standard (unipolar) semi-linear activation
function, where each neuron’s activation is in the range [0,1]. Hence, in
[57] both “false” and “true” are represented by posilive numbers in the

and kAmar <

3The “sufficiently small” restrictions are given by equations pAmar < %

%, respectively, where Ap,qaz > 0 [55].

ranges [0, Apae] and [Apmsn, 1] respectively. For example, if A,,;, = 0.7 and
k = 2, an interpretation that assigns “false” to positive literals in the input
layer of A can generate a positive input potential greater than the hidden
neuron’s threshold, wrongly activating the neuron in the output layer of N.

In order to solve this problem we use bipolar activation functions, where
each neuron’s activation is in the range [—1,1]. Now, an interpretation
that does not satisfy a clause contributes negatively to the hidden neuron’s
input potential, since “false” is represented by a number in [—1, — A,
while an interpretation that does satisfy a clause contributes positively to
the input potential, because “true” is in [Apmin, 1|. Theorem 3 will show
that the choice of a bipolar activation function is sufficient to solve the
above problem. Furthermore, the choice of —1 instead of zero to represent
“false” will lead to faster convergence in almost all cases. The reason is
that the update of a weight connected to an input variable will be zero when
the corresponding variable is zero in the training pattern [8, 22].

Thus making use of bipolar semi-linear activation function h(x), let us
see how we have obtained the values for the hidden and output neurons’
thresholds 0; and 04. To confer symmetric mathematical results, without
loss of generality, assume that A;nar = —Amin. From the input to the hidden
layer of N (L1, ..., Ly = N), if an interpretation satisfies Ly, ..., Ly then the
contribution of Ly, ..., Ly to the input potential of N; is greater than I, =
kAminW. If, conversely, an interpretation does not satisfy L, ..., Ly then the
contribution of L1, ..., L to the input potential of /N is smaller than I =
(p—1)W — Apin W 4nWW. Therefore, we define 0, = I*;I* = (1+Ami2”)(k71)W
(Translation Algorithm, step 4d). From the hidden to the output layer of
N (N; = A), if an interpretation satisfies IV; then the contribution of N,
to the input potential of A is greater than I, = ApmiW — (n — 1)W. If,
conversely, an interpretation does not satisfy /N, then the contribution of

N, to the input potential of A is smaller than I = —uA,,;, W. Similarly,
I+~;If — (1+Ami2n)(17M)W (

we define 04 = Translation Algorithm, step 4e).
Obviously, I, > I_ should be satisfied in both cases above. Therefore,

Amin > le& and Apin > %ﬁ;—} must be verified and, more generally, the

condition imposed over Ap;, in the translation algorithm (step 2). Finally,
given Amin, the value of W (translation algorithm (step 3)) results from the
proof of theorem 3 below.

In what follows, we show that the theorem presented in [25], where
N with binary threshold neurons computes the fixed point operator Tp
of the program P, still holds for AV with semi-linear neurons. The following
theorem ensures that our translation algorithm is sound. The function T'p
mapping interpretations to interpretations is defined as follows. Let 1 be

an interpretation and A an atom. Tp(i)(A) = “true” iff there exists
A Ly,... Ly in P st. N°_ (L) = “true”.

Theorem 3 For each propositional general logic program P, there exists a
feedforward artificial neural network N with exactly one hidden layer and
semi-linear neurons, obtained by the above “Translation Algorithm”, such
that N' computes Tp.

Proof. We have to show that there exists W > 0 such that N computes Tp.
In order to do so we need to prove that given an input vector i, each neuron
A in the output layer of N is “active” if and only if there exists a clause of
P of the form A «— Lq,...,Lg s.t. L, ..., Ly are satisfied by interpretation i.
The proof takes advantage of the monotonically non-decreasing property of
the bipolar semi-linear activation function h(z), which allows the analysis
to focus on the boundary cases. As before, we assume that Amaer = —Amin
without loss of generality.

(—) A > Apin if La, ..., Ly is satisfied by i. Assume that the p positive
literals in Lq,..., Ly are “rue”, while the n negative literals in L1, ..., Ly
are “false”. Consider the mapping from the input layer to the hidden
layer of N. The input potential (I;) of Ny is minimum when all the neu-
rons associated with a positive literal in L1, ..., Ly are at Amin, while all
the neurons associated with a negative literal in L1, ..., Ly are at —Apmin.
Thus, I} > pAminW + nAminW — 6, and assuming 6; = (HALQ”)U%I)W,
Il > pAmmW + nAmmW - (1+Ami2n)(k71)W'

If k(1)) > Apin, te. I} > —%ln Gjr—ﬁﬁ), then Ny is active. Therefore,

equation 1 must be satisfied.

. M/ . M/ _ M/ > — -
pAmm + nAmin 5 = ﬁln 1+ Apin (1)

Solving equation 1 for the connection weight (W) yields equations 2 and
3, given that W > 0.

2 In(1l = Amin) —In (14 Apin)
> .
k—1

Consider now the mapping from the hidden layer to the output layer
of N. By equations 2 and 3 at least one neuron N that is connected to
A is “active”. The input potential (I;) of A is minimum when Nj is at
Aimin, while the other . — 1 neurons connected to A are at -1. Thus, I; >
AminW — (1 — 1) W — 0, and assuming 0; = (HAL;)(PM)W, I, > AninW —
(/J _ 1) W — (1+Ami;)(1*M)W‘

If h(1}) > Amin, te. I} > —%ln Gjr—ﬁﬁ), then A is active. Therefore,

equation 4 must be satisfied.

(1 11mm)<1 M) 1 1 llmin
ApminW — (p —)W 2 W in 1 o (4)

10

Solving equation /4 for the connection weight W yields equations 5 and
6, given that W > 0,

In(1 — Amin) —In (14 Amin)

2
W 2 T i i — D+ A+ 1)
pw—1

(—) A< —Apin if L1, ..., Ly, is not salisfied by i. Assume that at least
one of the p positive literals in L1, ..., Ly is “false” or one of the n negative
literals in Lq, ..., Ly is “true”. Consider the mapping from the input layer
to the hidden layer of N'. The input potential (I;) of N; is maximum when
only one neuron associated to a positive literal in Ly, ..., Ly is at —Amin
or when only one neuron associated to a negative literal in L4, ..., Ly 1s at

Amin. Thus, I} < (p—1)W — Apind W +nW — 0, or [; < (n—1)W —
ApinW 4+ pW — 0, respectively, and assuming 6; = £lJrA—”“’Q“XElVV, I <
(k=1 = Apig) W — QAmin) L)y,

If—Amzn > h<Il)7 .€. —Amzn > H(f%

and so Ny is not active. Therefore, equation 7 must be satisfied.
k—1— Apin)W — W< —=in| —— 7

Solving equation 7 for the connection weight W yields equations 8 and
9, given that W > 0.

—1 then I, < —3in Gfﬁm;n) ,

Consider now the mapping from the hidden layer to the output layer of
N. By equations 8 and 9, all neurons N that are connected to A are “not
active”. The input potential (I;) of A is maximum when all the neurons
connected to A are at —Apin. Thus, I} < —pApinW — 60, and assuming
01 = WMVV; I < —p AW — L Amn) i)y

(8)

2
If = Awin 2 (1), ive. = Amin = —2zs =1, then I < ~3in <%ﬁ) ,

and so A is not active. Therefore, equation 10 must be satisfied.

(1 11mm) (1 M) 1 1 llmin
—_ . — < —— -
WA min W 2 W in 1 o (10)

Solving equation 10 for the connection weight W yields equations 11 and
12, given that W > 0.

W2%~ (11)

11

pw—1

Notice that equations 2 and 5 are equivalent to equations 8 and 11, respec-
tively. Hence, the above theorem holds if for each clause C; in P equations
2 and 8 are satisfied by W and Apyn from the input to the hidden layer of
N, while equations 5 and 6 are satisfied by W and Apin from the hidden to
the output layer of N.

In order to unify the weights in N for each clause C) of P given the
definition of MAXc,(ki,), it is sufficient that equations 18 and 14 below
are satisfied by W and Apmin, respectively.

2 In (14 Amin) — In(1 — Apin)
W > = 13
- B MAXCl<kl,Ml)<Amin - 1) + Amin +1 ()
A, > MAXc, (k) — 1 (14)

MAXcg,(kyy) +1

Finally, in order to unify all the weights in N for a program P given
the definition of MAXp(k1,..., kg, fiy, .., 1ty), it is sufficient that equations
15 and 16 are satisfied by W and Amsn, respectively.

w>Z.
= ﬁ MAXP<k177kq7,u177Mq)<Amzn_1)+Amln+1

(15)

> MAXP<k17 ey k(JHuh "'muq) —1
MAXp(k1y ooy ks gy ey ptg) +1

Amin (16)
As a result, if equations 15 and 16 are satisfied by W and Apin, respec-
tively, then N computes Tp. [

Example 4 Consider the program P = {A «— B,C,notD; A « E,F;
B «}. Converting fact B « to rule B «— T and applying the Transla-
tion Algorithm, we obtain the neural network N of figure 3. Firstly, we
calculate MAXp(kiy .oy bny figy ooy o) = 3 (step 1), and Apgn > 0.5 (step
2). Then, suppose Amin = 0.6, we obtain W > 6.931/3 (step 8). Alterna-
tively, suppose Amin = 0.7, then W > 4.336/3. Let us take Amin, = 0.7 and
h(x) as the standard bipolar semi-linear activation function (8 =1), then if
W = 4.5, N computes the operator Tp of P*.

In the above example, the neuron B appears at both the input and the
output layers of A/, This indicates that there are at least two clauses of P
that are linked through B (in the example: A «— B,C,notD and B <),
defining a dependency chain [3]. We represent that chain in the network

4Note that a sound translation from P to A/ does not require all the weights in A to
have the same absolute value. We unify the weights (|W|) for the sake of simplicity of the
translation algorithm and to comply with previous work.

12

(I+Amin)W (1+Amin)W/
W W
T

Interpretations

Figure 3: The neural network A obtained by the translation over P. Con-
nections with weight zero are not shown.

using the recurrent connection W, = 1 to denote that the output of B
must feed the input of B in the next learning or recall step. In this way,
regardless of the length of the dependency chains in P, N always contains a
single hidden layer, thus obtaining a better learning performance®. We will
explain in detail the use of recurrent connections in section 3. In section 4
we will compare the learning results of CIL?’P with KBANN'’s, where the
number of hidden layers is equal to the length of the greatest dependency
chain in the background knowledge.

Remark 1 Analogously to [25], for any logic program P, the time needed
to compute Tp(1) in the network is constant; equal to two time steps (one to
compute the activations from the input to the hidden neurons and another
from the hidden to the output neurons). A parallel computational model
requiring p(n) processors and t(n) time to solve a problem of size n is optimal
if p(n) x t(n) = O(T'(n)), where T'(n) is the best sequential time to solve
the problem [28]. The number of neurons and connections in the network
that corresponds to a program P is given respectively by O(q + 1) and O(q

), where q is the number of clauses and r is the number of propositional
variables (atoms) occurring in P. The sequential time to compute Tp(i) is
bound to O(q - 1), and so the above parallel computational model is optimal.

®Tt is known that an increase in the number of hidden layers in a neural network results
in a corresponding degradation in learning performance.

13

3 Massively Parallel Deduction and Inductive Learn-
ing

The neural network A can perform deduction and induction. In order to
perform deduction, A is transformed into a partially recurrent network A
by connecting each neuron in the output layer to its correspondent neuron
in the input layer with weight W, = 1, as shown in figure 4. In this way, N,
is used to iterate T’p in parallel, because its output vector becomes its input
vector in the next computation of Tp.

QW(@W.@.@ (Q
S
oyeR-y

@

Figure 4: The recurrent neural network AN,.

b

1

Let us now show that as in [25], if P is an acceptable program then A,
always settles down in a stable state that yields the unique fixed point of
Tp, since N, computes the upward powers (T7'(i)) of Tp. A similar result
could also be easily proved for the class of locally stratified programs (see

[32]).

Definition 5 [3, 4/: Let Bp denote the Herbrand base of P, i.c. the set
of propositional variables (atoms) occurring in P. A level mapping for a

program P is a function | | : Bp — R of ground atoms to natural numbers.
For A € Bp, |A| is called the level of A and |notA| = |A|.

Definition 6 [3, 4/: Let P be a program, | | a level mapping for P, and i
a model of P. P is called acceptable w. r. ¢ | | and i if for every clause
A — Ly, Ly in P the following implication holds for 1 < i < k: if
iE AL Ly then |A| > |L;] .

Theorem 7 [13]: For each acceptable general program P, the function Tp
has a unique fixed-point. The sequence of all T5'(i), m € N, converges to this

14

fixed-point TF (i) (which is identical to the stable model of P [19]), for each
i C Bp.

Recall that, since A, has semi-linear neurons, for each real value o; in
the output vector (0) of N, if 0; > Amin then the corresponding i-th atom
in P is assigned “true”, while 0; < Amqer means that it is assigned “false”.

Corollary 8 Let P be an acceptable general program. There exists a recur-
rent neural network N, with semi-linear neurons such that, starting from an

arbitrary initial input, N, converges to a stable state and yields the unique
Jixed-point (TF(i)) of Tp, which is identical to the stable model of P.

Proof. Assume that P is an acceptable program. By theorem 3, N, com-
putes Tp. Recurrently connected, N, computes the upwards powers (Tf(i))
of T'p. By theorem 7, N, computes the unique stable model of P (T'F(i)). O

Hence, in order to use A as a massively parallel model for Logic Pro-
gramming, we simply have to follow two steps: (i) add neurons to the input
and output layers of AV, allowing it to be partially recurrently connected;
(7¢) add the correspondent recurrent links with fixed weight W, = 1.

Example 9 (example 4 continued): Given any initial activation in the in-
put layer of Ny (figure 4), it always converges to the following stable state:
A = “false”, B = “true”, C = “false”, D = “false”, E = “false”, and F' =
“false”, that represents the unique stable model of P: M(P) = {B}.

One of the main features of artificial neural networks is their learning
capability. The program P, viewed as background knowledge, may now
be refined with examples in a neural training process on A,. Hornik et
al. [26] have proved that standard feedforward neural networks with as few
as a single hidden layer are capable of approximating any (Borel measur-
able) function from one finite dimensional space to another, to any desired
degree of accuracy, provided sufficiently many hidden units are available.
Hence, we can train single hidden layer neural networks to approximate the
operator T’p associated with a logic program P. Powerful neural learning
algorithms have been established theoretically and applied extensively in
practice. These algorithms may be used to learn the operator Tp: of a pre-
viously unknown program P’, and therefore to learn the program P’ itself.
Moreover, DasGupta and Schinitger [10] have proved that neural networks
with continuously differentiable activation functions are capable of com-
puting a certain family of boolean functions with constant size (n), while
networks composed of binary threshold functions require at least O(log(n))
size. Hence, analog neural networks have more computational power than
discrete neural networks, even when computing boolean functions.

The network’s recurrent connections contain fixed weights W, = 1, with
the sole purpose of ensuring that the output feed the input in the next

15

6

learning or recall process. As A, does not learn in its recurrent connections®,

the standard backpropagation learning algorithm can be applied directly [22]
(see also [27]). Hence, in order to perform inductive learning with examples
on N,, four simple steps should be followed: (i) add neurons to the input
and output layers of A, according to the training set (the training set may
contain concepts not represented in the background knowledge and vice-
versa); (#i) add neurons to the hidden layer of N, if it is so required for the
learning algorithm convergence; (ii7) add connections with weight zero, in
which A, will learn new concepts; (iv) perturb the connections by adding
small random numbers to its weights in order to avoid learning problems
caused by symmetry”. The implementation of steps (i) — (iv) will become
clearer in section 4, where we describe some applications of the C-IL®P
system using backpropagation.

Remark 2 The final stage of the C-IL*P system is the symbolic knowledge
extraction from the trained network. It is generally accepted that “rules’
extraction” algorithms can provide the so called explanation capability for
trained neural networks. The lack of explanation for their reasoning mech-
anisms is one of neural networks’ main drawbacks. Similarly, the lack of
clarity of trained networks has been a main reason for serious criticisms.
The extraction of symbolic knowledge from trained networks can consider-
ably ameliorate these problems. It makes the knowledge learned accessible
for an expert’s analysis and allows for justification of the decision making
process. The knowledge extracted can be directly added to the knowledge base
or used in the solution of analogous domains problems.

Symbolic knowledge extraction from trained networks is an extensive
topic on its own. Some of the main extraction proposals include [25, 2,
44, 53, 9, 15, 56, 49] (see [1] for a comprehensive survey). The main prob-
lem of the extraction task can be summarized as the quality X complexity
trade-off, where the higher the quality of the extracted rules’ set, the higher
the complexity of the extraction algorithm. In the context of the C-IL2P sys-
tem, the extraction task is defined as follows. Assume that after learning, N
encodes a knowledge P that contains the background knowledge P expanded
or revised by the knowledge learned with training examples. An accurate
extraction procedure derives P’ from N iff N computes Tp:.

The extraction step of C-IL?P is beyond the scope of this paper, and
the interested reader is referred to [1]. However, we would like to point out
that there is a major conceptual difference between our approach and other
extraction methods. We are convinced that an extraction method must con-
sider default negation in the final rule set, and not only “if then else” rules.
Neural networks’ behavior is commonly nonmonotonic [33], and therefore we

®The recurrent connections represent an external process between output and input.
"The perturbation should be small enough not to have any effects on the computation
of the background knowledge.

16

can not expect to map it properly into a set of rules composed of Horn clauses
only.

4 Experimental Results

We have applied the C-IL?P system in two real-world problems in the do-
main of Molecular Biology; in particular the “promoter recognition” and
“splice-junction determination” problems of DNA sequence analysis®. Mole-
cular Biology is an area of increasing interest for computational learning
systems analysis and application. Specifically, DNA sequence analysis prob-
lems have recently become a benchmark for learning systems’ performance
comparison. In this section we compare the experimental results obtained
by C-IL?P with a variety of learning systems.

In what follows we briefly introduce the problems in question from a com-
putational application perspective (see [59] for a proper treatment on the
subject). A DNA molecule contains two strands that are linear sequences of
nucleotides. The DNA is composed from four different nucleotides - adenine,
guanine, thymine, and cytosine - which are abbreviated by a, g, t, ¢, respec-
tively. Some sequences of the DNA strand, called genes, serve as blueprint
for the synthesis of proteins. Interspersed among the genes are segments,
called non-coding regions, that do not encode proteins.

Following [57] we use a special notation to identify the location of nu-
cleotides in a DNA sequence. Each nucleotide is numbered with respect
to a fixed, biologically meaningful, reference point. Rules’ antecedents of
the form “@3 atcg” state the location relative to the reference point in the
DNA, followed by the sequence of symbols that must occur. For example,
“@3 atcg” means that an a must appear three nucleotides to the right of
the reference point, followed by a ¢ four nucleotides to the right of the ref-
erence point and so on. By convention, location zero is not used, while “x’
means that any nucleotide will suffice in a particular location. In this way,
a rule of the form Minus35 «+— @ — 36‘ttg.ca’ is a short representation for
Minus3b « Q—36%, @Q—35¢’, @—34‘¢’, @—32¢’, @—31‘a’. Each location
is encoded in the network by four input neurons, representing nucleotides a,
g, t and ¢, in this order. The rules are therefore inserted in the network as
depicted in figure 5 for the hypothetical rule Minusb « @ — 1°gc’, Q5.

In addition to the reference point notation, Table 1 specifies a standard
notation for referring to all possible combinations of nucleotides using a
single letter. This notation is compatible with the EMBL, GenBank, and
PIR data libraries - three major collections of data for molecular biology.

8These are the same problems that were investigated in [57] for the evaluation of
KBANN. We have followed as much as possible the methodology used by Towell and
Shavlik, and we have used the same background knowledge and set of examples as KBANN.

17

OOOO GO BN OIOI0I0

@-1 @1 @5

Figure 5: Inserting rule Minusd <« @Q— 1°‘g¢’, @5¢’ into the neural network.

‘ Code Meaning ‘ Code Meaning ‘ Code Meaning
m aorc r aorg W aort
] corg Y cort K gort
v aorcorg h aorcort D aorgort
b cor gort T aorgorcort

Table 1: Single-letter codes for expressing uncertain DNA sequence.

The first application in which we test C-IL?P is the prokaryotic’ pro-
moter recognition. Promoters are short DNA sequences that precede the
beginning of genes. The aim of “promoter recognition” is to identify the
starting location of genes in long sequences of DNA. Table 2 contains the

background knowledge for promoter recognition'®.

The background knowledge of Table 2 is translated by C-IL?P’s trans-
lation algorithm to the neural network of figure 6. In addition, two hidden
neurons are added in order to facilitate the learning of new concepts from
examples. Note that the network is fully-connected, but low-weighted links
are not shown in the figure. The network’s input vector for this task con-
tains 57 consecutive DNA nucleotides. The training examples consist of 53
promoter and 53 nonpromoter DNA sequences.

9Prokaryotes are single-celled organisms that do not have a nucleus, e.g. E. Coli.
Y Rules obtained from [57], and derived from the biological literature [39] from No-
ordewier [54].

18

Promoter « Contact, Conformation
Contact — Minusl10, Minus35

Minusl0 «— @ — 14'tataat’ Minus35 «— @ — 37‘ctigac’
Minusl0 «— @ — 13‘tataat’ Minus3b «— @ — 36‘ttgaca’
Minusl0 «— Q — 13“%a,at’ Minus3b «+ @ — 36ttgac’
Minusl0 «— Q — 12% @t Minus3b «— @ — 36°ttg,ca’

Conformation «— Q — 45‘aa.a’
Conformation « Q — 45°a,,,.0’, @ — 28, it aa,, 0, @ — 40
Conformation « Q — 49 Qupiil’, @ — 27 in Qi tstg’, @ — 1°0
Conformation « Q — 47 caasttiac’, @ — 22° g tic’, @ — 8 gegecyed

Table 2: Background knowledge for promoter recognition.

Minus35 Minusl0 Conform. Contact Promoter

@\OO
O

) i ‘§‘
(T T T T T T T
-50 DNA +7 Minus35 MinuslO Conform. Contact

Figure 6: Initial neural network for promoter recognition. Each box at the
input layer represents one sequence location that is encoded by four input
neurons {a, g,t, c}.

The second application that we use to test C-IL?P is eukaryotic'! splice-
junction determination. Splice-junctions are points on a DNA sequence at
which the non-coding regions are removed during the process of protein
synthesis. The aim of “splice-junction determination” is to recognize the
boundaries between the part of the DNA retained after splice - called exons
- and the part that is spliced out - the introns. The task consists therefore of
recognizing exon/intron (E/I) boundaries and intron/exon (I/E) boundaries.
Table 3 contains the background knowledge for splice junction determina-

tion!2.

U Unlike prokaryotic cells, eukaryotic cells contain a nucleus, and so are higher up the
evolutionary scale.
2Rules obtained from [57] and derived from the biological literature from Noordewier

[38].

19

El — @ — 3‘maggtragt’,not EI_Stop

EI_Stop < @ — 3taa’ | FI_Stop < Q — 4'taa’ | F1_Stop <= Q — 5taa’

El Stop <= @ — 3tag’ | EI_Stop < @ — 4'tag’ | EI_Stop < Q — 5'tag’

ElI _Stop <= @ — 3tga’ | EI_Stop < @ — 4'tga’ | EI_Stop < Q — 5'tga’

1E «— pyramidine_rich, @ — 3'yagg’, not 1E_Stop

pyramidine_rich «— 6 of (@ — 15yyyyyyyyyy’)

1FE_Stop <= Ql‘taa’ 1FE_Stop < Q2‘taa’ 1E_Stop < @Q3‘taa’

1E_Stop <= Ql%ag’ 1E_Stop <= @2tag’ 1FE_Stop <= Q3‘tag’

1E_Stop < Ql4ga’ 1E_Stop < @2tga’ 1FE_Stop <= Q3‘tga’

Table 3: Background knowledge for splice-junction.

The background knowledge of Table 3 is translated by CIL°P to the
neural network of figure 7. In Table 3, “<” indicates nondefeasible rules,
which can not be altered during training. Therefore, the weights set in
the network by these rules are fixed. Rules of the form “m of (...)" are
satisfied if at least m of the parenthesized concepts are true. Note that the
translation of these rules to the network is done by simply defining &; = m
in CIL?P’s translation algorithm. Rules containing symbols other than the
original (a, g,t,) are split into a number of equivalent rules containing only
the original symbols, according to Table 1. For example, since y = ¢V t the
rule IE «— pyramidine_rich, @ — 3‘yagg’,not IFE_Stop is encoded in the
network as I FE «— pyramidine_rich, Q — 3‘cagg’,not [E_Stop and I F «—
pyramidine_rich, @ — 3tagg’, not IF-Stop.

The training set for this task contains 3190 examples, in which approx-
imately 25% are of I/E boundaries, 25% are of E/I boundaries and the
remaining 50% are neither. The third category (neither E/I nor I/E) is
considered true when neither I/E nor E/I output neurons are active. Fach
example is a DNA sequence with 60 nucleotides, where the center is the
reference point. Remember that the network of figure 7 is fully-connected,
but that low-weighted links are not shown. Dotted lines indicate links with
negative weights.

In both applications, unless stated otherwise, the background knowledge
is assumed defeasible, i.e. the weights are allowed to change during the
learning process. Hence, some of the background knowledge may be revised
by the training examples. Note however that the networks’ recurrent con-
nections are responsible for reinforcing the background knowledge during
training. For instance, in the network of figure 7 the concepts Pyramidine,
FI-St. and IE-St., called intermediate concepts, have their input values cal-
culated by the network in action, according to the background knowledge
and to the DNA sequence input vector.

Let us now describe the experimental results obtained by C-IL?P in the
applications above. We compare it with other symbolic, neural and hybrid
learning systems. Briefly, our tests show that C-IL?P is a very effective sys-
tem. Its test set performance is at least as good as KBANN’s, and therefore

20

Pyramidine EI-S. IE-S. El IE

g o 0O
-30 DNA +30Pyramidine EI-S.1E-S.

Figure 7: Initial neural network for splice-junction determination. Each box
at the input layer of the network represents one sequence location which is
encoded by four input neurons {a, g, t, c}.

better than any method analyzed in [57]. Moreover, C-IL®P’s training set
performance is considerably superior to KBANN’s, mainly because it always
encodes the background knowledge in a single hidden layer network.

Firstly, let us consider C-IL®P’s test-set performance, i.e., its ability to
generalize over examples not seen during training. We compare the results
obtained by C-IL?P in both applications with some of the main induc-
tive learning systems from examples: Backpropagation [48], Perceptron [47]
(neural systems), ID3 [45], and Cobweb [12] (symbolic systems). We also
compare the results in the promoter recognition problem with a method
suggested by biologists [50]. In addition, we compare C-IL°P with sys-
tems that learn from both examples and background knowledge: Either
[40], Labyrinth-K [51], FOCL [41] (symbolic systems), and KBANN [57]
(hybrid system)!3.

As in [57], we evaluate the systems using cross-validation, a testing
methodology in which the set of examples is permuted and divided into
n sets. One division is used for testing and the remaining n — 1 divisions
are used for training. The testing division is never seen by the learning al-
gorithm during the training process. The procedure is repeated n times so
that every partition is used once for testing. For the 106-examples promoter
data set, we use leaving-one-out cross-validation, in which each example
is successively left out of the training set. Hence, it requires 106 training
phases, in which the training set has 105 examples and the testing set has
1 example. Leaving-one-out becomes expensive as the number of available
examples grows. Therefore, following [57], we use 10-fold cross-validation

13 Towell and Shavlik compare KBANN with other hybrid systems [14] and [29], obtain-

ing better results.

21

for the 1000-examples splice-junction determination data set'.

The learning systems that are based on neural networks have been trained
until one of the following three stopping criteria was satisfied: (¢) on 99%
of the training examples, the activation of every output unit is within 0.25
of correctness; (i7) every training example is presented to the network 100
times, i.e. the network has been trained for 100 epochs; (#:7) the network
classifies at least 90% of the training examples correctly but has not im-
proved its classification ability for 5 epochs. We have defined an epoch as
one training pass through the whole training set. We used the standard
backpropagation learning algorithm to train C-IL?P networks.

el L L 1 1 L 1 1 1 |,

Backprop | | | | | | | | | . 94.3

camer_L_ L T T [T T T T |.

Perceptron | | | | | | | | | . 915
oeft 1 1 1 [1 |

80.0

i e

Test Set Performanc

Figure 8 Test-set performance in the promoter problem (comparison with
systems that learn strictly from examples).

cuep L 1 1 1 | | | | ,
Backprop I I I I I I I I I] zz:
cowen| L1 1| 1 [1 | | |,
Perceptron I I I I I I I I) 89.2
S N N Ny

Test Set Performanc

Figure 9: Test-set performance in the splice junction problem (comparison
with systems that learn strictly from examples).

C-IL? P generalizes better than any empirical learning system (see figures
8 and 9) and better than any system that learns from examples and back-
ground knowledge (see figures 10 and 11) tested on both applications. In

YTn accordance with [57], 1000 examples are randomly selected from the 3190 examples
set for each training phase.

22

CoL2P L1 1 | 1 1 1 1 1 .,
eannpd L L 1 1 1 1 1 1 |
Labyrinth I I I I I I I I . 87.0
S N I
Either IIIIIII """" 79.0

0 10 20 30 40 50 60 70 80 90 100
Test Set Performanc

Figure 10: Test-set performance in the promoter problem (comparison with
systems that learn both from examples and theory).

C-IL2P

1 194.8

KBANN

] 94.2

Test Set Performance

Figure 11: Test-set performance in the splice junction problem (comparison
with systems that learn both from examples and theory).

most cases differences are statistically significant. However, C-IL?P is only
marginally better than KBANN. This is because both systems are hybrid
neural systems that perform inductive learning from examples and back-
ground knowledge.

Usually, theory and data learning systems require fewer training exam-
ples than systems that learn only from data. The background knowledge
helps a learning system to extract useful generalizations from small sets of
examples. This is quite important since, in general, it is not easy to obtain
large and accurate training sets.

Thus, let us now analyze C-IL°P’s test-set performance given smaller
sets of examples. The following tests will compare the performance of C-
IL?P with KBANN and Backpropagation only, because these systems have
shown to be the most effective ones in the previous tests (figures 8, 9, 10 and
11). Following [57], the generalization ability over small sets of examples is
analyzed by splitting the examples into two subsets: the testing set contain-
ing approximately 25% of the examples, and the training set containing the

23

remaining examples. The training set is partitioned into sets of increasing
sizes and the networks are trained using each partition at a time.

0.6
0.5 i\
0.4

g
@
5 —@— Backprop
D 0.3 —8—KBANN
o —e—C-IL2P
n 0.2 . S—
3
g o1 = —— B ——
0 L T L T L T L |
0 20 40 60 80

Number of Training Examples

Figure 12: Test-set error rate in the promoter problem (26 examples reserved
for testing).

—@—Backprop
——KBANN

3 8.2 ~o —e—C-L2P
n Y-
Co1 ¥ ﬁ

0 T T |

0 100 200 300
Number of Training Examples

0.8
0.7 i\
206
=

Figure 13: Test-set error rate in the splice junction problem (798 examples
reserved for testing).

Figures 12 and 13 show that in both applications C-IL°P generalizes
over small sets of examples better than backpropagation. The results empir-
ically show that the initial topology of the network, set by the background
knowledge, gives it a better generalization capability. Note that the results
obtained by C-IL°P and KBANN are very similar, since both systems are
based on the backpropagation learning algorithm and learn from examples
and background knowledge.

Concluding the tests, we check the training-set performance of C-IL*P
in comparison again with KBANN and backpropagation. Figures 14 and
15 describe the training-set RMS error rate decay obtained by each system
during learning respectively in each application. The RMS parameter in-
dicates how fast a neural network learns a set of examples w.r.t training

24

epochs. Neural networks’ learning performance is a major concern, since
it can become prohibitive in certain applications, usually as a result of the
local minima problem®.

0.6
° 0.5
g 0.4
n: : —@— Backprop
E 03 —m— KBANN
(é) 02 —o—C-IL2P
[id

0.1

o - o o o

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Training Epochs

Figure 14: Training-set RMS error decay during learning the promoter prob-
lem.

o 0
©
% 04 Mm —&— Backprop
E 0.3 »~ —&— KBANN
g 0.2 —e—C-IL2P
o \’\: . o o o o o

0.1 = = = -

0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Training Epochs

Figure 15: Training-set RMS error decay during learning the splice junction
problem.

Figures 14 and 15 show that C-IL®P’s learning performance is consid-
erably better than KBANN’s. The results suggest that our translation al-
gorithm from symbolic knowledge to neural networks has advantages over
the algorithm presented in [57]. The Translation Algorithm presented here
always encodes the background knowledge into a single hidden-layer neural
network. However, KBANN’s translation algorithm generates a network
with as many layers as there are dependency chains in the background
knowledge. For example, if B «— A,C «— B, D « C,and ¥ — D, KBANN
generates a network with three hidden-layers in which concepts B, C, and
D are represented. Obviously, this creates a respective degradation in learn-
ing performance. Towell and Shavlik have tried to overcome this problem

15The network can get stuck in local minima during learning, instead of finding the
global minimum of its error function.

25

with a symbolic pre-processor of rules for KBANN [58]. However, it in-
troduces another preliminary phase to their translation process'®. In our
opinion the problem lies in KBANN’s translation algorithm, and can be
straightforwardly solved by an accurate translation mechanism.

Summarizing, the experiments described above suggest that C-IL*P’s
effectiveness is a result of three of the system’s features: CIL?P is based on
backpropagation, it uses background knowledge, and it provides an accurate
and compact translation from symbolic knowledge to neural networks.

5 Future Work and Conclusion

There are some interesting open questions relating to the explanation capa-
bility of neural networks, specifically to the trade-off between the complexity
and quality of rules’ extraction methods. One way to reduce this trade-off
would be to investigate more efficient pruning methods for neural networks’
input vectors search spaces [7].

Another interesting question relates to the class of extended programs
[20], that is of interest in connection with the relation between Logic Pro-
gramming and nonmonotonic formalisms. Fztended logic programs, which
add “classical” negation to the language of general programs, can be viewed
as a fragment of Default theories [46]. Commonsense knowledge can be
represented more easily when “classical” negation is available. We have ex-
tended C-IL?P to deal with extended logic programs. The extended C-IL?P
system computes answer sets [20] instead of stable models. As a result it
can be applied in a broader range of domains theories. The extended C-
IL? P has already been applied in power systems’ fault diagnosis, obtaining
promising preliminary results [6].

By changing the definition of T’p, variants of Default Logic and Logic Pro-
gramming semantics can be obtained [60], defining a family of nonmonotonic
(paraconsistent) neural reasoning systems. Another interesting direction to
pursue would be the use of labelled clauses in the style of [16], whereby the
proof of a literal is recorded in the label. The learning and generalization
capabilities of the network must also be formally studied, so paying due re-
gard to the logical foundations of the system. The system’s extension to deal
with first order logic is another complex and vast area for further research
[21].

As a massively parallel nonmonotonic learning system, C-IL?P has in-
teresting implications for the problem of Belief Revision [17] (see also [18]).
In the splice-junction determination problem, part of the background knowl-
edge was effectively encoded as defeasible, so that contradictory examples
were able to specify a revision of the knowledge. Specifically, the knowl-

8 KBANN already contains a preliminary phase of rules hierarchying, that rewrites the
rules before translating them.

26

edge regarding the Conformation of the genes has been changed. Hence, the
background knowledge together with the set of examples can be inconsis-
tent, and one needs to investigate ways to detect and treat inconsistencies
in the system, viewing the learning process as a process of revision.

In this paper, we have presented the Connectionist Inductive Learning
and Logic Programming System (C-IL®P); a massively parallel computa-
tional model based on artificial neural networks that integrates inductive
learning from examples and background knowledge, with deductive learning
from Logic Programming. We have obtained successful experimental results
when applying C-IL?P to two real-world problems in the domain of molecu-
lar biology. Both kinds of Intelligent Computational Systems, Symbolic and
Connectionist, have virtues and deficiencies. Research into the integration
of the two has important implications [23], in that one is able to benefit from
the advantages that each confers. We believe that our approach contributes
to this area of research.

Acknowledgements

We are grateful to Dov Gabbay, Valmir Barbosa, Luis Alfredo
Carvalho, Alberto Souza, Luis Lamb, Nelson Hallack, Romulo
Menezes and Rodrigo Basilio for useful discussions. We would
especially like to thank Krysia Broda and Sanjay Modgil for their
comments. This research was partially supported by CNPq and
CAPES /Brazil. This work is part of the project ICOM /ProTem.

References

[1] R. Andrews, J. Diederich and A. B. Tickle, A Survey and Critique
of Techniques for Extracting Rules from Trained Artificial Neural Net-
works, Knowledge-based Systems, 8(6):1-37, 1995.

[2] R. Andrews and S. Geva, Inserting and Extracting Knowledge from
Constrained Error Backpropagation Networks, In: Proc. 6" Australian
Conference on Neural Networks, Sydney, 1995.

[3] K. R. Apt and N. Bol, Logic Programming and Negation: A Survey,
Journal of Logic Programming, 19:9-71, 1994.

[4] K. R. Apt and D. Pedreschi, Reasoning about Termination of Pure
Prolog Programs, Information and Computation, 106:109-157, 1993.

5] A. S. d’Avila Garcez, G. Zaverucha and L. A. Carvalho, Logic Pro-
gramming and Inductive Learning in Artificial Neural Networks, In:
Ch. Herrmann, F. Reine and A. Strohmaier (eds.), Knowledge Repre-
sentation in Neural Networks, Logos-Verlag Berlin, 33-46, 1997.

27

[6]

[10]

[11]

[13]

[14]

[15]

[16]

[17]

[18]

A. S. d’Avila Garcez, G. Zaverucha and V. da Silva, Applying the Con-
nectionist Inductive Learning and Logic Programming System to Power

System Diagnosis, In: Proc. IEEE International Joint Conference on
Neural Networks IJCNN’97, 1:121-126, Houston, USA, 1997.

A. S. d’Avila Garcez, K. Broda and D. Gabbay, Symbolic Knowledge
Ertraction from Trained Neural Networks: A New Approach, Technical
Report, Department of Computing, Imperial College, London, 1998.

N. K. Bose and P. Liang, Neural Networks Fundamentals with Graphs,
Algorithms, and Applications, McGraw-Hill, 1996.

M. W. Craven and J. W. Shavlik, Using Sampling and Queries to FEu-
tract Rules from Trained Neural Networks, In: Proc. Eleventh Interna-
tional Conference on Machine Learning, 37-45, 1994.

B. DasGupta and G. Schinitger, Analog Versus Discrete Neural Net-
works, Neural Computation, 8:805-818, 1996.

H. B. Enderton, A Mathematical Introduction to Logic, Academic Press,
1972.

D. H. Fisher, Knowledge Acquisition via Incremental Conceptual Clus-
tering, Machine Learning, 2:139-172, 1987.

M. Fitting, Metric Methods - Three Framples and a Theorem, Journal
of Logic Programming, 21:113-127, 1994.

L. M. Fu, Integration of Neural Heuristics into Knowledge-based Infer-
ence, Connection Science, 1:325-340, 1989.

L. M. Fu, Neural Networks in Computer Intelligence, McGraw Hill,
1994.

D. M. Gabbay, LDS - Labelled Deductive Systems - Volume 1 Founda-
tions, Oxford University Press, 1996.

P. Gardenfors (ed.), Belief Revision, Cambridge Tracts in Theoretical
Computer Science, Cambridge University Press, 1992.

P. Gardenfors and H. Rott, Belief Revision, In: D. Gabbay, C. Hogger
and J. Robinson (eds.), Handbook of Logic in Artificial Intelligence and
Logic Programming, 4:35-132, Oxford University Press, 1994,

M. Gelfond and V. Lifschitz, The Stable Model Semantics for Logic
Programming, In: Proc. bth International Symposium on Logic Pro-
gramming, MIT Press, 1070-1080, Cambridge, 1988.

28

[20]

[21]

M. Gelfond and V. Lifschitz, Classical Negation in Logic Programs
and Disjunctive Databases, New Generation Computing, 9:365-385,
Springer-Verlag, 1991.

N. Hallack, G. Zaverucha and V. Barbosa, Towards a Hybrid Model of
First-Order Theory Refinement, In: Neural Information Processing Sys-

tems, Workshop on Hybrid Neural Symbolic Integration, Breckenridge,
Colorado, USA, 1998.

J. Hertz, A. Krogh and R. G. Palmer, Introduction to the Theory of
Neural Computation, Santa Fe Institute, Studies in the Science of Com-
plexity, Addison-Wesley Publishing Company, 1991.

M. Hilario, An Ouverview of Strategies for Neurosymbolic Integration, In:
Proc. Workshop on Connectionist-Symbolic Integration: from Unified
to Hybrid Approaches, IJCAI 95, 1995.

S. Holldobler, Automated Inferencing and Connectionist Models, Post-
doctoral Thesis, Intellektik, Informatik, TH Darmstadt, 1993.

S. Holldobler and Y. Kalinke, Toward a New Massively Parallel Com-
putational Model for Logic Programming, In: Proc. Workshop on Com-
bining Symbolic and Connectionist Processing, ECAI 94, 1994,

K. Hornik, M. Stinchcombe and H. White, Multilayer Feedforward Net-
works are Universal Approximators, Neural Networks, 2:359-366, 1989.

M. L Jordan, Attractor Dynamics and Parallelisms in a Connectionist
Sequential Machine, In: Proc. Eighth Annual Conference of the Cogni-
tive Science Society, 531-546, 1986.

R. M. Karp and V. Ramachandran, Parallel Algorithms for Shared-
Memory Machines, In: J. van Leeuwen (ed.), Handbook of Theoretical
Computer Science, 17:869-941, Elsevier Science, 1990.

B. F. Katz, EBL and SBL: A Neural Network Synthesis, In: Proc.
Eleventh Annual Conference of the Cognitive Science Society, 683-689,
Ann Arbor, 1989.

F. J. KurfeB, Neural Networks and Structured Knowledge, In: Ch. Her-
rmann, F. Reine and A. Strohmaier (eds.), Knowledge Representation
in Neural Networks, Logos-Verlag Berlin, 5-22, 1997.

N. Lavrac and S. Dzeroski, Inductive Logic Programming: [Techniques
and Applications, Ellis Horwood Series in Artificial Intelligence, 1994.

J. W. Lloyd, Foundations of Logic Programming, Springer - Verlag,
1987.

29

[33]

[34]

[35]

[44]

[45]

[46]

[47]

W. Marek and M. Truszczynski, Nonmonotonic Logic: Context Depen-
dent Reasoning, Springer-Verlag, 1993,

R. S. Michalski, Learning Strategies and Automated Knowledge Ac-
quisition, Computational Models of Learning, Symbolic Computation,
Springer-Verlag, 1987.

M. Minsky, Logical versus Analogical, Symbolic versus Connectionist,
Neat versus Scruffy, Al Magazine, 12(2), 1991.

T. M. Mitchell, Machine Learning, McGraw-Hill, 1997.

S. Muggleton and L. Raedt, Inductive Logic Programming: Theory and
Methods, Journal of Logic Programming, 19:629-679, 1994.

M. O. Noordewier, G. G. Towell and J. W. Shavlik, Training
Knowledge-based Neural Networks to recognize genes in DNA sequences,

In: Advances in Neural Information Processing Systems, 3:530-530,
Denver, 1991.

M. C. O’Neill, Escherichia Coli Promoters: Consensus as it relates
to spacing class, cpecificity, repeat substructure, and three dimensional
organization, Journal of Biological Chemistry, 264:5522-5530, 19809,

D. Ourston and R. J. Mooney, Theory Refinement Combining Analytical
and Empirical Methods, Artificial Intelligence, 66:273-310, 1994.

M. Pazzani and D. Kibler, The Utility of Knowledge in Inductive Learn-
ing, Machine Learning, 9:57-94, 1992.

G. Pinkas, Energy Minimization and the Satisfiability of Propositional
Calculus, Neural Computation, 3(2), 1991.

G. Pinkas, Reasoning, Nonmonotonicity and Learning in Connectionist
Networks that Capture Propositional Knowledge, Artificial Intelligence,
77:203-247, 1995.

E. Pop, R. Hayward and J. Diederich, RULENEG: FExtracting Rules
from a Trained ANN by Stepwise Negation, QUT NRC, 1994.

J. R. Quinlan, Induction of Decision Trees, Machine Learning, 1: 81-
106, 1986.

R. Reiter, A Logic for Default Reasoning, Artificial Intelligence, 13:81-
132, 1980.

F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the The-
ory of Brain Mechanisms, Spartan Books, New York, 1962.

30

[48]

[52]

[53]

[54]

[55]

[56]

D. E. Rumelhart, G. E. Hinton and R. J. Williams, Learning Internal
Representations by FError Propagation, In: D. E. Rumelhart and J.
L. McClelland (eds.), Parallel Distributed Processing, 1:318-363, MIT
Press, 1986.

R. Setiono, FExtracting Rules from Neural Networks by Pruning and
Hidden-unit Splitting, Neural Computation, 9:205-225, 1997.

G. D. Stormo, Consensus Patterns in DNA, Methods in Enzymology,
183:211-221, Academic Press, Orlando, 1990.

K. Thompson, P. Langley and W. Iba, Using Background Knowledge in
Concept Formation, In: Proc. Eighth International Machine Learning
Workshop, 554-558, Eivanston, 1991.

S. B. Thrun et al.,, The MONK’s Problem: A Performance Comparison
of Different Learning Algorithms, Technical Report, Carnegie Mellon
University, 1991.

S. B. Thrun, Extracting Provably Correct Rules from Artificial Neural
Networks, Technical Report, Institut fur Informatik, Universitat Bonn,
1994.

G. G. Towell, J. W. Shavlik and M. O. Noordewier, Refinement of
Approximately Correct Domain Theories by Knowledge-based Neural
Networks, In: Proc. AAAT’90, 861-866, Boston, 1990.

G. G. Towell, Symbolic Knowledge and Neural Networks: Insertion, Re-
finement and Extraction, PhD Thesis, Computer Sciences Department,
University of Wisconsin, Madison, 1991.

G. G. Towell and J. W. Shavlik, The Extraction of Refined Rules From
Knowledge Based Neural Networks, Machine Learning, 13(1):71-101,
1993.

G. G. Towell and J. W. Shavlik, Knowledge-Based Artificial Neural
Networks, Artificial Intelligence, 70(1):119-165, 1994.

G. G. Towell and J. W. Shavlik, Using Symbolic Learning to Improve
Knowledge-Based Neural Networks, In: Proc. AAAI’94, 1994,

J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz and A. M.
Weiner, Molecular Biology of the Gene, Volume 1, Benjamin Cum-
mings, Menlo Park, 1987.

G. Zaverucha, A Prioritized Contextual Default Logic: Curing Anom-
alous Extensions with a Simple Abnormality Default Theory, In: Proc.
KTI’'94, Saarbrucken, Germany, LNAI 861, Springer-Verlag, 260-271,
1994.

31

